A Facile Route to Nonlinear Optical Materials: Three‐Site Aliovalent Substitution Involving One Cation and Two Anions

Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba2[GaF4(IO3)2](IO3) (1 and 2), have been designed by the aliovalent substitutions of α‐ and β‐Ba2[VO2F2(IO3)2](IO3) (3 and 4) involving one cationic and two anionic sites. Both 1 and 2 display large second‐harmonic generation responses (≈6×...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 7; pp. 2098 - 2102
Main Authors Chen, Jin, Hu, Chun‐Li, Mao, Fei‐Fei, Feng, Jiang‐He, Mao, Jiang‐Gao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 11.02.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.201813968

Cover

Loading…
Abstract Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba2[GaF4(IO3)2](IO3) (1 and 2), have been designed by the aliovalent substitutions of α‐ and β‐Ba2[VO2F2(IO3)2](IO3) (3 and 4) involving one cationic and two anionic sites. Both 1 and 2 display large second‐harmonic generation responses (≈6×KH2PO4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27–12.5 μm), and high relevant laser‐induced damage thresholds (29.7× and 28.3×AgGaS2, respectively), which indicates that 1 and 2 are potential second‐order nonlinear optical materials in the ultraviolet to mid‐infrared. Our studies propose that three‐site aliovalent substitution is a facile route for the discovery of good NLO materials. Trading places: Two new nonlinear optical materials, α‐ and β‐Ba2[GaF4(IO3)2](IO3) (1 and 2), were designed via three‐site aliovalent substitution of VO4F2 in α‐ and β‐Ba2[VO2F2(IO3)2](IO3) by GaO2F4. The new materials display large second‐harmonic generation responses (≈6×KH2PO4 (KDP)), wide energy band gaps (4.61 and 4.35 eV), and high laser damage thresholds (29.7× and 28.3× relative to that of AgGaS2).
AbstractList Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba2[GaF4(IO3)2](IO3) (1 and 2), have been designed by the aliovalent substitutions of α‐ and β‐Ba2[VO2F2(IO3)2](IO3) (3 and 4) involving one cationic and two anionic sites. Both 1 and 2 display large second‐harmonic generation responses (≈6×KH2PO4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27–12.5 μm), and high relevant laser‐induced damage thresholds (29.7× and 28.3×AgGaS2, respectively), which indicates that 1 and 2 are potential second‐order nonlinear optical materials in the ultraviolet to mid‐infrared. Our studies propose that three‐site aliovalent substitution is a facile route for the discovery of good NLO materials.
Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba2[GaF4(IO3)2](IO3) (1 and 2), have been designed by the aliovalent substitutions of α‐ and β‐Ba2[VO2F2(IO3)2](IO3) (3 and 4) involving one cationic and two anionic sites. Both 1 and 2 display large second‐harmonic generation responses (≈6×KH2PO4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27–12.5 μm), and high relevant laser‐induced damage thresholds (29.7× and 28.3×AgGaS2, respectively), which indicates that 1 and 2 are potential second‐order nonlinear optical materials in the ultraviolet to mid‐infrared. Our studies propose that three‐site aliovalent substitution is a facile route for the discovery of good NLO materials. Trading places: Two new nonlinear optical materials, α‐ and β‐Ba2[GaF4(IO3)2](IO3) (1 and 2), were designed via three‐site aliovalent substitution of VO4F2 in α‐ and β‐Ba2[VO2F2(IO3)2](IO3) by GaO2F4. The new materials display large second‐harmonic generation responses (≈6×KH2PO4 (KDP)), wide energy band gaps (4.61 and 4.35 eV), and high laser damage thresholds (29.7× and 28.3× relative to that of AgGaS2).
Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba 2 [GaF 4 (IO 3 ) 2 ](IO 3 ) ( 1 and 2 ), have been designed by the aliovalent substitutions of α‐ and β‐Ba 2 [VO 2 F 2 (IO 3 ) 2 ](IO 3 ) ( 3 and 4 ) involving one cationic and two anionic sites. Both 1 and 2 display large second‐harmonic generation responses (≈6×KH 2 PO 4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27–12.5 μm), and high relevant laser‐induced damage thresholds (29.7× and 28.3×AgGaS 2 , respectively), which indicates that 1 and 2 are potential second‐order nonlinear optical materials in the ultraviolet to mid‐infrared. Our studies propose that three‐site aliovalent substitution is a facile route for the discovery of good NLO materials.
Two mixed-metal gallium iodate fluorides, namely, α- and β-Ba [GaF (IO ) ](IO ) (1 and 2), have been designed by the aliovalent substitutions of α- and β-Ba [VO F (IO ) ](IO ) (3 and 4) involving one cationic and two anionic sites. Both 1 and 2 display large second-harmonic generation responses (≈6×KH PO (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27-12.5 μm), and high relevant laser-induced damage thresholds (29.7× and 28.3×AgGaS , respectively), which indicates that 1 and 2 are potential second-order nonlinear optical materials in the ultraviolet to mid-infrared. Our studies propose that three-site aliovalent substitution is a facile route for the discovery of good NLO materials.
Two mixed-metal gallium iodate fluorides, namely, α- and β-Ba2 [GaF4 (IO3 )2 ](IO3 ) (1 and 2), have been designed by the aliovalent substitutions of α- and β-Ba2 [VO2 F2 (IO3 )2 ](IO3 ) (3 and 4) involving one cationic and two anionic sites. Both 1 and 2 display large second-harmonic generation responses (≈6×KH2 PO4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27-12.5 μm), and high relevant laser-induced damage thresholds (29.7× and 28.3×AgGaS2 , respectively), which indicates that 1 and 2 are potential second-order nonlinear optical materials in the ultraviolet to mid-infrared. Our studies propose that three-site aliovalent substitution is a facile route for the discovery of good NLO materials.Two mixed-metal gallium iodate fluorides, namely, α- and β-Ba2 [GaF4 (IO3 )2 ](IO3 ) (1 and 2), have been designed by the aliovalent substitutions of α- and β-Ba2 [VO2 F2 (IO3 )2 ](IO3 ) (3 and 4) involving one cationic and two anionic sites. Both 1 and 2 display large second-harmonic generation responses (≈6×KH2 PO4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27-12.5 μm), and high relevant laser-induced damage thresholds (29.7× and 28.3×AgGaS2 , respectively), which indicates that 1 and 2 are potential second-order nonlinear optical materials in the ultraviolet to mid-infrared. Our studies propose that three-site aliovalent substitution is a facile route for the discovery of good NLO materials.
Author Mao, Jiang‐Gao
Feng, Jiang‐He
Chen, Jin
Mao, Fei‐Fei
Hu, Chun‐Li
Author_xml – sequence: 1
  givenname: Jin
  surname: Chen
  fullname: Chen, Jin
  organization: University of the Chinese Academy of Sciences
– sequence: 2
  givenname: Chun‐Li
  surname: Hu
  fullname: Hu, Chun‐Li
  organization: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
– sequence: 3
  givenname: Fei‐Fei
  surname: Mao
  fullname: Mao, Fei‐Fei
  organization: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
– sequence: 4
  givenname: Jiang‐He
  surname: Feng
  fullname: Feng, Jiang‐He
  organization: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
– sequence: 5
  givenname: Jiang‐Gao
  surname: Mao
  fullname: Mao, Jiang‐Gao
  email: mjg@fjirsm.ac.cn
  organization: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30589189$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URC-wZYksselmgi_x2GYXRS2NVBqJhrXlcU7AlWOHsSdRdzwCz8iT1G1akCohVr7o-34dnf8YHcQUAaG3lIwoIeyDjR5GjFBFuW7VC3REBaMNl5If1PuY80YqQQ_Rcc43lVeKtK_QISdCaar0EdpN8Ll1PgD-koYCuCR8lWLwEWyP55vinQ34sy3QexvyR7z43gP8_vnr2ld4Enza2gCx4Ouhy8WXofgU8SxuU9j6-A3PI-Cpffi0cYkXu4Qnsb7ya_RyVQPhzeN5gr6eny2mF83l_NNsOrls3Jhr1YiOAyyd0nLptOxarjsqwApgzOpWtoyzjmuh5AqYZc5yRsARx1qlxprBip-g033upk8_BsjFrH12EIKNkIZsGG0paXnLSUXfP0Nv0tDHOl2lpGBSCiUq9e6RGro1LM2m92vb35qnlVZgvAdcn3LuYWWcLw8rKL31wVBi7psz982ZP81VbfRMe0r-p6D3wq62d_sf2kyuZmd_3Tt1BqwQ
CitedBy_id crossref_primary_10_1002_ejic_201900357
crossref_primary_10_1016_j_jallcom_2021_162547
crossref_primary_10_1039_C9CC08739G
crossref_primary_10_1021_acs_cgd_1c01292
crossref_primary_10_1021_acs_inorgchem_3c02175
crossref_primary_10_1039_D1QI00383F
crossref_primary_10_1021_acs_inorgchem_3c02213
crossref_primary_10_1039_D4SC06403H
crossref_primary_10_1016_j_jallcom_2024_177806
crossref_primary_10_1021_acs_cgd_0c01407
crossref_primary_10_1021_acs_inorgchem_0c00284
crossref_primary_10_1039_C9DT03337H
crossref_primary_10_1039_D2TC01638A
crossref_primary_10_1021_acs_inorgchem_2c03167
crossref_primary_10_1002_anie_202111780
crossref_primary_10_1039_D4QI00832D
crossref_primary_10_1016_j_cclet_2024_110173
crossref_primary_10_1007_s40843_020_1395_x
crossref_primary_10_1016_j_jssc_2020_121361
crossref_primary_10_1002_smll_202407130
crossref_primary_10_1016_j_mtphys_2023_101145
crossref_primary_10_1002_ejic_201900509
crossref_primary_10_1039_D3DT03304J
crossref_primary_10_1021_acs_inorgchem_9b01085
crossref_primary_10_1039_D1QI00373A
crossref_primary_10_1016_j_inoche_2023_111234
crossref_primary_10_1039_D2CE00080F
crossref_primary_10_1134_S1063774524601382
crossref_primary_10_1039_D3DT04343F
crossref_primary_10_1039_D2QI02479A
crossref_primary_10_1002_anie_201913974
crossref_primary_10_31857_S0023476124040052
crossref_primary_10_1016_j_ccr_2020_213380
crossref_primary_10_1021_acsami_0c15444
crossref_primary_10_1039_C9CC02774B
crossref_primary_10_1039_D1SC06026K
crossref_primary_10_1002_advs_202206833
crossref_primary_10_1021_acsami_0c15728
crossref_primary_10_1002_slct_201900926
crossref_primary_10_1021_acs_inorgchem_9b03426
crossref_primary_10_1016_j_ccr_2022_214950
crossref_primary_10_1021_acs_chemmater_1c00222
crossref_primary_10_1002_anie_202000587
crossref_primary_10_1021_acs_chemmater_1c01434
crossref_primary_10_1021_acs_inorgchem_4c03500
crossref_primary_10_1039_D4CE00722K
crossref_primary_10_1002_anie_201913287
crossref_primary_10_1039_D3SC03052K
crossref_primary_10_1016_j_jallcom_2022_163727
crossref_primary_10_1039_D1TC00383F
crossref_primary_10_1039_D3TA00609C
crossref_primary_10_1021_acs_inorgchem_3c02207
crossref_primary_10_1515_nanoph_2020_0038
crossref_primary_10_1021_acs_inorgchem_2c03267
crossref_primary_10_1039_C9SC04832D
crossref_primary_10_1021_acs_chemmater_9b03214
crossref_primary_10_1039_D1CE01234G
crossref_primary_10_1021_acs_inorgchem_3c04343
crossref_primary_10_1021_acs_inorgchem_4c03630
crossref_primary_10_1021_acs_cgd_1c00317
crossref_primary_10_1016_j_cclet_2021_11_089
crossref_primary_10_1021_acs_inorgchem_1c01015
crossref_primary_10_1039_D0CC07862J
crossref_primary_10_1021_acs_inorgchem_3c03928
crossref_primary_10_1002_ange_201913287
crossref_primary_10_1002_asia_202001002
crossref_primary_10_1039_D2DT02085H
crossref_primary_10_1002_anie_201904383
crossref_primary_10_1002_advs_201901679
crossref_primary_10_1021_acs_cgd_2c00255
crossref_primary_10_1039_C9NJ05419G
crossref_primary_10_1039_D1CC04462A
crossref_primary_10_1039_C9DT04313F
crossref_primary_10_1039_D1DT02122B
crossref_primary_10_1039_C9CC06532F
crossref_primary_10_1016_j_cclet_2024_110513
crossref_primary_10_1039_D2TC02489F
crossref_primary_10_1021_acs_chemmater_0c02657
crossref_primary_10_1021_acs_chemmater_1c01133
crossref_primary_10_1039_C9DT03628H
crossref_primary_10_1021_acs_inorgchem_0c02426
crossref_primary_10_1002_ange_201913974
crossref_primary_10_1039_D3QI00979C
crossref_primary_10_1021_acs_inorgchem_1c03171
crossref_primary_10_1021_acs_inorgchem_4c00156
crossref_primary_10_1016_j_jssc_2020_121288
crossref_primary_10_1021_acsmaterialslett_3c00239
crossref_primary_10_1002_ange_202000587
crossref_primary_10_1021_acs_chemmater_0c01452
crossref_primary_10_1021_acs_chemmater_0c01054
crossref_primary_10_1021_acs_inorgchem_9b00075
crossref_primary_10_1016_j_cjsc_2023_100025
crossref_primary_10_1039_D2CC02353A
crossref_primary_10_1002_ange_202106335
crossref_primary_10_1039_D1SC01401C
crossref_primary_10_1039_D2QI02637F
crossref_primary_10_1039_D0SC01936D
crossref_primary_10_1021_acs_chemmater_1c00392
crossref_primary_10_1039_D3QI00415E
crossref_primary_10_1021_acs_accounts_1c00188
crossref_primary_10_1039_C9DT02512J
crossref_primary_10_1002_ange_202116656
crossref_primary_10_1016_j_mtphys_2023_101197
crossref_primary_10_1039_D2DT01320G
crossref_primary_10_1039_D0DT00593B
crossref_primary_10_1021_acs_cgd_0c01629
crossref_primary_10_1039_C9DT01871A
crossref_primary_10_1002_anie_202106335
crossref_primary_10_1016_j_cjsc_2023_100014
crossref_primary_10_1039_D4QI01515K
crossref_primary_10_1039_D3TC01570J
crossref_primary_10_1002_anie_202116656
crossref_primary_10_1002_ange_201904383
crossref_primary_10_1002_adom_202201643
crossref_primary_10_1021_acs_inorgchem_3c00868
crossref_primary_10_1039_D5QI00517E
crossref_primary_10_1039_D2QI01817A
crossref_primary_10_1039_D3QI00513E
crossref_primary_10_1016_j_ccr_2023_215212
crossref_primary_10_1002_sstr_202300274
crossref_primary_10_1021_acs_cgd_3c00575
crossref_primary_10_1039_D2SC02137D
crossref_primary_10_1002_ange_202111780
crossref_primary_10_1002_smll_202306459
Cites_doi 10.1016/j.ccr.2018.07.013
10.1021/cm071188p
10.1039/C4QI00243A
10.1021/jacs.7b12518
10.1002/anie.201705672
10.1002/ange.201804354
10.1002/ange.201803721
10.1021/acs.chemmater.8b00630
10.1002/ange.201412344
10.1021/acs.chemmater.7b05252
10.1021/acs.inorgchem.6b02191
10.1021/acs.accounts.7b00033
10.1021/jacs.6b06680
10.1021/ic048428c
10.1016/j.ccr.2018.09.002
10.1021/ja808469a
10.1021/acs.inorgchem.8b00632
10.1021/ic101843g
10.1002/ange.201705672
10.1021/acs.chemmater.5b04511
10.1002/anie.201803721
10.1021/ic048766d
10.1038/s41467-018-05575-w
10.1002/ange.200460367
10.1021/acs.chemmater.6b05468
10.1021/cm049297g
10.1016/j.ccr.2015.01.005
10.1016/S0022-4596(03)00090-2
10.1021/acs.inorgchem.5b00052
10.1016/0022-4596(75)90092-4
10.1039/C4CC00537F
10.1039/c3cc45747h
10.1039/c3ce41653d
10.1021/ja012190z
10.1021/cm020021n
10.1039/c2cc30326d
10.1002/ange.200703340
10.1002/anie.200460367
10.1002/anie.201611770
10.1021/ja200257a
10.1021/ic4003324
10.1021/jacs.8b08803
10.1021/ja205456b
10.1002/anie.201804354
10.1039/b612677d
10.1021/cm500898q
10.1039/c0dt00305k
10.1021/jacs.8b04762
10.1021/acs.accounts.6b00452
10.1107/S0108270107062683
10.1002/anie.200703340
10.1002/ange.201611770
10.1002/anie.201412344
10.1021/ic201991m
10.1021/cm902902j
10.1021/ja9030566
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201813968
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 2102
ExternalDocumentID 30589189
10_1002_anie_201813968
ANIE201813968
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDB20000000
– fundername: National Natural Science Foundation of China
  funderid: 21875248; 91622112; 21701173
– fundername: 100 Talents Project of Fujian Province
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDB20000000
– fundername: National Natural Science Foundation of China
  grantid: 21875248
– fundername: National Natural Science Foundation of China
  grantid: 91622112
– fundername: National Natural Science Foundation of China
  grantid: 21701173
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4398-5b3eedc897dc97b639b15ea5e22a9676232b39587fe2a2ca320ec0c2688492ef3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 03:17:17 EDT 2025
Sun Jul 13 05:28:44 EDT 2025
Mon Jul 21 05:58:19 EDT 2025
Tue Jul 01 02:26:40 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Wed Aug 20 07:27:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords aliovalent substitution
theoretical studies
hydrothermal synthesis
nonlinear optical materials
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4398-5b3eedc897dc97b639b15ea5e22a9676232b39587fe2a2ca320ec0c2688492ef3
Notes Dedicated to Professor Jin‐Shun Huang on the occasion of his 80th birthday
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30589189
PQID 2175277585
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2161063630
proquest_journals_2175277585
pubmed_primary_30589189
crossref_citationtrail_10_1002_anie_201813968
crossref_primary_10_1002_anie_201813968
wiley_primary_10_1002_anie_201813968_ANIE201813968
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 11, 2019
PublicationDateYYYYMMDD 2019-02-11
PublicationDate_xml – month: 02
  year: 2019
  text: February 11, 2019
  day: 11
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2007; 17
2002; 14
2007; 19
2004 2004; 43 116
2018; 140
2013; 49
2017; 25
2010; 39
2015; 288
2015; 54
1975; 13
2014; 26
2016; 128
2009; 131
2017 2017; 56 129
2005; 44
2011; 133
2003; 175
2017; 50
2018; 9
2018; 374
2013; 15
2010; 49
2004; 16
2018 2018; 57 130
2018; 377
2002; 124
2007 2007; 46 119
2002; 22
2013; 52
2011; 50
2017; 56
2015 2015; 54 127
2018; 30
2012; 48
2008; 64
2016; 28
2016; 49
2014; 50
2018; 57
e_1_2_2_4_1
e_1_2_2_24_1
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_2_2
e_1_2_2_41_1
e_1_2_2_43_1
e_1_2_2_28_2
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_13_2
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_30_2
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_15_1
e_1_2_2_36_1
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_1_2
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_42_1
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_27_1
e_1_2_2_46_1
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_1
e_1_2_2_31_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_50_1
References_xml – volume: 133
  start-page: 5561
  year: 2011
  end-page: 5572
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 9486
  year: 2009
  end-page: 9487
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 8968 9106
  year: 2018 2018
  end-page: 8972 9110
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 10464
  year: 2013
  end-page: 10469
  publication-title: CrystEngComm
– volume: 56 129
  start-page: 9492 9620
  year: 2017 2017
  end-page: 9496 9624
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 8619 8755
  year: 2018 2018
  end-page: 8622 8758
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 142
  year: 1975
  end-page: 148
  publication-title: J. Solid State Chem.
– volume: 44
  start-page: 2263
  year: 2005
  end-page: 2271
  publication-title: Inorg. Chem.
– volume: 43 116
  start-page: 5489 5605
  year: 2004 2004
  end-page: 5491 5607
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 11573
  year: 2010
  end-page: 11580
  publication-title: Inorg. Chem.
– volume: 175
  start-page: 27
  year: 2003
  end-page: 33
  publication-title: J. Solid State Chem.
– volume: 44
  start-page: 884
  year: 2005
  end-page: 895
  publication-title: Inorg. Chem.
– volume: 131
  start-page: 2426
  year: 2009
  end-page: 2427
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 3586
  year: 2004
  end-page: 3592
  publication-title: Chem. Mater.
– volume: 140
  start-page: 13089
  year: 2018
  end-page: 13096
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 361
  year: 2015
  end-page: 368
  publication-title: Inorg. Chem. Front.
– volume: 56
  start-page: 1186
  year: 2017
  end-page: 1192
  publication-title: Inorg. Chem.
– volume: 28
  start-page: 1413
  year: 2016
  end-page: 1418
  publication-title: Chem. Mater.
– volume: 39
  start-page: 7960
  year: 2010
  end-page: 7967
  publication-title: Dalton Trans.
– volume: 49
  start-page: 2774
  year: 2016
  end-page: 2785
  publication-title: Acc. Chem. Res.
– volume: 140
  start-page: 8868
  year: 2018
  end-page: 8876
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 1123
  year: 2007
  end-page: 1130
  publication-title: J. Mater. Chem. C
– volume: 377
  start-page: 191
  year: 2018
  end-page: 208
  publication-title: Coord. Chem. Rev.
– volume: 57
  start-page: 5669
  year: 2018
  end-page: 5676
  publication-title: Inorg. Chem.
– volume: 56 129
  start-page: 2151 2183
  year: 2017 2017
  end-page: 2155 2187
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 1592
  year: 2018
  end-page: 1595
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 4220
  year: 2012
  end-page: 4222
  publication-title: Chem. Commun.
– volume: 52
  start-page: 5378
  year: 2013
  end-page: 5384
  publication-title: Inorg. Chem.
– volume: 54
  start-page: 3875
  year: 2015
  end-page: 3882
  publication-title: Inorg. Chem.
– volume: 54 127
  start-page: 3679 3750
  year: 2015 2015
  end-page: 3682 3753
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 1222
  year: 2017
  end-page: 1230
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 3089
  year: 2018
  publication-title: Nat. Commun.
– volume: 19
  start-page: 4710
  year: 2007
  end-page: 4715
  publication-title: Chem. Mater.
– volume: 46 119
  start-page: 8488 8640
  year: 2007 2007
  end-page: 8491 8643
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 124
  start-page: 1951
  year: 2002
  end-page: 1957
  publication-title: J. Am. Chem. Soc.
– volume: 374
  start-page: 464
  year: 2018
  end-page: 496
  publication-title: Coord. Chem. Rev.
– volume: 25
  start-page: 945
  year: 2017
  end-page: 949
  publication-title: Chem. Mater.
– volume: 133
  start-page: 12422
  year: 2011
  end-page: 12425
  publication-title: J. Am. Chem. Soc.
– volume: 288
  start-page: 1
  year: 2015
  end-page: 17
  publication-title: Coord. Chem. Rev.
– volume: 49
  start-page: 9965
  year: 2013
  end-page: 9967
  publication-title: Chem. Commun.
– volume: 14
  start-page: 2741
  year: 2002
  end-page: 2749
  publication-title: Chem. Mater.
– volume: 26
  start-page: 3219
  year: 2014
  end-page: 3230
  publication-title: Chem. Mater.
– volume: 50
  start-page: 12818
  year: 2011
  end-page: 12822
  publication-title: Inorg. Chem.
– volume: 64
  start-page: 12
  year: 2008
  end-page: 14
  publication-title: Acta Crystallogr. Sect. C
– volume: 30
  start-page: 1136
  year: 2018
  end-page: 1145
  publication-title: Chem. Mater.
– volume: 22
  start-page: 1545
  year: 2002
  end-page: 1550
  publication-title: Chem. Mater.
– volume: 30
  start-page: 2443
  year: 2018
  end-page: 2452
  publication-title: Chem. Mater.
– volume: 128
  start-page: 9433
  year: 2016
  end-page: 9436
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 3668
  year: 2014
  end-page: 3670
  publication-title: Chem. Commun.
– ident: e_1_2_2_9_1
  doi: 10.1016/j.ccr.2018.07.013
– ident: e_1_2_2_49_1
  doi: 10.1021/cm071188p
– ident: e_1_2_2_34_1
  doi: 10.1039/C4QI00243A
– ident: e_1_2_2_6_1
  doi: 10.1021/jacs.7b12518
– ident: e_1_2_2_30_1
  doi: 10.1002/anie.201705672
– ident: e_1_2_2_3_2
  doi: 10.1002/ange.201804354
– ident: e_1_2_2_2_2
  doi: 10.1002/ange.201803721
– ident: e_1_2_2_35_1
  doi: 10.1021/acs.chemmater.8b00630
– ident: e_1_2_2_1_2
  doi: 10.1002/ange.201412344
– ident: e_1_2_2_31_1
  doi: 10.1021/acs.chemmater.7b05252
– ident: e_1_2_2_26_1
  doi: 10.1021/acs.inorgchem.6b02191
– ident: e_1_2_2_36_1
  doi: 10.1021/acs.accounts.7b00033
– ident: e_1_2_2_38_1
  doi: 10.1021/jacs.6b06680
– ident: e_1_2_2_16_1
  doi: 10.1021/ic048428c
– ident: e_1_2_2_7_1
  doi: 10.1016/j.ccr.2018.09.002
– ident: e_1_2_2_33_1
  doi: 10.1021/ja808469a
– ident: e_1_2_2_46_1
  doi: 10.1021/acs.inorgchem.8b00632
– ident: e_1_2_2_40_1
  doi: 10.1021/ic101843g
– ident: e_1_2_2_30_2
  doi: 10.1002/ange.201705672
– ident: e_1_2_2_29_1
  doi: 10.1021/acs.chemmater.5b04511
– ident: e_1_2_2_2_1
  doi: 10.1002/anie.201803721
– ident: e_1_2_2_48_1
  doi: 10.1021/ic048766d
– ident: e_1_2_2_4_1
  doi: 10.1038/s41467-018-05575-w
– ident: e_1_2_2_13_2
  doi: 10.1002/ange.200460367
– ident: e_1_2_2_32_1
  doi: 10.1021/acs.chemmater.6b05468
– ident: e_1_2_2_44_1
  doi: 10.1021/cm049297g
– ident: e_1_2_2_10_1
  doi: 10.1016/j.ccr.2015.01.005
– ident: e_1_2_2_47_1
  doi: 10.1016/S0022-4596(03)00090-2
– ident: e_1_2_2_39_1
  doi: 10.1021/acs.inorgchem.5b00052
– ident: e_1_2_2_50_1
  doi: 10.1016/0022-4596(75)90092-4
– ident: e_1_2_2_37_1
  doi: 10.1039/C4CC00537F
– ident: e_1_2_2_41_1
  doi: 10.1039/c3cc45747h
– ident: e_1_2_2_22_1
  doi: 10.1039/c3ce41653d
– ident: e_1_2_2_14_1
  doi: 10.1021/ja012190z
– ident: e_1_2_2_15_1
  doi: 10.1021/cm020021n
– ident: e_1_2_2_25_1
  doi: 10.1039/c2cc30326d
– ident: e_1_2_2_11_2
  doi: 10.1002/ange.200703340
– ident: e_1_2_2_13_1
  doi: 10.1002/anie.200460367
– ident: e_1_2_2_28_1
  doi: 10.1002/anie.201611770
– ident: e_1_2_2_42_1
– ident: e_1_2_2_20_1
  doi: 10.1021/ja200257a
– ident: e_1_2_2_21_1
  doi: 10.1021/ic4003324
– ident: e_1_2_2_5_1
  doi: 10.1021/jacs.8b08803
– ident: e_1_2_2_23_1
  doi: 10.1021/ja205456b
– ident: e_1_2_2_3_1
  doi: 10.1002/anie.201804354
– ident: e_1_2_2_45_1
  doi: 10.1039/b612677d
– ident: e_1_2_2_12_1
  doi: 10.1021/cm500898q
– ident: e_1_2_2_18_1
  doi: 10.1039/c0dt00305k
– ident: e_1_2_2_27_1
  doi: 10.1021/jacs.8b04762
– ident: e_1_2_2_8_1
  doi: 10.1021/acs.accounts.6b00452
– ident: e_1_2_2_43_1
  doi: 10.1107/S0108270107062683
– ident: e_1_2_2_11_1
  doi: 10.1002/anie.200703340
– ident: e_1_2_2_28_2
  doi: 10.1002/ange.201611770
– ident: e_1_2_2_1_1
  doi: 10.1002/anie.201412344
– ident: e_1_2_2_24_1
  doi: 10.1021/ic201991m
– ident: e_1_2_2_19_1
  doi: 10.1021/cm902902j
– ident: e_1_2_2_17_1
  doi: 10.1021/ja9030566
SSID ssj0028806
Score 2.58905
Snippet Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba2[GaF4(IO3)2](IO3) (1 and 2), have been designed by the aliovalent substitutions of α‐ and...
Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba 2 [GaF 4 (IO 3 ) 2 ](IO 3 ) ( 1 and 2 ), have been designed by the aliovalent substitutions of α‐...
Two mixed-metal gallium iodate fluorides, namely, α- and β-Ba [GaF (IO ) ](IO ) (1 and 2), have been designed by the aliovalent substitutions of α- and β-Ba...
Two mixed-metal gallium iodate fluorides, namely, α- and β-Ba2 [GaF4 (IO3 )2 ](IO3 ) (1 and 2), have been designed by the aliovalent substitutions of α- and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2098
SubjectTerms aliovalent substitution
Anions
Cations
Energy gap
Fluorides
Gallium
Harmonic generations
hydrothermal synthesis
Laser damage
nonlinear optical materials
Nonlinear optics
Optical materials
Optics
Potassium phosphate
Potassium phosphates
Silver gallium sulfide
Substitutes
theoretical studies
Title A Facile Route to Nonlinear Optical Materials: Three‐Site Aliovalent Substitution Involving One Cation and Two Anions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201813968
https://www.ncbi.nlm.nih.gov/pubmed/30589189
https://www.proquest.com/docview/2175277585
https://www.proquest.com/docview/2161063630
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYll_bS92ObtEyh0JMTW7JsqTezZEkK2UC7gdyMJMuXBm9IvAR66k_Ib8wvyYy0drMppdDebCxZsvSN9Gk8D8Y-Kp-rXOosaVNdkuomS7TXRdK2GW9RMJUMHnJH8-LgJP9yKk_vePHH-BCjwo0kI6zXJODGXu79ChpKHthkmqWQwxTk7UsGW8SKvo7xoziCM7oXCZFQFvohamPK9zarb-5Kv1HNTeYatp7ZE2aGTkeLk--7q97uuh_34jn-z1c9ZY_XvBSqCKRn7IHvnrOH0yEd3At2VcHMOHwnkBGRh34J89iguYDj86AShyPTR0R_hgWCxN_8vP6GnBaqM7J5pQ0OaKUK5gkICDjscHUklQYcdx6mASVgugYWV0uoOhKJl-xktr-YHiTrrA2JQ3KjEmkF7rtO6bJxurTIgGwmvZGec6MLXHsFt0JLVbaeG-6M4Kl3qeOFUrnmvhWv2Fa37PwbBia1OAy5aBol8xzPZrLk3Mq0UU45J9IJS4ZZq906pDll1jirYzBmXtNw1uNwTtinsfx5DObxx5I7AwjqtVBf1nh6k7ykA9aEfRgf4zTQPxbT-eWKyiAfLURBnXsdwTM2JUIKR6UnjAcI_KUPdTU_3B_v3v5LpW32CK81WZln2Q7b6i9W_h2SqN6-D4JyCwQgEnQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZRL-acLLRgJiVPaxI4Tm1u06moXulsJthK3yHGcC1W2KllV4sQj8Iw8CTP2JmiLEBIck9ixY39jfzMZzwC8Vi5VqdRJ1MQ6J9NNEmmns6hpEt6gYCrpT8jNF9n0PH33SfbehHQWJsSHGAxuJBl-vSYBJ4P08a-ooXQEm3yzFJKYTN2GO5TW22tVH4YIUhzhGQ4YCRFRHvo-bmPMj7frb-9Lv5HNbe7qN5_JPaj6bgefk89H6646sl9vRHT8r--6D3sbasqKgKUHcMu1D2F33GeEewTXBZsYiy9l5EfkWLdii9CiuWJnl94qzuamC6B-y5aIE_fj2_ePSGtZcUFur7THMVqsvIcCYoLNWlwgyarBzlrHxh4ozLQ1W16vWNGSVDyG88nJcjyNNokbIov8RkWyErj1WqXz2uq8QhJUJdIZ6Tg3OsPlV_BKaKnyxnHDrRE8dja2PFMq1dw14gnstKvW7QMzcYXDkIq6VjJNUT2TOeeVjGtllbUiHkHUT1tpN1HNKbnGRRniMfOShrMchnMEb4bylyGexx9LHvQoKDdy_aVEBU7ynHSsEbwaHuM00G8W07rVmsogJc1ERp17GtAzNCV8FkelR8A9Bv7Sh7JYzE6Gq2f_Uukl7E6X89PydLZ4_xzu4n1NTudJcgA73dXaHSKn6qoXXmp-AiZoFo8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkYAL_9CFAkZC4pQ2sePE5hZtu-oC3SLYSr1FjuNcqLKrNqtKnHgEnpEnYcbeBBaEkOCYxI4d-5uZz854BuClcqlKpU6iJtY5bd0kkXY6i5om4Q0KppL-hNzRLDs8Sd-cytOfTvGH-BDDhhtJhtfXJODLutn7ETSUTmCTa5ZCDpOpq3AtzWJFuN7_MASQ4ojOcL5IiIjS0PdhG2O-t1l_0yz9xjU3qau3PZPbYPpeB5eTT7urrtq1n38J6Pg_n3UHbq2JKSsCku7CFdfegxvjPh_cfbgs2MRYfCcjLyLHugWbhQbNOTte-j1xdmS6AOnXbI4ocd--fP2IpJYVZ-T0ShaOkary_gmICDZtUT3SngY7bh0be5gw09ZsfrlgRUsy8QBOJgfz8WG0TtsQWWQ3KpKVQMNrlc5rq_MKKVCVSGek49zoDJWv4JXQUuWN44ZbI3jsbGx5plSquWvEQ9hqF63bBmbiCochFXWtZJri4kzmnFcyrpVV1op4BFE_a6VdxzSn1BpnZYjGzEsaznIYzhG8GsovQzSPP5bc6UFQrqX6osTlm-Q5rbBG8GJ4jNNAP1lM6xYrKoOENBMZde5RAM_QlPA5HJUeAfcQ-EsfymI2PRiuHv9Lpedw_f3-pHw3nb19AjfxtiaP8yTZga3ufOWeIqHqqmdeZr4D5pcVRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Facile+Route+to+Nonlinear+Optical+Materials%3A+Three-Site+Aliovalent+Substitution+Involving+One+Cation+and+Two+Anions&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Jin&rft.au=Hu%2C+Chun-Li&rft.au=Mao%2C+Fei-Fei&rft.au=Feng%2C+Jiang-He&rft.date=2019-02-11&rft.eissn=1521-3773&rft.volume=58&rft.issue=7&rft.spage=2098&rft_id=info:doi/10.1002%2Fanie.201813968&rft_id=info%3Apmid%2F30589189&rft.externalDocID=30589189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon