Multifunctional Hybrid Interfacial Layers for High‐Performance Inverted Perovskite Solar Cells

Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high‐...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 21; pp. e2212258 - n/a
Main Authors Niu, Benfang, Liu, Haoran, Huang, Yanchun, Gu, Emely, Yan, Minxing, Shen, Ziqiu, Yan, Kangrong, Yan, Buyi, Yao, Jizhong, Fang, Yanjun, Chen, Hongzheng, Li, Chang‐Zhi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high‐performance inverted PSCs and scale‐up modules is reported. The hybrid interfacial layer containing self‐assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole‐selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm2), respectively. The PSCs maintain over 80% of its initial efficiency under one‐sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76‐eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state‐of‐the‐art inverted PSCs and modules. A simple yet scalable interfacial layer consisting of self‐assembled molecule and conjugated polymer facilitates resolving bilateral surface issues between charge‐selective metal oxide and perovskite, successfully leading to high‐performance inverted perovskite solar cells and modules.
AbstractList Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high‐performance inverted PSCs and scale‐up modules is reported. The hybrid interfacial layer containing self‐assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole‐selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm 2 ), respectively. The PSCs maintain over 80% of its initial efficiency under one‐sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76‐eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state‐of‐the‐art inverted PSCs and modules.
Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high-performance inverted PSCs and scale-up modules is reported. The hybrid interfacial layer containing self-assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole-selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm ), respectively. The PSCs maintain over 80% of its initial efficiency under one-sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76-eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state-of-the-art inverted PSCs and modules.
Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high‐performance inverted PSCs and scale‐up modules is reported. The hybrid interfacial layer containing self‐assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole‐selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm2), respectively. The PSCs maintain over 80% of its initial efficiency under one‐sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76‐eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state‐of‐the‐art inverted PSCs and modules. A simple yet scalable interfacial layer consisting of self‐assembled molecule and conjugated polymer facilitates resolving bilateral surface issues between charge‐selective metal oxide and perovskite, successfully leading to high‐performance inverted perovskite solar cells and modules.
Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high‐performance inverted PSCs and scale‐up modules is reported. The hybrid interfacial layer containing self‐assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole‐selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm2), respectively. The PSCs maintain over 80% of its initial efficiency under one‐sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76‐eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state‐of‐the‐art inverted PSCs and modules.
Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high-performance inverted PSCs and scale-up modules is reported. The hybrid interfacial layer containing self-assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole-selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm2 ), respectively. The PSCs maintain over 80% of its initial efficiency under one-sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76-eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state-of-the-art inverted PSCs and modules.Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high-performance inverted PSCs and scale-up modules is reported. The hybrid interfacial layer containing self-assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole-selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm2 ), respectively. The PSCs maintain over 80% of its initial efficiency under one-sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76-eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state-of-the-art inverted PSCs and modules.
Author Fang, Yanjun
Shen, Ziqiu
Yan, Minxing
Yan, Kangrong
Niu, Benfang
Gu, Emely
Huang, Yanchun
Chen, Hongzheng
Liu, Haoran
Li, Chang‐Zhi
Yan, Buyi
Yao, Jizhong
Author_xml – sequence: 1
  givenname: Benfang
  orcidid: 0000-0001-9683-3098
  surname: Niu
  fullname: Niu, Benfang
  organization: Zhejiang University
– sequence: 2
  givenname: Haoran
  surname: Liu
  fullname: Liu, Haoran
  organization: Zhejiang University
– sequence: 3
  givenname: Yanchun
  surname: Huang
  fullname: Huang, Yanchun
  organization: Zhejiang University
– sequence: 4
  givenname: Emely
  surname: Gu
  fullname: Gu, Emely
  organization: Hangzhou Microquanta Semiconductor Co. Ltd
– sequence: 5
  givenname: Minxing
  surname: Yan
  fullname: Yan, Minxing
  organization: Zhejiang University
– sequence: 6
  givenname: Ziqiu
  surname: Shen
  fullname: Shen, Ziqiu
  organization: Zhejiang University
– sequence: 7
  givenname: Kangrong
  surname: Yan
  fullname: Yan, Kangrong
  organization: Zhejiang University
– sequence: 8
  givenname: Buyi
  surname: Yan
  fullname: Yan, Buyi
  organization: Hangzhou Microquanta Semiconductor Co. Ltd
– sequence: 9
  givenname: Jizhong
  surname: Yao
  fullname: Yao, Jizhong
  organization: Hangzhou Microquanta Semiconductor Co. Ltd
– sequence: 10
  givenname: Yanjun
  surname: Fang
  fullname: Fang, Yanjun
  organization: Zhejiang University
– sequence: 11
  givenname: Hongzheng
  surname: Chen
  fullname: Chen, Hongzheng
  organization: Zhejiang University
– sequence: 12
  givenname: Chang‐Zhi
  orcidid: 0000-0003-1968-2032
  surname: Li
  fullname: Li, Chang‐Zhi
  email: czli@zju.edu.cn
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36840924$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQxi1URLcLV44oEhcuWcZ_ktjH1RbYSluBBJyN44zBJYmLnRTtjUfgGXkSvNoWpEqI00gzv-_TzHxn5GQMIxLylMKKArCXphvMigFjlLFKPiALWjFaClDVCVmA4lWpaiFPyVlKVwCgaqgfkVNey4wwsSCfLud-8m4e7eTDaPpiu2-j74qLccLojPW5tTN7jKlwIRZb__nLrx8_3-VZiIMZLWbyBuOEXZGb4SZ99RMW70NvYrHBvk-PyUNn-oRPbuuSfHz96sNmW-7evrnYrHelFVzJknWdsw3LSzXGUM65qIHaVoAAiS6fg62VlrPKNRIbXnUMUAreiKaqnWgNX5IXR9_rGL7NmCY9-GTzBmbEMCfNGgnQKJWtl-T5PfQqzDEfnylJZaUUYyxTz26puR2w09fRDybu9d3vMiCOgI0hpYhOWz-ZwxunaHyvKehDRPoQkf4TUZat7snunP8pUEfBd9_j_j-0Xp9frv9qfwO-0KOj
CitedBy_id crossref_primary_10_1016_j_esci_2024_100308
crossref_primary_10_1002_advs_202404725
crossref_primary_10_1002_anie_202411730
crossref_primary_10_1002_solr_202400011
crossref_primary_10_1002_solr_202300920
crossref_primary_10_1002_anie_202411659
crossref_primary_10_1002_ifm2_8
crossref_primary_10_1016_j_cej_2024_158663
crossref_primary_10_1002_smll_202310227
crossref_primary_10_1016_j_nanoen_2025_110670
crossref_primary_10_1016_j_solmat_2025_113548
crossref_primary_10_1002_adfm_202302375
crossref_primary_10_1039_D3QI01757E
crossref_primary_10_1002_smll_202408638
crossref_primary_10_1021_acs_jpcc_4c03745
crossref_primary_10_1021_jacs_3c07192
crossref_primary_10_1016_j_joule_2024_101815
crossref_primary_10_1016_j_nanoen_2024_109329
crossref_primary_10_1002_aesr_202400003
crossref_primary_10_1002_smll_202301110
crossref_primary_10_1002_solr_202400649
crossref_primary_10_1021_acsenergylett_4c00140
crossref_primary_10_1002_adma_202304415
crossref_primary_10_1002_adma_202412327
crossref_primary_10_1002_ange_202416188
crossref_primary_10_1039_D4DT02879A
crossref_primary_10_1002_adma_202408101
crossref_primary_10_1039_D4EE02661F
crossref_primary_10_1021_acsaem_5c00155
crossref_primary_10_1002_adfm_202415331
crossref_primary_10_1016_j_cej_2024_154011
crossref_primary_10_1002_adma_202311970
crossref_primary_10_1039_D4NJ04426F
crossref_primary_10_1002_adfm_202415004
crossref_primary_10_1002_adma_202400342
crossref_primary_10_1039_D3EE02818F
crossref_primary_10_1039_D3CC04863B
crossref_primary_10_1002_adfm_202310860
crossref_primary_10_1002_adfm_202315157
crossref_primary_10_1002_smll_202500281
crossref_primary_10_1002_adma_202306870
crossref_primary_10_1016_j_esci_2024_100329
crossref_primary_10_1002_adfm_202316202
crossref_primary_10_1002_adma_202307855
crossref_primary_10_1002_ange_202411659
crossref_primary_10_1021_acssuschemeng_4c04732
crossref_primary_10_1016_j_jlumin_2024_120753
crossref_primary_10_1021_acsami_4c08524
crossref_primary_10_1002_adhm_202303851
crossref_primary_10_1039_D5EE00380F
crossref_primary_10_1002_ange_202411730
crossref_primary_10_1002_aenm_202303941
crossref_primary_10_1016_j_cej_2023_148277
crossref_primary_10_1002_aenm_202303742
crossref_primary_10_1007_s11426_025_2562_0
crossref_primary_10_1039_D3SC05485C
crossref_primary_10_59761_RCR5152
crossref_primary_10_1021_acsaem_3c02777
crossref_primary_10_1002_aenm_202405675
crossref_primary_10_1016_j_cej_2024_158870
crossref_primary_10_1021_acsami_4c12238
crossref_primary_10_1021_acssuschemeng_4c07636
crossref_primary_10_1002_adma_202419413
crossref_primary_10_1039_D4RA05241B
crossref_primary_10_3390_molecules30051129
crossref_primary_10_1021_acsenergylett_3c02322
crossref_primary_10_1088_2040_8986_ad33a6
crossref_primary_10_1016_j_cej_2025_161388
crossref_primary_10_1002_anie_202416188
Cites_doi 10.1016/j.joule.2020.04.001
10.1016/j.jechem.2020.04.027
10.1002/aenm.201901642
10.1038/s41560-021-00966-8
10.1002/anie.201306709
10.1038/s41566-022-01033-8
10.1016/j.joule.2020.06.004
10.1021/acsenergylett.1c01487
10.1002/aenm.201700012
10.1039/D2EE03355K
10.1021/jz502014r
10.1007/s11426-022-1426-x
10.1002/adma.202206193
10.1016/j.cej.2022.135647
10.1038/nenergy.2016.81
10.1002/eem2.12439
10.1002/cssc.201701262
10.1038/s41586-022-04455-0
10.1038/s41586-021-04372-8
10.1039/D2EE01801B
10.1021/jacs.0c09560
10.1002/aenm.202101973
10.1002/adma.202105920
10.1002/admi.201800090
10.1002/nano.202000200
10.1002/adma.201800515
10.1002/advs.202105085
10.1021/acsami.1c22396
10.1021/acsami.0c11731
10.1002/aenm.202102844
10.1002/aenm.202103674
10.1002/adma.202203794
10.1002/adma.202103394
10.1016/j.cej.2022.136405
10.1002/aenm.201903487
10.1002/adfm.202104036
10.1126/science.aba0893
10.1103/PhysRevLett.107.256805
10.1002/aenm.201602333
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202212258
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 36840924
10_1002_adma_202212258
ADMA202212258
Genre article
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  funderid: 22125901; 51961145301
– fundername: National Key Research and Development Program of China
  funderid: 2019YFA0705900
– fundername: National Key Research and Development Program of China
  grantid: 2019YFA0705900
– fundername: National Natural Science Foundation of China
  grantid: 51961145301
– fundername: National Natural Science Foundation of China
  grantid: 22125901
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4398-2ddfc720927aa13334601cb40408ef095ebc8c325f78e735d20e84374756f4ba3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 01:01:28 EDT 2025
Fri Jul 25 03:24:16 EDT 2025
Thu Apr 03 07:05:34 EDT 2025
Tue Jul 01 02:33:29 EDT 2025
Thu Apr 24 22:53:05 EDT 2025
Wed Jan 22 16:20:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords passivation
self-assembled molecule
interface
metal oxide
perovskite solar cells
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4398-2ddfc720927aa13334601cb40408ef095ebc8c325f78e735d20e84374756f4ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9683-3098
0000-0003-1968-2032
PMID 36840924
PQID 2818599222
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2780079933
proquest_journals_2818599222
pubmed_primary_36840924
crossref_citationtrail_10_1002_adma_202212258
crossref_primary_10_1002_adma_202212258
wiley_primary_10_1002_adma_202212258_ADMA202212258
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2019; 9
2021; 6
2021; 2
2020; 142
2023; 16
2020; 12
2022; 65
2020; 367
2020; 10
2022; 438
2021; 52
2020; 4
2014; 5
2021; 31
2016; 1
2018; 5
2011; 107
2021; 11
2021; 33
2022
2022; 7
2017; 10
2022; 9
2022; 34
2022; 12
2022; 14
2022; 15
2018; 30
2022; 603
2022; 604
2022; 16
2022; 443
2014; 53
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Zhang C. (e_1_2_8_22_1) 2022; 34
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Li X. (e_1_2_8_11_1) 2022
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 438
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 15
  start-page: 4612
  year: 2022
  publication-title: Energy Environ. Sci.
– year: 2022
  publication-title: Energy Environ. Mater.
– volume: 443
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 6794
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 3849
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 393
  year: 2021
  publication-title: J. Energy Chem.
– volume: 367
  start-page: 1352
  year: 2020
  publication-title: Science
– volume: 604
  start-page: 280
  year: 2022
  publication-title: Nature
– volume: 4
  start-page: 1759
  year: 2020
  publication-title: Joule
– volume: 34
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 6
  start-page: 3443
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 16
  start-page: 588
  year: 2022
  publication-title: Nat. Photonics
– volume: 603
  start-page: 73
  year: 2022
  publication-title: Nature
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1248
  year: 2020
  publication-title: Joule
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 65
  start-page: 2369
  year: 2022
  publication-title: Sci. China: Chem.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1081
  year: 2021
  publication-title: Nano Sel.
– year: 2022
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 3794
  year: 2017
  publication-title: ChemSusChem
– volume: 7
  start-page: 229
  year: 2022
  publication-title: Nat. Energy
– volume: 16
  start-page: 557
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 53
  start-page: 6322
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 107
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_9_1
  doi: 10.1016/j.joule.2020.04.001
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jechem.2020.04.027
– ident: e_1_2_8_20_1
  doi: 10.1002/aenm.201901642
– ident: e_1_2_8_29_1
  doi: 10.1038/s41560-021-00966-8
– ident: e_1_2_8_34_1
  doi: 10.1002/anie.201306709
– ident: e_1_2_8_5_1
  doi: 10.1038/s41566-022-01033-8
– ident: e_1_2_8_16_1
  doi: 10.1016/j.joule.2020.06.004
– ident: e_1_2_8_33_1
  doi: 10.1021/acsenergylett.1c01487
– ident: e_1_2_8_32_1
  doi: 10.1002/aenm.201700012
– ident: e_1_2_8_10_1
  doi: 10.1039/D2EE03355K
– ident: e_1_2_8_38_1
  doi: 10.1021/jz502014r
– ident: e_1_2_8_2_1
  doi: 10.1007/s11426-022-1426-x
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.202206193
– ident: e_1_2_8_36_1
  doi: 10.1016/j.cej.2022.135647
– ident: e_1_2_8_39_1
  doi: 10.1038/nenergy.2016.81
– year: 2022
  ident: e_1_2_8_11_1
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12439
– ident: e_1_2_8_27_1
  doi: 10.1002/cssc.201701262
– ident: e_1_2_8_4_1
  doi: 10.1038/s41586-022-04455-0
– ident: e_1_2_8_6_1
  doi: 10.1038/s41586-021-04372-8
– ident: e_1_2_8_17_1
  doi: 10.1039/D2EE01801B
– ident: e_1_2_8_35_1
  doi: 10.1021/jacs.0c09560
– ident: e_1_2_8_3_1
  doi: 10.1002/aenm.202101973
– ident: e_1_2_8_1_1
– ident: e_1_2_8_41_1
  doi: 10.1002/adma.202105920
– ident: e_1_2_8_31_1
  doi: 10.1002/admi.201800090
– volume: 34
  year: 2022
  ident: e_1_2_8_22_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_8_14_1
  doi: 10.1002/nano.202000200
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.201800515
– ident: e_1_2_8_37_1
  doi: 10.1002/advs.202105085
– ident: e_1_2_8_15_1
  doi: 10.1021/acsami.1c22396
– ident: e_1_2_8_23_1
  doi: 10.1021/acsami.0c11731
– ident: e_1_2_8_8_1
  doi: 10.1002/aenm.202102844
– ident: e_1_2_8_30_1
  doi: 10.1002/aenm.202103674
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202203794
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.202103394
– ident: e_1_2_8_26_1
  doi: 10.1016/j.cej.2022.136405
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.201903487
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.202104036
– ident: e_1_2_8_7_1
  doi: 10.1126/science.aba0893
– ident: e_1_2_8_40_1
  doi: 10.1103/PhysRevLett.107.256805
– ident: e_1_2_8_21_1
  doi: 10.1002/aenm.201602333
SSID ssj0009606
Score 2.6354115
Snippet Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2212258
SubjectTerms Amines
Crystallization
Energy conversion efficiency
Energy gap
Energy levels
interface
Interface stability
Lead compounds
Materials science
Metal halides
metal oxide
Metal oxides
Modules
Organic compounds
passivation
perovskite solar cells
Perovskites
Photovoltaic cells
Self-assembly
self‐assembled molecule
Solar cells
Title Multifunctional Hybrid Interfacial Layers for High‐Performance Inverted Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202212258
https://www.ncbi.nlm.nih.gov/pubmed/36840924
https://www.proquest.com/docview/2818599222
https://www.proquest.com/docview/2780079933
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIZHiBMc2JewyUhInALBdpYeK6CqECDEInELdmJfqFrUBQlOPALPyJMw46RpC0JIcMviJE6csf-ZeL4A7GmdKx3kiR9zE_pSSLQ5GSk_RnUQcU7fcih3-OIyat7Js_vwfiyLv-BDVAE3sgzXX5OBK907HEFDVe64Qe58IWX70oQtUkXXI34UyXMH2xOhX4tkMqQ2Bvxw8vDJUemb1JxUrm7oacyDGla6mHHyeDDo64Ps9QvP8T93tQBzpS5l9eJFWoQp016C2TFa4TI8uGRdGgiL-CFrvlC6F3NBRaso9s7OFUl4hkqY0QySj7f3q1FmAiOoRxclLsONneceBY7ZDfnW7Ni0Wr0VuGuc3h43_fIHDX6GOgYtLM9tFvOgxmOl0NkVEt27TEvsGBJjUbwZnSWZ4KGNExOLMOeBSaRADyaMrNRKrMJ0u9M268AyEUphA2MNt5IgiEfC5JGJsAc6CiyveeAPGyjNSno5_USjlRbcZZ7Sk0urJ-fBflX-qeB2_Fhya9jeaWm_vdQxsgjZyz3YrXaj5dHnFNU2nQGWiVFsx6jvhAdrxXtSXUoQQwddWw-4a-1f6pDWTy7q1drGXw7ahBlcLudibsF0vzsw26iX-nrH2cQnU8IK3g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThsxEB7xcyg9UGhp2RKKKxVxWlhs708OHCICCiVBFT8St8W7a18aJYgkVOmpj8Cr8Co8Qp-EGe9PmlaoUiUOPa7Xu-u1Z8bfjD2fAT4lSaYSL4vckGvflUKizslAuSGig4BzWsuh3OHOSdC6kJ8v_csZuC9zYXJ-iCrgRpph7TUpOAWkdyasoSqzxEH2hX5U7Ks81uNv6LUN9o6aOMSbnB8enO-33OJgATfF-RclI8tMGnKvzkOl0EkTEt2SNJEo0JE2CDp0kkap4L4JIx0KP-OejqRA5O0HRiZK4HtnYZ6OESe6_ubphLGKHAJL7yd8tx7IqOSJ9PjOdHun58E_wO00VraT3eEreCi7Kd_j8nV7NEy20--_MUj-V_24BIsF9GaNXFeWYUb3XsPLXwgZ38CVzUemuT4PkbLWmDLamI2bGkXLC6ytyEthCPYZbZL5-ePuyyT5ghFvyQ2ieIaF_dsBxcbZGYUP2L7udgcrcPEsv_gW5nr9nl4FlgpfCuNpo7mRxPO4K3QW6ACN7K5neN0Bt5SIOC0I2umckG6cU0vzmEYqrkbKga2q_nVOTfJkzVopYHFhogaxpQEjVmLuwMfqNhoXWjFSPd0fYZ0Q_YkQIaxw4F0umNWnBNEEoffuALfi9Zc2xI1mp1Fdvf-XhzbgReu8047bRyfHa7CA5cXW0xrMDW9Geh3h4TD5YBWSwdVzS-4jZ8xmcQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xkCp6KFAKDY_iSkU9BYLtPPbAYcWyWspDqIDELTiJfWG1i9jdIjjxE_gp_BX-Ar-EGeex3VaoEhKHHuPYjmPP2N-MPZ8BviVJphIvi9yQa9-VQqLOyUC5IaKDgHPay6HY4YPDoHUqf5z5Z2PwUMbC5PwQlcONNMPO16Tgl5nZGJKGqszyBtn6_Kg4Vrmnb67RaOtt7TZwhNc4b-6cbLfc4l4BN8XlFwUjy0wacq_GQ6XQRhMSrZI0kSjPkTaIOXSSRqngvgkjHQo_456OpEDg7QdGJkpgveMwiaVqdFlE4-eQsIrsAcvuJ3y3FsiopIn0-MZoe0eXwb-w7ShUtmtdcxoey17Kj7hcrA_6yXp6-weB5P_UjTPwoQDerJ5ryiyM6c5HeP8bHeMcnNtoZFrpcwcpa91QPBuzXlOjaHOB7SuyURhCfUZHZJ7u7o-GoReMWEuuEMMzTOz-6pFnnB2T84Bt63a79wlO3-QX52Gi0-3oz8BS4UthPG00N5JYHjeFzgId4BS76Rlec8AtBSJOC3p2uiWkHefE0jymkYqrkXLge5X_MicmeTHncilfcTFB9WJLAkacxNyBr9VrnFpov0h1dHeAeUK0JkIEsMKBhVwuq08JIglC290BbqXrH22I642DevW0-JpCq_DuqNGM93cP95ZgCpOLc6fLMNG_GugVxIb95ItVRwbnby24z6StZSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Hybrid+Interfacial+Layers+for+High%E2%80%90Performance+Inverted+Perovskite+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Niu%2C+Benfang&rft.au=Liu%2C+Haoran&rft.au=Huang%2C+Yanchun&rft.au=Gu%2C+Emely&rft.date=2023-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=21&rft_id=info:doi/10.1002%2Fadma.202212258&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202212258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon