Realizing Ultrahigh Mechanical Flexibility and >15% Efficiency of Flexible Organic Solar Cells via a “Welding” Flexible Transparent Electrode
The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is unable to meet the needs of flexible electronics at present due to the lack of a high‐performance flexible transparent electrode (FTE). Here, a so...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 14; pp. e1908478 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is unable to meet the needs of flexible electronics at present due to the lack of a high‐performance flexible transparent electrode (FTE). Here, a so‐called “welding” concept is proposed to design an FTE with tight binding of the upper electrode and the underlying substrate. The upper electrode consisting of solution‐processed Al‐doped ZnO (AZO) and silver nanowire (AgNW) network is well welded by utilizing the capillary force effect and secondary growth of AZO, leading to a reduction of the AgNWs junction site resistance. Meanwhile, the poly(ethylene terephthalate) is modified by embedding the AgNWs, which are then used to link with the AgNWs in the upper hybrid electrode, thus enhancing the adhesion of the electrode to the substrate. By this welding strategy, critical bottleneck issues relating to the FTEs in terms of optoelectronic and mechanical properties are comprehensively addressed. The single‐junction flexible OSCs based on this welded FTE show a high performance, achieving a record high PCE of 15.21%. In addition, the PCEs of the flexible OSCs are less influenced by the device area and display robust bending durability even under extreme test conditions.
A “welding” transparent flexible electrode, with respect to both the upper electrode and the underlying substrate, for fabricating high‐performance flexible OSCs is proposed, resulting in a record power conversion efficiency of single‐junction flexible organic solar cells (OSCs) with excellent mechanical properties. |
---|---|
AbstractList | The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is unable to meet the needs of flexible electronics at present due to the lack of a high‐performance flexible transparent electrode (FTE). Here, a so‐called “welding” concept is proposed to design an FTE with tight binding of the upper electrode and the underlying substrate. The upper electrode consisting of solution‐processed Al‐doped ZnO (AZO) and silver nanowire (AgNW) network is well welded by utilizing the capillary force effect and secondary growth of AZO, leading to a reduction of the AgNWs junction site resistance. Meanwhile, the poly(ethylene terephthalate) is modified by embedding the AgNWs, which are then used to link with the AgNWs in the upper hybrid electrode, thus enhancing the adhesion of the electrode to the substrate. By this welding strategy, critical bottleneck issues relating to the FTEs in terms of optoelectronic and mechanical properties are comprehensively addressed. The single‐junction flexible OSCs based on this welded FTE show a high performance, achieving a record high PCE of 15.21%. In addition, the PCEs of the flexible OSCs are less influenced by the device area and display robust bending durability even under extreme test conditions. The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is unable to meet the needs of flexible electronics at present due to the lack of a high-performance flexible transparent electrode (FTE). Here, a so-called "welding" concept is proposed to design an FTE with tight binding of the upper electrode and the underlying substrate. The upper electrode consisting of solution-processed Al-doped ZnO (AZO) and silver nanowire (AgNW) network is well welded by utilizing the capillary force effect and secondary growth of AZO, leading to a reduction of the AgNWs junction site resistance. Meanwhile, the poly(ethylene terephthalate) is modified by embedding the AgNWs, which are then used to link with the AgNWs in the upper hybrid electrode, thus enhancing the adhesion of the electrode to the substrate. By this welding strategy, critical bottleneck issues relating to the FTEs in terms of optoelectronic and mechanical properties are comprehensively addressed. The single-junction flexible OSCs based on this welded FTE show a high performance, achieving a record high PCE of 15.21%. In addition, the PCEs of the flexible OSCs are less influenced by the device area and display robust bending durability even under extreme test conditions.The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is unable to meet the needs of flexible electronics at present due to the lack of a high-performance flexible transparent electrode (FTE). Here, a so-called "welding" concept is proposed to design an FTE with tight binding of the upper electrode and the underlying substrate. The upper electrode consisting of solution-processed Al-doped ZnO (AZO) and silver nanowire (AgNW) network is well welded by utilizing the capillary force effect and secondary growth of AZO, leading to a reduction of the AgNWs junction site resistance. Meanwhile, the poly(ethylene terephthalate) is modified by embedding the AgNWs, which are then used to link with the AgNWs in the upper hybrid electrode, thus enhancing the adhesion of the electrode to the substrate. By this welding strategy, critical bottleneck issues relating to the FTEs in terms of optoelectronic and mechanical properties are comprehensively addressed. The single-junction flexible OSCs based on this welded FTE show a high performance, achieving a record high PCE of 15.21%. In addition, the PCEs of the flexible OSCs are less influenced by the device area and display robust bending durability even under extreme test conditions. The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is unable to meet the needs of flexible electronics at present due to the lack of a high‐performance flexible transparent electrode (FTE). Here, a so‐called “welding” concept is proposed to design an FTE with tight binding of the upper electrode and the underlying substrate. The upper electrode consisting of solution‐processed Al‐doped ZnO (AZO) and silver nanowire (AgNW) network is well welded by utilizing the capillary force effect and secondary growth of AZO, leading to a reduction of the AgNWs junction site resistance. Meanwhile, the poly(ethylene terephthalate) is modified by embedding the AgNWs, which are then used to link with the AgNWs in the upper hybrid electrode, thus enhancing the adhesion of the electrode to the substrate. By this welding strategy, critical bottleneck issues relating to the FTEs in terms of optoelectronic and mechanical properties are comprehensively addressed. The single‐junction flexible OSCs based on this welded FTE show a high performance, achieving a record high PCE of 15.21%. In addition, the PCEs of the flexible OSCs are less influenced by the device area and display robust bending durability even under extreme test conditions. A “welding” transparent flexible electrode, with respect to both the upper electrode and the underlying substrate, for fabricating high‐performance flexible OSCs is proposed, resulting in a record power conversion efficiency of single‐junction flexible organic solar cells (OSCs) with excellent mechanical properties. |
Author | Li, Yongfang Chen, Haiyang Yao, Huifeng Hou, Jianhui Chen, Xiaobin Xu, Haitao Zeng, Guang Gu, Hongwei Xu, Guiying Li, Yaowen |
Author_xml | – sequence: 1 givenname: Xiaobin surname: Chen fullname: Chen, Xiaobin organization: Soochow University – sequence: 2 givenname: Guiying surname: Xu fullname: Xu, Guiying organization: Soochow University – sequence: 3 givenname: Guang surname: Zeng fullname: Zeng, Guang organization: Nanchang Hangkong University – sequence: 4 givenname: Hongwei surname: Gu fullname: Gu, Hongwei email: hongwei@suda.edu.cn organization: Soochow University – sequence: 5 givenname: Haiyang surname: Chen fullname: Chen, Haiyang organization: Soochow University – sequence: 6 givenname: Haitao surname: Xu fullname: Xu, Haitao organization: Nanchang Hangkong University – sequence: 7 givenname: Huifeng surname: Yao fullname: Yao, Huifeng organization: Chinese Academy of Sciences – sequence: 8 givenname: Yaowen orcidid: 0000-0001-7229-582X surname: Li fullname: Li, Yaowen email: ywli@suda.edu.cn organization: Soochow University – sequence: 9 givenname: Jianhui surname: Hou fullname: Hou, Jianhui organization: Chinese Academy of Sciences – sequence: 10 givenname: Yongfang surname: Li fullname: Li, Yongfang organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32103580$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFuEzEURS3UiqaFLUtkCSGxSWqPPR57gxSFlCK1qgStWFoez5vEleNJ7QkQVv0F9vTn-iU4SkqlSoiVN-e893zvIdoLXQCEXlEyooQUx6ZZmFFBqCKSV_IZGtCyoENOVLmHBkSxcqgElwfoMKVrQogSRDxHB6yghJWSDNCvz2C8--nCDF_5Ppq5m83xOdi5Cc4aj088_HC1865fYxMa_J6Wb_G0bZ11EOwad-0O8YAv4mxj4S-dNxFPwPuEvzmDDb6__f0VfJO33N_ePQqX0YS0NBFCj6cebB-7Bl6g_db4BC937xG6OpleTk6HZxcfP03GZ0PLmZL5i4ITqFVdkVoWlaJtWUDFLW8UB1NxAWVNTF0qUK2oGmttw2phqawFWCMkO0LvtnOXsbtZQer1wiWbjzYBulXSBRNCsEISltE3T9DrbhVDvi5TUuTkFSky9XpHreoFNHoZ3cLEtX4IOwN8C9jYpRSh1db1pnddyME7rynRm071plP9t9OsjZ5oD5P_Kait8N15WP-H1uMP5-NH9w8Yl7ZO |
CitedBy_id | crossref_primary_10_1002_mame_202200438 crossref_primary_10_1002_smtd_202100481 crossref_primary_10_1002_cjoc_202200437 crossref_primary_10_1021_acsami_0c20582 crossref_primary_10_1021_jacs_0c04084 crossref_primary_10_1002_er_7516 crossref_primary_10_1007_s11771_021_4741_7 crossref_primary_10_1021_acs_jpcc_2c05632 crossref_primary_10_1557_s43580_022_00478_x crossref_primary_10_1002_adfm_202102694 crossref_primary_10_1002_app_53251 crossref_primary_10_3390_nano11061360 crossref_primary_10_1002_aesr_202200133 crossref_primary_10_1016_j_optmat_2022_112175 crossref_primary_10_1038_s41528_021_00128_6 crossref_primary_10_1002_adma_202200361 crossref_primary_10_1021_acs_chemmater_1c03104 crossref_primary_10_1021_acsnano_2c10999 crossref_primary_10_3390_nano12223987 crossref_primary_10_1021_acsami_0c16066 crossref_primary_10_3390_polym13223895 crossref_primary_10_1016_j_nanoen_2023_109023 crossref_primary_10_1515_nanoph_2023_0205 crossref_primary_10_1002_admt_202301321 crossref_primary_10_1021_acsami_2c22047 crossref_primary_10_1021_acsami_2c21996 crossref_primary_10_1007_s40843_022_2332_9 crossref_primary_10_1021_acsanm_3c01329 crossref_primary_10_3390_ma16041425 crossref_primary_10_1021_acsaelm_1c00716 crossref_primary_10_1039_D4CS00080C crossref_primary_10_1039_D3NR06508A crossref_primary_10_1039_D0RA10229F crossref_primary_10_1016_j_cej_2023_142524 crossref_primary_10_1038_s41528_021_00127_7 crossref_primary_10_1002_advs_202410931 crossref_primary_10_1016_j_solener_2021_02_066 crossref_primary_10_1021_acsenergylett_0c00537 crossref_primary_10_1109_LPT_2022_3182863 crossref_primary_10_1016_j_nexres_2024_100042 crossref_primary_10_1002_adfm_202007276 crossref_primary_10_1002_admi_202101442 crossref_primary_10_1016_j_solmat_2021_111323 crossref_primary_10_1021_acsami_1c06830 crossref_primary_10_1038_s41528_022_00222_3 crossref_primary_10_1016_j_nanoen_2022_108074 crossref_primary_10_1016_j_nanoen_2023_108472 crossref_primary_10_1016_j_matre_2020_09_001 crossref_primary_10_1002_pip_3703 crossref_primary_10_1016_j_orgel_2021_106282 crossref_primary_10_1016_j_cej_2023_145226 crossref_primary_10_1002_cjoc_202200472 crossref_primary_10_1002_smll_202406006 crossref_primary_10_1007_s11426_021_1094_y crossref_primary_10_1007_s10854_023_10333_w crossref_primary_10_1016_j_dyepig_2020_108562 crossref_primary_10_1002_solr_202300531 crossref_primary_10_1039_D4EE03430A crossref_primary_10_1007_s11426_022_1281_0 crossref_primary_10_1007_s40242_020_0113_3 crossref_primary_10_1002_cssc_202102563 crossref_primary_10_1007_s11426_020_9866_6 crossref_primary_10_1360_SSC_2022_0126 crossref_primary_10_1007_s10118_022_2803_4 crossref_primary_10_3390_cryst11080996 crossref_primary_10_1016_j_ijhydene_2023_08_279 crossref_primary_10_1007_s12274_021_3386_z crossref_primary_10_1039_D1QM00060H crossref_primary_10_1021_acs_macromol_3c01349 crossref_primary_10_1002_adma_202200044 crossref_primary_10_3390_nano13202800 crossref_primary_10_1002_nano_202000175 crossref_primary_10_1002_adfm_202407392 crossref_primary_10_1016_j_flatc_2024_100627 crossref_primary_10_1038_s41560_024_01651_2 crossref_primary_10_1002_marc_202300019 crossref_primary_10_1016_j_wees_2024_03_001 crossref_primary_10_1016_j_orgel_2022_106438 crossref_primary_10_1002_smsc_202300004 crossref_primary_10_1016_j_rineng_2023_101314 crossref_primary_10_1002_solr_202100339 crossref_primary_10_1039_D2MA00940D crossref_primary_10_1063_5_0118500 crossref_primary_10_1002_admt_202101638 crossref_primary_10_1002_aenm_202101383 crossref_primary_10_1016_j_cej_2025_160717 crossref_primary_10_1002_nano_202000287 crossref_primary_10_1002_cjoc_202300789 crossref_primary_10_1021_acsapm_0c00748 crossref_primary_10_1063_5_0083482 crossref_primary_10_1021_acsami_0c02336 crossref_primary_10_1016_j_nanoen_2024_109892 crossref_primary_10_1021_acsami_4c21940 crossref_primary_10_1039_D4CP02513J crossref_primary_10_1002_solr_202000357 crossref_primary_10_1007_s11426_022_1242_9 crossref_primary_10_3390_su17051820 crossref_primary_10_1021_acsami_3c06450 crossref_primary_10_1088_2752_5724_acd6ab crossref_primary_10_34133_2022_9846940 crossref_primary_10_1021_acsami_1c00813 crossref_primary_10_1016_j_ensm_2020_06_028 crossref_primary_10_1021_acs_macromol_1c02111 crossref_primary_10_1021_acsami_0c21986 crossref_primary_10_1021_acs_chemmater_1c04293 crossref_primary_10_1002_solr_202100830 crossref_primary_10_1039_D4TC02821J crossref_primary_10_1007_s12274_020_3169_y crossref_primary_10_1002_solr_202200441 crossref_primary_10_1109_TNANO_2020_3038399 crossref_primary_10_1016_j_cej_2021_134094 crossref_primary_10_1039_D1TA03308E crossref_primary_10_1002_admt_202301143 crossref_primary_10_1063_5_0120728 crossref_primary_10_1002_adfm_202305445 crossref_primary_10_1002_chem_202001805 crossref_primary_10_1002_aenm_202102526 crossref_primary_10_1021_acsami_4c06483 crossref_primary_10_1002_solr_202200797 crossref_primary_10_1002_adfm_202212260 crossref_primary_10_1016_j_cej_2022_138612 crossref_primary_10_1002_adma_202406879 crossref_primary_10_1002_adfm_202010172 crossref_primary_10_1016_j_cej_2023_148498 crossref_primary_10_1016_j_colsurfa_2024_134506 crossref_primary_10_1016_j_cej_2022_138181 crossref_primary_10_1007_s40843_022_2172_6 crossref_primary_10_1016_j_compositesa_2022_106998 crossref_primary_10_1038_s41528_022_00188_2 crossref_primary_10_1007_s10853_024_09860_6 crossref_primary_10_1039_D0TA07934K crossref_primary_10_1016_j_jallcom_2022_168012 crossref_primary_10_1039_D1TC03434K crossref_primary_10_1039_D3RA01021J crossref_primary_10_1021_acs_chemmater_2c02513 crossref_primary_10_1039_D2TC01178F crossref_primary_10_1039_D3EE01333B crossref_primary_10_1002_advs_202300433 crossref_primary_10_1021_acsami_5c00461 crossref_primary_10_1016_j_matchemphys_2025_130611 crossref_primary_10_34133_adi_0058 crossref_primary_10_1007_s40820_024_01333_4 crossref_primary_10_1088_1674_4926_42_5_050301 crossref_primary_10_1002_adom_202000669 crossref_primary_10_1007_s11426_022_1256_8 crossref_primary_10_1021_acsanm_4c03681 crossref_primary_10_1039_D1CS00106J crossref_primary_10_1002_solr_202000328 crossref_primary_10_1002_aenm_202404233 crossref_primary_10_1021_acsanm_3c01608 crossref_primary_10_1007_s40820_020_00566_3 crossref_primary_10_1002_smtd_202100869 crossref_primary_10_1002_chem_202002559 crossref_primary_10_1039_D1MH01317C crossref_primary_10_1002_marc_202200432 crossref_primary_10_1002_smll_202208234 crossref_primary_10_1002_smll_202303399 crossref_primary_10_1039_D2EE03096A crossref_primary_10_34133_adi_0061 crossref_primary_10_1039_D0TC05783E crossref_primary_10_1016_j_apcatb_2022_122247 crossref_primary_10_1007_s11426_022_1282_4 crossref_primary_10_1063_5_0249768 crossref_primary_10_1016_j_cej_2020_126996 crossref_primary_10_1038_s41528_022_00166_8 crossref_primary_10_1039_D1QM00151E crossref_primary_10_1002_inf2_12529 crossref_primary_10_1021_acsaem_0c03227 crossref_primary_10_1039_D2NR02475F crossref_primary_10_1002_adma_202002217 crossref_primary_10_1002_solr_202000436 crossref_primary_10_1021_acsami_4c12238 crossref_primary_10_1007_s10311_022_01471_4 crossref_primary_10_1002_aenm_202403806 crossref_primary_10_1002_cjoc_202300479 crossref_primary_10_1039_D0TA11831A crossref_primary_10_1021_acsaem_2c01145 crossref_primary_10_1515_nanoph_2021_0800 crossref_primary_10_3390_s24206670 crossref_primary_10_1002_adfm_202210675 crossref_primary_10_1038_s41598_021_93365_8 crossref_primary_10_1039_D1NR02917G crossref_primary_10_1557_s43580_023_00534_0 crossref_primary_10_1016_j_cej_2023_145501 crossref_primary_10_1002_smsc_202100001 crossref_primary_10_1007_s11426_020_9799_4 crossref_primary_10_1002_advs_202405099 crossref_primary_10_3389_fnano_2022_885138 crossref_primary_10_3389_fchem_2021_807538 crossref_primary_10_1002_adem_202100832 crossref_primary_10_1021_acsami_2c07063 crossref_primary_10_3389_fchem_2022_920807 crossref_primary_10_1088_1402_4896_acd0de crossref_primary_10_1039_D1TC04101K crossref_primary_10_1039_D4CC05210B crossref_primary_10_1002_adfm_202002529 crossref_primary_10_1002_adfm_202213955 crossref_primary_10_1016_j_joule_2021_06_017 crossref_primary_10_1016_j_scib_2020_05_023 crossref_primary_10_1038_s41467_024_44878_z crossref_primary_10_1002_ange_202107395 crossref_primary_10_1016_j_joule_2021_07_004 crossref_primary_10_1002_adfm_202308468 crossref_primary_10_1002_cjoc_202000696 crossref_primary_10_1002_adfm_202009399 crossref_primary_10_1021_acsami_1c05769 crossref_primary_10_1002_adfm_202010022 crossref_primary_10_1360_SSC_2022_0098 crossref_primary_10_1007_s40820_022_00859_9 crossref_primary_10_1002_adma_202103017 crossref_primary_10_1016_j_jechem_2021_04_024 crossref_primary_10_1007_s40820_023_01165_8 crossref_primary_10_1002_solr_202400230 crossref_primary_10_1002_solr_202200386 crossref_primary_10_1002_adma_202201623 crossref_primary_10_1002_anie_202107395 crossref_primary_10_1016_j_nxmate_2024_100224 crossref_primary_10_1021_jacs_2c01503 crossref_primary_10_1039_D0EE03506H crossref_primary_10_1039_D0TA05696K crossref_primary_10_1002_sus2_70005 crossref_primary_10_1039_D0TC05149G crossref_primary_10_1016_j_solener_2021_04_016 crossref_primary_10_1002_adem_202201444 crossref_primary_10_1016_j_tsf_2020_138272 crossref_primary_10_1016_j_cej_2023_145156 crossref_primary_10_1021_acsami_1c14816 crossref_primary_10_1039_D2TA08644A crossref_primary_10_1002_aenm_202002774 crossref_primary_10_1039_D4TA06570K crossref_primary_10_1002_admt_202000960 crossref_primary_10_1002_eom2_12281 crossref_primary_10_1002_advs_202105288 crossref_primary_10_1002_aenm_202002536 crossref_primary_10_1021_acsnano_1c09018 crossref_primary_10_1002_smtd_202100654 crossref_primary_10_1002_adma_202312041 crossref_primary_10_1021_acsami_1c16550 crossref_primary_10_1039_D1TC02525B crossref_primary_10_1080_17452759_2023_2268602 crossref_primary_10_1039_D2TA08971H crossref_primary_10_1021_acs_langmuir_4c01631 crossref_primary_10_1002_aenm_202201087 crossref_primary_10_1016_j_jechem_2021_05_041 crossref_primary_10_1002_adfm_202010000 crossref_primary_10_1016_j_orgel_2022_106736 crossref_primary_10_1002_adfm_202202011 crossref_primary_10_1002_admi_202200483 crossref_primary_10_1002_admt_202200237 crossref_primary_10_3390_coatings14081031 crossref_primary_10_1016_j_mfglet_2023_08_024 |
Cites_doi | 10.1039/C5EE00120J 10.1002/adfm.201202646 10.1002/adfm.201202523 10.1039/C4TA05728G 10.1002/adma.201100871 10.7567/JJAP.57.03DD01 10.1002/adma.201700437 10.1016/j.egypro.2013.07.293 10.1002/adfm.201303108 10.1002/aenm.201702182 10.1002/adma.201101992 10.1016/j.apsusc.2018.07.052 10.1038/nphoton.2011.318 10.1002/adfm.201303518 10.1038/nnano.2010.132 10.1039/C9TA02900A 10.1038/s41928-019-0315-1 10.1007/s12274-014-0502-3 10.1002/adma.201902447 10.1021/nn900348c 10.1002/adma.201903649 10.1002/adma.201003188 10.1002/adfm.201804479 10.1007/s11426-017-9205-x 10.1002/adfm.201600441 10.1016/j.nanoen.2015.05.014 10.1016/j.solmat.2013.01.043 10.1002/adma.201701479 10.1002/adma.201807159 10.1038/ncomms10214 10.1002/adfm.201705409 10.1021/acsami.7b17148 10.1002/adfm.201705847 10.1038/s41566-018-0104-9 10.1002/adma.201902965 10.1002/adma.201902302 10.1002/adma.201601814 10.1063/1.4809670 10.1002/adma.201901872 10.1021/acsami.8b07287 10.1016/j.surfcoat.2005.02.040 10.1016/j.nanoen.2014.09.007 10.1038/s41467-019-10351-5 10.1002/adma.201902987 10.1002/aenm.201701791 10.1038/ncomms9547 10.1016/j.joule.2019.01.004 10.1007/s11426-018-9430-8 10.1021/nn406672n 10.1088/2053-1591/aaa67a 10.1016/j.matchemphys.2018.11.053 10.1002/adma.201902210 10.1126/science.1101243 10.1016/j.solmat.2017.09.042 10.1021/acsnano.9b00970 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201908478 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 32103580 10_1002_adma_201908478 ADMA201908478 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Collaborative Innovation Center for New‐type Urbanization and Social Governance of Jiangsu Province – fundername: National Natural Science Foundation of China funderid: 51922074; 51673138; 51820105003; 91633301 – fundername: Tang Scholar – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions – fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology – fundername: National Natural Science Foundation of China grantid: 91633301 – fundername: Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province – fundername: National Natural Science Foundation of China grantid: 51922074 – fundername: National Natural Science Foundation of China grantid: 51673138 – fundername: National Natural Science Foundation of China grantid: 51820105003 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4398-40640eb9b70b82791f52e74c4d94ea746e5b0ab59e9f67dcccd3b6c18b6eca683 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 14:54:04 EDT 2025 Mon Jul 14 09:32:39 EDT 2025 Wed Feb 19 02:31:11 EST 2025 Tue Jul 01 02:32:45 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Jan 22 16:34:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | silver nanowires flexible organic solar cell flexible transparent electrode Welding metal oxide |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4398-40640eb9b70b82791f52e74c4d94ea746e5b0ab59e9f67dcccd3b6c18b6eca683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7229-582X |
PMID | 32103580 |
PQID | 2386847902 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2366632803 proquest_journals_2386847902 pubmed_primary_32103580 crossref_citationtrail_10_1002_adma_201908478 crossref_primary_10_1002_adma_201908478 wiley_primary_10_1002_adma_201908478_ADMA201908478 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2015; 15 2018; 28 2015; 6 2019; 3 2015; 3 2019; 31 2019; 2 2019; 10 2013; 23 2019; 13 2019; 223 2014; 24 2013; 102 2017; 29 2018; 61 2004; 305 2015; 8 2018; 174 2018; 8 2016; 7 2019; 62 2018; 5 2013; 38 2018; 458 2005; 200 2013; 113 2011; 23 2018; 12 2012; 6 2009; 3 2016; 28 2014; 8 2010; 5 2018; 10 2014; 7 2016; 26 2014; 10 2018; 57 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_52_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_54_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_55_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 3 start-page: 1140 year: 2019 publication-title: Joule – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 23 start-page: 1711 year: 2013 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 1767 year: 2009 publication-title: ACS Nano – volume: 2 start-page: 513 year: 2019 publication-title: Nat. Electron. – volume: 57 year: 2018 publication-title: Jpn. J. Appl. Phys. – volume: 5 start-page: 574 year: 2010 publication-title: Nat. Nanotechnol. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 8547 year: 2015 publication-title: Nat. Commun. – volume: 24 start-page: 1671 year: 2014 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 530 year: 2015 publication-title: Nano Energy – volume: 38 start-page: 380 year: 2013 publication-title: Energy Procedia – volume: 23 start-page: 4371 year: 2011 publication-title: Adv. Mater. – volume: 8 start-page: 1602 year: 2015 publication-title: Energy Environ. Sci. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 28 start-page: 7405 year: 2016 publication-title: Adv. Mater. – volume: 62 start-page: 851 year: 2019 publication-title: Sci. China: Chem. – volume: 23 start-page: 1482 year: 2011 publication-title: Adv. Mater. – volume: 10 start-page: 7214 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 24 start-page: 2462 year: 2014 publication-title: Adv. Funct. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 23 start-page: 4177 year: 2013 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 259 year: 2014 publication-title: Nano Energy – volume: 200 start-page: 932 year: 2005 publication-title: Surf. Coat. Technol. – volume: 5 year: 2018 publication-title: Mater. Res. Express – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 305 start-page: 1273 year: 2004 publication-title: Science – volume: 458 start-page: 157 year: 2018 publication-title: Appl. Surf. Sci. – volume: 12 start-page: 131 year: 2018 publication-title: Nat. Photonics – volume: 7 start-page: 1370 year: 2014 publication-title: Nano Res. – volume: 10 start-page: 2515 year: 2019 publication-title: Nat. Commun. – volume: 61 start-page: 1179 year: 2018 publication-title: Sci. China: Chem. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 102 year: 2013 publication-title: Appl. Phys. Lett. – volume: 223 start-page: 634 year: 2019 publication-title: Mater. Chem. Phys. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 5375 year: 2015 publication-title: J. Mater. Chem. A – volume: 8 start-page: 2857 year: 2014 publication-title: ACS Nano – volume: 113 start-page: 85 year: 2013 publication-title: Sol. Energy Mater. Sol. Cells. – volume: 23 start-page: 4453 year: 2011 publication-title: Adv. Mater. – volume: 174 start-page: 584 year: 2018 publication-title: Sol. Energy Mater. Sol. Cells – volume: 26 start-page: 5035 year: 2016 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 4686 year: 2019 publication-title: ACS Nano – volume: 6 start-page: 105 year: 2012 publication-title: Nat. Photonics – ident: e_1_2_4_47_1 doi: 10.1039/C5EE00120J – ident: e_1_2_4_34_1 doi: 10.1002/adfm.201202646 – ident: e_1_2_4_29_1 doi: 10.1002/adfm.201202523 – ident: e_1_2_4_39_1 doi: 10.1039/C4TA05728G – ident: e_1_2_4_30_1 doi: 10.1002/adma.201100871 – ident: e_1_2_4_33_1 doi: 10.7567/JJAP.57.03DD01 – ident: e_1_2_4_55_1 doi: 10.1002/adma.201700437 – ident: e_1_2_4_51_1 doi: 10.1016/j.egypro.2013.07.293 – ident: e_1_2_4_40_1 doi: 10.1002/adfm.201303108 – ident: e_1_2_4_45_1 doi: 10.1002/aenm.201702182 – ident: e_1_2_4_31_1 doi: 10.1002/adma.201101992 – ident: e_1_2_4_52_1 doi: 10.1016/j.apsusc.2018.07.052 – ident: e_1_2_4_20_1 doi: 10.1038/nphoton.2011.318 – ident: e_1_2_4_42_1 doi: 10.1002/adfm.201303518 – ident: e_1_2_4_21_1 doi: 10.1038/nnano.2010.132 – ident: e_1_2_4_22_1 doi: 10.1039/C9TA02900A – ident: e_1_2_4_43_1 doi: 10.1038/s41928-019-0315-1 – ident: e_1_2_4_36_1 doi: 10.1007/s12274-014-0502-3 – ident: e_1_2_4_9_1 doi: 10.1002/adma.201902447 – ident: e_1_2_4_46_1 doi: 10.1021/nn900348c – ident: e_1_2_4_8_1 doi: 10.1002/adma.201903649 – ident: e_1_2_4_18_1 doi: 10.1002/adma.201003188 – ident: e_1_2_4_26_1 doi: 10.1002/adfm.201804479 – ident: e_1_2_4_23_1 doi: 10.1007/s11426-017-9205-x – ident: e_1_2_4_50_1 doi: 10.1002/adfm.201600441 – ident: e_1_2_4_48_1 doi: 10.1016/j.nanoen.2015.05.014 – ident: e_1_2_4_25_1 doi: 10.1016/j.solmat.2013.01.043 – ident: e_1_2_4_27_1 doi: 10.1002/adma.201701479 – ident: e_1_2_4_5_1 doi: 10.1002/adma.201807159 – ident: e_1_2_4_24_1 doi: 10.1038/ncomms10214 – ident: e_1_2_4_28_1 doi: 10.1002/adfm.201705409 – ident: e_1_2_4_37_1 doi: 10.1021/acsami.7b17148 – ident: e_1_2_4_6_1 doi: 10.1002/adfm.201705847 – ident: e_1_2_4_1_1 doi: 10.1038/s41566-018-0104-9 – ident: e_1_2_4_15_1 doi: 10.1002/adma.201902965 – ident: e_1_2_4_13_1 doi: 10.1002/adma.201902302 – ident: e_1_2_4_44_1 doi: 10.1002/adma.201601814 – ident: e_1_2_4_49_1 doi: 10.1063/1.4809670 – ident: e_1_2_4_11_1 doi: 10.1002/adma.201901872 – ident: e_1_2_4_32_1 doi: 10.1021/acsami.8b07287 – ident: e_1_2_4_17_1 doi: 10.1016/j.surfcoat.2005.02.040 – ident: e_1_2_4_53_1 doi: 10.1016/j.nanoen.2014.09.007 – ident: e_1_2_4_10_1 doi: 10.1038/s41467-019-10351-5 – ident: e_1_2_4_3_1 doi: 10.1002/adma.201902987 – ident: e_1_2_4_4_1 doi: 10.1002/aenm.201701791 – ident: e_1_2_4_2_1 doi: 10.1038/ncomms9547 – ident: e_1_2_4_12_1 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_4_35_1 doi: 10.1007/s11426-018-9430-8 – ident: e_1_2_4_54_1 doi: 10.1021/nn406672n – ident: e_1_2_4_38_1 doi: 10.1088/2053-1591/aaa67a – ident: e_1_2_4_41_1 doi: 10.1016/j.matchemphys.2018.11.053 – ident: e_1_2_4_14_1 doi: 10.1002/adma.201902210 – ident: e_1_2_4_19_1 doi: 10.1126/science.1101243 – ident: e_1_2_4_16_1 doi: 10.1016/j.solmat.2017.09.042 – ident: e_1_2_4_7_1 doi: 10.1021/acsnano.9b00970 |
SSID | ssj0009606 |
Score | 2.6778815 |
Snippet | The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1908478 |
SubjectTerms | Bending machines Display devices Electrodes Energy conversion efficiency Flexible components flexible organic solar cell flexible transparent electrode Materials science Mechanical properties metal oxide Nanowires Optoelectronics Photovoltaic cells Polyethylene terephthalate silver nanowires Solar cells Substrates Welding Zinc oxide |
Title | Realizing Ultrahigh Mechanical Flexibility and >15% Efficiency of Flexible Organic Solar Cells via a “Welding” Flexible Transparent Electrode |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201908478 https://www.ncbi.nlm.nih.gov/pubmed/32103580 https://www.proquest.com/docview/2386847902 https://www.proquest.com/docview/2366632803 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3DgUV6hpTISiFPaxLEd51JpVXZVIS2HworeIj8mUtUoi9gsEj31L_QOf66_pB4nm-2CEBLcEtlWHHvG_sae-YaQ16lzAphWccVzFnMPqGOFDjY210wnmVYJYIDz9IM8nvH3p-L0VhR_xw8xHLihZoT1GhVcm8XBmjRUu8Ab5Dc0v8BitC86bCEqOlnzRyE8D2R7mYgLydWKtTFhB5vNN3el36DmJnINW8_kAdGrTnceJ-f7y9bs24tf-Bz_568ekvs9LqWjTpAekTvQbJN7t9gKH5OrEw8qzy78M53VrV-kvF1Pp4ChwzjTdILcmsHX9jvVjaOHqXhDx4GiAuM76bzqq9RAuxBQSz-iZU2PoK4X9NuZpppeX_74DOFG7Pry57pBR8KOkWstHXepexw8IbPJ-NPRcdxndIitBz7KG6uSJ2AKkydGsbxIK8Eg55a7goPOuQRhEm1EAUUlc2etdZmRNlVGgtVSZU_JVjNv4DmhTghpgHsDx2gOuVWqErkHIwbvtlMpIxKvZrS0Pd05Zt2oy46omZU41OUw1BF5O9T_0hF9_LHm7kpAyl7hF6VHPtIXFgmLyKuh2Ksq3r_oBuZLrONtxQzTgUXkWSdYw6cwlApvpCPCgnj8pQ_l6N10NLy9-JdGO-Quw7OD4IW0S7bar0t46QFWa_aCEt0AZyIeGw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHIAD_6WBAkYCcUqbOLbjXJBWZVcLdHsoXcEtsp2JVBFlUZtFoqe-And4uT4JHudnWRBCglsijxXH9tjf2DPfEPIsLgoBTKuw5CkLuQPUoUIHG5tqpqNEqwgwwHl2IKdz_uaD6L0JMRam5YcYDtxQM_x6jQqOB9K7K9ZQXXjiILejuRVWXSZXMK23t6oOVwxSCNA93V4iwkxy1fM2Rmx3vf76vvQb2FzHrn7zmdwkpm9263PycWfZmB179guj43_91y1yo4OmdNTOpdvkEtR3yPWfCAvvkq-HDlcen7lnOq8at045057OAKOHcbDpBOk1vbvtF6rrgr6MxXM69iwVGOJJF2UnUgFto0AtfYfGNd2Dqjqln4811fTi_Nt78JdiF-ffVxVaHnYMXmvouM3eU8A9Mp-Mj_amYZfUIbQO-yhnr0oegclMGhnF0iwuBYOUW15kHHTKJQgTaSMyyEqZFtbaIjHSxspIsFqqZJNs1IsatggthJAGuLNxjOaQWqVKkTo8YvB6O5YyIGE_pLntGM8x8UaVt1zNLMeuzoeuDsiLQf5Ty_XxR8ntfobknc6f5g78SFeYRSwgT4dip614BaNrWCxRxpmLCWYEC8j9dmYNn8JoKryUDgjz8-MvbchHr2aj4e3Bv1R6Qq5Oj2b7-f7rg7cPyTWGRwneKWmbbDQnS3jk8FZjHnuN-gE5LiI2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOvB-BAkYCcUqbOLbjXJBW3V2Vx1aosKK3yI-JVBFlK5pFoqf-Be7w5_pL8Di72S4IIcEtkW3FsWfsb-yZbwh5ljongGkVVzxnMfeAOlboYGNzzXSSaZUABjhP9uTulL8-EAfnovg7foj-wA01I6zXqOBHrtpekYZqF3iD_IbmF1h1kVziMlEo18P9FYEU4vPAtpeJuJBcLWkbE7a93n59W_oNa65D17D3jK8Tvex153LyaWvemi178guh4__81g1ybQFM6aCTpJvkAjS3yNVzdIW3ybd9jyoPT_wzndatX6W8YU8ngLHDONV0jOSawdn2K9WNoy9T8ZyOAkcFBnjSWbWoUgPtYkAtfY-mNd2Buj6mXw411fTs9PtHCFdiZ6c_Vg06FnYMXWvpqMvd4-AOmY5HH3Z240VKh9h65KO8tSp5AqYweWIUy4u0EgxybrkrOOicSxAm0UYUUFQyd9ZalxlpU2UkWC1VdpdsNLMG7hPqhJAGuLdwjOaQW6UqkXs0YvByO5UyIvFyRku74DvHtBt12TE1sxKHuuyHOiIv-vpHHdPHH2tuLgWkXGj8cemhj_SFRcIi8rQv9rqKFzC6gdkc63hjMcN8YBG51wlW_ymMpcIr6YiwIB5_6UM5GE4G_duDf2n0hFx-NxyXb1_tvXlIrjA8RwgeSZtko_08h0cebLXmcdCnn9JmIO4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realizing+Ultrahigh+Mechanical+Flexibility+and+%3E15%25+Efficiency+of+Flexible+Organic+Solar+Cells+via+a+%E2%80%9CWelding%E2%80%9D+Flexible+Transparent+Electrode&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Xiaobin&rft.au=Xu%2C+Guiying&rft.au=Zeng%2C+Guang&rft.au=Gu%2C+Hongwei&rft.date=2020-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=14&rft_id=info:doi/10.1002%2Fadma.201908478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201908478 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |