High‐Efficiency Narrowband Multi‐Resonance Emitter Fusing Indolocarbazole Donors for BT. 2020 Red Electroluminescence and Ultralong Operation Lifetime

Polycyclic heteroaromatics with multi‐resonance (MR) characteristics are attractive materials for narrowband emitters in wide‐color‐gamut organic light‐emitting diodes. However, MR emitters with pure‐red colors are still rare and usually exhibit problematic spectral broadening when redshifting emiss...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 30; pp. e2301018 - n/a
Main Authors Fan, Tianjiao, Du, MingXu, Jia, Xiaoqin, Wang, Lu, Yin, Zheng, Shu, Yilin, Zhang, Yuewei, Wei, Jinbei, Zhang, Dongdong, Duan, Lian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polycyclic heteroaromatics with multi‐resonance (MR) characteristics are attractive materials for narrowband emitters in wide‐color‐gamut organic light‐emitting diodes. However, MR emitters with pure‐red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure‐red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen‐embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron‐donating ability due to its para‐positioned nitrogen–π–nitrogen backbone and also enlarges the π‐extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half‐maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll‐off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m−2. These performance characteristics are superior even to those of state‐of‐the‐art perovskite and quantum‐dot‐based devices for this specific color, paving the way toward practical applications. A pure‐red multi‐resonance emitter fused with indolocarbazole segments is developed, simultaneously redshifting and narrowing the emission color. The corresponding organic light‐emitting diode realizes BT.2020 red coordinates of (0.708, 0.292), also achieving an impressive maximum external quantum efficiency of 34.4% and an ultralong LT95 of over 10 000 h at an initial luminance of 1000 cd m−2.
AbstractList Polycyclic heteroaromatics with multi‐resonance (MR) characteristics are attractive materials for narrowband emitters in wide‐color‐gamut organic light‐emitting diodes. However, MR emitters with pure‐red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure‐red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen‐embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron‐donating ability due to its para ‐positioned nitrogen– π –nitrogen backbone and also enlarges the π ‐extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half‐maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll‐off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m −2 . These performance characteristics are superior even to those of state‐of‐the‐art perovskite and quantum‐dot‐based devices for this specific color, paving the way toward practical applications.
Polycyclic heteroaromatics with multi‐resonance (MR) characteristics are attractive materials for narrowband emitters in wide‐color‐gamut organic light‐emitting diodes. However, MR emitters with pure‐red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure‐red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen‐embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron‐donating ability due to its para‐positioned nitrogen–π–nitrogen backbone and also enlarges the π‐extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half‐maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll‐off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m−2. These performance characteristics are superior even to those of state‐of‐the‐art perovskite and quantum‐dot‐based devices for this specific color, paving the way toward practical applications.
Polycyclic heteroaromatics with multi-resonance (MR) characteristics are attractive materials for narrowband emitters in wide-color-gamut organic light-emitting diodes. However, MR emitters with pure-red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure-red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen-embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron-donating ability due to its para-positioned nitrogen-π-nitrogen backbone and also enlarges the π-extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half-maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll-off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m . These performance characteristics are superior even to those of state-of-the-art perovskite and quantum-dot-based devices for this specific color, paving the way toward practical applications.
Polycyclic heteroaromatics with multi‐resonance (MR) characteristics are attractive materials for narrowband emitters in wide‐color‐gamut organic light‐emitting diodes. However, MR emitters with pure‐red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure‐red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen‐embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron‐donating ability due to its para‐positioned nitrogen–π–nitrogen backbone and also enlarges the π‐extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half‐maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll‐off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m−2. These performance characteristics are superior even to those of state‐of‐the‐art perovskite and quantum‐dot‐based devices for this specific color, paving the way toward practical applications. A pure‐red multi‐resonance emitter fused with indolocarbazole segments is developed, simultaneously redshifting and narrowing the emission color. The corresponding organic light‐emitting diode realizes BT.2020 red coordinates of (0.708, 0.292), also achieving an impressive maximum external quantum efficiency of 34.4% and an ultralong LT95 of over 10 000 h at an initial luminance of 1000 cd m−2.
Polycyclic heteroaromatics with multi-resonance (MR) characteristics are attractive materials for narrowband emitters in wide-color-gamut organic light-emitting diodes. However, MR emitters with pure-red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure-red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen-embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron-donating ability due to its para-positioned nitrogen-π-nitrogen backbone and also enlarges the π-extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half-maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll-off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m-2 . These performance characteristics are superior even to those of state-of-the-art perovskite and quantum-dot-based devices for this specific color, paving the way toward practical applications.Polycyclic heteroaromatics with multi-resonance (MR) characteristics are attractive materials for narrowband emitters in wide-color-gamut organic light-emitting diodes. However, MR emitters with pure-red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure-red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen-embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron-donating ability due to its para-positioned nitrogen-π-nitrogen backbone and also enlarges the π-extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half-maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll-off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m-2 . These performance characteristics are superior even to those of state-of-the-art perovskite and quantum-dot-based devices for this specific color, paving the way toward practical applications.
Author Du, MingXu
Yin, Zheng
Zhang, Dongdong
Shu, Yilin
Wei, Jinbei
Wang, Lu
Zhang, Yuewei
Duan, Lian
Fan, Tianjiao
Jia, Xiaoqin
Author_xml – sequence: 1
  givenname: Tianjiao
  surname: Fan
  fullname: Fan, Tianjiao
  organization: Tsinghua University
– sequence: 2
  givenname: MingXu
  surname: Du
  fullname: Du, MingXu
  organization: Tsinghua University
– sequence: 3
  givenname: Xiaoqin
  surname: Jia
  fullname: Jia, Xiaoqin
  organization: Tsinghua University
– sequence: 4
  givenname: Lu
  surname: Wang
  fullname: Wang, Lu
  organization: Tsinghua University
– sequence: 5
  givenname: Zheng
  surname: Yin
  fullname: Yin, Zheng
  organization: Chinese Academy of Sciences Beijing
– sequence: 6
  givenname: Yilin
  surname: Shu
  fullname: Shu, Yilin
  organization: Chinese Academy of Sciences Beijing
– sequence: 7
  givenname: Yuewei
  surname: Zhang
  fullname: Zhang, Yuewei
  organization: Tsinghua University
– sequence: 8
  givenname: Jinbei
  surname: Wei
  fullname: Wei, Jinbei
  organization: Chinese Academy of Sciences Beijing
– sequence: 9
  givenname: Dongdong
  surname: Zhang
  fullname: Zhang, Dongdong
  email: ddzhang@mail.tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 10
  givenname: Lian
  orcidid: 0000-0003-2750-0972
  surname: Duan
  fullname: Duan, Lian
  email: duanl@mail.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37074074$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1q3DAUhUVJaSZpt10WQTfdeCpZki0vp8nkByYNhGRtZPkqVZClqWQTpqs-Qtd9vD5JNJ00hUApCO5C3zn3cs4B2vPBA0JvKZlTQsqPqh_UvCQlI5RQ-QLNqChpwUkj9tCMNEwUTcXlPjpI6Y4Q0lSkeoX2WU1qnt8M_Tyzt19-ff-xNMZqC15v8GcVY7jvlO_xxeRGm3-vIAWvvAa8HOw4QsQnU7L-Fp_7PrigVezUt-AAHwcfYsImRPzpeo7zYQRfQY-XDvQYg5sG6yFp2FptF9y4MSoXstPlGqIabfB4ZQ2MdoDX6KVRLsGbx3mIbk6W10dnxery9PxosSo0Z40saEWAVw2wqhaE131X6q4xhoqOCSZJCb002pSdrATlksqKa9M1VArVUSnrih2iDzvfdQxfJ0hjO9h8onPKQ5hSW0rCGKNC0oy-f4behSn6fF2meMm4kERk6t0jNXUD9O062kHFTfsn9QzMd4COIaUI5gmhpN3W2m5rbZ9qzQL-TKDt-DutHJ91_5Y1O9m9dbD5z5J2cXyx-Kt9AN5HuK4
CitedBy_id crossref_primary_10_1002_anie_202414882
crossref_primary_10_1007_s44275_024_00006_z
crossref_primary_10_1021_jacs_4c02598
crossref_primary_10_1021_acs_jpclett_3c02245
crossref_primary_10_1002_adma_202409746
crossref_primary_10_1002_adfm_202402906
crossref_primary_10_1002_ange_202313254
crossref_primary_10_1002_anie_202408522
crossref_primary_10_1002_adfm_202423408
crossref_primary_10_1002_adma_202410418
crossref_primary_10_1002_adom_202301954
crossref_primary_10_1007_s11426_024_2087_1
crossref_primary_10_1021_jacs_4c13375
crossref_primary_10_1021_jacs_4c07364
crossref_primary_10_1002_adma_202410096
crossref_primary_10_1002_adom_202400200
crossref_primary_10_1002_anie_202418770
crossref_primary_10_1039_D3MH00800B
crossref_primary_10_1002_adma_202408816
crossref_primary_10_1016_j_orgel_2023_106973
crossref_primary_10_1002_anie_202411464
crossref_primary_10_1039_D3CS00837A
crossref_primary_10_1080_15980316_2024_2350437
crossref_primary_10_1039_D4CC05040A
crossref_primary_10_1007_s40843_024_2927_6
crossref_primary_10_1021_acs_chemmater_3c02106
crossref_primary_10_1016_j_cej_2024_150785
crossref_primary_10_1039_D4TC01533A
crossref_primary_10_1002_anie_202312666
crossref_primary_10_1002_anie_202421102
crossref_primary_10_1002_anie_202420253
crossref_primary_10_1002_ange_202316479
crossref_primary_10_1002_ange_202316710
crossref_primary_10_1039_D3QM00598D
crossref_primary_10_1002_adom_202402891
crossref_primary_10_1002_flm2_15
crossref_primary_10_1021_acs_jpca_4c08377
crossref_primary_10_1016_j_dyepig_2023_111520
crossref_primary_10_1016_j_scib_2024_08_001
crossref_primary_10_1126_sciadv_adt7899
crossref_primary_10_1002_adfm_202313897
crossref_primary_10_1002_advs_202303504
crossref_primary_10_1038_s41467_024_48659_6
crossref_primary_10_1002_ange_202415400
crossref_primary_10_1016_j_cej_2024_148781
crossref_primary_10_1002_adom_202402653
crossref_primary_10_1039_D3SC06470K
crossref_primary_10_1002_ange_202312666
crossref_primary_10_1002_adfm_202316323
crossref_primary_10_1038_s41467_024_55680_2
crossref_primary_10_1002_adom_202402918
crossref_primary_10_1002_anie_202306471
crossref_primary_10_1039_D4SC02899F
crossref_primary_10_1016_j_solmat_2025_113400
crossref_primary_10_1002_ange_202421102
crossref_primary_10_1016_j_dyepig_2024_112128
crossref_primary_10_1002_anie_202316710
crossref_primary_10_1002_anie_202316479
crossref_primary_10_1002_adom_202302987
crossref_primary_10_1002_adom_202500384
crossref_primary_10_1002_ange_202420253
crossref_primary_10_1021_acsmaterialslett_4c00178
crossref_primary_10_1039_D4MH00634H
crossref_primary_10_1016_j_dyepig_2023_111678
crossref_primary_10_1002_ange_202408522
crossref_primary_10_1002_adfm_202409244
crossref_primary_10_1007_s40843_023_2826_2
crossref_primary_10_1002_adom_202302354
crossref_primary_10_1021_acsami_3c14514
crossref_primary_10_1002_ange_202306413
crossref_primary_10_1002_adom_202401671
crossref_primary_10_1002_ange_202414882
crossref_primary_10_1002_adom_202401754
crossref_primary_10_1002_anie_202500391
crossref_primary_10_1002_adom_202402960
crossref_primary_10_1002_advs_202405604
crossref_primary_10_1002_ange_202306471
crossref_primary_10_1002_adma_202411610
crossref_primary_10_1002_anie_202415400
crossref_primary_10_1002_ange_202318433
crossref_primary_10_3389_fchem_2023_1211345
crossref_primary_10_1002_anie_202313254
crossref_primary_10_1039_D3QM00498H
crossref_primary_10_1002_adom_202302811
crossref_primary_10_1002_adom_202301732
crossref_primary_10_1002_anie_202318433
crossref_primary_10_1002_cphc_202400955
crossref_primary_10_1002_adom_202400490
crossref_primary_10_1002_ange_202411464
crossref_primary_10_1016_j_cej_2024_152857
crossref_primary_10_1002_ange_202418770
crossref_primary_10_1007_s11426_024_2248_y
crossref_primary_10_1002_anie_202306413
crossref_primary_10_1002_adma_202307420
crossref_primary_10_1002_ange_202500391
crossref_primary_10_1002_adom_202400652
Cites_doi 10.1002/anie.202109335
10.1126/sciadv.abq2321
10.1002/adma.202201442
10.1016/j.carbon.2020.05.023
10.1021/jacs.7b10578
10.1038/s42004-022-00766-5
10.1016/j.cej.2021.132822
10.1038/s41467-018-07432-2
10.1038/s41566-021-00763-5
10.1002/adom.202100825
10.1038/s41586-019-1771-5
10.1021/acsami.2c10127
10.1002/adom.202101789
10.1021/jacs.0c10081
10.1021/acsami.2c02756
10.1039/D1SC02042K
10.1002/anie.202108283
10.1002/anie.202213585
10.1002/adom.202102092
10.1016/S0379-6779(02)01112-8
10.1002/adma.201505491
10.1002/anie.202200337
10.1002/adfm.201908677
10.1039/D2SC01543A
10.1002/anie.202212575
10.1002/adom.202201714
10.1002/jcc.22885
10.1002/adma.201803714
10.1002/adma.201803524
10.1002/adom.202002174
10.1002/adma.202004072
10.1002/wcms.19
10.1002/adom.201902142
10.1002/anie.202117181
10.1002/anie.202206916
10.1002/tcr.201800148
10.1002/anie.202202380
10.1002/adfm.202102017
10.1002/col.20020
10.1126/sciadv.abp9203
10.1002/adma.202201778
10.1016/j.cej.2022.139534
10.1002/anie.202216473
10.1021/acsami.1c03175
10.1038/s41566-022-01106-8
10.1038/s41566-020-00745-z
10.1002/anie.202007210
10.1002/anie.202205684
10.1002/anie.202201588
10.1002/cjoc.202000226
10.1016/j.cej.2021.131169
10.1038/s41566-019-0476-5
10.1002/anie.202107848
10.1002/adma.202104381
10.1021/acsami.6b15272
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202301018
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 37074074
10_1002_adma_202301018
ADMA202301018
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Fund of China
  funderid: 22135004; 52222308
– fundername: National Key Research and Development Program
  funderid: 2021YFB3602702
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2021B1515120041
– fundername: Guangdong Major Project of Basic and Applied Basic Research
  funderid: 2019B030302009
– fundername: National Science Fund of China
  grantid: 22135004
– fundername: Guangdong Major Project of Basic and Applied Basic Research
  grantid: 2019B030302009
– fundername: National Key Research and Development Program
  grantid: 2021YFB3602702
– fundername: National Science Fund of China
  grantid: 52222308
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2021B1515120041
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4398-160e469e3675047db2cb9ff15b353802ed8fcf2b8651481864cfb9185ab188763
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 05:29:36 EDT 2025
Sat Jul 26 02:33:39 EDT 2025
Thu Apr 03 07:04:46 EDT 2025
Tue Jul 01 02:33:33 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
Wed Jan 22 16:19:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords indolocarbazole
red emitters
BT.2020 coordinates
organic light-emitting diodes
multiple resonances
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4398-160e469e3675047db2cb9ff15b353802ed8fcf2b8651481864cfb9185ab188763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2750-0972
PMID 37074074
PQID 2842345805
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2803331581
proquest_journals_2842345805
pubmed_primary_37074074
crossref_primary_10_1002_adma_202301018
crossref_citationtrail_10_1002_adma_202301018
wiley_primary_10_1002_adma_202301018_ADMA202301018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020 2019 2016 2020 2018 2023; 8 13 28 32 140 17
2022 2022; 10 62
2003 2017; 137 9
2022 2021 2019 2021 2021 2021; 13 15 31 15 15 13
2011; 1
2019; 31
2020; 30
2021 2021 2022; 60 426 61
2022; 61
2022; 8
2019 2021 2022; 575 33 8
2023 2022 2022; 452 430 14
2020; 38
2022 2021 2022 2021 2022 2023; 10 60 34 9 61
2022 2020 2022; 61 142 34
2022; 10
2020 2021 2021 2022 2022 2022 2022; 59 31 9 61 61 61 61
2022 2004; 5 29
2012 2020; 33 165
2018 2019; 9 19
2021 2021; 60 12
2021 2021; 14 9
e_1_2_8_22_3
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_1_5
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_5_3
e_1_2_8_7_1
e_1_2_8_1_6
e_1_2_8_5_2
e_1_2_8_5_5
Chen H. (e_1_2_8_5_6) 2023
e_1_2_8_9_1
e_1_2_8_5_4
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_11_3
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_19_3
e_1_2_8_19_4
e_1_2_8_19_6
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_23_2
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_2_6
e_1_2_8_6_2
e_1_2_8_2_5
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_2_7
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_16_2
e_1_2_8_16_3
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_16_1
Zhang D. (e_1_2_8_19_5) 2021; 15
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_12_1
References_xml – volume: 5 29
  start-page: 149 267
  year: 2022 2004
  publication-title: Commun. Chem. Color Res. Appl.
– volume: 452 430 14
  year: 2023 2022 2022
  publication-title: Chem. Eng. J. Chem. Eng. J. ACS Appl. Mater. Interfaces
– volume: 14 9
  year: 2021 2021
  publication-title: ACS Appl. Mater. Interfaces Adv. Opt. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8 13 28 32 140 17
  start-page: 678 2777 1195 280
  year: 2020 2019 2016 2020 2018 2023
  publication-title: Adv. Opt. Mater. Nat. Photonics Adv. Mater. Adv. Mater. J. Am. Chem. Soc. Nat. Photonics
– volume: 13 15 31 15 15 13
  start-page: 5622 208 203
  year: 2022 2021 2019 2021 2021 2021
  publication-title: Chem. Sci. Nat. Photonics Adv. Mater. Nat. Photonics Nat. Photonics ACS Appl. Mater. Interfaces
– volume: 60 426 61
  year: 2021 2021 2022
  publication-title: Angew. Chem., Int. Ed. Chem. Eng. J. Angew. Chem., Int. Ed.
– volume: 1
  start-page: 153
  year: 2011
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 60 12
  start-page: 9408
  year: 2021 2021
  publication-title: Angew. Chem., Int. Ed. Chem. Sci.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 575 33 8
  start-page: 634
  year: 2019 2021 2022
  publication-title: Nature Adv. Mater. Sci. Adv.
– volume: 38
  start-page: 1223
  year: 2020
  publication-title: Chin. J. Chem.
– volume: 137 9
  start-page: 1079 4769
  year: 2003 2017
  publication-title: Synth. Met. ACS Appl. Mater. Interfaces
– volume: 59 31 9 61 61 61 61
  year: 2020 2021 2021 2022 2022 2022 2022
  publication-title: Angew. Chem., Int. Ed. Adv. Funct. Mater. Adv. Opt. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 10 60 34 9 61
  year: 2022 2021 2022 2021 2022 2023
  publication-title: Adv. Opt. Mater. Angew. Chem., Int. Ed. Adv. Mater. Adv. Opt. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 33 165
  start-page: 580 461
  year: 2012 2020
  publication-title: J. Comput. Chem. Carbon
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 9 19
  start-page: 4990 1611
  year: 2018 2019
  publication-title: Nat. Commun. Chem. Rec.
– volume: 61 142 34
  year: 2022 2020 2022
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. Adv. Mater.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 10 62
  year: 2022 2022
  publication-title: Adv. Opt. Mater. Angew. Chem., Int. Ed.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– ident: e_1_2_8_10_1
  doi: 10.1002/anie.202109335
– ident: e_1_2_8_11_3
  doi: 10.1126/sciadv.abq2321
– ident: e_1_2_8_5_3
  doi: 10.1002/adma.202201442
– ident: e_1_2_8_14_2
  doi: 10.1016/j.carbon.2020.05.023
– ident: e_1_2_8_1_5
  doi: 10.1021/jacs.7b10578
– ident: e_1_2_8_3_1
  doi: 10.1038/s42004-022-00766-5
– ident: e_1_2_8_16_2
  doi: 10.1016/j.cej.2021.132822
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-018-07432-2
– ident: e_1_2_8_19_2
  doi: 10.1038/s41566-021-00763-5
– ident: e_1_2_8_2_3
  doi: 10.1002/adom.202100825
– ident: e_1_2_8_11_1
  doi: 10.1038/s41586-019-1771-5
– ident: e_1_2_8_16_3
  doi: 10.1021/acsami.2c10127
– ident: e_1_2_8_5_1
  doi: 10.1002/adom.202101789
– ident: e_1_2_8_4_2
  doi: 10.1021/jacs.0c10081
– ident: e_1_2_8_23_1
  doi: 10.1021/acsami.2c02756
– ident: e_1_2_8_10_2
  doi: 10.1039/D1SC02042K
– ident: e_1_2_8_22_1
  doi: 10.1002/anie.202108283
– ident: e_1_2_8_2_5
  doi: 10.1002/anie.202213585
– ident: e_1_2_8_8_1
  doi: 10.1002/adom.202102092
– ident: e_1_2_8_17_1
  doi: 10.1016/S0379-6779(02)01112-8
– ident: e_1_2_8_1_3
  doi: 10.1002/adma.201505491
– ident: e_1_2_8_12_1
  doi: 10.1002/anie.202200337
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.201908677
– volume: 15
  year: 2021
  ident: e_1_2_8_19_5
  publication-title: Nat. Photonics
– ident: e_1_2_8_19_1
  doi: 10.1039/D2SC01543A
– ident: e_1_2_8_2_7
  doi: 10.1002/anie.202212575
– ident: e_1_2_8_6_1
  doi: 10.1002/adom.202201714
– ident: e_1_2_8_14_1
  doi: 10.1002/jcc.22885
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.201803714
– ident: e_1_2_8_19_3
  doi: 10.1002/adma.201803524
– ident: e_1_2_8_23_2
  doi: 10.1002/adom.202002174
– ident: e_1_2_8_1_4
  doi: 10.1002/adma.202004072
– ident: e_1_2_8_13_1
  doi: 10.1002/wcms.19
– ident: e_1_2_8_5_4
  doi: 10.1002/adom.202002174
– ident: e_1_2_8_1_1
  doi: 10.1002/adom.201902142
– ident: e_1_2_8_5_5
  doi: 10.1002/anie.202117181
– ident: e_1_2_8_2_6
  doi: 10.1002/anie.202206916
– ident: e_1_2_8_18_2
  doi: 10.1002/tcr.201800148
– ident: e_1_2_8_4_1
  doi: 10.1002/anie.202202380
– ident: e_1_2_8_2_2
  doi: 10.1002/adfm.202102017
– ident: e_1_2_8_3_2
  doi: 10.1002/col.20020
– ident: e_1_2_8_7_1
– ident: e_1_2_8_21_1
  doi: 10.1126/sciadv.abp9203
– ident: e_1_2_8_4_3
  doi: 10.1002/adma.202201778
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cej.2022.139534
– ident: e_1_2_8_6_2
  doi: 10.1002/anie.202216473
– ident: e_1_2_8_19_6
  doi: 10.1021/acsami.1c03175
– ident: e_1_2_8_1_6
  doi: 10.1038/s41566-022-01106-8
– ident: e_1_2_8_19_4
  doi: 10.1038/s41566-020-00745-z
– ident: e_1_2_8_2_1
  doi: 10.1002/anie.202007210
– ident: e_1_2_8_22_3
  doi: 10.1002/anie.202205684
– ident: e_1_2_8_2_4
  doi: 10.1002/anie.202201588
– ident: e_1_2_8_15_1
  doi: 10.1002/cjoc.202000226
– year: 2023
  ident: e_1_2_8_5_6
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_8_22_2
  doi: 10.1016/j.cej.2021.131169
– ident: e_1_2_8_1_2
  doi: 10.1038/s41566-019-0476-5
– ident: e_1_2_8_5_2
  doi: 10.1002/anie.202107848
– ident: e_1_2_8_11_2
  doi: 10.1002/adma.202104381
– ident: e_1_2_8_17_2
  doi: 10.1021/acsami.6b15272
SSID ssj0009606
Score 2.6625981
Snippet Polycyclic heteroaromatics with multi‐resonance (MR) characteristics are attractive materials for narrowband emitters in wide‐color‐gamut organic...
Polycyclic heteroaromatics with multi-resonance (MR) characteristics are attractive materials for narrowband emitters in wide-color-gamut organic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2301018
SubjectTerms BT.2020 coordinates
Color
Efficiency
Electroluminescence
Emission
Emitters
indolocarbazole
Light emitting diodes
Materials science
multiple resonances
Narrowband
Nitrogen
organic light‐emitting diodes
Perovskites
Quantum efficiency
red emitters
Resonance
Segments
Toluene
Title High‐Efficiency Narrowband Multi‐Resonance Emitter Fusing Indolocarbazole Donors for BT. 2020 Red Electroluminescence and Ultralong Operation Lifetime
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202301018
https://www.ncbi.nlm.nih.gov/pubmed/37074074
https://www.proquest.com/docview/2842345805
https://www.proquest.com/docview/2803331581
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1La9tAEMeHklN66PuhNi1bKPQkR1pJa-noJDZpaVIIMeQm9llMHCn4ccmpHyHnfLx-kszs2krcUgot-GCjlbSWZmb_K838FuBjJQpTplrGaBsuzgvtYoVhL-67XHIhU5doqnc-OhaH4_zLWXF2r4o_8CG6B27kGT5ek4NLNd-9g4ZK47lBKKEJOoVBmBK2SBWd3PGjSJ572F5WxJXIyzW1MeG7m7tvjkq_Sc1N5eqHntFjkOtOh4yT895yoXr66hee4__8qyfwaKVL2SAY0lN4YJtn8PAerfA53FBOyM8f10NPnaCSTXbsEY5KNob5Sl7cSu8DCOJh2fBiQqVCbES59d_Z58a0NHLOlLxqp5YdtE07mzMUzWzvtMewNwk7sYYNw8I8GDQpI19T5GF0gvGUHsq0eKRvlzbYLfs6cXYxubAvYDwanu4fxqulHWKNCgjnrSKxODG3mSC8fN8orlXlXFqoDCNwwq0pnXZclQIFHUH3cu1UhdpCqrQkiN5L2Graxr4G5iqTiLKyhkucrHKjRCV1aiVptTK1eQTx-tbWesU9p-U3pnUgNvOarnndXfMIPnXtLwPx448td9aWUq88f17jcM-zvCiTIoIP3Wb0WXoRIxvbLqlNkmUZdS-CV8HCulNlfRR1-ImAezv5Sx_qwcHRoPv15l92egvb9D3kIO_A1mK2tO9QaS3Ue-9NtzUlIQY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9NAEMdHUA7QA2-oaYFFQuLk1F4_Yh8DTZRCEqQqkbhZ-0QRqV2lyaUnPkLP_Xh8ks6sY5eAEBJIuThe22t7Zve_65nfArzN00RnoRI-2ob140RZX2Kz53dtLHgqQhsoynceT9LhLP74JWmiCSkXpuZDtBNu5BmuvSYHpwnpwxtqqNAOHIQamqhTt-EOLevtRlUnNwQpEugOtxclfp7GWcNtDPjh9vHb_dJvYnNbu7rOZ_AAZFPtOubkW2e9kh118QvR8b_u6yHc30hT1qtt6RHcMuVj2P0JWPgErigs5Mf3y74DT1DWJps4iqMUpWYumRf30icB4ngY1j-dU7YQG1B4_Vd2XOqKOs-lFBfVwrCjqqyW5wx1M3s_7TCsTcBOjGb9em0ebDcpKF9R48PoArMFzctUeKbPZ6Y2XTaaW7Oan5qnMBv0px-G_mZ1B1-hCMKhaxoYHJubKCXCfFdLrmRubZjICBvhgBudWWW5zPCtxsTdi5WVOcoLIcOMOHrPYKesSrMHzOY6SLPcaC5wvMq1THOhQiNIrmWhiT3wm3dbqA36nFbgWBQ1tJkX9MyL9pl78K4tf1ZDP_5Y8qAxlWLj_OcF9vg8ipMsSDx40-5Gt6VvMaI01ZrKBFEUUfU8eF6bWHupqIu6Dn8ecGcof6lD0Tsa99qtF_9y0Gu4O5yOR8XoePJpH-7R_3VI8gHsrJZr8xKF10q-cq51DTV7JSE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtNAEMdHUCRED3y3GAosEhInp-u1vbGPgSRqoQ2oaqTerP1EEakdpcmlJx6BM4_HkzBjJ24DQkgg5ZJ4bW_smdn_2jO_BXidy9RmkVEh2oYPk9T4UGPYC7s-UUKqyHND9c7HI3kwTt6fpWfXqvgbPkT7wI08o47X5OAz6_evoKHK1twglNAEnboJtxLJM7Lr_skVQIr0eU3bi9Mwl0m2xjZysb-5_-aw9JvW3JSu9dgzvAdq3esm5eRLZ7nQHXP5C9Dxf_7Wfbi7Eqas11jSA7jhyoewfQ1X-Ai-U1LIj6_fBjV2gmo22ahmOGpVWlaX8uJWeiFAFA_HBucTqhViQ0qu_8wOS1vR0DnX6rKaOtavymp-wVA1s7enHYa94ezEWTZoVubBqEkp-YZCD6MTjKf0VKbCI32cucZw2dHEu8Xk3D2G8XBw-u4gXK3tEBqUQDhxldzhzNzFkvjyXauF0bn3UapjDMFcOJt544XOJCo6ou4lxuscxYXSUUYUvR3YKqvSPQHmc8tlljsrFM5WhdUyVyZyisRaFrkkgHB9awuzAp_T-hvTokE2i4KuedFe8wDetO1nDfLjjy331pZSrFz_osDxXsRJmvE0gFftZnRaehOjSlctqQ2P45i6F8BuY2HtqeIuqjr8BCBqO_lLH4pe_7jXfnv6Lzu9hNuf-sPi6HD04RncoZ-bfOQ92FrMl-45qq6FflE71k_C9CPZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Efficiency+Narrowband+Multi-Resonance+Emitter+Fusing+Indolocarbazole+Donors+for+BT.+2020+Red+Electroluminescence+and+Ultralong+Operation+Lifetime&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Fan%2C+Tianjiao&rft.au=Du%2C+MingXu&rft.au=Jia%2C+Xiaoqin&rft.au=Wang%2C+Lu&rft.date=2023-07-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=30&rft.spage=e2301018&rft_id=info:doi/10.1002%2Fadma.202301018&rft_id=info%3Apmid%2F37074074&rft.externalDocID=37074074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon