Realizing Ultrahigh Mechanical Flexibility and >15% Efficiency of Flexible Organic Solar Cells via a “Welding” Flexible Transparent Electrode

The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is unable to meet the needs of flexible electronics at present due to the lack of a high‐performance flexible transparent electrode (FTE). Here, a so...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 14; pp. e1908478 - n/a
Main Authors Chen, Xiaobin, Xu, Guiying, Zeng, Guang, Gu, Hongwei, Chen, Haiyang, Xu, Haitao, Yao, Huifeng, Li, Yaowen, Hou, Jianhui, Li, Yongfang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is unable to meet the needs of flexible electronics at present due to the lack of a high‐performance flexible transparent electrode (FTE). Here, a so‐called “welding” concept is proposed to design an FTE with tight binding of the upper electrode and the underlying substrate. The upper electrode consisting of solution‐processed Al‐doped ZnO (AZO) and silver nanowire (AgNW) network is well welded by utilizing the capillary force effect and secondary growth of AZO, leading to a reduction of the AgNWs junction site resistance. Meanwhile, the poly(ethylene terephthalate) is modified by embedding the AgNWs, which are then used to link with the AgNWs in the upper hybrid electrode, thus enhancing the adhesion of the electrode to the substrate. By this welding strategy, critical bottleneck issues relating to the FTEs in terms of optoelectronic and mechanical properties are comprehensively addressed. The single‐junction flexible OSCs based on this welded FTE show a high performance, achieving a record high PCE of 15.21%. In addition, the PCEs of the flexible OSCs are less influenced by the device area and display robust bending durability even under extreme test conditions. A “welding” transparent flexible electrode, with respect to both the upper electrode and the underlying substrate, for fabricating high‐performance flexible OSCs is proposed, resulting in a record power conversion efficiency of single‐junction flexible organic solar cells (OSCs) with excellent mechanical properties.
AbstractList The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is unable to meet the needs of flexible electronics at present due to the lack of a high‐performance flexible transparent electrode (FTE). Here, a so‐called “welding” concept is proposed to design an FTE with tight binding of the upper electrode and the underlying substrate. The upper electrode consisting of solution‐processed Al‐doped ZnO (AZO) and silver nanowire (AgNW) network is well welded by utilizing the capillary force effect and secondary growth of AZO, leading to a reduction of the AgNWs junction site resistance. Meanwhile, the poly(ethylene terephthalate) is modified by embedding the AgNWs, which are then used to link with the AgNWs in the upper hybrid electrode, thus enhancing the adhesion of the electrode to the substrate. By this welding strategy, critical bottleneck issues relating to the FTEs in terms of optoelectronic and mechanical properties are comprehensively addressed. The single‐junction flexible OSCs based on this welded FTE show a high performance, achieving a record high PCE of 15.21%. In addition, the PCEs of the flexible OSCs are less influenced by the device area and display robust bending durability even under extreme test conditions.
The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is unable to meet the needs of flexible electronics at present due to the lack of a high-performance flexible transparent electrode (FTE). Here, a so-called "welding" concept is proposed to design an FTE with tight binding of the upper electrode and the underlying substrate. The upper electrode consisting of solution-processed Al-doped ZnO (AZO) and silver nanowire (AgNW) network is well welded by utilizing the capillary force effect and secondary growth of AZO, leading to a reduction of the AgNWs junction site resistance. Meanwhile, the poly(ethylene terephthalate) is modified by embedding the AgNWs, which are then used to link with the AgNWs in the upper hybrid electrode, thus enhancing the adhesion of the electrode to the substrate. By this welding strategy, critical bottleneck issues relating to the FTEs in terms of optoelectronic and mechanical properties are comprehensively addressed. The single-junction flexible OSCs based on this welded FTE show a high performance, achieving a record high PCE of 15.21%. In addition, the PCEs of the flexible OSCs are less influenced by the device area and display robust bending durability even under extreme test conditions.The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is unable to meet the needs of flexible electronics at present due to the lack of a high-performance flexible transparent electrode (FTE). Here, a so-called "welding" concept is proposed to design an FTE with tight binding of the upper electrode and the underlying substrate. The upper electrode consisting of solution-processed Al-doped ZnO (AZO) and silver nanowire (AgNW) network is well welded by utilizing the capillary force effect and secondary growth of AZO, leading to a reduction of the AgNWs junction site resistance. Meanwhile, the poly(ethylene terephthalate) is modified by embedding the AgNWs, which are then used to link with the AgNWs in the upper hybrid electrode, thus enhancing the adhesion of the electrode to the substrate. By this welding strategy, critical bottleneck issues relating to the FTEs in terms of optoelectronic and mechanical properties are comprehensively addressed. The single-junction flexible OSCs based on this welded FTE show a high performance, achieving a record high PCE of 15.21%. In addition, the PCEs of the flexible OSCs are less influenced by the device area and display robust bending durability even under extreme test conditions.
The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is unable to meet the needs of flexible electronics at present due to the lack of a high‐performance flexible transparent electrode (FTE). Here, a so‐called “welding” concept is proposed to design an FTE with tight binding of the upper electrode and the underlying substrate. The upper electrode consisting of solution‐processed Al‐doped ZnO (AZO) and silver nanowire (AgNW) network is well welded by utilizing the capillary force effect and secondary growth of AZO, leading to a reduction of the AgNWs junction site resistance. Meanwhile, the poly(ethylene terephthalate) is modified by embedding the AgNWs, which are then used to link with the AgNWs in the upper hybrid electrode, thus enhancing the adhesion of the electrode to the substrate. By this welding strategy, critical bottleneck issues relating to the FTEs in terms of optoelectronic and mechanical properties are comprehensively addressed. The single‐junction flexible OSCs based on this welded FTE show a high performance, achieving a record high PCE of 15.21%. In addition, the PCEs of the flexible OSCs are less influenced by the device area and display robust bending durability even under extreme test conditions. A “welding” transparent flexible electrode, with respect to both the upper electrode and the underlying substrate, for fabricating high‐performance flexible OSCs is proposed, resulting in a record power conversion efficiency of single‐junction flexible organic solar cells (OSCs) with excellent mechanical properties.
Author Li, Yongfang
Chen, Haiyang
Yao, Huifeng
Hou, Jianhui
Chen, Xiaobin
Xu, Haitao
Zeng, Guang
Gu, Hongwei
Xu, Guiying
Li, Yaowen
Author_xml – sequence: 1
  givenname: Xiaobin
  surname: Chen
  fullname: Chen, Xiaobin
  organization: Soochow University
– sequence: 2
  givenname: Guiying
  surname: Xu
  fullname: Xu, Guiying
  organization: Soochow University
– sequence: 3
  givenname: Guang
  surname: Zeng
  fullname: Zeng, Guang
  organization: Nanchang Hangkong University
– sequence: 4
  givenname: Hongwei
  surname: Gu
  fullname: Gu, Hongwei
  email: hongwei@suda.edu.cn
  organization: Soochow University
– sequence: 5
  givenname: Haiyang
  surname: Chen
  fullname: Chen, Haiyang
  organization: Soochow University
– sequence: 6
  givenname: Haitao
  surname: Xu
  fullname: Xu, Haitao
  organization: Nanchang Hangkong University
– sequence: 7
  givenname: Huifeng
  surname: Yao
  fullname: Yao, Huifeng
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Yaowen
  orcidid: 0000-0001-7229-582X
  surname: Li
  fullname: Li, Yaowen
  email: ywli@suda.edu.cn
  organization: Soochow University
– sequence: 9
  givenname: Jianhui
  surname: Hou
  fullname: Hou, Jianhui
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Yongfang
  surname: Li
  fullname: Li, Yongfang
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32103580$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFuEzEURS3UiqaFLUtkCSGxSWqPPR57gxSFlCK1qgStWFoez5vEleNJ7QkQVv0F9vTn-iU4SkqlSoiVN-e893zvIdoLXQCEXlEyooQUx6ZZmFFBqCKSV_IZGtCyoENOVLmHBkSxcqgElwfoMKVrQogSRDxHB6yghJWSDNCvz2C8--nCDF_5Ppq5m83xOdi5Cc4aj088_HC1865fYxMa_J6Wb_G0bZ11EOwad-0O8YAv4mxj4S-dNxFPwPuEvzmDDb6__f0VfJO33N_ePQqX0YS0NBFCj6cebB-7Bl6g_db4BC937xG6OpleTk6HZxcfP03GZ0PLmZL5i4ITqFVdkVoWlaJtWUDFLW8UB1NxAWVNTF0qUK2oGmttw2phqawFWCMkO0LvtnOXsbtZQer1wiWbjzYBulXSBRNCsEISltE3T9DrbhVDvi5TUuTkFSky9XpHreoFNHoZ3cLEtX4IOwN8C9jYpRSh1db1pnddyME7rynRm071plP9t9OsjZ5oD5P_Kait8N15WP-H1uMP5-NH9w8Yl7ZO
CitedBy_id crossref_primary_10_1002_mame_202200438
crossref_primary_10_1002_smtd_202100481
crossref_primary_10_1002_cjoc_202200437
crossref_primary_10_1021_acsami_0c20582
crossref_primary_10_1021_jacs_0c04084
crossref_primary_10_1002_er_7516
crossref_primary_10_1007_s11771_021_4741_7
crossref_primary_10_1021_acs_jpcc_2c05632
crossref_primary_10_1557_s43580_022_00478_x
crossref_primary_10_1002_adfm_202102694
crossref_primary_10_1002_app_53251
crossref_primary_10_3390_nano11061360
crossref_primary_10_1002_aesr_202200133
crossref_primary_10_1016_j_optmat_2022_112175
crossref_primary_10_1038_s41528_021_00128_6
crossref_primary_10_1002_adma_202200361
crossref_primary_10_1021_acs_chemmater_1c03104
crossref_primary_10_1021_acsnano_2c10999
crossref_primary_10_3390_nano12223987
crossref_primary_10_1021_acsami_0c16066
crossref_primary_10_3390_polym13223895
crossref_primary_10_1016_j_nanoen_2023_109023
crossref_primary_10_1515_nanoph_2023_0205
crossref_primary_10_1002_admt_202301321
crossref_primary_10_1021_acsami_2c22047
crossref_primary_10_1021_acsami_2c21996
crossref_primary_10_1007_s40843_022_2332_9
crossref_primary_10_1021_acsanm_3c01329
crossref_primary_10_3390_ma16041425
crossref_primary_10_1021_acsaelm_1c00716
crossref_primary_10_1039_D4CS00080C
crossref_primary_10_1039_D3NR06508A
crossref_primary_10_1039_D0RA10229F
crossref_primary_10_1016_j_cej_2023_142524
crossref_primary_10_1038_s41528_021_00127_7
crossref_primary_10_1002_advs_202410931
crossref_primary_10_1016_j_solener_2021_02_066
crossref_primary_10_1021_acsenergylett_0c00537
crossref_primary_10_1109_LPT_2022_3182863
crossref_primary_10_1016_j_nexres_2024_100042
crossref_primary_10_1002_adfm_202007276
crossref_primary_10_1002_admi_202101442
crossref_primary_10_1016_j_solmat_2021_111323
crossref_primary_10_1021_acsami_1c06830
crossref_primary_10_1038_s41528_022_00222_3
crossref_primary_10_1016_j_nanoen_2022_108074
crossref_primary_10_1016_j_nanoen_2023_108472
crossref_primary_10_1016_j_matre_2020_09_001
crossref_primary_10_1002_pip_3703
crossref_primary_10_1016_j_orgel_2021_106282
crossref_primary_10_1016_j_cej_2023_145226
crossref_primary_10_1002_cjoc_202200472
crossref_primary_10_1002_smll_202406006
crossref_primary_10_1007_s11426_021_1094_y
crossref_primary_10_1007_s10854_023_10333_w
crossref_primary_10_1016_j_dyepig_2020_108562
crossref_primary_10_1002_solr_202300531
crossref_primary_10_1039_D4EE03430A
crossref_primary_10_1007_s11426_022_1281_0
crossref_primary_10_1007_s40242_020_0113_3
crossref_primary_10_1002_cssc_202102563
crossref_primary_10_1007_s11426_020_9866_6
crossref_primary_10_1360_SSC_2022_0126
crossref_primary_10_1007_s10118_022_2803_4
crossref_primary_10_3390_cryst11080996
crossref_primary_10_1016_j_ijhydene_2023_08_279
crossref_primary_10_1007_s12274_021_3386_z
crossref_primary_10_1039_D1QM00060H
crossref_primary_10_1021_acs_macromol_3c01349
crossref_primary_10_1002_adma_202200044
crossref_primary_10_3390_nano13202800
crossref_primary_10_1002_nano_202000175
crossref_primary_10_1002_adfm_202407392
crossref_primary_10_1016_j_flatc_2024_100627
crossref_primary_10_1038_s41560_024_01651_2
crossref_primary_10_1002_marc_202300019
crossref_primary_10_1016_j_wees_2024_03_001
crossref_primary_10_1016_j_orgel_2022_106438
crossref_primary_10_1002_smsc_202300004
crossref_primary_10_1016_j_rineng_2023_101314
crossref_primary_10_1002_solr_202100339
crossref_primary_10_1039_D2MA00940D
crossref_primary_10_1063_5_0118500
crossref_primary_10_1002_admt_202101638
crossref_primary_10_1002_aenm_202101383
crossref_primary_10_1016_j_cej_2025_160717
crossref_primary_10_1002_nano_202000287
crossref_primary_10_1002_cjoc_202300789
crossref_primary_10_1021_acsapm_0c00748
crossref_primary_10_1063_5_0083482
crossref_primary_10_1021_acsami_0c02336
crossref_primary_10_1016_j_nanoen_2024_109892
crossref_primary_10_1021_acsami_4c21940
crossref_primary_10_1039_D4CP02513J
crossref_primary_10_1002_solr_202000357
crossref_primary_10_1007_s11426_022_1242_9
crossref_primary_10_3390_su17051820
crossref_primary_10_1021_acsami_3c06450
crossref_primary_10_1088_2752_5724_acd6ab
crossref_primary_10_34133_2022_9846940
crossref_primary_10_1021_acsami_1c00813
crossref_primary_10_1016_j_ensm_2020_06_028
crossref_primary_10_1021_acs_macromol_1c02111
crossref_primary_10_1021_acsami_0c21986
crossref_primary_10_1021_acs_chemmater_1c04293
crossref_primary_10_1002_solr_202100830
crossref_primary_10_1039_D4TC02821J
crossref_primary_10_1007_s12274_020_3169_y
crossref_primary_10_1002_solr_202200441
crossref_primary_10_1109_TNANO_2020_3038399
crossref_primary_10_1016_j_cej_2021_134094
crossref_primary_10_1039_D1TA03308E
crossref_primary_10_1002_admt_202301143
crossref_primary_10_1063_5_0120728
crossref_primary_10_1002_adfm_202305445
crossref_primary_10_1002_chem_202001805
crossref_primary_10_1002_aenm_202102526
crossref_primary_10_1021_acsami_4c06483
crossref_primary_10_1002_solr_202200797
crossref_primary_10_1002_adfm_202212260
crossref_primary_10_1016_j_cej_2022_138612
crossref_primary_10_1002_adma_202406879
crossref_primary_10_1002_adfm_202010172
crossref_primary_10_1016_j_cej_2023_148498
crossref_primary_10_1016_j_colsurfa_2024_134506
crossref_primary_10_1016_j_cej_2022_138181
crossref_primary_10_1007_s40843_022_2172_6
crossref_primary_10_1016_j_compositesa_2022_106998
crossref_primary_10_1038_s41528_022_00188_2
crossref_primary_10_1007_s10853_024_09860_6
crossref_primary_10_1039_D0TA07934K
crossref_primary_10_1016_j_jallcom_2022_168012
crossref_primary_10_1039_D1TC03434K
crossref_primary_10_1039_D3RA01021J
crossref_primary_10_1021_acs_chemmater_2c02513
crossref_primary_10_1039_D2TC01178F
crossref_primary_10_1039_D3EE01333B
crossref_primary_10_1002_advs_202300433
crossref_primary_10_1021_acsami_5c00461
crossref_primary_10_1016_j_matchemphys_2025_130611
crossref_primary_10_34133_adi_0058
crossref_primary_10_1007_s40820_024_01333_4
crossref_primary_10_1088_1674_4926_42_5_050301
crossref_primary_10_1002_adom_202000669
crossref_primary_10_1007_s11426_022_1256_8
crossref_primary_10_1021_acsanm_4c03681
crossref_primary_10_1039_D1CS00106J
crossref_primary_10_1002_solr_202000328
crossref_primary_10_1002_aenm_202404233
crossref_primary_10_1021_acsanm_3c01608
crossref_primary_10_1007_s40820_020_00566_3
crossref_primary_10_1002_smtd_202100869
crossref_primary_10_1002_chem_202002559
crossref_primary_10_1039_D1MH01317C
crossref_primary_10_1002_marc_202200432
crossref_primary_10_1002_smll_202208234
crossref_primary_10_1002_smll_202303399
crossref_primary_10_1039_D2EE03096A
crossref_primary_10_34133_adi_0061
crossref_primary_10_1039_D0TC05783E
crossref_primary_10_1016_j_apcatb_2022_122247
crossref_primary_10_1007_s11426_022_1282_4
crossref_primary_10_1063_5_0249768
crossref_primary_10_1016_j_cej_2020_126996
crossref_primary_10_1038_s41528_022_00166_8
crossref_primary_10_1039_D1QM00151E
crossref_primary_10_1002_inf2_12529
crossref_primary_10_1021_acsaem_0c03227
crossref_primary_10_1039_D2NR02475F
crossref_primary_10_1002_adma_202002217
crossref_primary_10_1002_solr_202000436
crossref_primary_10_1021_acsami_4c12238
crossref_primary_10_1007_s10311_022_01471_4
crossref_primary_10_1002_aenm_202403806
crossref_primary_10_1002_cjoc_202300479
crossref_primary_10_1039_D0TA11831A
crossref_primary_10_1021_acsaem_2c01145
crossref_primary_10_1515_nanoph_2021_0800
crossref_primary_10_3390_s24206670
crossref_primary_10_1002_adfm_202210675
crossref_primary_10_1038_s41598_021_93365_8
crossref_primary_10_1039_D1NR02917G
crossref_primary_10_1557_s43580_023_00534_0
crossref_primary_10_1016_j_cej_2023_145501
crossref_primary_10_1002_smsc_202100001
crossref_primary_10_1007_s11426_020_9799_4
crossref_primary_10_1002_advs_202405099
crossref_primary_10_3389_fnano_2022_885138
crossref_primary_10_3389_fchem_2021_807538
crossref_primary_10_1002_adem_202100832
crossref_primary_10_1021_acsami_2c07063
crossref_primary_10_3389_fchem_2022_920807
crossref_primary_10_1088_1402_4896_acd0de
crossref_primary_10_1039_D1TC04101K
crossref_primary_10_1039_D4CC05210B
crossref_primary_10_1002_adfm_202002529
crossref_primary_10_1002_adfm_202213955
crossref_primary_10_1016_j_joule_2021_06_017
crossref_primary_10_1016_j_scib_2020_05_023
crossref_primary_10_1038_s41467_024_44878_z
crossref_primary_10_1002_ange_202107395
crossref_primary_10_1016_j_joule_2021_07_004
crossref_primary_10_1002_adfm_202308468
crossref_primary_10_1002_cjoc_202000696
crossref_primary_10_1002_adfm_202009399
crossref_primary_10_1021_acsami_1c05769
crossref_primary_10_1002_adfm_202010022
crossref_primary_10_1360_SSC_2022_0098
crossref_primary_10_1007_s40820_022_00859_9
crossref_primary_10_1002_adma_202103017
crossref_primary_10_1016_j_jechem_2021_04_024
crossref_primary_10_1007_s40820_023_01165_8
crossref_primary_10_1002_solr_202400230
crossref_primary_10_1002_solr_202200386
crossref_primary_10_1002_adma_202201623
crossref_primary_10_1002_anie_202107395
crossref_primary_10_1016_j_nxmate_2024_100224
crossref_primary_10_1021_jacs_2c01503
crossref_primary_10_1039_D0EE03506H
crossref_primary_10_1039_D0TA05696K
crossref_primary_10_1002_sus2_70005
crossref_primary_10_1039_D0TC05149G
crossref_primary_10_1016_j_solener_2021_04_016
crossref_primary_10_1002_adem_202201444
crossref_primary_10_1016_j_tsf_2020_138272
crossref_primary_10_1016_j_cej_2023_145156
crossref_primary_10_1021_acsami_1c14816
crossref_primary_10_1039_D2TA08644A
crossref_primary_10_1002_aenm_202002774
crossref_primary_10_1039_D4TA06570K
crossref_primary_10_1002_admt_202000960
crossref_primary_10_1002_eom2_12281
crossref_primary_10_1002_advs_202105288
crossref_primary_10_1002_aenm_202002536
crossref_primary_10_1021_acsnano_1c09018
crossref_primary_10_1002_smtd_202100654
crossref_primary_10_1002_adma_202312041
crossref_primary_10_1021_acsami_1c16550
crossref_primary_10_1039_D1TC02525B
crossref_primary_10_1080_17452759_2023_2268602
crossref_primary_10_1039_D2TA08971H
crossref_primary_10_1021_acs_langmuir_4c01631
crossref_primary_10_1002_aenm_202201087
crossref_primary_10_1016_j_jechem_2021_05_041
crossref_primary_10_1002_adfm_202010000
crossref_primary_10_1016_j_orgel_2022_106736
crossref_primary_10_1002_adfm_202202011
crossref_primary_10_1002_admi_202200483
crossref_primary_10_1002_admt_202200237
crossref_primary_10_3390_coatings14081031
crossref_primary_10_1016_j_mfglet_2023_08_024
Cites_doi 10.1039/C5EE00120J
10.1002/adfm.201202646
10.1002/adfm.201202523
10.1039/C4TA05728G
10.1002/adma.201100871
10.7567/JJAP.57.03DD01
10.1002/adma.201700437
10.1016/j.egypro.2013.07.293
10.1002/adfm.201303108
10.1002/aenm.201702182
10.1002/adma.201101992
10.1016/j.apsusc.2018.07.052
10.1038/nphoton.2011.318
10.1002/adfm.201303518
10.1038/nnano.2010.132
10.1039/C9TA02900A
10.1038/s41928-019-0315-1
10.1007/s12274-014-0502-3
10.1002/adma.201902447
10.1021/nn900348c
10.1002/adma.201903649
10.1002/adma.201003188
10.1002/adfm.201804479
10.1007/s11426-017-9205-x
10.1002/adfm.201600441
10.1016/j.nanoen.2015.05.014
10.1016/j.solmat.2013.01.043
10.1002/adma.201701479
10.1002/adma.201807159
10.1038/ncomms10214
10.1002/adfm.201705409
10.1021/acsami.7b17148
10.1002/adfm.201705847
10.1038/s41566-018-0104-9
10.1002/adma.201902965
10.1002/adma.201902302
10.1002/adma.201601814
10.1063/1.4809670
10.1002/adma.201901872
10.1021/acsami.8b07287
10.1016/j.surfcoat.2005.02.040
10.1016/j.nanoen.2014.09.007
10.1038/s41467-019-10351-5
10.1002/adma.201902987
10.1002/aenm.201701791
10.1038/ncomms9547
10.1016/j.joule.2019.01.004
10.1007/s11426-018-9430-8
10.1021/nn406672n
10.1088/2053-1591/aaa67a
10.1016/j.matchemphys.2018.11.053
10.1002/adma.201902210
10.1126/science.1101243
10.1016/j.solmat.2017.09.042
10.1021/acsnano.9b00970
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201908478
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32103580
10_1002_adma_201908478
ADMA201908478
Genre article
Journal Article
GrantInformation_xml – fundername: Collaborative Innovation Center for New‐type Urbanization and Social Governance of Jiangsu Province
– fundername: National Natural Science Foundation of China
  funderid: 51922074; 51673138; 51820105003; 91633301
– fundername: Tang Scholar
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
– fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology
– fundername: National Natural Science Foundation of China
  grantid: 91633301
– fundername: Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province
– fundername: National Natural Science Foundation of China
  grantid: 51922074
– fundername: National Natural Science Foundation of China
  grantid: 51673138
– fundername: National Natural Science Foundation of China
  grantid: 51820105003
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4398-40640eb9b70b82791f52e74c4d94ea746e5b0ab59e9f67dcccd3b6c18b6eca683
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 14:54:04 EDT 2025
Mon Jul 14 09:32:39 EDT 2025
Wed Feb 19 02:31:11 EST 2025
Tue Jul 01 02:32:45 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Jan 22 16:34:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords silver nanowires
flexible organic solar cell
flexible transparent electrode
Welding
metal oxide
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4398-40640eb9b70b82791f52e74c4d94ea746e5b0ab59e9f67dcccd3b6c18b6eca683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7229-582X
PMID 32103580
PQID 2386847902
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2366632803
proquest_journals_2386847902
pubmed_primary_32103580
crossref_citationtrail_10_1002_adma_201908478
crossref_primary_10_1002_adma_201908478
wiley_primary_10_1002_adma_201908478_ADMA201908478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2015; 15
2018; 28
2015; 6
2019; 3
2015; 3
2019; 31
2019; 2
2019; 10
2013; 23
2019; 13
2019; 223
2014; 24
2013; 102
2017; 29
2018; 61
2004; 305
2015; 8
2018; 174
2018; 8
2016; 7
2019; 62
2018; 5
2013; 38
2018; 458
2005; 200
2013; 113
2011; 23
2018; 12
2012; 6
2009; 3
2016; 28
2014; 8
2010; 5
2018; 10
2014; 7
2016; 26
2014; 10
2018; 57
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_52_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_54_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_55_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_53_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 3
  start-page: 1140
  year: 2019
  publication-title: Joule
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 23
  start-page: 1711
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 1767
  year: 2009
  publication-title: ACS Nano
– volume: 2
  start-page: 513
  year: 2019
  publication-title: Nat. Electron.
– volume: 57
  year: 2018
  publication-title: Jpn. J. Appl. Phys.
– volume: 5
  start-page: 574
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 8547
  year: 2015
  publication-title: Nat. Commun.
– volume: 24
  start-page: 1671
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 530
  year: 2015
  publication-title: Nano Energy
– volume: 38
  start-page: 380
  year: 2013
  publication-title: Energy Procedia
– volume: 23
  start-page: 4371
  year: 2011
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1602
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 28
  start-page: 7405
  year: 2016
  publication-title: Adv. Mater.
– volume: 62
  start-page: 851
  year: 2019
  publication-title: Sci. China: Chem.
– volume: 23
  start-page: 1482
  year: 2011
  publication-title: Adv. Mater.
– volume: 10
  start-page: 7214
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 24
  start-page: 2462
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 23
  start-page: 4177
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 259
  year: 2014
  publication-title: Nano Energy
– volume: 200
  start-page: 932
  year: 2005
  publication-title: Surf. Coat. Technol.
– volume: 5
  year: 2018
  publication-title: Mater. Res. Express
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 305
  start-page: 1273
  year: 2004
  publication-title: Science
– volume: 458
  start-page: 157
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 131
  year: 2018
  publication-title: Nat. Photonics
– volume: 7
  start-page: 1370
  year: 2014
  publication-title: Nano Res.
– volume: 10
  start-page: 2515
  year: 2019
  publication-title: Nat. Commun.
– volume: 61
  start-page: 1179
  year: 2018
  publication-title: Sci. China: Chem.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 102
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 223
  start-page: 634
  year: 2019
  publication-title: Mater. Chem. Phys.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 5375
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 2857
  year: 2014
  publication-title: ACS Nano
– volume: 113
  start-page: 85
  year: 2013
  publication-title: Sol. Energy Mater. Sol. Cells.
– volume: 23
  start-page: 4453
  year: 2011
  publication-title: Adv. Mater.
– volume: 174
  start-page: 584
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 26
  start-page: 5035
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 4686
  year: 2019
  publication-title: ACS Nano
– volume: 6
  start-page: 105
  year: 2012
  publication-title: Nat. Photonics
– ident: e_1_2_4_47_1
  doi: 10.1039/C5EE00120J
– ident: e_1_2_4_34_1
  doi: 10.1002/adfm.201202646
– ident: e_1_2_4_29_1
  doi: 10.1002/adfm.201202523
– ident: e_1_2_4_39_1
  doi: 10.1039/C4TA05728G
– ident: e_1_2_4_30_1
  doi: 10.1002/adma.201100871
– ident: e_1_2_4_33_1
  doi: 10.7567/JJAP.57.03DD01
– ident: e_1_2_4_55_1
  doi: 10.1002/adma.201700437
– ident: e_1_2_4_51_1
  doi: 10.1016/j.egypro.2013.07.293
– ident: e_1_2_4_40_1
  doi: 10.1002/adfm.201303108
– ident: e_1_2_4_45_1
  doi: 10.1002/aenm.201702182
– ident: e_1_2_4_31_1
  doi: 10.1002/adma.201101992
– ident: e_1_2_4_52_1
  doi: 10.1016/j.apsusc.2018.07.052
– ident: e_1_2_4_20_1
  doi: 10.1038/nphoton.2011.318
– ident: e_1_2_4_42_1
  doi: 10.1002/adfm.201303518
– ident: e_1_2_4_21_1
  doi: 10.1038/nnano.2010.132
– ident: e_1_2_4_22_1
  doi: 10.1039/C9TA02900A
– ident: e_1_2_4_43_1
  doi: 10.1038/s41928-019-0315-1
– ident: e_1_2_4_36_1
  doi: 10.1007/s12274-014-0502-3
– ident: e_1_2_4_9_1
  doi: 10.1002/adma.201902447
– ident: e_1_2_4_46_1
  doi: 10.1021/nn900348c
– ident: e_1_2_4_8_1
  doi: 10.1002/adma.201903649
– ident: e_1_2_4_18_1
  doi: 10.1002/adma.201003188
– ident: e_1_2_4_26_1
  doi: 10.1002/adfm.201804479
– ident: e_1_2_4_23_1
  doi: 10.1007/s11426-017-9205-x
– ident: e_1_2_4_50_1
  doi: 10.1002/adfm.201600441
– ident: e_1_2_4_48_1
  doi: 10.1016/j.nanoen.2015.05.014
– ident: e_1_2_4_25_1
  doi: 10.1016/j.solmat.2013.01.043
– ident: e_1_2_4_27_1
  doi: 10.1002/adma.201701479
– ident: e_1_2_4_5_1
  doi: 10.1002/adma.201807159
– ident: e_1_2_4_24_1
  doi: 10.1038/ncomms10214
– ident: e_1_2_4_28_1
  doi: 10.1002/adfm.201705409
– ident: e_1_2_4_37_1
  doi: 10.1021/acsami.7b17148
– ident: e_1_2_4_6_1
  doi: 10.1002/adfm.201705847
– ident: e_1_2_4_1_1
  doi: 10.1038/s41566-018-0104-9
– ident: e_1_2_4_15_1
  doi: 10.1002/adma.201902965
– ident: e_1_2_4_13_1
  doi: 10.1002/adma.201902302
– ident: e_1_2_4_44_1
  doi: 10.1002/adma.201601814
– ident: e_1_2_4_49_1
  doi: 10.1063/1.4809670
– ident: e_1_2_4_11_1
  doi: 10.1002/adma.201901872
– ident: e_1_2_4_32_1
  doi: 10.1021/acsami.8b07287
– ident: e_1_2_4_17_1
  doi: 10.1016/j.surfcoat.2005.02.040
– ident: e_1_2_4_53_1
  doi: 10.1016/j.nanoen.2014.09.007
– ident: e_1_2_4_10_1
  doi: 10.1038/s41467-019-10351-5
– ident: e_1_2_4_3_1
  doi: 10.1002/adma.201902987
– ident: e_1_2_4_4_1
  doi: 10.1002/aenm.201701791
– ident: e_1_2_4_2_1
  doi: 10.1038/ncomms9547
– ident: e_1_2_4_12_1
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_4_35_1
  doi: 10.1007/s11426-018-9430-8
– ident: e_1_2_4_54_1
  doi: 10.1021/nn406672n
– ident: e_1_2_4_38_1
  doi: 10.1088/2053-1591/aaa67a
– ident: e_1_2_4_41_1
  doi: 10.1016/j.matchemphys.2018.11.053
– ident: e_1_2_4_14_1
  doi: 10.1002/adma.201902210
– ident: e_1_2_4_19_1
  doi: 10.1126/science.1101243
– ident: e_1_2_4_16_1
  doi: 10.1016/j.solmat.2017.09.042
– ident: e_1_2_4_7_1
  doi: 10.1021/acsnano.9b00970
SSID ssj0009606
Score 2.6778815
Snippet The power conversion efficiencies (PCEs) of flexible organic solar cells (OSCs) still lag behind those of rigid devices and their mechanical stability is...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1908478
SubjectTerms Bending machines
Display devices
Electrodes
Energy conversion efficiency
Flexible components
flexible organic solar cell
flexible transparent electrode
Materials science
Mechanical properties
metal oxide
Nanowires
Optoelectronics
Photovoltaic cells
Polyethylene terephthalate
silver nanowires
Solar cells
Substrates
Welding
Zinc oxide
Title Realizing Ultrahigh Mechanical Flexibility and >15% Efficiency of Flexible Organic Solar Cells via a “Welding” Flexible Transparent Electrode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201908478
https://www.ncbi.nlm.nih.gov/pubmed/32103580
https://www.proquest.com/docview/2386847902
https://www.proquest.com/docview/2366632803
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3DgUV6hpTISiFPaxLEd51JpVXZVIS2HworeIj8mUtUoi9gsEj31L_QOf66_pB4nm-2CEBLcEtlWHHvG_sae-YaQ16lzAphWccVzFnMPqGOFDjY210wnmVYJYIDz9IM8nvH3p-L0VhR_xw8xHLihZoT1GhVcm8XBmjRUu8Ab5Dc0v8BitC86bCEqOlnzRyE8D2R7mYgLydWKtTFhB5vNN3el36DmJnINW8_kAdGrTnceJ-f7y9bs24tf-Bz_568ekvs9LqWjTpAekTvQbJN7t9gKH5OrEw8qzy78M53VrV-kvF1Pp4ChwzjTdILcmsHX9jvVjaOHqXhDx4GiAuM76bzqq9RAuxBQSz-iZU2PoK4X9NuZpppeX_74DOFG7Pry57pBR8KOkWstHXepexw8IbPJ-NPRcdxndIitBz7KG6uSJ2AKkydGsbxIK8Eg55a7goPOuQRhEm1EAUUlc2etdZmRNlVGgtVSZU_JVjNv4DmhTghpgHsDx2gOuVWqErkHIwbvtlMpIxKvZrS0Pd05Zt2oy46omZU41OUw1BF5O9T_0hF9_LHm7kpAyl7hF6VHPtIXFgmLyKuh2Ksq3r_oBuZLrONtxQzTgUXkWSdYw6cwlApvpCPCgnj8pQ_l6N10NLy9-JdGO-Quw7OD4IW0S7bar0t46QFWa_aCEt0AZyIeGw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHIAD_6WBAkYCcUqbOLbjXJBWZVcLdHsoXcEtsp2JVBFlUZtFoqe-And4uT4JHudnWRBCglsijxXH9tjf2DPfEPIsLgoBTKuw5CkLuQPUoUIHG5tqpqNEqwgwwHl2IKdz_uaD6L0JMRam5YcYDtxQM_x6jQqOB9K7K9ZQXXjiILejuRVWXSZXMK23t6oOVwxSCNA93V4iwkxy1fM2Rmx3vf76vvQb2FzHrn7zmdwkpm9263PycWfZmB179guj43_91y1yo4OmdNTOpdvkEtR3yPWfCAvvkq-HDlcen7lnOq8at045057OAKOHcbDpBOk1vbvtF6rrgr6MxXM69iwVGOJJF2UnUgFto0AtfYfGNd2Dqjqln4811fTi_Nt78JdiF-ffVxVaHnYMXmvouM3eU8A9Mp-Mj_amYZfUIbQO-yhnr0oegclMGhnF0iwuBYOUW15kHHTKJQgTaSMyyEqZFtbaIjHSxspIsFqqZJNs1IsatggthJAGuLNxjOaQWqVKkTo8YvB6O5YyIGE_pLntGM8x8UaVt1zNLMeuzoeuDsiLQf5Ty_XxR8ntfobknc6f5g78SFeYRSwgT4dip614BaNrWCxRxpmLCWYEC8j9dmYNn8JoKryUDgjz8-MvbchHr2aj4e3Bv1R6Qq5Oj2b7-f7rg7cPyTWGRwneKWmbbDQnS3jk8FZjHnuN-gE5LiI2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSAgOvB-BAkYCcUqbOLbjXJBW3V2Vx1aosKK3yI-JVBFlK5pFoqf-Be7w5_pL8Di72S4IIcEtkW3FsWfsb-yZbwh5ljongGkVVzxnMfeAOlboYGNzzXSSaZUABjhP9uTulL8-EAfnovg7foj-wA01I6zXqOBHrtpekYZqF3iD_IbmF1h1kVziMlEo18P9FYEU4vPAtpeJuJBcLWkbE7a93n59W_oNa65D17D3jK8Tvex153LyaWvemi178guh4__81g1ybQFM6aCTpJvkAjS3yNVzdIW3ybd9jyoPT_wzndatX6W8YU8ngLHDONV0jOSawdn2K9WNoy9T8ZyOAkcFBnjSWbWoUgPtYkAtfY-mNd2Buj6mXw411fTs9PtHCFdiZ6c_Vg06FnYMXWvpqMvd4-AOmY5HH3Z240VKh9h65KO8tSp5AqYweWIUy4u0EgxybrkrOOicSxAm0UYUUFQyd9ZalxlpU2UkWC1VdpdsNLMG7hPqhJAGuLdwjOaQW6UqkXs0YvByO5UyIvFyRku74DvHtBt12TE1sxKHuuyHOiIv-vpHHdPHH2tuLgWkXGj8cemhj_SFRcIi8rQv9rqKFzC6gdkc63hjMcN8YBG51wlW_ymMpcIr6YiwIB5_6UM5GE4G_duDf2n0hFx-NxyXb1_tvXlIrjA8RwgeSZtko_08h0cebLXmcdCnn9JmIO4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realizing+Ultrahigh+Mechanical+Flexibility+and+%3E15%25+Efficiency+of+Flexible+Organic+Solar+Cells+via+a+%E2%80%9CWelding%E2%80%9D+Flexible+Transparent+Electrode&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Xiaobin&rft.au=Xu%2C+Guiying&rft.au=Zeng%2C+Guang&rft.au=Gu%2C+Hongwei&rft.date=2020-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=14&rft_id=info:doi/10.1002%2Fadma.201908478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201908478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon