Expanding the Scope of Polymerization‐Induced Self‐Assembly: Recent Advances and New Horizons
Over the past decade or so, polymerization‐induced self‐assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well‐defined linear block cop...
Saved in:
Published in | Macromolecular rapid communications. Vol. 42; no. 23; pp. e2100498 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the past decade or so, polymerization‐induced self‐assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well‐defined linear block copolymers by using linear macromolecular chain transfer agents (macro‐CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro‐CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided.
Different from traditional polymerization‐induced self‐assembly (PISA) that focuses on the preparation of linear block copolymer nano‐objects using macromolecular chain transfer agents with high chain transfer constants, this review summarizes recent advances of PISA, which focuses on in situ synthesis of nonlinear architectures, blends of polymers, and utilization of poor polymerization control. |
---|---|
AbstractList | Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well-defined linear block copolymers by using linear macromolecular chain transfer agents (macro-CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro-CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided.Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well-defined linear block copolymers by using linear macromolecular chain transfer agents (macro-CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro-CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided. Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well-defined linear block copolymers by using linear macromolecular chain transfer agents (macro-CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro-CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided. Over the past decade or so, polymerization‐induced self‐assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well‐defined linear block copolymers by using linear macromolecular chain transfer agents (macro‐CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro‐CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided. Different from traditional polymerization‐induced self‐assembly (PISA) that focuses on the preparation of linear block copolymer nano‐objects using macromolecular chain transfer agents with high chain transfer constants, this review summarizes recent advances of PISA, which focuses on in situ synthesis of nonlinear architectures, blends of polymers, and utilization of poor polymerization control. |
Author | Tan, Yingxin Cao, Junpeng Tan, Jianbo Chen, Ying Zhang, Li |
Author_xml | – sequence: 1 givenname: Junpeng surname: Cao fullname: Cao, Junpeng organization: Guangdong University of Technology – sequence: 2 givenname: Yingxin surname: Tan fullname: Tan, Yingxin organization: Guangdong University of Technology – sequence: 3 givenname: Ying surname: Chen fullname: Chen, Ying organization: Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter – sequence: 4 givenname: Li surname: Zhang fullname: Zhang, Li organization: Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter – sequence: 5 givenname: Jianbo orcidid: 0000-0002-5635-7178 surname: Tan fullname: Tan, Jianbo email: tanjianbo@gdut.edu.cn organization: Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34418199$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1O3DAUhS1ExW-3LJGlbrrJ1L52fsxuNIKCBAUBXVvGvmmDEnsaJ4Xpqo_QZ-RJ8DAUJKSqK_tK3zm-PmebrPvgkZA9ziacMfjUmd5OgEEapKrWyBbPgWdCQbme7gwg40IUm2Q7xlvGWCUZbJBNISWvuFJbxBzez413jf9Gh-9Ir2yYIw01vQjtosO--WWGJviH339OvBstOnqFbZ3GaYzY3bSLA3qJFv1Ap-6n8RYjTW70C97R45DUwcdd8q42bcT3z-cO-Xp0eD07zk7PP5_MpqeZlUJVmSikQ0DGaixcXgjklQG0VjnLK1XKkuVcKMVrrJyQyx_XgkGuuDBFWeZO7JCPK995H36MGAfdNdFi2xqPYYwakqkEgKJM6Ic36G0Ye5-201CwvBIArEjU_jM13nTo9LxvUtoL_Te8BExWgO1DjD3WLwhnetmOXrajX9pJAvlGYJvhKeChN037b5laye6aFhf_eUSfTS9nr9pHXxKkEw |
CitedBy_id | crossref_primary_10_1021_acs_macromol_4c02016 crossref_primary_10_1021_acs_macromol_3c02287 crossref_primary_10_1039_D3PY00015J crossref_primary_10_6023_A22030128 crossref_primary_10_1039_D4PY00263F crossref_primary_10_1360_SSC_2023_0169 crossref_primary_10_1039_D1PY01172C crossref_primary_10_1021_acsmacrolett_3c00547 crossref_primary_10_1021_acs_chemmater_3c02570 crossref_primary_10_1021_acs_macromol_3c00585 crossref_primary_10_1039_D1PY01661J crossref_primary_10_1021_acsmacrolett_4c00278 crossref_primary_10_1002_anie_202318881 crossref_primary_10_1002_ange_202305945 crossref_primary_10_1021_acs_biomac_4c00552 crossref_primary_10_1021_acs_langmuir_1c03430 crossref_primary_10_3390_polym14214702 crossref_primary_10_3390_polym16101408 crossref_primary_10_1021_acs_macromol_2c01983 crossref_primary_10_34133_research_0113 crossref_primary_10_1021_acs_chemrev_3c00350 crossref_primary_10_1016_j_progpolymsci_2023_101738 crossref_primary_10_1016_j_colsurfa_2022_129166 crossref_primary_10_1039_D2PY00198E crossref_primary_10_1021_acs_macromol_4c02860 crossref_primary_10_1002_marc_202200010 crossref_primary_10_1002_anie_202210518 crossref_primary_10_1039_D4PY00022F crossref_primary_10_1021_acs_macromol_3c02399 crossref_primary_10_1016_j_eurpolymj_2023_111848 crossref_primary_10_1002_cjoc_202200761 crossref_primary_10_1021_acs_macromol_2c00545 crossref_primary_10_1002_marc_202300334 crossref_primary_10_1002_cjoc_202400023 crossref_primary_10_3390_polym13234064 crossref_primary_10_1002_pol_20220647 crossref_primary_10_1002_anie_202206780 crossref_primary_10_1002_anie_202305945 crossref_primary_10_1002_anie_202308372 crossref_primary_10_1039_D2PY00559J crossref_primary_10_1039_D2PY00701K crossref_primary_10_3390_ddc2040045 crossref_primary_10_1021_acs_macromol_2c00181 crossref_primary_10_1016_j_progpolymsci_2025_101944 crossref_primary_10_1039_D2SC00762B crossref_primary_10_1039_D2PY00858K crossref_primary_10_1002_ange_202210518 crossref_primary_10_1002_cphc_202400291 crossref_primary_10_1021_acsmacrolett_2c00314 crossref_primary_10_1039_D2PY00180B crossref_primary_10_1016_j_eurpolymj_2022_111234 crossref_primary_10_1021_acs_chemmater_4c01591 crossref_primary_10_1002_marc_202100879 crossref_primary_10_1039_D3PY00550J crossref_primary_10_1021_acs_macromol_2c00827 crossref_primary_10_3390_polym14235331 crossref_primary_10_1039_D3PY01006F crossref_primary_10_1021_acs_macromol_2c00475 crossref_primary_10_1039_D2PY01148D crossref_primary_10_1039_D3LP00135K crossref_primary_10_1002_ange_202206780 crossref_primary_10_1002_smtd_202201592 crossref_primary_10_1002_marc_202400100 crossref_primary_10_1002_macp_202100349 crossref_primary_10_1002_smll_202300961 crossref_primary_10_1021_acsanm_4c02200 crossref_primary_10_1002_marc_202200071 crossref_primary_10_1021_acs_chemmater_4c01224 crossref_primary_10_1021_acs_macromol_4c01078 crossref_primary_10_1021_acs_jcim_3c00460 crossref_primary_10_1002_smll_202207457 crossref_primary_10_1002_ange_202308372 crossref_primary_10_1021_acs_biomac_2c00981 crossref_primary_10_1039_D2PY00391K crossref_primary_10_1021_acsapm_1c01484 crossref_primary_10_1002_marc_202100921 crossref_primary_10_1021_acs_macromol_2c01529 crossref_primary_10_1021_acsami_4c11420 crossref_primary_10_1002_ange_202318881 crossref_primary_10_1002_adfm_202313155 crossref_primary_10_1039_D1PY01636A |
Cites_doi | 10.1039/C9PY01636H 10.1002/marc.202100333 10.1002/macp.201500443 10.1021/acs.macromol.6b02569 10.1021/acs.macromol.6b01581 10.1021/jacs.7b06661 10.1021/mz500221j 10.1021/acs.macromol.5b02602 10.1039/C8PY01799A 10.1021/acsmacrolett.9b00870 10.1039/C8PY00029H 10.1021/acs.macromol.7b01644 10.1021/jacs.7b02208 10.1002/marc.201800513 10.1039/C7PY00442G 10.1021/acscentsci.8b00148 10.1002/marc.200700291 10.1021/ja507121h 10.1016/j.polymer.2020.122914 10.1021/acs.macromol.5b00021 10.1039/c3py21120g 10.1038/s41467-019-09324-5 10.1039/C9NR02507C 10.1021/jacs.0c11183 10.1021/acs.macromol.6b00688 10.1021/acsmaterialslett.9b00423 10.1039/C9PY00452A 10.1039/C9CC05812E 10.1021/ma9027257 10.1039/C8PY01053F 10.1002/marc.201600299 10.1021/acs.macromol.0c00954 10.1039/C8PY00422F 10.1021/acs.macromol.0c00123 10.1021/acs.macromol.8b00887 10.1021/acs.macromol.6b01966 10.1021/acs.macromol.9b02710 10.1002/marc.201900296 10.1021/ja501756h 10.1039/b903040a 10.1021/acs.macromol.7b01363 10.1021/acs.macromol.8b01456 10.1021/ma981472p 10.1021/acsmacrolett.5b00748 10.1021/acsmacrolett.9b00427 10.1016/j.polymer.2010.08.056 10.1039/C9SC04197D 10.1021/acsmacrolett.5b00928 10.1021/acs.macromol.1c00038 10.1021/acsmacrolett.6b00796 10.1021/acs.macromol.6b02754 10.1039/c0py00124d 10.1039/c2py21074f 10.1021/ma2000674 10.1002/anie.201911758 10.1021/acsmacrolett.7b00069 10.1021/acsmacrolett.7b00725 10.1021/acsmacrolett.6b00235 10.1002/anie.201511159 10.1039/C9PY01656B 10.1021/acs.macromol.6b00762 10.1021/acs.macromol.8b02490 10.1021/acsmacrolett.7b00099 10.1021/ja502843f 10.1021/ma9804951 10.1021/acsmacrolett.7b00056 10.1007/s10118-017-1907-8 10.1016/j.progpolymsci.2003.12.002 10.1039/D1PY00046B 10.1126/science.aad9521 10.1021/ja3024059 10.1039/D0PY00455C 10.1002/pola.24771 10.1021/ma502279b 10.1021/acs.macromol.9b00257 10.1039/C7PY00508C 10.1039/c3py01569f 10.1039/c2cs35115c 10.1021/jacs.5b13565 10.1039/c2py20442h 10.1021/acs.macromol.0c00959 10.1039/C9PY00166B 10.1021/acs.macromol.8b00690 10.1021/acs.chemrev.6b00008 10.1002/anie.201001461 10.1002/marc.201700871 10.1021/cr500625k 10.1021/acs.macromol.8b01606 10.1021/acs.macromol.6b01729 10.1016/j.progpolymsci.2018.06.006 10.1039/C4SC02290D 10.1039/C4PY01069H 10.1021/ma401534w 10.1039/C3PY01676E 10.1021/acs.macromol.8b01121 10.1039/C7PY00339K 10.1039/C7CC00228A 10.1039/C4CS00528G 10.1021/acsmacrolett.8b00295 10.1021/jacs.7b03219 10.1021/acs.macromol.5b02470 10.1016/j.progpolymsci.2021.101387 10.1039/D0PY00467G 10.1021/acs.macromol.6b00771 10.1039/C7PY00998D 10.1021/ja953709s 10.1039/B923667H 10.1021/cr800242x 10.1021/acs.macromol.8b02081 10.1039/b823367e 10.1021/acsmacrolett.9b00716 10.1002/marc.201800460 10.1021/acsmacrolett.9b00464 10.1021/ja407033x 10.1002/anie.201809370 10.1021/ma801256k 10.1002/pola.24027 10.1038/ncomms4882 10.1021/acsmacrolett.9b00534 10.1021/ma2005926 10.1021/acsmacrolett.5b00225 10.1021/acs.macromol.8b00994 10.1039/C3PY00942D 10.1039/D0PY00407C 10.1021/ma025626j 10.1002/anie.201710811 10.1039/C7PY00407A 10.1021/acsmacrolett.0c00151 10.1039/C6PY00571C 10.1039/C7RA09120F 10.1021/acs.macromol.0c01624 10.1021/acs.macromol.0c02008 10.1021/jacs.8b10993 10.1002/marc.201800551 10.1039/C5PY01295C 10.1021/ma200074n 10.1021/acsmacrolett.9b00292 10.1021/acsmacrolett.9b00007 10.1021/acs.macromol.9b01295 10.1007/s10118-021-2533-z 10.1016/j.progpolymsci.2018.05.003 10.1021/ma501598k 10.1039/c2cc33812b 10.1039/C9SC03546J 10.1039/C3PY01306E 10.1021/mz500650c 10.1002/anie.201206555 10.1021/ja0756974 10.1002/marc.201800325 10.6023/A20050162 10.1039/C2PY20612A 10.1002/marc.201800438 10.1002/anie.201903684 10.1021/acs.macromol.1c00381 10.1039/D0PY00720J 10.1039/D0MH00354A 10.1039/D0SC00219D 10.1021/ja206301a 10.1021/acsmacrolett.8b00005 10.1039/C4SC03334E 10.1039/c3py00488k 10.1039/b912804b 10.1016/j.progpolymsci.2015.10.002 10.1126/science.269.5227.1080 10.1021/acsmacrolett.6b00066 10.1002/marc.201600508 10.1021/jacs.5b10415 10.1039/D1PY00216C 10.31635/ccschem.020.202000470 10.1021/acsmacrolett.7b00731 10.1021/acs.macromol.9b01689 10.1021/ma200656h 10.1021/acsmacrolett.5b00523 10.1021/ma300521c 10.1016/j.progpolymsci.2020.101311 10.1039/C7PY00007C 10.1002/marc.201800279 10.1039/C4CS00224E 10.1002/marc.201900547 10.1021/acs.biomac.1c00569 10.1002/marc.202000720 10.1002/advs.201700137 10.1021/acs.macromol.9b00571 10.1002/marc.201800315 10.1002/marc.201800291 10.1039/C8PY01617H 10.1021/acsmacrolett.5b00699 10.1002/anie.201709129 10.1021/acsmacrolett.1c00014 10.1016/j.chempr.2020.04.020 10.1021/ma402497y 10.1002/marc.201800296 10.1021/ma200984h 10.1021/la502656u 10.1039/D0PY00627K 10.1021/acs.macromol.9b01662 10.1021/acsmacrolett.7b00134 10.1021/ma201515n 10.1039/D1PY00239B 10.1021/ma300713f 10.1021/acsmacrolett.9b00509 10.1016/j.progpolymsci.2015.02.002 10.1021/acsmacrolett.9b00371 10.1039/C8PY01295D 10.1039/C5PY01041A 10.1021/acsmacrolett.8b00741 10.1002/ange.201509401 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.202100498 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 34418199 10_1002_marc_202100498 MARC202100498 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22171055; 21971047 – fundername: Guangdong Special Support Program funderid: 2017TX04N371 – fundername: Innovation Project of Education Department in Guangdong funderid: 2018KTSCX053 – fundername: National Natural Science Foundation of China grantid: 22171055 – fundername: Guangdong Special Support Program grantid: 2017TX04N371 – fundername: National Natural Science Foundation of China grantid: 21971047 – fundername: Innovation Project of Education Department in Guangdong grantid: 2018KTSCX053 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c4398-364de2e00fe6d563e18a2ecc9dc1897470513991fe8d342021f3025913a6775d3 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Fri Jul 11 06:58:42 EDT 2025 Sun Jul 13 05:39:02 EDT 2025 Thu Apr 03 07:06:12 EDT 2025 Thu Apr 24 23:07:12 EDT 2025 Tue Jul 01 03:31:44 EDT 2025 Wed Jan 22 16:27:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | poor polymerization control polymerization-induced self-assembly blends of polymers nonlinear architecture |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4398-364de2e00fe6d563e18a2ecc9dc1897470513991fe8d342021f3025913a6775d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5635-7178 |
PMID | 34418199 |
PQID | 2605832206 |
PQPubID | 1016394 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2563422267 proquest_journals_2605832206 pubmed_primary_34418199 crossref_primary_10_1002_marc_202100498 crossref_citationtrail_10_1002_marc_202100498 wiley_primary_10_1002_marc_202100498_MARC202100498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol Rapid Commun |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 2004; 29 2019; 11 2019; 10 2008; 108 2018; 40 2020; 11 2013; 5 2016; 37 2014; 136 2020; 207 2018; 7 2018; 9 2018; 39 2012; 134 2010; 1 2018; 4 2015; 137 2016; 49 2019; 8 2021; 42 2019; 1 2014; 47 2021; 143 2011; 133 2017; 139 2016; 5 2017; 50 2010; 43 2017; 53 2016; 7 2010; 49 2021; 54 2010; 48 2019; 40 2010; 46 2015; 115 2016; 217 2017; 56 1995; 269 1999; 32 2008; 41 2012; 48 2014; 30 2012; 45 2018; 10 2010; 51 1996; 118 2012; 41 2017; 6 2017; 7 2017; 8 2017; 4 2021; 22 2019; 52 2019; 55 2019; 58 2020; 59 2018; 84 2018; 83 2012; 51 2007; 28 2015; 46 2020; 7 2015; 48 2020; 6 2014; 5 2014; 3 2020; 53 2017; 38 2021; 39 2021; 116 2017; 35 2015; 44 2020; 9 2016; 352 2016; 116 2007; 129 2015; 6 2015; 4 2021; 3 2018; 140 2013; 46 2002; 35 2009 2016; 52 2016; 128 2020; 78 2016; 55 2021; 10 2012; 3 2021; 12 2021 2011; 44 2013; 135 2020; 111 2018; 51 2016; 138 2011; 49 1998; 31 2018; 57 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_28_1 e_1_2_9_174_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 Lv F. (e_1_2_9_60_1) 2021; 3 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_201_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_4_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_86_1 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_192_1 |
References_xml | – volume: 10 start-page: 45 year: 2018 publication-title: Polym. Chem. – volume: 8 start-page: 205 year: 2019 publication-title: ACS Macro Lett. – volume: 52 start-page: 2965 year: 2019 publication-title: Macromolecules – volume: 5 start-page: 350 year: 2013 publication-title: Polym. Chem. – start-page: 2709 year: 2009 publication-title: Chem. Commun. – volume: 48 start-page: 7389 year: 2012 publication-title: Chem. Commun. – volume: 78 start-page: 719 year: 2020 publication-title: Acta Chim. Sin. – volume: 11 start-page: 936 year: 2020 publication-title: Polym. Chem. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 42 year: 2021 publication-title: Macromol. Rapid Commun. – volume: 39 start-page: 1127 year: 2021 publication-title: Chin. J. Polym. Sci. – volume: 8 start-page: 1029 year: 2019 publication-title: ACS Macro Lett. – volume: 49 start-page: 3789 year: 2016 publication-title: Macromolecules – volume: 10 start-page: 297 year: 2021 publication-title: ACS Macro Lett. – volume: 4 start-page: 1293 year: 2015 publication-title: ACS Macro Lett. – volume: 49 start-page: 8605 year: 2016 publication-title: Macromolecules – volume: 4 start-page: 984 year: 2015 publication-title: ACS Macro Lett. – volume: 7 start-page: 1883 year: 2020 publication-title: Mater. Horiz. – volume: 44 start-page: 7584 year: 2011 publication-title: Macromolecules – volume: 57 start-page: 1053 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 873 year: 2013 publication-title: Polym. Chem. – volume: 8 start-page: 812 year: 2019 publication-title: ACS Macro Lett. – volume: 52 start-page: 1 year: 2016 publication-title: Prog. Polym. Sci. – volume: 11 start-page: 396 year: 2020 publication-title: Chem. Sci. – volume: 11 start-page: 3922 year: 2020 publication-title: Polym. Chem. – volume: 55 year: 2019 publication-title: Chem. Commun. – volume: 52 start-page: 7267 year: 2019 publication-title: Macromolecules – volume: 4 start-page: 4092 year: 2013 publication-title: Polym. Chem. – volume: 49 start-page: 1985 year: 2016 publication-title: Macromolecules – volume: 52 start-page: 7468 year: 2019 publication-title: Macromolecules – volume: 11 start-page: 4681 year: 2020 publication-title: Polym. Chem. – volume: 6 start-page: 224 year: 2017 publication-title: ACS Macro Lett. – volume: 41 start-page: 5969 year: 2012 publication-title: Chem. Soc. Rev. – volume: 44 start-page: 3358 year: 2011 publication-title: Macromolecules – volume: 8 start-page: 1660 year: 2019 publication-title: ACS Macro Lett. – volume: 58 start-page: 3173 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 83 start-page: 1 year: 2018 publication-title: Prog. Polym. Sci. – volume: 45 start-page: 6753 year: 2012 publication-title: Macromolecules – volume: 53 start-page: 6235 year: 2020 publication-title: Macromolecules – volume: 134 start-page: 9741 year: 2012 publication-title: J. Am. Chem. Soc. – start-page: 2887 year: 2009 publication-title: Chem. Commun. – volume: 55 start-page: 3739 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 1461 year: 2019 publication-title: ACS Macro Lett. – volume: 8 start-page: 2841 year: 2017 publication-title: Polym. Chem. – volume: 7 start-page: 1376 year: 2018 publication-title: ACS Macro Lett. – volume: 51 start-page: 5165 year: 2018 publication-title: Macromolecules – volume: 51 start-page: 5440 year: 2018 publication-title: Macromolecules – volume: 38 year: 2017 publication-title: Macromol. Rapid Commun. – volume: 49 start-page: 3346 year: 2011 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 6 start-page: 1237 year: 2017 publication-title: ACS Macro Lett. – volume: 8 start-page: 955 year: 2019 publication-title: ACS Macro Lett. – volume: 51 start-page: 5115 year: 2010 publication-title: Polymer – volume: 50 start-page: 1253 year: 2017 publication-title: Macromolecules – volume: 10 start-page: 1150 year: 2019 publication-title: Polym. Chem. – volume: 6 start-page: 304 year: 2017 publication-title: ACS Macro Lett. – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 1033 year: 2019 publication-title: Macromolecules – volume: 48 start-page: 2783 year: 2010 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 3 start-page: 496 year: 2014 publication-title: ACS Macro Lett. – volume: 9 start-page: 533 year: 2020 publication-title: ACS Macro Lett. – volume: 12 start-page: 3947 year: 2021 publication-title: Polym. Chem. – volume: 44 start-page: 3997 year: 2015 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 989 year: 2019 publication-title: ACS Macro Lett. – volume: 5 start-page: 88 year: 2016 publication-title: ACS Macro Lett. – volume: 10 start-page: 1397 year: 2019 publication-title: Nat. Commun. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 3 year: 2021 publication-title: CCS Chem. – volume: 52 start-page: 4703 year: 2019 publication-title: Macromolecules – volume: 51 start-page: 8862 year: 2018 publication-title: Macromolecules – volume: 53 start-page: 8982 year: 2020 publication-title: Macromolecules – volume: 12 start-page: 3220 year: 2021 publication-title: Polym. Chem. – volume: 6 start-page: 1340 year: 2020 publication-title: Chem – volume: 9 start-page: 4908 year: 2018 publication-title: Polym. Chem. – volume: 51 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 53 start-page: 5005 year: 2017 publication-title: Chem. Commun. – volume: 52 start-page: 1140 year: 2019 publication-title: Macromolecules – volume: 4 start-page: 1950 year: 2013 publication-title: Polym. Chem. – volume: 143 start-page: 1474 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 2071 year: 1999 publication-title: Macromolecules – volume: 6 start-page: 298 year: 2017 publication-title: ACS Macro Lett. – volume: 31 start-page: 5559 year: 1998 publication-title: Macromolecules – volume: 3 start-page: 1220 year: 2014 publication-title: ACS Macro Lett. – volume: 6 start-page: 1263 year: 2017 publication-title: ACS Macro Lett. – volume: 5 start-page: 2736 year: 2014 publication-title: Polym. Chem. – volume: 5 start-page: 4646 year: 2014 publication-title: Chem. Sci. – volume: 111 year: 2020 publication-title: Prog. Polym. Sci. – volume: 40 year: 2018 publication-title: Macromol. Rapid Commun. – volume: 37 start-page: 1434 year: 2016 publication-title: Macromol. Rapid Commun. – volume: 54 start-page: 2948 year: 2021 publication-title: Macromolecules – volume: 6 start-page: 7871 year: 2015 publication-title: Polym. Chem. – volume: 10 start-page: 2406 year: 2019 publication-title: Polym. Chem. – volume: 29 start-page: 183 year: 2004 publication-title: Prog. Polym. Sci. – volume: 10 start-page: 403 year: 2019 publication-title: Polym. Chem. – volume: 4 start-page: 1921 year: 2013 publication-title: Polym. Chem. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 8 start-page: 5012 year: 2017 publication-title: Polym. Chem. – volume: 5 start-page: 3882 year: 2014 publication-title: Nat. Commun. – volume: 5 start-page: 558 year: 2016 publication-title: ACS Macro Lett. – volume: 46 start-page: 6751 year: 2013 publication-title: Macromolecules – volume: 51 start-page: 6190 year: 2018 publication-title: Macromolecules – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 269 start-page: 1080 year: 1995 publication-title: Science – volume: 9 start-page: 2625 year: 2018 publication-title: Polym. Chem. – volume: 139 start-page: 7136 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 2173 year: 2017 publication-title: Polym. Chem. – volume: 84 start-page: 47 year: 2018 publication-title: Prog. Polym. Sci. – volume: 5 start-page: 175 year: 2013 publication-title: Polym. Chem. – volume: 4 start-page: 1249 year: 2015 publication-title: ACS Macro Lett. – volume: 11 start-page: 4729 year: 2020 publication-title: Polym. Chem. – volume: 10 start-page: 3426 year: 2019 publication-title: Polym. Chem. – volume: 44 start-page: 4149 year: 2011 publication-title: Macromolecules – volume: 139 start-page: 7640 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1230 year: 2015 publication-title: Chem. Sci. – volume: 118 start-page: 3168 year: 1996 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 4196 year: 2012 publication-title: Macromolecules – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 2860 year: 2017 publication-title: Polym. Chem. – volume: 47 start-page: 7442 year: 2014 publication-title: Macromolecules – volume: 7 start-page: 3361 year: 2016 publication-title: Polym. Chem. – volume: 28 start-page: 1540 year: 2007 publication-title: Macromol. Rapid Commun. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 22 start-page: 3128 year: 2021 publication-title: Biomacromolecules – volume: 6 start-page: 6386 year: 2015 publication-title: Polym. Chem. – volume: 53 start-page: 1557 year: 2020 publication-title: Macromolecules – volume: 35 start-page: 9243 year: 2002 publication-title: Macromolecules – volume: 11 start-page: 3673 year: 2020 publication-title: Polym. Chem. – volume: 6 start-page: 337 year: 2017 publication-title: ACS Macro Lett. – volume: 5 start-page: 1327 year: 2016 publication-title: ACS Macro Lett. – volume: 352 start-page: 697 year: 2016 publication-title: Science – volume: 128 start-page: 1792 year: 2016 publication-title: Angew. Chem. – volume: 8 start-page: 1102 year: 2019 publication-title: ACS Macro Lett. – volume: 44 start-page: 2524 year: 2011 publication-title: Macromolecules – volume: 48 start-page: 1380 year: 2015 publication-title: Macromolecules – start-page: 5883 year: 2009 publication-title: Chem. Commun. – volume: 51 start-page: 4397 year: 2018 publication-title: Macromolecules – volume: 50 start-page: 7222 year: 2017 publication-title: Macromolecules – volume: 116 start-page: 6743 year: 2016 publication-title: Chem. Rev. – volume: 11 start-page: 2532 year: 2020 publication-title: Polym. Chem. – volume: 49 start-page: 7277 year: 2016 publication-title: Macromolecules – volume: 8 start-page: 4177 year: 2017 publication-title: Polym. Chem. – volume: 49 start-page: 7897 year: 2016 publication-title: Macromolecules – volume: 5 start-page: 316 year: 2016 publication-title: ACS Macro Lett. – year: 2021 publication-title: Macromol. Rapid Commun. – volume: 40 year: 2019 publication-title: Macromol. Rapid Commun. – volume: 48 start-page: 707 year: 2015 publication-title: Macromolecules – volume: 108 start-page: 3747 year: 2008 publication-title: Chem. Rev. – volume: 1 start-page: 606 year: 2019 publication-title: ACS Mater. Lett. – volume: 5 start-page: 6957 year: 2014 publication-title: Polym. Chem. – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 4 start-page: 495 year: 2015 publication-title: ACS Macro Lett. – volume: 51 start-page: 7396 year: 2018 publication-title: Macromolecules – volume: 47 start-page: 1664 year: 2014 publication-title: Macromolecules – volume: 54 start-page: 4669 year: 2021 publication-title: Macromolecules – volume: 39 year: 2018 publication-title: Macromol. Rapid Commun. – volume: 35 start-page: 455 year: 2017 publication-title: Chin. J. Polym. Sci. – volume: 4 start-page: 543 year: 2018 publication-title: ACS Cent. Sci. – volume: 207 year: 2020 publication-title: Polymer – volume: 44 start-page: 7067 year: 2011 publication-title: Macromolecules – volume: 46 start-page: 1950 year: 2010 publication-title: Chem. Commun. – volume: 44 start-page: 4091 year: 2015 publication-title: Chem. Soc. Rev. – volume: 50 start-page: 7593 year: 2017 publication-title: Macromolecules – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 5790 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 935 year: 2017 publication-title: Macromolecules – volume: 53 start-page: 1212 year: 2020 publication-title: Macromolecules – volume: 11 start-page: 2855 year: 2020 publication-title: Chem. Sci. – volume: 46 start-page: 55 year: 2015 publication-title: Prog. Polym. Sci. – volume: 115 start-page: 9745 year: 2015 publication-title: Chem. Rev. – volume: 43 start-page: 2721 year: 2010 publication-title: Macromolecules – volume: 8 start-page: 783 year: 2019 publication-title: ACS Macro Lett. – volume: 3 start-page: 2104 year: 2021 publication-title: CCS Chem. – volume: 3 start-page: 2656 year: 2012 publication-title: Polym. Chem. – volume: 9 start-page: 912 year: 2018 publication-title: Polym. Chem. – volume: 53 start-page: 711 year: 2020 publication-title: Macromolecules – volume: 12 start-page: 1768 year: 2021 publication-title: Polym. Chem. – volume: 7 start-page: 208 year: 2018 publication-title: ACS Macro Lett. – volume: 49 start-page: 1016 year: 2016 publication-title: Macromolecules – volume: 138 start-page: 1848 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 5237 year: 2011 publication-title: Macromolecules – volume: 7 start-page: 677 year: 2018 publication-title: ACS Macro Lett. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 9725 year: 2020 publication-title: Macromolecules – volume: 53 start-page: 7479 year: 2020 publication-title: Macromolecules – volume: 59 start-page: 8368 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 1475 year: 2010 publication-title: Polym. Chem. – volume: 49 start-page: 4510 year: 2016 publication-title: Macromolecules – volume: 49 start-page: 4490 year: 2016 publication-title: Macromolecules – volume: 12 start-page: 69 year: 2021 publication-title: Polym. Chem. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 7368 year: 2008 publication-title: Macromolecules – volume: 116 year: 2021 publication-title: Prog. Polym. Sci. – volume: 49 start-page: 4042 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 8724 year: 2019 publication-title: Chem. Sci. – volume: 217 start-page: 1047 year: 2016 publication-title: Macromol. Chem. Phys. – volume: 129 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 3485 year: 2017 publication-title: Polym. Chem. – volume: 5 start-page: 2592 year: 2014 publication-title: Polym. Chem. – volume: 30 year: 2014 publication-title: Langmuir – ident: e_1_2_9_74_1 doi: 10.1039/C9PY01636H – ident: e_1_2_9_206_1 doi: 10.1002/marc.202100333 – ident: e_1_2_9_32_1 doi: 10.1002/macp.201500443 – ident: e_1_2_9_171_1 doi: 10.1021/acs.macromol.6b02569 – ident: e_1_2_9_45_1 doi: 10.1021/acs.macromol.6b01581 – ident: e_1_2_9_208_1 doi: 10.1021/jacs.7b06661 – ident: e_1_2_9_7_1 doi: 10.1021/mz500221j – ident: e_1_2_9_126_1 doi: 10.1021/acs.macromol.5b02602 – ident: e_1_2_9_99_1 doi: 10.1039/C8PY01799A – ident: e_1_2_9_132_1 doi: 10.1021/acsmacrolett.9b00870 – ident: e_1_2_9_72_1 doi: 10.1039/C8PY00029H – ident: e_1_2_9_58_1 doi: 10.1021/acs.macromol.7b01644 – ident: e_1_2_9_12_1 doi: 10.1021/jacs.7b02208 – ident: e_1_2_9_134_1 doi: 10.1002/marc.201800513 – ident: e_1_2_9_48_1 doi: 10.1039/C7PY00442G – ident: e_1_2_9_105_1 doi: 10.1021/acscentsci.8b00148 – ident: e_1_2_9_38_1 doi: 10.1002/marc.200700291 – ident: e_1_2_9_15_1 doi: 10.1021/ja507121h – ident: e_1_2_9_17_1 doi: 10.1016/j.polymer.2020.122914 – ident: e_1_2_9_68_1 doi: 10.1021/acs.macromol.5b00021 – ident: e_1_2_9_152_1 doi: 10.1039/c3py21120g – ident: e_1_2_9_61_1 doi: 10.1038/s41467-019-09324-5 – ident: e_1_2_9_93_1 doi: 10.1039/C9NR02507C – ident: e_1_2_9_27_1 doi: 10.1021/jacs.0c11183 – ident: e_1_2_9_64_1 doi: 10.1021/acs.macromol.6b00688 – ident: e_1_2_9_149_1 doi: 10.1021/acsmaterialslett.9b00423 – ident: e_1_2_9_137_1 doi: 10.1039/C9PY00452A – ident: e_1_2_9_86_1 doi: 10.1039/C9CC05812E – ident: e_1_2_9_3_1 doi: 10.1021/ma9027257 – ident: e_1_2_9_4_1 doi: 10.1039/C8PY01053F – ident: e_1_2_9_115_1 doi: 10.1002/marc.201600299 – ident: e_1_2_9_199_1 doi: 10.1021/acs.macromol.0c00954 – ident: e_1_2_9_161_1 doi: 10.1039/C8PY00422F – ident: e_1_2_9_163_1 doi: 10.1021/acs.macromol.0c00123 – ident: e_1_2_9_50_1 doi: 10.1021/acs.macromol.8b00887 – ident: e_1_2_9_96_1 doi: 10.1021/acs.macromol.6b01966 – ident: e_1_2_9_87_1 doi: 10.1021/acs.macromol.9b02710 – ident: e_1_2_9_97_1 doi: 10.1002/marc.201900296 – ident: e_1_2_9_25_1 doi: 10.1021/ja501756h – ident: e_1_2_9_20_1 doi: 10.1039/b903040a – ident: e_1_2_9_63_1 doi: 10.1021/acs.macromol.7b01363 – ident: e_1_2_9_192_1 doi: 10.1021/acs.macromol.8b01456 – ident: e_1_2_9_201_1 doi: 10.1021/ma981472p – ident: e_1_2_9_110_1 doi: 10.1021/acsmacrolett.5b00748 – ident: e_1_2_9_82_1 doi: 10.1021/acsmacrolett.9b00427 – ident: e_1_2_9_28_1 doi: 10.1016/j.polymer.2010.08.056 – ident: e_1_2_9_117_1 doi: 10.1039/C9SC04197D – ident: e_1_2_9_119_1 doi: 10.1021/acsmacrolett.5b00928 – ident: e_1_2_9_109_1 doi: 10.1021/acs.macromol.1c00038 – ident: e_1_2_9_79_1 doi: 10.1021/acsmacrolett.6b00796 – ident: e_1_2_9_104_1 doi: 10.1021/acs.macromol.6b02754 – ident: e_1_2_9_30_1 doi: 10.1039/c0py00124d – ident: e_1_2_9_153_1 doi: 10.1039/c2py21074f – ident: e_1_2_9_29_1 doi: 10.1021/ma2000674 – ident: e_1_2_9_133_1 doi: 10.1002/anie.201911758 – ident: e_1_2_9_190_1 doi: 10.1021/acsmacrolett.7b00069 – ident: e_1_2_9_8_1 doi: 10.1021/acsmacrolett.7b00725 – ident: e_1_2_9_46_1 doi: 10.1021/acsmacrolett.6b00235 – ident: e_1_2_9_40_1 doi: 10.1002/anie.201511159 – ident: e_1_2_9_156_1 doi: 10.1039/C9PY01656B – ident: e_1_2_9_184_1 doi: 10.1021/acs.macromol.6b00762 – ident: e_1_2_9_81_1 doi: 10.1021/acs.macromol.8b02490 – ident: e_1_2_9_157_1 doi: 10.1021/acsmacrolett.7b00099 – ident: e_1_2_9_125_1 doi: 10.1021/ja502843f – ident: e_1_2_9_200_1 doi: 10.1021/ma9804951 – ident: e_1_2_9_59_1 doi: 10.1021/acsmacrolett.7b00056 – ident: e_1_2_9_144_1 doi: 10.1007/s10118-017-1907-8 – ident: e_1_2_9_165_1 doi: 10.1016/j.progpolymsci.2003.12.002 – ident: e_1_2_9_124_1 doi: 10.1039/D1PY00046B – ident: e_1_2_9_186_1 doi: 10.1126/science.aad9521 – ident: e_1_2_9_23_1 doi: 10.1021/ja3024059 – ident: e_1_2_9_123_1 doi: 10.1039/D0PY00455C – ident: e_1_2_9_35_1 doi: 10.1002/pola.24771 – ident: e_1_2_9_185_1 doi: 10.1021/ma502279b – ident: e_1_2_9_101_1 doi: 10.1021/acs.macromol.9b00257 – ident: e_1_2_9_160_1 doi: 10.1039/C7PY00508C – ident: e_1_2_9_66_1 doi: 10.1039/c3py01569f – ident: e_1_2_9_16_1 doi: 10.1039/c2cs35115c – ident: e_1_2_9_197_1 doi: 10.1021/jacs.5b13565 – ident: e_1_2_9_154_1 doi: 10.1039/c2py20442h – ident: e_1_2_9_76_1 doi: 10.1021/acs.macromol.0c00959 – ident: e_1_2_9_44_1 doi: 10.1039/C9PY00166B – ident: e_1_2_9_69_1 doi: 10.1021/acs.macromol.8b00690 – ident: e_1_2_9_148_1 doi: 10.1021/acs.chemrev.6b00008 – ident: e_1_2_9_21_1 doi: 10.1002/anie.201001461 – ident: e_1_2_9_114_1 doi: 10.1002/marc.201700871 – ident: e_1_2_9_140_1 doi: 10.1021/cr500625k – ident: e_1_2_9_113_1 doi: 10.1021/acs.macromol.8b01606 – ident: e_1_2_9_5_1 doi: 10.1021/acs.macromol.6b01729 – ident: e_1_2_9_141_1 doi: 10.1016/j.progpolymsci.2018.06.006 – ident: e_1_2_9_178_1 doi: 10.1039/C4SC02290D – ident: e_1_2_9_62_1 doi: 10.1039/C4PY01069H – ident: e_1_2_9_175_1 doi: 10.1021/ma401534w – ident: e_1_2_9_168_1 doi: 10.1039/C3PY01676E – ident: e_1_2_9_70_1 doi: 10.1021/acs.macromol.8b01121 – ident: e_1_2_9_189_1 doi: 10.1039/C7PY00339K – ident: e_1_2_9_13_1 doi: 10.1039/C7CC00228A – ident: e_1_2_9_174_1 doi: 10.1039/C4CS00528G – ident: e_1_2_9_198_1 doi: 10.1021/acsmacrolett.8b00295 – ident: e_1_2_9_2_1 doi: 10.1021/jacs.7b03219 – ident: e_1_2_9_118_1 doi: 10.1021/acs.macromol.5b02470 – ident: e_1_2_9_207_1 doi: 10.1016/j.progpolymsci.2021.101387 – volume: 3 year: 2021 ident: e_1_2_9_60_1 publication-title: CCS Chem. – ident: e_1_2_9_41_1 doi: 10.1039/D0PY00467G – ident: e_1_2_9_188_1 doi: 10.1021/acs.macromol.6b00771 – ident: e_1_2_9_102_1 doi: 10.1039/C7PY00998D – ident: e_1_2_9_183_1 doi: 10.1021/ja953709s – ident: e_1_2_9_34_1 doi: 10.1039/B923667H – ident: e_1_2_9_139_1 doi: 10.1021/cr800242x – ident: e_1_2_9_33_1 doi: 10.1021/acs.macromol.8b02081 – ident: e_1_2_9_187_1 doi: 10.1039/b823367e – ident: e_1_2_9_202_1 doi: 10.1021/acsmacrolett.9b00716 – ident: e_1_2_9_91_1 doi: 10.1002/marc.201800460 – ident: e_1_2_9_128_1 doi: 10.1021/acsmacrolett.9b00464 – ident: e_1_2_9_24_1 doi: 10.1021/ja407033x – ident: e_1_2_9_107_1 doi: 10.1002/anie.201809370 – ident: e_1_2_9_172_1 doi: 10.1021/ma801256k – ident: e_1_2_9_169_1 doi: 10.1002/pola.24027 – ident: e_1_2_9_11_1 doi: 10.1038/ncomms4882 – ident: e_1_2_9_100_1 doi: 10.1021/acsmacrolett.9b00534 – ident: e_1_2_9_37_1 doi: 10.1021/ma2005926 – ident: e_1_2_9_56_1 doi: 10.1021/acsmacrolett.5b00225 – ident: e_1_2_9_92_1 doi: 10.1021/acs.macromol.8b00994 – ident: e_1_2_9_151_1 doi: 10.1039/C3PY00942D – ident: e_1_2_9_180_1 doi: 10.1039/D0PY00407C – ident: e_1_2_9_18_1 doi: 10.1021/ma025626j – ident: e_1_2_9_77_1 doi: 10.1002/anie.201710811 – ident: e_1_2_9_90_1 doi: 10.1039/C7PY00407A – ident: e_1_2_9_9_1 doi: 10.1021/acsmacrolett.0c00151 – ident: e_1_2_9_177_1 doi: 10.1039/C6PY00571C – ident: e_1_2_9_193_1 doi: 10.1039/C7RA09120F – ident: e_1_2_9_88_1 doi: 10.1021/acs.macromol.0c01624 – ident: e_1_2_9_179_1 doi: 10.1021/acs.macromol.0c02008 – ident: e_1_2_9_89_1 doi: 10.1021/jacs.8b10993 – ident: e_1_2_9_136_1 doi: 10.1002/marc.201800551 – ident: e_1_2_9_167_1 doi: 10.1039/C5PY01295C – ident: e_1_2_9_54_1 doi: 10.1021/ma200074n – ident: e_1_2_9_209_1 doi: 10.1021/acsmacrolett.9b00292 – ident: e_1_2_9_85_1 doi: 10.1021/acsmacrolett.9b00007 – ident: e_1_2_9_204_1 doi: 10.1021/acs.macromol.9b01295 – ident: e_1_2_9_108_1 doi: 10.1007/s10118-021-2533-z – ident: e_1_2_9_129_1 doi: 10.1016/j.progpolymsci.2018.05.003 – ident: e_1_2_9_67_1 doi: 10.1021/ma501598k – ident: e_1_2_9_155_1 doi: 10.1039/c2cc33812b – ident: e_1_2_9_196_1 doi: 10.1039/C9SC03546J – ident: e_1_2_9_42_1 doi: 10.1039/C3PY01306E – ident: e_1_2_9_55_1 doi: 10.1021/mz500650c – ident: e_1_2_9_6_1 doi: 10.1002/anie.201206555 – ident: e_1_2_9_52_1 doi: 10.1021/ja0756974 – ident: e_1_2_9_130_1 doi: 10.1002/marc.201800325 – ident: e_1_2_9_143_1 doi: 10.6023/A20050162 – ident: e_1_2_9_121_1 doi: 10.1039/C2PY20612A – ident: e_1_2_9_135_1 doi: 10.1002/marc.201800438 – ident: e_1_2_9_10_1 doi: 10.1002/anie.201903684 – ident: e_1_2_9_205_1 doi: 10.1021/acs.macromol.1c00381 – ident: e_1_2_9_39_1 doi: 10.1039/D0PY00720J – ident: e_1_2_9_182_1 doi: 10.1039/D0MH00354A – ident: e_1_2_9_73_1 doi: 10.1039/D0SC00219D – ident: e_1_2_9_22_1 doi: 10.1021/ja206301a – ident: e_1_2_9_78_1 doi: 10.1021/acsmacrolett.8b00005 – ident: e_1_2_9_103_1 doi: 10.1039/C4SC03334E – ident: e_1_2_9_150_1 doi: 10.1039/c3py00488k – ident: e_1_2_9_19_1 doi: 10.1039/b912804b – ident: e_1_2_9_127_1 doi: 10.1016/j.progpolymsci.2015.10.002 – ident: e_1_2_9_176_1 doi: 10.1126/science.269.5227.1080 – ident: e_1_2_9_57_1 doi: 10.1021/acsmacrolett.6b00066 – ident: e_1_2_9_116_1 doi: 10.1002/marc.201600508 – ident: e_1_2_9_159_1 doi: 10.1021/acs.macromol.8b01121 – ident: e_1_2_9_26_1 doi: 10.1021/jacs.5b10415 – ident: e_1_2_9_145_1 doi: 10.1039/D1PY00216C – ident: e_1_2_9_131_1 doi: 10.31635/ccschem.020.202000470 – ident: e_1_2_9_49_1 doi: 10.1021/acsmacrolett.7b00731 – ident: e_1_2_9_83_1 doi: 10.1021/acs.macromol.9b01689 – ident: e_1_2_9_170_1 doi: 10.1021/ma200656h – ident: e_1_2_9_112_1 doi: 10.1021/acsmacrolett.5b00523 – ident: e_1_2_9_166_1 doi: 10.1021/ma300521c – ident: e_1_2_9_194_1 doi: 10.1016/j.progpolymsci.2020.101311 – ident: e_1_2_9_47_1 doi: 10.1039/C7PY00007C – ident: e_1_2_9_120_1 doi: 10.1002/marc.201800279 – ident: e_1_2_9_173_1 doi: 10.1039/C4CS00224E – ident: e_1_2_9_98_1 doi: 10.1002/marc.201900547 – ident: e_1_2_9_181_1 doi: 10.1021/acs.biomac.1c00569 – ident: e_1_2_9_94_1 doi: 10.1002/marc.202000720 – ident: e_1_2_9_142_1 doi: 10.1002/advs.201700137 – ident: e_1_2_9_80_1 doi: 10.1021/acs.macromol.9b00571 – ident: e_1_2_9_164_1 doi: 10.1002/marc.201800315 – ident: e_1_2_9_75_1 doi: 10.1002/marc.201800291 – ident: e_1_2_9_162_1 doi: 10.1039/C8PY01617H – ident: e_1_2_9_111_1 doi: 10.1021/acsmacrolett.5b00699 – ident: e_1_2_9_71_1 doi: 10.1002/anie.201709129 – ident: e_1_2_9_95_1 doi: 10.1021/acsmacrolett.1c00014 – ident: e_1_2_9_195_1 doi: 10.1016/j.chempr.2020.04.020 – ident: e_1_2_9_31_1 doi: 10.1021/ma402497y – ident: e_1_2_9_84_1 doi: 10.1002/marc.201800296 – ident: e_1_2_9_53_1 doi: 10.1021/ma200984h – ident: e_1_2_9_43_1 doi: 10.1021/la502656u – ident: e_1_2_9_138_1 doi: 10.1039/D0PY00627K – ident: e_1_2_9_14_1 doi: 10.1021/acs.macromol.9b01662 – ident: e_1_2_9_191_1 doi: 10.1021/acsmacrolett.7b00134 – ident: e_1_2_9_36_1 doi: 10.1021/ma201515n – ident: e_1_2_9_106_1 doi: 10.1039/D1PY00239B – ident: e_1_2_9_122_1 doi: 10.1021/ma300713f – ident: e_1_2_9_203_1 doi: 10.1021/acsmacrolett.9b00509 – ident: e_1_2_9_147_1 doi: 10.1016/j.progpolymsci.2015.02.002 – ident: e_1_2_9_158_1 doi: 10.1021/acsmacrolett.9b00371 – ident: e_1_2_9_146_1 doi: 10.1039/C8PY01295D – ident: e_1_2_9_65_1 doi: 10.1039/C5PY01041A – ident: e_1_2_9_51_1 doi: 10.1021/acsmacrolett.8b00741 – ident: e_1_2_9_1_1 doi: 10.1002/ange.201509401 |
SSID | ssj0008402 |
Score | 2.5992224 |
SecondaryResourceType | review_article |
Snippet | Over the past decade or so, polymerization‐induced self‐assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer... Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2100498 |
SubjectTerms | Assembly blends of polymers Block copolymers Chain transfer Chemical synthesis Copolymers Macromolecular Substances Macromolecules Molecular chains Nanoparticles nonlinear architecture Polymer blends Polymerization polymerization‐induced self‐assembly Polymers poor polymerization control |
Title | Expanding the Scope of Polymerization‐Induced Self‐Assembly: Recent Advances and New Horizons |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202100498 https://www.ncbi.nlm.nih.gov/pubmed/34418199 https://www.proquest.com/docview/2605832206 https://www.proquest.com/docview/2563422267 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yF33xfqlOiSD41K1t2rT1bYyNISiyOdhbaZv0xdkOt4HzyZ_gb_SXeE7Tdk4RQd8amrS5nJN8JyfnCyEXEmREmnasA3jnus0jpke-x3TOPV_4EsQqwn3Im1veG9rXI2f0KYpf8UNUG26oGfl8jQoeRtPmkjQUqR7AvrOQ8szHaF88sIWoqL_kjwLrRbk7weICY4yXrI2G1VwtvroqfYOaq8g1X3q6WyQsK61OnDw05rOoEb984XP8T6u2yWaBS2lLCdIOWZPpLllvl9fB7ZGw8zxRITAUMCMdYDQLzRJ6l40X6PVR4Zzvr294GUgsBR3IcQJJ9Co_RuPFFQWECiscbalTB1MKX6Mwx9JeBqVB-PfJsNu5b_f04n4GPQYY4-mM20Ja0jASyYXDmTS90AKR8EVsemingMID_jET6QlmY6MSBhDLN1nIXdcR7IDU0iyVR4RariscP1RkNm4ShVKYiWsjO7zHTeFqRC_HJ4gL8nK8Q2McKNplK8COC6qO08hllX-iaDt-zFkvhzso1HcaoJGHU53BNXJevYYOR29KmMpsDnmgxbh_xqFyh0pMql8xAJkAtXyNWPlg_1KH4KbVb1ep478UOiEb-KwO2tRJbfY0l6cAl2bRWa4SH_p2Cps |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTuNAEC2xHOAyLANMWBtpRpwMcbfTtpE4RAEUlqARi8TN2O72hUyMJokgnPgEfoVf4RP4EqrStlFACAmJA8e22-6tqutVL68AfmuUEW07sYXgXVqOjIQV-Z6wpPR85WsUq4jWIRtHsn7m7J9XzofgIb8LY_ghigU30oz-fE0KTgvSGy-socT1gA4eJ84z38vOVR7o3jV6be2tvW0c4j-c7-6c1upWFljAitH-epaQjtJcl8uJlqoihba9kGNbfBXbHgFslFQ03HaiPSUcKiIRiA18W4TSdStK4H-HYZTCiBNd__bxC2MV-ktmgxV9PHT_ZM4TWeYbg_UdtINvwO0gVu4bu90JeMy7yZxxuVzvdqL1-PYVg-S36sdJ-JFBb1Y1ujIFQ7o1DWO1POLdTwh3bq7MLR-GsJid0IUdlibsb9rs0caWubH6dHdP8U5irdiJbiaYpI3zf1Gzt8kQhKMRZ1VzsKLN8G8MzQirp_g16vcMnH1JC2dhpJW29C9g3HVVxQ8NX4-bRKFWduI6RIDvSVu5JbBygQjijJ-dwoQ0A8MszQMaqKAYqBKsFfmvDDPJuzkXc_kKshmqHZAfS7N5WZZgtXiNHU4bRmFLp13Mgy2mJUKJlZszclkUJRBHI5r0S8D70vVBHYJG9bhWpOY_89EKjNVPG4fB4d7RwQKM03NzrmgRRjr_u3oJ0WEnWu7rI4OLrxbcZ4IPZS8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB4BlYALbYHStLQsEoiTwd511t5KPUQJUSg_QvxI3Fzbu74Q4qhJRNNTH6GP0lfpK_RJOpO1jVKEkCpx6HHttfdvZueb_fkGYMugjBjPTx0E79LxZSKcRIXCkTJUWhkUq4TWIY9PZOfS_3RVv5qBn-VdGMsPUS24kWZM5mtS8L7O9u5IQ4nqAf07TpRnKiyOVR6a8S06bYOPBy0c4W3O2_sXzY5TxBVwUjS_oSOkrw03rpsZqetSGC-MOTZF6dQLCV-joKLd9jITauFTEZlAaKA8EcsgqGuB_52FZ750FQWLaJ3dEVahu2T3V9HFQ-9PljSRLt-bru-0GbyHbaeh8sTWtZ_Dr7KX7BGX693RMNlNv_1FIPk_deMLWCqAN2tYTXkJM6a3DAvNMt7dCsT7X_v2jg9DUMzO6boOyzN2mnfHtK1l76v-_v6Dop2kRrNz080wSdvmN0l3_IEhBEcTzhr2WMWA4d8YGhHWyfFr1O5VuHySFr6CuV7eM6-B8SDQdRVbtp4gS2KjvSzwif4-lJ4OauCU8hClBTs7BQnpRpZXmkc0UFE1UDXYqfL3LS_JgznXS_GKivlpEJEXS3O5K2uwWb3GDqftorhn8hHmwRbTAqHEyq1ZsayKEoiiEUuqGvCJcD1Sh-i4cdasUm_-5aMNmD9ttaOjg5PDt7BIj-2honWYG34ZmXcIDYfJ-4k2Mvj81HL7B8FWY94 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expanding+the+Scope+of+Polymerization%E2%80%90Induced+Self%E2%80%90Assembly%3A+Recent+Advances+and+New+Horizons&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Cao%2C+Junpeng&rft.au=Tan%2C+Yingxin&rft.au=Chen%2C+Ying&rft.au=Zhang%2C+Li&rft.date=2021-12-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=42&rft.issue=23&rft_id=info:doi/10.1002%2Fmarc.202100498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_202100498 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |