Direct Chirality Recognition of Single‐Crystalline and Single‐Walled Transition Metal Oxide Nanotubes on Carbon Nanotube Templates
Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are in...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 44; pp. e1803368 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single‐crystalline molybdenum trioxide (α‐MoO3) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly “seen” and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α‐MoO3 to maintain the single‐walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT‐based functional 1D vdW heterostructures.
Single‐crystalline molybdenum trioxide nanotubes (MONTs) are fabricated on carbon nanotube (CNT) templates. Single‐crystalline and single‐walled MONTs are prepared by van der Waals epitaxy on CNT templates. The chiral angles of the MONTs can be directly observed under an electron microscope. The MONTs show a preferred orientation with the [001] direction along the CNT axis due to the anisotropic bending rigidity of the monolayers. |
---|---|
AbstractList | Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single‐crystalline molybdenum trioxide (α‐MoO3) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly “seen” and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α‐MoO3 to maintain the single‐walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT‐based functional 1D vdW heterostructures.
Single‐crystalline molybdenum trioxide nanotubes (MONTs) are fabricated on carbon nanotube (CNT) templates. Single‐crystalline and single‐walled MONTs are prepared by van der Waals epitaxy on CNT templates. The chiral angles of the MONTs can be directly observed under an electron microscope. The MONTs show a preferred orientation with the [001] direction along the CNT axis due to the anisotropic bending rigidity of the monolayers. Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single-crystalline molybdenum trioxide (α-MoO3 ) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly "seen" and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α-MoO3 to maintain the single-walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT-based functional 1D vdW heterostructures.Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single-crystalline molybdenum trioxide (α-MoO3 ) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly "seen" and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α-MoO3 to maintain the single-walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT-based functional 1D vdW heterostructures. Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single‐crystalline molybdenum trioxide (α‐MoO3) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly “seen” and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α‐MoO3 to maintain the single‐walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT‐based functional 1D vdW heterostructures. Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single‐crystalline molybdenum trioxide (α‐MoO 3 ) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly “seen” and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α‐MoO 3 to maintain the single‐walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT‐based functional 1D vdW heterostructures. Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and optical properties of diverse tubular structures, such as carbon nanotubes (CNTs). To recognize the chirality of nanotubes, templates are introduced as potential tools to obtain crystalline samples with visible chiral fringes under electron microscopes. However, few efforts show optimistic results, and new understanding is desired to control the sample quality with CNT templates. Here, a synthesis strategy of single-crystalline molybdenum trioxide (α-MoO ) nanotubes (MONTs) on CNT surfaces is reported to build a 1D van der Waals (vdW) heterostructure. The chirality of the MONTs can be directly "seen" and their structural selectivity is revealed. First, the centralized distribution of the chiral angles of the MONTs indicates a preferential orientation due to the anisotropic bending rigidity of the 2D layers. Then, the interlayer mismatching rejects the radial stacking of α-MoO to maintain the single-walled nature. These results provide a spontaneous strategy for the efficient recognition and control of chirality, and open up a new avenue for CNT-based functional 1D vdW heterostructures. |
Author | Bai, Yunxiang Gu, Lin Shen, Boyuan Chen, Xiao Zhu, Zhenxing Xie, Huanhuan Wei, Fei |
Author_xml | – sequence: 1 givenname: Boyuan surname: Shen fullname: Shen, Boyuan organization: Tsinghua University – sequence: 2 givenname: Huanhuan surname: Xie fullname: Xie, Huanhuan organization: Tsinghua University – sequence: 3 givenname: Lin surname: Gu fullname: Gu, Lin organization: Chinese Academy of Sciences – sequence: 4 givenname: Xiao surname: Chen fullname: Chen, Xiao organization: Tsinghua University – sequence: 5 givenname: Yunxiang surname: Bai fullname: Bai, Yunxiang organization: Tsinghua University – sequence: 6 givenname: Zhenxing surname: Zhu fullname: Zhu, Zhenxing organization: Tsinghua University – sequence: 7 givenname: Fei surname: Wei fullname: Wei, Fei email: wf-dce@tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30216568$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaTZprz0WQS-9eDuyPmwfF6dfkDTQLvRoZHmcKsjyVrJJ95ZTzv2N_SXVstkGAqWngZnneRlmTsiRHz0S8pLBkgHkb3U36GUOrATOVfmELJjMWSagkkdkARWXWaVEeUxOYrwGgEqBekaOOeRMSVUuyN2ZDWgmWn-3QTs7bekXNOOVt5MdPR17-tX6K4e_b3_VYRsn7Zz1SLXvHgbfUhM7ug7ax712gQmklz9th_Sz9uM0txhpGtQ6tKkcenSNw8bpCeNz8rTXLuKL-3pK1u_freuP2fnlh0_16jwzgldlpkEUPfZGFlJzmZemVdBqhoXg2EvFuQDZQV-wXGlVgjZVV-XGFGCEVgL5KXmzj92E8ceMcWoGGw06pz2Oc2xyBhJkSmEJff0IvR7n4NNyicorUTCuRKJe3VNzO2DXbIIddNg2hwMnQOwBE8YYA_aNsZPeXWkK2rqGQbP7Y7P7Y_P3j0lbPtIOyf8Uqr1wYx1u_0M3q7OL1YP7B84xsq8 |
CitedBy_id | crossref_primary_10_1002_adfm_202208321 crossref_primary_10_1016_j_jechem_2022_02_029 crossref_primary_10_1021_jacs_3c03128 crossref_primary_10_1002_smll_202102585 crossref_primary_10_1002_pssb_202200614 crossref_primary_10_1002_advs_202410671 crossref_primary_10_1016_j_ijhydene_2023_04_246 crossref_primary_10_3390_ma12030336 crossref_primary_10_1002_admi_202101595 crossref_primary_10_1002_smsc_202000039 crossref_primary_10_1002_cjoc_202000673 crossref_primary_10_1016_j_snb_2022_131792 crossref_primary_10_1021_acsnano_9b09754 crossref_primary_10_1039_C9NR01880H |
Cites_doi | 10.1002/adma.200500539 10.1002/anie.200301651 10.1021/ja0445239 10.1103/PhysRevB.57.9301 10.1021/nn401995z 10.1039/B901466G 10.1038/nnano.2006.62 10.1021/jp907602w 10.1016/S0379-6779(98)00278-1 10.1038/34139 10.1021/nn403241f 10.1002/anie.200352483 10.1016/j.carbon.2011.06.100 10.1002/adma.200501562 10.1038/ncomms5836 10.1063/1.2149216 10.1039/c3nr34011b 10.1002/adma.200803720 10.1063/1.2042634 10.1002/adma.200902746 10.1002/adma.201203346 10.1021/nl034142d 10.1038/34145 10.1002/adma.200306428 10.1002/adma.201705318 10.1002/adfm.201300125 10.1126/science.1060928 10.1038/375564a0 10.1016/j.carbon.2016.11.076 10.1038/nnano.2017.62 10.1038/nature01551 10.1002/adma.201306097 10.1038/nature21051 10.1038/ncomms13352 10.1038/nature13434 10.1126/science.1222453 10.1103/PhysRevLett.88.126805 10.1016/0040-6090(92)90872-9 10.1021/am508569m 10.1038/354056a0 10.1021/acsnano.5b07420 10.1063/1.2036967 10.1002/adma.200306213 10.1021/nl204562j 10.1142/p080 10.1021/nl501000k 10.1016/j.physrep.2004.10.006 10.1016/S0360-0564(08)60362-4 10.1021/jacs.5b03590 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201803368 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30216568 10_1002_adma_201803368 ADMA201803368 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Beijing Municipal Science and Technology Commission funderid: D141100000614001 – fundername: National Basic Research Program of China funderid: 2016YFA0200101 – fundername: National Natural Science Foundation of China funderid: 21636005 – fundername: National Natural Science Foundation of China grantid: 21636005 – fundername: National Basic Research Program of China grantid: 2016YFA0200101 – fundername: Beijing Municipal Science and Technology Commission grantid: D141100000614001 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4398-a047fefc575a3528cb60ba1e743ef5633405d0f7126a680ac9d92cc70c4a64e3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 16:18:08 EDT 2025 Fri Jul 25 05:12:00 EDT 2025 Wed Feb 19 02:43:22 EST 2025 Tue Jul 01 00:44:45 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Wed Jan 22 16:21:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Keywords | carbon nanotube templates 1D van der Waals heterostructures single-crystalline/single-walled selectivity molybdenum trioxide nanotubes visible chirality recognition |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4398-a047fefc575a3528cb60ba1e743ef5633405d0f7126a680ac9d92cc70c4a64e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30216568 |
PQID | 2129471364 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2105053401 proquest_journals_2129471364 pubmed_primary_30216568 crossref_citationtrail_10_1002_adma_201803368 crossref_primary_10_1002_adma_201803368 wiley_primary_10_1002_adma_201803368_ADMA201803368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Nov |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-Nov |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 43 2013; 25 1991; 354 2009; 21 1990; 37 2002; 297 2010; 39 2013; 23 1998 2016; 10 2014; 26 2005; 87 2009; 113 1999; 103 2006; 1 1995; 375 2013; 7 2012; 12 2013; 5 2017; 114 2015; 7 2014; 510 2010; 22 1998; 391 2016; 7 2014; 5 2015; 137 2013; 339 2005; 123 2004; 16 2005; 127 2017; 12 2002; 88 2003; 24 2003; 3 1992; 216 2014; 14 2018; 30 2005; 409 2011; 49 2003; 422 2005; 17 2017; 543 2003; 42 1998; 57 e_1_2_4_40_1 Wang C. M. (e_1_2_4_50_1) 2003; 24 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 Xie Y. C. (e_1_2_4_49_1) 1990; 37 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 510 start-page: 522 year: 2014 publication-title: Nature – volume: 216 start-page: 72 year: 1992 publication-title: Thin Solid Films – volume: 297 start-page: 787 year: 2002 publication-title: Science – volume: 1 start-page: 103 year: 2006 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 1662 year: 2016 publication-title: ACS Nano – volume: 409 start-page: 47 year: 2005 publication-title: Phys. Rep. – volume: 23 start-page: 3952 year: 2013 publication-title: Adv. Funct. Mater. – volume: 113 start-page: 20259 year: 2009 publication-title: J. Phys. Chem. C – volume: 114 start-page: 141 year: 2017 publication-title: Carbon – year: 1998 – volume: 5 start-page: 4836 year: 2014 publication-title: Nat. Commun. – volume: 17 start-page: 2993 year: 2005 publication-title: Adv. Mater. – volume: 22 start-page: 1867 year: 2010 publication-title: Adv. Mater. – volume: 49 start-page: 4961 year: 2011 publication-title: Carbon – volume: 30 start-page: 1705318 year: 2018 publication-title: Adv. Mater. – volume: 17 start-page: 2757 year: 2005 publication-title: Adv. Mater. – volume: 16 start-page: 1497 year: 2004 publication-title: Adv. Mater. – volume: 43 start-page: 63 year: 2004 publication-title: Angew. Chem., Int. Ed. – volume: 16 start-page: 350 year: 2004 publication-title: Adv. Mater. – volume: 5 start-page: 3570 year: 2013 publication-title: Nanoscale – volume: 7 start-page: 9753 year: 2013 publication-title: ACS Nano – volume: 42 start-page: 5124 year: 2003 publication-title: Angew. Chem., Int. Ed. – volume: 123 start-page: 114714 year: 2005 publication-title: J. Chem. Phys. – volume: 88 start-page: 126805 year: 2002 publication-title: Phys. Rev. Lett. – volume: 422 start-page: 599 year: 2003 publication-title: Nature – volume: 26 start-page: 3931 year: 2014 publication-title: Adv. Mater. – volume: 7 start-page: 5265 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 3047 year: 2014 publication-title: Nano Lett. – volume: 87 start-page: 251929 year: 2005 publication-title: Appl. Phys. Lett. – volume: 391 start-page: 62 year: 1998 publication-title: Nature – volume: 21 start-page: 4208 year: 2009 publication-title: Adv. Mater. – volume: 543 start-page: 234 year: 2017 publication-title: Nature – volume: 37 start-page: 1 year: 1990 publication-title: Adv. Catal. – volume: 25 start-page: 109 year: 2013 publication-title: Adv. Mater. – volume: 24 start-page: 475 year: 2003 publication-title: Chin. J. Catal. – volume: 3 start-page: 681 year: 2003 publication-title: Nano Lett. – volume: 39 start-page: 1423 year: 2010 publication-title: Chem. Soc. Rev. – volume: 127 start-page: 6 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 13352 year: 2016 publication-title: Nat. Commun. – volume: 103 start-page: 2555 year: 1999 publication-title: Synth. Met. – volume: 391 start-page: 59 year: 1998 publication-title: Nature – volume: 12 start-page: 410 year: 2017 publication-title: Nat. Nanotechnol. – volume: 354 start-page: 56 year: 1991 publication-title: Nature – volume: 339 start-page: 535 year: 2013 publication-title: Science – volume: 137 start-page: 12162 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 9301 year: 1998 publication-title: Phys. Rev. B – volume: 375 start-page: 564 year: 1995 publication-title: Nature – volume: 12 start-page: 2784 year: 2012 publication-title: Nano Lett. – volume: 87 start-page: 113107 year: 2005 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 6156 year: 2013 publication-title: ACS Nano – ident: e_1_2_4_24_1 doi: 10.1002/adma.200500539 – ident: e_1_2_4_26_1 doi: 10.1002/anie.200301651 – ident: e_1_2_4_23_1 doi: 10.1021/ja0445239 – ident: e_1_2_4_9_1 doi: 10.1103/PhysRevB.57.9301 – ident: e_1_2_4_47_1 doi: 10.1021/nn401995z – ident: e_1_2_4_30_1 doi: 10.1039/B901466G – volume: 24 start-page: 475 year: 2003 ident: e_1_2_4_50_1 publication-title: Chin. J. Catal. – ident: e_1_2_4_28_1 doi: 10.1038/nnano.2006.62 – ident: e_1_2_4_39_1 doi: 10.1021/jp907602w – ident: e_1_2_4_11_1 doi: 10.1016/S0379-6779(98)00278-1 – ident: e_1_2_4_14_1 doi: 10.1038/34139 – ident: e_1_2_4_41_1 doi: 10.1021/nn403241f – ident: e_1_2_4_21_1 doi: 10.1002/anie.200352483 – ident: e_1_2_4_10_1 doi: 10.1016/j.carbon.2011.06.100 – ident: e_1_2_4_25_1 doi: 10.1002/adma.200501562 – ident: e_1_2_4_34_1 doi: 10.1038/ncomms5836 – ident: e_1_2_4_8_1 doi: 10.1063/1.2149216 – ident: e_1_2_4_33_1 doi: 10.1039/c3nr34011b – ident: e_1_2_4_29_1 doi: 10.1002/adma.200803720 – ident: e_1_2_4_22_1 doi: 10.1063/1.2042634 – ident: e_1_2_4_46_1 doi: 10.1002/adma.200902746 – ident: e_1_2_4_42_1 doi: 10.1002/adma.201203346 – ident: e_1_2_4_19_1 doi: 10.1021/nl034142d – ident: e_1_2_4_13_1 doi: 10.1038/34145 – ident: e_1_2_4_27_1 doi: 10.1002/adma.200306428 – ident: e_1_2_4_45_1 doi: 10.1002/adma.201705318 – ident: e_1_2_4_40_1 doi: 10.1002/adfm.201300125 – ident: e_1_2_4_4_1 doi: 10.1126/science.1060928 – ident: e_1_2_4_17_1 doi: 10.1038/375564a0 – ident: e_1_2_4_12_1 doi: 10.1016/j.carbon.2016.11.076 – ident: e_1_2_4_1_1 doi: 10.1038/nnano.2017.62 – ident: e_1_2_4_18_1 doi: 10.1038/nature01551 – ident: e_1_2_4_43_1 doi: 10.1002/adma.201306097 – ident: e_1_2_4_16_1 doi: 10.1038/nature21051 – ident: e_1_2_4_38_1 doi: 10.1038/ncomms13352 – ident: e_1_2_4_15_1 doi: 10.1038/nature13434 – ident: e_1_2_4_5_1 doi: 10.1126/science.1222453 – ident: e_1_2_4_6_1 doi: 10.1103/PhysRevLett.88.126805 – ident: e_1_2_4_31_1 doi: 10.1016/0040-6090(92)90872-9 – ident: e_1_2_4_37_1 doi: 10.1021/am508569m – ident: e_1_2_4_2_1 doi: 10.1038/354056a0 – ident: e_1_2_4_44_1 doi: 10.1021/acsnano.5b07420 – ident: e_1_2_4_7_1 doi: 10.1063/1.2036967 – ident: e_1_2_4_20_1 doi: 10.1002/adma.200306213 – ident: e_1_2_4_32_1 doi: 10.1021/nl204562j – ident: e_1_2_4_3_1 doi: 10.1142/p080 – ident: e_1_2_4_35_1 doi: 10.1021/nl501000k – ident: e_1_2_4_48_1 doi: 10.1016/j.physrep.2004.10.006 – volume: 37 start-page: 1 year: 1990 ident: e_1_2_4_49_1 publication-title: Adv. Catal. doi: 10.1016/S0360-0564(08)60362-4 – ident: e_1_2_4_36_1 doi: 10.1021/jacs.5b03590 |
SSID | ssj0009606 |
Score | 2.361697 |
Snippet | Chirality is a significant structural feature for chemistry, biology, physics, and materials science, and especially determines the electrical, mechanical, and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1803368 |
SubjectTerms | 1D van der Waals heterostructures carbon nanotube templates Carbon nanotubes Chirality Crystal structure Crystallinity Electron microscopes Heterostructures Interlayers Materials science Microscopes Molybdenum oxides Molybdenum trioxide molybdenum trioxide nanotubes Optical properties Organic chemistry Recognition Selectivity single‐crystalline/single‐walled selectivity Transition metal oxides Transition metals visible chirality recognition |
Title | Direct Chirality Recognition of Single‐Crystalline and Single‐Walled Transition Metal Oxide Nanotubes on Carbon Nanotube Templates |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201803368 https://www.ncbi.nlm.nih.gov/pubmed/30216568 https://www.proquest.com/docview/2129471364 https://www.proquest.com/docview/2105053401 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMct1BMceD8WCjISEqe0Sew4yXG1UFVIC1JZpN6isT0RFUtS7UOiPXHizGfkkzATb7JdEEKCUx4eJ7Hj8fyU2H8L8SKDOrPK68gYKCPtaozA5SoqM3Q5pkSwlmcjT9-a4w_6zWl2emUWf9CHGD64sWd0_TU7ONjl4VY0FHynG5QUsVKGZ_vygC2mopOtfhTjeSe2p7KoNLroVRvj9HA3-25U-g01d8m1Cz1HtwT0Dx1GnHw6WK_sgbv8Rc_xf0p1W9zccKkch4Z0R1zD5q64cUWt8J74FrpHOfl4tujoXZ70o4_aRra1fE9mc_zx9ftkcUHQyWrfKKHx2wT-bI9edgEyZJsiGcp3X848Surp29Xa4lJSwgQWljb9OTnDz-dzBuP7Ynb0ejY5jjbLOESOaKeIINZ5jbUjMATWknHWxBYSJHbBOjNKETP6uM6T1IApYnClL1Pn8thpMBrVA7HXtA0-EjLJLKjYa9Yy1WnuiT1TB045X0Je1OVIRP1brNxG4pxX2phXQZw5rbh6q6F6R-LlYH8exD3-aLnfN4pq4-TLiqJ-SbFdGT0Sz4dkck_-5wINtmu24aUCqYjJSDwMjWm4lSK-Ipymi6ddk_jLM1TjV9PxcPT4XzI9Edd5P8yl3Bd7q8UanxJUreyzznF-AvSZG3E |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAOvB8LBYwE4pQ2sR0nOXBY7VJtabdIZZF6ixx7Iqpus9U-BOXEiTM_hb_CX-CXMM5rWRBCQuqBUxR77Dj22PP59Q3A01DnYSas9JTSiSdNjp42kfCSEE2EnBBs5m4jD_fV4K18dRgersHX5i5MxQ_RLri5nlGO166DuwXprSVrqLYlcVAQ-0KouD5XuYtn72nWNnux06cmfsb59stRb-DVjgU8Q_Y39rQvoxxzQ1BFO3YTkyk_0wGSNcU8VEIQirF-HgVcaRX72iQ24cZEvpFaSRSU7QW46LyIO7b-_sGSsMrNB0p2PxF6iZJxQxPp863V4q6awd-w7SpULm3d9jX41tRSdcTleHMxzzbNx18IJP-narwOV2vgzbpVT7kBa1jchCs_0THegs_V-M96746m5fSEHTTHqyYFm-TsDYmN8funL73pGaFqR2eOTBd2GeH2JdCyEgFUyYZIguz1hyOLjEzZZL7IcMYooqenGT2aMDbCk9OxQ_63YXQe9XAH1otJgfeABWGmhW-lI2uVPLIErrnRRhib6CjOkw54jdakpuZwd65ExmnFPs1T15pp25odeN7Kn1bsJX-U3GiUMK1HsVlKsCYh8CKU7MCTNprGH7eppAucLJyM84VIvxh04G6lvO2nBAFImi9Q5rxUwb-UIe32h9327f6_JHoMlwaj4V66t7O_-wAuu_Dq4ugGrM-nC3xICHKePSo7LYP0nLX7B884eAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48P-zUMBIIE5pE9txkgOH1S6rlrIFlUXqLXLsiahYktX-CMqJE2fehFfhGXgSxskmy4IQElIPnKLEY8exZzzfxPZngIehzsNMWOkppRNPmhw9bSLhJSGaCDkh2MztRh4eqN3X8tlReLQBX5u9MDU_RPvDzVlGNV47A5_YfGdFGqptxRsUxL4QKl4uq9zHk_cUtM2e7PWphx9xPng66u16y3MFPEPuN_a0L6Mcc0NIRTtyE5MpP9MBkjPFPFRCEIixfh4FXGkV-9okNuHGRL6RWkkUVOwZOCuVn7izIvqHK74qFw5U5H4i9BIl44Yl0uc769Vd94K_Qdt1pFy5usEl-NY0Ur3C5e32Yp5tm4-_8Ef-R614GS4uYTfr1nZyBTawuAoXfiJjvAaf69Gf9d4cT6vghB02i6vKgpU5e0ViY_z-6UtvekKY2pGZI9OFXSW4WQm0rPL_dbYhkiB78eHYIiNHVs4XGc4YJfT0NKNL84yN8N1k7HD_dRidRjvcgM2iLPAWsCDMtPCtdFStkkeWoDU32ghjEx3FedIBr1Ga1CwZ3N1BIuO05p7mqevNtO3NDjxu5Sc1d8kfJbcaHUyXY9gsJVCTEHQRSnbgQZtMo4-bUtIFlgsn405CpE8MOnCz1t32VYLgI0ULVDivNPAvdUi7_WG3vbv9L5nuw7mX_UH6fO9g_w6cd4_rXaNbsDmfLvAuwcd5dq8yWQbpKSv3D9dSdq8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Chirality+Recognition+of+Single%E2%80%90Crystalline+and+Single%E2%80%90Walled+Transition+Metal+Oxide+Nanotubes+on+Carbon+Nanotube+Templates&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shen%2C+Boyuan&rft.au=Xie%2C+Huanhuan&rft.au=Gu%2C+Lin&rft.au=Chen%2C+Xiao&rft.date=2018-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=44&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201803368&rft.externalDBID=10.1002%252Fadma.201803368&rft.externalDocID=ADMA201803368 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |