Materials and Designs for Wearable Photodetectors
Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next‐generation wearable electronics. Unfortunately, no in‐depth reviews on the design strategies, material exploration, and potential applications of wearable photodetectors ar...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 18; pp. e1808138 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next‐generation wearable electronics. Unfortunately, no in‐depth reviews on the design strategies, material exploration, and potential applications of wearable photodetectors are found in literature to date. Thus, this progress report first summarizes the fundamental design principles of turning “hard” photodetectors “soft,” including 2D (polymer and paper substrate‐based devices) and 1D PDs (fiber shaped devices). In short, the flexibility of PDs is realized through elaborate substrate modification, material selection, and device layout. More importantly, this report presents the current progress and specific requirements for wearable PDs according to the application: monitoring, imaging, and optical communication. Challenges and future research directions in these fields are proposed at the end. The purpose of this progress report is not only to shed light on the basic design principles of wearable PDs, but also serve as the roadmap for future exploration in wearable PDs in various applications, including health monitoring and Internet of Things.
The fundamental design principles of turning “hard” photodetectors “soft” are summarized and the materials selection, mainly from the perspective of substrate choice (polymer, paper, and fiber), are explored. The current progress, requirements, challenges, and future opportunities for wearable photodetectors for different applications: monitoring, imaging, and optical communication are discussed in detail. |
---|---|
AbstractList | Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next‐generation wearable electronics. Unfortunately, no in‐depth reviews on the design strategies, material exploration, and potential applications of wearable photodetectors are found in literature to date. Thus, this progress report first summarizes the fundamental design principles of turning “hard” photodetectors “soft,” including 2D (polymer and paper substrate‐based devices) and 1D PDs (fiber shaped devices). In short, the flexibility of PDs is realized through elaborate substrate modification, material selection, and device layout. More importantly, this report presents the current progress and specific requirements for wearable PDs according to the application: monitoring, imaging, and optical communication. Challenges and future research directions in these fields are proposed at the end. The purpose of this progress report is not only to shed light on the basic design principles of wearable PDs, but also serve as the roadmap for future exploration in wearable PDs in various applications, including health monitoring and Internet of Things.
The fundamental design principles of turning “hard” photodetectors “soft” are summarized and the materials selection, mainly from the perspective of substrate choice (polymer, paper, and fiber), are explored. The current progress, requirements, challenges, and future opportunities for wearable photodetectors for different applications: monitoring, imaging, and optical communication are discussed in detail. Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next‐generation wearable electronics. Unfortunately, no in‐depth reviews on the design strategies, material exploration, and potential applications of wearable photodetectors are found in literature to date. Thus, this progress report first summarizes the fundamental design principles of turning “hard” photodetectors “soft,” including 2D (polymer and paper substrate‐based devices) and 1D PDs (fiber shaped devices). In short, the flexibility of PDs is realized through elaborate substrate modification, material selection, and device layout. More importantly, this report presents the current progress and specific requirements for wearable PDs according to the application: monitoring, imaging, and optical communication. Challenges and future research directions in these fields are proposed at the end. The purpose of this progress report is not only to shed light on the basic design principles of wearable PDs, but also serve as the roadmap for future exploration in wearable PDs in various applications, including health monitoring and Internet of Things. Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next-generation wearable electronics. Unfortunately, no in-depth reviews on the design strategies, material exploration, and potential applications of wearable photodetectors are found in literature to date. Thus, this progress report first summarizes the fundamental design principles of turning "hard" photodetectors "soft," including 2D (polymer and paper substrate-based devices) and 1D PDs (fiber shaped devices). In short, the flexibility of PDs is realized through elaborate substrate modification, material selection, and device layout. More importantly, this report presents the current progress and specific requirements for wearable PDs according to the application: monitoring, imaging, and optical communication. Challenges and future research directions in these fields are proposed at the end. The purpose of this progress report is not only to shed light on the basic design principles of wearable PDs, but also serve as the roadmap for future exploration in wearable PDs in various applications, including health monitoring and Internet of Things.Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next-generation wearable electronics. Unfortunately, no in-depth reviews on the design strategies, material exploration, and potential applications of wearable photodetectors are found in literature to date. Thus, this progress report first summarizes the fundamental design principles of turning "hard" photodetectors "soft," including 2D (polymer and paper substrate-based devices) and 1D PDs (fiber shaped devices). In short, the flexibility of PDs is realized through elaborate substrate modification, material selection, and device layout. More importantly, this report presents the current progress and specific requirements for wearable PDs according to the application: monitoring, imaging, and optical communication. Challenges and future research directions in these fields are proposed at the end. The purpose of this progress report is not only to shed light on the basic design principles of wearable PDs, but also serve as the roadmap for future exploration in wearable PDs in various applications, including health monitoring and Internet of Things. |
Author | Chen, Jiaxin Fang, Xiaosheng Xu, Xiaojie Cai, Sa Yang, Wei |
Author_xml | – sequence: 1 givenname: Sa surname: Cai fullname: Cai, Sa organization: Fudan University – sequence: 2 givenname: Xiaojie surname: Xu fullname: Xu, Xiaojie organization: Fudan University – sequence: 3 givenname: Wei surname: Yang fullname: Yang, Wei organization: Fudan University – sequence: 4 givenname: Jiaxin surname: Chen fullname: Chen, Jiaxin organization: Fudan University – sequence: 5 givenname: Xiaosheng orcidid: 0000-0003-3387-4532 surname: Fang fullname: Fang, Xiaosheng email: xshfang@fudan.edu.cn organization: Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30785644$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LwzAYgINM3IdePUrBi5fOfLVNjmPzCzb0oHgMaftWO9pmJi2yf2_m5oSBCC_k8jx5X54h6jWmAYTOCR4TjOm1zms9ppgILAgTR2hAIkpCjmXUQwMsWRTKmIs-Gjq3xBjLGMcnqM9wIqKY8wEiC92CLXXlAt3kwQxc-da4oDA2eAVtdVpB8PRuWpNDC1lrrDtFx4XH4Wz3jtDL7c3z9D6cP949TCfzMONMihBYQopYpkkaJZJCrLOUZRS-R_jDpNA4zzPCI0KTGIQkNJV5QlJIWBLnBRuhq-2_K2s-OnCtqkuXQVXpBkznFCWCE84iIjx6eYAuTWcbf52iHvOhsMCeuthRXVpDrla2rLVdq58YHhhvgcwa5ywUe4RgtamtNrXVvrYX-IGQla1uS9O0VpfV35rcap9lBet_lqjJbDH5db8AKHqRgQ |
CitedBy_id | crossref_primary_10_1002_adma_202406353 crossref_primary_10_1007_s00339_024_08209_9 crossref_primary_10_1021_acsaelm_9b00817 crossref_primary_10_1016_j_micrna_2024_207914 crossref_primary_10_1021_acsnano_4c04374 crossref_primary_10_1039_D4CC03214D crossref_primary_10_1002_smll_202202639 crossref_primary_10_1016_j_nanoen_2020_105719 crossref_primary_10_1016_j_xcrp_2021_100418 crossref_primary_10_1002_adfm_202100026 crossref_primary_10_1007_s12274_021_3989_4 crossref_primary_10_1016_j_trechm_2023_10_003 crossref_primary_10_1002_aelm_202100375 crossref_primary_10_1039_D0TC05220E crossref_primary_10_1021_acsami_3c18894 crossref_primary_10_1016_j_matlet_2022_132023 crossref_primary_10_1063_5_0185511 crossref_primary_10_1002_adom_202102163 crossref_primary_10_3390_nano12060910 crossref_primary_10_1021_acsami_1c06486 crossref_primary_10_1021_acsami_3c03600 crossref_primary_10_1002_smll_202207879 crossref_primary_10_1002_admi_202000882 crossref_primary_10_3390_s21020387 crossref_primary_10_1007_s40843_020_1314_1 crossref_primary_10_1038_s41467_021_25178_2 crossref_primary_10_1002_adfm_202008275 crossref_primary_10_1016_j_cej_2024_148949 crossref_primary_10_1002_solr_202000139 crossref_primary_10_1002_smll_202206309 crossref_primary_10_1016_j_apsusc_2023_157094 crossref_primary_10_1002_adma_202100625 crossref_primary_10_1002_adom_202402572 crossref_primary_10_1039_D4MH00667D crossref_primary_10_1016_j_cej_2022_135997 crossref_primary_10_3390_cryst13121672 crossref_primary_10_1002_admi_201901741 crossref_primary_10_3390_mi11121090 crossref_primary_10_1002_adma_202400703 crossref_primary_10_1021_acsanm_2c05270 crossref_primary_10_1088_1361_6528_ac1719 crossref_primary_10_1021_acs_chemrev_2c00231 crossref_primary_10_1002_adfm_202211548 crossref_primary_10_1039_D2NJ06004C crossref_primary_10_2196_29694 crossref_primary_10_1002_adhm_202303461 crossref_primary_10_3390_nano12030475 crossref_primary_10_1007_s12598_020_01598_9 crossref_primary_10_1002_ange_201912921 crossref_primary_10_1007_s10853_023_08876_8 crossref_primary_10_1002_adfm_202001604 crossref_primary_10_1002_admt_201901122 crossref_primary_10_1063_5_0169149 crossref_primary_10_1016_j_optlastec_2020_106393 crossref_primary_10_1039_D0TA08749A crossref_primary_10_1021_acsomega_2c06480 crossref_primary_10_1002_adfm_202424645 crossref_primary_10_1039_D3TC01045G crossref_primary_10_1002_adma_202501833 crossref_primary_10_1002_slct_202004263 crossref_primary_10_1088_1361_6528_ab758e crossref_primary_10_1002_adfm_201909909 crossref_primary_10_1002_adem_202000535 crossref_primary_10_1016_j_nanoen_2021_106889 crossref_primary_10_1021_acsami_0c18260 crossref_primary_10_1021_acsanm_2c00003 crossref_primary_10_1002_adfm_202002023 crossref_primary_10_1021_acsanm_0c02166 crossref_primary_10_1021_acsaelm_1c00607 crossref_primary_10_1021_acsami_1c02357 crossref_primary_10_1002_adfm_202010320 crossref_primary_10_1016_j_nanoen_2021_106088 crossref_primary_10_1016_j_actbio_2021_06_018 crossref_primary_10_1002_adma_202104327 crossref_primary_10_1002_adfm_202315058 crossref_primary_10_1039_D4TC02709D crossref_primary_10_1002_adom_202402795 crossref_primary_10_1002_smll_202004234 crossref_primary_10_1016_j_jallcom_2024_173694 crossref_primary_10_1021_jacs_0c11894 crossref_primary_10_1149_2162_8777_ad7759 crossref_primary_10_1021_acsnano_4c12474 crossref_primary_10_1063_5_0219144 crossref_primary_10_1016_j_nanoen_2025_110831 crossref_primary_10_1002_admt_202301903 crossref_primary_10_1016_j_jallcom_2019_152401 crossref_primary_10_1039_D2NR02963D crossref_primary_10_1002_adma_202109083 crossref_primary_10_1039_D2MA00962E crossref_primary_10_1002_smll_202101572 crossref_primary_10_1021_acsaelm_3c00997 crossref_primary_10_1039_D2CS00207H crossref_primary_10_1002_adfm_202106326 crossref_primary_10_1002_adma_202501302 crossref_primary_10_1002_adom_202001388 crossref_primary_10_1063_5_0026984 crossref_primary_10_1002_smll_202407107 crossref_primary_10_1021_acsnano_3c05178 crossref_primary_10_1039_D3NR05906E crossref_primary_10_1016_j_flatc_2022_100452 crossref_primary_10_3788_COL202321_101601 crossref_primary_10_1016_j_ceramint_2024_05_014 crossref_primary_10_1021_acsomega_4c06008 crossref_primary_10_1021_acsaom_4c00133 crossref_primary_10_1016_j_jcis_2022_11_064 crossref_primary_10_1039_D4NR00321G crossref_primary_10_1002_admt_201900873 crossref_primary_10_1088_2053_1591_abc6cc crossref_primary_10_1016_j_sna_2021_112870 crossref_primary_10_1039_D1TC05538K crossref_primary_10_1002_adpr_202100206 crossref_primary_10_1016_j_jmst_2022_11_020 crossref_primary_10_1002_adfm_201905923 crossref_primary_10_1016_j_jsamd_2021_09_003 crossref_primary_10_1039_C9TC01154D crossref_primary_10_1002_aelm_201900726 crossref_primary_10_1016_j_surfin_2023_103709 crossref_primary_10_1016_j_nanoen_2020_105119 crossref_primary_10_3390_nano12071034 crossref_primary_10_1002_adom_202001703 crossref_primary_10_1364_OE_514548 crossref_primary_10_1002_adfm_202314743 crossref_primary_10_1039_D2TC02327J crossref_primary_10_1021_accountsmr_1c00002 crossref_primary_10_1039_D1DT03848F crossref_primary_10_1002_smtd_202300319 crossref_primary_10_3390_nano12193264 crossref_primary_10_1016_j_nanoen_2021_106151 crossref_primary_10_1002_adfm_202005291 crossref_primary_10_1002_smll_202101674 crossref_primary_10_1016_j_jcis_2023_05_149 crossref_primary_10_1002_advs_202204332 crossref_primary_10_1016_j_jcis_2020_10_006 crossref_primary_10_1016_j_jpowsour_2024_235373 crossref_primary_10_3390_biomimetics8030293 crossref_primary_10_1016_j_cej_2024_152143 crossref_primary_10_1007_s10853_023_08451_1 crossref_primary_10_1016_j_snb_2024_136190 crossref_primary_10_1088_1361_6528_ab674a crossref_primary_10_1002_adom_201901334 crossref_primary_10_1016_j_sna_2024_116061 crossref_primary_10_1021_acsami_4c05210 crossref_primary_10_1016_j_jallcom_2024_177627 crossref_primary_10_1016_j_cej_2024_153910 crossref_primary_10_1002_marc_202400021 crossref_primary_10_1039_D2NH00149G crossref_primary_10_1002_adfm_202011284 crossref_primary_10_1002_pssr_202300107 crossref_primary_10_1016_j_jallcom_2020_155311 crossref_primary_10_1002_adom_202201926 crossref_primary_10_1016_j_nantod_2021_101081 crossref_primary_10_1038_s41598_023_38635_3 crossref_primary_10_1016_j_cej_2021_130816 crossref_primary_10_1002_smll_202207615 crossref_primary_10_1021_acsaelm_1c00760 crossref_primary_10_1016_j_infrared_2025_105822 crossref_primary_10_1002_admt_202000327 crossref_primary_10_1002_admt_202100773 crossref_primary_10_1088_1361_6528_ad047f crossref_primary_10_1109_RBME_2021_3121480 crossref_primary_10_1002_adfm_202100136 crossref_primary_10_1016_j_jallcom_2022_166250 crossref_primary_10_1002_admi_202201052 crossref_primary_10_1002_cjoc_202300315 crossref_primary_10_1016_j_mtcomm_2022_105094 crossref_primary_10_1016_j_nanoms_2024_10_001 crossref_primary_10_1021_acsomega_1c03342 crossref_primary_10_1080_25740881_2021_1906901 crossref_primary_10_1002_admt_201901036 crossref_primary_10_1016_j_cej_2020_127484 crossref_primary_10_1016_j_optlastec_2023_109608 crossref_primary_10_1002_adfm_201907650 crossref_primary_10_1021_acs_jpcc_1c06405 crossref_primary_10_1002_adhm_202100116 crossref_primary_10_1007_s40843_024_3251_x crossref_primary_10_1016_j_mssp_2023_107621 crossref_primary_10_1021_acs_nanolett_0c03759 crossref_primary_10_1002_adma_202400090 crossref_primary_10_1002_anie_201912921 crossref_primary_10_1007_s12274_021_3586_6 crossref_primary_10_1016_j_jre_2020_12_001 crossref_primary_10_1016_j_trac_2020_115989 crossref_primary_10_1039_D1TC00818H crossref_primary_10_1039_C9TB02352F crossref_primary_10_1002_adom_202203016 crossref_primary_10_1016_j_flatc_2022_100370 crossref_primary_10_1002_solr_202300720 crossref_primary_10_1021_acsanm_2c05545 crossref_primary_10_1109_JEDS_2024_3422292 crossref_primary_10_1016_j_surfin_2022_102318 crossref_primary_10_1021_acsnano_2c09366 crossref_primary_10_1364_PRJ_534940 crossref_primary_10_1021_acsomega_3c07390 crossref_primary_10_1002_apxr_202200075 crossref_primary_10_1016_j_nanoen_2022_107504 crossref_primary_10_1002_sstr_202000124 crossref_primary_10_1038_s41528_025_00385_9 crossref_primary_10_1039_C9TC04696H crossref_primary_10_1021_acs_chemrev_2c00720 crossref_primary_10_1016_j_vacuum_2020_109950 crossref_primary_10_1002_adfm_202108839 crossref_primary_10_1016_j_bios_2024_116992 crossref_primary_10_1016_j_scib_2019_12_001 crossref_primary_10_1016_j_cej_2023_142026 crossref_primary_10_1016_j_ijleo_2020_165705 crossref_primary_10_1063_5_0140900 crossref_primary_10_1016_j_surfin_2024_104627 crossref_primary_10_1007_s40820_020_0371_0 crossref_primary_10_1002_admi_202100770 crossref_primary_10_1002_adom_201902056 crossref_primary_10_1016_j_apmt_2022_101686 crossref_primary_10_1016_j_jphotochem_2024_115697 crossref_primary_10_1088_1361_6528_ac37e3 crossref_primary_10_1002_adfm_202208658 crossref_primary_10_1002_batt_202000115 crossref_primary_10_1016_j_sna_2023_114339 crossref_primary_10_1021_acsami_1c03023 crossref_primary_10_1080_25740881_2021_2015775 crossref_primary_10_46670_JSST_2022_31_2_71 crossref_primary_10_1039_D0NR01394C crossref_primary_10_1002_admt_202300517 crossref_primary_10_1002_smll_201907461 crossref_primary_10_1002_adma_202416899 crossref_primary_10_3390_ijms24010336 crossref_primary_10_1016_j_dyepig_2019_108048 crossref_primary_10_1016_j_dyepig_2019_108169 crossref_primary_10_1016_j_nanoen_2021_106906 crossref_primary_10_1002_adfm_202214533 crossref_primary_10_1038_s41598_022_10879_5 crossref_primary_10_1039_C9TA13487E crossref_primary_10_1021_acsami_9b09815 crossref_primary_10_1039_C9NA00130A crossref_primary_10_1016_j_nanoen_2021_105823 crossref_primary_10_1021_acsaelm_3c00013 crossref_primary_10_1002_aelm_202300340 crossref_primary_10_1021_acsami_9b19075 crossref_primary_10_1016_j_jtice_2021_05_033 crossref_primary_10_1002_adfm_202213334 crossref_primary_10_1002_adfm_202308136 crossref_primary_10_1016_j_apsadv_2023_100393 crossref_primary_10_1021_acs_chemmater_2c03701 crossref_primary_10_1039_D3TC02390G crossref_primary_10_1016_j_nanoen_2021_105951 crossref_primary_10_1016_j_actamat_2023_119529 crossref_primary_10_1088_1361_6528_ac0a17 crossref_primary_10_1002_inf2_12641 crossref_primary_10_1039_D3TC03804A crossref_primary_10_1002_adfm_202203300 crossref_primary_10_1002_advs_202307165 crossref_primary_10_1016_j_apsusc_2021_152378 crossref_primary_10_1016_j_rinma_2021_100170 crossref_primary_10_1016_j_sna_2023_114785 crossref_primary_10_1039_D1RA09128J crossref_primary_10_1002_adfm_202104782 crossref_primary_10_1021_acs_jpcc_1c01252 crossref_primary_10_5433_2236_2207_2023_v14_n1_46680 crossref_primary_10_1007_s10853_024_10572_0 crossref_primary_10_1039_D2TC01460B crossref_primary_10_1016_j_xcrp_2020_100213 crossref_primary_10_1002_smtd_202300175 crossref_primary_10_1002_smll_202403255 crossref_primary_10_1016_j_nanoen_2024_110033 crossref_primary_10_1063_5_0178875 crossref_primary_10_1002_adom_202000695 crossref_primary_10_1007_s11595_024_2881_y crossref_primary_10_1039_D3TC02374E crossref_primary_10_1109_JSEN_2020_2982829 crossref_primary_10_1038_s41528_023_00257_0 crossref_primary_10_1126_sciadv_adp2679 crossref_primary_10_1002_adfm_202422161 crossref_primary_10_1088_1674_4926_45_5_051701 crossref_primary_10_1002_adfm_202213717 crossref_primary_10_1007_s00339_024_07501_y crossref_primary_10_1002_adom_202200454 crossref_primary_10_1021_acsami_9b11012 crossref_primary_10_1039_D1NR01805A crossref_primary_10_1021_acsami_0c13833 crossref_primary_10_1038_s41598_020_80738_8 crossref_primary_10_1002_adma_202418705 crossref_primary_10_1002_adom_202001551 crossref_primary_10_1002_adfm_202103106 crossref_primary_10_1039_C9RA02184A crossref_primary_10_1088_1361_6463_aceb6e crossref_primary_10_1007_s10853_021_06678_4 crossref_primary_10_1088_1361_6463_ac570d crossref_primary_10_1016_j_jallcom_2022_168054 crossref_primary_10_1063_5_0214668 crossref_primary_10_1002_aelm_202000717 crossref_primary_10_1002_inf2_12540 crossref_primary_10_1021_acsami_1c05769 crossref_primary_10_1002_smll_202408826 crossref_primary_10_1002_adom_202402370 crossref_primary_10_1021_acsami_2c12154 crossref_primary_10_1021_acs_jpcc_1c01938 crossref_primary_10_1039_D0NR01326A crossref_primary_10_1016_j_giant_2024_100291 crossref_primary_10_1016_j_cej_2024_152439 crossref_primary_10_1039_D1TC00786F crossref_primary_10_34133_research_0202 crossref_primary_10_1002_smll_202410466 crossref_primary_10_1021_acsomega_4c03802 crossref_primary_10_1016_j_matlet_2023_135471 crossref_primary_10_1016_j_apmate_2024_100250 crossref_primary_10_1039_D2TC04913A crossref_primary_10_3390_photonics11111014 crossref_primary_10_1039_D2NR07107J crossref_primary_10_1007_s00339_019_2997_7 crossref_primary_10_1002_admt_202302056 crossref_primary_10_1016_j_ijhydene_2023_11_246 crossref_primary_10_1039_D2CC05281D crossref_primary_10_1002_inf2_12555 crossref_primary_10_1007_s40843_023_2794_7 crossref_primary_10_1039_D2TC01854C crossref_primary_10_1021_acscatal_0c04797 crossref_primary_10_1063_5_0058482 crossref_primary_10_3390_electronics10212644 crossref_primary_10_1002_aelm_202100478 crossref_primary_10_1002_adom_202402368 crossref_primary_10_1016_j_nanoen_2022_107600 crossref_primary_10_1002_aenm_201903919 crossref_primary_10_1016_j_mtchem_2023_101435 crossref_primary_10_1002_apxr_202400183 crossref_primary_10_1021_acsmaterialslett_1c00298 crossref_primary_10_1016_j_cej_2023_141473 crossref_primary_10_1109_TED_2023_3327039 crossref_primary_10_1088_1402_4896_ad964e crossref_primary_10_1002_admt_202300207 crossref_primary_10_1007_s12274_023_5942_1 crossref_primary_10_1039_D2TC01124G crossref_primary_10_1039_D4TA03202K crossref_primary_10_1016_j_optmat_2024_116397 crossref_primary_10_1002_adom_202302149 crossref_primary_10_1002_aelm_202000811 crossref_primary_10_1016_j_addr_2022_114315 crossref_primary_10_1016_j_bios_2021_113777 crossref_primary_10_1063_5_0062296 crossref_primary_10_1021_acsami_4c06712 crossref_primary_10_1016_j_mattod_2022_10_023 |
Cites_doi | 10.1002/smll.201701687 10.1002/adma.201802290 10.1021/acsami.5b11523 10.1002/adma.201706986 10.1021/acsnano.7b00749 10.1038/ncomms14997 10.1002/smll.201500729 10.1016/j.bios.2016.12.011 10.1002/smll.201600326 10.1002/adfm.201604373 10.1021/acs.chemrev.6b00498 10.1039/C8NH00144H 10.1039/C3TC31966K 10.1016/j.apmt.2017.12.013 10.1002/advs.201800496 10.1038/nature13078 10.1002/smll.201602448 10.1002/adfm.201704477 10.1021/acsanm.8b00421 10.1038/nature16521 10.1002/aelm.201700281 10.1021/acsami.8b13457 10.1016/j.nanoen.2016.10.009 10.1021/acsami.7b05264 10.1002/adma.201400349 10.1002/smll.201601913 10.1007/s12274-016-1263-y 10.1126/sciadv.1601314 10.1126/sciadv.aat2544 10.1002/adma.201001289 10.1038/ncomms5007 10.1021/acsami.5b09373 10.1002/adfm.201707178 10.1039/C8TC01183D 10.1002/adma.201602639 10.1002/adfm.201504477 10.1039/C8TC00550H 10.1021/acsnano.7b04804 10.1002/adfm.201802954 10.1016/j.mattod.2015.11.007 10.1002/adma.201702184 10.1021/acsnano.8b05582 10.1002/adma.201501517 10.1088/0957-4484/27/22/225501 10.1038/s41467-017-01926-1 10.1021/acsami.7b13709 10.1002/adma.201705400 10.1016/j.nanoen.2016.01.011 10.1002/smll.201502037 10.1002/adfm.201703448 10.1038/ncomms12744 10.1002/adma.201503534 10.1039/C6NR08425G 10.1021/acsami.7b02213 10.1103/PhysRevMaterials.2.015201 10.1002/adfm.201701611 10.1039/C7NR04395C 10.1002/adma.201800323 10.1002/adfm.201704181 10.1002/adfm.201700264 10.1143/JJAP.51.090115 10.1002/adma.201802359 10.1126/sciadv.1501856 10.1021/acsnano.6b06326 10.1021/acs.nanolett.5b00906 10.1002/adma.201304736 10.1002/adom.201800213 10.1002/admt.201700288 10.1021/acsphotonics.8b00141 10.1016/j.chempr.2017.10.005 10.1038/nature26147 10.1021/acsnano.7b01999 10.1002/adma.201803165 10.1039/C5TC00850F 10.1073/pnas.1813053115 10.1002/smll.201700918 10.1002/smll.201703754 10.1039/C6NR09338H 10.1038/nnano.2017.125 10.1038/srep11070 10.1021/acs.nanolett.5b05124 10.1002/smll.201704524 10.1002/adfm.201100743 10.1039/c3nr34335a 10.1021/acs.jpclett.9b00154 10.1038/s41586-018-0390-x 10.1038/nature21050 10.1021/acsami.7b09411 10.1039/C6TC03830A 10.1021/acsnano.7b01894 10.1021/acsphotonics.6b00391 10.1002/pssr.201700381 10.1021/cr400607y 10.1002/adfm.201502646 10.1002/adom.201800201 10.1038/s41565-018-0226-8 10.1002/adma.201603167 10.1063/1.4953034 10.1002/adma.201706262 10.1021/acs.chemrev.8b00056 10.1002/lpor.201600257 10.1088/2058-8585/1/2/025006 10.1109/TED.2016.2618423 10.1038/ncomms7972 10.1002/smll.201701822 10.1088/0957-4484/25/9/094005 10.1038/s41565-018-0244-6 10.1002/adfm.201701823 10.1002/adfm.201503230 10.15541/jim20180243 10.1038/nature07113 10.1021/acsami.5b02834 10.1038/s41467-018-03870-0 10.1002/adma.201700975 10.1002/adma.201504244 10.1126/science.1139366 10.1016/j.mattod.2015.06.001 10.1351/PAC-CON-09-11-40 10.1002/adma.201803980 10.1002/adma.201304248 10.1002/adma.201504441 10.1002/adma.201705918 10.1002/adfm.201602195 10.1002/adfm.201802029 10.1002/adfm.201702360 10.1126/sciadv.1602051 10.1021/acs.nanolett.8b00988 10.1038/s41467-018-06273-3 10.1002/adfm.201705389 10.1039/C8TC05877F |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201808138 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30785644 10_1002_adma_201808138 ADMA201808138 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2017YFA0204600 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 18520710800; 18520744600; 17520742400 – fundername: National Natural Science Foundation of China funderid: 51721002; 11674061; 51872050; 11811530065 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 18520710800 – fundername: National Natural Science Foundation of China grantid: 11811530065 – fundername: National Natural Science Foundation of China grantid: 11674061 – fundername: National Natural Science Foundation of China grantid: 51872050 – fundername: National Natural Science Foundation of China grantid: 51721002 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 18520744600 – fundername: National Key Research and Development Program of China grantid: 2017YFA0204600 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 17520742400 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4398-e371f69b7b5792e6acb3c2ec2ec2809398a0ddc1451276e8912b9d71be7376df3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 13:06:17 EDT 2025 Fri Jul 25 02:32:57 EDT 2025 Thu Apr 03 06:58:55 EDT 2025 Tue Jul 01 00:44:50 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Wed Jan 22 16:36:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | flexible electronics design strategy material exploration wearable photodetectors |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4398-e371f69b7b5792e6acb3c2ec2ec2809398a0ddc1451276e8912b9d71be7376df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3387-4532 |
PMID | 30785644 |
PQID | 2218100080 |
PQPubID | 2045203 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2184143518 proquest_journals_2218100080 pubmed_primary_30785644 crossref_primary_10_1002_adma_201808138 crossref_citationtrail_10_1002_adma_201808138 wiley_primary_10_1002_adma_201808138_ADMA201808138 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-May |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-May |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 560 2017; 8 2017; 3 2019; 10 2014; 26 2016; 30 2014; 25 2013; 5 2017; 9 2012; 51 2018; 6 2010; 22 2018; 9 2014; 5 2018; 3 2018; 2 2018; 5 2018; 4 2014; 2 2018; 1 2011; 21 2018; 30 2016; 116 2019; 7 2015; 15 2017; 64 2018; 28 2019; 4 2015; 6 2015; 5 2015; 18 2015; 3 2016; 19 2017; 27 2019; 34 2015; 11 2016; 529 2016; 10 2017; 29 2016; 16 2015; 7 2016; 12 2010; 82 2016; 4 2018; 18 2016; 7 2015; 25 2007; 316 2014; 507 2015; 27 2016; 1 2017; 90 2016; 2 2016; 3 2015; 115 2018; 118 2017; 11 2017; 10 2018; 555 2017; 13 2018; 115 2017; 12 2016; 21 2008; 454 2018; 12 2016; 28 2017; 542 2016; 27 2018; 10 2016; 26 2016; 8 2018; 14 2018; 13 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_117_1 Li L. (e_1_2_7_108_1) 2018; 5 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 |
References_xml | – volume: 3 start-page: 1700288 year: 2018 publication-title: Adv. Mater. Technol. – volume: 8 start-page: 466 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 116 start-page: 14225 year: 2016 publication-title: Chem. Rev. – volume: 11 start-page: 1600257 year: 2017 publication-title: Laser Photonics Rev. – volume: 30 start-page: 1802290 year: 2018 publication-title: Adv. Mater. – volume: 12 start-page: 907 year: 2017 publication-title: Nat. Nanotechnol. – volume: 30 start-page: 1803165 year: 2018 publication-title: Adv. Mater. – volume: 10 start-page: 22 year: 2017 publication-title: Nano Res. – volume: 8 start-page: 1782 year: 2017 publication-title: Nat. Commun. – volume: 555 start-page: 657 year: 2018 publication-title: Nature – volume: 21 start-page: 3907 year: 2011 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 626 year: 2014 publication-title: J. Mater. Chem. C – volume: 27 start-page: 1704477 year: 2017 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 7359 year: 2016 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 1703754 year: 2018 publication-title: Small – volume: 22 start-page: 4059 year: 2010 publication-title: Adv. Mater. – volume: 542 start-page: 324 year: 2017 publication-title: Nature – volume: 18 start-page: 4697 year: 2018 publication-title: Nano Lett. – volume: 30 start-page: 173 year: 2016 publication-title: Nano Energy – volume: 3 start-page: 7469 year: 2015 publication-title: J. Mater. Chem. C – volume: 4 start-page: 10032 year: 2016 publication-title: J. Mater. Chem. C – volume: 30 start-page: 1705918 year: 2018 publication-title: Adv. Mater. – volume: 8 start-page: 7291 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 1706262 year: 2018 publication-title: Adv. Mater. – volume: 27 start-page: 4336 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 12744 year: 2016 publication-title: Nat. Commun. – volume: 12 start-page: 1700381 year: 2018 publication-title: Phys. Status Solidi RRL – volume: 26 start-page: 2059 year: 2014 publication-title: Adv. Mater. – volume: 26 start-page: 5239 year: 2014 publication-title: Adv. Mater. – volume: 5 start-page: 11070 year: 2015 publication-title: Sci. Rep. – volume: 9 start-page: 12718 year: 2017 publication-title: Nanoscale – volume: 34 start-page: 49 year: 2019 publication-title: J. Inorg. Mater. – volume: 11 start-page: 4532 year: 2015 publication-title: Small – volume: 27 start-page: 1604373 year: 2017 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 4338 year: 2016 publication-title: Adv. Mater. – volume: 13 start-page: 1048 year: 2018 publication-title: Nat. Nanotechnol. – volume: 2 start-page: 015201 year: 2018 publication-title: Phys. Rev. Mater. – volume: 11 start-page: 4067 year: 2017 publication-title: ACS Nano – volume: 6 start-page: 3334 year: 2018 publication-title: J. Mater. Chem. C – volume: 115 start-page: 8294 year: 2015 publication-title: Chem. Rev. – volume: 29 start-page: 1602639 year: 2017 publication-title: Adv. Mater. – volume: 4 start-page: 99 year: 2019 publication-title: Nanoscale Horiz. – volume: 51 start-page: 090115 year: 2012 publication-title: Jpn. J. Appl. Phys. – volume: 507 start-page: 341 year: 2014 publication-title: Nature – volume: 27 start-page: 1700264 year: 2017 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 2059 year: 2017 publication-title: Nanoscale – volume: 5 start-page: 5576 year: 2013 publication-title: Nanoscale – volume: 12 start-page: 5809 year: 2016 publication-title: Small – volume: 13 start-page: 1701822 year: 2017 publication-title: Small – volume: 30 start-page: 1706986 year: 2018 publication-title: Adv. Mater. – volume: 25 start-page: 5794 year: 2015 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 3743 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 2334 year: 2018 publication-title: Optica – volume: 9 start-page: 10921 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 1802954 year: 2018 publication-title: Adv. Funct. Mater. – volume: 2 start-page: e1501856 year: 2016 publication-title: Sci. Adv. – volume: 27 start-page: 1702360 year: 2017 publication-title: Adv. Funct. Mater. – volume: 30 start-page: 1800323 year: 2018 publication-title: Adv. Mater. – volume: 28 start-page: 403 year: 2016 publication-title: Adv. Mater. – volume: 16 start-page: 1925 year: 2016 publication-title: Nano Lett. – volume: 13 start-page: 1700918 year: 2017 publication-title: Small – volume: 26 start-page: 1445 year: 2016 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 836 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 13 start-page: 1602448 year: 2017 publication-title: Small – volume: 6 start-page: 4866 year: 2018 publication-title: J. Mater. Chem. C – volume: 7 start-page: 223 year: 2019 publication-title: J. Mater. Chem. C – volume: 454 start-page: 748 year: 2008 publication-title: Nature – volume: 10 start-page: 11249 year: 2016 publication-title: ACS Nano – volume: 90 start-page: 349 year: 2017 publication-title: Biosens. Bioelectron. – volume: 19 start-page: 394 year: 2016 publication-title: Mater. Today – volume: 12 start-page: 9596 year: 2018 publication-title: ACS Nano – volume: 28 start-page: 502 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: e1602051 year: 2017 publication-title: Sci. Adv. – volume: 4 start-page: eaat2544 year: 2018 publication-title: Sci. Adv. – volume: 6 start-page: 1800213 year: 2018 publication-title: Adv. Opt. Mater. – volume: 27 start-page: 1704181 year: 2017 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 1800496 year: 2018 publication-title: Adv. Sci. – volume: 11 start-page: 10230 year: 2017 publication-title: ACS Nano – volume: 8 start-page: 14997 year: 2017 publication-title: Nat. Commun. – volume: 12 start-page: 2419 year: 2016 publication-title: Small – volume: 11 start-page: 6048 year: 2017 publication-title: ACS Nano – volume: 26 start-page: 1336 year: 2014 publication-title: Adv. Mater. – volume: 28 start-page: 1707178 year: 2018 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 6972 year: 2015 publication-title: Nat. Commun. – volume: 27 start-page: 225501 year: 2016 publication-title: Nanotechnology – volume: 529 start-page: 509 year: 2016 publication-title: Nature – volume: 10 start-page: 106 year: 2018 publication-title: Appl. Mater. Today – volume: 29 start-page: 1700975 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 4058 year: 2017 publication-title: Nanoscale – volume: 6 start-page: 1800201 year: 2018 publication-title: Adv. Opt. Mater. – volume: 28 start-page: 1802029 year: 2018 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 2336 year: 2018 publication-title: ACS Photonics – volume: 9 start-page: 43880 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 3988 year: 2015 publication-title: Nano Lett. – volume: 30 start-page: 1803980 year: 2018 publication-title: Adv. Mater. – volume: 28 start-page: 1705389 year: 2018 publication-title: Adv. Funct. Mater. – volume: 560 start-page: 214 year: 2018 publication-title: Nature – volume: 9 start-page: 25700 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 118 start-page: 6189 year: 2018 publication-title: Chem. Rev. – volume: 3 start-page: 724 year: 2017 publication-title: Chemistry – volume: 11 start-page: 5992 year: 2017 publication-title: ACS Nano – volume: 30 start-page: 1802359 year: 2018 publication-title: Adv. Mater. – volume: 25 start-page: 094005 year: 2014 publication-title: Nanotechnology – volume: 3 start-page: 2197 year: 2016 publication-title: ACS Photonics – volume: 115 start-page: E11015 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 3 start-page: e1601314 year: 2017 publication-title: Sci. Adv. – volume: 9 start-page: 1417 year: 2018 publication-title: Nat. Commun. – volume: 3 start-page: 1700281 year: 2017 publication-title: Adv. Electron. Mater. – volume: 11 start-page: 5712 year: 2015 publication-title: Small – volume: 7 start-page: 11032 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 021303 year: 2016 publication-title: Appl. Phys. Rev. – volume: 13 start-page: 1701687 year: 2017 publication-title: Small – volume: 13 start-page: 1057 year: 2018 publication-title: Nat. Nanotechnol. – volume: 27 start-page: 1701823 year: 2017 publication-title: Adv. Funct. Mater. – volume: 82 start-page: 2185 year: 2010 publication-title: Pure Appl. Chem. – volume: 29 start-page: 1603167 year: 2017 publication-title: Adv. Mater. – volume: 27 start-page: 1703448 year: 2017 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 2469 year: 2018 publication-title: ACS Appl. Nano Mater. – volume: 30 start-page: 1705400 year: 2018 publication-title: Adv. Mater. – volume: 26 start-page: 1296 year: 2016 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 39487 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 025006 year: 2016 publication-title: Flexible Printed Electron. – volume: 64 start-page: 1985 year: 2017 publication-title: IEEE Trans. Electron Devices – volume: 18 start-page: 493 year: 2015 publication-title: Mater. Today – volume: 27 start-page: 1701611 year: 2017 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 1704524 year: 2018 publication-title: Small – volume: 316 start-page: 102 year: 2007 publication-title: Science – volume: 5 start-page: 4007 year: 2014 publication-title: Nat. Commun. – volume: 21 start-page: 228 year: 2016 publication-title: Nano Energy – volume: 9 start-page: 35958 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1702184 year: 2017 publication-title: Adv. Mater. – ident: e_1_2_7_49_1 doi: 10.1002/smll.201701687 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201802290 – ident: e_1_2_7_80_1 doi: 10.1021/acsami.5b11523 – ident: e_1_2_7_101_1 doi: 10.1002/adma.201706986 – ident: e_1_2_7_68_1 doi: 10.1021/acsnano.7b00749 – ident: e_1_2_7_12_1 doi: 10.1038/ncomms14997 – ident: e_1_2_7_74_1 doi: 10.1002/smll.201500729 – ident: e_1_2_7_102_1 doi: 10.1016/j.bios.2016.12.011 – ident: e_1_2_7_50_1 doi: 10.1002/smll.201600326 – ident: e_1_2_7_109_1 doi: 10.1002/adfm.201604373 – ident: e_1_2_7_129_1 doi: 10.1021/acs.chemrev.6b00498 – ident: e_1_2_7_89_1 doi: 10.1039/C8NH00144H – ident: e_1_2_7_125_1 doi: 10.1039/C3TC31966K – ident: e_1_2_7_90_1 doi: 10.1016/j.apmt.2017.12.013 – ident: e_1_2_7_107_1 doi: 10.1002/advs.201800496 – ident: e_1_2_7_120_1 doi: 10.1038/nature13078 – ident: e_1_2_7_32_1 doi: 10.1002/smll.201602448 – ident: e_1_2_7_30_1 doi: 10.1002/adfm.201704477 – ident: e_1_2_7_118_1 doi: 10.1021/acsanm.8b00421 – ident: e_1_2_7_2_1 doi: 10.1038/nature16521 – ident: e_1_2_7_106_1 doi: 10.1002/aelm.201700281 – ident: e_1_2_7_115_1 doi: 10.1021/acsami.8b13457 – ident: e_1_2_7_99_1 doi: 10.1016/j.nanoen.2016.10.009 – ident: e_1_2_7_112_1 doi: 10.1021/acsami.7b05264 – ident: e_1_2_7_127_1 doi: 10.1002/adma.201400349 – ident: e_1_2_7_43_1 doi: 10.1002/smll.201601913 – ident: e_1_2_7_59_1 doi: 10.1007/s12274-016-1263-y – ident: e_1_2_7_1_1 doi: 10.1126/sciadv.1601314 – ident: e_1_2_7_18_1 doi: 10.1126/sciadv.aat2544 – ident: e_1_2_7_88_1 doi: 10.1002/adma.201001289 – ident: e_1_2_7_76_1 doi: 10.1038/ncomms5007 – ident: e_1_2_7_57_1 doi: 10.1021/acsami.5b09373 – ident: e_1_2_7_29_1 doi: 10.1002/adfm.201707178 – ident: e_1_2_7_86_1 doi: 10.1039/C8TC01183D – ident: e_1_2_7_28_1 doi: 10.1002/adma.201602639 – ident: e_1_2_7_45_1 doi: 10.1002/adfm.201504477 – volume: 5 start-page: 2334 year: 2018 ident: e_1_2_7_108_1 publication-title: Optica – ident: e_1_2_7_16_1 doi: 10.1039/C8TC00550H – ident: e_1_2_7_94_1 doi: 10.1021/acsnano.7b04804 – ident: e_1_2_7_52_1 doi: 10.1002/adfm.201802954 – ident: e_1_2_7_130_1 doi: 10.1016/j.mattod.2015.11.007 – ident: e_1_2_7_79_1 doi: 10.1002/adma.201702184 – ident: e_1_2_7_85_1 doi: 10.1021/acsnano.8b05582 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201501517 – ident: e_1_2_7_75_1 doi: 10.1088/0957-4484/27/22/225501 – ident: e_1_2_7_121_1 doi: 10.1038/s41467-017-01926-1 – ident: e_1_2_7_123_1 doi: 10.1021/acsami.7b13709 – ident: e_1_2_7_119_1 doi: 10.1002/adma.201705400 – ident: e_1_2_7_46_1 doi: 10.1016/j.nanoen.2016.01.011 – ident: e_1_2_7_67_1 doi: 10.1002/smll.201502037 – ident: e_1_2_7_73_1 doi: 10.1002/adfm.201703448 – ident: e_1_2_7_4_1 doi: 10.1038/ncomms12744 – ident: e_1_2_7_31_1 doi: 10.1002/adma.201503534 – ident: e_1_2_7_39_1 doi: 10.1039/C6NR08425G – ident: e_1_2_7_93_1 doi: 10.1021/acsami.7b02213 – ident: e_1_2_7_96_1 doi: 10.1103/PhysRevMaterials.2.015201 – ident: e_1_2_7_91_1 doi: 10.1002/adfm.201701611 – ident: e_1_2_7_63_1 doi: 10.1039/C7NR04395C – ident: e_1_2_7_131_1 doi: 10.1002/adma.201800323 – ident: e_1_2_7_98_1 doi: 10.1002/adfm.201704181 – ident: e_1_2_7_42_1 doi: 10.1002/adfm.201700264 – ident: e_1_2_7_36_1 doi: 10.1143/JJAP.51.090115 – ident: e_1_2_7_77_1 doi: 10.1002/adma.201802359 – ident: e_1_2_7_111_1 doi: 10.1126/sciadv.1501856 – ident: e_1_2_7_70_1 doi: 10.1021/acsnano.6b06326 – ident: e_1_2_7_25_1 doi: 10.1021/acs.nanolett.5b00906 – ident: e_1_2_7_51_1 doi: 10.1002/adma.201304736 – ident: e_1_2_7_34_1 doi: 10.1002/adom.201800213 – ident: e_1_2_7_113_1 doi: 10.1002/admt.201700288 – ident: e_1_2_7_83_1 doi: 10.1021/acsphotonics.8b00141 – ident: e_1_2_7_124_1 doi: 10.1016/j.chempr.2017.10.005 – ident: e_1_2_7_11_1 doi: 10.1038/nature26147 – ident: e_1_2_7_58_1 doi: 10.1021/acsnano.7b01999 – ident: e_1_2_7_37_1 doi: 10.1002/adma.201803165 – ident: e_1_2_7_71_1 doi: 10.1039/C5TC00850F – ident: e_1_2_7_82_1 doi: 10.1073/pnas.1813053115 – ident: e_1_2_7_62_1 doi: 10.1002/smll.201700918 – ident: e_1_2_7_35_1 doi: 10.1002/smll.201703754 – ident: e_1_2_7_72_1 doi: 10.1039/C6NR09338H – ident: e_1_2_7_9_1 doi: 10.1038/nnano.2017.125 – ident: e_1_2_7_114_1 doi: 10.1038/srep11070 – ident: e_1_2_7_15_1 doi: 10.1021/acs.nanolett.5b05124 – ident: e_1_2_7_61_1 doi: 10.1002/smll.201704524 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.201100743 – ident: e_1_2_7_64_1 doi: 10.1039/c3nr34335a – ident: e_1_2_7_24_1 doi: 10.1021/acs.jpclett.9b00154 – ident: e_1_2_7_100_1 doi: 10.1038/s41586-018-0390-x – ident: e_1_2_7_54_1 doi: 10.1038/nature21050 – ident: e_1_2_7_78_1 doi: 10.1021/acsami.7b09411 – ident: e_1_2_7_44_1 doi: 10.1039/C6TC03830A – ident: e_1_2_7_65_1 doi: 10.1021/acsnano.7b01894 – ident: e_1_2_7_53_1 doi: 10.1021/acsphotonics.6b00391 – ident: e_1_2_7_41_1 doi: 10.1002/pssr.201700381 – ident: e_1_2_7_23_1 doi: 10.1021/cr400607y – ident: e_1_2_7_95_1 doi: 10.1002/adfm.201502646 – ident: e_1_2_7_105_1 doi: 10.1002/adom.201800201 – ident: e_1_2_7_14_1 doi: 10.1038/s41565-018-0226-8 – ident: e_1_2_7_55_1 doi: 10.1002/adma.201603167 – ident: e_1_2_7_122_1 doi: 10.1063/1.4953034 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201706262 – ident: e_1_2_7_128_1 doi: 10.1021/acs.chemrev.8b00056 – ident: e_1_2_7_19_1 doi: 10.1002/lpor.201600257 – ident: e_1_2_7_60_1 doi: 10.1088/2058-8585/1/2/025006 – ident: e_1_2_7_84_1 doi: 10.1109/TED.2016.2618423 – ident: e_1_2_7_104_1 doi: 10.1038/ncomms7972 – ident: e_1_2_7_56_1 doi: 10.1002/smll.201701822 – ident: e_1_2_7_126_1 doi: 10.1088/0957-4484/25/9/094005 – ident: e_1_2_7_7_1 doi: 10.1038/s41565-018-0244-6 – ident: e_1_2_7_21_1 doi: 10.1002/adfm.201701823 – ident: e_1_2_7_66_1 doi: 10.1002/adfm.201503230 – ident: e_1_2_7_97_1 doi: 10.15541/jim20180243 – ident: e_1_2_7_116_1 doi: 10.1038/nature07113 – ident: e_1_2_7_69_1 doi: 10.1021/acsami.5b02834 – ident: e_1_2_7_87_1 doi: 10.1038/s41467-018-03870-0 – ident: e_1_2_7_110_1 doi: 10.1002/adma.201700975 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201504244 – ident: e_1_2_7_47_1 doi: 10.1126/science.1139366 – ident: e_1_2_7_26_1 doi: 10.1016/j.mattod.2015.06.001 – ident: e_1_2_7_6_1 doi: 10.1351/PAC-CON-09-11-40 – ident: e_1_2_7_81_1 doi: 10.1002/adma.201803980 – ident: e_1_2_7_8_1 doi: 10.1002/adma.201304248 – ident: e_1_2_7_17_1 doi: 10.1002/adma.201504441 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201705918 – ident: e_1_2_7_40_1 doi: 10.1002/adfm.201602195 – ident: e_1_2_7_5_1 doi: 10.1002/adfm.201802029 – ident: e_1_2_7_103_1 doi: 10.1002/adfm.201702360 – ident: e_1_2_7_10_1 doi: 10.1126/sciadv.1602051 – ident: e_1_2_7_48_1 doi: 10.1021/acs.nanolett.8b00988 – ident: e_1_2_7_92_1 doi: 10.1038/s41467-018-06273-3 – ident: e_1_2_7_117_1 doi: 10.1002/adfm.201705389 – ident: e_1_2_7_22_1 doi: 10.1039/C8TC05877F |
SSID | ssj0009606 |
Score | 2.682054 |
SecondaryResourceType | review_article |
Snippet | Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next‐generation wearable... Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next-generation wearable... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1808138 |
SubjectTerms | design strategy Electronics Exploration flexible electronics material exploration Materials science Materials selection Optical communication Photometers Progress reports Substrates wearable photodetectors Wearable technology |
Title | Materials and Designs for Wearable Photodetectors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201808138 https://www.ncbi.nlm.nih.gov/pubmed/30785644 https://www.proquest.com/docview/2218100080 https://www.proquest.com/docview/2184143518 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-ykx78_qhOqSB4yramaZsch3MMYSLicLeSNCmC0ortLv71vqQfbooICj2kNGnT9_Jefm1efg-hCyqUpIBTQQNEY8MGgpn2UwxTgyQpFMHYTbTFbTiZ0Zt5MF_axV_xQ7Q_3IxlWH9tDFzIov9JGiqU5Q3yTOoI3-z2NQFbBhXdf_JHGXhuyfb8APOQsoa1cUD6q81XZ6VvUHMVudqpZ7yFRNPpKuLkubcoZS95_8Ln-J-32kabNS51h9VA2kFrOttFG0tshXvIm4qyGq-uyJQ7srEfhQuo130EezF7sNy7p7zMlS7tWkCxj2bj64erCa4zLuAEgAnD2o-8NOQykkHEiQ5FIv2EaHswkCJnYqBUYrL7kijUjHtEchV5UkfgqFTqH6BOlmf6CLmE-prSVGkmFThjwQjXnHoqCRmVOk0chBuJx0lNR26yYrzEFZEyiY0o4lYUDrps679WRBw_1uw2CoxrgyxiYqCMxccOOm8vgymZ9RGR6XwBdeBr18BHD25xWCm-fRS4QhYAdnQQser7pQ_xcDQdtmfHf2l0gtahzKvgyi7qlG8LfQoAqJRndpB_AIUq-kA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_oPKgHvz-qUysInrqtadYmx-GUqdsQ2dBbaZoUQenEdRf_el_StXOKCAo99CNp05e8l1-Sl98DOKORFBRxKtYAUY5mA3GY8hIHuwZBEjxFZdfeFn2_M6Q3j83Cm1Dvhcn5IcoJN60Zxl5rBdcT0vUZa2gkDXGQq2NHeGwRlnRYbzOqup8xSGmAbuj2vKbDfcoK3sYGqc_nn--XvoHNeexqOp-rdRBFsXOfk-faJBO1-P0Lo-O__msD1qbQ1G7lbWkTFlS6BaufCAu3we1FWd5k7SiVdtu4f4xtBL72A6qM3oZl3z2NspFUmVkOGO_A8OpycNFxpkEXnBixCXOUF7iJz0UgmgEnyo9i4cVEmYOhGDmLGlLGOsAvCXzFuEsEl4ErVIC2SibeLlTSUar2wSbUU5QmUjEh0R5HjHDFqStjn1GhktgCpxB5GE8ZyXVgjJcw51ImoRZFWIrCgvMy_WvOxfFjympRg-FUJ8ch0WjGQGQLTsvHqE16iSRK1WiCaXDAqxGki6_Yy2u-_BRaQ9ZE-GgBMfX3SxnCVrvXKq8O_pLpBJY7g1437F73bw9hBe_z3NeyCpXsbaKOEA9l4ti0-A83Jf5b |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oBNEH75d5rSD4VF3TrE0eh3N42xBxuLeSNCmC0onrXvz1nqSXOUUEhT70krTpueVrc_IF4JgKJSniVNQA0a5hA3GZ9hMXuwZJEtxFZzfZFr3gsk-vB83Bp1n8OT9E9cPNeIaN18bBX1VyNiENFcryBnlm6QifzcIcDRrM2HX7fkIgZfC5Zdvzmy4PKCtpGxvkbLr-dLf0DWtOQ1fb93SWQZStzlNOnk_HmTyN378QOv7ntVZgqQCmTiu3pFWY0ekaLH6iK1wHryuy3GAdkSqnbZM_Rg7CXucRHcZMwnLunobZUOnMDgaMNqDfuXg4v3SLJRfcGJEJc7UfeknAZSibISc6ELH0Y6LtxlCKnImGUrFZ3peEgWbcI5Kr0JM6xEilEn8Taukw1dvgEOprShOlmVQYjQUjXHPqqThgVOokroNbSjyKCz5ysyzGS5QzKZPIiCKqRFGHk6r8a87E8WPJvVKBUeGRo4gYLGMBch2OqsvoS2aARKR6OMYy-Llr8KOHt9jKFV89CmMhayJ4rAOx6vulDVGr3W1VRzt_qXQI83ftTnR71bvZhQU8zfNEyz2oZW9jvY9gKJMH1t4_AEx7_RM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Materials+and+Designs+for+Wearable+Photodetectors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cai%2C+Sa&rft.au=Xu%2C+Xiaojie&rft.au=Yang%2C+Wei&rft.au=Chen%2C+Jiaxin&rft.date=2019-05-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=18&rft.spage=e1808138&rft_id=info:doi/10.1002%2Fadma.201808138&rft_id=info%3Apmid%2F30785644&rft.externalDocID=30785644 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |