Expanding the Scope of Polymerization‐Induced Self‐Assembly: Recent Advances and New Horizons

Over the past decade or so, polymerization‐induced self‐assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well‐defined linear block cop...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 42; no. 23; pp. e2100498 - n/a
Main Authors Cao, Junpeng, Tan, Yingxin, Chen, Ying, Zhang, Li, Tan, Jianbo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over the past decade or so, polymerization‐induced self‐assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well‐defined linear block copolymers by using linear macromolecular chain transfer agents (macro‐CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro‐CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided. Different from traditional polymerization‐induced self‐assembly (PISA) that focuses on the preparation of linear block copolymer nano‐objects using macromolecular chain transfer agents with high chain transfer constants, this review summarizes recent advances of PISA, which focuses on in situ synthesis of nonlinear architectures, blends of polymers, and utilization of poor polymerization control.
AbstractList Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well-defined linear block copolymers by using linear macromolecular chain transfer agents (macro-CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro-CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided.Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well-defined linear block copolymers by using linear macromolecular chain transfer agents (macro-CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro-CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided.
Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well-defined linear block copolymers by using linear macromolecular chain transfer agents (macro-CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro-CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided.
Over the past decade or so, polymerization‐induced self‐assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well‐defined linear block copolymers by using linear macromolecular chain transfer agents (macro‐CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro‐CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided. Different from traditional polymerization‐induced self‐assembly (PISA) that focuses on the preparation of linear block copolymer nano‐objects using macromolecular chain transfer agents with high chain transfer constants, this review summarizes recent advances of PISA, which focuses on in situ synthesis of nonlinear architectures, blends of polymers, and utilization of poor polymerization control.
Author Tan, Yingxin
Cao, Junpeng
Tan, Jianbo
Chen, Ying
Zhang, Li
Author_xml – sequence: 1
  givenname: Junpeng
  surname: Cao
  fullname: Cao, Junpeng
  organization: Guangdong University of Technology
– sequence: 2
  givenname: Yingxin
  surname: Tan
  fullname: Tan, Yingxin
  organization: Guangdong University of Technology
– sequence: 3
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
  organization: Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
– sequence: 4
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  organization: Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
– sequence: 5
  givenname: Jianbo
  orcidid: 0000-0002-5635-7178
  surname: Tan
  fullname: Tan, Jianbo
  email: tanjianbo@gdut.edu.cn
  organization: Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34418199$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAUhS1ExW-3LJGlbrrJ1L52fsxuNIKCBAUBXVvGvmmDEnsaJ4Xpqo_QZ-RJ8DAUJKSqK_tK3zm-PmebrPvgkZA9ziacMfjUmd5OgEEapKrWyBbPgWdCQbme7gwg40IUm2Q7xlvGWCUZbJBNISWvuFJbxBzez413jf9Gh-9Ir2yYIw01vQjtosO--WWGJviH339OvBstOnqFbZ3GaYzY3bSLA3qJFv1Ap-6n8RYjTW70C97R45DUwcdd8q42bcT3z-cO-Xp0eD07zk7PP5_MpqeZlUJVmSikQ0DGaixcXgjklQG0VjnLK1XKkuVcKMVrrJyQyx_XgkGuuDBFWeZO7JCPK995H36MGAfdNdFi2xqPYYwakqkEgKJM6Ic36G0Ye5-201CwvBIArEjU_jM13nTo9LxvUtoL_Te8BExWgO1DjD3WLwhnetmOXrajX9pJAvlGYJvhKeChN037b5laye6aFhf_eUSfTS9nr9pHXxKkEw
CitedBy_id crossref_primary_10_1021_acs_macromol_4c02016
crossref_primary_10_1021_acs_macromol_3c02287
crossref_primary_10_1039_D3PY00015J
crossref_primary_10_6023_A22030128
crossref_primary_10_1039_D4PY00263F
crossref_primary_10_1360_SSC_2023_0169
crossref_primary_10_1039_D1PY01172C
crossref_primary_10_1021_acsmacrolett_3c00547
crossref_primary_10_1021_acs_chemmater_3c02570
crossref_primary_10_1021_acs_macromol_3c00585
crossref_primary_10_1039_D1PY01661J
crossref_primary_10_1021_acsmacrolett_4c00278
crossref_primary_10_1002_anie_202318881
crossref_primary_10_1002_ange_202305945
crossref_primary_10_1021_acs_biomac_4c00552
crossref_primary_10_1021_acs_langmuir_1c03430
crossref_primary_10_3390_polym14214702
crossref_primary_10_3390_polym16101408
crossref_primary_10_1021_acs_macromol_2c01983
crossref_primary_10_34133_research_0113
crossref_primary_10_1021_acs_chemrev_3c00350
crossref_primary_10_1016_j_progpolymsci_2023_101738
crossref_primary_10_1016_j_colsurfa_2022_129166
crossref_primary_10_1039_D2PY00198E
crossref_primary_10_1021_acs_macromol_4c02860
crossref_primary_10_1002_marc_202200010
crossref_primary_10_1002_anie_202210518
crossref_primary_10_1039_D4PY00022F
crossref_primary_10_1021_acs_macromol_3c02399
crossref_primary_10_1016_j_eurpolymj_2023_111848
crossref_primary_10_1002_cjoc_202200761
crossref_primary_10_1021_acs_macromol_2c00545
crossref_primary_10_1002_marc_202300334
crossref_primary_10_1002_cjoc_202400023
crossref_primary_10_3390_polym13234064
crossref_primary_10_1002_pol_20220647
crossref_primary_10_1002_anie_202206780
crossref_primary_10_1002_anie_202305945
crossref_primary_10_1002_anie_202308372
crossref_primary_10_1039_D2PY00559J
crossref_primary_10_1039_D2PY00701K
crossref_primary_10_3390_ddc2040045
crossref_primary_10_1021_acs_macromol_2c00181
crossref_primary_10_1016_j_progpolymsci_2025_101944
crossref_primary_10_1039_D2SC00762B
crossref_primary_10_1039_D2PY00858K
crossref_primary_10_1002_ange_202210518
crossref_primary_10_1002_cphc_202400291
crossref_primary_10_1021_acsmacrolett_2c00314
crossref_primary_10_1039_D2PY00180B
crossref_primary_10_1016_j_eurpolymj_2022_111234
crossref_primary_10_1021_acs_chemmater_4c01591
crossref_primary_10_1002_marc_202100879
crossref_primary_10_1039_D3PY00550J
crossref_primary_10_1021_acs_macromol_2c00827
crossref_primary_10_3390_polym14235331
crossref_primary_10_1039_D3PY01006F
crossref_primary_10_1021_acs_macromol_2c00475
crossref_primary_10_1039_D2PY01148D
crossref_primary_10_1039_D3LP00135K
crossref_primary_10_1002_ange_202206780
crossref_primary_10_1002_smtd_202201592
crossref_primary_10_1002_marc_202400100
crossref_primary_10_1002_macp_202100349
crossref_primary_10_1002_smll_202300961
crossref_primary_10_1021_acsanm_4c02200
crossref_primary_10_1002_marc_202200071
crossref_primary_10_1021_acs_chemmater_4c01224
crossref_primary_10_1021_acs_macromol_4c01078
crossref_primary_10_1021_acs_jcim_3c00460
crossref_primary_10_1002_smll_202207457
crossref_primary_10_1002_ange_202308372
crossref_primary_10_1021_acs_biomac_2c00981
crossref_primary_10_1039_D2PY00391K
crossref_primary_10_1021_acsapm_1c01484
crossref_primary_10_1002_marc_202100921
crossref_primary_10_1021_acs_macromol_2c01529
crossref_primary_10_1021_acsami_4c11420
crossref_primary_10_1002_ange_202318881
crossref_primary_10_1002_adfm_202313155
crossref_primary_10_1039_D1PY01636A
Cites_doi 10.1039/C9PY01636H
10.1002/marc.202100333
10.1002/macp.201500443
10.1021/acs.macromol.6b02569
10.1021/acs.macromol.6b01581
10.1021/jacs.7b06661
10.1021/mz500221j
10.1021/acs.macromol.5b02602
10.1039/C8PY01799A
10.1021/acsmacrolett.9b00870
10.1039/C8PY00029H
10.1021/acs.macromol.7b01644
10.1021/jacs.7b02208
10.1002/marc.201800513
10.1039/C7PY00442G
10.1021/acscentsci.8b00148
10.1002/marc.200700291
10.1021/ja507121h
10.1016/j.polymer.2020.122914
10.1021/acs.macromol.5b00021
10.1039/c3py21120g
10.1038/s41467-019-09324-5
10.1039/C9NR02507C
10.1021/jacs.0c11183
10.1021/acs.macromol.6b00688
10.1021/acsmaterialslett.9b00423
10.1039/C9PY00452A
10.1039/C9CC05812E
10.1021/ma9027257
10.1039/C8PY01053F
10.1002/marc.201600299
10.1021/acs.macromol.0c00954
10.1039/C8PY00422F
10.1021/acs.macromol.0c00123
10.1021/acs.macromol.8b00887
10.1021/acs.macromol.6b01966
10.1021/acs.macromol.9b02710
10.1002/marc.201900296
10.1021/ja501756h
10.1039/b903040a
10.1021/acs.macromol.7b01363
10.1021/acs.macromol.8b01456
10.1021/ma981472p
10.1021/acsmacrolett.5b00748
10.1021/acsmacrolett.9b00427
10.1016/j.polymer.2010.08.056
10.1039/C9SC04197D
10.1021/acsmacrolett.5b00928
10.1021/acs.macromol.1c00038
10.1021/acsmacrolett.6b00796
10.1021/acs.macromol.6b02754
10.1039/c0py00124d
10.1039/c2py21074f
10.1021/ma2000674
10.1002/anie.201911758
10.1021/acsmacrolett.7b00069
10.1021/acsmacrolett.7b00725
10.1021/acsmacrolett.6b00235
10.1002/anie.201511159
10.1039/C9PY01656B
10.1021/acs.macromol.6b00762
10.1021/acs.macromol.8b02490
10.1021/acsmacrolett.7b00099
10.1021/ja502843f
10.1021/ma9804951
10.1021/acsmacrolett.7b00056
10.1007/s10118-017-1907-8
10.1016/j.progpolymsci.2003.12.002
10.1039/D1PY00046B
10.1126/science.aad9521
10.1021/ja3024059
10.1039/D0PY00455C
10.1002/pola.24771
10.1021/ma502279b
10.1021/acs.macromol.9b00257
10.1039/C7PY00508C
10.1039/c3py01569f
10.1039/c2cs35115c
10.1021/jacs.5b13565
10.1039/c2py20442h
10.1021/acs.macromol.0c00959
10.1039/C9PY00166B
10.1021/acs.macromol.8b00690
10.1021/acs.chemrev.6b00008
10.1002/anie.201001461
10.1002/marc.201700871
10.1021/cr500625k
10.1021/acs.macromol.8b01606
10.1021/acs.macromol.6b01729
10.1016/j.progpolymsci.2018.06.006
10.1039/C4SC02290D
10.1039/C4PY01069H
10.1021/ma401534w
10.1039/C3PY01676E
10.1021/acs.macromol.8b01121
10.1039/C7PY00339K
10.1039/C7CC00228A
10.1039/C4CS00528G
10.1021/acsmacrolett.8b00295
10.1021/jacs.7b03219
10.1021/acs.macromol.5b02470
10.1016/j.progpolymsci.2021.101387
10.1039/D0PY00467G
10.1021/acs.macromol.6b00771
10.1039/C7PY00998D
10.1021/ja953709s
10.1039/B923667H
10.1021/cr800242x
10.1021/acs.macromol.8b02081
10.1039/b823367e
10.1021/acsmacrolett.9b00716
10.1002/marc.201800460
10.1021/acsmacrolett.9b00464
10.1021/ja407033x
10.1002/anie.201809370
10.1021/ma801256k
10.1002/pola.24027
10.1038/ncomms4882
10.1021/acsmacrolett.9b00534
10.1021/ma2005926
10.1021/acsmacrolett.5b00225
10.1021/acs.macromol.8b00994
10.1039/C3PY00942D
10.1039/D0PY00407C
10.1021/ma025626j
10.1002/anie.201710811
10.1039/C7PY00407A
10.1021/acsmacrolett.0c00151
10.1039/C6PY00571C
10.1039/C7RA09120F
10.1021/acs.macromol.0c01624
10.1021/acs.macromol.0c02008
10.1021/jacs.8b10993
10.1002/marc.201800551
10.1039/C5PY01295C
10.1021/ma200074n
10.1021/acsmacrolett.9b00292
10.1021/acsmacrolett.9b00007
10.1021/acs.macromol.9b01295
10.1007/s10118-021-2533-z
10.1016/j.progpolymsci.2018.05.003
10.1021/ma501598k
10.1039/c2cc33812b
10.1039/C9SC03546J
10.1039/C3PY01306E
10.1021/mz500650c
10.1002/anie.201206555
10.1021/ja0756974
10.1002/marc.201800325
10.6023/A20050162
10.1039/C2PY20612A
10.1002/marc.201800438
10.1002/anie.201903684
10.1021/acs.macromol.1c00381
10.1039/D0PY00720J
10.1039/D0MH00354A
10.1039/D0SC00219D
10.1021/ja206301a
10.1021/acsmacrolett.8b00005
10.1039/C4SC03334E
10.1039/c3py00488k
10.1039/b912804b
10.1016/j.progpolymsci.2015.10.002
10.1126/science.269.5227.1080
10.1021/acsmacrolett.6b00066
10.1002/marc.201600508
10.1021/jacs.5b10415
10.1039/D1PY00216C
10.31635/ccschem.020.202000470
10.1021/acsmacrolett.7b00731
10.1021/acs.macromol.9b01689
10.1021/ma200656h
10.1021/acsmacrolett.5b00523
10.1021/ma300521c
10.1016/j.progpolymsci.2020.101311
10.1039/C7PY00007C
10.1002/marc.201800279
10.1039/C4CS00224E
10.1002/marc.201900547
10.1021/acs.biomac.1c00569
10.1002/marc.202000720
10.1002/advs.201700137
10.1021/acs.macromol.9b00571
10.1002/marc.201800315
10.1002/marc.201800291
10.1039/C8PY01617H
10.1021/acsmacrolett.5b00699
10.1002/anie.201709129
10.1021/acsmacrolett.1c00014
10.1016/j.chempr.2020.04.020
10.1021/ma402497y
10.1002/marc.201800296
10.1021/ma200984h
10.1021/la502656u
10.1039/D0PY00627K
10.1021/acs.macromol.9b01662
10.1021/acsmacrolett.7b00134
10.1021/ma201515n
10.1039/D1PY00239B
10.1021/ma300713f
10.1021/acsmacrolett.9b00509
10.1016/j.progpolymsci.2015.02.002
10.1021/acsmacrolett.9b00371
10.1039/C8PY01295D
10.1039/C5PY01041A
10.1021/acsmacrolett.8b00741
10.1002/ange.201509401
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.202100498
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 34418199
10_1002_marc_202100498
MARC202100498
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22171055; 21971047
– fundername: Guangdong Special Support Program
  funderid: 2017TX04N371
– fundername: Innovation Project of Education Department in Guangdong
  funderid: 2018KTSCX053
– fundername: National Natural Science Foundation of China
  grantid: 22171055
– fundername: Guangdong Special Support Program
  grantid: 2017TX04N371
– fundername: National Natural Science Foundation of China
  grantid: 21971047
– fundername: Innovation Project of Education Department in Guangdong
  grantid: 2018KTSCX053
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c4398-364de2e00fe6d563e18a2ecc9dc1897470513991fe8d342021f3025913a6775d3
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 06:58:42 EDT 2025
Sun Jul 13 05:39:02 EDT 2025
Thu Apr 03 07:06:12 EDT 2025
Thu Apr 24 23:07:12 EDT 2025
Tue Jul 01 03:31:44 EDT 2025
Wed Jan 22 16:27:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords poor polymerization control
polymerization-induced self-assembly
blends of polymers
nonlinear architecture
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4398-364de2e00fe6d563e18a2ecc9dc1897470513991fe8d342021f3025913a6775d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5635-7178
PMID 34418199
PQID 2605832206
PQPubID 1016394
PageCount 12
ParticipantIDs proquest_miscellaneous_2563422267
proquest_journals_2605832206
pubmed_primary_34418199
crossref_primary_10_1002_marc_202100498
crossref_citationtrail_10_1002_marc_202100498
wiley_primary_10_1002_marc_202100498_MARC202100498
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
2004; 29
2019; 11
2019; 10
2008; 108
2018; 40
2020; 11
2013; 5
2016; 37
2014; 136
2020; 207
2018; 7
2018; 9
2018; 39
2012; 134
2010; 1
2018; 4
2015; 137
2016; 49
2019; 8
2021; 42
2019; 1
2014; 47
2021; 143
2011; 133
2017; 139
2016; 5
2017; 50
2010; 43
2017; 53
2016; 7
2010; 49
2021; 54
2010; 48
2019; 40
2010; 46
2015; 115
2016; 217
2017; 56
1995; 269
1999; 32
2008; 41
2012; 48
2014; 30
2012; 45
2018; 10
2010; 51
1996; 118
2012; 41
2017; 6
2017; 7
2017; 8
2017; 4
2021; 22
2019; 52
2019; 55
2019; 58
2020; 59
2018; 84
2018; 83
2012; 51
2007; 28
2015; 46
2020; 7
2015; 48
2020; 6
2014; 5
2014; 3
2020; 53
2017; 38
2021; 39
2021; 116
2017; 35
2015; 44
2020; 9
2016; 352
2016; 116
2007; 129
2015; 6
2015; 4
2021; 3
2018; 140
2013; 46
2002; 35
2009
2016; 52
2016; 128
2020; 78
2016; 55
2021; 10
2012; 3
2021; 12
2021
2011; 44
2013; 135
2020; 111
2018; 51
2016; 138
2011; 49
1998; 31
2018; 57
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_28_1
e_1_2_9_174_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
Lv F. (e_1_2_9_60_1) 2021; 3
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_201_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_4_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_86_1
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_192_1
References_xml – volume: 10
  start-page: 45
  year: 2018
  publication-title: Polym. Chem.
– volume: 8
  start-page: 205
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 52
  start-page: 2965
  year: 2019
  publication-title: Macromolecules
– volume: 5
  start-page: 350
  year: 2013
  publication-title: Polym. Chem.
– start-page: 2709
  year: 2009
  publication-title: Chem. Commun.
– volume: 48
  start-page: 7389
  year: 2012
  publication-title: Chem. Commun.
– volume: 78
  start-page: 719
  year: 2020
  publication-title: Acta Chim. Sin.
– volume: 11
  start-page: 936
  year: 2020
  publication-title: Polym. Chem.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 42
  year: 2021
  publication-title: Macromol. Rapid Commun.
– volume: 39
  start-page: 1127
  year: 2021
  publication-title: Chin. J. Polym. Sci.
– volume: 8
  start-page: 1029
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 49
  start-page: 3789
  year: 2016
  publication-title: Macromolecules
– volume: 10
  start-page: 297
  year: 2021
  publication-title: ACS Macro Lett.
– volume: 4
  start-page: 1293
  year: 2015
  publication-title: ACS Macro Lett.
– volume: 49
  start-page: 8605
  year: 2016
  publication-title: Macromolecules
– volume: 4
  start-page: 984
  year: 2015
  publication-title: ACS Macro Lett.
– volume: 7
  start-page: 1883
  year: 2020
  publication-title: Mater. Horiz.
– volume: 44
  start-page: 7584
  year: 2011
  publication-title: Macromolecules
– volume: 57
  start-page: 1053
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 873
  year: 2013
  publication-title: Polym. Chem.
– volume: 8
  start-page: 812
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 52
  start-page: 1
  year: 2016
  publication-title: Prog. Polym. Sci.
– volume: 11
  start-page: 396
  year: 2020
  publication-title: Chem. Sci.
– volume: 11
  start-page: 3922
  year: 2020
  publication-title: Polym. Chem.
– volume: 55
  year: 2019
  publication-title: Chem. Commun.
– volume: 52
  start-page: 7267
  year: 2019
  publication-title: Macromolecules
– volume: 4
  start-page: 4092
  year: 2013
  publication-title: Polym. Chem.
– volume: 49
  start-page: 1985
  year: 2016
  publication-title: Macromolecules
– volume: 52
  start-page: 7468
  year: 2019
  publication-title: Macromolecules
– volume: 11
  start-page: 4681
  year: 2020
  publication-title: Polym. Chem.
– volume: 6
  start-page: 224
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 41
  start-page: 5969
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 44
  start-page: 3358
  year: 2011
  publication-title: Macromolecules
– volume: 8
  start-page: 1660
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 58
  start-page: 3173
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 83
  start-page: 1
  year: 2018
  publication-title: Prog. Polym. Sci.
– volume: 45
  start-page: 6753
  year: 2012
  publication-title: Macromolecules
– volume: 53
  start-page: 6235
  year: 2020
  publication-title: Macromolecules
– volume: 134
  start-page: 9741
  year: 2012
  publication-title: J. Am. Chem. Soc.
– start-page: 2887
  year: 2009
  publication-title: Chem. Commun.
– volume: 55
  start-page: 3739
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 1461
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 8
  start-page: 2841
  year: 2017
  publication-title: Polym. Chem.
– volume: 7
  start-page: 1376
  year: 2018
  publication-title: ACS Macro Lett.
– volume: 51
  start-page: 5165
  year: 2018
  publication-title: Macromolecules
– volume: 51
  start-page: 5440
  year: 2018
  publication-title: Macromolecules
– volume: 38
  year: 2017
  publication-title: Macromol. Rapid Commun.
– volume: 49
  start-page: 3346
  year: 2011
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 6
  start-page: 1237
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 8
  start-page: 955
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 51
  start-page: 5115
  year: 2010
  publication-title: Polymer
– volume: 50
  start-page: 1253
  year: 2017
  publication-title: Macromolecules
– volume: 10
  start-page: 1150
  year: 2019
  publication-title: Polym. Chem.
– volume: 6
  start-page: 304
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 1033
  year: 2019
  publication-title: Macromolecules
– volume: 48
  start-page: 2783
  year: 2010
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 3
  start-page: 496
  year: 2014
  publication-title: ACS Macro Lett.
– volume: 9
  start-page: 533
  year: 2020
  publication-title: ACS Macro Lett.
– volume: 12
  start-page: 3947
  year: 2021
  publication-title: Polym. Chem.
– volume: 44
  start-page: 3997
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 989
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 5
  start-page: 88
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 10
  start-page: 1397
  year: 2019
  publication-title: Nat. Commun.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  year: 2021
  publication-title: CCS Chem.
– volume: 52
  start-page: 4703
  year: 2019
  publication-title: Macromolecules
– volume: 51
  start-page: 8862
  year: 2018
  publication-title: Macromolecules
– volume: 53
  start-page: 8982
  year: 2020
  publication-title: Macromolecules
– volume: 12
  start-page: 3220
  year: 2021
  publication-title: Polym. Chem.
– volume: 6
  start-page: 1340
  year: 2020
  publication-title: Chem
– volume: 9
  start-page: 4908
  year: 2018
  publication-title: Polym. Chem.
– volume: 51
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 53
  start-page: 5005
  year: 2017
  publication-title: Chem. Commun.
– volume: 52
  start-page: 1140
  year: 2019
  publication-title: Macromolecules
– volume: 4
  start-page: 1950
  year: 2013
  publication-title: Polym. Chem.
– volume: 143
  start-page: 1474
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 2071
  year: 1999
  publication-title: Macromolecules
– volume: 6
  start-page: 298
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 31
  start-page: 5559
  year: 1998
  publication-title: Macromolecules
– volume: 3
  start-page: 1220
  year: 2014
  publication-title: ACS Macro Lett.
– volume: 6
  start-page: 1263
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 5
  start-page: 2736
  year: 2014
  publication-title: Polym. Chem.
– volume: 5
  start-page: 4646
  year: 2014
  publication-title: Chem. Sci.
– volume: 111
  year: 2020
  publication-title: Prog. Polym. Sci.
– volume: 40
  year: 2018
  publication-title: Macromol. Rapid Commun.
– volume: 37
  start-page: 1434
  year: 2016
  publication-title: Macromol. Rapid Commun.
– volume: 54
  start-page: 2948
  year: 2021
  publication-title: Macromolecules
– volume: 6
  start-page: 7871
  year: 2015
  publication-title: Polym. Chem.
– volume: 10
  start-page: 2406
  year: 2019
  publication-title: Polym. Chem.
– volume: 29
  start-page: 183
  year: 2004
  publication-title: Prog. Polym. Sci.
– volume: 10
  start-page: 403
  year: 2019
  publication-title: Polym. Chem.
– volume: 4
  start-page: 1921
  year: 2013
  publication-title: Polym. Chem.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 8
  start-page: 5012
  year: 2017
  publication-title: Polym. Chem.
– volume: 5
  start-page: 3882
  year: 2014
  publication-title: Nat. Commun.
– volume: 5
  start-page: 558
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 46
  start-page: 6751
  year: 2013
  publication-title: Macromolecules
– volume: 51
  start-page: 6190
  year: 2018
  publication-title: Macromolecules
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 269
  start-page: 1080
  year: 1995
  publication-title: Science
– volume: 9
  start-page: 2625
  year: 2018
  publication-title: Polym. Chem.
– volume: 139
  start-page: 7136
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2173
  year: 2017
  publication-title: Polym. Chem.
– volume: 84
  start-page: 47
  year: 2018
  publication-title: Prog. Polym. Sci.
– volume: 5
  start-page: 175
  year: 2013
  publication-title: Polym. Chem.
– volume: 4
  start-page: 1249
  year: 2015
  publication-title: ACS Macro Lett.
– volume: 11
  start-page: 4729
  year: 2020
  publication-title: Polym. Chem.
– volume: 10
  start-page: 3426
  year: 2019
  publication-title: Polym. Chem.
– volume: 44
  start-page: 4149
  year: 2011
  publication-title: Macromolecules
– volume: 139
  start-page: 7640
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1230
  year: 2015
  publication-title: Chem. Sci.
– volume: 118
  start-page: 3168
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 4196
  year: 2012
  publication-title: Macromolecules
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 2860
  year: 2017
  publication-title: Polym. Chem.
– volume: 47
  start-page: 7442
  year: 2014
  publication-title: Macromolecules
– volume: 7
  start-page: 3361
  year: 2016
  publication-title: Polym. Chem.
– volume: 28
  start-page: 1540
  year: 2007
  publication-title: Macromol. Rapid Commun.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 22
  start-page: 3128
  year: 2021
  publication-title: Biomacromolecules
– volume: 6
  start-page: 6386
  year: 2015
  publication-title: Polym. Chem.
– volume: 53
  start-page: 1557
  year: 2020
  publication-title: Macromolecules
– volume: 35
  start-page: 9243
  year: 2002
  publication-title: Macromolecules
– volume: 11
  start-page: 3673
  year: 2020
  publication-title: Polym. Chem.
– volume: 6
  start-page: 337
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 5
  start-page: 1327
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 352
  start-page: 697
  year: 2016
  publication-title: Science
– volume: 128
  start-page: 1792
  year: 2016
  publication-title: Angew. Chem.
– volume: 8
  start-page: 1102
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 44
  start-page: 2524
  year: 2011
  publication-title: Macromolecules
– volume: 48
  start-page: 1380
  year: 2015
  publication-title: Macromolecules
– start-page: 5883
  year: 2009
  publication-title: Chem. Commun.
– volume: 51
  start-page: 4397
  year: 2018
  publication-title: Macromolecules
– volume: 50
  start-page: 7222
  year: 2017
  publication-title: Macromolecules
– volume: 116
  start-page: 6743
  year: 2016
  publication-title: Chem. Rev.
– volume: 11
  start-page: 2532
  year: 2020
  publication-title: Polym. Chem.
– volume: 49
  start-page: 7277
  year: 2016
  publication-title: Macromolecules
– volume: 8
  start-page: 4177
  year: 2017
  publication-title: Polym. Chem.
– volume: 49
  start-page: 7897
  year: 2016
  publication-title: Macromolecules
– volume: 5
  start-page: 316
  year: 2016
  publication-title: ACS Macro Lett.
– year: 2021
  publication-title: Macromol. Rapid Commun.
– volume: 40
  year: 2019
  publication-title: Macromol. Rapid Commun.
– volume: 48
  start-page: 707
  year: 2015
  publication-title: Macromolecules
– volume: 108
  start-page: 3747
  year: 2008
  publication-title: Chem. Rev.
– volume: 1
  start-page: 606
  year: 2019
  publication-title: ACS Mater. Lett.
– volume: 5
  start-page: 6957
  year: 2014
  publication-title: Polym. Chem.
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 4
  start-page: 495
  year: 2015
  publication-title: ACS Macro Lett.
– volume: 51
  start-page: 7396
  year: 2018
  publication-title: Macromolecules
– volume: 47
  start-page: 1664
  year: 2014
  publication-title: Macromolecules
– volume: 54
  start-page: 4669
  year: 2021
  publication-title: Macromolecules
– volume: 39
  year: 2018
  publication-title: Macromol. Rapid Commun.
– volume: 35
  start-page: 455
  year: 2017
  publication-title: Chin. J. Polym. Sci.
– volume: 4
  start-page: 543
  year: 2018
  publication-title: ACS Cent. Sci.
– volume: 207
  year: 2020
  publication-title: Polymer
– volume: 44
  start-page: 7067
  year: 2011
  publication-title: Macromolecules
– volume: 46
  start-page: 1950
  year: 2010
  publication-title: Chem. Commun.
– volume: 44
  start-page: 4091
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 50
  start-page: 7593
  year: 2017
  publication-title: Macromolecules
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 5790
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 935
  year: 2017
  publication-title: Macromolecules
– volume: 53
  start-page: 1212
  year: 2020
  publication-title: Macromolecules
– volume: 11
  start-page: 2855
  year: 2020
  publication-title: Chem. Sci.
– volume: 46
  start-page: 55
  year: 2015
  publication-title: Prog. Polym. Sci.
– volume: 115
  start-page: 9745
  year: 2015
  publication-title: Chem. Rev.
– volume: 43
  start-page: 2721
  year: 2010
  publication-title: Macromolecules
– volume: 8
  start-page: 783
  year: 2019
  publication-title: ACS Macro Lett.
– volume: 3
  start-page: 2104
  year: 2021
  publication-title: CCS Chem.
– volume: 3
  start-page: 2656
  year: 2012
  publication-title: Polym. Chem.
– volume: 9
  start-page: 912
  year: 2018
  publication-title: Polym. Chem.
– volume: 53
  start-page: 711
  year: 2020
  publication-title: Macromolecules
– volume: 12
  start-page: 1768
  year: 2021
  publication-title: Polym. Chem.
– volume: 7
  start-page: 208
  year: 2018
  publication-title: ACS Macro Lett.
– volume: 49
  start-page: 1016
  year: 2016
  publication-title: Macromolecules
– volume: 138
  start-page: 1848
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 5237
  year: 2011
  publication-title: Macromolecules
– volume: 7
  start-page: 677
  year: 2018
  publication-title: ACS Macro Lett.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 9725
  year: 2020
  publication-title: Macromolecules
– volume: 53
  start-page: 7479
  year: 2020
  publication-title: Macromolecules
– volume: 59
  start-page: 8368
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 1475
  year: 2010
  publication-title: Polym. Chem.
– volume: 49
  start-page: 4510
  year: 2016
  publication-title: Macromolecules
– volume: 49
  start-page: 4490
  year: 2016
  publication-title: Macromolecules
– volume: 12
  start-page: 69
  year: 2021
  publication-title: Polym. Chem.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 7368
  year: 2008
  publication-title: Macromolecules
– volume: 116
  year: 2021
  publication-title: Prog. Polym. Sci.
– volume: 49
  start-page: 4042
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 8724
  year: 2019
  publication-title: Chem. Sci.
– volume: 217
  start-page: 1047
  year: 2016
  publication-title: Macromol. Chem. Phys.
– volume: 129
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 3485
  year: 2017
  publication-title: Polym. Chem.
– volume: 5
  start-page: 2592
  year: 2014
  publication-title: Polym. Chem.
– volume: 30
  year: 2014
  publication-title: Langmuir
– ident: e_1_2_9_74_1
  doi: 10.1039/C9PY01636H
– ident: e_1_2_9_206_1
  doi: 10.1002/marc.202100333
– ident: e_1_2_9_32_1
  doi: 10.1002/macp.201500443
– ident: e_1_2_9_171_1
  doi: 10.1021/acs.macromol.6b02569
– ident: e_1_2_9_45_1
  doi: 10.1021/acs.macromol.6b01581
– ident: e_1_2_9_208_1
  doi: 10.1021/jacs.7b06661
– ident: e_1_2_9_7_1
  doi: 10.1021/mz500221j
– ident: e_1_2_9_126_1
  doi: 10.1021/acs.macromol.5b02602
– ident: e_1_2_9_99_1
  doi: 10.1039/C8PY01799A
– ident: e_1_2_9_132_1
  doi: 10.1021/acsmacrolett.9b00870
– ident: e_1_2_9_72_1
  doi: 10.1039/C8PY00029H
– ident: e_1_2_9_58_1
  doi: 10.1021/acs.macromol.7b01644
– ident: e_1_2_9_12_1
  doi: 10.1021/jacs.7b02208
– ident: e_1_2_9_134_1
  doi: 10.1002/marc.201800513
– ident: e_1_2_9_48_1
  doi: 10.1039/C7PY00442G
– ident: e_1_2_9_105_1
  doi: 10.1021/acscentsci.8b00148
– ident: e_1_2_9_38_1
  doi: 10.1002/marc.200700291
– ident: e_1_2_9_15_1
  doi: 10.1021/ja507121h
– ident: e_1_2_9_17_1
  doi: 10.1016/j.polymer.2020.122914
– ident: e_1_2_9_68_1
  doi: 10.1021/acs.macromol.5b00021
– ident: e_1_2_9_152_1
  doi: 10.1039/c3py21120g
– ident: e_1_2_9_61_1
  doi: 10.1038/s41467-019-09324-5
– ident: e_1_2_9_93_1
  doi: 10.1039/C9NR02507C
– ident: e_1_2_9_27_1
  doi: 10.1021/jacs.0c11183
– ident: e_1_2_9_64_1
  doi: 10.1021/acs.macromol.6b00688
– ident: e_1_2_9_149_1
  doi: 10.1021/acsmaterialslett.9b00423
– ident: e_1_2_9_137_1
  doi: 10.1039/C9PY00452A
– ident: e_1_2_9_86_1
  doi: 10.1039/C9CC05812E
– ident: e_1_2_9_3_1
  doi: 10.1021/ma9027257
– ident: e_1_2_9_4_1
  doi: 10.1039/C8PY01053F
– ident: e_1_2_9_115_1
  doi: 10.1002/marc.201600299
– ident: e_1_2_9_199_1
  doi: 10.1021/acs.macromol.0c00954
– ident: e_1_2_9_161_1
  doi: 10.1039/C8PY00422F
– ident: e_1_2_9_163_1
  doi: 10.1021/acs.macromol.0c00123
– ident: e_1_2_9_50_1
  doi: 10.1021/acs.macromol.8b00887
– ident: e_1_2_9_96_1
  doi: 10.1021/acs.macromol.6b01966
– ident: e_1_2_9_87_1
  doi: 10.1021/acs.macromol.9b02710
– ident: e_1_2_9_97_1
  doi: 10.1002/marc.201900296
– ident: e_1_2_9_25_1
  doi: 10.1021/ja501756h
– ident: e_1_2_9_20_1
  doi: 10.1039/b903040a
– ident: e_1_2_9_63_1
  doi: 10.1021/acs.macromol.7b01363
– ident: e_1_2_9_192_1
  doi: 10.1021/acs.macromol.8b01456
– ident: e_1_2_9_201_1
  doi: 10.1021/ma981472p
– ident: e_1_2_9_110_1
  doi: 10.1021/acsmacrolett.5b00748
– ident: e_1_2_9_82_1
  doi: 10.1021/acsmacrolett.9b00427
– ident: e_1_2_9_28_1
  doi: 10.1016/j.polymer.2010.08.056
– ident: e_1_2_9_117_1
  doi: 10.1039/C9SC04197D
– ident: e_1_2_9_119_1
  doi: 10.1021/acsmacrolett.5b00928
– ident: e_1_2_9_109_1
  doi: 10.1021/acs.macromol.1c00038
– ident: e_1_2_9_79_1
  doi: 10.1021/acsmacrolett.6b00796
– ident: e_1_2_9_104_1
  doi: 10.1021/acs.macromol.6b02754
– ident: e_1_2_9_30_1
  doi: 10.1039/c0py00124d
– ident: e_1_2_9_153_1
  doi: 10.1039/c2py21074f
– ident: e_1_2_9_29_1
  doi: 10.1021/ma2000674
– ident: e_1_2_9_133_1
  doi: 10.1002/anie.201911758
– ident: e_1_2_9_190_1
  doi: 10.1021/acsmacrolett.7b00069
– ident: e_1_2_9_8_1
  doi: 10.1021/acsmacrolett.7b00725
– ident: e_1_2_9_46_1
  doi: 10.1021/acsmacrolett.6b00235
– ident: e_1_2_9_40_1
  doi: 10.1002/anie.201511159
– ident: e_1_2_9_156_1
  doi: 10.1039/C9PY01656B
– ident: e_1_2_9_184_1
  doi: 10.1021/acs.macromol.6b00762
– ident: e_1_2_9_81_1
  doi: 10.1021/acs.macromol.8b02490
– ident: e_1_2_9_157_1
  doi: 10.1021/acsmacrolett.7b00099
– ident: e_1_2_9_125_1
  doi: 10.1021/ja502843f
– ident: e_1_2_9_200_1
  doi: 10.1021/ma9804951
– ident: e_1_2_9_59_1
  doi: 10.1021/acsmacrolett.7b00056
– ident: e_1_2_9_144_1
  doi: 10.1007/s10118-017-1907-8
– ident: e_1_2_9_165_1
  doi: 10.1016/j.progpolymsci.2003.12.002
– ident: e_1_2_9_124_1
  doi: 10.1039/D1PY00046B
– ident: e_1_2_9_186_1
  doi: 10.1126/science.aad9521
– ident: e_1_2_9_23_1
  doi: 10.1021/ja3024059
– ident: e_1_2_9_123_1
  doi: 10.1039/D0PY00455C
– ident: e_1_2_9_35_1
  doi: 10.1002/pola.24771
– ident: e_1_2_9_185_1
  doi: 10.1021/ma502279b
– ident: e_1_2_9_101_1
  doi: 10.1021/acs.macromol.9b00257
– ident: e_1_2_9_160_1
  doi: 10.1039/C7PY00508C
– ident: e_1_2_9_66_1
  doi: 10.1039/c3py01569f
– ident: e_1_2_9_16_1
  doi: 10.1039/c2cs35115c
– ident: e_1_2_9_197_1
  doi: 10.1021/jacs.5b13565
– ident: e_1_2_9_154_1
  doi: 10.1039/c2py20442h
– ident: e_1_2_9_76_1
  doi: 10.1021/acs.macromol.0c00959
– ident: e_1_2_9_44_1
  doi: 10.1039/C9PY00166B
– ident: e_1_2_9_69_1
  doi: 10.1021/acs.macromol.8b00690
– ident: e_1_2_9_148_1
  doi: 10.1021/acs.chemrev.6b00008
– ident: e_1_2_9_21_1
  doi: 10.1002/anie.201001461
– ident: e_1_2_9_114_1
  doi: 10.1002/marc.201700871
– ident: e_1_2_9_140_1
  doi: 10.1021/cr500625k
– ident: e_1_2_9_113_1
  doi: 10.1021/acs.macromol.8b01606
– ident: e_1_2_9_5_1
  doi: 10.1021/acs.macromol.6b01729
– ident: e_1_2_9_141_1
  doi: 10.1016/j.progpolymsci.2018.06.006
– ident: e_1_2_9_178_1
  doi: 10.1039/C4SC02290D
– ident: e_1_2_9_62_1
  doi: 10.1039/C4PY01069H
– ident: e_1_2_9_175_1
  doi: 10.1021/ma401534w
– ident: e_1_2_9_168_1
  doi: 10.1039/C3PY01676E
– ident: e_1_2_9_70_1
  doi: 10.1021/acs.macromol.8b01121
– ident: e_1_2_9_189_1
  doi: 10.1039/C7PY00339K
– ident: e_1_2_9_13_1
  doi: 10.1039/C7CC00228A
– ident: e_1_2_9_174_1
  doi: 10.1039/C4CS00528G
– ident: e_1_2_9_198_1
  doi: 10.1021/acsmacrolett.8b00295
– ident: e_1_2_9_2_1
  doi: 10.1021/jacs.7b03219
– ident: e_1_2_9_118_1
  doi: 10.1021/acs.macromol.5b02470
– ident: e_1_2_9_207_1
  doi: 10.1016/j.progpolymsci.2021.101387
– volume: 3
  year: 2021
  ident: e_1_2_9_60_1
  publication-title: CCS Chem.
– ident: e_1_2_9_41_1
  doi: 10.1039/D0PY00467G
– ident: e_1_2_9_188_1
  doi: 10.1021/acs.macromol.6b00771
– ident: e_1_2_9_102_1
  doi: 10.1039/C7PY00998D
– ident: e_1_2_9_183_1
  doi: 10.1021/ja953709s
– ident: e_1_2_9_34_1
  doi: 10.1039/B923667H
– ident: e_1_2_9_139_1
  doi: 10.1021/cr800242x
– ident: e_1_2_9_33_1
  doi: 10.1021/acs.macromol.8b02081
– ident: e_1_2_9_187_1
  doi: 10.1039/b823367e
– ident: e_1_2_9_202_1
  doi: 10.1021/acsmacrolett.9b00716
– ident: e_1_2_9_91_1
  doi: 10.1002/marc.201800460
– ident: e_1_2_9_128_1
  doi: 10.1021/acsmacrolett.9b00464
– ident: e_1_2_9_24_1
  doi: 10.1021/ja407033x
– ident: e_1_2_9_107_1
  doi: 10.1002/anie.201809370
– ident: e_1_2_9_172_1
  doi: 10.1021/ma801256k
– ident: e_1_2_9_169_1
  doi: 10.1002/pola.24027
– ident: e_1_2_9_11_1
  doi: 10.1038/ncomms4882
– ident: e_1_2_9_100_1
  doi: 10.1021/acsmacrolett.9b00534
– ident: e_1_2_9_37_1
  doi: 10.1021/ma2005926
– ident: e_1_2_9_56_1
  doi: 10.1021/acsmacrolett.5b00225
– ident: e_1_2_9_92_1
  doi: 10.1021/acs.macromol.8b00994
– ident: e_1_2_9_151_1
  doi: 10.1039/C3PY00942D
– ident: e_1_2_9_180_1
  doi: 10.1039/D0PY00407C
– ident: e_1_2_9_18_1
  doi: 10.1021/ma025626j
– ident: e_1_2_9_77_1
  doi: 10.1002/anie.201710811
– ident: e_1_2_9_90_1
  doi: 10.1039/C7PY00407A
– ident: e_1_2_9_9_1
  doi: 10.1021/acsmacrolett.0c00151
– ident: e_1_2_9_177_1
  doi: 10.1039/C6PY00571C
– ident: e_1_2_9_193_1
  doi: 10.1039/C7RA09120F
– ident: e_1_2_9_88_1
  doi: 10.1021/acs.macromol.0c01624
– ident: e_1_2_9_179_1
  doi: 10.1021/acs.macromol.0c02008
– ident: e_1_2_9_89_1
  doi: 10.1021/jacs.8b10993
– ident: e_1_2_9_136_1
  doi: 10.1002/marc.201800551
– ident: e_1_2_9_167_1
  doi: 10.1039/C5PY01295C
– ident: e_1_2_9_54_1
  doi: 10.1021/ma200074n
– ident: e_1_2_9_209_1
  doi: 10.1021/acsmacrolett.9b00292
– ident: e_1_2_9_85_1
  doi: 10.1021/acsmacrolett.9b00007
– ident: e_1_2_9_204_1
  doi: 10.1021/acs.macromol.9b01295
– ident: e_1_2_9_108_1
  doi: 10.1007/s10118-021-2533-z
– ident: e_1_2_9_129_1
  doi: 10.1016/j.progpolymsci.2018.05.003
– ident: e_1_2_9_67_1
  doi: 10.1021/ma501598k
– ident: e_1_2_9_155_1
  doi: 10.1039/c2cc33812b
– ident: e_1_2_9_196_1
  doi: 10.1039/C9SC03546J
– ident: e_1_2_9_42_1
  doi: 10.1039/C3PY01306E
– ident: e_1_2_9_55_1
  doi: 10.1021/mz500650c
– ident: e_1_2_9_6_1
  doi: 10.1002/anie.201206555
– ident: e_1_2_9_52_1
  doi: 10.1021/ja0756974
– ident: e_1_2_9_130_1
  doi: 10.1002/marc.201800325
– ident: e_1_2_9_143_1
  doi: 10.6023/A20050162
– ident: e_1_2_9_121_1
  doi: 10.1039/C2PY20612A
– ident: e_1_2_9_135_1
  doi: 10.1002/marc.201800438
– ident: e_1_2_9_10_1
  doi: 10.1002/anie.201903684
– ident: e_1_2_9_205_1
  doi: 10.1021/acs.macromol.1c00381
– ident: e_1_2_9_39_1
  doi: 10.1039/D0PY00720J
– ident: e_1_2_9_182_1
  doi: 10.1039/D0MH00354A
– ident: e_1_2_9_73_1
  doi: 10.1039/D0SC00219D
– ident: e_1_2_9_22_1
  doi: 10.1021/ja206301a
– ident: e_1_2_9_78_1
  doi: 10.1021/acsmacrolett.8b00005
– ident: e_1_2_9_103_1
  doi: 10.1039/C4SC03334E
– ident: e_1_2_9_150_1
  doi: 10.1039/c3py00488k
– ident: e_1_2_9_19_1
  doi: 10.1039/b912804b
– ident: e_1_2_9_127_1
  doi: 10.1016/j.progpolymsci.2015.10.002
– ident: e_1_2_9_176_1
  doi: 10.1126/science.269.5227.1080
– ident: e_1_2_9_57_1
  doi: 10.1021/acsmacrolett.6b00066
– ident: e_1_2_9_116_1
  doi: 10.1002/marc.201600508
– ident: e_1_2_9_159_1
  doi: 10.1021/acs.macromol.8b01121
– ident: e_1_2_9_26_1
  doi: 10.1021/jacs.5b10415
– ident: e_1_2_9_145_1
  doi: 10.1039/D1PY00216C
– ident: e_1_2_9_131_1
  doi: 10.31635/ccschem.020.202000470
– ident: e_1_2_9_49_1
  doi: 10.1021/acsmacrolett.7b00731
– ident: e_1_2_9_83_1
  doi: 10.1021/acs.macromol.9b01689
– ident: e_1_2_9_170_1
  doi: 10.1021/ma200656h
– ident: e_1_2_9_112_1
  doi: 10.1021/acsmacrolett.5b00523
– ident: e_1_2_9_166_1
  doi: 10.1021/ma300521c
– ident: e_1_2_9_194_1
  doi: 10.1016/j.progpolymsci.2020.101311
– ident: e_1_2_9_47_1
  doi: 10.1039/C7PY00007C
– ident: e_1_2_9_120_1
  doi: 10.1002/marc.201800279
– ident: e_1_2_9_173_1
  doi: 10.1039/C4CS00224E
– ident: e_1_2_9_98_1
  doi: 10.1002/marc.201900547
– ident: e_1_2_9_181_1
  doi: 10.1021/acs.biomac.1c00569
– ident: e_1_2_9_94_1
  doi: 10.1002/marc.202000720
– ident: e_1_2_9_142_1
  doi: 10.1002/advs.201700137
– ident: e_1_2_9_80_1
  doi: 10.1021/acs.macromol.9b00571
– ident: e_1_2_9_164_1
  doi: 10.1002/marc.201800315
– ident: e_1_2_9_75_1
  doi: 10.1002/marc.201800291
– ident: e_1_2_9_162_1
  doi: 10.1039/C8PY01617H
– ident: e_1_2_9_111_1
  doi: 10.1021/acsmacrolett.5b00699
– ident: e_1_2_9_71_1
  doi: 10.1002/anie.201709129
– ident: e_1_2_9_95_1
  doi: 10.1021/acsmacrolett.1c00014
– ident: e_1_2_9_195_1
  doi: 10.1016/j.chempr.2020.04.020
– ident: e_1_2_9_31_1
  doi: 10.1021/ma402497y
– ident: e_1_2_9_84_1
  doi: 10.1002/marc.201800296
– ident: e_1_2_9_53_1
  doi: 10.1021/ma200984h
– ident: e_1_2_9_43_1
  doi: 10.1021/la502656u
– ident: e_1_2_9_138_1
  doi: 10.1039/D0PY00627K
– ident: e_1_2_9_14_1
  doi: 10.1021/acs.macromol.9b01662
– ident: e_1_2_9_191_1
  doi: 10.1021/acsmacrolett.7b00134
– ident: e_1_2_9_36_1
  doi: 10.1021/ma201515n
– ident: e_1_2_9_106_1
  doi: 10.1039/D1PY00239B
– ident: e_1_2_9_122_1
  doi: 10.1021/ma300713f
– ident: e_1_2_9_203_1
  doi: 10.1021/acsmacrolett.9b00509
– ident: e_1_2_9_147_1
  doi: 10.1016/j.progpolymsci.2015.02.002
– ident: e_1_2_9_158_1
  doi: 10.1021/acsmacrolett.9b00371
– ident: e_1_2_9_146_1
  doi: 10.1039/C8PY01295D
– ident: e_1_2_9_65_1
  doi: 10.1039/C5PY01041A
– ident: e_1_2_9_51_1
  doi: 10.1021/acsmacrolett.8b00741
– ident: e_1_2_9_1_1
  doi: 10.1002/ange.201509401
SSID ssj0008402
Score 2.5992224
SecondaryResourceType review_article
Snippet Over the past decade or so, polymerization‐induced self‐assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer...
Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2100498
SubjectTerms Assembly
blends of polymers
Block copolymers
Chain transfer
Chemical synthesis
Copolymers
Macromolecular Substances
Macromolecules
Molecular chains
Nanoparticles
nonlinear architecture
Polymer blends
Polymerization
polymerization‐induced self‐assembly
Polymers
poor polymerization control
Title Expanding the Scope of Polymerization‐Induced Self‐Assembly: Recent Advances and New Horizons
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202100498
https://www.ncbi.nlm.nih.gov/pubmed/34418199
https://www.proquest.com/docview/2605832206
https://www.proquest.com/docview/2563422267
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yF33xfqlOiSD41K1t2rT1bYyNISiyOdhbaZv0xdkOt4HzyZ_gb_SXeE7Tdk4RQd8amrS5nJN8JyfnCyEXEmREmnasA3jnus0jpke-x3TOPV_4EsQqwn3Im1veG9rXI2f0KYpf8UNUG26oGfl8jQoeRtPmkjQUqR7AvrOQ8szHaF88sIWoqL_kjwLrRbk7weICY4yXrI2G1VwtvroqfYOaq8g1X3q6WyQsK61OnDw05rOoEb984XP8T6u2yWaBS2lLCdIOWZPpLllvl9fB7ZGw8zxRITAUMCMdYDQLzRJ6l40X6PVR4Zzvr294GUgsBR3IcQJJ9Co_RuPFFQWECiscbalTB1MKX6Mwx9JeBqVB-PfJsNu5b_f04n4GPQYY4-mM20Ja0jASyYXDmTS90AKR8EVsemingMID_jET6QlmY6MSBhDLN1nIXdcR7IDU0iyVR4RariscP1RkNm4ShVKYiWsjO7zHTeFqRC_HJ4gL8nK8Q2McKNplK8COC6qO08hllX-iaDt-zFkvhzso1HcaoJGHU53BNXJevYYOR29KmMpsDnmgxbh_xqFyh0pMql8xAJkAtXyNWPlg_1KH4KbVb1ep478UOiEb-KwO2tRJbfY0l6cAl2bRWa4SH_p2Cps
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTuNAEC2xHOAyLANMWBtpRpwMcbfTtpE4RAEUlqARi8TN2O72hUyMJokgnPgEfoVf4RP4EqrStlFACAmJA8e22-6tqutVL68AfmuUEW07sYXgXVqOjIQV-Z6wpPR85WsUq4jWIRtHsn7m7J9XzofgIb8LY_ghigU30oz-fE0KTgvSGy-socT1gA4eJ84z38vOVR7o3jV6be2tvW0c4j-c7-6c1upWFljAitH-epaQjtJcl8uJlqoihba9kGNbfBXbHgFslFQ03HaiPSUcKiIRiA18W4TSdStK4H-HYZTCiBNd__bxC2MV-ktmgxV9PHT_ZM4TWeYbg_UdtINvwO0gVu4bu90JeMy7yZxxuVzvdqL1-PYVg-S36sdJ-JFBb1Y1ujIFQ7o1DWO1POLdTwh3bq7MLR-GsJid0IUdlibsb9rs0caWubH6dHdP8U5irdiJbiaYpI3zf1Gzt8kQhKMRZ1VzsKLN8G8MzQirp_g16vcMnH1JC2dhpJW29C9g3HVVxQ8NX4-bRKFWduI6RIDvSVu5JbBygQjijJ-dwoQ0A8MszQMaqKAYqBKsFfmvDDPJuzkXc_kKshmqHZAfS7N5WZZgtXiNHU4bRmFLp13Mgy2mJUKJlZszclkUJRBHI5r0S8D70vVBHYJG9bhWpOY_89EKjNVPG4fB4d7RwQKM03NzrmgRRjr_u3oJ0WEnWu7rI4OLrxbcZ4IPZS8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB4BlYALbYHStLQsEoiTwd511t5KPUQJUSg_QvxI3Fzbu74Q4qhJRNNTH6GP0lfpK_RJOpO1jVKEkCpx6HHttfdvZueb_fkGYMugjBjPTx0E79LxZSKcRIXCkTJUWhkUq4TWIY9PZOfS_3RVv5qBn-VdGMsPUS24kWZM5mtS8L7O9u5IQ4nqAf07TpRnKiyOVR6a8S06bYOPBy0c4W3O2_sXzY5TxBVwUjS_oSOkrw03rpsZqetSGC-MOTZF6dQLCV-joKLd9jITauFTEZlAaKA8EcsgqGuB_52FZ750FQWLaJ3dEVahu2T3V9HFQ-9PljSRLt-bru-0GbyHbaeh8sTWtZ_Dr7KX7BGX693RMNlNv_1FIPk_deMLWCqAN2tYTXkJM6a3DAvNMt7dCsT7X_v2jg9DUMzO6boOyzN2mnfHtK1l76v-_v6Dop2kRrNz080wSdvmN0l3_IEhBEcTzhr2WMWA4d8YGhHWyfFr1O5VuHySFr6CuV7eM6-B8SDQdRVbtp4gS2KjvSzwif4-lJ4OauCU8hClBTs7BQnpRpZXmkc0UFE1UDXYqfL3LS_JgznXS_GKivlpEJEXS3O5K2uwWb3GDqftorhn8hHmwRbTAqHEyq1ZsayKEoiiEUuqGvCJcD1Sh-i4cdasUm_-5aMNmD9ttaOjg5PDt7BIj-2honWYG34ZmXcIDYfJ-4k2Mvj81HL7B8FWY94
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expanding+the+Scope+of+Polymerization%E2%80%90Induced+Self%E2%80%90Assembly%3A+Recent+Advances+and+New+Horizons&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Cao%2C+Junpeng&rft.au=Tan%2C+Yingxin&rft.au=Chen%2C+Ying&rft.au=Zhang%2C+Li&rft.date=2021-12-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=42&rft.issue=23&rft_id=info:doi/10.1002%2Fmarc.202100498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_202100498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon