High‐Efficiency Narrowband Multi‐Resonance Emitter Fusing Indolocarbazole Donors for BT. 2020 Red Electroluminescence and Ultralong Operation Lifetime
Polycyclic heteroaromatics with multi‐resonance (MR) characteristics are attractive materials for narrowband emitters in wide‐color‐gamut organic light‐emitting diodes. However, MR emitters with pure‐red colors are still rare and usually exhibit problematic spectral broadening when redshifting emiss...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 30; pp. e2301018 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polycyclic heteroaromatics with multi‐resonance (MR) characteristics are attractive materials for narrowband emitters in wide‐color‐gamut organic light‐emitting diodes. However, MR emitters with pure‐red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure‐red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen‐embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron‐donating ability due to its para‐positioned nitrogen–π–nitrogen backbone and also enlarges the π‐extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half‐maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll‐off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m−2. These performance characteristics are superior even to those of state‐of‐the‐art perovskite and quantum‐dot‐based devices for this specific color, paving the way toward practical applications.
A pure‐red multi‐resonance emitter fused with indolocarbazole segments is developed, simultaneously redshifting and narrowing the emission color. The corresponding organic light‐emitting diode realizes BT.2020 red coordinates of (0.708, 0.292), also achieving an impressive maximum external quantum efficiency of 34.4% and an ultralong LT95 of over 10 000 h at an initial luminance of 1000 cd m−2. |
---|---|
AbstractList | Polycyclic heteroaromatics with multi‐resonance (MR) characteristics are attractive materials for narrowband emitters in wide‐color‐gamut organic light‐emitting diodes. However, MR emitters with pure‐red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure‐red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen‐embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron‐donating ability due to its
para
‐positioned nitrogen–
π
–nitrogen backbone and also enlarges the
π
‐extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half‐maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll‐off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m
−2
. These performance characteristics are superior even to those of state‐of‐the‐art perovskite and quantum‐dot‐based devices for this specific color, paving the way toward practical applications. Polycyclic heteroaromatics with multi‐resonance (MR) characteristics are attractive materials for narrowband emitters in wide‐color‐gamut organic light‐emitting diodes. However, MR emitters with pure‐red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure‐red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen‐embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron‐donating ability due to its para‐positioned nitrogen–π–nitrogen backbone and also enlarges the π‐extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half‐maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll‐off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m−2. These performance characteristics are superior even to those of state‐of‐the‐art perovskite and quantum‐dot‐based devices for this specific color, paving the way toward practical applications. Polycyclic heteroaromatics with multi-resonance (MR) characteristics are attractive materials for narrowband emitters in wide-color-gamut organic light-emitting diodes. However, MR emitters with pure-red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure-red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen-embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron-donating ability due to its para-positioned nitrogen-π-nitrogen backbone and also enlarges the π-extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half-maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll-off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m . These performance characteristics are superior even to those of state-of-the-art perovskite and quantum-dot-based devices for this specific color, paving the way toward practical applications. Polycyclic heteroaromatics with multi‐resonance (MR) characteristics are attractive materials for narrowband emitters in wide‐color‐gamut organic light‐emitting diodes. However, MR emitters with pure‐red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure‐red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen‐embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron‐donating ability due to its para‐positioned nitrogen–π–nitrogen backbone and also enlarges the π‐extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half‐maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll‐off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m−2. These performance characteristics are superior even to those of state‐of‐the‐art perovskite and quantum‐dot‐based devices for this specific color, paving the way toward practical applications. A pure‐red multi‐resonance emitter fused with indolocarbazole segments is developed, simultaneously redshifting and narrowing the emission color. The corresponding organic light‐emitting diode realizes BT.2020 red coordinates of (0.708, 0.292), also achieving an impressive maximum external quantum efficiency of 34.4% and an ultralong LT95 of over 10 000 h at an initial luminance of 1000 cd m−2. Polycyclic heteroaromatics with multi-resonance (MR) characteristics are attractive materials for narrowband emitters in wide-color-gamut organic light-emitting diodes. However, MR emitters with pure-red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure-red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen-embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron-donating ability due to its para-positioned nitrogen-π-nitrogen backbone and also enlarges the π-extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half-maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll-off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m-2 . These performance characteristics are superior even to those of state-of-the-art perovskite and quantum-dot-based devices for this specific color, paving the way toward practical applications.Polycyclic heteroaromatics with multi-resonance (MR) characteristics are attractive materials for narrowband emitters in wide-color-gamut organic light-emitting diodes. However, MR emitters with pure-red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure-red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen-embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron-donating ability due to its para-positioned nitrogen-π-nitrogen backbone and also enlarges the π-extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half-maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll-off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m-2 . These performance characteristics are superior even to those of state-of-the-art perovskite and quantum-dot-based devices for this specific color, paving the way toward practical applications. |
Author | Du, MingXu Yin, Zheng Zhang, Dongdong Shu, Yilin Wei, Jinbei Wang, Lu Zhang, Yuewei Duan, Lian Fan, Tianjiao Jia, Xiaoqin |
Author_xml | – sequence: 1 givenname: Tianjiao surname: Fan fullname: Fan, Tianjiao organization: Tsinghua University – sequence: 2 givenname: MingXu surname: Du fullname: Du, MingXu organization: Tsinghua University – sequence: 3 givenname: Xiaoqin surname: Jia fullname: Jia, Xiaoqin organization: Tsinghua University – sequence: 4 givenname: Lu surname: Wang fullname: Wang, Lu organization: Tsinghua University – sequence: 5 givenname: Zheng surname: Yin fullname: Yin, Zheng organization: Chinese Academy of Sciences Beijing – sequence: 6 givenname: Yilin surname: Shu fullname: Shu, Yilin organization: Chinese Academy of Sciences Beijing – sequence: 7 givenname: Yuewei surname: Zhang fullname: Zhang, Yuewei organization: Tsinghua University – sequence: 8 givenname: Jinbei surname: Wei fullname: Wei, Jinbei organization: Chinese Academy of Sciences Beijing – sequence: 9 givenname: Dongdong surname: Zhang fullname: Zhang, Dongdong email: ddzhang@mail.tsinghua.edu.cn organization: Tsinghua University – sequence: 10 givenname: Lian orcidid: 0000-0003-2750-0972 surname: Duan fullname: Duan, Lian email: duanl@mail.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37074074$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1q3DAUhUVJaSZpt10WQTfdeCpZki0vp8nkByYNhGRtZPkqVZClqWQTpqs-Qtd9vD5JNJ00hUApCO5C3zn3cs4B2vPBA0JvKZlTQsqPqh_UvCQlI5RQ-QLNqChpwUkj9tCMNEwUTcXlPjpI6Y4Q0lSkeoX2WU1qnt8M_Tyzt19-ff-xNMZqC15v8GcVY7jvlO_xxeRGm3-vIAWvvAa8HOw4QsQnU7L-Fp_7PrigVezUt-AAHwcfYsImRPzpeo7zYQRfQY-XDvQYg5sG6yFp2FptF9y4MSoXstPlGqIabfB4ZQ2MdoDX6KVRLsGbx3mIbk6W10dnxery9PxosSo0Z40saEWAVw2wqhaE131X6q4xhoqOCSZJCb002pSdrATlksqKa9M1VArVUSnrih2iDzvfdQxfJ0hjO9h8onPKQ5hSW0rCGKNC0oy-f4behSn6fF2meMm4kERk6t0jNXUD9O062kHFTfsn9QzMd4COIaUI5gmhpN3W2m5rbZ9qzQL-TKDt-DutHJ91_5Y1O9m9dbD5z5J2cXyx-Kt9AN5HuK4 |
CitedBy_id | crossref_primary_10_1002_anie_202414882 crossref_primary_10_1007_s44275_024_00006_z crossref_primary_10_1021_jacs_4c02598 crossref_primary_10_1021_acs_jpclett_3c02245 crossref_primary_10_1002_adma_202409746 crossref_primary_10_1002_adfm_202402906 crossref_primary_10_1002_ange_202313254 crossref_primary_10_1002_anie_202408522 crossref_primary_10_1002_adfm_202423408 crossref_primary_10_1002_adma_202410418 crossref_primary_10_1002_adom_202301954 crossref_primary_10_1007_s11426_024_2087_1 crossref_primary_10_1021_jacs_4c13375 crossref_primary_10_1021_jacs_4c07364 crossref_primary_10_1002_adma_202410096 crossref_primary_10_1002_adom_202400200 crossref_primary_10_1002_anie_202418770 crossref_primary_10_1039_D3MH00800B crossref_primary_10_1002_adma_202408816 crossref_primary_10_1016_j_orgel_2023_106973 crossref_primary_10_1002_anie_202411464 crossref_primary_10_1039_D3CS00837A crossref_primary_10_1080_15980316_2024_2350437 crossref_primary_10_1039_D4CC05040A crossref_primary_10_1007_s40843_024_2927_6 crossref_primary_10_1021_acs_chemmater_3c02106 crossref_primary_10_1016_j_cej_2024_150785 crossref_primary_10_1039_D4TC01533A crossref_primary_10_1002_anie_202312666 crossref_primary_10_1002_anie_202421102 crossref_primary_10_1002_anie_202420253 crossref_primary_10_1002_ange_202316479 crossref_primary_10_1002_ange_202316710 crossref_primary_10_1039_D3QM00598D crossref_primary_10_1002_adom_202402891 crossref_primary_10_1002_flm2_15 crossref_primary_10_1021_acs_jpca_4c08377 crossref_primary_10_1016_j_dyepig_2023_111520 crossref_primary_10_1016_j_scib_2024_08_001 crossref_primary_10_1126_sciadv_adt7899 crossref_primary_10_1002_adfm_202313897 crossref_primary_10_1002_advs_202303504 crossref_primary_10_1038_s41467_024_48659_6 crossref_primary_10_1002_ange_202415400 crossref_primary_10_1016_j_cej_2024_148781 crossref_primary_10_1002_adom_202402653 crossref_primary_10_1039_D3SC06470K crossref_primary_10_1002_ange_202312666 crossref_primary_10_1002_adfm_202316323 crossref_primary_10_1038_s41467_024_55680_2 crossref_primary_10_1002_adom_202402918 crossref_primary_10_1002_anie_202306471 crossref_primary_10_1039_D4SC02899F crossref_primary_10_1016_j_solmat_2025_113400 crossref_primary_10_1002_ange_202421102 crossref_primary_10_1016_j_dyepig_2024_112128 crossref_primary_10_1002_anie_202316710 crossref_primary_10_1002_anie_202316479 crossref_primary_10_1002_adom_202302987 crossref_primary_10_1002_adom_202500384 crossref_primary_10_1002_ange_202420253 crossref_primary_10_1021_acsmaterialslett_4c00178 crossref_primary_10_1039_D4MH00634H crossref_primary_10_1016_j_dyepig_2023_111678 crossref_primary_10_1002_ange_202408522 crossref_primary_10_1002_adfm_202409244 crossref_primary_10_1007_s40843_023_2826_2 crossref_primary_10_1002_adom_202302354 crossref_primary_10_1021_acsami_3c14514 crossref_primary_10_1002_ange_202306413 crossref_primary_10_1002_adom_202401671 crossref_primary_10_1002_ange_202414882 crossref_primary_10_1002_adom_202401754 crossref_primary_10_1002_anie_202500391 crossref_primary_10_1002_adom_202402960 crossref_primary_10_1002_advs_202405604 crossref_primary_10_1002_ange_202306471 crossref_primary_10_1002_adma_202411610 crossref_primary_10_1002_anie_202415400 crossref_primary_10_1002_ange_202318433 crossref_primary_10_3389_fchem_2023_1211345 crossref_primary_10_1002_anie_202313254 crossref_primary_10_1039_D3QM00498H crossref_primary_10_1002_adom_202302811 crossref_primary_10_1002_adom_202301732 crossref_primary_10_1002_anie_202318433 crossref_primary_10_1002_cphc_202400955 crossref_primary_10_1002_adom_202400490 crossref_primary_10_1002_ange_202411464 crossref_primary_10_1016_j_cej_2024_152857 crossref_primary_10_1002_ange_202418770 crossref_primary_10_1007_s11426_024_2248_y crossref_primary_10_1002_anie_202306413 crossref_primary_10_1002_adma_202307420 crossref_primary_10_1002_ange_202500391 crossref_primary_10_1002_adom_202400652 |
Cites_doi | 10.1002/anie.202109335 10.1126/sciadv.abq2321 10.1002/adma.202201442 10.1016/j.carbon.2020.05.023 10.1021/jacs.7b10578 10.1038/s42004-022-00766-5 10.1016/j.cej.2021.132822 10.1038/s41467-018-07432-2 10.1038/s41566-021-00763-5 10.1002/adom.202100825 10.1038/s41586-019-1771-5 10.1021/acsami.2c10127 10.1002/adom.202101789 10.1021/jacs.0c10081 10.1021/acsami.2c02756 10.1039/D1SC02042K 10.1002/anie.202108283 10.1002/anie.202213585 10.1002/adom.202102092 10.1016/S0379-6779(02)01112-8 10.1002/adma.201505491 10.1002/anie.202200337 10.1002/adfm.201908677 10.1039/D2SC01543A 10.1002/anie.202212575 10.1002/adom.202201714 10.1002/jcc.22885 10.1002/adma.201803714 10.1002/adma.201803524 10.1002/adom.202002174 10.1002/adma.202004072 10.1002/wcms.19 10.1002/adom.201902142 10.1002/anie.202117181 10.1002/anie.202206916 10.1002/tcr.201800148 10.1002/anie.202202380 10.1002/adfm.202102017 10.1002/col.20020 10.1126/sciadv.abp9203 10.1002/adma.202201778 10.1016/j.cej.2022.139534 10.1002/anie.202216473 10.1021/acsami.1c03175 10.1038/s41566-022-01106-8 10.1038/s41566-020-00745-z 10.1002/anie.202007210 10.1002/anie.202205684 10.1002/anie.202201588 10.1002/cjoc.202000226 10.1016/j.cej.2021.131169 10.1038/s41566-019-0476-5 10.1002/anie.202107848 10.1002/adma.202104381 10.1021/acsami.6b15272 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202301018 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 37074074 10_1002_adma_202301018 ADMA202301018 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Fund of China funderid: 22135004; 52222308 – fundername: National Key Research and Development Program funderid: 2021YFB3602702 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2021B1515120041 – fundername: Guangdong Major Project of Basic and Applied Basic Research funderid: 2019B030302009 – fundername: National Science Fund of China grantid: 22135004 – fundername: Guangdong Major Project of Basic and Applied Basic Research grantid: 2019B030302009 – fundername: National Key Research and Development Program grantid: 2021YFB3602702 – fundername: National Science Fund of China grantid: 52222308 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2021B1515120041 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4398-160e469e3675047db2cb9ff15b353802ed8fcf2b8651481864cfb9185ab188763 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 05:29:36 EDT 2025 Sat Jul 26 02:33:39 EDT 2025 Thu Apr 03 07:04:46 EDT 2025 Tue Jul 01 02:33:33 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 Wed Jan 22 16:19:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | indolocarbazole red emitters BT.2020 coordinates organic light-emitting diodes multiple resonances |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4398-160e469e3675047db2cb9ff15b353802ed8fcf2b8651481864cfb9185ab188763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2750-0972 |
PMID | 37074074 |
PQID | 2842345805 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2803331581 proquest_journals_2842345805 pubmed_primary_37074074 crossref_primary_10_1002_adma_202301018 crossref_citationtrail_10_1002_adma_202301018 wiley_primary_10_1002_adma_202301018_ADMA202301018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020 2019 2016 2020 2018 2023; 8 13 28 32 140 17 2022 2022; 10 62 2003 2017; 137 9 2022 2021 2019 2021 2021 2021; 13 15 31 15 15 13 2011; 1 2019; 31 2020; 30 2021 2021 2022; 60 426 61 2022; 61 2022; 8 2019 2021 2022; 575 33 8 2023 2022 2022; 452 430 14 2020; 38 2022 2021 2022 2021 2022 2023; 10 60 34 9 61 2022 2020 2022; 61 142 34 2022; 10 2020 2021 2021 2022 2022 2022 2022; 59 31 9 61 61 61 61 2022 2004; 5 29 2012 2020; 33 165 2018 2019; 9 19 2021 2021; 60 12 2021 2021; 14 9 e_1_2_8_22_3 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_1_5 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_5_3 e_1_2_8_7_1 e_1_2_8_1_6 e_1_2_8_5_2 e_1_2_8_5_5 Chen H. (e_1_2_8_5_6) 2023 e_1_2_8_9_1 e_1_2_8_5_4 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_11_3 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_19_3 e_1_2_8_19_4 e_1_2_8_19_6 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_23_2 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_2_6 e_1_2_8_6_2 e_1_2_8_2_5 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_2_7 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_16_1 Zhang D. (e_1_2_8_19_5) 2021; 15 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_12_1 |
References_xml | – volume: 5 29 start-page: 149 267 year: 2022 2004 publication-title: Commun. Chem. Color Res. Appl. – volume: 452 430 14 year: 2023 2022 2022 publication-title: Chem. Eng. J. Chem. Eng. J. ACS Appl. Mater. Interfaces – volume: 14 9 year: 2021 2021 publication-title: ACS Appl. Mater. Interfaces Adv. Opt. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 13 28 32 140 17 start-page: 678 2777 1195 280 year: 2020 2019 2016 2020 2018 2023 publication-title: Adv. Opt. Mater. Nat. Photonics Adv. Mater. Adv. Mater. J. Am. Chem. Soc. Nat. Photonics – volume: 13 15 31 15 15 13 start-page: 5622 208 203 year: 2022 2021 2019 2021 2021 2021 publication-title: Chem. Sci. Nat. Photonics Adv. Mater. Nat. Photonics Nat. Photonics ACS Appl. Mater. Interfaces – volume: 60 426 61 year: 2021 2021 2022 publication-title: Angew. Chem., Int. Ed. Chem. Eng. J. Angew. Chem., Int. Ed. – volume: 1 start-page: 153 year: 2011 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 60 12 start-page: 9408 year: 2021 2021 publication-title: Angew. Chem., Int. Ed. Chem. Sci. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 575 33 8 start-page: 634 year: 2019 2021 2022 publication-title: Nature Adv. Mater. Sci. Adv. – volume: 38 start-page: 1223 year: 2020 publication-title: Chin. J. Chem. – volume: 137 9 start-page: 1079 4769 year: 2003 2017 publication-title: Synth. Met. ACS Appl. Mater. Interfaces – volume: 59 31 9 61 61 61 61 year: 2020 2021 2021 2022 2022 2022 2022 publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. Adv. Opt. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 10 60 34 9 61 year: 2022 2021 2022 2021 2022 2023 publication-title: Adv. Opt. Mater. Angew. Chem., Int. Ed. Adv. Mater. Adv. Opt. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 33 165 start-page: 580 461 year: 2012 2020 publication-title: J. Comput. Chem. Carbon – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 9 19 start-page: 4990 1611 year: 2018 2019 publication-title: Nat. Commun. Chem. Rec. – volume: 61 142 34 year: 2022 2020 2022 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. Adv. Mater. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 10 62 year: 2022 2022 publication-title: Adv. Opt. Mater. Angew. Chem., Int. Ed. – volume: 31 year: 2019 publication-title: Adv. Mater. – ident: e_1_2_8_10_1 doi: 10.1002/anie.202109335 – ident: e_1_2_8_11_3 doi: 10.1126/sciadv.abq2321 – ident: e_1_2_8_5_3 doi: 10.1002/adma.202201442 – ident: e_1_2_8_14_2 doi: 10.1016/j.carbon.2020.05.023 – ident: e_1_2_8_1_5 doi: 10.1021/jacs.7b10578 – ident: e_1_2_8_3_1 doi: 10.1038/s42004-022-00766-5 – ident: e_1_2_8_16_2 doi: 10.1016/j.cej.2021.132822 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-018-07432-2 – ident: e_1_2_8_19_2 doi: 10.1038/s41566-021-00763-5 – ident: e_1_2_8_2_3 doi: 10.1002/adom.202100825 – ident: e_1_2_8_11_1 doi: 10.1038/s41586-019-1771-5 – ident: e_1_2_8_16_3 doi: 10.1021/acsami.2c10127 – ident: e_1_2_8_5_1 doi: 10.1002/adom.202101789 – ident: e_1_2_8_4_2 doi: 10.1021/jacs.0c10081 – ident: e_1_2_8_23_1 doi: 10.1021/acsami.2c02756 – ident: e_1_2_8_10_2 doi: 10.1039/D1SC02042K – ident: e_1_2_8_22_1 doi: 10.1002/anie.202108283 – ident: e_1_2_8_2_5 doi: 10.1002/anie.202213585 – ident: e_1_2_8_8_1 doi: 10.1002/adom.202102092 – ident: e_1_2_8_17_1 doi: 10.1016/S0379-6779(02)01112-8 – ident: e_1_2_8_1_3 doi: 10.1002/adma.201505491 – ident: e_1_2_8_12_1 doi: 10.1002/anie.202200337 – ident: e_1_2_8_9_1 doi: 10.1002/adfm.201908677 – volume: 15 year: 2021 ident: e_1_2_8_19_5 publication-title: Nat. Photonics – ident: e_1_2_8_19_1 doi: 10.1039/D2SC01543A – ident: e_1_2_8_2_7 doi: 10.1002/anie.202212575 – ident: e_1_2_8_6_1 doi: 10.1002/adom.202201714 – ident: e_1_2_8_14_1 doi: 10.1002/jcc.22885 – ident: e_1_2_8_20_1 doi: 10.1002/adma.201803714 – ident: e_1_2_8_19_3 doi: 10.1002/adma.201803524 – ident: e_1_2_8_23_2 doi: 10.1002/adom.202002174 – ident: e_1_2_8_1_4 doi: 10.1002/adma.202004072 – ident: e_1_2_8_13_1 doi: 10.1002/wcms.19 – ident: e_1_2_8_5_4 doi: 10.1002/adom.202002174 – ident: e_1_2_8_1_1 doi: 10.1002/adom.201902142 – ident: e_1_2_8_5_5 doi: 10.1002/anie.202117181 – ident: e_1_2_8_2_6 doi: 10.1002/anie.202206916 – ident: e_1_2_8_18_2 doi: 10.1002/tcr.201800148 – ident: e_1_2_8_4_1 doi: 10.1002/anie.202202380 – ident: e_1_2_8_2_2 doi: 10.1002/adfm.202102017 – ident: e_1_2_8_3_2 doi: 10.1002/col.20020 – ident: e_1_2_8_7_1 – ident: e_1_2_8_21_1 doi: 10.1126/sciadv.abp9203 – ident: e_1_2_8_4_3 doi: 10.1002/adma.202201778 – ident: e_1_2_8_16_1 doi: 10.1016/j.cej.2022.139534 – ident: e_1_2_8_6_2 doi: 10.1002/anie.202216473 – ident: e_1_2_8_19_6 doi: 10.1021/acsami.1c03175 – ident: e_1_2_8_1_6 doi: 10.1038/s41566-022-01106-8 – ident: e_1_2_8_19_4 doi: 10.1038/s41566-020-00745-z – ident: e_1_2_8_2_1 doi: 10.1002/anie.202007210 – ident: e_1_2_8_22_3 doi: 10.1002/anie.202205684 – ident: e_1_2_8_2_4 doi: 10.1002/anie.202201588 – ident: e_1_2_8_15_1 doi: 10.1002/cjoc.202000226 – year: 2023 ident: e_1_2_8_5_6 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_8_22_2 doi: 10.1016/j.cej.2021.131169 – ident: e_1_2_8_1_2 doi: 10.1038/s41566-019-0476-5 – ident: e_1_2_8_5_2 doi: 10.1002/anie.202107848 – ident: e_1_2_8_11_2 doi: 10.1002/adma.202104381 – ident: e_1_2_8_17_2 doi: 10.1021/acsami.6b15272 |
SSID | ssj0009606 |
Score | 2.6625981 |
Snippet | Polycyclic heteroaromatics with multi‐resonance (MR) characteristics are attractive materials for narrowband emitters in wide‐color‐gamut organic... Polycyclic heteroaromatics with multi-resonance (MR) characteristics are attractive materials for narrowband emitters in wide-color-gamut organic... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2301018 |
SubjectTerms | BT.2020 coordinates Color Efficiency Electroluminescence Emission Emitters indolocarbazole Light emitting diodes Materials science multiple resonances Narrowband Nitrogen organic light‐emitting diodes Perovskites Quantum efficiency red emitters Resonance Segments Toluene |
Title | High‐Efficiency Narrowband Multi‐Resonance Emitter Fusing Indolocarbazole Donors for BT. 2020 Red Electroluminescence and Ultralong Operation Lifetime |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202301018 https://www.ncbi.nlm.nih.gov/pubmed/37074074 https://www.proquest.com/docview/2842345805 https://www.proquest.com/docview/2803331581 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1La9tAEMeHklN66PuhNi1bKPQkR1pJa-noJDZpaVIIMeQm9llMHCn4ccmpHyHnfLx-kszs2krcUgot-GCjlbSWZmb_K838FuBjJQpTplrGaBsuzgvtYoVhL-67XHIhU5doqnc-OhaH4_zLWXF2r4o_8CG6B27kGT5ek4NLNd-9g4ZK47lBKKEJOoVBmBK2SBWd3PGjSJ572F5WxJXIyzW1MeG7m7tvjkq_Sc1N5eqHntFjkOtOh4yT895yoXr66hee4__8qyfwaKVL2SAY0lN4YJtn8PAerfA53FBOyM8f10NPnaCSTXbsEY5KNob5Sl7cSu8DCOJh2fBiQqVCbES59d_Z58a0NHLOlLxqp5YdtE07mzMUzWzvtMewNwk7sYYNw8I8GDQpI19T5GF0gvGUHsq0eKRvlzbYLfs6cXYxubAvYDwanu4fxqulHWKNCgjnrSKxODG3mSC8fN8orlXlXFqoDCNwwq0pnXZclQIFHUH3cu1UhdpCqrQkiN5L2Graxr4G5iqTiLKyhkucrHKjRCV1aiVptTK1eQTx-tbWesU9p-U3pnUgNvOarnndXfMIPnXtLwPx448td9aWUq88f17jcM-zvCiTIoIP3Wb0WXoRIxvbLqlNkmUZdS-CV8HCulNlfRR1-ImAezv5Sx_qwcHRoPv15l92egvb9D3kIO_A1mK2tO9QaS3Ue-9NtzUlIQY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9NAEMdHUA7QA2-oaYFFQuLk1F4_Yh8DTZRCEqQqkbhZ-0QRqV2lyaUnPkLP_Xh8ks6sY5eAEBJIuThe22t7Zve_65nfArzN00RnoRI-2ob140RZX2Kz53dtLHgqQhsoynceT9LhLP74JWmiCSkXpuZDtBNu5BmuvSYHpwnpwxtqqNAOHIQamqhTt-EOLevtRlUnNwQpEugOtxclfp7GWcNtDPjh9vHb_dJvYnNbu7rOZ_AAZFPtOubkW2e9kh118QvR8b_u6yHc30hT1qtt6RHcMuVj2P0JWPgErigs5Mf3y74DT1DWJps4iqMUpWYumRf30icB4ngY1j-dU7YQG1B4_Vd2XOqKOs-lFBfVwrCjqqyW5wx1M3s_7TCsTcBOjGb9em0ebDcpKF9R48PoArMFzctUeKbPZ6Y2XTaaW7Oan5qnMBv0px-G_mZ1B1-hCMKhaxoYHJubKCXCfFdLrmRubZjICBvhgBudWWW5zPCtxsTdi5WVOcoLIcOMOHrPYKesSrMHzOY6SLPcaC5wvMq1THOhQiNIrmWhiT3wm3dbqA36nFbgWBQ1tJkX9MyL9pl78K4tf1ZDP_5Y8qAxlWLj_OcF9vg8ipMsSDx40-5Gt6VvMaI01ZrKBFEUUfU8eF6bWHupqIu6Dn8ecGcof6lD0Tsa99qtF_9y0Gu4O5yOR8XoePJpH-7R_3VI8gHsrJZr8xKF10q-cq51DTV7JSE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtNAEMdHUCRED3y3GAosEhInp-u1vbGPgSRqoQ2oaqTerP1EEakdpcmlJx6BM4_HkzBjJ24DQkgg5ZJ4bW_smdn_2jO_BXidy9RmkVEh2oYPk9T4UGPYC7s-UUKqyHND9c7HI3kwTt6fpWfXqvgbPkT7wI08o47X5OAz6_evoKHK1twglNAEnboJtxLJM7Lr_skVQIr0eU3bi9Mwl0m2xjZysb-5_-aw9JvW3JSu9dgzvAdq3esm5eRLZ7nQHXP5C9Dxf_7Wfbi7Eqas11jSA7jhyoewfQ1X-Ai-U1LIj6_fBjV2gmo22ahmOGpVWlaX8uJWeiFAFA_HBucTqhViQ0qu_8wOS1vR0DnX6rKaOtavymp-wVA1s7enHYa94ezEWTZoVubBqEkp-YZCD6MTjKf0VKbCI32cucZw2dHEu8Xk3D2G8XBw-u4gXK3tEBqUQDhxldzhzNzFkvjyXauF0bn3UapjDMFcOJt544XOJCo6ou4lxuscxYXSUUYUvR3YKqvSPQHmc8tlljsrFM5WhdUyVyZyisRaFrkkgHB9awuzAp_T-hvTokE2i4KuedFe8wDetO1nDfLjjy331pZSrFz_osDxXsRJmvE0gFftZnRaehOjSlctqQ2P45i6F8BuY2HtqeIuqjr8BCBqO_lLH4pe_7jXfnv6Lzu9hNuf-sPi6HD04RncoZ-bfOQ92FrMl-45qq6FflE71k_C9CPZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Efficiency+Narrowband+Multi-Resonance+Emitter+Fusing+Indolocarbazole+Donors+for+BT.+2020+Red+Electroluminescence+and+Ultralong+Operation+Lifetime&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Fan%2C+Tianjiao&rft.au=Du%2C+MingXu&rft.au=Jia%2C+Xiaoqin&rft.au=Wang%2C+Lu&rft.date=2023-07-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=30&rft.spage=e2301018&rft_id=info:doi/10.1002%2Fadma.202301018&rft_id=info%3Apmid%2F37074074&rft.externalDocID=37074074 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |