Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor

Fluorine‐contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high‐performance pho...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 20; pp. e1800868 - n/a
Main Authors Zhang, Shaoqing, Qin, Yunpeng, Zhu, Jie, Hou, Jianhui
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fluorine‐contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high‐performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB‐T‐2F and PBDB‐T‐2Cl, are synthesized and compared in parallel. The synthesis of PBDB‐T‐2Cl is much simpler than that of PBDB‐T‐2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB‐T‐2Cl‐based PSCs exhibit higher open circuit voltage (Voc) than the PBDB‐T‐2F‐based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors. A chlorinated polymer donor, PBDB‐T‐2Cl, is synthesized and compared in parallel with its fluorinated counterpart, PBDB‐T‐2F. PBDB‐T‐2Cl exhibits a much simpler synthesis route, which is favorable for future practical application of organic solar cells; in addition, a high power conversion efficiency of 14.4% (with certified PCE of 13.9% by the National Institute of Metrology) and good stability tested over 1000 h is achieved.
AbstractList Fluorine‐contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high‐performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB‐T‐2F and PBDB‐T‐2Cl, are synthesized and compared in parallel. The synthesis of PBDB‐T‐2Cl is much simpler than that of PBDB‐T‐2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB‐T‐2Cl‐based PSCs exhibit higher open circuit voltage (Voc) than the PBDB‐T‐2F‐based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors. A chlorinated polymer donor, PBDB‐T‐2Cl, is synthesized and compared in parallel with its fluorinated counterpart, PBDB‐T‐2F. PBDB‐T‐2Cl exhibits a much simpler synthesis route, which is favorable for future practical application of organic solar cells; in addition, a high power conversion efficiency of 14.4% (with certified PCE of 13.9% by the National Institute of Metrology) and good stability tested over 1000 h is achieved.
Fluorine-contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high-performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB-T-2F and PBDB-T-2Cl, are synthesized and compared in parallel. The synthesis of PBDB-T-2Cl is much simpler than that of PBDB-T-2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB-T-2Cl-based PSCs exhibit higher open circuit voltage (Voc ) than the PBDB-T-2F-based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors.Fluorine-contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high-performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB-T-2F and PBDB-T-2Cl, are synthesized and compared in parallel. The synthesis of PBDB-T-2Cl is much simpler than that of PBDB-T-2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB-T-2Cl-based PSCs exhibit higher open circuit voltage (Voc ) than the PBDB-T-2F-based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors.
Fluorine-contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high-performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB-T-2F and PBDB-T-2Cl, are synthesized and compared in parallel. The synthesis of PBDB-T-2Cl is much simpler than that of PBDB-T-2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB-T-2Cl-based PSCs exhibit higher open circuit voltage (V ) than the PBDB-T-2F-based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors.
Fluorine‐contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high‐performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB‐T‐2F and PBDB‐T‐2Cl, are synthesized and compared in parallel. The synthesis of PBDB‐T‐2Cl is much simpler than that of PBDB‐T‐2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB‐T‐2Cl‐based PSCs exhibit higher open circuit voltage ( V oc ) than the PBDB‐T‐2F‐based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors.
Fluorine‐contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high‐performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB‐T‐2F and PBDB‐T‐2Cl, are synthesized and compared in parallel. The synthesis of PBDB‐T‐2Cl is much simpler than that of PBDB‐T‐2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB‐T‐2Cl‐based PSCs exhibit higher open circuit voltage (Voc) than the PBDB‐T‐2F‐based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors.
Author Qin, Yunpeng
Hou, Jianhui
Zhang, Shaoqing
Zhu, Jie
Author_xml – sequence: 1
  givenname: Shaoqing
  surname: Zhang
  fullname: Zhang, Shaoqing
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Yunpeng
  surname: Qin
  fullname: Qin, Yunpeng
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Jie
  surname: Zhu
  fullname: Zhu, Jie
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Jianhui
  orcidid: 0000-0002-2105-6922
  surname: Hou
  fullname: Hou, Jianhui
  email: hjhzlz@iccas.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29602243$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEURoMoWh9blxIQwc3UvGZIlqXWBygq6nrIZBKMZBJNpsr8e1NqFQriIlzIPSf3km8XbPrgNQCHGI0xQuRMtp0cE4Q5QrziG2CES4ILhkS5CUZI0LIQFeM7YDelV4SQqFC1DXZIroQwOgIPdx86QsxO4MwYq6z2aoDWw_vghi53HoOTEU61cwnOvGycbmEzQAmnLy5E62WfL1bwefAh7oMtI13SB991DzxfzJ6mV8XN3eX1dHJTKEYFLyrdGMVpU2nOSi0UaiTFjFOmhGINl1SJ1ihZYcUkrnArjRGYEiM4prrEhO6B0-W7bzG8z3Xq684mlReVXod5qgkiiInFyejxGvoa5tHn7TJFOSkJwzxTR9_UvOl0W79F28k41KvPysB4CagYUora_CAY1Ys06kUa9U8aWWBrgrK97G3wfZTW_a2JpfZpnR7-GVJPzm8nv-4XjKWcJw
CitedBy_id crossref_primary_10_1021_acsami_8b06717
crossref_primary_10_1002_admi_201800914
crossref_primary_10_1039_D1TA08495J
crossref_primary_10_1063_1_5109140
crossref_primary_10_1002_solr_201900042
crossref_primary_10_1002_solr_202000275
crossref_primary_10_1007_s11664_025_11845_3
crossref_primary_10_1007_s11426_019_9466_6
crossref_primary_10_1002_adma_202005348
crossref_primary_10_1002_adma_202305424
crossref_primary_10_1016_j_joule_2018_05_010
crossref_primary_10_1039_C8TC03081B
crossref_primary_10_1002_adts_201900067
crossref_primary_10_1016_j_orgel_2019_06_007
crossref_primary_10_1002_cjoc_202300616
crossref_primary_10_1002_marc_202300213
crossref_primary_10_1063_1674_0068_cjcp2109160
crossref_primary_10_1039_C9TA00614A
crossref_primary_10_1002_adma_201804657
crossref_primary_10_1039_C8TC03963A
crossref_primary_10_1007_s11426_019_9684_8
crossref_primary_10_1002_anie_202210356
crossref_primary_10_1088_1361_6528_ac335a
crossref_primary_10_1021_acsami_9b20214
crossref_primary_10_1021_acsenergylett_2c00502
crossref_primary_10_1021_jacs_3c02764
crossref_primary_10_1016_j_matpr_2022_02_641
crossref_primary_10_1016_j_polymer_2023_126465
crossref_primary_10_1002_adma_202202752
crossref_primary_10_1039_C9TC06018A
crossref_primary_10_1016_j_orgel_2019_07_010
crossref_primary_10_1093_nsr_nwab031
crossref_primary_10_1021_acsami_9b10641
crossref_primary_10_1088_1674_4926_42_10_100502
crossref_primary_10_1002_cphc_201900309
crossref_primary_10_1016_j_solener_2021_12_052
crossref_primary_10_1002_advs_201802103
crossref_primary_10_1021_acsenergylett_3c01202
crossref_primary_10_1021_acsenergylett_3c01444
crossref_primary_10_1039_D1TC05548H
crossref_primary_10_1039_D0TA08725D
crossref_primary_10_1021_acsaem_8b01576
crossref_primary_10_1039_C9TC01758E
crossref_primary_10_1021_acsapm_0c00689
crossref_primary_10_1021_acsenergylett_8b01400
crossref_primary_10_1039_C9TC00403C
crossref_primary_10_1002_nano_202000198
crossref_primary_10_1007_s13233_023_00112_1
crossref_primary_10_1007_s11426_022_1290_y
crossref_primary_10_1002_adma_201806616
crossref_primary_10_1002_adma_201802499
crossref_primary_10_1021_acsapm_9b00156
crossref_primary_10_1002_adom_202102031
crossref_primary_10_1002_advs_201801026
crossref_primary_10_1021_acs_chemmater_9b01549
crossref_primary_10_1016_j_cej_2024_151624
crossref_primary_10_1016_j_gee_2020_07_017
crossref_primary_10_1039_C9MH01439J
crossref_primary_10_1039_C8QM00609A
crossref_primary_10_1016_j_dyepig_2019_108022
crossref_primary_10_1021_acsapm_3c03201
crossref_primary_10_1039_D0TA05787H
crossref_primary_10_1016_j_comptc_2024_114581
crossref_primary_10_1002_cjoc_202100112
crossref_primary_10_1021_acs_macromol_0c01801
crossref_primary_10_1021_acs_chemrev_1c00955
crossref_primary_10_1021_acs_macromol_9b01569
crossref_primary_10_1039_D2SE00372D
crossref_primary_10_1021_acsaem_8b01311
crossref_primary_10_1021_acs_jpclett_3c02999
crossref_primary_10_1038_s41467_023_42071_2
crossref_primary_10_1021_acsami_8b16554
crossref_primary_10_1002_adma_202313074
crossref_primary_10_3390_nano11102732
crossref_primary_10_1002_solr_201900071
crossref_primary_10_1021_acs_jpclett_9b01264
crossref_primary_10_3389_fchem_2018_00303
crossref_primary_10_1002_adfm_202110159
crossref_primary_10_1002_aenm_201803657
crossref_primary_10_1007_s11708_022_0826_8
crossref_primary_10_1021_acs_macromol_9b00484
crossref_primary_10_1016_j_jphotochem_2023_115279
crossref_primary_10_1039_C8TA08769E
crossref_primary_10_1002_aelm_202300115
crossref_primary_10_1007_s11426_019_9453_7
crossref_primary_10_3390_en14144200
crossref_primary_10_1016_j_nanoen_2019_04_053
crossref_primary_10_1039_C8EE02560F
crossref_primary_10_1039_C9QM00754G
crossref_primary_10_3390_en16114494
crossref_primary_10_1002_celc_201901422
crossref_primary_10_1039_C8TC04746D
crossref_primary_10_1007_s11426_018_9363_8
crossref_primary_10_1016_j_joule_2019_01_004
crossref_primary_10_1007_s11426_018_9350_4
crossref_primary_10_1016_j_joule_2019_01_009
crossref_primary_10_1039_D2TA02307E
crossref_primary_10_1002_poc_3909
crossref_primary_10_1021_acs_energyfuels_3c00526
crossref_primary_10_1055_s_0041_1727234
crossref_primary_10_1364_OE_382245
crossref_primary_10_1002_solr_201900094
crossref_primary_10_1016_j_isci_2019_06_033
crossref_primary_10_1021_acsami_3c18789
crossref_primary_10_1039_C9EE02531F
crossref_primary_10_1002_admi_202000577
crossref_primary_10_1007_s10118_023_2895_5
crossref_primary_10_26599_NRE_2023_9120088
crossref_primary_10_1002_aenm_202002142
crossref_primary_10_1002_aenm_202101705
crossref_primary_10_1039_C8EE03608J
crossref_primary_10_1007_s11426_018_9334_9
crossref_primary_10_1039_C8TA03753A
crossref_primary_10_1016_j_mtener_2019_04_005
crossref_primary_10_1039_C8TA10882J
crossref_primary_10_1039_C9TC03407B
crossref_primary_10_1039_C9TC06362E
crossref_primary_10_1007_s10904_022_02301_4
crossref_primary_10_1039_C8TA05800H
crossref_primary_10_1021_acsami_8b06306
crossref_primary_10_1088_1674_4926_42_7_070501
crossref_primary_10_1007_s40820_021_00604_8
crossref_primary_10_1021_acscatal_2c06365
crossref_primary_10_1557_jmr_2020_254
crossref_primary_10_1039_C8TA11972D
crossref_primary_10_1016_j_polymer_2019_121580
crossref_primary_10_1002_aenm_202301110
crossref_primary_10_1002_advs_202403334
crossref_primary_10_1039_D3TC03287F
crossref_primary_10_1038_s41566_019_0573_5
crossref_primary_10_1016_j_mtcomm_2022_104757
crossref_primary_10_1039_D0EE03387A
crossref_primary_10_1002_chem_201804020
crossref_primary_10_1039_C8TA09042D
crossref_primary_10_1039_D0TC00587H
crossref_primary_10_1021_acsami_9b05463
crossref_primary_10_1039_C8QM00347E
crossref_primary_10_1016_j_dyepig_2020_108987
crossref_primary_10_1039_C8TA10662B
crossref_primary_10_1002_anie_201910297
crossref_primary_10_1002_solr_201800250
crossref_primary_10_1039_D0QM00305K
crossref_primary_10_1002_solr_201800251
crossref_primary_10_1021_acsami_2c17418
crossref_primary_10_1021_acsami_8b16131
crossref_primary_10_1002_solr_202100007
crossref_primary_10_1021_acs_macromol_9b01742
crossref_primary_10_1039_C9SC04949E
crossref_primary_10_1039_D0TA01425G
crossref_primary_10_1021_acsenergylett_1c01336
crossref_primary_10_1080_15421406_2022_2046914
crossref_primary_10_1016_j_orgel_2019_05_038
crossref_primary_10_1002_cssc_201802939
crossref_primary_10_1039_C8TA09370A
crossref_primary_10_1039_C8TC03303J
crossref_primary_10_1039_C8TC03872D
crossref_primary_10_1021_acsami_9b17208
crossref_primary_10_1016_j_orgel_2019_105603
crossref_primary_10_1002_aelm_201800899
crossref_primary_10_1007_s11426_024_2243_8
crossref_primary_10_1021_acsami_1c22093
crossref_primary_10_1038_s41467_020_18378_9
crossref_primary_10_1039_C8TA11624E
crossref_primary_10_3390_polym17020248
crossref_primary_10_1021_acs_jpcb_8b06283
crossref_primary_10_1016_j_dyepig_2018_10_071
crossref_primary_10_1021_acsaem_8b02252
crossref_primary_10_1007_s10118_023_2984_5
crossref_primary_10_1021_acsami_4c19907
crossref_primary_10_1021_acsaem_2c02823
crossref_primary_10_1021_jacs_8b12126
crossref_primary_10_1021_acsaem_1c01763
crossref_primary_10_1038_s41467_019_09062_8
crossref_primary_10_1002_cssc_202402226
crossref_primary_10_1016_j_orgel_2020_105874
crossref_primary_10_1016_j_mset_2019_02_004
crossref_primary_10_1016_j_orgel_2020_105871
crossref_primary_10_2139_ssrn_4093862
crossref_primary_10_1002_aenm_202002572
crossref_primary_10_1016_j_matdes_2022_110561
crossref_primary_10_1038_s41467_024_46797_5
crossref_primary_10_1016_j_nanoen_2019_02_038
crossref_primary_10_1002_solr_202000615
crossref_primary_10_1021_acs_nanolett_8b03950
crossref_primary_10_1007_s40843_022_2339_9
crossref_primary_10_1021_acsami_2c15661
crossref_primary_10_1002_cjoc_201900503
crossref_primary_10_1039_D2RA07957G
crossref_primary_10_1016_j_polymer_2020_122900
crossref_primary_10_1007_s11426_019_9457_5
crossref_primary_10_1002_adma_201904215
crossref_primary_10_1039_D2TA08621B
crossref_primary_10_6023_A23050245
crossref_primary_10_1039_C9PY01114E
crossref_primary_10_1039_D3RA01454A
crossref_primary_10_1002_solr_201800291
crossref_primary_10_1021_acs_chemrev_1c00581
crossref_primary_10_1039_C9TA06719A
crossref_primary_10_1039_C8CC09367A
crossref_primary_10_1021_acs_chemmater_2c02141
crossref_primary_10_1039_D1TC01860D
crossref_primary_10_1002_adom_202000466
crossref_primary_10_1002_slct_202100921
crossref_primary_10_1016_j_matchemphys_2020_122874
crossref_primary_10_1002_aenm_201900409
crossref_primary_10_1021_acs_jpclett_0c00405
crossref_primary_10_1002_adma_202402575
crossref_primary_10_1016_j_dyepig_2022_110380
crossref_primary_10_3390_pr11061852
crossref_primary_10_1002_solr_201800299
crossref_primary_10_1002_solr_202000638
crossref_primary_10_1016_j_nxmate_2024_100352
crossref_primary_10_1021_acsami_8b20415
crossref_primary_10_1021_acsami_8b19449
crossref_primary_10_1039_D3TA00293D
crossref_primary_10_1016_j_reactfunctpolym_2019_104378
crossref_primary_10_1016_j_dyepig_2020_108950
crossref_primary_10_1021_acs_chemmater_8b05047
crossref_primary_10_1039_D2NR03992C
crossref_primary_10_1002_solr_201800286
crossref_primary_10_1039_C9TA07361B
crossref_primary_10_1002_aenm_202001450
crossref_primary_10_1002_adfm_202112511
crossref_primary_10_1002_aenm_201901443
crossref_primary_10_1002_admi_201901053
crossref_primary_10_1038_s41467_023_37526_5
crossref_primary_10_1016_j_orgel_2018_09_047
crossref_primary_10_1021_acscatal_1c03298
crossref_primary_10_1039_C8TA11006A
crossref_primary_10_1002_advs_202205682
crossref_primary_10_1016_j_cej_2022_135182
crossref_primary_10_1016_j_cap_2020_01_003
crossref_primary_10_1002_EXP_20230122
crossref_primary_10_1021_acs_macromol_0c02496
crossref_primary_10_1088_1361_6528_ab57d0
crossref_primary_10_1002_adfm_202005787
crossref_primary_10_1039_C8TC04149K
crossref_primary_10_3103_S0003701X20050072
crossref_primary_10_1007_s11664_020_08677_8
crossref_primary_10_1002_advs_202000421
crossref_primary_10_1039_C8TA06989A
crossref_primary_10_1016_j_orgel_2019_105530
crossref_primary_10_1039_D0TA04734A
crossref_primary_10_1002_adma_201807019
crossref_primary_10_1002_ange_202205975
crossref_primary_10_1021_acsami_8b18493
crossref_primary_10_1016_j_orgel_2021_106131
crossref_primary_10_1021_acsami_0c08442
crossref_primary_10_1002_adma_201800613
crossref_primary_10_1039_C9TA09799F
crossref_primary_10_1021_acsami_1c14317
crossref_primary_10_1039_D0TA03511D
crossref_primary_10_1039_C9CP02944C
crossref_primary_10_1016_j_cej_2022_137375
crossref_primary_10_1002_adfm_201802324
crossref_primary_10_1039_D1TA03161A
crossref_primary_10_1016_j_cej_2021_133950
crossref_primary_10_1002_adfm_201803418
crossref_primary_10_1016_j_orgel_2021_106139
crossref_primary_10_1002_agt2_111
crossref_primary_10_1021_acsaem_1c03759
crossref_primary_10_1002_pip_3078
crossref_primary_10_1016_j_orgel_2021_106340
crossref_primary_10_1002_adfm_202301108
crossref_primary_10_1002_aenm_201903846
crossref_primary_10_1002_aenm_202002746
crossref_primary_10_1007_s00894_024_06062_4
crossref_primary_10_1021_acsami_8b20567
crossref_primary_10_1002_solr_202000608
crossref_primary_10_1039_C8TA11004B
crossref_primary_10_26599_NRE_2022_9120088
crossref_primary_10_1002_advs_201900565
crossref_primary_10_1021_acsami_1c15896
crossref_primary_10_1002_tcr_201800131
crossref_primary_10_1039_D0RA10816B
crossref_primary_10_1039_C8TA12336E
crossref_primary_10_1039_C8TA12530A
crossref_primary_10_1088_1361_6463_ace1ff
crossref_primary_10_1021_acsami_8b10312
crossref_primary_10_1002_aenm_201802832
crossref_primary_10_1016_j_orgel_2019_105555
crossref_primary_10_1021_acs_jpcc_1c02119
crossref_primary_10_1021_acs_jpcb_1c03989
crossref_primary_10_1016_j_orgel_2019_03_039
crossref_primary_10_1039_C9CC03536B
crossref_primary_10_1016_j_orgel_2018_10_042
crossref_primary_10_1021_acs_chemmater_3c00384
crossref_primary_10_1039_C8CP02730G
crossref_primary_10_1039_C8TA11441B
crossref_primary_10_1002_aenm_201801968
crossref_primary_10_1039_D1QM00026H
crossref_primary_10_37865_jafe_2020_0019
crossref_primary_10_1039_D0TC01487G
crossref_primary_10_1016_j_cej_2022_136068
crossref_primary_10_1002_adma_201805089
crossref_primary_10_1016_j_polymer_2019_122131
crossref_primary_10_1021_acs_chemmater_9b03694
crossref_primary_10_1039_D1EE01957K
crossref_primary_10_1039_D0TA00159G
crossref_primary_10_1002_adma_202008158
crossref_primary_10_1038_s41578_019_0093_4
crossref_primary_10_1021_acsenergylett_9b00416
crossref_primary_10_1002_adma_201808356
crossref_primary_10_1016_j_matre_2020_09_001
crossref_primary_10_1038_s43246_025_00751_0
crossref_primary_10_1007_s00339_020_3389_8
crossref_primary_10_1002_smll_201905309
crossref_primary_10_1021_acs_langmuir_2c00290
crossref_primary_10_1021_acs_jpclett_9b01931
crossref_primary_10_7498_aps_69_20191699
crossref_primary_10_1002_aesr_202200179
crossref_primary_10_1016_j_dyepig_2018_11_040
crossref_primary_10_1021_acs_macromol_8b02445
crossref_primary_10_1039_D3YA00060E
crossref_primary_10_1002_aenm_201901254
crossref_primary_10_1021_acsami_8b22337
crossref_primary_10_1016_j_jorganchem_2019_04_026
crossref_primary_10_1021_acsami_9b18963
crossref_primary_10_1016_j_orgel_2019_04_011
crossref_primary_10_1021_acsenergylett_2c02153
crossref_primary_10_1039_D4CC04053H
crossref_primary_10_1021_acs_jpclett_0c01673
crossref_primary_10_1002_adfm_202007931
crossref_primary_10_1039_C9TA01003C
crossref_primary_10_1039_D2TA09936E
crossref_primary_10_3390_polym11040655
crossref_primary_10_1016_j_dyepig_2020_108577
crossref_primary_10_1016_j_jpowsour_2021_229961
crossref_primary_10_3389_fmats_2022_856008
crossref_primary_10_1039_C9TC04798K
crossref_primary_10_1021_acsaem_9b00303
crossref_primary_10_1007_s13233_019_7075_7
crossref_primary_10_1016_j_dyepig_2018_11_056
crossref_primary_10_1016_j_joule_2018_09_001
crossref_primary_10_1021_acsami_9b14133
crossref_primary_10_1021_acs_jpclett_8b03247
crossref_primary_10_1002_aenm_202100056
crossref_primary_10_1039_C8TA11420J
crossref_primary_10_1021_acs_nanolett_8b02452
crossref_primary_10_1002_aenm_202101383
crossref_primary_10_1021_accountsmr_1c00119
crossref_primary_10_1002_adfm_202011168
crossref_primary_10_1039_D1MH01349A
crossref_primary_10_1021_acsami_0c22946
crossref_primary_10_1002_aenm_201800856
crossref_primary_10_1016_j_orgel_2022_106465
crossref_primary_10_1002_cjoc_201800471
crossref_primary_10_1002_solr_202100326
crossref_primary_10_1039_C9TA02332A
crossref_primary_10_1002_adfm_202111706
crossref_primary_10_1002_smll_201805321
crossref_primary_10_1002_aenm_202102000
crossref_primary_10_1021_acsaem_0c00711
crossref_primary_10_1002_advs_201801743
crossref_primary_10_1039_C9TC05643B
crossref_primary_10_1002_adma_201805041
crossref_primary_10_1021_acsami_9b03499
crossref_primary_10_1039_D2TA00174H
crossref_primary_10_1007_s10853_019_03551_3
crossref_primary_10_1016_j_dyepig_2020_108559
crossref_primary_10_1038_s41467_018_05514_9
crossref_primary_10_1002_solr_201900417
crossref_primary_10_1039_D0TA11306A
crossref_primary_10_1063_1_5045351
crossref_primary_10_1002_advs_201903419
crossref_primary_10_3390_molecules27249037
crossref_primary_10_1021_acsami_2c09323
crossref_primary_10_1021_acsami_9b02964
crossref_primary_10_1002_chem_202000951
crossref_primary_10_1002_ente_202000611
crossref_primary_10_1016_j_mtphys_2024_101495
crossref_primary_10_1038_s41427_019_0163_5
crossref_primary_10_1039_C9TA08620J
crossref_primary_10_1002_smll_202407147
crossref_primary_10_1016_j_matt_2019_10_025
crossref_primary_10_1002_aenm_202103977
crossref_primary_10_1039_C9TA00948E
crossref_primary_10_3390_polym11101665
crossref_primary_10_1021_acs_chemmater_8b01491
crossref_primary_10_1002_aenm_201900190
crossref_primary_10_1021_acsami_9b12522
crossref_primary_10_1007_s11426_023_1856_4
crossref_primary_10_1021_acsaem_9b00520
crossref_primary_10_1039_C8TA10923K
crossref_primary_10_1016_j_polymer_2019_121906
crossref_primary_10_1021_acsaem_9b01624
crossref_primary_10_1039_C9RA00816K
crossref_primary_10_1002_aenm_201902145
crossref_primary_10_1039_C8TA05238G
crossref_primary_10_1039_C9TC01922G
crossref_primary_10_1002_asia_201800860
crossref_primary_10_1007_s11426_018_9371_0
crossref_primary_10_1002_adma_201906045
crossref_primary_10_3390_polym11020228
crossref_primary_10_2184_lsj_47_3_147
crossref_primary_10_1002_pi_6280
crossref_primary_10_1002_anie_201907467
crossref_primary_10_1002_adfm_201909535
crossref_primary_10_1002_admi_202000918
crossref_primary_10_1088_2053_1591_aace70
crossref_primary_10_1088_1367_2630_ac37c7
crossref_primary_10_1126_sciadv_adg9021
crossref_primary_10_1002_marc_202200201
crossref_primary_10_1002_er_4870
crossref_primary_10_1039_D0MA00487A
crossref_primary_10_1039_D0TC04909C
crossref_primary_10_1021_acs_chemmater_8b03455
crossref_primary_10_1021_acsami_9b18095
crossref_primary_10_1039_D4TC02099E
crossref_primary_10_1039_D0EE01763A
crossref_primary_10_1039_D1TC03300J
crossref_primary_10_1002_advs_201901490
crossref_primary_10_1002_solr_202200697
crossref_primary_10_1016_j_jphotochem_2023_115162
crossref_primary_10_1002_aenm_201801582
crossref_primary_10_1007_s11426_018_9429_1
crossref_primary_10_1021_acsami_9b16900
crossref_primary_10_3389_fenrg_2018_00113
crossref_primary_10_1002_anie_202303476
crossref_primary_10_1039_D3TA05177C
crossref_primary_10_1016_j_cej_2024_148648
crossref_primary_10_1002_solr_202400542
crossref_primary_10_1007_s11426_019_9681_8
crossref_primary_10_1088_1361_6463_aca987
crossref_primary_10_1039_C9TC06667E
crossref_primary_10_1039_C8TA09763A
crossref_primary_10_1016_j_solener_2021_06_049
crossref_primary_10_1021_acs_chemmater_9b02520
crossref_primary_10_1007_s11426_021_1180_6
crossref_primary_10_1039_D0TA03791E
crossref_primary_10_1039_D0MA00790K
crossref_primary_10_1002_solr_201900453
crossref_primary_10_3390_ma11122579
crossref_primary_10_1002_adfm_201907570
crossref_primary_10_1039_C9TA03177D
crossref_primary_10_1088_2058_8585_ab5f57
crossref_primary_10_1002_solr_202100510
crossref_primary_10_1021_acs_jpcc_0c05644
crossref_primary_10_1002_adfm_202102361
crossref_primary_10_1039_C9NJ02604E
crossref_primary_10_1002_adfm_201805872
crossref_primary_10_1007_s10854_020_03058_7
crossref_primary_10_1021_acsenergylett_9b00681
crossref_primary_10_1039_D0NJ05037G
crossref_primary_10_1039_C8QO00788H
crossref_primary_10_1039_D0TA01260B
crossref_primary_10_1002_solr_201900005
crossref_primary_10_1002_adma_202001591
crossref_primary_10_1002_slct_201904353
crossref_primary_10_1021_acsami_0c02712
crossref_primary_10_1016_j_optmat_2019_03_020
crossref_primary_10_1039_C8TA11378E
crossref_primary_10_1021_acsami_0c11410
crossref_primary_10_1016_j_orgel_2018_09_015
crossref_primary_10_1002_adfm_202102371
crossref_primary_10_1002_ange_201806291
crossref_primary_10_1039_C8TA07544A
crossref_primary_10_1063_5_0189191
crossref_primary_10_1039_C9TA06311K
crossref_primary_10_1021_acsami_0c01850
crossref_primary_10_1002_solr_201900472
crossref_primary_10_1039_C9TC05358A
crossref_primary_10_1002_solr_201900471
crossref_primary_10_1002_qua_27092
crossref_primary_10_1021_acs_chemmater_9b01011
crossref_primary_10_1002_solr_201900475
crossref_primary_10_1002_aisy_201900108
crossref_primary_10_1002_adts_202100019
crossref_primary_10_1002_adma_201807842
crossref_primary_10_1002_adom_202402257
crossref_primary_10_1002_adma_202302005
crossref_primary_10_1002_adfm_202210534
crossref_primary_10_1149_2162_8777_ac53f5
crossref_primary_10_1002_adma_202201623
crossref_primary_10_1039_C8TA11484F
crossref_primary_10_1016_j_polymer_2021_123991
crossref_primary_10_1021_acsami_1c17199
crossref_primary_10_1002_advs_202305356
crossref_primary_10_1021_acs_accounts_0c00009
crossref_primary_10_1039_D0RA07935A
crossref_primary_10_1002_solr_201900262
crossref_primary_10_1002_marc_201800906
crossref_primary_10_1103_PhysRevApplied_11_014048
crossref_primary_10_1039_D0QM00826E
crossref_primary_10_1002_aenm_201800698
crossref_primary_10_1002_adsu_202000054
crossref_primary_10_1039_C8TA12465E
crossref_primary_10_1002_adma_202003500
crossref_primary_10_1039_C9TC04680A
crossref_primary_10_1021_acsami_0c07173
crossref_primary_10_1021_acs_macromol_9b00057
crossref_primary_10_1016_j_orgel_2018_09_034
crossref_primary_10_1021_acsami_2c00764
crossref_primary_10_1002_tcr_201800182
crossref_primary_10_3389_fphy_2020_00022
crossref_primary_10_1002_anie_202503721
crossref_primary_10_1002_aenm_202400064
crossref_primary_10_1021_acsenergylett_0c00857
crossref_primary_10_1021_acsami_2c01606
crossref_primary_10_1021_acsenergylett_0c01949
crossref_primary_10_1007_s11426_018_9260_2
crossref_primary_10_1002_adfm_201806747
crossref_primary_10_1039_D2EE00726F
crossref_primary_10_1039_D0TC03709E
crossref_primary_10_1016_j_mattod_2019_10_023
crossref_primary_10_1021_acsami_1c08545
crossref_primary_10_1002_adma_202202659
crossref_primary_10_1016_j_isci_2020_100965
crossref_primary_10_1039_D3PY00229B
crossref_primary_10_1002_cjoc_202000666
crossref_primary_10_1002_macp_201800297
crossref_primary_10_1021_acsami_2c10286
crossref_primary_10_1021_acsami_0c12390
crossref_primary_10_1039_C9QM00129H
crossref_primary_10_1039_D0TC03077E
crossref_primary_10_1016_j_mtener_2018_12_009
crossref_primary_10_1080_15421406_2024_2448313
crossref_primary_10_1039_C9GC02288K
crossref_primary_10_1002_adfm_202103784
crossref_primary_10_1021_acsami_0c12147
crossref_primary_10_1039_C8RA08360F
crossref_primary_10_1109_LED_2020_3016940
crossref_primary_10_1002_aesr_202000020
crossref_primary_10_1371_journal_pone_0234115
crossref_primary_10_1039_C9RA05814A
crossref_primary_10_1002_aenm_202200129
crossref_primary_10_1002_solr_202300219
crossref_primary_10_1016_j_dyepig_2021_109162
crossref_primary_10_1021_acsami_1c19200
crossref_primary_10_1021_acsami_8b16628
crossref_primary_10_1038_s41578_022_00514_0
crossref_primary_10_1021_acsami_9b07112
crossref_primary_10_1063_5_0002979
crossref_primary_10_1039_C8TA06378H
crossref_primary_10_1002_solr_202101084
crossref_primary_10_1021_acs_macromol_0c00405
crossref_primary_10_1002_asia_201801669
crossref_primary_10_1021_acsami_9b10514
crossref_primary_10_7567_1347_4065_ab56bf
crossref_primary_10_1021_acsapm_0c00791
crossref_primary_10_1080_15421406_2020_1741820
crossref_primary_10_1016_j_mattod_2018_09_004
crossref_primary_10_1039_C8TA10549A
crossref_primary_10_1039_D2NJ06222D
crossref_primary_10_1039_D2TA03647A
crossref_primary_10_1002_adma_201906557
crossref_primary_10_1021_acsami_8b17753
crossref_primary_10_1039_D3EE00174A
crossref_primary_10_1002_adma_202406690
crossref_primary_10_1039_C9QM00212J
crossref_primary_10_1016_j_isci_2020_100981
crossref_primary_10_1039_D2TC02786K
crossref_primary_10_1039_C9NJ02484K
crossref_primary_10_1021_acs_chemmater_8b04265
crossref_primary_10_1063_5_0184403
crossref_primary_10_1039_C9MH00379G
crossref_primary_10_1021_acs_chemmater_8b05352
crossref_primary_10_1002_smll_201800870
crossref_primary_10_1021_acs_jpcc_0c06623
crossref_primary_10_1021_jacs_8b05038
crossref_primary_10_1021_acs_chemmater_9b00980
crossref_primary_10_1039_D2EE02380F
crossref_primary_10_1016_j_solener_2020_02_041
crossref_primary_10_1021_acsomega_9b01125
crossref_primary_10_1016_j_nanoen_2018_11_010
crossref_primary_10_1002_aenm_201802021
crossref_primary_10_1021_acs_macromol_9b01233
crossref_primary_10_1038_s41528_022_00222_3
crossref_primary_10_1002_ange_201910297
crossref_primary_10_1007_s40843_022_2162_2
crossref_primary_10_1021_acsami_9b18278
crossref_primary_10_1039_D3TC02932H
crossref_primary_10_1088_1674_4926_42_1_010502
crossref_primary_10_1088_1674_4926_42_1_010501
crossref_primary_10_3390_polym12040992
crossref_primary_10_1021_acsaem_2c02791
crossref_primary_10_1021_acsaem_8b01447
crossref_primary_10_1021_acsami_1c15278
crossref_primary_10_1016_j_solener_2020_02_057
crossref_primary_10_3389_fchem_2018_00414
crossref_primary_10_1039_D0QO00033G
crossref_primary_10_1007_s11426_021_1094_y
crossref_primary_10_1002_smll_202104451
crossref_primary_10_3389_fchem_2018_00413
crossref_primary_10_1002_aenm_201803541
crossref_primary_10_1039_D1MH00868D
crossref_primary_10_1002_aenm_202003141
crossref_primary_10_1038_s41560_019_0448_5
crossref_primary_10_1039_D4PY00659C
crossref_primary_10_1021_acsami_9b18048
crossref_primary_10_1016_j_orgel_2018_12_014
crossref_primary_10_1002_chem_201904178
crossref_primary_10_1002_adma_201908305
crossref_primary_10_1039_C9TA05789G
crossref_primary_10_1021_acsaem_8b01433
crossref_primary_10_1002_marc_201800660
crossref_primary_10_1039_D0CP02520H
crossref_primary_10_1021_acs_chemmater_9b02501
crossref_primary_10_1039_D2TC01433E
crossref_primary_10_1002_adfm_202102413
crossref_primary_10_1021_acsami_9b08007
crossref_primary_10_1016_j_cclet_2019_01_031
crossref_primary_10_1039_D0TA02859B
crossref_primary_10_1002_macp_201900084
crossref_primary_10_1039_D4TC00502C
crossref_primary_10_1002_aenm_201801352
crossref_primary_10_1002_solr_201800340
crossref_primary_10_1039_C9QM00366E
crossref_primary_10_1002_aenm_201802686
crossref_primary_10_1039_D0TC03096A
crossref_primary_10_1021_acs_chemmater_8b02276
crossref_primary_10_1039_C9PY01438A
crossref_primary_10_1002_marc_201900035
crossref_primary_10_1039_C8TA08406H
crossref_primary_10_1021_acs_chemmater_9b01407
crossref_primary_10_1021_acs_chemmater_8b05316
crossref_primary_10_1021_acsenergylett_0c00564
crossref_primary_10_1039_C9TA13128K
crossref_primary_10_1002_smll_201902602
crossref_primary_10_1021_acs_chemmater_9b04911
crossref_primary_10_1021_acs_jpclett_9b00063
crossref_primary_10_1002_solr_201800333
crossref_primary_10_1039_D3TC00666B
crossref_primary_10_1002_solr_201800332
crossref_primary_10_1016_j_dyepig_2019_02_040
crossref_primary_10_1038_s41467_021_26995_1
crossref_primary_10_1002_aenm_202003103
crossref_primary_10_1002_advs_201801180
crossref_primary_10_1021_acs_chemmater_4c02751
crossref_primary_10_1002_aelm_201901241
crossref_primary_10_1016_j_polymer_2018_10_062
crossref_primary_10_1039_D2TA04800K
crossref_primary_10_1002_bkcs_11752
crossref_primary_10_3390_molecules23061270
crossref_primary_10_1039_C8TA07134A
crossref_primary_10_1002_solr_202000364
crossref_primary_10_1039_C9QM00013E
crossref_primary_10_1039_D2TA09699D
crossref_primary_10_1021_acs_jpclett_0c00919
crossref_primary_10_1016_j_joule_2019_06_016
crossref_primary_10_1002_smll_202208217
crossref_primary_10_1016_j_joule_2019_05_008
crossref_primary_10_1021_acsapm_3c00408
crossref_primary_10_1021_acsenergylett_8b00825
crossref_primary_10_1039_C8TA05920A
crossref_primary_10_1039_D3TA06624J
crossref_primary_10_1002_nano_202000027
crossref_primary_10_1021_acsapm_8b00019
crossref_primary_10_1016_j_apsusc_2022_153710
crossref_primary_10_1002_adma_202100474
crossref_primary_10_1021_acs_macromol_8b02526
crossref_primary_10_1021_accountsmr_2c00020
crossref_primary_10_1021_acsaem_2c00960
crossref_primary_10_1021_acs_macromol_8b01677
crossref_primary_10_1021_acs_chemmater_8b04087
crossref_primary_10_1039_C9NJ01574D
crossref_primary_10_1039_D3NJ02846A
crossref_primary_10_1021_acs_chemmater_9b00926
crossref_primary_10_1021_acsaem_2c01807
crossref_primary_10_1016_j_orgel_2020_105705
crossref_primary_10_1002_aenm_201803175
crossref_primary_10_1002_pi_5989
crossref_primary_10_3389_fchem_2020_603134
crossref_primary_10_1021_acs_jpcc_9b02672
crossref_primary_10_1039_C9TA00227H
crossref_primary_10_1021_acsenergylett_2c01316
crossref_primary_10_1038_s41467_019_08361_4
crossref_primary_10_3390_molecules27061800
crossref_primary_10_1002_smll_201801793
crossref_primary_10_1016_j_nanoen_2019_01_082
crossref_primary_10_1002_bte2_20220040
crossref_primary_10_1016_j_cej_2022_139046
crossref_primary_10_1002_aenm_201901823
crossref_primary_10_1039_C9MH00993K
crossref_primary_10_1016_j_jallcom_2020_158228
crossref_primary_10_1039_D0BM01569E
crossref_primary_10_1039_D0TC03095C
crossref_primary_10_1088_1402_4896_ad3584
crossref_primary_10_1002_adma_201804723
crossref_primary_10_1002_ange_202210356
crossref_primary_10_1021_acs_macromol_9b00793
crossref_primary_10_1016_j_cej_2023_141281
crossref_primary_10_1021_acs_macromol_4c02123
crossref_primary_10_1039_D0TA12288B
crossref_primary_10_1002_eom2_12006
crossref_primary_10_1039_D2TC03701G
crossref_primary_10_1007_s11426_019_9556_7
crossref_primary_10_1002_ente_202100908
crossref_primary_10_3389_fchem_2018_00404
crossref_primary_10_1002_smsc_202200006
crossref_primary_10_1007_s10854_020_03626_x
crossref_primary_10_1007_s40843_020_1514_3
crossref_primary_10_1039_C8TA09164A
crossref_primary_10_1039_C9EE01030K
crossref_primary_10_1002_solr_201800366
crossref_primary_10_1002_cjoc_202000235
crossref_primary_10_1002_solr_201800120
crossref_primary_10_1039_C9EE02939G
crossref_primary_10_1002_ange_202303476
crossref_primary_10_1002_adts_201900136
crossref_primary_10_1002_solr_201800190
crossref_primary_10_1002_solr_202000749
crossref_primary_10_1016_j_orgel_2018_10_019
crossref_primary_10_3390_polym11050746
crossref_primary_10_1039_D0TA09671G
crossref_primary_10_1080_15421406_2019_1645458
crossref_primary_10_1002_ajoc_201800389
crossref_primary_10_1039_C9NJ04621F
crossref_primary_10_1002_aesr_202000050
crossref_primary_10_1002_aenm_201802050
crossref_primary_10_1002_bkcs_12891
crossref_primary_10_1016_j_jechem_2020_04_041
crossref_primary_10_1021_acs_macromol_4c00195
crossref_primary_10_1016_j_jallcom_2019_06_108
crossref_primary_10_1002_adfm_201906855
crossref_primary_10_1016_j_joule_2020_12_013
crossref_primary_10_1016_j_joule_2020_04_014
crossref_primary_10_1021_acsami_0c12190
crossref_primary_10_1039_C9QM00327D
crossref_primary_10_1039_D0EE02461A
crossref_primary_10_1021_acsami_0c14367
crossref_primary_10_1002_aenm_202001589
crossref_primary_10_1016_j_orgel_2018_10_026
crossref_primary_10_1039_C8TA11637G
crossref_primary_10_1002_advs_202000509
crossref_primary_10_1039_C9TA00468H
crossref_primary_10_1021_acsaem_1c01653
crossref_primary_10_1002_solr_201800186
crossref_primary_10_1016_j_dyepig_2019_04_064
crossref_primary_10_1002_cjoc_202000451
crossref_primary_10_1016_j_dyepig_2020_108613
crossref_primary_10_1016_j_orgel_2018_10_034
crossref_primary_10_1002_ange_202503721
crossref_primary_10_1021_acsami_8b18240
crossref_primary_10_1002_adma_201803836
crossref_primary_10_1002_pola_29264
crossref_primary_10_1021_acsenergylett_0c01010
crossref_primary_10_1038_s41428_022_00712_1
crossref_primary_10_1002_adma_201907840
crossref_primary_10_1039_C9TA00114J
crossref_primary_10_1021_acs_jpcc_8b11318
crossref_primary_10_1002_anie_202205975
crossref_primary_10_1016_j_nanoen_2019_01_039
crossref_primary_10_1021_acs_nanolett_0c05045
crossref_primary_10_3389_fsufs_2024_1277934
crossref_primary_10_1002_adfm_201902478
crossref_primary_10_1002_cjoc_202300144
crossref_primary_10_1016_j_cej_2022_134878
crossref_primary_10_1038_s41467_019_08508_3
crossref_primary_10_1039_C9TA10624C
crossref_primary_10_1021_acsami_8b19563
crossref_primary_10_1039_C8TC06407E
crossref_primary_10_1039_D0SE00310G
crossref_primary_10_1002_adma_201905657
crossref_primary_10_1021_acsenergylett_0c00177
crossref_primary_10_1039_C8CC06198J
crossref_primary_10_1002_adfm_201808378
crossref_primary_10_1002_anie_201806291
crossref_primary_10_1021_acsami_8b07342
crossref_primary_10_1039_D4PY01152J
crossref_primary_10_1021_acsami_0c23087
crossref_primary_10_1039_C8TC05318A
crossref_primary_10_1021_acsami_9b19549
crossref_primary_10_1007_s12598_023_02415_9
crossref_primary_10_1021_acs_jpca_9b01937
crossref_primary_10_1039_C8QM00318A
crossref_primary_10_1002_solr_202000704
crossref_primary_10_1039_D1CP03114G
crossref_primary_10_1002_adma_201900477
crossref_primary_10_1016_j_matchemphys_2021_124680
crossref_primary_10_1021_acsapm_1c00743
crossref_primary_10_1021_acsami_0c10658
crossref_primary_10_1039_C9TA07919J
crossref_primary_10_1016_j_cclet_2019_06_051
crossref_primary_10_1039_D1TA05268C
crossref_primary_10_1039_D3PY00815K
crossref_primary_10_1109_JPHOTOV_2019_2925556
crossref_primary_10_1021_acsami_9b02212
crossref_primary_10_1002_pcr2_10064
crossref_primary_10_1021_acsmacrolett_9b00368
crossref_primary_10_1016_j_orgel_2025_107211
crossref_primary_10_1002_aenm_201801601
crossref_primary_10_1016_j_dyepig_2019_107819
crossref_primary_10_1002_ange_201807865
crossref_primary_10_1021_acs_macromol_8b01036
crossref_primary_10_1016_j_joule_2018_10_024
crossref_primary_10_1039_D1TC03842G
crossref_primary_10_1021_acs_macromol_8b02360
crossref_primary_10_1002_adma_202208750
crossref_primary_10_1007_s10854_019_01448_0
crossref_primary_10_1007_s10854_020_04757_x
crossref_primary_10_1109_ACCESS_2018_2877844
crossref_primary_10_1016_j_dyepig_2021_109604
crossref_primary_10_1088_1755_1315_1261_1_012019
crossref_primary_10_1039_C8TA05207G
crossref_primary_10_1021_acsaem_2c04152
crossref_primary_10_1002_ange_201907467
crossref_primary_10_1039_C8TC06513F
crossref_primary_10_1002_adma_202206566
crossref_primary_10_1002_slct_201803434
crossref_primary_10_1021_acs_chemrev_2c00905
crossref_primary_10_1021_acsaem_8b00819
crossref_primary_10_1002_adfm_202303403
crossref_primary_10_1021_acsaem_1c02752
crossref_primary_10_1021_acs_chemmater_0c00459
crossref_primary_10_1039_C8TC01858H
crossref_primary_10_1038_s41467_018_07017_z
crossref_primary_10_3762_bjnano_9_200
crossref_primary_10_1002_solr_202100661
crossref_primary_10_1007_s10118_022_2841_y
crossref_primary_10_1039_C9TC02237F
crossref_primary_10_1002_aenm_201801609
crossref_primary_10_1007_s40843_023_2675_6
crossref_primary_10_1109_JPHOTOV_2019_2894765
crossref_primary_10_1039_C9TC03301G
crossref_primary_10_1007_s12209_024_00401_5
crossref_primary_10_1016_j_nanoen_2018_08_059
crossref_primary_10_1002_chem_202000889
crossref_primary_10_1016_j_jechem_2021_01_027
crossref_primary_10_1021_acsenergylett_9b00534
crossref_primary_10_1002_adom_202403085
crossref_primary_10_1039_C8QM00512E
crossref_primary_10_1002_cssc_202101345
crossref_primary_10_1039_C8QM00669E
crossref_primary_10_1002_chem_201900661
crossref_primary_10_1016_j_synthmet_2019_116182
crossref_primary_10_1016_j_trechm_2019_01_010
crossref_primary_10_1038_s41598_023_43224_5
crossref_primary_10_1039_C9TC00162J
crossref_primary_10_1016_j_synthmet_2019_116116
crossref_primary_10_1021_acs_jpca_1c10607
crossref_primary_10_1039_C8TA09356C
crossref_primary_10_1039_D5TC00664C
crossref_primary_10_1021_jacs_4c11114
crossref_primary_10_1039_C9TA03869H
crossref_primary_10_3866_PKU_WHXB202307037
crossref_primary_10_1039_C9TC05610F
crossref_primary_10_1021_acsenergylett_9b01819
crossref_primary_10_1016_j_polymer_2019_04_011
crossref_primary_10_1039_C9TC02013F
crossref_primary_10_1039_C9PY00608G
crossref_primary_10_1002_aenm_201900044
crossref_primary_10_3390_polym12092121
crossref_primary_10_1039_C9TA09961A
crossref_primary_10_1002_adfm_201802895
crossref_primary_10_1021_acsenergylett_8b02114
crossref_primary_10_3390_molecules23092324
crossref_primary_10_1016_j_solener_2020_06_090
crossref_primary_10_1038_s41467_019_10098_z
crossref_primary_10_1039_D1TB00193K
crossref_primary_10_1002_adfm_201908762
crossref_primary_10_1016_j_solener_2020_04_005
crossref_primary_10_1016_j_polymer_2019_05_043
crossref_primary_10_1002_sus2_82
crossref_primary_10_1021_acsenergylett_8b02383
crossref_primary_10_1021_acsami_8b15923
crossref_primary_10_1021_acsami_9b04211
crossref_primary_10_1007_s11426_019_9634_5
crossref_primary_10_1021_acsami_8b20493
crossref_primary_10_1021_acsami_8b20276
crossref_primary_10_1039_C8TA03112F
crossref_primary_10_1021_acs_macromol_4c01474
crossref_primary_10_3390_en12244678
crossref_primary_10_1021_acsenergylett_0c02077
crossref_primary_10_1021_acs_macromol_4c02327
crossref_primary_10_1039_C8TC02021C
crossref_primary_10_1039_C8TA06860G
crossref_primary_10_1016_j_dyepig_2018_09_032
crossref_primary_10_1016_j_nxener_2023_100086
crossref_primary_10_1021_acsaem_2c00819
crossref_primary_10_1002_aenm_201902688
crossref_primary_10_1109_JPHOTOV_2020_3004926
crossref_primary_10_1039_C8TA06510A
crossref_primary_10_1002_adfm_202001251
crossref_primary_10_1039_C8TA12109E
crossref_primary_10_1002_ente_202201211
crossref_primary_10_1021_acs_chemmater_9b02284
crossref_primary_10_1039_C9TA01497G
crossref_primary_10_1039_D0CC05528J
crossref_primary_10_1016_j_polymer_2020_122408
crossref_primary_10_1002_adma_201806499
crossref_primary_10_1021_acs_jpclett_3c01359
crossref_primary_10_1002_solr_202100838
crossref_primary_10_1039_C8TC04926B
crossref_primary_10_1039_C9TA00164F
crossref_primary_10_1002_adma_201906175
crossref_primary_10_1016_j_jpcs_2020_109532
crossref_primary_10_1002_aenm_201801203
crossref_primary_10_1021_acs_chemmater_8b02222
crossref_primary_10_1039_C9SE01261C
crossref_primary_10_1016_j_solener_2020_01_042
crossref_primary_10_1021_acs_chemmater_8b03791
crossref_primary_10_1039_C8TC04371J
crossref_primary_10_1007_s40843_019_9415_2
crossref_primary_10_1007_s10853_025_10728_6
crossref_primary_10_1016_j_joule_2018_11_006
crossref_primary_10_1021_acs_jpclett_4c02662
crossref_primary_10_1016_j_isci_2018_12_027
crossref_primary_10_1021_acsenergylett_8b02311
crossref_primary_10_1007_s10118_019_2171_x
crossref_primary_10_1039_C8TA11059J
crossref_primary_10_1002_app_49006
crossref_primary_10_1002_adfm_201808828
crossref_primary_10_1021_acsami_1c02613
crossref_primary_10_1002_solr_201900552
crossref_primary_10_1016_j_cclet_2018_09_014
crossref_primary_10_1002_adma_202105114
crossref_primary_10_1002_aenm_201802521
crossref_primary_10_1039_D0TC02032J
crossref_primary_10_1080_10601325_2019_1617636
crossref_primary_10_1021_acsaelm_2c00720
crossref_primary_10_3390_nano11123187
crossref_primary_10_1039_C9TA03272J
crossref_primary_10_1016_j_joule_2019_09_009
crossref_primary_10_1039_C9TC05567C
crossref_primary_10_1016_j_solener_2022_07_011
crossref_primary_10_1021_acs_macromol_0c01462
crossref_primary_10_1002_solr_201900342
crossref_primary_10_1016_j_solener_2021_11_078
crossref_primary_10_1021_acsenergylett_9b00147
crossref_primary_10_1039_D0TA01032D
crossref_primary_10_1021_acs_jpcc_9b09954
crossref_primary_10_1021_acsami_2c10466
crossref_primary_10_1016_j_solener_2019_01_066
crossref_primary_10_1007_s11426_024_2406_9
crossref_primary_10_1016_j_solener_2018_09_008
crossref_primary_10_1002_cplu_202400350
crossref_primary_10_1039_D0CC01038C
crossref_primary_10_1021_acsomega_9b02613
crossref_primary_10_1039_C9TA03188J
crossref_primary_10_1021_acsami_4c20411
crossref_primary_10_1002_marc_202400687
crossref_primary_10_1021_acs_macromol_3c00995
crossref_primary_10_1002_advs_201903784
crossref_primary_10_1039_D1TA06861J
crossref_primary_10_1021_acsapm_9b00559
crossref_primary_10_1002_smll_201902598
crossref_primary_10_1021_acs_chemmater_1c01305
crossref_primary_10_1002_advs_202003641
crossref_primary_10_1002_aenm_201801214
crossref_primary_10_1039_D0EE02426K
crossref_primary_10_1002_aenm_201801699
crossref_primary_10_1021_acs_jpcc_1c00228
crossref_primary_10_1002_anie_201807865
crossref_primary_10_1039_C9TA05235F
crossref_primary_10_1016_j_comptc_2020_112833
crossref_primary_10_1021_acs_nanolett_9b04586
crossref_primary_10_1039_C9TC02296A
crossref_primary_10_1038_s41598_024_64632_1
crossref_primary_10_1002_tcr_201800072
crossref_primary_10_1039_D0TA05108J
crossref_primary_10_1002_adfm_201802004
crossref_primary_10_1021_acs_chemmater_9b03329
crossref_primary_10_1021_acs_chemmater_9b03327
crossref_primary_10_1016_j_cej_2021_129532
crossref_primary_10_1021_acsami_9b09044
crossref_primary_10_1051_epjap_2018180070
crossref_primary_10_1021_acs_macromol_9b02395
crossref_primary_10_1039_D2TA07390K
crossref_primary_10_1038_s41578_019_0137_9
crossref_primary_10_1007_s40684_021_00374_z
crossref_primary_10_1039_C9TA14070K
crossref_primary_10_1039_C8NR05407J
crossref_primary_10_1002_aenm_201904247
crossref_primary_10_1016_j_gee_2021_01_009
crossref_primary_10_1021_acsenergylett_8b01665
crossref_primary_10_1002_smtd_201900280
crossref_primary_10_1021_acsami_8b14888
crossref_primary_10_1002_adfm_201806845
crossref_primary_10_1039_C8SE00601F
crossref_primary_10_1007_s11082_021_02947_3
crossref_primary_10_1039_D2RA03280E
crossref_primary_10_1039_C8TC03967D
crossref_primary_10_1360_SSC_2022_0098
crossref_primary_10_1002_solr_201900117
crossref_primary_10_1007_s11426_018_9437_7
crossref_primary_10_1002_adma_202002302
crossref_primary_10_1039_C9TC02189B
crossref_primary_10_1021_acsaem_8b00851
crossref_primary_10_1039_D2TA02541H
crossref_primary_10_1021_acs_macromol_3c01416
crossref_primary_10_1021_acsmacrolett_9b00704
crossref_primary_10_1002_adfm_201908336
crossref_primary_10_1021_acsami_8b06822
crossref_primary_10_3390_s19081803
crossref_primary_10_1039_C9TC01932D
crossref_primary_10_1039_C9TC04014E
crossref_primary_10_1002_marc_202200591
crossref_primary_10_1002_aenm_202100342
crossref_primary_10_1039_D0SE01176B
crossref_primary_10_1021_acsami_8b15522
crossref_primary_10_1021_acsenergylett_8b01448
crossref_primary_10_3390_ijms24010522
crossref_primary_10_1088_1361_6633_ab0530
crossref_primary_10_1002_smll_201900134
crossref_primary_10_1039_C9TA12313J
crossref_primary_10_1016_j_orgel_2022_106736
crossref_primary_10_1016_j_solener_2019_01_016
crossref_primary_10_1021_acs_jpcc_8b06429
crossref_primary_10_1039_D0EE00774A
crossref_primary_10_1007_s11771_020_4501_0
crossref_primary_10_1021_acsapm_9b00998
Cites_doi 10.1038/ncomms6293
10.1021/acs.chemmater.6b04828
10.1021/ja1112595
10.1021/acs.chemmater.6b02802
10.1021/ja901545q
10.1038/ncomms2411
10.1002/anie.201610944
10.1002/adma.201502110
10.1002/adma.201600281
10.1021/ma301900h
10.1002/adma.201304427
10.1021/cm102182x
10.1038/nphoton.2009.192
10.1002/adma.201604241
10.1002/anie.201005451
10.1021/jacs.6b01744
10.1021/acs.accounts.7b00293
10.1002/adma.200903528
10.1021/jacs.7b01170
10.1038/nphoton.2015.6
10.1021/acs.macromol.5b02416
10.1021/jacs.7b01493
10.1021/jacs.6b12755
10.1007/s11426-016-0378-y
10.1021/acs.macromol.6b00248
10.1016/S1369-7021(12)70019-6
10.1126/science.270.5243.1789
10.1007/s11426-014-5273-x
10.1002/adma.201602776
10.1039/C4EE01529K
10.1021/jacs.6b03495
10.1038/nphoton.2012.11
10.1002/adma.201404317
10.1002/adma.201602642
10.1002/adma.201404535
10.1021/jacs.6b00853
10.1021/jacs.7b02677
10.1021/acsenergylett.7b00551
10.1080/15583720802231833
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201800868
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29602243
10_1002_adma_201800868
ADMA201800868
Genre article
Journal Article
GrantInformation_xml – fundername: National Basic Research Program 973
  funderid: 2014CB643501
– fundername: China Postdoctoral Science Foundation
– fundername: National Natural Science Foundation of China
  funderid: 21704004; 51673201; 91633301
– fundername: Chinese Academy of Sciences
  funderid: XDB12030200
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4398-6ebfc83b6e845e9c0ba314834c9c4b8a3c9dfca61c4a161daff9132f9813e5123
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:45:30 EDT 2025
Sun Jul 13 05:38:11 EDT 2025
Wed Feb 19 02:43:49 EST 2025
Thu Apr 24 22:50:21 EDT 2025
Tue Jul 01 00:44:41 EDT 2025
Wed Jan 22 16:54:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords chlorinated polymer donors
low-cost
polymer solar cells
fullerene-free acceptors
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4398-6ebfc83b6e845e9c0ba314834c9c4b8a3c9dfca61c4a161daff9132f9813e5123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2105-6922
PMID 29602243
PQID 2038252418
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2020492049
proquest_journals_2038252418
pubmed_primary_29602243
crossref_primary_10_1002_adma_201800868
crossref_citationtrail_10_1002_adma_201800868
wiley_primary_10_1002_adma_201800868_ADMA201800868
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-May
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-May
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 58
2013; 4
2017; 2
2017; 60
2014; 26
2017; 29
2012; 15
2009; 131
2015; 9
1995; 270
2011; 133
2017; 139
2010; 22
2017; 50
2014; 5
2015; 27
2015; 49
2017; 56
2011; 50
2008; 48
2016; 138
2011; 23
2012; 6
2009; 3
2016; 28
2014; 7
2016; 49
2012; 45
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 139
  start-page: 1336
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 7148
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 1170
  year: 2015
  publication-title: Adv. Mater.
– volume: 29
  start-page: 2819
  year: 2017
  publication-title: Chem. Mater.
– volume: 139
  start-page: 4929
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 9611
  year: 2012
  publication-title: Macromolecules
– volume: 6
  start-page: 153
  year: 2012
  publication-title: Nat. Photonics
– volume: 138
  start-page: 4657
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 174
  year: 2015
  publication-title: Nat. Photonics
– volume: 139
  start-page: 7302
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 36
  year: 2012
  publication-title: Mater. Today
– volume: 58
  start-page: 248
  year: 2015
  publication-title: Sci. China: Chem.
– volume: 29
  start-page: 141
  year: 2017
  publication-title: Chem. Mater.
– volume: 28
  start-page: 4734
  year: 2016
  publication-title: Adv. Mater.
– volume: 50
  start-page: 2519
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 270
  start-page: 1789
  year: 1995
  publication-title: Science
– volume: 2
  start-page: 1971
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 3040
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 649
  year: 2009
  publication-title: Nat. Photonics
– volume: 131
  start-page: 7792
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 2973
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 531
  year: 2008
  publication-title: Polym. Rev.
– volume: 60
  start-page: 545
  year: 2017
  publication-title: Sci. China: Chem.
– volume: 49
  start-page: 120
  year: 2015
  publication-title: Macromolecules
– volume: 56
  start-page: 3045
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 133
  start-page: 4625
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 446
  year: 2011
  publication-title: Chem. Mater.
– volume: 27
  start-page: 4655
  year: 2015
  publication-title: Adv. Mater.
– volume: 26
  start-page: 1118
  year: 2014
  publication-title: Adv. Mater.
– volume: 28
  start-page: 8283
  year: 2016
  publication-title: Adv. Mater.
– volume: 49
  start-page: 2993
  year: 2016
  publication-title: Macromolecules
– volume: 5
  start-page: 5293
  year: 2014
  publication-title: Nat. Commun.
– volume: 138
  start-page: 7687
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 9423
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1446
  year: 2013
  publication-title: Nat. Commun.
– volume: 22
  start-page: E135
  year: 2010
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1035
  year: 2015
  publication-title: Adv. Mater.
– volume: 50
  start-page: 2995
  year: 2011
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 29
  start-page: 1604241
  year: 2017
  publication-title: Adv. Mater.
– ident: e_1_2_4_19_1
  doi: 10.1038/ncomms6293
– ident: e_1_2_4_26_1
  doi: 10.1021/acs.chemmater.6b04828
– ident: e_1_2_4_17_1
  doi: 10.1021/ja1112595
– ident: e_1_2_4_3_1
  doi: 10.1021/acs.chemmater.6b02802
– ident: e_1_2_4_23_1
  doi: 10.1021/ja901545q
– ident: e_1_2_4_18_1
  doi: 10.1038/ncomms2411
– ident: e_1_2_4_5_1
  doi: 10.1002/anie.201610944
– ident: e_1_2_4_34_1
  doi: 10.1002/adma.201502110
– ident: e_1_2_4_39_1
  doi: 10.1002/adma.201600281
– ident: e_1_2_4_38_1
  doi: 10.1021/ma301900h
– ident: e_1_2_4_21_1
  doi: 10.1002/adma.201304427
– ident: e_1_2_4_25_1
  doi: 10.1021/cm102182x
– ident: e_1_2_4_14_1
  doi: 10.1038/nphoton.2009.192
– ident: e_1_2_4_32_1
  doi: 10.1002/adma.201604241
– ident: e_1_2_4_16_1
  doi: 10.1002/anie.201005451
– ident: e_1_2_4_20_1
  doi: 10.1021/jacs.6b01744
– ident: e_1_2_4_37_1
  doi: 10.1021/acs.accounts.7b00293
– ident: e_1_2_4_15_1
  doi: 10.1002/adma.200903528
– ident: e_1_2_4_8_1
  doi: 10.1021/jacs.7b01170
– ident: e_1_2_4_33_1
  doi: 10.1038/nphoton.2015.6
– ident: e_1_2_4_35_1
  doi: 10.1021/acs.macromol.5b02416
– ident: e_1_2_4_12_1
  doi: 10.1021/jacs.7b01493
– ident: e_1_2_4_7_1
  doi: 10.1021/jacs.6b12755
– ident: e_1_2_4_36_1
  doi: 10.1007/s11426-016-0378-y
– ident: e_1_2_4_24_1
  doi: 10.1021/acs.macromol.6b00248
– ident: e_1_2_4_13_1
  doi: 10.1016/S1369-7021(12)70019-6
– ident: e_1_2_4_1_1
  doi: 10.1126/science.270.5243.1789
– ident: e_1_2_4_29_1
  doi: 10.1007/s11426-014-5273-x
– ident: e_1_2_4_9_1
  doi: 10.1002/adma.201602776
– ident: e_1_2_4_22_1
  doi: 10.1039/C4EE01529K
– ident: e_1_2_4_31_1
  doi: 10.1021/jacs.6b03495
– ident: e_1_2_4_2_1
  doi: 10.1038/nphoton.2012.11
– ident: e_1_2_4_4_1
  doi: 10.1002/adma.201404317
– ident: e_1_2_4_6_1
  doi: 10.1002/adma.201602642
– ident: e_1_2_4_30_1
  doi: 10.1002/adma.201404535
– ident: e_1_2_4_10_1
  doi: 10.1021/jacs.6b00853
– ident: e_1_2_4_11_1
  doi: 10.1021/jacs.7b02677
– ident: e_1_2_4_27_1
  doi: 10.1021/acsenergylett.7b00551
– ident: e_1_2_4_28_1
  doi: 10.1080/15583720802231833
SSID ssj0009606
Score 2.7021937
Snippet Fluorine‐contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis...
Fluorine-contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800868
SubjectTerms Chemical synthesis
chlorinated polymer donors
Chlorine
Energy conversion efficiency
Energy levels
Fluorination
Fluorine
fullerene‐free acceptors
low‐cost
Materials science
Molecular chains
Molecular energy levels
Open circuit voltage
Optoelectronics
Photovoltaic cells
polymer solar cells
Polymers
Solar cells
Solar corona
Title Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800868
https://www.ncbi.nlm.nih.gov/pubmed/29602243
https://www.proquest.com/docview/2038252418
https://www.proquest.com/docview/2020492049
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iSQ--H-uLCIqn6LbJ1uS4rCsi-FbwVpI0QXFtZR8H_fXOpLvVVUTQQ6Flpm2azDTfJJkvhOwkEOpkUmiWWccZMmAxFWeGgXnU61oKI8JE-9l5cnInTu8b95-y-Et-iGrADT0j_K_RwbXpHXyQhuos8AZFElE5Zvvigi1ERdcf_FEIzwPZHm8wlQg5Ym2sxwfjt4_3St-g5jhyDV3P8SzRo0KXK06e9gd9s2_fvvA5_uer5sjMEJfSZmlI82TC5Qtk-hNb4SK5ugCzp5HYpe3AO4FJm_Qxp5dF5_UZJDcYJdOW63R6tB1SsjJqXqmmrYewzA9QbVYpHxV50V0id8ft29YJG-7IwCwAF8kSZ7yV3CROioZTtm40j3A40iorjNTcqsxbnURWaICSmfZeQbjrlYy4A2jBl8lkXuRulVBxaLnyh1J75YVuoJ6H0FLhtKuHh9QIG7VIaod05bhrRictiZbjFKsqraqqRvYq_ZeSqONHzY1RA6dDh-2BlEOsDHAGxNuVGFwN50907ooB6sQQT-FRIyulYVSvisHUAA3xGolD8_5ShrR5dNasrtb-ctM6mcLzcvHlBpnsdwduEwBS32wFJ3gHWtEEGg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4Vemg50Cd0C21dqVVPhk3sDfZxtSzatix9gdRbZDu2QGwTBLsH-uuZcTahW1QhlUMOyUwSx56Jv7HHnwHeZRjqFEoaXjgvODFgcZ0WlqN5dLtGSSvjRPv4IBsdyU8_e002Ia2Fqfkh2gE38oz4vyYHpwHp7WvWUFNE4qBEESxXS3CftvWOUdX3awYpAuiRbk_0uM6kangbu-n24v2L_dINsLmIXWPns_cIbFPsOufkdGs2tVvu91-Mjnf6rsewOoemrF_b0hO458unsPIHYeEz-PYFLZ8l8j0bRuoJWrfJTkr2tZpc_kLJDwqU2cBPJhdsGFdlFcxeMsMGxzHTD4Ft0SrvVmV1_hyO9oaHgxGfb8rAHWIXxTNvg1PCZl7Jnteua41IaETSaSetMsLpIjiTJU4aRJOFCUFjxBu0SoRHdCHWYLmsSv8CmNxxQocdZYIO0vRIL2B0qWnmNeBDOsCbJsndnLGcNs6Y5DXXcppTVeVtVXXgQ6t_VnN1_FNzs2nhfO6zFygVGC4jokHx21aM3kZTKKb01Yx0Ugyp6OjAem0Z7atStDUERKIDaWzfW8qQ93fH_fbs5f_c9AYejA7H-_n-x4PPG_CQrte5mJuwPD2f-VeIl6b2dfSIK6auCDU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRA9UJ5laQEjgTi5TWJvah9X-1B5tJRHpd4iPwViSap291B-PTPObtoFISQ45JDMOHbsmfgbPz4DvCgx1PFKGu5dEJwYsLguvOVoHllmlLQyTbQfHJb7x_LNSf_kyi7-lh-iG3Ajz0j_a3LwUx93L0lDjU-8QbkiVK6uww1ZZorsevTxkkCK8Hli2xN9rkuplrSNWbG7mn61W_oNa65C19T3TDbALEvdLjn5tjOf2R334xdCx__5rDtwewFM2aC1pLtwLdT3YP0KXeF9-PAe7Z7l8iUbJ-IJ2rXJvtbsqJlefEfJJwqT2TBMp-dsnPZkeWYvmGHDL2mdH8Ja3ymPmro5ewDHk_Hn4T5fHMnAHSIXxctgo1PClkHJftAus0bkNB7ptJNWGeG0j86UuZMGsaQ3MWqMd6NWuQiILcRDWKubOjwCJvec0HFPmaijNH3Sixhbapp3jfiSHvBli1RuwVdOx2ZMq5ZpuaioqqquqnrwqtM_bZk6_qi5vWzgauGx5ygVGCwjnkHx806MvkYTKKYOzZx0Cgyo6OrBZmsYXVYFmhrCIdGDIjXvX8pQDUYHg-7u8b8kegY3j0aT6t3rw7dbcIsetwsxt2FtdjYPTxAszezT5A8_AZXsBu0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Over+14%25+Efficiency+in+Polymer+Solar+Cells+Enabled+by+a+Chlorinated+Polymer+Donor&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Shaoqing&rft.au=Qin%2C+Yunpeng&rft.au=Zhu%2C+Jie&rft.au=Hou%2C+Jianhui&rft.date=2018-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=20&rft_id=info:doi/10.1002%2Fadma.201800868&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon