Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor
Fluorine‐contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high‐performance pho...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 20; pp. e1800868 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fluorine‐contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high‐performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB‐T‐2F and PBDB‐T‐2Cl, are synthesized and compared in parallel. The synthesis of PBDB‐T‐2Cl is much simpler than that of PBDB‐T‐2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB‐T‐2Cl‐based PSCs exhibit higher open circuit voltage (Voc) than the PBDB‐T‐2F‐based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors.
A chlorinated polymer donor, PBDB‐T‐2Cl, is synthesized and compared in parallel with its fluorinated counterpart, PBDB‐T‐2F. PBDB‐T‐2Cl exhibits a much simpler synthesis route, which is favorable for future practical application of organic solar cells; in addition, a high power conversion efficiency of 14.4% (with certified PCE of 13.9% by the National Institute of Metrology) and good stability tested over 1000 h is achieved. |
---|---|
AbstractList | Fluorine‐contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high‐performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB‐T‐2F and PBDB‐T‐2Cl, are synthesized and compared in parallel. The synthesis of PBDB‐T‐2Cl is much simpler than that of PBDB‐T‐2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB‐T‐2Cl‐based PSCs exhibit higher open circuit voltage (Voc) than the PBDB‐T‐2F‐based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors.
A chlorinated polymer donor, PBDB‐T‐2Cl, is synthesized and compared in parallel with its fluorinated counterpart, PBDB‐T‐2F. PBDB‐T‐2Cl exhibits a much simpler synthesis route, which is favorable for future practical application of organic solar cells; in addition, a high power conversion efficiency of 14.4% (with certified PCE of 13.9% by the National Institute of Metrology) and good stability tested over 1000 h is achieved. Fluorine-contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high-performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB-T-2F and PBDB-T-2Cl, are synthesized and compared in parallel. The synthesis of PBDB-T-2Cl is much simpler than that of PBDB-T-2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB-T-2Cl-based PSCs exhibit higher open circuit voltage (Voc ) than the PBDB-T-2F-based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors.Fluorine-contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high-performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB-T-2F and PBDB-T-2Cl, are synthesized and compared in parallel. The synthesis of PBDB-T-2Cl is much simpler than that of PBDB-T-2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB-T-2Cl-based PSCs exhibit higher open circuit voltage (Voc ) than the PBDB-T-2F-based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors. Fluorine-contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high-performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB-T-2F and PBDB-T-2Cl, are synthesized and compared in parallel. The synthesis of PBDB-T-2Cl is much simpler than that of PBDB-T-2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB-T-2Cl-based PSCs exhibit higher open circuit voltage (V ) than the PBDB-T-2F-based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors. Fluorine‐contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high‐performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB‐T‐2F and PBDB‐T‐2Cl, are synthesized and compared in parallel. The synthesis of PBDB‐T‐2Cl is much simpler than that of PBDB‐T‐2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB‐T‐2Cl‐based PSCs exhibit higher open circuit voltage ( V oc ) than the PBDB‐T‐2F‐based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors. Fluorine‐contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis and low yields in the preparation of components. Here, the feasibility of replacing the critical fluorine substituents in high‐performance photovoltaic polymer donors with chlorine is demonstrated, and two polymeric donors, PBDB‐T‐2F and PBDB‐T‐2Cl, are synthesized and compared in parallel. The synthesis of PBDB‐T‐2Cl is much simpler than that of PBDB‐T‐2F. The two polymers have very similar optoelectronic and morphological properties, except the chlorinated polymer possess lower molecular energy levels than the fluorinated one. As a result, the PBDB‐T‐2Cl‐based PSCs exhibit higher open circuit voltage (Voc) than the PBDB‐T‐2F‐based devices, leading to an outstanding power conversion efficiency of over 14%. This work establishes a more economical design paradigm of replacing fluorine with chlorine for preparing highly efficient polymer donors. |
Author | Qin, Yunpeng Hou, Jianhui Zhang, Shaoqing Zhu, Jie |
Author_xml | – sequence: 1 givenname: Shaoqing surname: Zhang fullname: Zhang, Shaoqing organization: Chinese Academy of Sciences – sequence: 2 givenname: Yunpeng surname: Qin fullname: Qin, Yunpeng organization: Chinese Academy of Sciences – sequence: 3 givenname: Jie surname: Zhu fullname: Zhu, Jie organization: Chinese Academy of Sciences – sequence: 4 givenname: Jianhui orcidid: 0000-0002-2105-6922 surname: Hou fullname: Hou, Jianhui email: hjhzlz@iccas.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29602243$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEURoMoWh9blxIQwc3UvGZIlqXWBygq6nrIZBKMZBJNpsr8e1NqFQriIlzIPSf3km8XbPrgNQCHGI0xQuRMtp0cE4Q5QrziG2CES4ILhkS5CUZI0LIQFeM7YDelV4SQqFC1DXZIroQwOgIPdx86QsxO4MwYq6z2aoDWw_vghi53HoOTEU61cwnOvGycbmEzQAmnLy5E62WfL1bwefAh7oMtI13SB991DzxfzJ6mV8XN3eX1dHJTKEYFLyrdGMVpU2nOSi0UaiTFjFOmhGINl1SJ1ihZYcUkrnArjRGYEiM4prrEhO6B0-W7bzG8z3Xq684mlReVXod5qgkiiInFyejxGvoa5tHn7TJFOSkJwzxTR9_UvOl0W79F28k41KvPysB4CagYUora_CAY1Ys06kUa9U8aWWBrgrK97G3wfZTW_a2JpfZpnR7-GVJPzm8nv-4XjKWcJw |
CitedBy_id | crossref_primary_10_1021_acsami_8b06717 crossref_primary_10_1002_admi_201800914 crossref_primary_10_1039_D1TA08495J crossref_primary_10_1063_1_5109140 crossref_primary_10_1002_solr_201900042 crossref_primary_10_1002_solr_202000275 crossref_primary_10_1007_s11664_025_11845_3 crossref_primary_10_1007_s11426_019_9466_6 crossref_primary_10_1002_adma_202005348 crossref_primary_10_1002_adma_202305424 crossref_primary_10_1016_j_joule_2018_05_010 crossref_primary_10_1039_C8TC03081B crossref_primary_10_1002_adts_201900067 crossref_primary_10_1016_j_orgel_2019_06_007 crossref_primary_10_1002_cjoc_202300616 crossref_primary_10_1002_marc_202300213 crossref_primary_10_1063_1674_0068_cjcp2109160 crossref_primary_10_1039_C9TA00614A crossref_primary_10_1002_adma_201804657 crossref_primary_10_1039_C8TC03963A crossref_primary_10_1007_s11426_019_9684_8 crossref_primary_10_1002_anie_202210356 crossref_primary_10_1088_1361_6528_ac335a crossref_primary_10_1021_acsami_9b20214 crossref_primary_10_1021_acsenergylett_2c00502 crossref_primary_10_1021_jacs_3c02764 crossref_primary_10_1016_j_matpr_2022_02_641 crossref_primary_10_1016_j_polymer_2023_126465 crossref_primary_10_1002_adma_202202752 crossref_primary_10_1039_C9TC06018A crossref_primary_10_1016_j_orgel_2019_07_010 crossref_primary_10_1093_nsr_nwab031 crossref_primary_10_1021_acsami_9b10641 crossref_primary_10_1088_1674_4926_42_10_100502 crossref_primary_10_1002_cphc_201900309 crossref_primary_10_1016_j_solener_2021_12_052 crossref_primary_10_1002_advs_201802103 crossref_primary_10_1021_acsenergylett_3c01202 crossref_primary_10_1021_acsenergylett_3c01444 crossref_primary_10_1039_D1TC05548H crossref_primary_10_1039_D0TA08725D crossref_primary_10_1021_acsaem_8b01576 crossref_primary_10_1039_C9TC01758E crossref_primary_10_1021_acsapm_0c00689 crossref_primary_10_1021_acsenergylett_8b01400 crossref_primary_10_1039_C9TC00403C crossref_primary_10_1002_nano_202000198 crossref_primary_10_1007_s13233_023_00112_1 crossref_primary_10_1007_s11426_022_1290_y crossref_primary_10_1002_adma_201806616 crossref_primary_10_1002_adma_201802499 crossref_primary_10_1021_acsapm_9b00156 crossref_primary_10_1002_adom_202102031 crossref_primary_10_1002_advs_201801026 crossref_primary_10_1021_acs_chemmater_9b01549 crossref_primary_10_1016_j_cej_2024_151624 crossref_primary_10_1016_j_gee_2020_07_017 crossref_primary_10_1039_C9MH01439J crossref_primary_10_1039_C8QM00609A crossref_primary_10_1016_j_dyepig_2019_108022 crossref_primary_10_1021_acsapm_3c03201 crossref_primary_10_1039_D0TA05787H crossref_primary_10_1016_j_comptc_2024_114581 crossref_primary_10_1002_cjoc_202100112 crossref_primary_10_1021_acs_macromol_0c01801 crossref_primary_10_1021_acs_chemrev_1c00955 crossref_primary_10_1021_acs_macromol_9b01569 crossref_primary_10_1039_D2SE00372D crossref_primary_10_1021_acsaem_8b01311 crossref_primary_10_1021_acs_jpclett_3c02999 crossref_primary_10_1038_s41467_023_42071_2 crossref_primary_10_1021_acsami_8b16554 crossref_primary_10_1002_adma_202313074 crossref_primary_10_3390_nano11102732 crossref_primary_10_1002_solr_201900071 crossref_primary_10_1021_acs_jpclett_9b01264 crossref_primary_10_3389_fchem_2018_00303 crossref_primary_10_1002_adfm_202110159 crossref_primary_10_1002_aenm_201803657 crossref_primary_10_1007_s11708_022_0826_8 crossref_primary_10_1021_acs_macromol_9b00484 crossref_primary_10_1016_j_jphotochem_2023_115279 crossref_primary_10_1039_C8TA08769E crossref_primary_10_1002_aelm_202300115 crossref_primary_10_1007_s11426_019_9453_7 crossref_primary_10_3390_en14144200 crossref_primary_10_1016_j_nanoen_2019_04_053 crossref_primary_10_1039_C8EE02560F crossref_primary_10_1039_C9QM00754G crossref_primary_10_3390_en16114494 crossref_primary_10_1002_celc_201901422 crossref_primary_10_1039_C8TC04746D crossref_primary_10_1007_s11426_018_9363_8 crossref_primary_10_1016_j_joule_2019_01_004 crossref_primary_10_1007_s11426_018_9350_4 crossref_primary_10_1016_j_joule_2019_01_009 crossref_primary_10_1039_D2TA02307E crossref_primary_10_1002_poc_3909 crossref_primary_10_1021_acs_energyfuels_3c00526 crossref_primary_10_1055_s_0041_1727234 crossref_primary_10_1364_OE_382245 crossref_primary_10_1002_solr_201900094 crossref_primary_10_1016_j_isci_2019_06_033 crossref_primary_10_1021_acsami_3c18789 crossref_primary_10_1039_C9EE02531F crossref_primary_10_1002_admi_202000577 crossref_primary_10_1007_s10118_023_2895_5 crossref_primary_10_26599_NRE_2023_9120088 crossref_primary_10_1002_aenm_202002142 crossref_primary_10_1002_aenm_202101705 crossref_primary_10_1039_C8EE03608J crossref_primary_10_1007_s11426_018_9334_9 crossref_primary_10_1039_C8TA03753A crossref_primary_10_1016_j_mtener_2019_04_005 crossref_primary_10_1039_C8TA10882J crossref_primary_10_1039_C9TC03407B crossref_primary_10_1039_C9TC06362E crossref_primary_10_1007_s10904_022_02301_4 crossref_primary_10_1039_C8TA05800H crossref_primary_10_1021_acsami_8b06306 crossref_primary_10_1088_1674_4926_42_7_070501 crossref_primary_10_1007_s40820_021_00604_8 crossref_primary_10_1021_acscatal_2c06365 crossref_primary_10_1557_jmr_2020_254 crossref_primary_10_1039_C8TA11972D crossref_primary_10_1016_j_polymer_2019_121580 crossref_primary_10_1002_aenm_202301110 crossref_primary_10_1002_advs_202403334 crossref_primary_10_1039_D3TC03287F crossref_primary_10_1038_s41566_019_0573_5 crossref_primary_10_1016_j_mtcomm_2022_104757 crossref_primary_10_1039_D0EE03387A crossref_primary_10_1002_chem_201804020 crossref_primary_10_1039_C8TA09042D crossref_primary_10_1039_D0TC00587H crossref_primary_10_1021_acsami_9b05463 crossref_primary_10_1039_C8QM00347E crossref_primary_10_1016_j_dyepig_2020_108987 crossref_primary_10_1039_C8TA10662B crossref_primary_10_1002_anie_201910297 crossref_primary_10_1002_solr_201800250 crossref_primary_10_1039_D0QM00305K crossref_primary_10_1002_solr_201800251 crossref_primary_10_1021_acsami_2c17418 crossref_primary_10_1021_acsami_8b16131 crossref_primary_10_1002_solr_202100007 crossref_primary_10_1021_acs_macromol_9b01742 crossref_primary_10_1039_C9SC04949E crossref_primary_10_1039_D0TA01425G crossref_primary_10_1021_acsenergylett_1c01336 crossref_primary_10_1080_15421406_2022_2046914 crossref_primary_10_1016_j_orgel_2019_05_038 crossref_primary_10_1002_cssc_201802939 crossref_primary_10_1039_C8TA09370A crossref_primary_10_1039_C8TC03303J crossref_primary_10_1039_C8TC03872D crossref_primary_10_1021_acsami_9b17208 crossref_primary_10_1016_j_orgel_2019_105603 crossref_primary_10_1002_aelm_201800899 crossref_primary_10_1007_s11426_024_2243_8 crossref_primary_10_1021_acsami_1c22093 crossref_primary_10_1038_s41467_020_18378_9 crossref_primary_10_1039_C8TA11624E crossref_primary_10_3390_polym17020248 crossref_primary_10_1021_acs_jpcb_8b06283 crossref_primary_10_1016_j_dyepig_2018_10_071 crossref_primary_10_1021_acsaem_8b02252 crossref_primary_10_1007_s10118_023_2984_5 crossref_primary_10_1021_acsami_4c19907 crossref_primary_10_1021_acsaem_2c02823 crossref_primary_10_1021_jacs_8b12126 crossref_primary_10_1021_acsaem_1c01763 crossref_primary_10_1038_s41467_019_09062_8 crossref_primary_10_1002_cssc_202402226 crossref_primary_10_1016_j_orgel_2020_105874 crossref_primary_10_1016_j_mset_2019_02_004 crossref_primary_10_1016_j_orgel_2020_105871 crossref_primary_10_2139_ssrn_4093862 crossref_primary_10_1002_aenm_202002572 crossref_primary_10_1016_j_matdes_2022_110561 crossref_primary_10_1038_s41467_024_46797_5 crossref_primary_10_1016_j_nanoen_2019_02_038 crossref_primary_10_1002_solr_202000615 crossref_primary_10_1021_acs_nanolett_8b03950 crossref_primary_10_1007_s40843_022_2339_9 crossref_primary_10_1021_acsami_2c15661 crossref_primary_10_1002_cjoc_201900503 crossref_primary_10_1039_D2RA07957G crossref_primary_10_1016_j_polymer_2020_122900 crossref_primary_10_1007_s11426_019_9457_5 crossref_primary_10_1002_adma_201904215 crossref_primary_10_1039_D2TA08621B crossref_primary_10_6023_A23050245 crossref_primary_10_1039_C9PY01114E crossref_primary_10_1039_D3RA01454A crossref_primary_10_1002_solr_201800291 crossref_primary_10_1021_acs_chemrev_1c00581 crossref_primary_10_1039_C9TA06719A crossref_primary_10_1039_C8CC09367A crossref_primary_10_1021_acs_chemmater_2c02141 crossref_primary_10_1039_D1TC01860D crossref_primary_10_1002_adom_202000466 crossref_primary_10_1002_slct_202100921 crossref_primary_10_1016_j_matchemphys_2020_122874 crossref_primary_10_1002_aenm_201900409 crossref_primary_10_1021_acs_jpclett_0c00405 crossref_primary_10_1002_adma_202402575 crossref_primary_10_1016_j_dyepig_2022_110380 crossref_primary_10_3390_pr11061852 crossref_primary_10_1002_solr_201800299 crossref_primary_10_1002_solr_202000638 crossref_primary_10_1016_j_nxmate_2024_100352 crossref_primary_10_1021_acsami_8b20415 crossref_primary_10_1021_acsami_8b19449 crossref_primary_10_1039_D3TA00293D crossref_primary_10_1016_j_reactfunctpolym_2019_104378 crossref_primary_10_1016_j_dyepig_2020_108950 crossref_primary_10_1021_acs_chemmater_8b05047 crossref_primary_10_1039_D2NR03992C crossref_primary_10_1002_solr_201800286 crossref_primary_10_1039_C9TA07361B crossref_primary_10_1002_aenm_202001450 crossref_primary_10_1002_adfm_202112511 crossref_primary_10_1002_aenm_201901443 crossref_primary_10_1002_admi_201901053 crossref_primary_10_1038_s41467_023_37526_5 crossref_primary_10_1016_j_orgel_2018_09_047 crossref_primary_10_1021_acscatal_1c03298 crossref_primary_10_1039_C8TA11006A crossref_primary_10_1002_advs_202205682 crossref_primary_10_1016_j_cej_2022_135182 crossref_primary_10_1016_j_cap_2020_01_003 crossref_primary_10_1002_EXP_20230122 crossref_primary_10_1021_acs_macromol_0c02496 crossref_primary_10_1088_1361_6528_ab57d0 crossref_primary_10_1002_adfm_202005787 crossref_primary_10_1039_C8TC04149K crossref_primary_10_3103_S0003701X20050072 crossref_primary_10_1007_s11664_020_08677_8 crossref_primary_10_1002_advs_202000421 crossref_primary_10_1039_C8TA06989A crossref_primary_10_1016_j_orgel_2019_105530 crossref_primary_10_1039_D0TA04734A crossref_primary_10_1002_adma_201807019 crossref_primary_10_1002_ange_202205975 crossref_primary_10_1021_acsami_8b18493 crossref_primary_10_1016_j_orgel_2021_106131 crossref_primary_10_1021_acsami_0c08442 crossref_primary_10_1002_adma_201800613 crossref_primary_10_1039_C9TA09799F crossref_primary_10_1021_acsami_1c14317 crossref_primary_10_1039_D0TA03511D crossref_primary_10_1039_C9CP02944C crossref_primary_10_1016_j_cej_2022_137375 crossref_primary_10_1002_adfm_201802324 crossref_primary_10_1039_D1TA03161A crossref_primary_10_1016_j_cej_2021_133950 crossref_primary_10_1002_adfm_201803418 crossref_primary_10_1016_j_orgel_2021_106139 crossref_primary_10_1002_agt2_111 crossref_primary_10_1021_acsaem_1c03759 crossref_primary_10_1002_pip_3078 crossref_primary_10_1016_j_orgel_2021_106340 crossref_primary_10_1002_adfm_202301108 crossref_primary_10_1002_aenm_201903846 crossref_primary_10_1002_aenm_202002746 crossref_primary_10_1007_s00894_024_06062_4 crossref_primary_10_1021_acsami_8b20567 crossref_primary_10_1002_solr_202000608 crossref_primary_10_1039_C8TA11004B crossref_primary_10_26599_NRE_2022_9120088 crossref_primary_10_1002_advs_201900565 crossref_primary_10_1021_acsami_1c15896 crossref_primary_10_1002_tcr_201800131 crossref_primary_10_1039_D0RA10816B crossref_primary_10_1039_C8TA12336E crossref_primary_10_1039_C8TA12530A crossref_primary_10_1088_1361_6463_ace1ff crossref_primary_10_1021_acsami_8b10312 crossref_primary_10_1002_aenm_201802832 crossref_primary_10_1016_j_orgel_2019_105555 crossref_primary_10_1021_acs_jpcc_1c02119 crossref_primary_10_1021_acs_jpcb_1c03989 crossref_primary_10_1016_j_orgel_2019_03_039 crossref_primary_10_1039_C9CC03536B crossref_primary_10_1016_j_orgel_2018_10_042 crossref_primary_10_1021_acs_chemmater_3c00384 crossref_primary_10_1039_C8CP02730G crossref_primary_10_1039_C8TA11441B crossref_primary_10_1002_aenm_201801968 crossref_primary_10_1039_D1QM00026H crossref_primary_10_37865_jafe_2020_0019 crossref_primary_10_1039_D0TC01487G crossref_primary_10_1016_j_cej_2022_136068 crossref_primary_10_1002_adma_201805089 crossref_primary_10_1016_j_polymer_2019_122131 crossref_primary_10_1021_acs_chemmater_9b03694 crossref_primary_10_1039_D1EE01957K crossref_primary_10_1039_D0TA00159G crossref_primary_10_1002_adma_202008158 crossref_primary_10_1038_s41578_019_0093_4 crossref_primary_10_1021_acsenergylett_9b00416 crossref_primary_10_1002_adma_201808356 crossref_primary_10_1016_j_matre_2020_09_001 crossref_primary_10_1038_s43246_025_00751_0 crossref_primary_10_1007_s00339_020_3389_8 crossref_primary_10_1002_smll_201905309 crossref_primary_10_1021_acs_langmuir_2c00290 crossref_primary_10_1021_acs_jpclett_9b01931 crossref_primary_10_7498_aps_69_20191699 crossref_primary_10_1002_aesr_202200179 crossref_primary_10_1016_j_dyepig_2018_11_040 crossref_primary_10_1021_acs_macromol_8b02445 crossref_primary_10_1039_D3YA00060E crossref_primary_10_1002_aenm_201901254 crossref_primary_10_1021_acsami_8b22337 crossref_primary_10_1016_j_jorganchem_2019_04_026 crossref_primary_10_1021_acsami_9b18963 crossref_primary_10_1016_j_orgel_2019_04_011 crossref_primary_10_1021_acsenergylett_2c02153 crossref_primary_10_1039_D4CC04053H crossref_primary_10_1021_acs_jpclett_0c01673 crossref_primary_10_1002_adfm_202007931 crossref_primary_10_1039_C9TA01003C crossref_primary_10_1039_D2TA09936E crossref_primary_10_3390_polym11040655 crossref_primary_10_1016_j_dyepig_2020_108577 crossref_primary_10_1016_j_jpowsour_2021_229961 crossref_primary_10_3389_fmats_2022_856008 crossref_primary_10_1039_C9TC04798K crossref_primary_10_1021_acsaem_9b00303 crossref_primary_10_1007_s13233_019_7075_7 crossref_primary_10_1016_j_dyepig_2018_11_056 crossref_primary_10_1016_j_joule_2018_09_001 crossref_primary_10_1021_acsami_9b14133 crossref_primary_10_1021_acs_jpclett_8b03247 crossref_primary_10_1002_aenm_202100056 crossref_primary_10_1039_C8TA11420J crossref_primary_10_1021_acs_nanolett_8b02452 crossref_primary_10_1002_aenm_202101383 crossref_primary_10_1021_accountsmr_1c00119 crossref_primary_10_1002_adfm_202011168 crossref_primary_10_1039_D1MH01349A crossref_primary_10_1021_acsami_0c22946 crossref_primary_10_1002_aenm_201800856 crossref_primary_10_1016_j_orgel_2022_106465 crossref_primary_10_1002_cjoc_201800471 crossref_primary_10_1002_solr_202100326 crossref_primary_10_1039_C9TA02332A crossref_primary_10_1002_adfm_202111706 crossref_primary_10_1002_smll_201805321 crossref_primary_10_1002_aenm_202102000 crossref_primary_10_1021_acsaem_0c00711 crossref_primary_10_1002_advs_201801743 crossref_primary_10_1039_C9TC05643B crossref_primary_10_1002_adma_201805041 crossref_primary_10_1021_acsami_9b03499 crossref_primary_10_1039_D2TA00174H crossref_primary_10_1007_s10853_019_03551_3 crossref_primary_10_1016_j_dyepig_2020_108559 crossref_primary_10_1038_s41467_018_05514_9 crossref_primary_10_1002_solr_201900417 crossref_primary_10_1039_D0TA11306A crossref_primary_10_1063_1_5045351 crossref_primary_10_1002_advs_201903419 crossref_primary_10_3390_molecules27249037 crossref_primary_10_1021_acsami_2c09323 crossref_primary_10_1021_acsami_9b02964 crossref_primary_10_1002_chem_202000951 crossref_primary_10_1002_ente_202000611 crossref_primary_10_1016_j_mtphys_2024_101495 crossref_primary_10_1038_s41427_019_0163_5 crossref_primary_10_1039_C9TA08620J crossref_primary_10_1002_smll_202407147 crossref_primary_10_1016_j_matt_2019_10_025 crossref_primary_10_1002_aenm_202103977 crossref_primary_10_1039_C9TA00948E crossref_primary_10_3390_polym11101665 crossref_primary_10_1021_acs_chemmater_8b01491 crossref_primary_10_1002_aenm_201900190 crossref_primary_10_1021_acsami_9b12522 crossref_primary_10_1007_s11426_023_1856_4 crossref_primary_10_1021_acsaem_9b00520 crossref_primary_10_1039_C8TA10923K crossref_primary_10_1016_j_polymer_2019_121906 crossref_primary_10_1021_acsaem_9b01624 crossref_primary_10_1039_C9RA00816K crossref_primary_10_1002_aenm_201902145 crossref_primary_10_1039_C8TA05238G crossref_primary_10_1039_C9TC01922G crossref_primary_10_1002_asia_201800860 crossref_primary_10_1007_s11426_018_9371_0 crossref_primary_10_1002_adma_201906045 crossref_primary_10_3390_polym11020228 crossref_primary_10_2184_lsj_47_3_147 crossref_primary_10_1002_pi_6280 crossref_primary_10_1002_anie_201907467 crossref_primary_10_1002_adfm_201909535 crossref_primary_10_1002_admi_202000918 crossref_primary_10_1088_2053_1591_aace70 crossref_primary_10_1088_1367_2630_ac37c7 crossref_primary_10_1126_sciadv_adg9021 crossref_primary_10_1002_marc_202200201 crossref_primary_10_1002_er_4870 crossref_primary_10_1039_D0MA00487A crossref_primary_10_1039_D0TC04909C crossref_primary_10_1021_acs_chemmater_8b03455 crossref_primary_10_1021_acsami_9b18095 crossref_primary_10_1039_D4TC02099E crossref_primary_10_1039_D0EE01763A crossref_primary_10_1039_D1TC03300J crossref_primary_10_1002_advs_201901490 crossref_primary_10_1002_solr_202200697 crossref_primary_10_1016_j_jphotochem_2023_115162 crossref_primary_10_1002_aenm_201801582 crossref_primary_10_1007_s11426_018_9429_1 crossref_primary_10_1021_acsami_9b16900 crossref_primary_10_3389_fenrg_2018_00113 crossref_primary_10_1002_anie_202303476 crossref_primary_10_1039_D3TA05177C crossref_primary_10_1016_j_cej_2024_148648 crossref_primary_10_1002_solr_202400542 crossref_primary_10_1007_s11426_019_9681_8 crossref_primary_10_1088_1361_6463_aca987 crossref_primary_10_1039_C9TC06667E crossref_primary_10_1039_C8TA09763A crossref_primary_10_1016_j_solener_2021_06_049 crossref_primary_10_1021_acs_chemmater_9b02520 crossref_primary_10_1007_s11426_021_1180_6 crossref_primary_10_1039_D0TA03791E crossref_primary_10_1039_D0MA00790K crossref_primary_10_1002_solr_201900453 crossref_primary_10_3390_ma11122579 crossref_primary_10_1002_adfm_201907570 crossref_primary_10_1039_C9TA03177D crossref_primary_10_1088_2058_8585_ab5f57 crossref_primary_10_1002_solr_202100510 crossref_primary_10_1021_acs_jpcc_0c05644 crossref_primary_10_1002_adfm_202102361 crossref_primary_10_1039_C9NJ02604E crossref_primary_10_1002_adfm_201805872 crossref_primary_10_1007_s10854_020_03058_7 crossref_primary_10_1021_acsenergylett_9b00681 crossref_primary_10_1039_D0NJ05037G crossref_primary_10_1039_C8QO00788H crossref_primary_10_1039_D0TA01260B crossref_primary_10_1002_solr_201900005 crossref_primary_10_1002_adma_202001591 crossref_primary_10_1002_slct_201904353 crossref_primary_10_1021_acsami_0c02712 crossref_primary_10_1016_j_optmat_2019_03_020 crossref_primary_10_1039_C8TA11378E crossref_primary_10_1021_acsami_0c11410 crossref_primary_10_1016_j_orgel_2018_09_015 crossref_primary_10_1002_adfm_202102371 crossref_primary_10_1002_ange_201806291 crossref_primary_10_1039_C8TA07544A crossref_primary_10_1063_5_0189191 crossref_primary_10_1039_C9TA06311K crossref_primary_10_1021_acsami_0c01850 crossref_primary_10_1002_solr_201900472 crossref_primary_10_1039_C9TC05358A crossref_primary_10_1002_solr_201900471 crossref_primary_10_1002_qua_27092 crossref_primary_10_1021_acs_chemmater_9b01011 crossref_primary_10_1002_solr_201900475 crossref_primary_10_1002_aisy_201900108 crossref_primary_10_1002_adts_202100019 crossref_primary_10_1002_adma_201807842 crossref_primary_10_1002_adom_202402257 crossref_primary_10_1002_adma_202302005 crossref_primary_10_1002_adfm_202210534 crossref_primary_10_1149_2162_8777_ac53f5 crossref_primary_10_1002_adma_202201623 crossref_primary_10_1039_C8TA11484F crossref_primary_10_1016_j_polymer_2021_123991 crossref_primary_10_1021_acsami_1c17199 crossref_primary_10_1002_advs_202305356 crossref_primary_10_1021_acs_accounts_0c00009 crossref_primary_10_1039_D0RA07935A crossref_primary_10_1002_solr_201900262 crossref_primary_10_1002_marc_201800906 crossref_primary_10_1103_PhysRevApplied_11_014048 crossref_primary_10_1039_D0QM00826E crossref_primary_10_1002_aenm_201800698 crossref_primary_10_1002_adsu_202000054 crossref_primary_10_1039_C8TA12465E crossref_primary_10_1002_adma_202003500 crossref_primary_10_1039_C9TC04680A crossref_primary_10_1021_acsami_0c07173 crossref_primary_10_1021_acs_macromol_9b00057 crossref_primary_10_1016_j_orgel_2018_09_034 crossref_primary_10_1021_acsami_2c00764 crossref_primary_10_1002_tcr_201800182 crossref_primary_10_3389_fphy_2020_00022 crossref_primary_10_1002_anie_202503721 crossref_primary_10_1002_aenm_202400064 crossref_primary_10_1021_acsenergylett_0c00857 crossref_primary_10_1021_acsami_2c01606 crossref_primary_10_1021_acsenergylett_0c01949 crossref_primary_10_1007_s11426_018_9260_2 crossref_primary_10_1002_adfm_201806747 crossref_primary_10_1039_D2EE00726F crossref_primary_10_1039_D0TC03709E crossref_primary_10_1016_j_mattod_2019_10_023 crossref_primary_10_1021_acsami_1c08545 crossref_primary_10_1002_adma_202202659 crossref_primary_10_1016_j_isci_2020_100965 crossref_primary_10_1039_D3PY00229B crossref_primary_10_1002_cjoc_202000666 crossref_primary_10_1002_macp_201800297 crossref_primary_10_1021_acsami_2c10286 crossref_primary_10_1021_acsami_0c12390 crossref_primary_10_1039_C9QM00129H crossref_primary_10_1039_D0TC03077E crossref_primary_10_1016_j_mtener_2018_12_009 crossref_primary_10_1080_15421406_2024_2448313 crossref_primary_10_1039_C9GC02288K crossref_primary_10_1002_adfm_202103784 crossref_primary_10_1021_acsami_0c12147 crossref_primary_10_1039_C8RA08360F crossref_primary_10_1109_LED_2020_3016940 crossref_primary_10_1002_aesr_202000020 crossref_primary_10_1371_journal_pone_0234115 crossref_primary_10_1039_C9RA05814A crossref_primary_10_1002_aenm_202200129 crossref_primary_10_1002_solr_202300219 crossref_primary_10_1016_j_dyepig_2021_109162 crossref_primary_10_1021_acsami_1c19200 crossref_primary_10_1021_acsami_8b16628 crossref_primary_10_1038_s41578_022_00514_0 crossref_primary_10_1021_acsami_9b07112 crossref_primary_10_1063_5_0002979 crossref_primary_10_1039_C8TA06378H crossref_primary_10_1002_solr_202101084 crossref_primary_10_1021_acs_macromol_0c00405 crossref_primary_10_1002_asia_201801669 crossref_primary_10_1021_acsami_9b10514 crossref_primary_10_7567_1347_4065_ab56bf crossref_primary_10_1021_acsapm_0c00791 crossref_primary_10_1080_15421406_2020_1741820 crossref_primary_10_1016_j_mattod_2018_09_004 crossref_primary_10_1039_C8TA10549A crossref_primary_10_1039_D2NJ06222D crossref_primary_10_1039_D2TA03647A crossref_primary_10_1002_adma_201906557 crossref_primary_10_1021_acsami_8b17753 crossref_primary_10_1039_D3EE00174A crossref_primary_10_1002_adma_202406690 crossref_primary_10_1039_C9QM00212J crossref_primary_10_1016_j_isci_2020_100981 crossref_primary_10_1039_D2TC02786K crossref_primary_10_1039_C9NJ02484K crossref_primary_10_1021_acs_chemmater_8b04265 crossref_primary_10_1063_5_0184403 crossref_primary_10_1039_C9MH00379G crossref_primary_10_1021_acs_chemmater_8b05352 crossref_primary_10_1002_smll_201800870 crossref_primary_10_1021_acs_jpcc_0c06623 crossref_primary_10_1021_jacs_8b05038 crossref_primary_10_1021_acs_chemmater_9b00980 crossref_primary_10_1039_D2EE02380F crossref_primary_10_1016_j_solener_2020_02_041 crossref_primary_10_1021_acsomega_9b01125 crossref_primary_10_1016_j_nanoen_2018_11_010 crossref_primary_10_1002_aenm_201802021 crossref_primary_10_1021_acs_macromol_9b01233 crossref_primary_10_1038_s41528_022_00222_3 crossref_primary_10_1002_ange_201910297 crossref_primary_10_1007_s40843_022_2162_2 crossref_primary_10_1021_acsami_9b18278 crossref_primary_10_1039_D3TC02932H crossref_primary_10_1088_1674_4926_42_1_010502 crossref_primary_10_1088_1674_4926_42_1_010501 crossref_primary_10_3390_polym12040992 crossref_primary_10_1021_acsaem_2c02791 crossref_primary_10_1021_acsaem_8b01447 crossref_primary_10_1021_acsami_1c15278 crossref_primary_10_1016_j_solener_2020_02_057 crossref_primary_10_3389_fchem_2018_00414 crossref_primary_10_1039_D0QO00033G crossref_primary_10_1007_s11426_021_1094_y crossref_primary_10_1002_smll_202104451 crossref_primary_10_3389_fchem_2018_00413 crossref_primary_10_1002_aenm_201803541 crossref_primary_10_1039_D1MH00868D crossref_primary_10_1002_aenm_202003141 crossref_primary_10_1038_s41560_019_0448_5 crossref_primary_10_1039_D4PY00659C crossref_primary_10_1021_acsami_9b18048 crossref_primary_10_1016_j_orgel_2018_12_014 crossref_primary_10_1002_chem_201904178 crossref_primary_10_1002_adma_201908305 crossref_primary_10_1039_C9TA05789G crossref_primary_10_1021_acsaem_8b01433 crossref_primary_10_1002_marc_201800660 crossref_primary_10_1039_D0CP02520H crossref_primary_10_1021_acs_chemmater_9b02501 crossref_primary_10_1039_D2TC01433E crossref_primary_10_1002_adfm_202102413 crossref_primary_10_1021_acsami_9b08007 crossref_primary_10_1016_j_cclet_2019_01_031 crossref_primary_10_1039_D0TA02859B crossref_primary_10_1002_macp_201900084 crossref_primary_10_1039_D4TC00502C crossref_primary_10_1002_aenm_201801352 crossref_primary_10_1002_solr_201800340 crossref_primary_10_1039_C9QM00366E crossref_primary_10_1002_aenm_201802686 crossref_primary_10_1039_D0TC03096A crossref_primary_10_1021_acs_chemmater_8b02276 crossref_primary_10_1039_C9PY01438A crossref_primary_10_1002_marc_201900035 crossref_primary_10_1039_C8TA08406H crossref_primary_10_1021_acs_chemmater_9b01407 crossref_primary_10_1021_acs_chemmater_8b05316 crossref_primary_10_1021_acsenergylett_0c00564 crossref_primary_10_1039_C9TA13128K crossref_primary_10_1002_smll_201902602 crossref_primary_10_1021_acs_chemmater_9b04911 crossref_primary_10_1021_acs_jpclett_9b00063 crossref_primary_10_1002_solr_201800333 crossref_primary_10_1039_D3TC00666B crossref_primary_10_1002_solr_201800332 crossref_primary_10_1016_j_dyepig_2019_02_040 crossref_primary_10_1038_s41467_021_26995_1 crossref_primary_10_1002_aenm_202003103 crossref_primary_10_1002_advs_201801180 crossref_primary_10_1021_acs_chemmater_4c02751 crossref_primary_10_1002_aelm_201901241 crossref_primary_10_1016_j_polymer_2018_10_062 crossref_primary_10_1039_D2TA04800K crossref_primary_10_1002_bkcs_11752 crossref_primary_10_3390_molecules23061270 crossref_primary_10_1039_C8TA07134A crossref_primary_10_1002_solr_202000364 crossref_primary_10_1039_C9QM00013E crossref_primary_10_1039_D2TA09699D crossref_primary_10_1021_acs_jpclett_0c00919 crossref_primary_10_1016_j_joule_2019_06_016 crossref_primary_10_1002_smll_202208217 crossref_primary_10_1016_j_joule_2019_05_008 crossref_primary_10_1021_acsapm_3c00408 crossref_primary_10_1021_acsenergylett_8b00825 crossref_primary_10_1039_C8TA05920A crossref_primary_10_1039_D3TA06624J crossref_primary_10_1002_nano_202000027 crossref_primary_10_1021_acsapm_8b00019 crossref_primary_10_1016_j_apsusc_2022_153710 crossref_primary_10_1002_adma_202100474 crossref_primary_10_1021_acs_macromol_8b02526 crossref_primary_10_1021_accountsmr_2c00020 crossref_primary_10_1021_acsaem_2c00960 crossref_primary_10_1021_acs_macromol_8b01677 crossref_primary_10_1021_acs_chemmater_8b04087 crossref_primary_10_1039_C9NJ01574D crossref_primary_10_1039_D3NJ02846A crossref_primary_10_1021_acs_chemmater_9b00926 crossref_primary_10_1021_acsaem_2c01807 crossref_primary_10_1016_j_orgel_2020_105705 crossref_primary_10_1002_aenm_201803175 crossref_primary_10_1002_pi_5989 crossref_primary_10_3389_fchem_2020_603134 crossref_primary_10_1021_acs_jpcc_9b02672 crossref_primary_10_1039_C9TA00227H crossref_primary_10_1021_acsenergylett_2c01316 crossref_primary_10_1038_s41467_019_08361_4 crossref_primary_10_3390_molecules27061800 crossref_primary_10_1002_smll_201801793 crossref_primary_10_1016_j_nanoen_2019_01_082 crossref_primary_10_1002_bte2_20220040 crossref_primary_10_1016_j_cej_2022_139046 crossref_primary_10_1002_aenm_201901823 crossref_primary_10_1039_C9MH00993K crossref_primary_10_1016_j_jallcom_2020_158228 crossref_primary_10_1039_D0BM01569E crossref_primary_10_1039_D0TC03095C crossref_primary_10_1088_1402_4896_ad3584 crossref_primary_10_1002_adma_201804723 crossref_primary_10_1002_ange_202210356 crossref_primary_10_1021_acs_macromol_9b00793 crossref_primary_10_1016_j_cej_2023_141281 crossref_primary_10_1021_acs_macromol_4c02123 crossref_primary_10_1039_D0TA12288B crossref_primary_10_1002_eom2_12006 crossref_primary_10_1039_D2TC03701G crossref_primary_10_1007_s11426_019_9556_7 crossref_primary_10_1002_ente_202100908 crossref_primary_10_3389_fchem_2018_00404 crossref_primary_10_1002_smsc_202200006 crossref_primary_10_1007_s10854_020_03626_x crossref_primary_10_1007_s40843_020_1514_3 crossref_primary_10_1039_C8TA09164A crossref_primary_10_1039_C9EE01030K crossref_primary_10_1002_solr_201800366 crossref_primary_10_1002_cjoc_202000235 crossref_primary_10_1002_solr_201800120 crossref_primary_10_1039_C9EE02939G crossref_primary_10_1002_ange_202303476 crossref_primary_10_1002_adts_201900136 crossref_primary_10_1002_solr_201800190 crossref_primary_10_1002_solr_202000749 crossref_primary_10_1016_j_orgel_2018_10_019 crossref_primary_10_3390_polym11050746 crossref_primary_10_1039_D0TA09671G crossref_primary_10_1080_15421406_2019_1645458 crossref_primary_10_1002_ajoc_201800389 crossref_primary_10_1039_C9NJ04621F crossref_primary_10_1002_aesr_202000050 crossref_primary_10_1002_aenm_201802050 crossref_primary_10_1002_bkcs_12891 crossref_primary_10_1016_j_jechem_2020_04_041 crossref_primary_10_1021_acs_macromol_4c00195 crossref_primary_10_1016_j_jallcom_2019_06_108 crossref_primary_10_1002_adfm_201906855 crossref_primary_10_1016_j_joule_2020_12_013 crossref_primary_10_1016_j_joule_2020_04_014 crossref_primary_10_1021_acsami_0c12190 crossref_primary_10_1039_C9QM00327D crossref_primary_10_1039_D0EE02461A crossref_primary_10_1021_acsami_0c14367 crossref_primary_10_1002_aenm_202001589 crossref_primary_10_1016_j_orgel_2018_10_026 crossref_primary_10_1039_C8TA11637G crossref_primary_10_1002_advs_202000509 crossref_primary_10_1039_C9TA00468H crossref_primary_10_1021_acsaem_1c01653 crossref_primary_10_1002_solr_201800186 crossref_primary_10_1016_j_dyepig_2019_04_064 crossref_primary_10_1002_cjoc_202000451 crossref_primary_10_1016_j_dyepig_2020_108613 crossref_primary_10_1016_j_orgel_2018_10_034 crossref_primary_10_1002_ange_202503721 crossref_primary_10_1021_acsami_8b18240 crossref_primary_10_1002_adma_201803836 crossref_primary_10_1002_pola_29264 crossref_primary_10_1021_acsenergylett_0c01010 crossref_primary_10_1038_s41428_022_00712_1 crossref_primary_10_1002_adma_201907840 crossref_primary_10_1039_C9TA00114J crossref_primary_10_1021_acs_jpcc_8b11318 crossref_primary_10_1002_anie_202205975 crossref_primary_10_1016_j_nanoen_2019_01_039 crossref_primary_10_1021_acs_nanolett_0c05045 crossref_primary_10_3389_fsufs_2024_1277934 crossref_primary_10_1002_adfm_201902478 crossref_primary_10_1002_cjoc_202300144 crossref_primary_10_1016_j_cej_2022_134878 crossref_primary_10_1038_s41467_019_08508_3 crossref_primary_10_1039_C9TA10624C crossref_primary_10_1021_acsami_8b19563 crossref_primary_10_1039_C8TC06407E crossref_primary_10_1039_D0SE00310G crossref_primary_10_1002_adma_201905657 crossref_primary_10_1021_acsenergylett_0c00177 crossref_primary_10_1039_C8CC06198J crossref_primary_10_1002_adfm_201808378 crossref_primary_10_1002_anie_201806291 crossref_primary_10_1021_acsami_8b07342 crossref_primary_10_1039_D4PY01152J crossref_primary_10_1021_acsami_0c23087 crossref_primary_10_1039_C8TC05318A crossref_primary_10_1021_acsami_9b19549 crossref_primary_10_1007_s12598_023_02415_9 crossref_primary_10_1021_acs_jpca_9b01937 crossref_primary_10_1039_C8QM00318A crossref_primary_10_1002_solr_202000704 crossref_primary_10_1039_D1CP03114G crossref_primary_10_1002_adma_201900477 crossref_primary_10_1016_j_matchemphys_2021_124680 crossref_primary_10_1021_acsapm_1c00743 crossref_primary_10_1021_acsami_0c10658 crossref_primary_10_1039_C9TA07919J crossref_primary_10_1016_j_cclet_2019_06_051 crossref_primary_10_1039_D1TA05268C crossref_primary_10_1039_D3PY00815K crossref_primary_10_1109_JPHOTOV_2019_2925556 crossref_primary_10_1021_acsami_9b02212 crossref_primary_10_1002_pcr2_10064 crossref_primary_10_1021_acsmacrolett_9b00368 crossref_primary_10_1016_j_orgel_2025_107211 crossref_primary_10_1002_aenm_201801601 crossref_primary_10_1016_j_dyepig_2019_107819 crossref_primary_10_1002_ange_201807865 crossref_primary_10_1021_acs_macromol_8b01036 crossref_primary_10_1016_j_joule_2018_10_024 crossref_primary_10_1039_D1TC03842G crossref_primary_10_1021_acs_macromol_8b02360 crossref_primary_10_1002_adma_202208750 crossref_primary_10_1007_s10854_019_01448_0 crossref_primary_10_1007_s10854_020_04757_x crossref_primary_10_1109_ACCESS_2018_2877844 crossref_primary_10_1016_j_dyepig_2021_109604 crossref_primary_10_1088_1755_1315_1261_1_012019 crossref_primary_10_1039_C8TA05207G crossref_primary_10_1021_acsaem_2c04152 crossref_primary_10_1002_ange_201907467 crossref_primary_10_1039_C8TC06513F crossref_primary_10_1002_adma_202206566 crossref_primary_10_1002_slct_201803434 crossref_primary_10_1021_acs_chemrev_2c00905 crossref_primary_10_1021_acsaem_8b00819 crossref_primary_10_1002_adfm_202303403 crossref_primary_10_1021_acsaem_1c02752 crossref_primary_10_1021_acs_chemmater_0c00459 crossref_primary_10_1039_C8TC01858H crossref_primary_10_1038_s41467_018_07017_z crossref_primary_10_3762_bjnano_9_200 crossref_primary_10_1002_solr_202100661 crossref_primary_10_1007_s10118_022_2841_y crossref_primary_10_1039_C9TC02237F crossref_primary_10_1002_aenm_201801609 crossref_primary_10_1007_s40843_023_2675_6 crossref_primary_10_1109_JPHOTOV_2019_2894765 crossref_primary_10_1039_C9TC03301G crossref_primary_10_1007_s12209_024_00401_5 crossref_primary_10_1016_j_nanoen_2018_08_059 crossref_primary_10_1002_chem_202000889 crossref_primary_10_1016_j_jechem_2021_01_027 crossref_primary_10_1021_acsenergylett_9b00534 crossref_primary_10_1002_adom_202403085 crossref_primary_10_1039_C8QM00512E crossref_primary_10_1002_cssc_202101345 crossref_primary_10_1039_C8QM00669E crossref_primary_10_1002_chem_201900661 crossref_primary_10_1016_j_synthmet_2019_116182 crossref_primary_10_1016_j_trechm_2019_01_010 crossref_primary_10_1038_s41598_023_43224_5 crossref_primary_10_1039_C9TC00162J crossref_primary_10_1016_j_synthmet_2019_116116 crossref_primary_10_1021_acs_jpca_1c10607 crossref_primary_10_1039_C8TA09356C crossref_primary_10_1039_D5TC00664C crossref_primary_10_1021_jacs_4c11114 crossref_primary_10_1039_C9TA03869H crossref_primary_10_3866_PKU_WHXB202307037 crossref_primary_10_1039_C9TC05610F crossref_primary_10_1021_acsenergylett_9b01819 crossref_primary_10_1016_j_polymer_2019_04_011 crossref_primary_10_1039_C9TC02013F crossref_primary_10_1039_C9PY00608G crossref_primary_10_1002_aenm_201900044 crossref_primary_10_3390_polym12092121 crossref_primary_10_1039_C9TA09961A crossref_primary_10_1002_adfm_201802895 crossref_primary_10_1021_acsenergylett_8b02114 crossref_primary_10_3390_molecules23092324 crossref_primary_10_1016_j_solener_2020_06_090 crossref_primary_10_1038_s41467_019_10098_z crossref_primary_10_1039_D1TB00193K crossref_primary_10_1002_adfm_201908762 crossref_primary_10_1016_j_solener_2020_04_005 crossref_primary_10_1016_j_polymer_2019_05_043 crossref_primary_10_1002_sus2_82 crossref_primary_10_1021_acsenergylett_8b02383 crossref_primary_10_1021_acsami_8b15923 crossref_primary_10_1021_acsami_9b04211 crossref_primary_10_1007_s11426_019_9634_5 crossref_primary_10_1021_acsami_8b20493 crossref_primary_10_1021_acsami_8b20276 crossref_primary_10_1039_C8TA03112F crossref_primary_10_1021_acs_macromol_4c01474 crossref_primary_10_3390_en12244678 crossref_primary_10_1021_acsenergylett_0c02077 crossref_primary_10_1021_acs_macromol_4c02327 crossref_primary_10_1039_C8TC02021C crossref_primary_10_1039_C8TA06860G crossref_primary_10_1016_j_dyepig_2018_09_032 crossref_primary_10_1016_j_nxener_2023_100086 crossref_primary_10_1021_acsaem_2c00819 crossref_primary_10_1002_aenm_201902688 crossref_primary_10_1109_JPHOTOV_2020_3004926 crossref_primary_10_1039_C8TA06510A crossref_primary_10_1002_adfm_202001251 crossref_primary_10_1039_C8TA12109E crossref_primary_10_1002_ente_202201211 crossref_primary_10_1021_acs_chemmater_9b02284 crossref_primary_10_1039_C9TA01497G crossref_primary_10_1039_D0CC05528J crossref_primary_10_1016_j_polymer_2020_122408 crossref_primary_10_1002_adma_201806499 crossref_primary_10_1021_acs_jpclett_3c01359 crossref_primary_10_1002_solr_202100838 crossref_primary_10_1039_C8TC04926B crossref_primary_10_1039_C9TA00164F crossref_primary_10_1002_adma_201906175 crossref_primary_10_1016_j_jpcs_2020_109532 crossref_primary_10_1002_aenm_201801203 crossref_primary_10_1021_acs_chemmater_8b02222 crossref_primary_10_1039_C9SE01261C crossref_primary_10_1016_j_solener_2020_01_042 crossref_primary_10_1021_acs_chemmater_8b03791 crossref_primary_10_1039_C8TC04371J crossref_primary_10_1007_s40843_019_9415_2 crossref_primary_10_1007_s10853_025_10728_6 crossref_primary_10_1016_j_joule_2018_11_006 crossref_primary_10_1021_acs_jpclett_4c02662 crossref_primary_10_1016_j_isci_2018_12_027 crossref_primary_10_1021_acsenergylett_8b02311 crossref_primary_10_1007_s10118_019_2171_x crossref_primary_10_1039_C8TA11059J crossref_primary_10_1002_app_49006 crossref_primary_10_1002_adfm_201808828 crossref_primary_10_1021_acsami_1c02613 crossref_primary_10_1002_solr_201900552 crossref_primary_10_1016_j_cclet_2018_09_014 crossref_primary_10_1002_adma_202105114 crossref_primary_10_1002_aenm_201802521 crossref_primary_10_1039_D0TC02032J crossref_primary_10_1080_10601325_2019_1617636 crossref_primary_10_1021_acsaelm_2c00720 crossref_primary_10_3390_nano11123187 crossref_primary_10_1039_C9TA03272J crossref_primary_10_1016_j_joule_2019_09_009 crossref_primary_10_1039_C9TC05567C crossref_primary_10_1016_j_solener_2022_07_011 crossref_primary_10_1021_acs_macromol_0c01462 crossref_primary_10_1002_solr_201900342 crossref_primary_10_1016_j_solener_2021_11_078 crossref_primary_10_1021_acsenergylett_9b00147 crossref_primary_10_1039_D0TA01032D crossref_primary_10_1021_acs_jpcc_9b09954 crossref_primary_10_1021_acsami_2c10466 crossref_primary_10_1016_j_solener_2019_01_066 crossref_primary_10_1007_s11426_024_2406_9 crossref_primary_10_1016_j_solener_2018_09_008 crossref_primary_10_1002_cplu_202400350 crossref_primary_10_1039_D0CC01038C crossref_primary_10_1021_acsomega_9b02613 crossref_primary_10_1039_C9TA03188J crossref_primary_10_1021_acsami_4c20411 crossref_primary_10_1002_marc_202400687 crossref_primary_10_1021_acs_macromol_3c00995 crossref_primary_10_1002_advs_201903784 crossref_primary_10_1039_D1TA06861J crossref_primary_10_1021_acsapm_9b00559 crossref_primary_10_1002_smll_201902598 crossref_primary_10_1021_acs_chemmater_1c01305 crossref_primary_10_1002_advs_202003641 crossref_primary_10_1002_aenm_201801214 crossref_primary_10_1039_D0EE02426K crossref_primary_10_1002_aenm_201801699 crossref_primary_10_1021_acs_jpcc_1c00228 crossref_primary_10_1002_anie_201807865 crossref_primary_10_1039_C9TA05235F crossref_primary_10_1016_j_comptc_2020_112833 crossref_primary_10_1021_acs_nanolett_9b04586 crossref_primary_10_1039_C9TC02296A crossref_primary_10_1038_s41598_024_64632_1 crossref_primary_10_1002_tcr_201800072 crossref_primary_10_1039_D0TA05108J crossref_primary_10_1002_adfm_201802004 crossref_primary_10_1021_acs_chemmater_9b03329 crossref_primary_10_1021_acs_chemmater_9b03327 crossref_primary_10_1016_j_cej_2021_129532 crossref_primary_10_1021_acsami_9b09044 crossref_primary_10_1051_epjap_2018180070 crossref_primary_10_1021_acs_macromol_9b02395 crossref_primary_10_1039_D2TA07390K crossref_primary_10_1038_s41578_019_0137_9 crossref_primary_10_1007_s40684_021_00374_z crossref_primary_10_1039_C9TA14070K crossref_primary_10_1039_C8NR05407J crossref_primary_10_1002_aenm_201904247 crossref_primary_10_1016_j_gee_2021_01_009 crossref_primary_10_1021_acsenergylett_8b01665 crossref_primary_10_1002_smtd_201900280 crossref_primary_10_1021_acsami_8b14888 crossref_primary_10_1002_adfm_201806845 crossref_primary_10_1039_C8SE00601F crossref_primary_10_1007_s11082_021_02947_3 crossref_primary_10_1039_D2RA03280E crossref_primary_10_1039_C8TC03967D crossref_primary_10_1360_SSC_2022_0098 crossref_primary_10_1002_solr_201900117 crossref_primary_10_1007_s11426_018_9437_7 crossref_primary_10_1002_adma_202002302 crossref_primary_10_1039_C9TC02189B crossref_primary_10_1021_acsaem_8b00851 crossref_primary_10_1039_D2TA02541H crossref_primary_10_1021_acs_macromol_3c01416 crossref_primary_10_1021_acsmacrolett_9b00704 crossref_primary_10_1002_adfm_201908336 crossref_primary_10_1021_acsami_8b06822 crossref_primary_10_3390_s19081803 crossref_primary_10_1039_C9TC01932D crossref_primary_10_1039_C9TC04014E crossref_primary_10_1002_marc_202200591 crossref_primary_10_1002_aenm_202100342 crossref_primary_10_1039_D0SE01176B crossref_primary_10_1021_acsami_8b15522 crossref_primary_10_1021_acsenergylett_8b01448 crossref_primary_10_3390_ijms24010522 crossref_primary_10_1088_1361_6633_ab0530 crossref_primary_10_1002_smll_201900134 crossref_primary_10_1039_C9TA12313J crossref_primary_10_1016_j_orgel_2022_106736 crossref_primary_10_1016_j_solener_2019_01_016 crossref_primary_10_1021_acs_jpcc_8b06429 crossref_primary_10_1039_D0EE00774A crossref_primary_10_1007_s11771_020_4501_0 crossref_primary_10_1021_acsapm_9b00998 |
Cites_doi | 10.1038/ncomms6293 10.1021/acs.chemmater.6b04828 10.1021/ja1112595 10.1021/acs.chemmater.6b02802 10.1021/ja901545q 10.1038/ncomms2411 10.1002/anie.201610944 10.1002/adma.201502110 10.1002/adma.201600281 10.1021/ma301900h 10.1002/adma.201304427 10.1021/cm102182x 10.1038/nphoton.2009.192 10.1002/adma.201604241 10.1002/anie.201005451 10.1021/jacs.6b01744 10.1021/acs.accounts.7b00293 10.1002/adma.200903528 10.1021/jacs.7b01170 10.1038/nphoton.2015.6 10.1021/acs.macromol.5b02416 10.1021/jacs.7b01493 10.1021/jacs.6b12755 10.1007/s11426-016-0378-y 10.1021/acs.macromol.6b00248 10.1016/S1369-7021(12)70019-6 10.1126/science.270.5243.1789 10.1007/s11426-014-5273-x 10.1002/adma.201602776 10.1039/C4EE01529K 10.1021/jacs.6b03495 10.1038/nphoton.2012.11 10.1002/adma.201404317 10.1002/adma.201602642 10.1002/adma.201404535 10.1021/jacs.6b00853 10.1021/jacs.7b02677 10.1021/acsenergylett.7b00551 10.1080/15583720802231833 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201800868 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29602243 10_1002_adma_201800868 ADMA201800868 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Basic Research Program 973 funderid: 2014CB643501 – fundername: China Postdoctoral Science Foundation – fundername: National Natural Science Foundation of China funderid: 21704004; 51673201; 91633301 – fundername: Chinese Academy of Sciences funderid: XDB12030200 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4398-6ebfc83b6e845e9c0ba314834c9c4b8a3c9dfca61c4a161daff9132f9813e5123 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:45:30 EDT 2025 Sun Jul 13 05:38:11 EDT 2025 Wed Feb 19 02:43:49 EST 2025 Thu Apr 24 22:50:21 EDT 2025 Tue Jul 01 00:44:41 EDT 2025 Wed Jan 22 16:54:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | chlorinated polymer donors low-cost polymer solar cells fullerene-free acceptors |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4398-6ebfc83b6e845e9c0ba314834c9c4b8a3c9dfca61c4a161daff9132f9813e5123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2105-6922 |
PMID | 29602243 |
PQID | 2038252418 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2020492049 proquest_journals_2038252418 pubmed_primary_29602243 crossref_primary_10_1002_adma_201800868 crossref_citationtrail_10_1002_adma_201800868 wiley_primary_10_1002_adma_201800868_ADMA201800868 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-May |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-May |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 58 2013; 4 2017; 2 2017; 60 2014; 26 2017; 29 2012; 15 2009; 131 2015; 9 1995; 270 2011; 133 2017; 139 2010; 22 2017; 50 2014; 5 2015; 27 2015; 49 2017; 56 2011; 50 2008; 48 2016; 138 2011; 23 2012; 6 2009; 3 2016; 28 2014; 7 2016; 49 2012; 45 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
References_xml | – volume: 139 start-page: 1336 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 7148 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 1170 year: 2015 publication-title: Adv. Mater. – volume: 29 start-page: 2819 year: 2017 publication-title: Chem. Mater. – volume: 139 start-page: 4929 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 9611 year: 2012 publication-title: Macromolecules – volume: 6 start-page: 153 year: 2012 publication-title: Nat. Photonics – volume: 138 start-page: 4657 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 174 year: 2015 publication-title: Nat. Photonics – volume: 139 start-page: 7302 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 36 year: 2012 publication-title: Mater. Today – volume: 58 start-page: 248 year: 2015 publication-title: Sci. China: Chem. – volume: 29 start-page: 141 year: 2017 publication-title: Chem. Mater. – volume: 28 start-page: 4734 year: 2016 publication-title: Adv. Mater. – volume: 50 start-page: 2519 year: 2017 publication-title: Acc. Chem. Res. – volume: 270 start-page: 1789 year: 1995 publication-title: Science – volume: 2 start-page: 1971 year: 2017 publication-title: ACS Energy Lett. – volume: 7 start-page: 3040 year: 2014 publication-title: Energy Environ. Sci. – volume: 3 start-page: 649 year: 2009 publication-title: Nat. Photonics – volume: 131 start-page: 7792 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 2973 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 531 year: 2008 publication-title: Polym. Rev. – volume: 60 start-page: 545 year: 2017 publication-title: Sci. China: Chem. – volume: 49 start-page: 120 year: 2015 publication-title: Macromolecules – volume: 56 start-page: 3045 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 133 start-page: 4625 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 446 year: 2011 publication-title: Chem. Mater. – volume: 27 start-page: 4655 year: 2015 publication-title: Adv. Mater. – volume: 26 start-page: 1118 year: 2014 publication-title: Adv. Mater. – volume: 28 start-page: 8283 year: 2016 publication-title: Adv. Mater. – volume: 49 start-page: 2993 year: 2016 publication-title: Macromolecules – volume: 5 start-page: 5293 year: 2014 publication-title: Nat. Commun. – volume: 138 start-page: 7687 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 9423 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: 1446 year: 2013 publication-title: Nat. Commun. – volume: 22 start-page: E135 year: 2010 publication-title: Adv. Mater. – volume: 27 start-page: 1035 year: 2015 publication-title: Adv. Mater. – volume: 50 start-page: 2995 year: 2011 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 29 start-page: 1604241 year: 2017 publication-title: Adv. Mater. – ident: e_1_2_4_19_1 doi: 10.1038/ncomms6293 – ident: e_1_2_4_26_1 doi: 10.1021/acs.chemmater.6b04828 – ident: e_1_2_4_17_1 doi: 10.1021/ja1112595 – ident: e_1_2_4_3_1 doi: 10.1021/acs.chemmater.6b02802 – ident: e_1_2_4_23_1 doi: 10.1021/ja901545q – ident: e_1_2_4_18_1 doi: 10.1038/ncomms2411 – ident: e_1_2_4_5_1 doi: 10.1002/anie.201610944 – ident: e_1_2_4_34_1 doi: 10.1002/adma.201502110 – ident: e_1_2_4_39_1 doi: 10.1002/adma.201600281 – ident: e_1_2_4_38_1 doi: 10.1021/ma301900h – ident: e_1_2_4_21_1 doi: 10.1002/adma.201304427 – ident: e_1_2_4_25_1 doi: 10.1021/cm102182x – ident: e_1_2_4_14_1 doi: 10.1038/nphoton.2009.192 – ident: e_1_2_4_32_1 doi: 10.1002/adma.201604241 – ident: e_1_2_4_16_1 doi: 10.1002/anie.201005451 – ident: e_1_2_4_20_1 doi: 10.1021/jacs.6b01744 – ident: e_1_2_4_37_1 doi: 10.1021/acs.accounts.7b00293 – ident: e_1_2_4_15_1 doi: 10.1002/adma.200903528 – ident: e_1_2_4_8_1 doi: 10.1021/jacs.7b01170 – ident: e_1_2_4_33_1 doi: 10.1038/nphoton.2015.6 – ident: e_1_2_4_35_1 doi: 10.1021/acs.macromol.5b02416 – ident: e_1_2_4_12_1 doi: 10.1021/jacs.7b01493 – ident: e_1_2_4_7_1 doi: 10.1021/jacs.6b12755 – ident: e_1_2_4_36_1 doi: 10.1007/s11426-016-0378-y – ident: e_1_2_4_24_1 doi: 10.1021/acs.macromol.6b00248 – ident: e_1_2_4_13_1 doi: 10.1016/S1369-7021(12)70019-6 – ident: e_1_2_4_1_1 doi: 10.1126/science.270.5243.1789 – ident: e_1_2_4_29_1 doi: 10.1007/s11426-014-5273-x – ident: e_1_2_4_9_1 doi: 10.1002/adma.201602776 – ident: e_1_2_4_22_1 doi: 10.1039/C4EE01529K – ident: e_1_2_4_31_1 doi: 10.1021/jacs.6b03495 – ident: e_1_2_4_2_1 doi: 10.1038/nphoton.2012.11 – ident: e_1_2_4_4_1 doi: 10.1002/adma.201404317 – ident: e_1_2_4_6_1 doi: 10.1002/adma.201602642 – ident: e_1_2_4_30_1 doi: 10.1002/adma.201404535 – ident: e_1_2_4_10_1 doi: 10.1021/jacs.6b00853 – ident: e_1_2_4_11_1 doi: 10.1021/jacs.7b02677 – ident: e_1_2_4_27_1 doi: 10.1021/acsenergylett.7b00551 – ident: e_1_2_4_28_1 doi: 10.1080/15583720802231833 |
SSID | ssj0009606 |
Score | 2.7021937 |
Snippet | Fluorine‐contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis... Fluorine-contained polymers, which have been widely used in highly efficient polymer solar cells (PSCs), are rather costly due to their complicated synthesis... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1800868 |
SubjectTerms | Chemical synthesis chlorinated polymer donors Chlorine Energy conversion efficiency Energy levels Fluorination Fluorine fullerene‐free acceptors low‐cost Materials science Molecular chains Molecular energy levels Open circuit voltage Optoelectronics Photovoltaic cells polymer solar cells Polymers Solar cells Solar corona |
Title | Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800868 https://www.ncbi.nlm.nih.gov/pubmed/29602243 https://www.proquest.com/docview/2038252418 https://www.proquest.com/docview/2020492049 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iSQ--H-uLCIqn6LbJ1uS4rCsi-FbwVpI0QXFtZR8H_fXOpLvVVUTQQ6Flpm2azDTfJJkvhOwkEOpkUmiWWccZMmAxFWeGgXnU61oKI8JE-9l5cnInTu8b95-y-Et-iGrADT0j_K_RwbXpHXyQhuos8AZFElE5Zvvigi1ERdcf_FEIzwPZHm8wlQg5Ym2sxwfjt4_3St-g5jhyDV3P8SzRo0KXK06e9gd9s2_fvvA5_uer5sjMEJfSZmlI82TC5Qtk-hNb4SK5ugCzp5HYpe3AO4FJm_Qxp5dF5_UZJDcYJdOW63R6tB1SsjJqXqmmrYewzA9QbVYpHxV50V0id8ft29YJG-7IwCwAF8kSZ7yV3CROioZTtm40j3A40iorjNTcqsxbnURWaICSmfZeQbjrlYy4A2jBl8lkXuRulVBxaLnyh1J75YVuoJ6H0FLhtKuHh9QIG7VIaod05bhrRictiZbjFKsqraqqRvYq_ZeSqONHzY1RA6dDh-2BlEOsDHAGxNuVGFwN50907ooB6sQQT-FRIyulYVSvisHUAA3xGolD8_5ShrR5dNasrtb-ctM6mcLzcvHlBpnsdwduEwBS32wFJ3gHWtEEGg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4Vemg50Cd0C21dqVVPhk3sDfZxtSzatix9gdRbZDu2QGwTBLsH-uuZcTahW1QhlUMOyUwSx56Jv7HHnwHeZRjqFEoaXjgvODFgcZ0WlqN5dLtGSSvjRPv4IBsdyU8_e002Ia2Fqfkh2gE38oz4vyYHpwHp7WvWUFNE4qBEESxXS3CftvWOUdX3awYpAuiRbk_0uM6kangbu-n24v2L_dINsLmIXWPns_cIbFPsOufkdGs2tVvu91-Mjnf6rsewOoemrF_b0hO458unsPIHYeEz-PYFLZ8l8j0bRuoJWrfJTkr2tZpc_kLJDwqU2cBPJhdsGFdlFcxeMsMGxzHTD4Ft0SrvVmV1_hyO9oaHgxGfb8rAHWIXxTNvg1PCZl7Jnteua41IaETSaSetMsLpIjiTJU4aRJOFCUFjxBu0SoRHdCHWYLmsSv8CmNxxQocdZYIO0vRIL2B0qWnmNeBDOsCbJsndnLGcNs6Y5DXXcppTVeVtVXXgQ6t_VnN1_FNzs2nhfO6zFygVGC4jokHx21aM3kZTKKb01Yx0Ugyp6OjAem0Z7atStDUERKIDaWzfW8qQ93fH_fbs5f_c9AYejA7H-_n-x4PPG_CQrte5mJuwPD2f-VeIl6b2dfSIK6auCDU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRA9UJ5laQEjgTi5TWJvah9X-1B5tJRHpd4iPwViSap291B-PTPObtoFISQ45JDMOHbsmfgbPz4DvCgx1PFKGu5dEJwYsLguvOVoHllmlLQyTbQfHJb7x_LNSf_kyi7-lh-iG3Ajz0j_a3LwUx93L0lDjU-8QbkiVK6uww1ZZorsevTxkkCK8Hli2xN9rkuplrSNWbG7mn61W_oNa65C19T3TDbALEvdLjn5tjOf2R334xdCx__5rDtwewFM2aC1pLtwLdT3YP0KXeF9-PAe7Z7l8iUbJ-IJ2rXJvtbsqJlefEfJJwqT2TBMp-dsnPZkeWYvmGHDL2mdH8Ja3ymPmro5ewDHk_Hn4T5fHMnAHSIXxctgo1PClkHJftAus0bkNB7ptJNWGeG0j86UuZMGsaQ3MWqMd6NWuQiILcRDWKubOjwCJvec0HFPmaijNH3Sixhbapp3jfiSHvBli1RuwVdOx2ZMq5ZpuaioqqquqnrwqtM_bZk6_qi5vWzgauGx5ygVGCwjnkHx806MvkYTKKYOzZx0Cgyo6OrBZmsYXVYFmhrCIdGDIjXvX8pQDUYHg-7u8b8kegY3j0aT6t3rw7dbcIsetwsxt2FtdjYPTxAszezT5A8_AZXsBu0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Over+14%25+Efficiency+in+Polymer+Solar+Cells+Enabled+by+a+Chlorinated+Polymer+Donor&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Shaoqing&rft.au=Qin%2C+Yunpeng&rft.au=Zhu%2C+Jie&rft.au=Hou%2C+Jianhui&rft.date=2018-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=20&rft_id=info:doi/10.1002%2Fadma.201800868&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |