A Facile Route to Nonlinear Optical Materials: Three‐Site Aliovalent Substitution Involving One Cation and Two Anions
Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba2[GaF4(IO3)2](IO3) (1 and 2), have been designed by the aliovalent substitutions of α‐ and β‐Ba2[VO2F2(IO3)2](IO3) (3 and 4) involving one cationic and two anionic sites. Both 1 and 2 display large second‐harmonic generation responses (≈6×...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 7; pp. 2098 - 2102 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
11.02.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.201813968 |
Cover
Loading…
Abstract | Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba2[GaF4(IO3)2](IO3) (1 and 2), have been designed by the aliovalent substitutions of α‐ and β‐Ba2[VO2F2(IO3)2](IO3) (3 and 4) involving one cationic and two anionic sites. Both 1 and 2 display large second‐harmonic generation responses (≈6×KH2PO4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27–12.5 μm), and high relevant laser‐induced damage thresholds (29.7× and 28.3×AgGaS2, respectively), which indicates that 1 and 2 are potential second‐order nonlinear optical materials in the ultraviolet to mid‐infrared. Our studies propose that three‐site aliovalent substitution is a facile route for the discovery of good NLO materials.
Trading places: Two new nonlinear optical materials, α‐ and β‐Ba2[GaF4(IO3)2](IO3) (1 and 2), were designed via three‐site aliovalent substitution of VO4F2 in α‐ and β‐Ba2[VO2F2(IO3)2](IO3) by GaO2F4. The new materials display large second‐harmonic generation responses (≈6×KH2PO4 (KDP)), wide energy band gaps (4.61 and 4.35 eV), and high laser damage thresholds (29.7× and 28.3× relative to that of AgGaS2). |
---|---|
AbstractList | Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba2[GaF4(IO3)2](IO3) (1 and 2), have been designed by the aliovalent substitutions of α‐ and β‐Ba2[VO2F2(IO3)2](IO3) (3 and 4) involving one cationic and two anionic sites. Both 1 and 2 display large second‐harmonic generation responses (≈6×KH2PO4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27–12.5 μm), and high relevant laser‐induced damage thresholds (29.7× and 28.3×AgGaS2, respectively), which indicates that 1 and 2 are potential second‐order nonlinear optical materials in the ultraviolet to mid‐infrared. Our studies propose that three‐site aliovalent substitution is a facile route for the discovery of good NLO materials. Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba2[GaF4(IO3)2](IO3) (1 and 2), have been designed by the aliovalent substitutions of α‐ and β‐Ba2[VO2F2(IO3)2](IO3) (3 and 4) involving one cationic and two anionic sites. Both 1 and 2 display large second‐harmonic generation responses (≈6×KH2PO4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27–12.5 μm), and high relevant laser‐induced damage thresholds (29.7× and 28.3×AgGaS2, respectively), which indicates that 1 and 2 are potential second‐order nonlinear optical materials in the ultraviolet to mid‐infrared. Our studies propose that three‐site aliovalent substitution is a facile route for the discovery of good NLO materials. Trading places: Two new nonlinear optical materials, α‐ and β‐Ba2[GaF4(IO3)2](IO3) (1 and 2), were designed via three‐site aliovalent substitution of VO4F2 in α‐ and β‐Ba2[VO2F2(IO3)2](IO3) by GaO2F4. The new materials display large second‐harmonic generation responses (≈6×KH2PO4 (KDP)), wide energy band gaps (4.61 and 4.35 eV), and high laser damage thresholds (29.7× and 28.3× relative to that of AgGaS2). Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba 2 [GaF 4 (IO 3 ) 2 ](IO 3 ) ( 1 and 2 ), have been designed by the aliovalent substitutions of α‐ and β‐Ba 2 [VO 2 F 2 (IO 3 ) 2 ](IO 3 ) ( 3 and 4 ) involving one cationic and two anionic sites. Both 1 and 2 display large second‐harmonic generation responses (≈6×KH 2 PO 4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27–12.5 μm), and high relevant laser‐induced damage thresholds (29.7× and 28.3×AgGaS 2 , respectively), which indicates that 1 and 2 are potential second‐order nonlinear optical materials in the ultraviolet to mid‐infrared. Our studies propose that three‐site aliovalent substitution is a facile route for the discovery of good NLO materials. Two mixed-metal gallium iodate fluorides, namely, α- and β-Ba [GaF (IO ) ](IO ) (1 and 2), have been designed by the aliovalent substitutions of α- and β-Ba [VO F (IO ) ](IO ) (3 and 4) involving one cationic and two anionic sites. Both 1 and 2 display large second-harmonic generation responses (≈6×KH PO (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27-12.5 μm), and high relevant laser-induced damage thresholds (29.7× and 28.3×AgGaS , respectively), which indicates that 1 and 2 are potential second-order nonlinear optical materials in the ultraviolet to mid-infrared. Our studies propose that three-site aliovalent substitution is a facile route for the discovery of good NLO materials. Two mixed-metal gallium iodate fluorides, namely, α- and β-Ba2 [GaF4 (IO3 )2 ](IO3 ) (1 and 2), have been designed by the aliovalent substitutions of α- and β-Ba2 [VO2 F2 (IO3 )2 ](IO3 ) (3 and 4) involving one cationic and two anionic sites. Both 1 and 2 display large second-harmonic generation responses (≈6×KH2 PO4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27-12.5 μm), and high relevant laser-induced damage thresholds (29.7× and 28.3×AgGaS2 , respectively), which indicates that 1 and 2 are potential second-order nonlinear optical materials in the ultraviolet to mid-infrared. Our studies propose that three-site aliovalent substitution is a facile route for the discovery of good NLO materials.Two mixed-metal gallium iodate fluorides, namely, α- and β-Ba2 [GaF4 (IO3 )2 ](IO3 ) (1 and 2), have been designed by the aliovalent substitutions of α- and β-Ba2 [VO2 F2 (IO3 )2 ](IO3 ) (3 and 4) involving one cationic and two anionic sites. Both 1 and 2 display large second-harmonic generation responses (≈6×KH2 PO4 (KDP)), large energy band gaps (4.61 and 4.35 eV), wide transmittance ranges (≈0.27-12.5 μm), and high relevant laser-induced damage thresholds (29.7× and 28.3×AgGaS2 , respectively), which indicates that 1 and 2 are potential second-order nonlinear optical materials in the ultraviolet to mid-infrared. Our studies propose that three-site aliovalent substitution is a facile route for the discovery of good NLO materials. |
Author | Mao, Jiang‐Gao Feng, Jiang‐He Chen, Jin Mao, Fei‐Fei Hu, Chun‐Li |
Author_xml | – sequence: 1 givenname: Jin surname: Chen fullname: Chen, Jin organization: University of the Chinese Academy of Sciences – sequence: 2 givenname: Chun‐Li surname: Hu fullname: Hu, Chun‐Li organization: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences – sequence: 3 givenname: Fei‐Fei surname: Mao fullname: Mao, Fei‐Fei organization: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences – sequence: 4 givenname: Jiang‐He surname: Feng fullname: Feng, Jiang‐He organization: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences – sequence: 5 givenname: Jiang‐Gao surname: Mao fullname: Mao, Jiang‐Gao email: mjg@fjirsm.ac.cn organization: Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30589189$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi1URC-wZYksselmgi_x2GYXRS2NVBqJhrXlcU7AlWOHsSdRdzwCz8iT1G1akCohVr7o-34dnf8YHcQUAaG3lIwoIeyDjR5GjFBFuW7VC3REBaMNl5If1PuY80YqQQ_Rcc43lVeKtK_QISdCaar0EdpN8Ll1PgD-koYCuCR8lWLwEWyP55vinQ34sy3QexvyR7z43gP8_vnr2ld4Enza2gCx4Ouhy8WXofgU8SxuU9j6-A3PI-Cpffi0cYkXu4Qnsb7ya_RyVQPhzeN5gr6eny2mF83l_NNsOrls3Jhr1YiOAyyd0nLptOxarjsqwApgzOpWtoyzjmuh5AqYZc5yRsARx1qlxprBip-g033upk8_BsjFrH12EIKNkIZsGG0paXnLSUXfP0Nv0tDHOl2lpGBSCiUq9e6RGro1LM2m92vb35qnlVZgvAdcn3LuYWWcLw8rKL31wVBi7psz982ZP81VbfRMe0r-p6D3wq62d_sf2kyuZmd_3Tt1BqwQ |
CitedBy_id | crossref_primary_10_1002_ejic_201900357 crossref_primary_10_1016_j_jallcom_2021_162547 crossref_primary_10_1039_C9CC08739G crossref_primary_10_1021_acs_cgd_1c01292 crossref_primary_10_1021_acs_inorgchem_3c02175 crossref_primary_10_1039_D1QI00383F crossref_primary_10_1021_acs_inorgchem_3c02213 crossref_primary_10_1039_D4SC06403H crossref_primary_10_1016_j_jallcom_2024_177806 crossref_primary_10_1021_acs_cgd_0c01407 crossref_primary_10_1021_acs_inorgchem_0c00284 crossref_primary_10_1039_C9DT03337H crossref_primary_10_1039_D2TC01638A crossref_primary_10_1021_acs_inorgchem_2c03167 crossref_primary_10_1002_anie_202111780 crossref_primary_10_1039_D4QI00832D crossref_primary_10_1016_j_cclet_2024_110173 crossref_primary_10_1007_s40843_020_1395_x crossref_primary_10_1016_j_jssc_2020_121361 crossref_primary_10_1002_smll_202407130 crossref_primary_10_1016_j_mtphys_2023_101145 crossref_primary_10_1002_ejic_201900509 crossref_primary_10_1039_D3DT03304J crossref_primary_10_1021_acs_inorgchem_9b01085 crossref_primary_10_1039_D1QI00373A crossref_primary_10_1016_j_inoche_2023_111234 crossref_primary_10_1039_D2CE00080F crossref_primary_10_1134_S1063774524601382 crossref_primary_10_1039_D3DT04343F crossref_primary_10_1039_D2QI02479A crossref_primary_10_1002_anie_201913974 crossref_primary_10_31857_S0023476124040052 crossref_primary_10_1016_j_ccr_2020_213380 crossref_primary_10_1021_acsami_0c15444 crossref_primary_10_1039_C9CC02774B crossref_primary_10_1039_D1SC06026K crossref_primary_10_1002_advs_202206833 crossref_primary_10_1021_acsami_0c15728 crossref_primary_10_1002_slct_201900926 crossref_primary_10_1021_acs_inorgchem_9b03426 crossref_primary_10_1016_j_ccr_2022_214950 crossref_primary_10_1021_acs_chemmater_1c00222 crossref_primary_10_1002_anie_202000587 crossref_primary_10_1021_acs_chemmater_1c01434 crossref_primary_10_1021_acs_inorgchem_4c03500 crossref_primary_10_1039_D4CE00722K crossref_primary_10_1002_anie_201913287 crossref_primary_10_1039_D3SC03052K crossref_primary_10_1016_j_jallcom_2022_163727 crossref_primary_10_1039_D1TC00383F crossref_primary_10_1039_D3TA00609C crossref_primary_10_1021_acs_inorgchem_3c02207 crossref_primary_10_1515_nanoph_2020_0038 crossref_primary_10_1021_acs_inorgchem_2c03267 crossref_primary_10_1039_C9SC04832D crossref_primary_10_1021_acs_chemmater_9b03214 crossref_primary_10_1039_D1CE01234G crossref_primary_10_1021_acs_inorgchem_3c04343 crossref_primary_10_1021_acs_inorgchem_4c03630 crossref_primary_10_1021_acs_cgd_1c00317 crossref_primary_10_1016_j_cclet_2021_11_089 crossref_primary_10_1021_acs_inorgchem_1c01015 crossref_primary_10_1039_D0CC07862J crossref_primary_10_1021_acs_inorgchem_3c03928 crossref_primary_10_1002_ange_201913287 crossref_primary_10_1002_asia_202001002 crossref_primary_10_1039_D2DT02085H crossref_primary_10_1002_anie_201904383 crossref_primary_10_1002_advs_201901679 crossref_primary_10_1021_acs_cgd_2c00255 crossref_primary_10_1039_C9NJ05419G crossref_primary_10_1039_D1CC04462A crossref_primary_10_1039_C9DT04313F crossref_primary_10_1039_D1DT02122B crossref_primary_10_1039_C9CC06532F crossref_primary_10_1016_j_cclet_2024_110513 crossref_primary_10_1039_D2TC02489F crossref_primary_10_1021_acs_chemmater_0c02657 crossref_primary_10_1021_acs_chemmater_1c01133 crossref_primary_10_1039_C9DT03628H crossref_primary_10_1021_acs_inorgchem_0c02426 crossref_primary_10_1002_ange_201913974 crossref_primary_10_1039_D3QI00979C crossref_primary_10_1021_acs_inorgchem_1c03171 crossref_primary_10_1021_acs_inorgchem_4c00156 crossref_primary_10_1016_j_jssc_2020_121288 crossref_primary_10_1021_acsmaterialslett_3c00239 crossref_primary_10_1002_ange_202000587 crossref_primary_10_1021_acs_chemmater_0c01452 crossref_primary_10_1021_acs_chemmater_0c01054 crossref_primary_10_1021_acs_inorgchem_9b00075 crossref_primary_10_1016_j_cjsc_2023_100025 crossref_primary_10_1039_D2CC02353A crossref_primary_10_1002_ange_202106335 crossref_primary_10_1039_D1SC01401C crossref_primary_10_1039_D2QI02637F crossref_primary_10_1039_D0SC01936D crossref_primary_10_1021_acs_chemmater_1c00392 crossref_primary_10_1039_D3QI00415E crossref_primary_10_1021_acs_accounts_1c00188 crossref_primary_10_1039_C9DT02512J crossref_primary_10_1002_ange_202116656 crossref_primary_10_1016_j_mtphys_2023_101197 crossref_primary_10_1039_D2DT01320G crossref_primary_10_1039_D0DT00593B crossref_primary_10_1021_acs_cgd_0c01629 crossref_primary_10_1039_C9DT01871A crossref_primary_10_1002_anie_202106335 crossref_primary_10_1016_j_cjsc_2023_100014 crossref_primary_10_1039_D4QI01515K crossref_primary_10_1039_D3TC01570J crossref_primary_10_1002_anie_202116656 crossref_primary_10_1002_ange_201904383 crossref_primary_10_1002_adom_202201643 crossref_primary_10_1021_acs_inorgchem_3c00868 crossref_primary_10_1039_D5QI00517E crossref_primary_10_1039_D2QI01817A crossref_primary_10_1039_D3QI00513E crossref_primary_10_1016_j_ccr_2023_215212 crossref_primary_10_1002_sstr_202300274 crossref_primary_10_1021_acs_cgd_3c00575 crossref_primary_10_1039_D2SC02137D crossref_primary_10_1002_ange_202111780 crossref_primary_10_1002_smll_202306459 |
Cites_doi | 10.1016/j.ccr.2018.07.013 10.1021/cm071188p 10.1039/C4QI00243A 10.1021/jacs.7b12518 10.1002/anie.201705672 10.1002/ange.201804354 10.1002/ange.201803721 10.1021/acs.chemmater.8b00630 10.1002/ange.201412344 10.1021/acs.chemmater.7b05252 10.1021/acs.inorgchem.6b02191 10.1021/acs.accounts.7b00033 10.1021/jacs.6b06680 10.1021/ic048428c 10.1016/j.ccr.2018.09.002 10.1021/ja808469a 10.1021/acs.inorgchem.8b00632 10.1021/ic101843g 10.1002/ange.201705672 10.1021/acs.chemmater.5b04511 10.1002/anie.201803721 10.1021/ic048766d 10.1038/s41467-018-05575-w 10.1002/ange.200460367 10.1021/acs.chemmater.6b05468 10.1021/cm049297g 10.1016/j.ccr.2015.01.005 10.1016/S0022-4596(03)00090-2 10.1021/acs.inorgchem.5b00052 10.1016/0022-4596(75)90092-4 10.1039/C4CC00537F 10.1039/c3cc45747h 10.1039/c3ce41653d 10.1021/ja012190z 10.1021/cm020021n 10.1039/c2cc30326d 10.1002/ange.200703340 10.1002/anie.200460367 10.1002/anie.201611770 10.1021/ja200257a 10.1021/ic4003324 10.1021/jacs.8b08803 10.1021/ja205456b 10.1002/anie.201804354 10.1039/b612677d 10.1021/cm500898q 10.1039/c0dt00305k 10.1021/jacs.8b04762 10.1021/acs.accounts.6b00452 10.1107/S0108270107062683 10.1002/anie.200703340 10.1002/ange.201611770 10.1002/anie.201412344 10.1021/ic201991m 10.1021/cm902902j 10.1021/ja9030566 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201813968 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 2102 |
ExternalDocumentID | 30589189 10_1002_anie_201813968 ANIE201813968 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDB20000000 – fundername: National Natural Science Foundation of China funderid: 21875248; 91622112; 21701173 – fundername: 100 Talents Project of Fujian Province – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDB20000000 – fundername: National Natural Science Foundation of China grantid: 21875248 – fundername: National Natural Science Foundation of China grantid: 91622112 – fundername: National Natural Science Foundation of China grantid: 21701173 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4398-5b3eedc897dc97b639b15ea5e22a9676232b39587fe2a2ca320ec0c2688492ef3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 03:17:17 EDT 2025 Sun Jul 13 05:28:44 EDT 2025 Mon Jul 21 05:58:19 EDT 2025 Tue Jul 01 02:26:40 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Wed Aug 20 07:27:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | aliovalent substitution theoretical studies hydrothermal synthesis nonlinear optical materials |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4398-5b3eedc897dc97b639b15ea5e22a9676232b39587fe2a2ca320ec0c2688492ef3 |
Notes | Dedicated to Professor Jin‐Shun Huang on the occasion of his 80th birthday ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30589189 |
PQID | 2175277585 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2161063630 proquest_journals_2175277585 pubmed_primary_30589189 crossref_citationtrail_10_1002_anie_201813968 crossref_primary_10_1002_anie_201813968 wiley_primary_10_1002_anie_201813968_ANIE201813968 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 11, 2019 |
PublicationDateYYYYMMDD | 2019-02-11 |
PublicationDate_xml | – month: 02 year: 2019 text: February 11, 2019 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2007; 17 2002; 14 2007; 19 2004 2004; 43 116 2018; 140 2013; 49 2017; 25 2010; 39 2015; 288 2015; 54 1975; 13 2014; 26 2016; 128 2009; 131 2017 2017; 56 129 2005; 44 2011; 133 2003; 175 2017; 50 2018; 9 2018; 374 2013; 15 2010; 49 2004; 16 2018 2018; 57 130 2018; 377 2002; 124 2007 2007; 46 119 2002; 22 2013; 52 2011; 50 2017; 56 2015 2015; 54 127 2018; 30 2012; 48 2008; 64 2016; 28 2016; 49 2014; 50 2018; 57 e_1_2_2_4_1 e_1_2_2_24_1 e_1_2_2_49_1 e_1_2_2_6_1 e_1_2_2_22_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_2_2 e_1_2_2_41_1 e_1_2_2_43_1 e_1_2_2_28_2 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_45_1 e_1_2_2_26_1 e_1_2_2_47_1 e_1_2_2_13_2 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_11_1 e_1_2_2_30_1 e_1_2_2_30_2 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_15_1 e_1_2_2_36_1 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_48_1 e_1_2_2_5_1 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_1_2 e_1_2_2_3_1 e_1_2_2_40_1 e_1_2_2_42_1 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_27_1 e_1_2_2_46_1 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_1 e_1_2_2_31_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_50_1 |
References_xml | – volume: 133 start-page: 5561 year: 2011 end-page: 5572 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 9486 year: 2009 end-page: 9487 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 8968 9106 year: 2018 2018 end-page: 8972 9110 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 10464 year: 2013 end-page: 10469 publication-title: CrystEngComm – volume: 56 129 start-page: 9492 9620 year: 2017 2017 end-page: 9496 9624 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 8619 8755 year: 2018 2018 end-page: 8622 8758 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 142 year: 1975 end-page: 148 publication-title: J. Solid State Chem. – volume: 44 start-page: 2263 year: 2005 end-page: 2271 publication-title: Inorg. Chem. – volume: 43 116 start-page: 5489 5605 year: 2004 2004 end-page: 5491 5607 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 11573 year: 2010 end-page: 11580 publication-title: Inorg. Chem. – volume: 175 start-page: 27 year: 2003 end-page: 33 publication-title: J. Solid State Chem. – volume: 44 start-page: 884 year: 2005 end-page: 895 publication-title: Inorg. Chem. – volume: 131 start-page: 2426 year: 2009 end-page: 2427 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 3586 year: 2004 end-page: 3592 publication-title: Chem. Mater. – volume: 140 start-page: 13089 year: 2018 end-page: 13096 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 361 year: 2015 end-page: 368 publication-title: Inorg. Chem. Front. – volume: 56 start-page: 1186 year: 2017 end-page: 1192 publication-title: Inorg. Chem. – volume: 28 start-page: 1413 year: 2016 end-page: 1418 publication-title: Chem. Mater. – volume: 39 start-page: 7960 year: 2010 end-page: 7967 publication-title: Dalton Trans. – volume: 49 start-page: 2774 year: 2016 end-page: 2785 publication-title: Acc. Chem. Res. – volume: 140 start-page: 8868 year: 2018 end-page: 8876 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1123 year: 2007 end-page: 1130 publication-title: J. Mater. Chem. C – volume: 377 start-page: 191 year: 2018 end-page: 208 publication-title: Coord. Chem. Rev. – volume: 57 start-page: 5669 year: 2018 end-page: 5676 publication-title: Inorg. Chem. – volume: 56 129 start-page: 2151 2183 year: 2017 2017 end-page: 2155 2187 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 1592 year: 2018 end-page: 1595 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 4220 year: 2012 end-page: 4222 publication-title: Chem. Commun. – volume: 52 start-page: 5378 year: 2013 end-page: 5384 publication-title: Inorg. Chem. – volume: 54 start-page: 3875 year: 2015 end-page: 3882 publication-title: Inorg. Chem. – volume: 54 127 start-page: 3679 3750 year: 2015 2015 end-page: 3682 3753 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 1222 year: 2017 end-page: 1230 publication-title: Acc. Chem. Res. – volume: 9 start-page: 3089 year: 2018 publication-title: Nat. Commun. – volume: 19 start-page: 4710 year: 2007 end-page: 4715 publication-title: Chem. Mater. – volume: 46 119 start-page: 8488 8640 year: 2007 2007 end-page: 8491 8643 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 124 start-page: 1951 year: 2002 end-page: 1957 publication-title: J. Am. Chem. Soc. – volume: 374 start-page: 464 year: 2018 end-page: 496 publication-title: Coord. Chem. Rev. – volume: 25 start-page: 945 year: 2017 end-page: 949 publication-title: Chem. Mater. – volume: 133 start-page: 12422 year: 2011 end-page: 12425 publication-title: J. Am. Chem. Soc. – volume: 288 start-page: 1 year: 2015 end-page: 17 publication-title: Coord. Chem. Rev. – volume: 49 start-page: 9965 year: 2013 end-page: 9967 publication-title: Chem. Commun. – volume: 14 start-page: 2741 year: 2002 end-page: 2749 publication-title: Chem. Mater. – volume: 26 start-page: 3219 year: 2014 end-page: 3230 publication-title: Chem. Mater. – volume: 50 start-page: 12818 year: 2011 end-page: 12822 publication-title: Inorg. Chem. – volume: 64 start-page: 12 year: 2008 end-page: 14 publication-title: Acta Crystallogr. Sect. C – volume: 30 start-page: 1136 year: 2018 end-page: 1145 publication-title: Chem. Mater. – volume: 22 start-page: 1545 year: 2002 end-page: 1550 publication-title: Chem. Mater. – volume: 30 start-page: 2443 year: 2018 end-page: 2452 publication-title: Chem. Mater. – volume: 128 start-page: 9433 year: 2016 end-page: 9436 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 3668 year: 2014 end-page: 3670 publication-title: Chem. Commun. – ident: e_1_2_2_9_1 doi: 10.1016/j.ccr.2018.07.013 – ident: e_1_2_2_49_1 doi: 10.1021/cm071188p – ident: e_1_2_2_34_1 doi: 10.1039/C4QI00243A – ident: e_1_2_2_6_1 doi: 10.1021/jacs.7b12518 – ident: e_1_2_2_30_1 doi: 10.1002/anie.201705672 – ident: e_1_2_2_3_2 doi: 10.1002/ange.201804354 – ident: e_1_2_2_2_2 doi: 10.1002/ange.201803721 – ident: e_1_2_2_35_1 doi: 10.1021/acs.chemmater.8b00630 – ident: e_1_2_2_1_2 doi: 10.1002/ange.201412344 – ident: e_1_2_2_31_1 doi: 10.1021/acs.chemmater.7b05252 – ident: e_1_2_2_26_1 doi: 10.1021/acs.inorgchem.6b02191 – ident: e_1_2_2_36_1 doi: 10.1021/acs.accounts.7b00033 – ident: e_1_2_2_38_1 doi: 10.1021/jacs.6b06680 – ident: e_1_2_2_16_1 doi: 10.1021/ic048428c – ident: e_1_2_2_7_1 doi: 10.1016/j.ccr.2018.09.002 – ident: e_1_2_2_33_1 doi: 10.1021/ja808469a – ident: e_1_2_2_46_1 doi: 10.1021/acs.inorgchem.8b00632 – ident: e_1_2_2_40_1 doi: 10.1021/ic101843g – ident: e_1_2_2_30_2 doi: 10.1002/ange.201705672 – ident: e_1_2_2_29_1 doi: 10.1021/acs.chemmater.5b04511 – ident: e_1_2_2_2_1 doi: 10.1002/anie.201803721 – ident: e_1_2_2_48_1 doi: 10.1021/ic048766d – ident: e_1_2_2_4_1 doi: 10.1038/s41467-018-05575-w – ident: e_1_2_2_13_2 doi: 10.1002/ange.200460367 – ident: e_1_2_2_32_1 doi: 10.1021/acs.chemmater.6b05468 – ident: e_1_2_2_44_1 doi: 10.1021/cm049297g – ident: e_1_2_2_10_1 doi: 10.1016/j.ccr.2015.01.005 – ident: e_1_2_2_47_1 doi: 10.1016/S0022-4596(03)00090-2 – ident: e_1_2_2_39_1 doi: 10.1021/acs.inorgchem.5b00052 – ident: e_1_2_2_50_1 doi: 10.1016/0022-4596(75)90092-4 – ident: e_1_2_2_37_1 doi: 10.1039/C4CC00537F – ident: e_1_2_2_41_1 doi: 10.1039/c3cc45747h – ident: e_1_2_2_22_1 doi: 10.1039/c3ce41653d – ident: e_1_2_2_14_1 doi: 10.1021/ja012190z – ident: e_1_2_2_15_1 doi: 10.1021/cm020021n – ident: e_1_2_2_25_1 doi: 10.1039/c2cc30326d – ident: e_1_2_2_11_2 doi: 10.1002/ange.200703340 – ident: e_1_2_2_13_1 doi: 10.1002/anie.200460367 – ident: e_1_2_2_28_1 doi: 10.1002/anie.201611770 – ident: e_1_2_2_42_1 – ident: e_1_2_2_20_1 doi: 10.1021/ja200257a – ident: e_1_2_2_21_1 doi: 10.1021/ic4003324 – ident: e_1_2_2_5_1 doi: 10.1021/jacs.8b08803 – ident: e_1_2_2_23_1 doi: 10.1021/ja205456b – ident: e_1_2_2_3_1 doi: 10.1002/anie.201804354 – ident: e_1_2_2_45_1 doi: 10.1039/b612677d – ident: e_1_2_2_12_1 doi: 10.1021/cm500898q – ident: e_1_2_2_18_1 doi: 10.1039/c0dt00305k – ident: e_1_2_2_27_1 doi: 10.1021/jacs.8b04762 – ident: e_1_2_2_8_1 doi: 10.1021/acs.accounts.6b00452 – ident: e_1_2_2_43_1 doi: 10.1107/S0108270107062683 – ident: e_1_2_2_11_1 doi: 10.1002/anie.200703340 – ident: e_1_2_2_28_2 doi: 10.1002/ange.201611770 – ident: e_1_2_2_1_1 doi: 10.1002/anie.201412344 – ident: e_1_2_2_24_1 doi: 10.1021/ic201991m – ident: e_1_2_2_19_1 doi: 10.1021/cm902902j – ident: e_1_2_2_17_1 doi: 10.1021/ja9030566 |
SSID | ssj0028806 |
Score | 2.58905 |
Snippet | Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba2[GaF4(IO3)2](IO3) (1 and 2), have been designed by the aliovalent substitutions of α‐ and... Two mixed‐metal gallium iodate fluorides, namely, α‐ and β‐Ba 2 [GaF 4 (IO 3 ) 2 ](IO 3 ) ( 1 and 2 ), have been designed by the aliovalent substitutions of α‐... Two mixed-metal gallium iodate fluorides, namely, α- and β-Ba [GaF (IO ) ](IO ) (1 and 2), have been designed by the aliovalent substitutions of α- and β-Ba... Two mixed-metal gallium iodate fluorides, namely, α- and β-Ba2 [GaF4 (IO3 )2 ](IO3 ) (1 and 2), have been designed by the aliovalent substitutions of α- and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2098 |
SubjectTerms | aliovalent substitution Anions Cations Energy gap Fluorides Gallium Harmonic generations hydrothermal synthesis Laser damage nonlinear optical materials Nonlinear optics Optical materials Optics Potassium phosphate Potassium phosphates Silver gallium sulfide Substitutes theoretical studies |
Title | A Facile Route to Nonlinear Optical Materials: Three‐Site Aliovalent Substitution Involving One Cation and Two Anions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201813968 https://www.ncbi.nlm.nih.gov/pubmed/30589189 https://www.proquest.com/docview/2175277585 https://www.proquest.com/docview/2161063630 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYll_bS92ObtEyh0JMTW7JsqTezZEkK2UC7gdyMJMuXBm9IvAR66k_Ib8wvyYy0drMppdDebCxZsvSN9Gk8D8Y-Kp-rXOosaVNdkuomS7TXRdK2GW9RMJUMHnJH8-LgJP9yKk_vePHH-BCjwo0kI6zXJODGXu79ChpKHthkmqWQwxTk7UsGW8SKvo7xoziCM7oXCZFQFvohamPK9zarb-5Kv1HNTeYatp7ZE2aGTkeLk--7q97uuh_34jn-z1c9ZY_XvBSqCKRn7IHvnrOH0yEd3At2VcHMOHwnkBGRh34J89iguYDj86AShyPTR0R_hgWCxN_8vP6GnBaqM7J5pQ0OaKUK5gkICDjscHUklQYcdx6mASVgugYWV0uoOhKJl-xktr-YHiTrrA2JQ3KjEmkF7rtO6bJxurTIgGwmvZGec6MLXHsFt0JLVbaeG-6M4Kl3qeOFUrnmvhWv2Fa37PwbBia1OAy5aBol8xzPZrLk3Mq0UU45J9IJS4ZZq906pDll1jirYzBmXtNw1uNwTtinsfx5DObxx5I7AwjqtVBf1nh6k7ykA9aEfRgf4zTQPxbT-eWKyiAfLURBnXsdwTM2JUIKR6UnjAcI_KUPdTU_3B_v3v5LpW32CK81WZln2Q7b6i9W_h2SqN6-D4JyCwQgEnQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOZRL-acLLRgJiVPaxI4Tm1u06moXulsJthK3yHGcC1W2KllV4sQj8Iw8CTP2JmiLEBIck9ixY39jfzMZzwC8Vi5VqdRJ1MQ6J9NNEmmns6hpEt6gYCrpT8jNF9n0PH33SfbehHQWJsSHGAxuJBl-vSYBJ4P08a-ooXQEm3yzFJKYTN2GO5TW22tVH4YIUhzhGQ4YCRFRHvo-bmPMj7frb-9Lv5HNbe7qN5_JPaj6bgefk89H6646sl9vRHT8r--6D3sbasqKgKUHcMu1D2F33GeEewTXBZsYiy9l5EfkWLdii9CiuWJnl94qzuamC6B-y5aIE_fj2_ePSGtZcUFur7THMVqsvIcCYoLNWlwgyarBzlrHxh4ozLQ1W16vWNGSVDyG88nJcjyNNokbIov8RkWyErj1WqXz2uq8QhJUJdIZ6Tg3OsPlV_BKaKnyxnHDrRE8dja2PFMq1dw14gnstKvW7QMzcYXDkIq6VjJNUT2TOeeVjGtllbUiHkHUT1tpN1HNKbnGRRniMfOShrMchnMEb4bylyGexx9LHvQoKDdy_aVEBU7ynHSsEbwaHuM00G8W07rVmsogJc1ERp17GtAzNCV8FkelR8A9Bv7Sh7JYzE6Gq2f_Uukl7E6X89PydLZ4_xzu4n1NTudJcgA73dXaHSKn6qoXXmp-AiZoFo8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkYAL_9CFAkZC4pQ2sePE5hZtu-oC3SLYSr1FjuNcqLKrNqtKnHgEnpEnYcbeBBaEkOCYxI4d-5uZz854BuClcqlKpU6iJtY5bd0kkXY6i5om4Q0KppL-hNzRLDs8Sd-cytOfTvGH-BDDhhtJhtfXJODLutn7ETSUTmCTa5ZCDpOpq3AtzWJFuN7_MASQ4ojOcL5IiIjS0PdhG2O-t1l_0yz9xjU3qau3PZPbYPpeB5eTT7urrtq1n38J6Pg_n3UHbq2JKSsCku7CFdfegxvjPh_cfbgs2MRYfCcjLyLHugWbhQbNOTte-j1xdmS6AOnXbI4ocd--fP2IpJYVZ-T0ShaOkary_gmICDZtUT3SngY7bh0be5gw09ZsfrlgRUsy8QBOJgfz8WG0TtsQWWQ3KpKVQMNrlc5rq_MKKVCVSGek49zoDJWv4JXQUuWN44ZbI3jsbGx5plSquWvEQ9hqF63bBmbiCochFXWtZJri4kzmnFcyrpVV1op4BFE_a6VdxzSn1BpnZYjGzEsaznIYzhG8GsovQzSPP5bc6UFQrqX6osTlm-Q5rbBG8GJ4jNNAP1lM6xYrKoOENBMZde5RAM_QlPA5HJUeAfcQ-EsfymI2PRiuHv9Lpedw_f3-pHw3nb19AjfxtiaP8yTZga3ufOWeIqHqqmdeZr4D5pcVRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Facile+Route+to+Nonlinear+Optical+Materials%3A+Three-Site+Aliovalent+Substitution+Involving+One+Cation+and+Two+Anions&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chen%2C+Jin&rft.au=Hu%2C+Chun-Li&rft.au=Mao%2C+Fei-Fei&rft.au=Feng%2C+Jiang-He&rft.date=2019-02-11&rft.eissn=1521-3773&rft.volume=58&rft.issue=7&rft.spage=2098&rft_id=info:doi/10.1002%2Fanie.201813968&rft_id=info%3Apmid%2F30589189&rft.externalDocID=30589189 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |