Materials and Designs for Wearable Photodetectors

Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next‐generation wearable electronics. Unfortunately, no in‐depth reviews on the design strategies, material exploration, and potential applications of wearable photodetectors ar...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 18; pp. e1808138 - n/a
Main Authors Cai, Sa, Xu, Xiaojie, Yang, Wei, Chen, Jiaxin, Fang, Xiaosheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next‐generation wearable electronics. Unfortunately, no in‐depth reviews on the design strategies, material exploration, and potential applications of wearable photodetectors are found in literature to date. Thus, this progress report first summarizes the fundamental design principles of turning “hard” photodetectors “soft,” including 2D (polymer and paper substrate‐based devices) and 1D PDs (fiber shaped devices). In short, the flexibility of PDs is realized through elaborate substrate modification, material selection, and device layout. More importantly, this report presents the current progress and specific requirements for wearable PDs according to the application: monitoring, imaging, and optical communication. Challenges and future research directions in these fields are proposed at the end. The purpose of this progress report is not only to shed light on the basic design principles of wearable PDs, but also serve as the roadmap for future exploration in wearable PDs in various applications, including health monitoring and Internet of Things. The fundamental design principles of turning “hard” photodetectors “soft” are summarized and the materials selection, mainly from the perspective of substrate choice (polymer, paper, and fiber), are explored. The current progress, requirements, challenges, and future opportunities for wearable photodetectors for different applications: monitoring, imaging, and optical communication are discussed in detail.
AbstractList Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next‐generation wearable electronics. Unfortunately, no in‐depth reviews on the design strategies, material exploration, and potential applications of wearable photodetectors are found in literature to date. Thus, this progress report first summarizes the fundamental design principles of turning “hard” photodetectors “soft,” including 2D (polymer and paper substrate‐based devices) and 1D PDs (fiber shaped devices). In short, the flexibility of PDs is realized through elaborate substrate modification, material selection, and device layout. More importantly, this report presents the current progress and specific requirements for wearable PDs according to the application: monitoring, imaging, and optical communication. Challenges and future research directions in these fields are proposed at the end. The purpose of this progress report is not only to shed light on the basic design principles of wearable PDs, but also serve as the roadmap for future exploration in wearable PDs in various applications, including health monitoring and Internet of Things. The fundamental design principles of turning “hard” photodetectors “soft” are summarized and the materials selection, mainly from the perspective of substrate choice (polymer, paper, and fiber), are explored. The current progress, requirements, challenges, and future opportunities for wearable photodetectors for different applications: monitoring, imaging, and optical communication are discussed in detail.
Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next‐generation wearable electronics. Unfortunately, no in‐depth reviews on the design strategies, material exploration, and potential applications of wearable photodetectors are found in literature to date. Thus, this progress report first summarizes the fundamental design principles of turning “hard” photodetectors “soft,” including 2D (polymer and paper substrate‐based devices) and 1D PDs (fiber shaped devices). In short, the flexibility of PDs is realized through elaborate substrate modification, material selection, and device layout. More importantly, this report presents the current progress and specific requirements for wearable PDs according to the application: monitoring, imaging, and optical communication. Challenges and future research directions in these fields are proposed at the end. The purpose of this progress report is not only to shed light on the basic design principles of wearable PDs, but also serve as the roadmap for future exploration in wearable PDs in various applications, including health monitoring and Internet of Things.
Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next-generation wearable electronics. Unfortunately, no in-depth reviews on the design strategies, material exploration, and potential applications of wearable photodetectors are found in literature to date. Thus, this progress report first summarizes the fundamental design principles of turning "hard" photodetectors "soft," including 2D (polymer and paper substrate-based devices) and 1D PDs (fiber shaped devices). In short, the flexibility of PDs is realized through elaborate substrate modification, material selection, and device layout. More importantly, this report presents the current progress and specific requirements for wearable PDs according to the application: monitoring, imaging, and optical communication. Challenges and future research directions in these fields are proposed at the end. The purpose of this progress report is not only to shed light on the basic design principles of wearable PDs, but also serve as the roadmap for future exploration in wearable PDs in various applications, including health monitoring and Internet of Things.Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next-generation wearable electronics. Unfortunately, no in-depth reviews on the design strategies, material exploration, and potential applications of wearable photodetectors are found in literature to date. Thus, this progress report first summarizes the fundamental design principles of turning "hard" photodetectors "soft," including 2D (polymer and paper substrate-based devices) and 1D PDs (fiber shaped devices). In short, the flexibility of PDs is realized through elaborate substrate modification, material selection, and device layout. More importantly, this report presents the current progress and specific requirements for wearable PDs according to the application: monitoring, imaging, and optical communication. Challenges and future research directions in these fields are proposed at the end. The purpose of this progress report is not only to shed light on the basic design principles of wearable PDs, but also serve as the roadmap for future exploration in wearable PDs in various applications, including health monitoring and Internet of Things.
Author Chen, Jiaxin
Fang, Xiaosheng
Xu, Xiaojie
Cai, Sa
Yang, Wei
Author_xml – sequence: 1
  givenname: Sa
  surname: Cai
  fullname: Cai, Sa
  organization: Fudan University
– sequence: 2
  givenname: Xiaojie
  surname: Xu
  fullname: Xu, Xiaojie
  organization: Fudan University
– sequence: 3
  givenname: Wei
  surname: Yang
  fullname: Yang, Wei
  organization: Fudan University
– sequence: 4
  givenname: Jiaxin
  surname: Chen
  fullname: Chen, Jiaxin
  organization: Fudan University
– sequence: 5
  givenname: Xiaosheng
  orcidid: 0000-0003-3387-4532
  surname: Fang
  fullname: Fang, Xiaosheng
  email: xshfang@fudan.edu.cn
  organization: Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30785644$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LwzAYgINM3IdePUrBi5fOfLVNjmPzCzb0oHgMaftWO9pmJi2yf2_m5oSBCC_k8jx5X54h6jWmAYTOCR4TjOm1zms9ppgILAgTR2hAIkpCjmXUQwMsWRTKmIs-Gjq3xBjLGMcnqM9wIqKY8wEiC92CLXXlAt3kwQxc-da4oDA2eAVtdVpB8PRuWpNDC1lrrDtFx4XH4Wz3jtDL7c3z9D6cP949TCfzMONMihBYQopYpkkaJZJCrLOUZRS-R_jDpNA4zzPCI0KTGIQkNJV5QlJIWBLnBRuhq-2_K2s-OnCtqkuXQVXpBkznFCWCE84iIjx6eYAuTWcbf52iHvOhsMCeuthRXVpDrla2rLVdq58YHhhvgcwa5ywUe4RgtamtNrXVvrYX-IGQla1uS9O0VpfV35rcap9lBet_lqjJbDH5db8AKHqRgQ
CitedBy_id crossref_primary_10_1002_adma_202406353
crossref_primary_10_1007_s00339_024_08209_9
crossref_primary_10_1021_acsaelm_9b00817
crossref_primary_10_1016_j_micrna_2024_207914
crossref_primary_10_1021_acsnano_4c04374
crossref_primary_10_1039_D4CC03214D
crossref_primary_10_1002_smll_202202639
crossref_primary_10_1016_j_nanoen_2020_105719
crossref_primary_10_1016_j_xcrp_2021_100418
crossref_primary_10_1002_adfm_202100026
crossref_primary_10_1007_s12274_021_3989_4
crossref_primary_10_1016_j_trechm_2023_10_003
crossref_primary_10_1002_aelm_202100375
crossref_primary_10_1039_D0TC05220E
crossref_primary_10_1021_acsami_3c18894
crossref_primary_10_1016_j_matlet_2022_132023
crossref_primary_10_1063_5_0185511
crossref_primary_10_1002_adom_202102163
crossref_primary_10_3390_nano12060910
crossref_primary_10_1021_acsami_1c06486
crossref_primary_10_1021_acsami_3c03600
crossref_primary_10_1002_smll_202207879
crossref_primary_10_1002_admi_202000882
crossref_primary_10_3390_s21020387
crossref_primary_10_1007_s40843_020_1314_1
crossref_primary_10_1038_s41467_021_25178_2
crossref_primary_10_1002_adfm_202008275
crossref_primary_10_1016_j_cej_2024_148949
crossref_primary_10_1002_solr_202000139
crossref_primary_10_1002_smll_202206309
crossref_primary_10_1016_j_apsusc_2023_157094
crossref_primary_10_1002_adma_202100625
crossref_primary_10_1002_adom_202402572
crossref_primary_10_1039_D4MH00667D
crossref_primary_10_1016_j_cej_2022_135997
crossref_primary_10_3390_cryst13121672
crossref_primary_10_1002_admi_201901741
crossref_primary_10_3390_mi11121090
crossref_primary_10_1002_adma_202400703
crossref_primary_10_1021_acsanm_2c05270
crossref_primary_10_1088_1361_6528_ac1719
crossref_primary_10_1021_acs_chemrev_2c00231
crossref_primary_10_1002_adfm_202211548
crossref_primary_10_1039_D2NJ06004C
crossref_primary_10_2196_29694
crossref_primary_10_1002_adhm_202303461
crossref_primary_10_3390_nano12030475
crossref_primary_10_1007_s12598_020_01598_9
crossref_primary_10_1002_ange_201912921
crossref_primary_10_1007_s10853_023_08876_8
crossref_primary_10_1002_adfm_202001604
crossref_primary_10_1002_admt_201901122
crossref_primary_10_1063_5_0169149
crossref_primary_10_1016_j_optlastec_2020_106393
crossref_primary_10_1039_D0TA08749A
crossref_primary_10_1021_acsomega_2c06480
crossref_primary_10_1002_adfm_202424645
crossref_primary_10_1039_D3TC01045G
crossref_primary_10_1002_adma_202501833
crossref_primary_10_1002_slct_202004263
crossref_primary_10_1088_1361_6528_ab758e
crossref_primary_10_1002_adfm_201909909
crossref_primary_10_1002_adem_202000535
crossref_primary_10_1016_j_nanoen_2021_106889
crossref_primary_10_1021_acsami_0c18260
crossref_primary_10_1021_acsanm_2c00003
crossref_primary_10_1002_adfm_202002023
crossref_primary_10_1021_acsanm_0c02166
crossref_primary_10_1021_acsaelm_1c00607
crossref_primary_10_1021_acsami_1c02357
crossref_primary_10_1002_adfm_202010320
crossref_primary_10_1016_j_nanoen_2021_106088
crossref_primary_10_1016_j_actbio_2021_06_018
crossref_primary_10_1002_adma_202104327
crossref_primary_10_1002_adfm_202315058
crossref_primary_10_1039_D4TC02709D
crossref_primary_10_1002_adom_202402795
crossref_primary_10_1002_smll_202004234
crossref_primary_10_1016_j_jallcom_2024_173694
crossref_primary_10_1021_jacs_0c11894
crossref_primary_10_1149_2162_8777_ad7759
crossref_primary_10_1021_acsnano_4c12474
crossref_primary_10_1063_5_0219144
crossref_primary_10_1016_j_nanoen_2025_110831
crossref_primary_10_1002_admt_202301903
crossref_primary_10_1016_j_jallcom_2019_152401
crossref_primary_10_1039_D2NR02963D
crossref_primary_10_1002_adma_202109083
crossref_primary_10_1039_D2MA00962E
crossref_primary_10_1002_smll_202101572
crossref_primary_10_1021_acsaelm_3c00997
crossref_primary_10_1039_D2CS00207H
crossref_primary_10_1002_adfm_202106326
crossref_primary_10_1002_adma_202501302
crossref_primary_10_1002_adom_202001388
crossref_primary_10_1063_5_0026984
crossref_primary_10_1002_smll_202407107
crossref_primary_10_1021_acsnano_3c05178
crossref_primary_10_1039_D3NR05906E
crossref_primary_10_1016_j_flatc_2022_100452
crossref_primary_10_3788_COL202321_101601
crossref_primary_10_1016_j_ceramint_2024_05_014
crossref_primary_10_1021_acsomega_4c06008
crossref_primary_10_1021_acsaom_4c00133
crossref_primary_10_1016_j_jcis_2022_11_064
crossref_primary_10_1039_D4NR00321G
crossref_primary_10_1002_admt_201900873
crossref_primary_10_1088_2053_1591_abc6cc
crossref_primary_10_1016_j_sna_2021_112870
crossref_primary_10_1039_D1TC05538K
crossref_primary_10_1002_adpr_202100206
crossref_primary_10_1016_j_jmst_2022_11_020
crossref_primary_10_1002_adfm_201905923
crossref_primary_10_1016_j_jsamd_2021_09_003
crossref_primary_10_1039_C9TC01154D
crossref_primary_10_1002_aelm_201900726
crossref_primary_10_1016_j_surfin_2023_103709
crossref_primary_10_1016_j_nanoen_2020_105119
crossref_primary_10_3390_nano12071034
crossref_primary_10_1002_adom_202001703
crossref_primary_10_1364_OE_514548
crossref_primary_10_1002_adfm_202314743
crossref_primary_10_1039_D2TC02327J
crossref_primary_10_1021_accountsmr_1c00002
crossref_primary_10_1039_D1DT03848F
crossref_primary_10_1002_smtd_202300319
crossref_primary_10_3390_nano12193264
crossref_primary_10_1016_j_nanoen_2021_106151
crossref_primary_10_1002_adfm_202005291
crossref_primary_10_1002_smll_202101674
crossref_primary_10_1016_j_jcis_2023_05_149
crossref_primary_10_1002_advs_202204332
crossref_primary_10_1016_j_jcis_2020_10_006
crossref_primary_10_1016_j_jpowsour_2024_235373
crossref_primary_10_3390_biomimetics8030293
crossref_primary_10_1016_j_cej_2024_152143
crossref_primary_10_1007_s10853_023_08451_1
crossref_primary_10_1016_j_snb_2024_136190
crossref_primary_10_1088_1361_6528_ab674a
crossref_primary_10_1002_adom_201901334
crossref_primary_10_1016_j_sna_2024_116061
crossref_primary_10_1021_acsami_4c05210
crossref_primary_10_1016_j_jallcom_2024_177627
crossref_primary_10_1016_j_cej_2024_153910
crossref_primary_10_1002_marc_202400021
crossref_primary_10_1039_D2NH00149G
crossref_primary_10_1002_adfm_202011284
crossref_primary_10_1002_pssr_202300107
crossref_primary_10_1016_j_jallcom_2020_155311
crossref_primary_10_1002_adom_202201926
crossref_primary_10_1016_j_nantod_2021_101081
crossref_primary_10_1038_s41598_023_38635_3
crossref_primary_10_1016_j_cej_2021_130816
crossref_primary_10_1002_smll_202207615
crossref_primary_10_1021_acsaelm_1c00760
crossref_primary_10_1016_j_infrared_2025_105822
crossref_primary_10_1002_admt_202000327
crossref_primary_10_1002_admt_202100773
crossref_primary_10_1088_1361_6528_ad047f
crossref_primary_10_1109_RBME_2021_3121480
crossref_primary_10_1002_adfm_202100136
crossref_primary_10_1016_j_jallcom_2022_166250
crossref_primary_10_1002_admi_202201052
crossref_primary_10_1002_cjoc_202300315
crossref_primary_10_1016_j_mtcomm_2022_105094
crossref_primary_10_1016_j_nanoms_2024_10_001
crossref_primary_10_1021_acsomega_1c03342
crossref_primary_10_1080_25740881_2021_1906901
crossref_primary_10_1002_admt_201901036
crossref_primary_10_1016_j_cej_2020_127484
crossref_primary_10_1016_j_optlastec_2023_109608
crossref_primary_10_1002_adfm_201907650
crossref_primary_10_1021_acs_jpcc_1c06405
crossref_primary_10_1002_adhm_202100116
crossref_primary_10_1007_s40843_024_3251_x
crossref_primary_10_1016_j_mssp_2023_107621
crossref_primary_10_1021_acs_nanolett_0c03759
crossref_primary_10_1002_adma_202400090
crossref_primary_10_1002_anie_201912921
crossref_primary_10_1007_s12274_021_3586_6
crossref_primary_10_1016_j_jre_2020_12_001
crossref_primary_10_1016_j_trac_2020_115989
crossref_primary_10_1039_D1TC00818H
crossref_primary_10_1039_C9TB02352F
crossref_primary_10_1002_adom_202203016
crossref_primary_10_1016_j_flatc_2022_100370
crossref_primary_10_1002_solr_202300720
crossref_primary_10_1021_acsanm_2c05545
crossref_primary_10_1109_JEDS_2024_3422292
crossref_primary_10_1016_j_surfin_2022_102318
crossref_primary_10_1021_acsnano_2c09366
crossref_primary_10_1364_PRJ_534940
crossref_primary_10_1021_acsomega_3c07390
crossref_primary_10_1002_apxr_202200075
crossref_primary_10_1016_j_nanoen_2022_107504
crossref_primary_10_1002_sstr_202000124
crossref_primary_10_1038_s41528_025_00385_9
crossref_primary_10_1039_C9TC04696H
crossref_primary_10_1021_acs_chemrev_2c00720
crossref_primary_10_1016_j_vacuum_2020_109950
crossref_primary_10_1002_adfm_202108839
crossref_primary_10_1016_j_bios_2024_116992
crossref_primary_10_1016_j_scib_2019_12_001
crossref_primary_10_1016_j_cej_2023_142026
crossref_primary_10_1016_j_ijleo_2020_165705
crossref_primary_10_1063_5_0140900
crossref_primary_10_1016_j_surfin_2024_104627
crossref_primary_10_1007_s40820_020_0371_0
crossref_primary_10_1002_admi_202100770
crossref_primary_10_1002_adom_201902056
crossref_primary_10_1016_j_apmt_2022_101686
crossref_primary_10_1016_j_jphotochem_2024_115697
crossref_primary_10_1088_1361_6528_ac37e3
crossref_primary_10_1002_adfm_202208658
crossref_primary_10_1002_batt_202000115
crossref_primary_10_1016_j_sna_2023_114339
crossref_primary_10_1021_acsami_1c03023
crossref_primary_10_1080_25740881_2021_2015775
crossref_primary_10_46670_JSST_2022_31_2_71
crossref_primary_10_1039_D0NR01394C
crossref_primary_10_1002_admt_202300517
crossref_primary_10_1002_smll_201907461
crossref_primary_10_1002_adma_202416899
crossref_primary_10_3390_ijms24010336
crossref_primary_10_1016_j_dyepig_2019_108048
crossref_primary_10_1016_j_dyepig_2019_108169
crossref_primary_10_1016_j_nanoen_2021_106906
crossref_primary_10_1002_adfm_202214533
crossref_primary_10_1038_s41598_022_10879_5
crossref_primary_10_1039_C9TA13487E
crossref_primary_10_1021_acsami_9b09815
crossref_primary_10_1039_C9NA00130A
crossref_primary_10_1016_j_nanoen_2021_105823
crossref_primary_10_1021_acsaelm_3c00013
crossref_primary_10_1002_aelm_202300340
crossref_primary_10_1021_acsami_9b19075
crossref_primary_10_1016_j_jtice_2021_05_033
crossref_primary_10_1002_adfm_202213334
crossref_primary_10_1002_adfm_202308136
crossref_primary_10_1016_j_apsadv_2023_100393
crossref_primary_10_1021_acs_chemmater_2c03701
crossref_primary_10_1039_D3TC02390G
crossref_primary_10_1016_j_nanoen_2021_105951
crossref_primary_10_1016_j_actamat_2023_119529
crossref_primary_10_1088_1361_6528_ac0a17
crossref_primary_10_1002_inf2_12641
crossref_primary_10_1039_D3TC03804A
crossref_primary_10_1002_adfm_202203300
crossref_primary_10_1002_advs_202307165
crossref_primary_10_1016_j_apsusc_2021_152378
crossref_primary_10_1016_j_rinma_2021_100170
crossref_primary_10_1016_j_sna_2023_114785
crossref_primary_10_1039_D1RA09128J
crossref_primary_10_1002_adfm_202104782
crossref_primary_10_1021_acs_jpcc_1c01252
crossref_primary_10_5433_2236_2207_2023_v14_n1_46680
crossref_primary_10_1007_s10853_024_10572_0
crossref_primary_10_1039_D2TC01460B
crossref_primary_10_1016_j_xcrp_2020_100213
crossref_primary_10_1002_smtd_202300175
crossref_primary_10_1002_smll_202403255
crossref_primary_10_1016_j_nanoen_2024_110033
crossref_primary_10_1063_5_0178875
crossref_primary_10_1002_adom_202000695
crossref_primary_10_1007_s11595_024_2881_y
crossref_primary_10_1039_D3TC02374E
crossref_primary_10_1109_JSEN_2020_2982829
crossref_primary_10_1038_s41528_023_00257_0
crossref_primary_10_1126_sciadv_adp2679
crossref_primary_10_1002_adfm_202422161
crossref_primary_10_1088_1674_4926_45_5_051701
crossref_primary_10_1002_adfm_202213717
crossref_primary_10_1007_s00339_024_07501_y
crossref_primary_10_1002_adom_202200454
crossref_primary_10_1021_acsami_9b11012
crossref_primary_10_1039_D1NR01805A
crossref_primary_10_1021_acsami_0c13833
crossref_primary_10_1038_s41598_020_80738_8
crossref_primary_10_1002_adma_202418705
crossref_primary_10_1002_adom_202001551
crossref_primary_10_1002_adfm_202103106
crossref_primary_10_1039_C9RA02184A
crossref_primary_10_1088_1361_6463_aceb6e
crossref_primary_10_1007_s10853_021_06678_4
crossref_primary_10_1088_1361_6463_ac570d
crossref_primary_10_1016_j_jallcom_2022_168054
crossref_primary_10_1063_5_0214668
crossref_primary_10_1002_aelm_202000717
crossref_primary_10_1002_inf2_12540
crossref_primary_10_1021_acsami_1c05769
crossref_primary_10_1002_smll_202408826
crossref_primary_10_1002_adom_202402370
crossref_primary_10_1021_acsami_2c12154
crossref_primary_10_1021_acs_jpcc_1c01938
crossref_primary_10_1039_D0NR01326A
crossref_primary_10_1016_j_giant_2024_100291
crossref_primary_10_1016_j_cej_2024_152439
crossref_primary_10_1039_D1TC00786F
crossref_primary_10_34133_research_0202
crossref_primary_10_1002_smll_202410466
crossref_primary_10_1021_acsomega_4c03802
crossref_primary_10_1016_j_matlet_2023_135471
crossref_primary_10_1016_j_apmate_2024_100250
crossref_primary_10_1039_D2TC04913A
crossref_primary_10_3390_photonics11111014
crossref_primary_10_1039_D2NR07107J
crossref_primary_10_1007_s00339_019_2997_7
crossref_primary_10_1002_admt_202302056
crossref_primary_10_1016_j_ijhydene_2023_11_246
crossref_primary_10_1039_D2CC05281D
crossref_primary_10_1002_inf2_12555
crossref_primary_10_1007_s40843_023_2794_7
crossref_primary_10_1039_D2TC01854C
crossref_primary_10_1021_acscatal_0c04797
crossref_primary_10_1063_5_0058482
crossref_primary_10_3390_electronics10212644
crossref_primary_10_1002_aelm_202100478
crossref_primary_10_1002_adom_202402368
crossref_primary_10_1016_j_nanoen_2022_107600
crossref_primary_10_1002_aenm_201903919
crossref_primary_10_1016_j_mtchem_2023_101435
crossref_primary_10_1002_apxr_202400183
crossref_primary_10_1021_acsmaterialslett_1c00298
crossref_primary_10_1016_j_cej_2023_141473
crossref_primary_10_1109_TED_2023_3327039
crossref_primary_10_1088_1402_4896_ad964e
crossref_primary_10_1002_admt_202300207
crossref_primary_10_1007_s12274_023_5942_1
crossref_primary_10_1039_D2TC01124G
crossref_primary_10_1039_D4TA03202K
crossref_primary_10_1016_j_optmat_2024_116397
crossref_primary_10_1002_adom_202302149
crossref_primary_10_1002_aelm_202000811
crossref_primary_10_1016_j_addr_2022_114315
crossref_primary_10_1016_j_bios_2021_113777
crossref_primary_10_1063_5_0062296
crossref_primary_10_1021_acsami_4c06712
crossref_primary_10_1016_j_mattod_2022_10_023
Cites_doi 10.1002/smll.201701687
10.1002/adma.201802290
10.1021/acsami.5b11523
10.1002/adma.201706986
10.1021/acsnano.7b00749
10.1038/ncomms14997
10.1002/smll.201500729
10.1016/j.bios.2016.12.011
10.1002/smll.201600326
10.1002/adfm.201604373
10.1021/acs.chemrev.6b00498
10.1039/C8NH00144H
10.1039/C3TC31966K
10.1016/j.apmt.2017.12.013
10.1002/advs.201800496
10.1038/nature13078
10.1002/smll.201602448
10.1002/adfm.201704477
10.1021/acsanm.8b00421
10.1038/nature16521
10.1002/aelm.201700281
10.1021/acsami.8b13457
10.1016/j.nanoen.2016.10.009
10.1021/acsami.7b05264
10.1002/adma.201400349
10.1002/smll.201601913
10.1007/s12274-016-1263-y
10.1126/sciadv.1601314
10.1126/sciadv.aat2544
10.1002/adma.201001289
10.1038/ncomms5007
10.1021/acsami.5b09373
10.1002/adfm.201707178
10.1039/C8TC01183D
10.1002/adma.201602639
10.1002/adfm.201504477
10.1039/C8TC00550H
10.1021/acsnano.7b04804
10.1002/adfm.201802954
10.1016/j.mattod.2015.11.007
10.1002/adma.201702184
10.1021/acsnano.8b05582
10.1002/adma.201501517
10.1088/0957-4484/27/22/225501
10.1038/s41467-017-01926-1
10.1021/acsami.7b13709
10.1002/adma.201705400
10.1016/j.nanoen.2016.01.011
10.1002/smll.201502037
10.1002/adfm.201703448
10.1038/ncomms12744
10.1002/adma.201503534
10.1039/C6NR08425G
10.1021/acsami.7b02213
10.1103/PhysRevMaterials.2.015201
10.1002/adfm.201701611
10.1039/C7NR04395C
10.1002/adma.201800323
10.1002/adfm.201704181
10.1002/adfm.201700264
10.1143/JJAP.51.090115
10.1002/adma.201802359
10.1126/sciadv.1501856
10.1021/acsnano.6b06326
10.1021/acs.nanolett.5b00906
10.1002/adma.201304736
10.1002/adom.201800213
10.1002/admt.201700288
10.1021/acsphotonics.8b00141
10.1016/j.chempr.2017.10.005
10.1038/nature26147
10.1021/acsnano.7b01999
10.1002/adma.201803165
10.1039/C5TC00850F
10.1073/pnas.1813053115
10.1002/smll.201700918
10.1002/smll.201703754
10.1039/C6NR09338H
10.1038/nnano.2017.125
10.1038/srep11070
10.1021/acs.nanolett.5b05124
10.1002/smll.201704524
10.1002/adfm.201100743
10.1039/c3nr34335a
10.1021/acs.jpclett.9b00154
10.1038/s41586-018-0390-x
10.1038/nature21050
10.1021/acsami.7b09411
10.1039/C6TC03830A
10.1021/acsnano.7b01894
10.1021/acsphotonics.6b00391
10.1002/pssr.201700381
10.1021/cr400607y
10.1002/adfm.201502646
10.1002/adom.201800201
10.1038/s41565-018-0226-8
10.1002/adma.201603167
10.1063/1.4953034
10.1002/adma.201706262
10.1021/acs.chemrev.8b00056
10.1002/lpor.201600257
10.1088/2058-8585/1/2/025006
10.1109/TED.2016.2618423
10.1038/ncomms7972
10.1002/smll.201701822
10.1088/0957-4484/25/9/094005
10.1038/s41565-018-0244-6
10.1002/adfm.201701823
10.1002/adfm.201503230
10.15541/jim20180243
10.1038/nature07113
10.1021/acsami.5b02834
10.1038/s41467-018-03870-0
10.1002/adma.201700975
10.1002/adma.201504244
10.1126/science.1139366
10.1016/j.mattod.2015.06.001
10.1351/PAC-CON-09-11-40
10.1002/adma.201803980
10.1002/adma.201304248
10.1002/adma.201504441
10.1002/adma.201705918
10.1002/adfm.201602195
10.1002/adfm.201802029
10.1002/adfm.201702360
10.1126/sciadv.1602051
10.1021/acs.nanolett.8b00988
10.1038/s41467-018-06273-3
10.1002/adfm.201705389
10.1039/C8TC05877F
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201808138
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30785644
10_1002_adma_201808138
ADMA201808138
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2017YFA0204600
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 18520710800; 18520744600; 17520742400
– fundername: National Natural Science Foundation of China
  funderid: 51721002; 11674061; 51872050; 11811530065
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 18520710800
– fundername: National Natural Science Foundation of China
  grantid: 11811530065
– fundername: National Natural Science Foundation of China
  grantid: 11674061
– fundername: National Natural Science Foundation of China
  grantid: 51872050
– fundername: National Natural Science Foundation of China
  grantid: 51721002
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 18520744600
– fundername: National Key Research and Development Program of China
  grantid: 2017YFA0204600
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 17520742400
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4398-e371f69b7b5792e6acb3c2ec2ec2809398a0ddc1451276e8912b9d71be7376df3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 13:06:17 EDT 2025
Fri Jul 25 02:32:57 EDT 2025
Thu Apr 03 06:58:55 EDT 2025
Tue Jul 01 00:44:50 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Wed Jan 22 16:36:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords flexible electronics
design strategy
material exploration
wearable photodetectors
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4398-e371f69b7b5792e6acb3c2ec2ec2809398a0ddc1451276e8912b9d71be7376df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3387-4532
PMID 30785644
PQID 2218100080
PQPubID 2045203
PageCount 15
ParticipantIDs proquest_miscellaneous_2184143518
proquest_journals_2218100080
pubmed_primary_30785644
crossref_primary_10_1002_adma_201808138
crossref_citationtrail_10_1002_adma_201808138
wiley_primary_10_1002_adma_201808138_ADMA201808138
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-May
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-May
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 560
2017; 8
2017; 3
2019; 10
2014; 26
2016; 30
2014; 25
2013; 5
2017; 9
2012; 51
2018; 6
2010; 22
2018; 9
2014; 5
2018; 3
2018; 2
2018; 5
2018; 4
2014; 2
2018; 1
2011; 21
2018; 30
2016; 116
2019; 7
2015; 15
2017; 64
2018; 28
2019; 4
2015; 6
2015; 5
2015; 18
2015; 3
2016; 19
2017; 27
2019; 34
2015; 11
2016; 529
2016; 10
2017; 29
2016; 16
2015; 7
2016; 12
2010; 82
2016; 4
2018; 18
2016; 7
2015; 25
2007; 316
2014; 507
2015; 27
2016; 1
2017; 90
2016; 2
2016; 3
2015; 115
2018; 118
2017; 11
2017; 10
2018; 555
2017; 13
2018; 115
2017; 12
2016; 21
2008; 454
2018; 12
2016; 28
2017; 542
2016; 27
2018; 10
2016; 26
2016; 8
2018; 14
2018; 13
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_117_1
Li L. (e_1_2_7_108_1) 2018; 5
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
References_xml – volume: 3
  start-page: 1700288
  year: 2018
  publication-title: Adv. Mater. Technol.
– volume: 8
  start-page: 466
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 116
  start-page: 14225
  year: 2016
  publication-title: Chem. Rev.
– volume: 11
  start-page: 1600257
  year: 2017
  publication-title: Laser Photonics Rev.
– volume: 30
  start-page: 1802290
  year: 2018
  publication-title: Adv. Mater.
– volume: 12
  start-page: 907
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 30
  start-page: 1803165
  year: 2018
  publication-title: Adv. Mater.
– volume: 10
  start-page: 22
  year: 2017
  publication-title: Nano Res.
– volume: 8
  start-page: 1782
  year: 2017
  publication-title: Nat. Commun.
– volume: 555
  start-page: 657
  year: 2018
  publication-title: Nature
– volume: 21
  start-page: 3907
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 626
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 27
  start-page: 1704477
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 7359
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 1703754
  year: 2018
  publication-title: Small
– volume: 22
  start-page: 4059
  year: 2010
  publication-title: Adv. Mater.
– volume: 542
  start-page: 324
  year: 2017
  publication-title: Nature
– volume: 18
  start-page: 4697
  year: 2018
  publication-title: Nano Lett.
– volume: 30
  start-page: 173
  year: 2016
  publication-title: Nano Energy
– volume: 3
  start-page: 7469
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 4
  start-page: 10032
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 30
  start-page: 1705918
  year: 2018
  publication-title: Adv. Mater.
– volume: 8
  start-page: 7291
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 1706262
  year: 2018
  publication-title: Adv. Mater.
– volume: 27
  start-page: 4336
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 12744
  year: 2016
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1700381
  year: 2018
  publication-title: Phys. Status Solidi RRL
– volume: 26
  start-page: 2059
  year: 2014
  publication-title: Adv. Mater.
– volume: 26
  start-page: 5239
  year: 2014
  publication-title: Adv. Mater.
– volume: 5
  start-page: 11070
  year: 2015
  publication-title: Sci. Rep.
– volume: 9
  start-page: 12718
  year: 2017
  publication-title: Nanoscale
– volume: 34
  start-page: 49
  year: 2019
  publication-title: J. Inorg. Mater.
– volume: 11
  start-page: 4532
  year: 2015
  publication-title: Small
– volume: 27
  start-page: 1604373
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 4338
  year: 2016
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1048
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 015201
  year: 2018
  publication-title: Phys. Rev. Mater.
– volume: 11
  start-page: 4067
  year: 2017
  publication-title: ACS Nano
– volume: 6
  start-page: 3334
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 115
  start-page: 8294
  year: 2015
  publication-title: Chem. Rev.
– volume: 29
  start-page: 1602639
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  start-page: 99
  year: 2019
  publication-title: Nanoscale Horiz.
– volume: 51
  start-page: 090115
  year: 2012
  publication-title: Jpn. J. Appl. Phys.
– volume: 507
  start-page: 341
  year: 2014
  publication-title: Nature
– volume: 27
  start-page: 1700264
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 2059
  year: 2017
  publication-title: Nanoscale
– volume: 5
  start-page: 5576
  year: 2013
  publication-title: Nanoscale
– volume: 12
  start-page: 5809
  year: 2016
  publication-title: Small
– volume: 13
  start-page: 1701822
  year: 2017
  publication-title: Small
– volume: 30
  start-page: 1706986
  year: 2018
  publication-title: Adv. Mater.
– volume: 25
  start-page: 5794
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 3743
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 2334
  year: 2018
  publication-title: Optica
– volume: 9
  start-page: 10921
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 1802954
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: e1501856
  year: 2016
  publication-title: Sci. Adv.
– volume: 27
  start-page: 1702360
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 1800323
  year: 2018
  publication-title: Adv. Mater.
– volume: 28
  start-page: 403
  year: 2016
  publication-title: Adv. Mater.
– volume: 16
  start-page: 1925
  year: 2016
  publication-title: Nano Lett.
– volume: 13
  start-page: 1700918
  year: 2017
  publication-title: Small
– volume: 26
  start-page: 1445
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 836
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 13
  start-page: 1602448
  year: 2017
  publication-title: Small
– volume: 6
  start-page: 4866
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 7
  start-page: 223
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 454
  start-page: 748
  year: 2008
  publication-title: Nature
– volume: 10
  start-page: 11249
  year: 2016
  publication-title: ACS Nano
– volume: 90
  start-page: 349
  year: 2017
  publication-title: Biosens. Bioelectron.
– volume: 19
  start-page: 394
  year: 2016
  publication-title: Mater. Today
– volume: 12
  start-page: 9596
  year: 2018
  publication-title: ACS Nano
– volume: 28
  start-page: 502
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: e1602051
  year: 2017
  publication-title: Sci. Adv.
– volume: 4
  start-page: eaat2544
  year: 2018
  publication-title: Sci. Adv.
– volume: 6
  start-page: 1800213
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 27
  start-page: 1704181
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 1800496
  year: 2018
  publication-title: Adv. Sci.
– volume: 11
  start-page: 10230
  year: 2017
  publication-title: ACS Nano
– volume: 8
  start-page: 14997
  year: 2017
  publication-title: Nat. Commun.
– volume: 12
  start-page: 2419
  year: 2016
  publication-title: Small
– volume: 11
  start-page: 6048
  year: 2017
  publication-title: ACS Nano
– volume: 26
  start-page: 1336
  year: 2014
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1707178
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 6972
  year: 2015
  publication-title: Nat. Commun.
– volume: 27
  start-page: 225501
  year: 2016
  publication-title: Nanotechnology
– volume: 529
  start-page: 509
  year: 2016
  publication-title: Nature
– volume: 10
  start-page: 106
  year: 2018
  publication-title: Appl. Mater. Today
– volume: 29
  start-page: 1700975
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 4058
  year: 2017
  publication-title: Nanoscale
– volume: 6
  start-page: 1800201
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 28
  start-page: 1802029
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 2336
  year: 2018
  publication-title: ACS Photonics
– volume: 9
  start-page: 43880
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 3988
  year: 2015
  publication-title: Nano Lett.
– volume: 30
  start-page: 1803980
  year: 2018
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1705389
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 560
  start-page: 214
  year: 2018
  publication-title: Nature
– volume: 9
  start-page: 25700
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 118
  start-page: 6189
  year: 2018
  publication-title: Chem. Rev.
– volume: 3
  start-page: 724
  year: 2017
  publication-title: Chemistry
– volume: 11
  start-page: 5992
  year: 2017
  publication-title: ACS Nano
– volume: 30
  start-page: 1802359
  year: 2018
  publication-title: Adv. Mater.
– volume: 25
  start-page: 094005
  year: 2014
  publication-title: Nanotechnology
– volume: 3
  start-page: 2197
  year: 2016
  publication-title: ACS Photonics
– volume: 115
  start-page: E11015
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 3
  start-page: e1601314
  year: 2017
  publication-title: Sci. Adv.
– volume: 9
  start-page: 1417
  year: 2018
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1700281
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 11
  start-page: 5712
  year: 2015
  publication-title: Small
– volume: 7
  start-page: 11032
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 021303
  year: 2016
  publication-title: Appl. Phys. Rev.
– volume: 13
  start-page: 1701687
  year: 2017
  publication-title: Small
– volume: 13
  start-page: 1057
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 27
  start-page: 1701823
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 82
  start-page: 2185
  year: 2010
  publication-title: Pure Appl. Chem.
– volume: 29
  start-page: 1603167
  year: 2017
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1703448
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 2469
  year: 2018
  publication-title: ACS Appl. Nano Mater.
– volume: 30
  start-page: 1705400
  year: 2018
  publication-title: Adv. Mater.
– volume: 26
  start-page: 1296
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 39487
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 025006
  year: 2016
  publication-title: Flexible Printed Electron.
– volume: 64
  start-page: 1985
  year: 2017
  publication-title: IEEE Trans. Electron Devices
– volume: 18
  start-page: 493
  year: 2015
  publication-title: Mater. Today
– volume: 27
  start-page: 1701611
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 1704524
  year: 2018
  publication-title: Small
– volume: 316
  start-page: 102
  year: 2007
  publication-title: Science
– volume: 5
  start-page: 4007
  year: 2014
  publication-title: Nat. Commun.
– volume: 21
  start-page: 228
  year: 2016
  publication-title: Nano Energy
– volume: 9
  start-page: 35958
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1702184
  year: 2017
  publication-title: Adv. Mater.
– ident: e_1_2_7_49_1
  doi: 10.1002/smll.201701687
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201802290
– ident: e_1_2_7_80_1
  doi: 10.1021/acsami.5b11523
– ident: e_1_2_7_101_1
  doi: 10.1002/adma.201706986
– ident: e_1_2_7_68_1
  doi: 10.1021/acsnano.7b00749
– ident: e_1_2_7_12_1
  doi: 10.1038/ncomms14997
– ident: e_1_2_7_74_1
  doi: 10.1002/smll.201500729
– ident: e_1_2_7_102_1
  doi: 10.1016/j.bios.2016.12.011
– ident: e_1_2_7_50_1
  doi: 10.1002/smll.201600326
– ident: e_1_2_7_109_1
  doi: 10.1002/adfm.201604373
– ident: e_1_2_7_129_1
  doi: 10.1021/acs.chemrev.6b00498
– ident: e_1_2_7_89_1
  doi: 10.1039/C8NH00144H
– ident: e_1_2_7_125_1
  doi: 10.1039/C3TC31966K
– ident: e_1_2_7_90_1
  doi: 10.1016/j.apmt.2017.12.013
– ident: e_1_2_7_107_1
  doi: 10.1002/advs.201800496
– ident: e_1_2_7_120_1
  doi: 10.1038/nature13078
– ident: e_1_2_7_32_1
  doi: 10.1002/smll.201602448
– ident: e_1_2_7_30_1
  doi: 10.1002/adfm.201704477
– ident: e_1_2_7_118_1
  doi: 10.1021/acsanm.8b00421
– ident: e_1_2_7_2_1
  doi: 10.1038/nature16521
– ident: e_1_2_7_106_1
  doi: 10.1002/aelm.201700281
– ident: e_1_2_7_115_1
  doi: 10.1021/acsami.8b13457
– ident: e_1_2_7_99_1
  doi: 10.1016/j.nanoen.2016.10.009
– ident: e_1_2_7_112_1
  doi: 10.1021/acsami.7b05264
– ident: e_1_2_7_127_1
  doi: 10.1002/adma.201400349
– ident: e_1_2_7_43_1
  doi: 10.1002/smll.201601913
– ident: e_1_2_7_59_1
  doi: 10.1007/s12274-016-1263-y
– ident: e_1_2_7_1_1
  doi: 10.1126/sciadv.1601314
– ident: e_1_2_7_18_1
  doi: 10.1126/sciadv.aat2544
– ident: e_1_2_7_88_1
  doi: 10.1002/adma.201001289
– ident: e_1_2_7_76_1
  doi: 10.1038/ncomms5007
– ident: e_1_2_7_57_1
  doi: 10.1021/acsami.5b09373
– ident: e_1_2_7_29_1
  doi: 10.1002/adfm.201707178
– ident: e_1_2_7_86_1
  doi: 10.1039/C8TC01183D
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.201602639
– ident: e_1_2_7_45_1
  doi: 10.1002/adfm.201504477
– volume: 5
  start-page: 2334
  year: 2018
  ident: e_1_2_7_108_1
  publication-title: Optica
– ident: e_1_2_7_16_1
  doi: 10.1039/C8TC00550H
– ident: e_1_2_7_94_1
  doi: 10.1021/acsnano.7b04804
– ident: e_1_2_7_52_1
  doi: 10.1002/adfm.201802954
– ident: e_1_2_7_130_1
  doi: 10.1016/j.mattod.2015.11.007
– ident: e_1_2_7_79_1
  doi: 10.1002/adma.201702184
– ident: e_1_2_7_85_1
  doi: 10.1021/acsnano.8b05582
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201501517
– ident: e_1_2_7_75_1
  doi: 10.1088/0957-4484/27/22/225501
– ident: e_1_2_7_121_1
  doi: 10.1038/s41467-017-01926-1
– ident: e_1_2_7_123_1
  doi: 10.1021/acsami.7b13709
– ident: e_1_2_7_119_1
  doi: 10.1002/adma.201705400
– ident: e_1_2_7_46_1
  doi: 10.1016/j.nanoen.2016.01.011
– ident: e_1_2_7_67_1
  doi: 10.1002/smll.201502037
– ident: e_1_2_7_73_1
  doi: 10.1002/adfm.201703448
– ident: e_1_2_7_4_1
  doi: 10.1038/ncomms12744
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.201503534
– ident: e_1_2_7_39_1
  doi: 10.1039/C6NR08425G
– ident: e_1_2_7_93_1
  doi: 10.1021/acsami.7b02213
– ident: e_1_2_7_96_1
  doi: 10.1103/PhysRevMaterials.2.015201
– ident: e_1_2_7_91_1
  doi: 10.1002/adfm.201701611
– ident: e_1_2_7_63_1
  doi: 10.1039/C7NR04395C
– ident: e_1_2_7_131_1
  doi: 10.1002/adma.201800323
– ident: e_1_2_7_98_1
  doi: 10.1002/adfm.201704181
– ident: e_1_2_7_42_1
  doi: 10.1002/adfm.201700264
– ident: e_1_2_7_36_1
  doi: 10.1143/JJAP.51.090115
– ident: e_1_2_7_77_1
  doi: 10.1002/adma.201802359
– ident: e_1_2_7_111_1
  doi: 10.1126/sciadv.1501856
– ident: e_1_2_7_70_1
  doi: 10.1021/acsnano.6b06326
– ident: e_1_2_7_25_1
  doi: 10.1021/acs.nanolett.5b00906
– ident: e_1_2_7_51_1
  doi: 10.1002/adma.201304736
– ident: e_1_2_7_34_1
  doi: 10.1002/adom.201800213
– ident: e_1_2_7_113_1
  doi: 10.1002/admt.201700288
– ident: e_1_2_7_83_1
  doi: 10.1021/acsphotonics.8b00141
– ident: e_1_2_7_124_1
  doi: 10.1016/j.chempr.2017.10.005
– ident: e_1_2_7_11_1
  doi: 10.1038/nature26147
– ident: e_1_2_7_58_1
  doi: 10.1021/acsnano.7b01999
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.201803165
– ident: e_1_2_7_71_1
  doi: 10.1039/C5TC00850F
– ident: e_1_2_7_82_1
  doi: 10.1073/pnas.1813053115
– ident: e_1_2_7_62_1
  doi: 10.1002/smll.201700918
– ident: e_1_2_7_35_1
  doi: 10.1002/smll.201703754
– ident: e_1_2_7_72_1
  doi: 10.1039/C6NR09338H
– ident: e_1_2_7_9_1
  doi: 10.1038/nnano.2017.125
– ident: e_1_2_7_114_1
  doi: 10.1038/srep11070
– ident: e_1_2_7_15_1
  doi: 10.1021/acs.nanolett.5b05124
– ident: e_1_2_7_61_1
  doi: 10.1002/smll.201704524
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.201100743
– ident: e_1_2_7_64_1
  doi: 10.1039/c3nr34335a
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.jpclett.9b00154
– ident: e_1_2_7_100_1
  doi: 10.1038/s41586-018-0390-x
– ident: e_1_2_7_54_1
  doi: 10.1038/nature21050
– ident: e_1_2_7_78_1
  doi: 10.1021/acsami.7b09411
– ident: e_1_2_7_44_1
  doi: 10.1039/C6TC03830A
– ident: e_1_2_7_65_1
  doi: 10.1021/acsnano.7b01894
– ident: e_1_2_7_53_1
  doi: 10.1021/acsphotonics.6b00391
– ident: e_1_2_7_41_1
  doi: 10.1002/pssr.201700381
– ident: e_1_2_7_23_1
  doi: 10.1021/cr400607y
– ident: e_1_2_7_95_1
  doi: 10.1002/adfm.201502646
– ident: e_1_2_7_105_1
  doi: 10.1002/adom.201800201
– ident: e_1_2_7_14_1
  doi: 10.1038/s41565-018-0226-8
– ident: e_1_2_7_55_1
  doi: 10.1002/adma.201603167
– ident: e_1_2_7_122_1
  doi: 10.1063/1.4953034
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201706262
– ident: e_1_2_7_128_1
  doi: 10.1021/acs.chemrev.8b00056
– ident: e_1_2_7_19_1
  doi: 10.1002/lpor.201600257
– ident: e_1_2_7_60_1
  doi: 10.1088/2058-8585/1/2/025006
– ident: e_1_2_7_84_1
  doi: 10.1109/TED.2016.2618423
– ident: e_1_2_7_104_1
  doi: 10.1038/ncomms7972
– ident: e_1_2_7_56_1
  doi: 10.1002/smll.201701822
– ident: e_1_2_7_126_1
  doi: 10.1088/0957-4484/25/9/094005
– ident: e_1_2_7_7_1
  doi: 10.1038/s41565-018-0244-6
– ident: e_1_2_7_21_1
  doi: 10.1002/adfm.201701823
– ident: e_1_2_7_66_1
  doi: 10.1002/adfm.201503230
– ident: e_1_2_7_97_1
  doi: 10.15541/jim20180243
– ident: e_1_2_7_116_1
  doi: 10.1038/nature07113
– ident: e_1_2_7_69_1
  doi: 10.1021/acsami.5b02834
– ident: e_1_2_7_87_1
  doi: 10.1038/s41467-018-03870-0
– ident: e_1_2_7_110_1
  doi: 10.1002/adma.201700975
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201504244
– ident: e_1_2_7_47_1
  doi: 10.1126/science.1139366
– ident: e_1_2_7_26_1
  doi: 10.1016/j.mattod.2015.06.001
– ident: e_1_2_7_6_1
  doi: 10.1351/PAC-CON-09-11-40
– ident: e_1_2_7_81_1
  doi: 10.1002/adma.201803980
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201304248
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201504441
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201705918
– ident: e_1_2_7_40_1
  doi: 10.1002/adfm.201602195
– ident: e_1_2_7_5_1
  doi: 10.1002/adfm.201802029
– ident: e_1_2_7_103_1
  doi: 10.1002/adfm.201702360
– ident: e_1_2_7_10_1
  doi: 10.1126/sciadv.1602051
– ident: e_1_2_7_48_1
  doi: 10.1021/acs.nanolett.8b00988
– ident: e_1_2_7_92_1
  doi: 10.1038/s41467-018-06273-3
– ident: e_1_2_7_117_1
  doi: 10.1002/adfm.201705389
– ident: e_1_2_7_22_1
  doi: 10.1039/C8TC05877F
SSID ssj0009606
Score 2.682054
SecondaryResourceType review_article
Snippet Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next‐generation wearable...
Photodetectors (PDs), as an indispensable component in electronics, are highly desired to be flexible to meet the trend of next-generation wearable...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1808138
SubjectTerms design strategy
Electronics
Exploration
flexible electronics
material exploration
Materials science
Materials selection
Optical communication
Photometers
Progress reports
Substrates
wearable photodetectors
Wearable technology
Title Materials and Designs for Wearable Photodetectors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201808138
https://www.ncbi.nlm.nih.gov/pubmed/30785644
https://www.proquest.com/docview/2218100080
https://www.proquest.com/docview/2184143518
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-ykx78_qhOqSB4yramaZsch3MMYSLicLeSNCmC0ortLv71vqQfbooICj2kNGnT9_Jefm1efg-hCyqUpIBTQQNEY8MGgpn2UwxTgyQpFMHYTbTFbTiZ0Zt5MF_axV_xQ7Q_3IxlWH9tDFzIov9JGiqU5Q3yTOoI3-z2NQFbBhXdf_JHGXhuyfb8APOQsoa1cUD6q81XZ6VvUHMVudqpZ7yFRNPpKuLkubcoZS95_8Ln-J-32kabNS51h9VA2kFrOttFG0tshXvIm4qyGq-uyJQ7srEfhQuo130EezF7sNy7p7zMlS7tWkCxj2bj64erCa4zLuAEgAnD2o-8NOQykkHEiQ5FIv2EaHswkCJnYqBUYrL7kijUjHtEchV5UkfgqFTqH6BOlmf6CLmE-prSVGkmFThjwQjXnHoqCRmVOk0chBuJx0lNR26yYrzEFZEyiY0o4lYUDrps679WRBw_1uw2CoxrgyxiYqCMxccOOm8vgymZ9RGR6XwBdeBr18BHD25xWCm-fRS4QhYAdnQQser7pQ_xcDQdtmfHf2l0gtahzKvgyi7qlG8LfQoAqJRndpB_AIUq-kA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_oPKgHvz-qUysInrqtadYmx-GUqdsQ2dBbaZoUQenEdRf_el_StXOKCAo99CNp05e8l1-Sl98DOKORFBRxKtYAUY5mA3GY8hIHuwZBEjxFZdfeFn2_M6Q3j83Cm1Dvhcn5IcoJN60Zxl5rBdcT0vUZa2gkDXGQq2NHeGwRlnRYbzOqup8xSGmAbuj2vKbDfcoK3sYGqc_nn--XvoHNeexqOp-rdRBFsXOfk-faJBO1-P0Lo-O__msD1qbQ1G7lbWkTFlS6BaufCAu3we1FWd5k7SiVdtu4f4xtBL72A6qM3oZl3z2NspFUmVkOGO_A8OpycNFxpkEXnBixCXOUF7iJz0UgmgEnyo9i4cVEmYOhGDmLGlLGOsAvCXzFuEsEl4ErVIC2SibeLlTSUar2wSbUU5QmUjEh0R5HjHDFqStjn1GhktgCpxB5GE8ZyXVgjJcw51ImoRZFWIrCgvMy_WvOxfFjympRg-FUJ8ch0WjGQGQLTsvHqE16iSRK1WiCaXDAqxGki6_Yy2u-_BRaQ9ZE-GgBMfX3SxnCVrvXKq8O_pLpBJY7g1437F73bw9hBe_z3NeyCpXsbaKOEA9l4ti0-A83Jf5b
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oBNEH75d5rSD4VF3TrE0eh3N42xBxuLeSNCmC0onrXvz1nqSXOUUEhT70krTpueVrc_IF4JgKJSniVNQA0a5hA3GZ9hMXuwZJEtxFZzfZFr3gsk-vB83Bp1n8OT9E9cPNeIaN18bBX1VyNiENFcryBnlm6QifzcIcDRrM2HX7fkIgZfC5Zdvzmy4PKCtpGxvkbLr-dLf0DWtOQ1fb93SWQZStzlNOnk_HmTyN378QOv7ntVZgqQCmTiu3pFWY0ekaLH6iK1wHryuy3GAdkSqnbZM_Rg7CXucRHcZMwnLunobZUOnMDgaMNqDfuXg4v3SLJRfcGJEJc7UfeknAZSibISc6ELH0Y6LtxlCKnImGUrFZ3peEgWbcI5Kr0JM6xEilEn8Taukw1dvgEOprShOlmVQYjQUjXHPqqThgVOokroNbSjyKCz5ysyzGS5QzKZPIiCKqRFGHk6r8a87E8WPJvVKBUeGRo4gYLGMBch2OqsvoS2aARKR6OMYy-Llr8KOHt9jKFV89CmMhayJ4rAOx6vulDVGr3W1VRzt_qXQI83ftTnR71bvZhQU8zfNEyz2oZW9jvY9gKJMH1t4_AEx7_RM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Materials+and+Designs+for+Wearable+Photodetectors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cai%2C+Sa&rft.au=Xu%2C+Xiaojie&rft.au=Yang%2C+Wei&rft.au=Chen%2C+Jiaxin&rft.date=2019-05-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=18&rft.spage=e1808138&rft_id=info:doi/10.1002%2Fadma.201808138&rft_id=info%3Apmid%2F30785644&rft.externalDocID=30785644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon