Direct Chirality Recognition of Single‐Crystalline and Single‐Walled Transition Metal Oxide Nanotubes on Carbon Nanotube Templates

Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are in...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 44; pp. e1803368 - n/a
Main Authors Shen, Boyuan, Xie, Huanhuan, Gu, Lin, Chen, Xiao, Bai, Yunxiang, Zhu, Zhenxing, Wei, Fei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single‐crystalline molybdenum trioxide (α‐MoO3) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly “seen” and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α‐MoO3 to maintain the single‐walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT‐based functional 1D vdW heterostructures. Single‐crystalline molybdenum trioxide nanotubes (MONTs) are fabricated on carbon nanotube (CNT) templates. Single‐crystalline and single‐walled MONTs are prepared by van der Waals epitaxy on CNT templates. The chiral angles of the MONTs can be directly observed under an electron microscope. The MONTs show a preferred orientation with the [001] direction along the CNT axis due to the anisotropic bending rigidity of the monolayers.
AbstractList Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single‐crystalline molybdenum trioxide (α‐MoO3) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly “seen” and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α‐MoO3 to maintain the single‐walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT‐based functional 1D vdW heterostructures. Single‐crystalline molybdenum trioxide nanotubes (MONTs) are fabricated on carbon nanotube (CNT) templates. Single‐crystalline and single‐walled MONTs are prepared by van der Waals epitaxy on CNT templates. The chiral angles of the MONTs can be directly observed under an electron microscope. The MONTs show a preferred orientation with the [001] direction along the CNT axis due to the anisotropic bending rigidity of the monolayers.
Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single-crystalline molybdenum trioxide (α-MoO3 ) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly "seen" and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α-MoO3 to maintain the single-walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT-based functional 1D vdW heterostructures.Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single-crystalline molybdenum trioxide (α-MoO3 ) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly "seen" and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α-MoO3 to maintain the single-walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT-based functional 1D vdW heterostructures.
Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single‐crystalline molybdenum trioxide (α‐MoO3) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly “seen” and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α‐MoO3 to maintain the single‐walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT‐based functional 1D vdW heterostructures.
Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single‐crystalline molybdenum trioxide (α‐MoO 3 ) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly “seen” and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α‐MoO 3 to maintain the single‐walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT‐based functional 1D vdW heterostructures.
Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single-crystalline molybdenum trioxide (α-MoO ) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly "seen" and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α-MoO to maintain the single-walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT-based functional 1D vdW heterostructures.
Author Bai, Yunxiang
Gu, Lin
Shen, Boyuan
Chen, Xiao
Zhu, Zhenxing
Xie, Huanhuan
Wei, Fei
Author_xml – sequence: 1
  givenname: Boyuan
  surname: Shen
  fullname: Shen, Boyuan
  organization: Tsinghua University
– sequence: 2
  givenname: Huanhuan
  surname: Xie
  fullname: Xie, Huanhuan
  organization: Tsinghua University
– sequence: 3
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Xiao
  surname: Chen
  fullname: Chen, Xiao
  organization: Tsinghua University
– sequence: 5
  givenname: Yunxiang
  surname: Bai
  fullname: Bai, Yunxiang
  organization: Tsinghua University
– sequence: 6
  givenname: Zhenxing
  surname: Zhu
  fullname: Zhu, Zhenxing
  organization: Tsinghua University
– sequence: 7
  givenname: Fei
  surname: Wei
  fullname: Wei, Fei
  email: wf-dce@tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30216568$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaTZprz0WQS-9eDuyPmwfF6dfkDTQLvRoZHmcKsjyVrJJ95ZTzv2N_SXVstkGAqWngZnneRlmTsiRHz0S8pLBkgHkb3U36GUOrATOVfmELJjMWSagkkdkARWXWaVEeUxOYrwGgEqBekaOOeRMSVUuyN2ZDWgmWn-3QTs7bekXNOOVt5MdPR17-tX6K4e_b3_VYRsn7Zz1SLXvHgbfUhM7ug7ax712gQmklz9th_Sz9uM0txhpGtQ6tKkcenSNw8bpCeNz8rTXLuKL-3pK1u_freuP2fnlh0_16jwzgldlpkEUPfZGFlJzmZemVdBqhoXg2EvFuQDZQV-wXGlVgjZVV-XGFGCEVgL5KXmzj92E8ceMcWoGGw06pz2Oc2xyBhJkSmEJff0IvR7n4NNyicorUTCuRKJe3VNzO2DXbIIddNg2hwMnQOwBE8YYA_aNsZPeXWkK2rqGQbP7Y7P7Y_P3j0lbPtIOyf8Uqr1wYx1u_0M3q7OL1YP7B84xsq8
CitedBy_id crossref_primary_10_1002_adfm_202208321
crossref_primary_10_1016_j_jechem_2022_02_029
crossref_primary_10_1021_jacs_3c03128
crossref_primary_10_1002_smll_202102585
crossref_primary_10_1002_pssb_202200614
crossref_primary_10_1002_advs_202410671
crossref_primary_10_1016_j_ijhydene_2023_04_246
crossref_primary_10_3390_ma12030336
crossref_primary_10_1002_admi_202101595
crossref_primary_10_1002_smsc_202000039
crossref_primary_10_1002_cjoc_202000673
crossref_primary_10_1016_j_snb_2022_131792
crossref_primary_10_1021_acsnano_9b09754
crossref_primary_10_1039_C9NR01880H
Cites_doi 10.1002/adma.200500539
10.1002/anie.200301651
10.1021/ja0445239
10.1103/PhysRevB.57.9301
10.1021/nn401995z
10.1039/B901466G
10.1038/nnano.2006.62
10.1021/jp907602w
10.1016/S0379-6779(98)00278-1
10.1038/34139
10.1021/nn403241f
10.1002/anie.200352483
10.1016/j.carbon.2011.06.100
10.1002/adma.200501562
10.1038/ncomms5836
10.1063/1.2149216
10.1039/c3nr34011b
10.1002/adma.200803720
10.1063/1.2042634
10.1002/adma.200902746
10.1002/adma.201203346
10.1021/nl034142d
10.1038/34145
10.1002/adma.200306428
10.1002/adma.201705318
10.1002/adfm.201300125
10.1126/science.1060928
10.1038/375564a0
10.1016/j.carbon.2016.11.076
10.1038/nnano.2017.62
10.1038/nature01551
10.1002/adma.201306097
10.1038/nature21051
10.1038/ncomms13352
10.1038/nature13434
10.1126/science.1222453
10.1103/PhysRevLett.88.126805
10.1016/0040-6090(92)90872-9
10.1021/am508569m
10.1038/354056a0
10.1021/acsnano.5b07420
10.1063/1.2036967
10.1002/adma.200306213
10.1021/nl204562j
10.1142/p080
10.1021/nl501000k
10.1016/j.physrep.2004.10.006
10.1016/S0360-0564(08)60362-4
10.1021/jacs.5b03590
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201803368
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30216568
10_1002_adma_201803368
ADMA201803368
Genre article
Journal Article
GrantInformation_xml – fundername: Beijing Municipal Science and Technology Commission
  funderid: D141100000614001
– fundername: National Basic Research Program of China
  funderid: 2016YFA0200101
– fundername: National Natural Science Foundation of China
  funderid: 21636005
– fundername: National Natural Science Foundation of China
  grantid: 21636005
– fundername: National Basic Research Program of China
  grantid: 2016YFA0200101
– fundername: Beijing Municipal Science and Technology Commission
  grantid: D141100000614001
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4398-a047fefc575a3528cb60ba1e743ef5633405d0f7126a680ac9d92cc70c4a64e3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 16:18:08 EDT 2025
Fri Jul 25 05:12:00 EDT 2025
Wed Feb 19 02:43:22 EST 2025
Tue Jul 01 00:44:45 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Wed Jan 22 16:21:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords carbon nanotube templates
1D van der Waals heterostructures
single-crystalline/single-walled selectivity
molybdenum trioxide nanotubes
visible chirality recognition
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4398-a047fefc575a3528cb60ba1e743ef5633405d0f7126a680ac9d92cc70c4a64e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30216568
PQID 2129471364
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2105053401
proquest_journals_2129471364
pubmed_primary_30216568
crossref_citationtrail_10_1002_adma_201803368
crossref_primary_10_1002_adma_201803368
wiley_primary_10_1002_adma_201803368_ADMA201803368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Nov
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-Nov
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 43
2013; 25
1991; 354
2009; 21
1990; 37
2002; 297
2010; 39
2013; 23
1998
2016; 10
2014; 26
2005; 87
2009; 113
1999; 103
2006; 1
1995; 375
2013; 7
2012; 12
2013; 5
2017; 114
2015; 7
2014; 510
2010; 22
1998; 391
2016; 7
2014; 5
2015; 137
2013; 339
2005; 123
2004; 16
2005; 127
2017; 12
2002; 88
2003; 24
2003; 3
1992; 216
2014; 14
2018; 30
2005; 409
2011; 49
2003; 422
2005; 17
2017; 543
2003; 42
1998; 57
e_1_2_4_40_1
Wang C. M. (e_1_2_4_50_1) 2003; 24
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
Xie Y. C. (e_1_2_4_49_1) 1990; 37
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 510
  start-page: 522
  year: 2014
  publication-title: Nature
– volume: 216
  start-page: 72
  year: 1992
  publication-title: Thin Solid Films
– volume: 297
  start-page: 787
  year: 2002
  publication-title: Science
– volume: 1
  start-page: 103
  year: 2006
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 1662
  year: 2016
  publication-title: ACS Nano
– volume: 409
  start-page: 47
  year: 2005
  publication-title: Phys. Rep.
– volume: 23
  start-page: 3952
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 113
  start-page: 20259
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 114
  start-page: 141
  year: 2017
  publication-title: Carbon
– year: 1998
– volume: 5
  start-page: 4836
  year: 2014
  publication-title: Nat. Commun.
– volume: 17
  start-page: 2993
  year: 2005
  publication-title: Adv. Mater.
– volume: 22
  start-page: 1867
  year: 2010
  publication-title: Adv. Mater.
– volume: 49
  start-page: 4961
  year: 2011
  publication-title: Carbon
– volume: 30
  start-page: 1705318
  year: 2018
  publication-title: Adv. Mater.
– volume: 17
  start-page: 2757
  year: 2005
  publication-title: Adv. Mater.
– volume: 16
  start-page: 1497
  year: 2004
  publication-title: Adv. Mater.
– volume: 43
  start-page: 63
  year: 2004
  publication-title: Angew. Chem., Int. Ed.
– volume: 16
  start-page: 350
  year: 2004
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3570
  year: 2013
  publication-title: Nanoscale
– volume: 7
  start-page: 9753
  year: 2013
  publication-title: ACS Nano
– volume: 42
  start-page: 5124
  year: 2003
  publication-title: Angew. Chem., Int. Ed.
– volume: 123
  start-page: 114714
  year: 2005
  publication-title: J. Chem. Phys.
– volume: 88
  start-page: 126805
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 422
  start-page: 599
  year: 2003
  publication-title: Nature
– volume: 26
  start-page: 3931
  year: 2014
  publication-title: Adv. Mater.
– volume: 7
  start-page: 5265
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 3047
  year: 2014
  publication-title: Nano Lett.
– volume: 87
  start-page: 251929
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 391
  start-page: 62
  year: 1998
  publication-title: Nature
– volume: 21
  start-page: 4208
  year: 2009
  publication-title: Adv. Mater.
– volume: 543
  start-page: 234
  year: 2017
  publication-title: Nature
– volume: 37
  start-page: 1
  year: 1990
  publication-title: Adv. Catal.
– volume: 25
  start-page: 109
  year: 2013
  publication-title: Adv. Mater.
– volume: 24
  start-page: 475
  year: 2003
  publication-title: Chin. J. Catal.
– volume: 3
  start-page: 681
  year: 2003
  publication-title: Nano Lett.
– volume: 39
  start-page: 1423
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 127
  start-page: 6
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 13352
  year: 2016
  publication-title: Nat. Commun.
– volume: 103
  start-page: 2555
  year: 1999
  publication-title: Synth. Met.
– volume: 391
  start-page: 59
  year: 1998
  publication-title: Nature
– volume: 12
  start-page: 410
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 354
  start-page: 56
  year: 1991
  publication-title: Nature
– volume: 339
  start-page: 535
  year: 2013
  publication-title: Science
– volume: 137
  start-page: 12162
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 9301
  year: 1998
  publication-title: Phys. Rev. B
– volume: 375
  start-page: 564
  year: 1995
  publication-title: Nature
– volume: 12
  start-page: 2784
  year: 2012
  publication-title: Nano Lett.
– volume: 87
  start-page: 113107
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 6156
  year: 2013
  publication-title: ACS Nano
– ident: e_1_2_4_24_1
  doi: 10.1002/adma.200500539
– ident: e_1_2_4_26_1
  doi: 10.1002/anie.200301651
– ident: e_1_2_4_23_1
  doi: 10.1021/ja0445239
– ident: e_1_2_4_9_1
  doi: 10.1103/PhysRevB.57.9301
– ident: e_1_2_4_47_1
  doi: 10.1021/nn401995z
– ident: e_1_2_4_30_1
  doi: 10.1039/B901466G
– volume: 24
  start-page: 475
  year: 2003
  ident: e_1_2_4_50_1
  publication-title: Chin. J. Catal.
– ident: e_1_2_4_28_1
  doi: 10.1038/nnano.2006.62
– ident: e_1_2_4_39_1
  doi: 10.1021/jp907602w
– ident: e_1_2_4_11_1
  doi: 10.1016/S0379-6779(98)00278-1
– ident: e_1_2_4_14_1
  doi: 10.1038/34139
– ident: e_1_2_4_41_1
  doi: 10.1021/nn403241f
– ident: e_1_2_4_21_1
  doi: 10.1002/anie.200352483
– ident: e_1_2_4_10_1
  doi: 10.1016/j.carbon.2011.06.100
– ident: e_1_2_4_25_1
  doi: 10.1002/adma.200501562
– ident: e_1_2_4_34_1
  doi: 10.1038/ncomms5836
– ident: e_1_2_4_8_1
  doi: 10.1063/1.2149216
– ident: e_1_2_4_33_1
  doi: 10.1039/c3nr34011b
– ident: e_1_2_4_29_1
  doi: 10.1002/adma.200803720
– ident: e_1_2_4_22_1
  doi: 10.1063/1.2042634
– ident: e_1_2_4_46_1
  doi: 10.1002/adma.200902746
– ident: e_1_2_4_42_1
  doi: 10.1002/adma.201203346
– ident: e_1_2_4_19_1
  doi: 10.1021/nl034142d
– ident: e_1_2_4_13_1
  doi: 10.1038/34145
– ident: e_1_2_4_27_1
  doi: 10.1002/adma.200306428
– ident: e_1_2_4_45_1
  doi: 10.1002/adma.201705318
– ident: e_1_2_4_40_1
  doi: 10.1002/adfm.201300125
– ident: e_1_2_4_4_1
  doi: 10.1126/science.1060928
– ident: e_1_2_4_17_1
  doi: 10.1038/375564a0
– ident: e_1_2_4_12_1
  doi: 10.1016/j.carbon.2016.11.076
– ident: e_1_2_4_1_1
  doi: 10.1038/nnano.2017.62
– ident: e_1_2_4_18_1
  doi: 10.1038/nature01551
– ident: e_1_2_4_43_1
  doi: 10.1002/adma.201306097
– ident: e_1_2_4_16_1
  doi: 10.1038/nature21051
– ident: e_1_2_4_38_1
  doi: 10.1038/ncomms13352
– ident: e_1_2_4_15_1
  doi: 10.1038/nature13434
– ident: e_1_2_4_5_1
  doi: 10.1126/science.1222453
– ident: e_1_2_4_6_1
  doi: 10.1103/PhysRevLett.88.126805
– ident: e_1_2_4_31_1
  doi: 10.1016/0040-6090(92)90872-9
– ident: e_1_2_4_37_1
  doi: 10.1021/am508569m
– ident: e_1_2_4_2_1
  doi: 10.1038/354056a0
– ident: e_1_2_4_44_1
  doi: 10.1021/acsnano.5b07420
– ident: e_1_2_4_7_1
  doi: 10.1063/1.2036967
– ident: e_1_2_4_20_1
  doi: 10.1002/adma.200306213
– ident: e_1_2_4_32_1
  doi: 10.1021/nl204562j
– ident: e_1_2_4_3_1
  doi: 10.1142/p080
– ident: e_1_2_4_35_1
  doi: 10.1021/nl501000k
– ident: e_1_2_4_48_1
  doi: 10.1016/j.physrep.2004.10.006
– volume: 37
  start-page: 1
  year: 1990
  ident: e_1_2_4_49_1
  publication-title: Adv. Catal.
  doi: 10.1016/S0360-0564(08)60362-4
– ident: e_1_2_4_36_1
  doi: 10.1021/jacs.5b03590
SSID ssj0009606
Score 2.361697
Snippet Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1803368
SubjectTerms 1D van der Waals heterostructures
carbon nanotube templates
Carbon nanotubes
Chirality
Crystal structure
Crystallinity
Electron microscopes
Heterostructures
Interlayers
Materials science
Microscopes
Molybdenum oxides
Molybdenum trioxide
molybdenum trioxide nanotubes
Optical properties
Organic chemistry
Recognition
Selectivity
single‐crystalline/single‐walled selectivity
Transition metal oxides
Transition metals
visible chirality recognition
Title Direct Chirality Recognition of Single‐Crystalline and Single‐Walled Transition Metal Oxide Nanotubes on Carbon Nanotube Templates
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201803368
https://www.ncbi.nlm.nih.gov/pubmed/30216568
https://www.proquest.com/docview/2129471364
https://www.proquest.com/docview/2105053401
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMct1BMceD8WCjISEqe0Sew4yXG1UFVIC1JZpN6isT0RFUtS7UOiPXHizGfkkzATb7JdEEKCUx4eJ7Hj8fyU2H8L8SKDOrPK68gYKCPtaozA5SoqM3Q5pkSwlmcjT9-a4w_6zWl2emUWf9CHGD64sWd0_TU7ONjl4VY0FHynG5QUsVKGZ_vygC2mopOtfhTjeSe2p7KoNLroVRvj9HA3-25U-g01d8m1Cz1HtwT0Dx1GnHw6WK_sgbv8Rc_xf0p1W9zccKkch4Z0R1zD5q64cUWt8J74FrpHOfl4tujoXZ70o4_aRra1fE9mc_zx9ftkcUHQyWrfKKHx2wT-bI9edgEyZJsiGcp3X848Surp29Xa4lJSwgQWljb9OTnDz-dzBuP7Ynb0ejY5jjbLOESOaKeIINZ5jbUjMATWknHWxBYSJHbBOjNKETP6uM6T1IApYnClL1Pn8thpMBrVA7HXtA0-EjLJLKjYa9Yy1WnuiT1TB045X0Je1OVIRP1brNxG4pxX2phXQZw5rbh6q6F6R-LlYH8exD3-aLnfN4pq4-TLiqJ-SbFdGT0Sz4dkck_-5wINtmu24aUCqYjJSDwMjWm4lSK-Ipymi6ddk_jLM1TjV9PxcPT4XzI9Edd5P8yl3Bd7q8UanxJUreyzznF-AvSZG3E
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAOvB8LBYwE4pQ2sR0nOXBY7VJtabdIZZF6ixx7Iqpus9U-BOXEiTM_hb_CX-CXMM5rWRBCQuqBUxR77Dj22PP59Q3A01DnYSas9JTSiSdNjp42kfCSEE2EnBBs5m4jD_fV4K18dRgersHX5i5MxQ_RLri5nlGO166DuwXprSVrqLYlcVAQ-0KouD5XuYtn72nWNnux06cmfsb59stRb-DVjgU8Q_Y39rQvoxxzQ1BFO3YTkyk_0wGSNcU8VEIQirF-HgVcaRX72iQ24cZEvpFaSRSU7QW46LyIO7b-_sGSsMrNB0p2PxF6iZJxQxPp863V4q6awd-w7SpULm3d9jX41tRSdcTleHMxzzbNx18IJP-narwOV2vgzbpVT7kBa1jchCs_0THegs_V-M96746m5fSEHTTHqyYFm-TsDYmN8funL73pGaFqR2eOTBd2GeH2JdCyEgFUyYZIguz1hyOLjEzZZL7IcMYooqenGT2aMDbCk9OxQ_63YXQe9XAH1otJgfeABWGmhW-lI2uVPLIErrnRRhib6CjOkw54jdakpuZwd65ExmnFPs1T15pp25odeN7Kn1bsJX-U3GiUMK1HsVlKsCYh8CKU7MCTNprGH7eppAucLJyM84VIvxh04G6lvO2nBAFImi9Q5rxUwb-UIe32h9327f6_JHoMlwaj4V66t7O_-wAuu_Dq4ugGrM-nC3xICHKePSo7LYP0nLX7B884eAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48P-zUMBIIE5pE9txkgOH1S6rlrIFlUXqLXLsiahYktX-CMqJE2fehFfhGXgSxskmy4IQElIPnKLEY8exZzzfxPZngIehzsNMWOkppRNPmhw9bSLhJSGaCDkh2MztRh4eqN3X8tlReLQBX5u9MDU_RPvDzVlGNV47A5_YfGdFGqptxRsUxL4QKl4uq9zHk_cUtM2e7PWphx9xPng66u16y3MFPEPuN_a0L6Mcc0NIRTtyE5MpP9MBkjPFPFRCEIixfh4FXGkV-9okNuHGRL6RWkkUVOwZOCuVn7izIvqHK74qFw5U5H4i9BIl44Yl0uc769Vd94K_Qdt1pFy5usEl-NY0Ur3C5e32Yp5tm4-_8Ef-R614GS4uYTfr1nZyBTawuAoXfiJjvAaf69Gf9d4cT6vghB02i6vKgpU5e0ViY_z-6UtvekKY2pGZI9OFXSW4WQm0rPL_dbYhkiB78eHYIiNHVs4XGc4YJfT0NKNL84yN8N1k7HD_dRidRjvcgM2iLPAWsCDMtPCtdFStkkeWoDU32ghjEx3FedIBr1Ga1CwZ3N1BIuO05p7mqevNtO3NDjxu5Sc1d8kfJbcaHUyXY9gsJVCTEHQRSnbgQZtMo4-bUtIFlgsn405CpE8MOnCz1t32VYLgI0ULVDivNPAvdUi7_WG3vbv9L5nuw7mX_UH6fO9g_w6cd4_rXaNbsDmfLvAuwcd5dq8yWQbpKSv3D9dSdq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Chirality+Recognition+of+Single%E2%80%90Crystalline+and+Single%E2%80%90Walled+Transition+Metal+Oxide+Nanotubes+on+Carbon+Nanotube+Templates&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shen%2C+Boyuan&rft.au=Xie%2C+Huanhuan&rft.au=Gu%2C+Lin&rft.au=Chen%2C+Xiao&rft.date=2018-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=44&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201803368&rft.externalDBID=10.1002%252Fadma.201803368&rft.externalDocID=ADMA201803368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon