Multifunctional Hybrid Interfacial Layers for High‐Performance Inverted Perovskite Solar Cells
Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high‐...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 21; pp. e2212258 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high‐performance inverted PSCs and scale‐up modules is reported. The hybrid interfacial layer containing self‐assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole‐selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm2), respectively. The PSCs maintain over 80% of its initial efficiency under one‐sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76‐eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state‐of‐the‐art inverted PSCs and modules.
A simple yet scalable interfacial layer consisting of self‐assembled molecule and conjugated polymer facilitates resolving bilateral surface issues between charge‐selective metal oxide and perovskite, successfully leading to high‐performance inverted perovskite solar cells and modules. |
---|---|
AbstractList | Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high‐performance inverted PSCs and scale‐up modules is reported. The hybrid interfacial layer containing self‐assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole‐selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm
2
), respectively. The PSCs maintain over 80% of its initial efficiency under one‐sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76‐eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state‐of‐the‐art inverted PSCs and modules. Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high-performance inverted PSCs and scale-up modules is reported. The hybrid interfacial layer containing self-assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole-selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm ), respectively. The PSCs maintain over 80% of its initial efficiency under one-sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76-eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state-of-the-art inverted PSCs and modules. Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high‐performance inverted PSCs and scale‐up modules is reported. The hybrid interfacial layer containing self‐assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole‐selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm2), respectively. The PSCs maintain over 80% of its initial efficiency under one‐sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76‐eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state‐of‐the‐art inverted PSCs and modules. A simple yet scalable interfacial layer consisting of self‐assembled molecule and conjugated polymer facilitates resolving bilateral surface issues between charge‐selective metal oxide and perovskite, successfully leading to high‐performance inverted perovskite solar cells and modules. Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high‐performance inverted PSCs and scale‐up modules is reported. The hybrid interfacial layer containing self‐assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole‐selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm2), respectively. The PSCs maintain over 80% of its initial efficiency under one‐sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76‐eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state‐of‐the‐art inverted PSCs and modules. Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high-performance inverted PSCs and scale-up modules is reported. The hybrid interfacial layer containing self-assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole-selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm2 ), respectively. The PSCs maintain over 80% of its initial efficiency under one-sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76-eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state-of-the-art inverted PSCs and modules.Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high-performance inverted PSCs and scale-up modules is reported. The hybrid interfacial layer containing self-assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole-selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm2 ), respectively. The PSCs maintain over 80% of its initial efficiency under one-sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76-eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state-of-the-art inverted PSCs and modules. |
Author | Fang, Yanjun Shen, Ziqiu Yan, Minxing Yan, Kangrong Niu, Benfang Gu, Emely Huang, Yanchun Chen, Hongzheng Liu, Haoran Li, Chang‐Zhi Yan, Buyi Yao, Jizhong |
Author_xml | – sequence: 1 givenname: Benfang orcidid: 0000-0001-9683-3098 surname: Niu fullname: Niu, Benfang organization: Zhejiang University – sequence: 2 givenname: Haoran surname: Liu fullname: Liu, Haoran organization: Zhejiang University – sequence: 3 givenname: Yanchun surname: Huang fullname: Huang, Yanchun organization: Zhejiang University – sequence: 4 givenname: Emely surname: Gu fullname: Gu, Emely organization: Hangzhou Microquanta Semiconductor Co. Ltd – sequence: 5 givenname: Minxing surname: Yan fullname: Yan, Minxing organization: Zhejiang University – sequence: 6 givenname: Ziqiu surname: Shen fullname: Shen, Ziqiu organization: Zhejiang University – sequence: 7 givenname: Kangrong surname: Yan fullname: Yan, Kangrong organization: Zhejiang University – sequence: 8 givenname: Buyi surname: Yan fullname: Yan, Buyi organization: Hangzhou Microquanta Semiconductor Co. Ltd – sequence: 9 givenname: Jizhong surname: Yao fullname: Yao, Jizhong organization: Hangzhou Microquanta Semiconductor Co. Ltd – sequence: 10 givenname: Yanjun surname: Fang fullname: Fang, Yanjun organization: Zhejiang University – sequence: 11 givenname: Hongzheng surname: Chen fullname: Chen, Hongzheng organization: Zhejiang University – sequence: 12 givenname: Chang‐Zhi orcidid: 0000-0003-1968-2032 surname: Li fullname: Li, Chang‐Zhi email: czli@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36840924$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQxi1URLcLV44oEhcuWcZ_ktjH1RbYSluBBJyN44zBJYmLnRTtjUfgGXkSvNoWpEqI00gzv-_TzHxn5GQMIxLylMKKArCXphvMigFjlLFKPiALWjFaClDVCVmA4lWpaiFPyVlKVwCgaqgfkVNey4wwsSCfLud-8m4e7eTDaPpiu2-j74qLccLojPW5tTN7jKlwIRZb__nLrx8_3-VZiIMZLWbyBuOEXZGb4SZ99RMW70NvYrHBvk-PyUNn-oRPbuuSfHz96sNmW-7evrnYrHelFVzJknWdsw3LSzXGUM65qIHaVoAAiS6fg62VlrPKNRIbXnUMUAreiKaqnWgNX5IXR9_rGL7NmCY9-GTzBmbEMCfNGgnQKJWtl-T5PfQqzDEfnylJZaUUYyxTz26puR2w09fRDybu9d3vMiCOgI0hpYhOWz-ZwxunaHyvKehDRPoQkf4TUZat7snunP8pUEfBd9_j_j-0Xp9frv9qfwO-0KOj |
CitedBy_id | crossref_primary_10_1016_j_esci_2024_100308 crossref_primary_10_1002_advs_202404725 crossref_primary_10_1002_anie_202411730 crossref_primary_10_1002_solr_202400011 crossref_primary_10_1002_solr_202300920 crossref_primary_10_1002_anie_202411659 crossref_primary_10_1002_ifm2_8 crossref_primary_10_1016_j_cej_2024_158663 crossref_primary_10_1002_smll_202310227 crossref_primary_10_1016_j_nanoen_2025_110670 crossref_primary_10_1016_j_solmat_2025_113548 crossref_primary_10_1002_adfm_202302375 crossref_primary_10_1039_D3QI01757E crossref_primary_10_1002_smll_202408638 crossref_primary_10_1021_acs_jpcc_4c03745 crossref_primary_10_1021_jacs_3c07192 crossref_primary_10_1016_j_joule_2024_101815 crossref_primary_10_1016_j_nanoen_2024_109329 crossref_primary_10_1002_aesr_202400003 crossref_primary_10_1002_smll_202301110 crossref_primary_10_1002_solr_202400649 crossref_primary_10_1021_acsenergylett_4c00140 crossref_primary_10_1002_adma_202304415 crossref_primary_10_1002_adma_202412327 crossref_primary_10_1002_ange_202416188 crossref_primary_10_1039_D4DT02879A crossref_primary_10_1002_adma_202408101 crossref_primary_10_1039_D4EE02661F crossref_primary_10_1021_acsaem_5c00155 crossref_primary_10_1002_adfm_202415331 crossref_primary_10_1016_j_cej_2024_154011 crossref_primary_10_1002_adma_202311970 crossref_primary_10_1039_D4NJ04426F crossref_primary_10_1002_adfm_202415004 crossref_primary_10_1002_adma_202400342 crossref_primary_10_1039_D3EE02818F crossref_primary_10_1039_D3CC04863B crossref_primary_10_1002_adfm_202310860 crossref_primary_10_1002_adfm_202315157 crossref_primary_10_1002_smll_202500281 crossref_primary_10_1002_adma_202306870 crossref_primary_10_1016_j_esci_2024_100329 crossref_primary_10_1002_adfm_202316202 crossref_primary_10_1002_adma_202307855 crossref_primary_10_1002_ange_202411659 crossref_primary_10_1021_acssuschemeng_4c04732 crossref_primary_10_1016_j_jlumin_2024_120753 crossref_primary_10_1021_acsami_4c08524 crossref_primary_10_1002_adhm_202303851 crossref_primary_10_1039_D5EE00380F crossref_primary_10_1002_ange_202411730 crossref_primary_10_1002_aenm_202303941 crossref_primary_10_1016_j_cej_2023_148277 crossref_primary_10_1002_aenm_202303742 crossref_primary_10_1007_s11426_025_2562_0 crossref_primary_10_1039_D3SC05485C crossref_primary_10_59761_RCR5152 crossref_primary_10_1021_acsaem_3c02777 crossref_primary_10_1002_aenm_202405675 crossref_primary_10_1016_j_cej_2024_158870 crossref_primary_10_1021_acsami_4c12238 crossref_primary_10_1021_acssuschemeng_4c07636 crossref_primary_10_1002_adma_202419413 crossref_primary_10_1039_D4RA05241B crossref_primary_10_3390_molecules30051129 crossref_primary_10_1021_acsenergylett_3c02322 crossref_primary_10_1088_2040_8986_ad33a6 crossref_primary_10_1016_j_cej_2025_161388 crossref_primary_10_1002_anie_202416188 |
Cites_doi | 10.1016/j.joule.2020.04.001 10.1016/j.jechem.2020.04.027 10.1002/aenm.201901642 10.1038/s41560-021-00966-8 10.1002/anie.201306709 10.1038/s41566-022-01033-8 10.1016/j.joule.2020.06.004 10.1021/acsenergylett.1c01487 10.1002/aenm.201700012 10.1039/D2EE03355K 10.1021/jz502014r 10.1007/s11426-022-1426-x 10.1002/adma.202206193 10.1016/j.cej.2022.135647 10.1038/nenergy.2016.81 10.1002/eem2.12439 10.1002/cssc.201701262 10.1038/s41586-022-04455-0 10.1038/s41586-021-04372-8 10.1039/D2EE01801B 10.1021/jacs.0c09560 10.1002/aenm.202101973 10.1002/adma.202105920 10.1002/admi.201800090 10.1002/nano.202000200 10.1002/adma.201800515 10.1002/advs.202105085 10.1021/acsami.1c22396 10.1021/acsami.0c11731 10.1002/aenm.202102844 10.1002/aenm.202103674 10.1002/adma.202203794 10.1002/adma.202103394 10.1016/j.cej.2022.136405 10.1002/aenm.201903487 10.1002/adfm.202104036 10.1126/science.aba0893 10.1103/PhysRevLett.107.256805 10.1002/aenm.201602333 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202212258 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 36840924 10_1002_adma_202212258 ADMA202212258 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China funderid: 22125901; 51961145301 – fundername: National Key Research and Development Program of China funderid: 2019YFA0705900 – fundername: National Key Research and Development Program of China grantid: 2019YFA0705900 – fundername: National Natural Science Foundation of China grantid: 51961145301 – fundername: National Natural Science Foundation of China grantid: 22125901 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4398-2ddfc720927aa13334601cb40408ef095ebc8c325f78e735d20e84374756f4ba3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 01:01:28 EDT 2025 Fri Jul 25 03:24:16 EDT 2025 Thu Apr 03 07:05:34 EDT 2025 Tue Jul 01 02:33:29 EDT 2025 Thu Apr 24 22:53:05 EDT 2025 Wed Jan 22 16:20:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | passivation self-assembled molecule interface metal oxide perovskite solar cells |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4398-2ddfc720927aa13334601cb40408ef095ebc8c325f78e735d20e84374756f4ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9683-3098 0000-0003-1968-2032 |
PMID | 36840924 |
PQID | 2818599222 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2780079933 proquest_journals_2818599222 pubmed_primary_36840924 crossref_citationtrail_10_1002_adma_202212258 crossref_primary_10_1002_adma_202212258 wiley_primary_10_1002_adma_202212258_ADMA202212258 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2019; 9 2021; 6 2021; 2 2020; 142 2023; 16 2020; 12 2022; 65 2020; 367 2020; 10 2022; 438 2021; 52 2020; 4 2014; 5 2021; 31 2016; 1 2018; 5 2011; 107 2021; 11 2021; 33 2022 2022; 7 2017; 10 2022; 9 2022; 34 2022; 12 2022; 14 2022; 15 2018; 30 2022; 603 2022; 604 2022; 16 2022; 443 2014; 53 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Zhang C. (e_1_2_8_22_1) 2022; 34 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 Li X. (e_1_2_8_11_1) 2022 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 438 year: 2022 publication-title: Chem. Eng. J. – volume: 15 start-page: 4612 year: 2022 publication-title: Energy Environ. Sci. – year: 2022 publication-title: Energy Environ. Mater. – volume: 443 year: 2022 publication-title: Chem. Eng. J. – volume: 14 start-page: 6794 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 3849 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 393 year: 2021 publication-title: J. Energy Chem. – volume: 367 start-page: 1352 year: 2020 publication-title: Science – volume: 604 start-page: 280 year: 2022 publication-title: Nature – volume: 4 start-page: 1759 year: 2020 publication-title: Joule – volume: 34 year: 2022 publication-title: Adv. Energy Mater. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 6 start-page: 3443 year: 2021 publication-title: ACS Energy Lett. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 16 start-page: 588 year: 2022 publication-title: Nat. Photonics – volume: 603 start-page: 73 year: 2022 publication-title: Nature – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 4 start-page: 1248 year: 2020 publication-title: Joule – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 65 start-page: 2369 year: 2022 publication-title: Sci. China: Chem. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 2 start-page: 1081 year: 2021 publication-title: Nano Sel. – year: 2022 – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 3794 year: 2017 publication-title: ChemSusChem – volume: 7 start-page: 229 year: 2022 publication-title: Nat. Energy – volume: 16 start-page: 557 year: 2023 publication-title: Energy Environ. Sci. – volume: 53 start-page: 6322 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 107 year: 2011 publication-title: Phys. Rev. Lett. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_9_1 doi: 10.1016/j.joule.2020.04.001 – ident: e_1_2_8_12_1 doi: 10.1016/j.jechem.2020.04.027 – ident: e_1_2_8_20_1 doi: 10.1002/aenm.201901642 – ident: e_1_2_8_29_1 doi: 10.1038/s41560-021-00966-8 – ident: e_1_2_8_34_1 doi: 10.1002/anie.201306709 – ident: e_1_2_8_5_1 doi: 10.1038/s41566-022-01033-8 – ident: e_1_2_8_16_1 doi: 10.1016/j.joule.2020.06.004 – ident: e_1_2_8_33_1 doi: 10.1021/acsenergylett.1c01487 – ident: e_1_2_8_32_1 doi: 10.1002/aenm.201700012 – ident: e_1_2_8_10_1 doi: 10.1039/D2EE03355K – ident: e_1_2_8_38_1 doi: 10.1021/jz502014r – ident: e_1_2_8_2_1 doi: 10.1007/s11426-022-1426-x – ident: e_1_2_8_28_1 doi: 10.1002/adma.202206193 – ident: e_1_2_8_36_1 doi: 10.1016/j.cej.2022.135647 – ident: e_1_2_8_39_1 doi: 10.1038/nenergy.2016.81 – year: 2022 ident: e_1_2_8_11_1 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12439 – ident: e_1_2_8_27_1 doi: 10.1002/cssc.201701262 – ident: e_1_2_8_4_1 doi: 10.1038/s41586-022-04455-0 – ident: e_1_2_8_6_1 doi: 10.1038/s41586-021-04372-8 – ident: e_1_2_8_17_1 doi: 10.1039/D2EE01801B – ident: e_1_2_8_35_1 doi: 10.1021/jacs.0c09560 – ident: e_1_2_8_3_1 doi: 10.1002/aenm.202101973 – ident: e_1_2_8_1_1 – ident: e_1_2_8_41_1 doi: 10.1002/adma.202105920 – ident: e_1_2_8_31_1 doi: 10.1002/admi.201800090 – volume: 34 year: 2022 ident: e_1_2_8_22_1 publication-title: Adv. Energy Mater. – ident: e_1_2_8_14_1 doi: 10.1002/nano.202000200 – ident: e_1_2_8_18_1 doi: 10.1002/adma.201800515 – ident: e_1_2_8_37_1 doi: 10.1002/advs.202105085 – ident: e_1_2_8_15_1 doi: 10.1021/acsami.1c22396 – ident: e_1_2_8_23_1 doi: 10.1021/acsami.0c11731 – ident: e_1_2_8_8_1 doi: 10.1002/aenm.202102844 – ident: e_1_2_8_30_1 doi: 10.1002/aenm.202103674 – ident: e_1_2_8_13_1 doi: 10.1002/adma.202203794 – ident: e_1_2_8_25_1 doi: 10.1002/adma.202103394 – ident: e_1_2_8_26_1 doi: 10.1016/j.cej.2022.136405 – ident: e_1_2_8_19_1 doi: 10.1002/aenm.201903487 – ident: e_1_2_8_24_1 doi: 10.1002/adfm.202104036 – ident: e_1_2_8_7_1 doi: 10.1126/science.aba0893 – ident: e_1_2_8_40_1 doi: 10.1103/PhysRevLett.107.256805 – ident: e_1_2_8_21_1 doi: 10.1002/aenm.201602333 |
SSID | ssj0009606 |
Score | 2.6354115 |
Snippet | Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2212258 |
SubjectTerms | Amines Crystallization Energy conversion efficiency Energy gap Energy levels interface Interface stability Lead compounds Materials science Metal halides metal oxide Metal oxides Modules Organic compounds passivation perovskite solar cells Perovskites Photovoltaic cells Self-assembly self‐assembled molecule Solar cells |
Title | Multifunctional Hybrid Interfacial Layers for High‐Performance Inverted Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202212258 https://www.ncbi.nlm.nih.gov/pubmed/36840924 https://www.proquest.com/docview/2818599222 https://www.proquest.com/docview/2780079933 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIZHiBMc2JewyUhInALBdpYeK6CqECDEInELdmJfqFrUBQlOPALPyJMw46RpC0JIcMviJE6csf-ZeL4A7GmdKx3kiR9zE_pSSLQ5GSk_RnUQcU7fcih3-OIyat7Js_vwfiyLv-BDVAE3sgzXX5OBK907HEFDVe64Qe58IWX70oQtUkXXI34UyXMH2xOhX4tkMqQ2Bvxw8vDJUemb1JxUrm7oacyDGla6mHHyeDDo64Ps9QvP8T93tQBzpS5l9eJFWoQp016C2TFa4TI8uGRdGgiL-CFrvlC6F3NBRaso9s7OFUl4hkqY0QySj7f3q1FmAiOoRxclLsONneceBY7ZDfnW7Ni0Wr0VuGuc3h43_fIHDX6GOgYtLM9tFvOgxmOl0NkVEt27TEvsGBJjUbwZnSWZ4KGNExOLMOeBSaRADyaMrNRKrMJ0u9M268AyEUphA2MNt5IgiEfC5JGJsAc6CiyveeAPGyjNSno5_USjlRbcZZ7Sk0urJ-fBflX-qeB2_Fhya9jeaWm_vdQxsgjZyz3YrXaj5dHnFNU2nQGWiVFsx6jvhAdrxXtSXUoQQwddWw-4a-1f6pDWTy7q1drGXw7ahBlcLudibsF0vzsw26iX-nrH2cQnU8IK3g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThsxEB7xcyg9UGhp2RKKKxVxWlhs708OHCICCiVBFT8St8W7a18aJYgkVOmpj8Cr8Co8Qp-EGe9PmlaoUiUOPa7Xu-u1Z8bfjD2fAT4lSaYSL4vckGvflUKizslAuSGig4BzWsuh3OHOSdC6kJ8v_csZuC9zYXJ-iCrgRpph7TUpOAWkdyasoSqzxEH2hX5U7Ks81uNv6LUN9o6aOMSbnB8enO-33OJgATfF-RclI8tMGnKvzkOl0EkTEt2SNJEo0JE2CDp0kkap4L4JIx0KP-OejqRA5O0HRiZK4HtnYZ6OESe6_ubphLGKHAJL7yd8tx7IqOSJ9PjOdHun58E_wO00VraT3eEreCi7Kd_j8nV7NEy20--_MUj-V_24BIsF9GaNXFeWYUb3XsPLXwgZ38CVzUemuT4PkbLWmDLamI2bGkXLC6ytyEthCPYZbZL5-ePuyyT5ghFvyQ2ieIaF_dsBxcbZGYUP2L7udgcrcPEsv_gW5nr9nl4FlgpfCuNpo7mRxPO4K3QW6ACN7K5neN0Bt5SIOC0I2umckG6cU0vzmEYqrkbKga2q_nVOTfJkzVopYHFhogaxpQEjVmLuwMfqNhoXWjFSPd0fYZ0Q_YkQIaxw4F0umNWnBNEEoffuALfi9Zc2xI1mp1Fdvf-XhzbgReu8047bRyfHa7CA5cXW0xrMDW9Geh3h4TD5YBWSwdVzS-4jZ8xmcQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xkCp6KFAKDY_iSkU9BYLtPPbAYcWyWspDqIDELTiJfWG1i9jdIjjxE_gp_BX-Ar-EGeex3VaoEhKHHuPYjmPP2N-MPZ8BviVJphIvi9yQa9-VQqLOyUC5IaKDgHPay6HY4YPDoHUqf5z5Z2PwUMbC5PwQlcONNMPO16Tgl5nZGJKGqszyBtn6_Kg4Vrmnb67RaOtt7TZwhNc4b-6cbLfc4l4BN8XlFwUjy0wacq_GQ6XQRhMSrZI0kSjPkTaIOXSSRqngvgkjHQo_456OpEDg7QdGJkpgveMwiaVqdFlE4-eQsIrsAcvuJ3y3FsiopIn0-MZoe0eXwb-w7ShUtmtdcxoey17Kj7hcrA_6yXp6-weB5P_UjTPwoQDerJ5ryiyM6c5HeP8bHeMcnNtoZFrpcwcpa91QPBuzXlOjaHOB7SuyURhCfUZHZJ7u7o-GoReMWEuuEMMzTOz-6pFnnB2T84Bt63a79wlO3-QX52Gi0-3oz8BS4UthPG00N5JYHjeFzgId4BS76Rlec8AtBSJOC3p2uiWkHefE0jymkYqrkXLge5X_MicmeTHncilfcTFB9WJLAkacxNyBr9VrnFpov0h1dHeAeUK0JkIEsMKBhVwuq08JIglC290BbqXrH22I642DevW0-JpCq_DuqNGM93cP95ZgCpOLc6fLMNG_GugVxIb95ItVRwbnby24z6StZSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Hybrid+Interfacial+Layers+for+High%E2%80%90Performance+Inverted+Perovskite+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Niu%2C+Benfang&rft.au=Liu%2C+Haoran&rft.au=Huang%2C+Yanchun&rft.au=Gu%2C+Emely&rft.date=2023-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=21&rft_id=info:doi/10.1002%2Fadma.202212258&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202212258 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |