Wearable Pressure Sensors for Pulse Wave Monitoring
Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long‐term and real‐time cardiovascular status monitoring. Owing to compelling...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 21; pp. e2109357 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long‐term and real‐time cardiovascular status monitoring. Owing to compelling characteristics, including light weight, wearing comfort, and high sensitivity to pulse pressures, physiological pulse waveforms can be precisely and continuously monitored by flexible pressure sensors for wearable health monitoring. Herein, an overview of wearable pressure sensors for human pulse wave monitoring is presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The conceptualizations and methods for the acquisition of physiological and pathological information related to the cardiovascular system are outlined. The biomechanics of arterial pulse waves and the working mechanism of various wearable pressure sensors, including triboelectric, piezoelectric, magnetoelastic, piezoresistive, capacitive, and optical sensors, are also subject to systematic debate. Exemple applications of pulse wave measurement based on microengineering structured devices are then summarized. Finally, a discussion of the opportunities and challenges that wearable pressure sensors face, as well as their potential as a wearable intelligent system for personalized healthcare is given in conclusion.
The current advances of wearable pressure sensors for human pulse wave monitoring are presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The biomechanics of arterial pulse waves, the working mechanism of various wearable pressure sensors, as well as opportunities and challenges are also concluded. |
---|---|
AbstractList | Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long‐term and real‐time cardiovascular status monitoring. Owing to compelling characteristics, including light weight, wearing comfort, and high sensitivity to pulse pressures, physiological pulse waveforms can be precisely and continuously monitored by flexible pressure sensors for wearable health monitoring. Herein, an overview of wearable pressure sensors for human pulse wave monitoring is presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The conceptualizations and methods for the acquisition of physiological and pathological information related to the cardiovascular system are outlined. The biomechanics of arterial pulse waves and the working mechanism of various wearable pressure sensors, including triboelectric, piezoelectric, magnetoelastic, piezoresistive, capacitive, and optical sensors, are also subject to systematic debate. Exemple applications of pulse wave measurement based on microengineering structured devices are then summarized. Finally, a discussion of the opportunities and challenges that wearable pressure sensors face, as well as their potential as a wearable intelligent system for personalized healthcare is given in conclusion. Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long-term and real-time cardiovascular status monitoring. Owing to compelling characteristics, including light weight, wearing comfort, and high sensitivity to pulse pressures, physiological pulse waveforms can be precisely and continuously monitored by flexible pressure sensors for wearable health monitoring. Herein, an overview of wearable pressure sensors for human pulse wave monitoring is presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The conceptualizations and methods for the acquisition of physiological and pathological information related to the cardiovascular system are outlined. The biomechanics of arterial pulse waves and the working mechanism of various wearable pressure sensors, including triboelectric, piezoelectric, magnetoelastic, piezoresistive, capacitive, and optical sensors, are also subject to systematic debate. Exemple applications of pulse wave measurement based on microengineering structured devices are then summarized. Finally, a discussion of the opportunities and challenges that wearable pressure sensors face, as well as their potential as a wearable intelligent system for personalized healthcare is given in conclusion.Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long-term and real-time cardiovascular status monitoring. Owing to compelling characteristics, including light weight, wearing comfort, and high sensitivity to pulse pressures, physiological pulse waveforms can be precisely and continuously monitored by flexible pressure sensors for wearable health monitoring. Herein, an overview of wearable pressure sensors for human pulse wave monitoring is presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The conceptualizations and methods for the acquisition of physiological and pathological information related to the cardiovascular system are outlined. The biomechanics of arterial pulse waves and the working mechanism of various wearable pressure sensors, including triboelectric, piezoelectric, magnetoelastic, piezoresistive, capacitive, and optical sensors, are also subject to systematic debate. Exemple applications of pulse wave measurement based on microengineering structured devices are then summarized. Finally, a discussion of the opportunities and challenges that wearable pressure sensors face, as well as their potential as a wearable intelligent system for personalized healthcare is given in conclusion. Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long‐term and real‐time cardiovascular status monitoring. Owing to compelling characteristics, including light weight, wearing comfort, and high sensitivity to pulse pressures, physiological pulse waveforms can be precisely and continuously monitored by flexible pressure sensors for wearable health monitoring. Herein, an overview of wearable pressure sensors for human pulse wave monitoring is presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The conceptualizations and methods for the acquisition of physiological and pathological information related to the cardiovascular system are outlined. The biomechanics of arterial pulse waves and the working mechanism of various wearable pressure sensors, including triboelectric, piezoelectric, magnetoelastic, piezoresistive, capacitive, and optical sensors, are also subject to systematic debate. Exemple applications of pulse wave measurement based on microengineering structured devices are then summarized. Finally, a discussion of the opportunities and challenges that wearable pressure sensors face, as well as their potential as a wearable intelligent system for personalized healthcare is given in conclusion. The current advances of wearable pressure sensors for human pulse wave monitoring are presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The biomechanics of arterial pulse waves, the working mechanism of various wearable pressure sensors, as well as opportunities and challenges are also concluded. |
Author | Xiao, Xiao Nashalian, Ardo Chen, Guorui Chen, Jun Wei, Wenxin Meng, Keyu Shen, Sophia |
Author_xml | – sequence: 1 givenname: Keyu surname: Meng fullname: Meng, Keyu organization: University of California, Los Angeles – sequence: 2 givenname: Xiao surname: Xiao fullname: Xiao, Xiao organization: University of California, Los Angeles – sequence: 3 givenname: Wenxin surname: Wei fullname: Wei, Wenxin organization: China Medical University – sequence: 4 givenname: Guorui surname: Chen fullname: Chen, Guorui organization: University of California, Los Angeles – sequence: 5 givenname: Ardo surname: Nashalian fullname: Nashalian, Ardo organization: University of California, Los Angeles – sequence: 6 givenname: Sophia surname: Shen fullname: Shen, Sophia organization: University of California, Los Angeles – sequence: 7 givenname: Xiao surname: Xiao fullname: Xiao, Xiao organization: University of California, Los Angeles – sequence: 8 givenname: Jun orcidid: 0000-0002-3439-0495 surname: Chen fullname: Chen, Jun email: jun.chen@ucla.edu organization: University of California, Los Angeles |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35044014$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLw0AURgdR7EO3LiXgxk3qvDLJLEt9QosFlS6HSXIjKWmmziRK_70T2ioUxNWFyznfvXwDdFybGhC6IHhEMKY3Ol_pEcWUYMmi-Aj1SURJyLGMjlG_24VS8KSHBs4tMcZSYHGKeizCnGPC-4gtQFudVhDMLTjXWgheoHbGuqAwNpi3lYNgoT8hmJm6bIwt6_czdFJovz_fzSF6u797nTyG0-eHp8l4GmacyTgEzCJdiIxAKuI0T5OoAH9VFDjXSU4jQeKcMyKTLE8Y-FdpytKIFBIwMAqaDdH1NndtzUcLrlGr0mVQVboG0zpFBSU-RlDu0asDdGlaW_vvPCUkI4KzjrrcUW26glytbbnSdqP2dXiAb4HMGucsFCorG92Upm6sLitFsOpaV13r6qd1r40OtH3yn4LcCl9lBZt_aDW-nY1_3W_gd5Jp |
CitedBy_id | crossref_primary_10_1080_00405000_2024_2356459 crossref_primary_10_1007_s12598_024_02890_8 crossref_primary_10_1002_aelm_202200782 crossref_primary_10_1021_acsami_3c08720 crossref_primary_10_1016_j_cej_2023_145825 crossref_primary_10_1063_5_0217328 crossref_primary_10_1002_adfm_202401415 crossref_primary_10_1016_j_cej_2023_143408 crossref_primary_10_1016_j_cej_2024_151660 crossref_primary_10_1002_adfm_202410360 crossref_primary_10_1016_j_ijbiomac_2024_138106 crossref_primary_10_1007_s42765_023_00302_7 crossref_primary_10_1109_TED_2024_3487081 crossref_primary_10_3390_bios13060630 crossref_primary_10_1039_D4TC03256J crossref_primary_10_3390_smartcities7010012 crossref_primary_10_3390_photonics9080557 crossref_primary_10_1002_smll_202207879 crossref_primary_10_1007_s11517_024_03082_3 crossref_primary_10_1002_adfm_202503693 crossref_primary_10_1021_acsanm_4c01654 crossref_primary_10_1016_j_cej_2024_149117 crossref_primary_10_1021_acsami_3c14281 crossref_primary_10_1016_j_cej_2023_143635 crossref_primary_10_1002_smll_202400593 crossref_primary_10_1021_acsaelm_3c01097 crossref_primary_10_1016_j_cej_2024_154812 crossref_primary_10_1039_D3TA01627G crossref_primary_10_3390_s23094457 crossref_primary_10_1039_D3RA05932D crossref_primary_10_1016_j_colsurfa_2023_132306 crossref_primary_10_1021_acsami_4c22301 crossref_primary_10_1115_1_4064211 crossref_primary_10_1007_s12274_024_6759_2 crossref_primary_10_1021_acs_langmuir_4c05344 crossref_primary_10_1007_s12274_023_5725_8 crossref_primary_10_1021_acsnano_4c06774 crossref_primary_10_1021_acsami_2c12240 crossref_primary_10_1021_acsami_3c15368 crossref_primary_10_3390_bios13010113 crossref_primary_10_1016_j_cej_2024_152984 crossref_primary_10_3390_bios13060656 crossref_primary_10_1002_adfm_202212083 crossref_primary_10_1007_s10570_022_05023_5 crossref_primary_10_1038_s41528_025_00388_6 crossref_primary_10_1002_adsr_202400185 crossref_primary_10_1002_adhm_202301838 crossref_primary_10_1021_acsami_4c00423 crossref_primary_10_1021_acsnano_4c15134 crossref_primary_10_1002_adfm_202214265 crossref_primary_10_1002_adfm_202306591 crossref_primary_10_1016_j_mser_2024_100804 crossref_primary_10_1021_acsami_2c23269 crossref_primary_10_1038_s41578_024_00729_3 crossref_primary_10_3390_ma17102463 crossref_primary_10_1088_1361_6579_acead2 crossref_primary_10_1039_D2NA00866A crossref_primary_10_1088_2631_8695_ada8f6 crossref_primary_10_1021_acsami_2c16730 crossref_primary_10_1002_adfm_202212093 crossref_primary_10_1002_bte2_20230005 crossref_primary_10_1021_acsaelm_2c01760 crossref_primary_10_1016_j_nanoen_2024_109977 crossref_primary_10_1038_s41528_023_00261_4 crossref_primary_10_1063_5_0102253 crossref_primary_10_3390_mi13101699 crossref_primary_10_1002_smo_20240008 crossref_primary_10_1021_acsnano_4c04291 crossref_primary_10_1002_aesr_202400116 crossref_primary_10_1002_smll_202207600 crossref_primary_10_1088_1361_6528_acf2a2 crossref_primary_10_1177_00952443241240076 crossref_primary_10_1002_adfm_202402707 crossref_primary_10_1038_s41378_024_00703_7 crossref_primary_10_1007_s11431_023_2550_4 crossref_primary_10_56712_latam_v4i4_1273 crossref_primary_10_1080_00405000_2024_2360758 crossref_primary_10_1002_admi_202200294 crossref_primary_10_1002_adsr_202400082 crossref_primary_10_1109_ACCESS_2024_3359058 crossref_primary_10_1021_acs_nanolett_3c04755 crossref_primary_10_1021_acs_nanolett_4c00817 crossref_primary_10_1021_acsami_4c22118 crossref_primary_10_1002_advs_202303114 crossref_primary_10_3390_nano13192630 crossref_primary_10_1007_s10118_023_2905_7 crossref_primary_10_3390_s24165354 crossref_primary_10_1063_5_0159162 crossref_primary_10_1039_D3TA00522D crossref_primary_10_1021_acsnano_3c11166 crossref_primary_10_1002_adma_202206933 crossref_primary_10_1021_acsaelm_5c00015 crossref_primary_10_1063_5_0204104 crossref_primary_10_1002_adem_202302214 crossref_primary_10_1007_s42114_023_00650_3 crossref_primary_10_1016_j_cej_2023_147075 crossref_primary_10_1002_admt_202300949 crossref_primary_10_1021_acsami_3c18203 crossref_primary_10_1016_j_nanoen_2024_109796 crossref_primary_10_1088_1361_6463_ad0e95 crossref_primary_10_1007_s00339_024_07329_6 crossref_primary_10_1021_acssensors_4c02716 crossref_primary_10_1021_acs_biomac_4c01709 crossref_primary_10_1021_acsami_3c09837 crossref_primary_10_1016_j_cej_2023_141527 crossref_primary_10_1002_adma_202200252 crossref_primary_10_1016_j_cej_2024_157399 crossref_primary_10_1109_JSEN_2024_3516773 crossref_primary_10_1002_adfm_202409242 crossref_primary_10_1109_JSEN_2024_3419243 crossref_primary_10_3390_bios12100863 crossref_primary_10_1016_j_nanoen_2025_110803 crossref_primary_10_1016_j_xcrp_2022_101093 crossref_primary_10_1063_5_0220902 crossref_primary_10_1002_aelm_202300021 crossref_primary_10_1021_acsaelm_2c00758 crossref_primary_10_1016_j_cis_2022_102828 crossref_primary_10_1007_s42765_022_00218_8 crossref_primary_10_1016_j_cej_2024_156292 crossref_primary_10_1021_acsami_3c08874 crossref_primary_10_1109_TED_2024_3401653 crossref_primary_10_1016_j_cej_2022_139815 crossref_primary_10_1093_nsr_nwae333 crossref_primary_10_1007_s40820_022_00999_y crossref_primary_10_1002_smtd_202402164 crossref_primary_10_1109_LSENS_2024_3512200 crossref_primary_10_1021_acsami_3c04526 crossref_primary_10_1016_j_compositesa_2022_107171 crossref_primary_10_3390_mi15101226 crossref_primary_10_1039_D4TC03434A crossref_primary_10_1002_adfm_202417715 crossref_primary_10_1007_s42242_024_00292_4 crossref_primary_10_1021_acsami_3c17605 crossref_primary_10_1063_5_0187539 crossref_primary_10_1088_1361_6439_ad4cf8 crossref_primary_10_1039_D3NR05372E crossref_primary_10_1021_acsami_2c17879 crossref_primary_10_1021_acsapm_3c00771 crossref_primary_10_1039_D2LC00921H crossref_primary_10_1038_s41528_024_00310_6 crossref_primary_10_1002_advs_202405501 crossref_primary_10_1002_admt_202400355 crossref_primary_10_1016_j_xcrp_2024_102047 crossref_primary_10_1021_acsami_4c22054 crossref_primary_10_1002_flm2_10 crossref_primary_10_1002_smll_202405520 crossref_primary_10_3390_nano13111702 crossref_primary_10_1021_acsnano_2c08166 crossref_primary_10_55905_cuadv16n5_005 crossref_primary_10_1021_acsnano_3c08357 crossref_primary_10_1002_admt_202200691 crossref_primary_10_1039_D1CS00858G crossref_primary_10_1109_JSEN_2024_3411716 crossref_primary_10_1039_D3MH00718A crossref_primary_10_1002_app_54746 crossref_primary_10_1002_adma_202306350 crossref_primary_10_1002_adma_202407859 crossref_primary_10_1002_adma_202212161 crossref_primary_10_1007_s12274_023_5974_6 crossref_primary_10_1021_acsanm_4c01940 crossref_primary_10_1109_LSENS_2023_3307114 crossref_primary_10_1002_adma_202202478 crossref_primary_10_1002_admt_202300079 crossref_primary_10_1002_smll_202202928 crossref_primary_10_1021_acsnano_3c09310 crossref_primary_10_1109_JSEN_2024_3522380 crossref_primary_10_3390_s23135956 crossref_primary_10_1002_aelm_202300201 crossref_primary_10_1002_advs_202413141 crossref_primary_10_1016_j_measurement_2024_115382 crossref_primary_10_1007_s42114_024_00906_6 crossref_primary_10_1021_acssensors_3c02180 crossref_primary_10_1002_adfm_202402356 crossref_primary_10_1021_acsami_2c05610 crossref_primary_10_3390_nano13040645 crossref_primary_10_1038_s41378_022_00465_0 crossref_primary_10_3390_s22197566 crossref_primary_10_1021_acsanm_4c06040 crossref_primary_10_1002_smll_202405301 crossref_primary_10_1021_acsami_2c06701 crossref_primary_10_1021_acs_iecr_4c04197 crossref_primary_10_1002_smtd_202200830 crossref_primary_10_3390_app13095664 crossref_primary_10_1155_2022_8312564 crossref_primary_10_1039_D3EE01408H crossref_primary_10_1021_acs_nanolett_4c04215 crossref_primary_10_1088_1402_4896_ad3405 crossref_primary_10_1021_acsaelm_4c00210 crossref_primary_10_1002_admt_202302162 crossref_primary_10_1007_s42235_025_00670_3 crossref_primary_10_1016_j_cej_2024_153533 crossref_primary_10_1155_2023_5079256 crossref_primary_10_1002_advs_202416318 crossref_primary_10_1021_acsnano_2c12606 crossref_primary_10_1126_sciadv_adh0615 crossref_primary_10_1021_acsapm_2c01696 crossref_primary_10_1039_D2TA10002A crossref_primary_10_1016_j_matt_2025_101992 crossref_primary_10_3389_fbioe_2023_1335188 crossref_primary_10_1039_D3DT02587J crossref_primary_10_1016_j_chip_2024_100116 crossref_primary_10_1002_INMD_20230037 crossref_primary_10_1039_D2NR06084A crossref_primary_10_1021_acsami_4c00163 crossref_primary_10_1002_advs_202203057 crossref_primary_10_1021_acsami_4c00161 crossref_primary_10_1002_admt_202301077 crossref_primary_10_1093_nsr_nwae158 crossref_primary_10_1002_admt_202302172 crossref_primary_10_1007_s40820_024_01488_0 crossref_primary_10_1016_j_nxmate_2023_100049 crossref_primary_10_1016_j_cej_2024_154731 crossref_primary_10_1016_j_sna_2024_115364 crossref_primary_10_1039_D3CC04310J crossref_primary_10_1007_s12668_024_01358_4 crossref_primary_10_1097_MBP_0000000000000711 crossref_primary_10_1002_smll_202311498 crossref_primary_10_3390_bios12121131 crossref_primary_10_3390_ma17010123 crossref_primary_10_1002_VIW_20220024 crossref_primary_10_1021_acsmaterialsau_3c00050 crossref_primary_10_3390_chemosensors10110484 crossref_primary_10_1002_VIW_20220027 crossref_primary_10_1002_inf2_12552 crossref_primary_10_1021_acsami_4c02466 crossref_primary_10_1016_j_apsusc_2023_156328 crossref_primary_10_1016_j_isci_2023_107397 crossref_primary_10_1002_smll_202310032 crossref_primary_10_1038_s41467_024_52462_8 crossref_primary_10_1021_acsami_3c02255 crossref_primary_10_1002_smll_202310038 crossref_primary_10_1002_smtd_202300170 crossref_primary_10_1007_s40820_025_01692_6 crossref_primary_10_1016_j_compag_2024_109183 crossref_primary_10_1021_acsnano_3c10324 crossref_primary_10_1109_JSEN_2023_3323318 crossref_primary_10_1016_j_cej_2024_153745 crossref_primary_10_1021_acsnano_3c07283 crossref_primary_10_1021_acsami_3c12043 crossref_primary_10_3390_electronics12112531 crossref_primary_10_1007_s42114_022_00610_3 crossref_primary_10_1002_adfm_202203585 crossref_primary_10_1007_s42114_024_00949_9 crossref_primary_10_1109_ACCESS_2025_3532492 crossref_primary_10_20517_ss_2024_05 crossref_primary_10_1002_adma_202403880 crossref_primary_10_1016_j_measurement_2024_114905 crossref_primary_10_1109_JEDS_2023_3270583 crossref_primary_10_3390_biomedicines12102307 crossref_primary_10_3390_polym14183875 crossref_primary_10_1002_adfm_202403163 crossref_primary_10_1038_s43246_024_00480_w crossref_primary_10_3390_s24113395 crossref_primary_10_1007_s42765_022_00212_0 crossref_primary_10_1039_D2TC00889K crossref_primary_10_1002_adma_202409071 crossref_primary_10_1016_j_nanoen_2024_110188 crossref_primary_10_1002_advs_202309407 crossref_primary_10_1039_D4TA04154B crossref_primary_10_1039_D3LC00164D crossref_primary_10_1016_j_nanoen_2023_108606 crossref_primary_10_1002_admt_202201703 crossref_primary_10_1002_sus2_207 crossref_primary_10_1039_D4TA07129H crossref_primary_10_1016_j_cej_2023_146464 crossref_primary_10_1007_s10853_024_10509_7 crossref_primary_10_1021_acs_iecr_4c00547 crossref_primary_10_1002_sus2_244 crossref_primary_10_1016_j_mtcomm_2025_112187 crossref_primary_10_3390_bioengineering12030252 crossref_primary_10_1016_j_mattod_2022_07_012 crossref_primary_10_1002_adhm_202303461 crossref_primary_10_1016_j_nantod_2024_102469 crossref_primary_10_3390_s25051348 crossref_primary_10_1007_s40820_024_01534_x crossref_primary_10_1016_j_cej_2024_157878 crossref_primary_10_1016_j_mattod_2022_07_009 crossref_primary_10_1021_acsami_3c00432 crossref_primary_10_1016_j_entcom_2024_100838 crossref_primary_10_1021_acsaelm_4c00086 crossref_primary_10_1002_adfm_202416482 crossref_primary_10_1021_acs_nanolett_2c01486 crossref_primary_10_1016_j_cej_2024_157865 crossref_primary_10_1109_TBME_2024_3434344 crossref_primary_10_3390_chemosensors11080459 crossref_primary_10_1021_acsami_2c21885 crossref_primary_10_1021_acsanm_3c03619 crossref_primary_10_1002_adma_202310102 crossref_primary_10_3390_s23052479 crossref_primary_10_1002_adma_202313612 crossref_primary_10_1002_adma_202402542 crossref_primary_10_1002_smll_202304752 crossref_primary_10_1002_smll_202303301 crossref_primary_10_1007_s42114_024_00959_7 crossref_primary_10_3390_jpm12111768 crossref_primary_10_1002_admt_202400144 crossref_primary_10_1109_JSEN_2023_3334868 crossref_primary_10_1016_j_ijbiomac_2024_134746 crossref_primary_10_1039_D2CS00207H crossref_primary_10_1039_D4CS00220B crossref_primary_10_1039_D4TC01223B crossref_primary_10_1109_JSEN_2024_3359279 crossref_primary_10_1002_adfm_202312692 crossref_primary_10_1002_admt_202401365 crossref_primary_10_1002_adfm_202316314 crossref_primary_10_1002_admt_202400035 crossref_primary_10_1039_D3TC02890A crossref_primary_10_29026_oes_2024_240009 crossref_primary_10_1021_acssensors_4c03572 crossref_primary_10_1021_acsaelm_4c00184 crossref_primary_10_29026_oes_2024_240005 crossref_primary_10_3390_act13010042 crossref_primary_10_1002_admt_202301480 crossref_primary_10_1021_acsaelm_4c01159 crossref_primary_10_1007_s10854_023_10535_2 crossref_primary_10_1021_acsnano_3c09766 crossref_primary_10_1016_j_jcis_2022_09_096 crossref_primary_10_1039_D2TC02177C crossref_primary_10_1021_acs_chemmater_3c00453 crossref_primary_10_1002_adfm_202407975 crossref_primary_10_1109_JSEN_2024_3467995 crossref_primary_10_3390_ma15155185 crossref_primary_10_1007_s42765_024_00417_5 crossref_primary_10_1039_D3MH02074F crossref_primary_10_1016_j_mser_2025_100971 crossref_primary_10_1039_D2TA04433A crossref_primary_10_1002_pssa_202300128 crossref_primary_10_1002_smll_202303234 crossref_primary_10_1021_acsami_4c06546 crossref_primary_10_3390_bios12111057 crossref_primary_10_1016_j_measurement_2024_116271 crossref_primary_10_3390_su152115444 crossref_primary_10_1002_fle2_12009 crossref_primary_10_1021_acsami_4c18412 crossref_primary_10_1021_acssensors_4c02141 crossref_primary_10_1021_acsaelm_4c00288 crossref_primary_10_1016_j_nanoen_2023_108824 crossref_primary_10_1109_LED_2024_3496859 crossref_primary_10_1021_acsami_4c15197 crossref_primary_10_1038_s43246_024_00518_z crossref_primary_10_3390_molecules28041627 crossref_primary_10_1016_j_carbpol_2024_123015 crossref_primary_10_1002_adma_202312596 crossref_primary_10_1080_09544828_2024_2307299 crossref_primary_10_1002_adsr_202300158 crossref_primary_10_1039_D4TC01611D crossref_primary_10_1002_adfm_202412703 crossref_primary_10_1021_acs_analchem_2c04291 crossref_primary_10_3390_polym15122736 crossref_primary_10_1063_5_0202910 crossref_primary_10_1021_acsanm_4c00286 crossref_primary_10_1002_smtd_202401368 crossref_primary_10_1038_s41528_022_00226_z crossref_primary_10_1007_s40820_023_01260_w crossref_primary_10_1007_s12274_023_5837_1 crossref_primary_10_1002_cmt2_33 crossref_primary_10_1039_D2NA00339B crossref_primary_10_1002_smtd_202201340 crossref_primary_10_1007_s42114_023_00701_9 crossref_primary_10_1016_j_jallcom_2024_175576 crossref_primary_10_1002_adfm_202406022 crossref_primary_10_1021_acsnano_2c09933 crossref_primary_10_1039_D3MH01999C crossref_primary_10_1016_j_sna_2024_115858 crossref_primary_10_1021_acsanm_3c02020 crossref_primary_10_1002_admt_202301602 crossref_primary_10_1002_adfm_202422733 crossref_primary_10_1002_aelm_202201333 crossref_primary_10_1002_adma_202209673 crossref_primary_10_1002_smll_202407168 crossref_primary_10_1007_s42765_024_00412_w crossref_primary_10_1007_s40843_023_2619_7 crossref_primary_10_1007_s40843_023_2849_6 crossref_primary_10_1016_j_mser_2024_100892 crossref_primary_10_1002_adma_202403905 crossref_primary_10_3390_bios12080651 crossref_primary_10_1002_adfm_202410661 crossref_primary_10_1021_acsami_2c10226 crossref_primary_10_1002_advs_202305672 crossref_primary_10_1002_advs_202305552 crossref_primary_10_1002_agt2_522 crossref_primary_10_1109_ACCESS_2024_3524614 crossref_primary_10_1038_s41598_022_19096_6 crossref_primary_10_1021_acsami_3c07589 crossref_primary_10_1021_acsnano_4c05851 crossref_primary_10_1002_aesr_202300245 crossref_primary_10_1002_admt_202202057 crossref_primary_10_1002_admt_202201088 crossref_primary_10_1021_acsami_3c05281 crossref_primary_10_1088_1361_6439_acfdb5 crossref_primary_10_1088_1361_6579_ad838d crossref_primary_10_1038_s44222_024_00175_4 crossref_primary_10_1039_D5TA00742A crossref_primary_10_1186_s12938_024_01201_7 crossref_primary_10_3390_bios15010005 crossref_primary_10_1080_09205063_2024_2334974 crossref_primary_10_1016_j_cej_2024_157332 crossref_primary_10_1038_s41467_024_49864_z crossref_primary_10_3390_mi14081638 crossref_primary_10_1002_admt_202402052 crossref_primary_10_1021_acs_chemmater_4c00966 crossref_primary_10_1016_j_sna_2023_114547 crossref_primary_10_3390_s24165091 crossref_primary_10_1088_1361_6528_ad93df crossref_primary_10_1007_s40820_025_01656_w crossref_primary_10_1088_2399_6528_ad7d5d crossref_primary_10_1002_pat_6264 crossref_primary_10_1002_adfm_202409602 crossref_primary_10_1021_acsnano_4c04100 crossref_primary_10_3390_ma16237428 crossref_primary_10_1021_acsami_3c09587 crossref_primary_10_1109_JBHI_2024_3423461 crossref_primary_10_1007_s44258_023_00001_3 crossref_primary_10_1021_acsami_3c09580 crossref_primary_10_1016_j_matdes_2023_112115 crossref_primary_10_1016_j_nanoen_2023_108642 crossref_primary_10_1016_j_nanoen_2022_107282 crossref_primary_10_1002_adfm_202211983 crossref_primary_10_1002_admt_202301407 crossref_primary_10_1002_adem_202201678 crossref_primary_10_3390_bios15030191 crossref_primary_10_3390_app13137473 crossref_primary_10_1002_adfm_202300299 crossref_primary_10_1002_EXP_20230109 crossref_primary_10_1080_14686996_2024_2311635 crossref_primary_10_1038_s41528_022_00191_7 crossref_primary_10_1109_JSEN_2024_3403522 crossref_primary_10_1002_aelm_202400852 crossref_primary_10_1039_D3MH00325F crossref_primary_10_3390_bios13080787 crossref_primary_10_1021_acsnano_3c05797 crossref_primary_10_1016_j_cej_2024_148950 crossref_primary_10_1021_acsami_4c09659 crossref_primary_10_1088_1361_6528_acd19a crossref_primary_10_1039_D2RA06487A crossref_primary_10_1002_admt_202301895 crossref_primary_10_1002_adfm_202416163 crossref_primary_10_1002_adsr_202300162 crossref_primary_10_1038_s41528_023_00244_5 crossref_primary_10_1002_adfm_202404064 crossref_primary_10_1002_adsu_202500075 crossref_primary_10_1039_D4TA07127A |
Cites_doi | 10.1002/aelm.201600356 10.1038/s41587-021-00948-x 10.1021/acsami.9b09265 10.3390/polym11091433 10.1002/adma.201703456 10.1016/j.matt.2021.03.005 10.1002/adfm.201402987 10.1016/S0140-6736(16)31134-5 10.1021/acsami.9b06260 10.1021/acsami.0c22784 10.1016/j.bspc.2016.09.013 10.1038/s41467-020-14814-y 10.1016/j.nanoen.2018.05.020 10.1126/sciadv.1500661 10.1016/j.bios.2021.113329 10.1016/j.nanoen.2012.01.004 10.1016/S0140-6736(09)61457-4 10.1002/adfm.201802629 10.1038/nature12314 10.1126/science.1124005 10.1126/sciadv.aay2840 10.1177/1474515119826510 10.1002/adfm.202102378 10.1161/01.HYP.33.6.1392 10.1021/acsami.8b19214 10.1161/CIR.0000000000000534 10.1016/S0140-6736(13)61452-X 10.1152/ajpheart.00175.2002 10.1002/admt.202070056 10.1364/OE.20.011740 10.1016/j.cplett.2009.06.096 10.1016/S0140-6736(14)60147-1 10.1002/adfm.201907312 10.1016/j.bios.2020.112078 10.1016/j.mseb.2014.12.009 10.1002/adma.202104178 10.1002/adma.202100859 10.1016/S0140-6736(12)60525-X 10.1016/j.trechm.2021.01.001 10.1016/j.ijleo.2012.11.044 10.1021/nl300988z 10.1117/1.JBO.18.5.057006 10.1126/sciadv.abl3742 10.1039/C9TC05392A 10.1016/j.scib.2020.10.002 10.1016/S0140-6736(00)02636-2 10.1088/1361-665X/aadff5 10.1038/s41467-021-27066-1 10.1002/smll.201800819 10.1021/acsnano.7b07613 10.1002/adfm.201803413 10.1038/s41551-016-0008 10.1007/s10916-018-0901-1 10.1126/scirobotics.aai7529 10.1016/j.tibtech.2020.12.011 10.1002/adfm.201907091 10.1021/acsami.9b07465 10.1016/S2213-8587(17)30039-6 10.1016/j.nanoen.2021.106321 10.1002/adfm.201805045 10.1002/adma.201904765 10.1002/adfm.201806388 10.1002/smll.201804559 10.1002/adma.201702308 10.1016/j.ctim.2006.06.004 10.1002/chem.201803369 10.1038/nmat2896 10.1016/j.bios.2020.112714 10.1038/s41928-020-0422-z 10.1038/s41563-020-00902-3 10.1016/S0140-6736(19)31145-6 10.3390/jcm9041203 10.1039/D1CC02091A 10.1002/adfm.201903100 10.1002/smll.201801657 10.1126/sciadv.abe2943 10.1142/S0192415X09006941 10.1016/S0140-6736(15)01225-8 10.1016/j.matt.2021.01.006 10.34133/2020/7158953 10.1002/adhm.202001023 10.1016/j.nanoen.2020.104941 10.1126/science.aba5132 10.1002/adhm.202100975 10.1002/adfm.201909954 10.1002/adma.201603143 10.1038/s41928-020-0415-y 10.1088/1361-6528/ab1a86 10.1038/s41467-020-14446-2 10.1109/TMAG.2011.2156771 10.1002/adma.201304248 10.1097/BOR.0000000000000453 10.1038/s41467-020-18503-8 10.1109/JSEN.2014.2353640 10.1016/j.ahj.2016.11.006 10.1021/acsami.0c12561 10.1016/j.sna.2018.10.040 10.1038/ncomms6745 10.1016/j.mee.2011.01.045 10.1088/1361-6528/aaa855 10.1016/j.nanoen.2014.11.034 10.3390/s19133011 10.1021/acsami.9b07636 10.1038/ncomms2832 10.1364/OPTICA.4.001285 10.1126/sciadv.1501856 10.1007/s00421-019-04142-5 10.1016/j.amjhyper.2004.10.009 10.1021/acsnano.8b01557 10.1002/adma.201503558 10.1021/acsami.9b12747 10.1088/1361-6528/ab3695 10.1002/admt.201700087 10.1039/C5TC01723H 10.1161/hy1001.096106 10.1126/sciadv.abd3716 10.1002/admi.201800403 10.1021/acsami.7b01979 10.1016/j.matt.2021.09.012 10.1007/s10278-014-9722-z 10.1021/acsami.0c14314 10.3390/s140713088 10.1016/S0140-6736(21)00684-X 10.1038/s41928-021-00663-0 10.1126/sciadv.abe3778 10.1016/j.matt.2021.06.034 10.1002/adfm.201500856 10.1002/adhm.202100116 10.1016/S2213-8587(18)30267-5 10.1021/acsami.6b08172 10.1002/adma.201403807 10.1002/inf2.12060 10.1109/JSEN.2017.2731788 10.1038/ncomms5496 10.1021/acsami.9b23110 10.1016/j.matt.2019.12.025 10.1038/nmat3380 10.1002/adfm.201808247 10.1038/s41563-021-01093-1 10.1016/j.nanoen.2019.03.005 10.1002/adma.201703700 10.1002/adma.202101262 10.1039/c3ee41063c 10.1002/adfm.201600008 10.1002/adfm.202010962 10.1039/C5EE01532D 10.1002/adma.201603679 10.1002/adma.201302240 10.1016/j.bios.2020.112064 10.1038/s41467-019-14054-9 10.1126/sciadv.abi9283 10.1038/ncomms4132 10.1002/smtd.202001041 10.1002/smll.201904774 10.1002/adom.202100270 10.1021/acsami.9b03261 10.1016/j.bios.2019.05.002 10.1038/s41551-018-0335-6 10.1038/s41928-020-0428-6 10.1002/adhm.201901735 10.1038/nmat2834 10.1021/acsami.9b21197 10.1007/s12274-017-1731-z 10.1126/sciadv.aas9530 10.1002/adfm.201902898 10.1002/adfm.202105482 10.1109/TIM.2006.873784 10.1021/acsnano.1c10676 10.1002/adom.202001815 10.1021/acsami.7b16611 10.1038/s41551-021-00723-y 10.1038/s41467-020-19059-3 10.1002/jbio.201700263 10.1002/adma.201404794 10.1021/acsaem.1c02465 10.1007/s41315-018-0060-z 10.1016/j.nanoen.2020.104706 10.1016/j.bbe.2014.02.001 10.1109/TIM.2014.2312512 10.1134/1.1595194 10.1039/D1TA02518J 10.1109/TBME.2018.2873754 10.3390/bios11040126 10.3390/s17010111 10.1126/sciadv.aav9653 10.1016/S0140-6736(18)30309-X 10.1038/s41551-018-0287-x 10.1002/adma.201305182 10.1002/adfm.201504755 10.1021/acsnano.0c01804 10.1038/nmat4671 10.1002/adfm.201704641 10.1002/adma.201802359 10.1038/nrcardio.2015.82 10.1002/adfm.201400712 10.3390/bios5030602 10.1088/0967-3334/31/1/R01 10.1177/1753944717743920 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202109357 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 35044014 10_1002_adma_202109357 ADMA202109357 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: 2021 Hellman Fellow Research |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4397-e035af6c1eb67bdb85fe4406f0da8d25617d43198cd83e9352b3b51f9e0e32ea3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 02:57:25 EDT 2025 Fri Jul 25 04:18:46 EDT 2025 Thu Apr 03 07:04:03 EDT 2025 Tue Jul 01 02:33:12 EDT 2025 Thu Apr 24 22:50:21 EDT 2025 Wed Jan 22 16:24:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | microengineering personalized healthcare cardiovascular diseases pulse signals pressure sensors wearable electronics |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4397-e035af6c1eb67bdb85fe4406f0da8d25617d43198cd83e9352b3b51f9e0e32ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3439-0495 |
PMID | 35044014 |
PQID | 2669316434 |
PQPubID | 2045203 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2621256624 proquest_journals_2669316434 pubmed_primary_35044014 crossref_citationtrail_10_1002_adma_202109357 crossref_primary_10_1002_adma_202109357 wiley_primary_10_1002_adma_202109357_ADMA202109357 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 284 2013; 4 2021; 66 2019; 11 2019; 15 2016; 388 2016; 387 2014; 26 2020; 16 2019; 19 2019; 18 2013; 124 2020; 14 2014; 24 2020; 12 2020; 11 2012; 12 2018; 42 2012; 11 2013; 6 2009; 477 2018; 6 2018; 2 2018; 5 2018; 4 2003; 48 2014; 14 2019; 29 2018; 30 2021; 397 2012; 379 2019; 394 2012; 20 2010; 9 2003; 284 2019; 7 2018; 29 2018; 28 2010; 31 2019; 3 2010; 2010 2019; 5 2019; 31 2019; 30 2000; 356 2019; 2 2006; 55 2017; 136 2016; 15 2018; 27 2007; 15 2018; 24 2021; 57 2015; 193 2016; 1 2020; 2020 2016; 2 2020; 30 2020; 154 1999; 33 2011; 88 2020; 155 2001; 38 2018; 12 2016; 28 2018; 11 2014; 383 2018; 10 2016; 26 2005; 18 2016; 8 2014; 34 2018; 14 2017; 5 2017; 1 2013; 25 2017; 2 2021; 20 2017; 4 2019; 59 2014; 63 2017; 9 2013; 18 2020; 6 2017; 31 2020; 5 2014; 5 2021; 31 2020; 3 2020; 2 2021; 33 2019; 66 2021; 39 2020; 370 2020; 9 2019; 119 2021; 9 2015; 12 2015; 1 2021; 7 2015; 15 2015; 14 2021; 5 2021; 4 2015; 5 2021; 3 2021; 89 2021; 2 2015; 3 2009; 374 2013; 382 2017; 29 2021; 187 1999; 1 2015; 8 2006; 312 2021; 13 2015; 25 2021; 15 2021; 10 2018; 391 2015; 28 2015; 27 2021; 12 2021; 11 2012; 1 2020; 74 2021 2017; 17 2020; 72 2021; 171 2019; 137 2013; 499 2017; 185 2018; 50 2011; 47 2009; 37 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_15_1 e_1_2_8_38_1 Chen P. (e_1_2_8_51_1) 1999 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_14_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_27_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 Castaneda D. (e_1_2_8_55_1) 2018; 4 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 Lee Q. Y. (e_1_2_8_42_1) 2010; 2010 e_1_2_8_16_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 Xiao X. (e_1_2_8_37_1) 2021; 2 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_200_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_201_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 374 start-page: 1677 year: 2009 publication-title: Lancet – volume: 397 start-page: 2385 year: 2021 publication-title: Lancet – volume: 2 start-page: 687 year: 2018 publication-title: Nat. Biomed. Eng. – volume: 382 start-page: 644 year: 2013 publication-title: Lancet – volume: 356 start-page: 737 year: 2000 publication-title: Lancet – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 6037 year: 2017 publication-title: IEEE Sens. J. – volume: 11 start-page: 209 year: 2020 publication-title: Nat. Commun. – volume: 7 year: 2019 publication-title: J. Mater. Chem. C – volume: 9 start-page: 1203 year: 2020 publication-title: J. Clin. Med. – volume: 9 year: 2020 publication-title: Adv. Healthcare Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 193 start-page: 121 year: 2015 publication-title: Mater. Sci. Eng., B – volume: 89 year: 2021 publication-title: Nano Energy – volume: 14 year: 2018 publication-title: Small – volume: 12 start-page: 2346 year: 2018 publication-title: ACS Nano – volume: 20 year: 2012 publication-title: Opt. Express – volume: 12 start-page: 3964 year: 2018 publication-title: ACS Nano – volume: 55 start-page: 869 year: 2006 publication-title: IEEE Trans. Instrum. Meas. – volume: 33 start-page: 1392 year: 1999 publication-title: Hypertension – volume: 4 start-page: 845 year: 2021 publication-title: Matter – volume: 25 start-page: 5997 year: 2013 publication-title: Adv. Mater. – volume: 388 start-page: 2665 year: 2016 publication-title: Lancet – volume: 187 year: 2021 publication-title: Biosens. Bioelectron. – volume: 499 start-page: 458 year: 2013 publication-title: Nature – volume: 4 start-page: 2886 year: 2021 publication-title: Matter – volume: 370 start-page: 961 year: 2020 publication-title: Science – volume: 6 start-page: 2631 year: 2013 publication-title: Energy Environ. Sci. – volume: 11 start-page: 1124 year: 2018 publication-title: Nano Res. – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 6 start-page: 756 year: 2018 publication-title: Lancet Diabetes Endocrinol. – volume: 12 start-page: 85 year: 2018 publication-title: Ther. Adv. Cardiovasc. Dis. – volume: 39 start-page: 1078 year: 2021 publication-title: Trend Biotechnol. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 30 year: 2019 publication-title: Nanotechnology – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 0008 year: 2017 publication-title: Nat. Biomed. Eng. – volume: 66 start-page: 1412 year: 2019 publication-title: IEEE Trans. Biomed. Eng. – volume: 25 start-page: 3203 year: 2015 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 2250 year: 2015 publication-title: Energy Environ. – volume: 3 start-page: 9594 year: 2015 publication-title: J. Mater. Chem. C – volume: 14 year: 2014 publication-title: Sensors – volume: 27 start-page: 634 year: 2015 publication-title: Adv. Mater. – volume: 24 start-page: 5427 year: 2014 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 1670 year: 2021 publication-title: Nat. Mater. – volume: 29 year: 2018 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 563 year: 2020 publication-title: Nat. Electron. – volume: 38 start-page: 932 year: 2001 publication-title: Hypertension – volume: 5 start-page: 602 year: 2015 publication-title: Biosensors – volume: 27 start-page: 1316 year: 2015 publication-title: Adv. Mater. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 136 year: 2017 publication-title: Circulation – volume: 28 start-page: 9512 year: 2016 publication-title: Adv. Mater. – volume: 379 start-page: 2243 year: 2012 publication-title: Lancet – volume: 72 year: 2020 publication-title: Nano Energy – volume: 50 start-page: 79 year: 2018 publication-title: Nano Energy – volume: 66 start-page: 490 year: 2021 publication-title: Sci. Bull. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 63 start-page: 2620 year: 2014 publication-title: IEEE Trans. Instrum. Meas. – volume: 11 year: 2018 publication-title: J. Biophotonics – volume: 394 start-page: 639 year: 2019 publication-title: Lancet – volume: 2010 start-page: 1930 year: 2010 publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. – volume: 39 start-page: 1228 year: 2021 publication-title: Nat. Biotechnol. – volume: 5 year: 2020 publication-title: Adv. Mater. Technol. – volume: 11 start-page: 1002 year: 2020 publication-title: Nat. Commun. – volume: 42 start-page: 43 year: 2018 publication-title: J. Med. Syst. – volume: 11 start-page: 4683 year: 2020 publication-title: Nat. Commun. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 1 start-page: 328 year: 2012 publication-title: Nano Energy – volume: 119 start-page: 1525 year: 2019 publication-title: Eur. J. Appl. Physiol. – volume: 18 year: 2013 publication-title: J. Biomed. Opt. – volume: 3 start-page: 58 year: 2019 publication-title: Nat. Biomed. Eng. – volume: 124 start-page: 3954 year: 2013 publication-title: Optik – volume: 27 start-page: 7365 year: 2015 publication-title: Adv. Mater. – volume: 19 start-page: 3011 year: 2019 publication-title: Sensors – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 477 start-page: 231 year: 2009 publication-title: Chem. Phys. Lett. – volume: 155 year: 2020 publication-title: Biosens. Bioelectron. – volume: 28 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 279 year: 2021 publication-title: Trends Chem. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 5 year: 2021 publication-title: Small Methods – volume: 12 start-page: 6755 year: 2021 publication-title: Nat. Commun. – volume: 9 start-page: 1015 year: 2010 publication-title: Nat. Mater. – volume: 2 start-page: 313 year: 2018 publication-title: Int. J. Intell. Rob. Appl. – volume: 154 year: 2020 publication-title: Biosens. Bioelectron. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 27 year: 2018 publication-title: Smart Mater. Struct. – volume: 37 start-page: 411 year: 2009 publication-title: Am. J. Chin. Med. – volume: 312 start-page: 242 year: 2006 publication-title: Science – volume: 387 start-page: 957 year: 2016 publication-title: Lancet – volume: 74 year: 2020 publication-title: Nano Energy – volume: 284 start-page: 260 year: 2018 publication-title: Sens. Actuators, A – volume: 185 start-page: 67 year: 2017 publication-title: Am. Heart J. – volume: 2020 year: 2020 publication-title: Research – volume: 12 start-page: 5601 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 5871 year: 2021 publication-title: Chem. Commun. – volume: 3 start-page: 571 year: 2020 publication-title: Nat. Electron. – volume: 4 start-page: 3725 year: 2021 publication-title: Matter – volume: 14 start-page: 161 year: 2015 publication-title: Nano Energy – volume: 1 year: 2016 publication-title: Sci. Rob. – volume: 11 start-page: 1107 year: 2020 publication-title: Nat. Commun. – volume: 12 start-page: 508 year: 2015 publication-title: Nat. Rev. Cardiol. – volume: 88 start-page: 1811 year: 2011 publication-title: Microelectron. Eng. – volume: 26 start-page: 1336 year: 2014 publication-title: Adv. Mater. – volume: 2 start-page: 184 year: 2019 publication-title: InfoMat – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 26 start-page: 3640 year: 2016 publication-title: Adv. Funct. Mater. – volume: 284 year: 2003 publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 12 start-page: 3109 year: 2012 publication-title: Nano Lett. – volume: 59 start-page: 689 year: 2019 publication-title: Nano Energy – volume: 28 start-page: 91 year: 2015 publication-title: J. Digital Imaging – volume: 48 start-page: 649 year: 2003 publication-title: Crystallogr. Rep. – volume: 4 start-page: 808 year: 2021 publication-title: Nat. Electron. – volume: 16 year: 2020 publication-title: Small – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 47 start-page: 2901 year: 2011 publication-title: IEEE Trans. Magn. – volume: 10 year: 2021 publication-title: Adv. Healthcare Mater. – volume: 34 start-page: 101 year: 2014 publication-title: Biocybern. Biomed. Eng. – volume: 15 start-page: 757 year: 2015 publication-title: IEEE Sens. J. – year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 4 start-page: 1285 year: 2017 publication-title: Optica – volume: 4 start-page: 1859 year: 2013 publication-title: Nat. Commun. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 190 year: 2007 publication-title: Complementary Ther. Med. – volume: 383 start-page: 409 year: 2014 publication-title: Lancet – volume: 137 start-page: 25 year: 2019 publication-title: Biosens. Bioelectron. – volume: 2 year: 2017 publication-title: Adv. Mater. Technol. – volume: 11 start-page: 795 year: 2012 publication-title: Nat. Mater. – volume: 15 start-page: 937 year: 2016 publication-title: Nat. Mater. – volume: 31 start-page: R1 year: 2010 publication-title: Physiol. Meas. – volume: 18 start-page: 3S year: 2005 publication-title: Am. J. Hypertens. – volume: 20 start-page: 859 year: 2021 publication-title: Nat. Mater. – volume: 26 start-page: 3451 year: 2014 publication-title: Adv. Mater. – volume: 10 start-page: 4086 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 1433 year: 2019 publication-title: Polymers – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 30 start-page: 36 year: 2018 publication-title: Curr. Opin. Rheumatol. – volume: 391 start-page: 949 year: 2018 publication-title: Lancet – volume: 4 start-page: 1102 year: 2021 publication-title: Matter – volume: 25 start-page: 375 year: 2015 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 1503 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 6067 year: 2020 publication-title: ACS Nano – volume: 9 start-page: 859 year: 2010 publication-title: Nat. Mater. – volume: 5 start-page: 759 year: 2021 publication-title: Nat. Biomed. Eng. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 18 start-page: 260 year: 2019 publication-title: Eur. J. Cardiovasc. Nurs. – volume: 171 year: 2021 publication-title: Biosens. Bioelectron. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 11 start-page: 126 year: 2021 publication-title: Biosensors – volume: 15 year: 2019 publication-title: Small – volume: 24 year: 2018 publication-title: Chemistry – volume: 5 start-page: 4496 year: 2014 publication-title: Nat. Commun. – volume: 5 start-page: 5745 year: 2014 publication-title: Nat. Commun. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 1678 year: 2016 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 896 year: 2020 publication-title: Matter – volume: 1 year: 1999 – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 5 start-page: 163 year: 2017 publication-title: Lancet Diabetes Endocrinol. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 3132 year: 2014 publication-title: Nat. Commun. – volume: 11 start-page: 5381 year: 2020 publication-title: Nat. Commun. – volume: 3 start-page: 316 year: 2020 publication-title: Nat. Electron. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – volume: 31 start-page: 419 year: 2017 publication-title: Biomed. Signal Process Control – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 2 year: 2021 publication-title: Innovation – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 17 start-page: 111 year: 2017 publication-title: Sensors – volume: 4 start-page: 195 year: 2018 publication-title: Int. J. Biosens. Bioelectron. – ident: e_1_2_8_129_1 doi: 10.1002/aelm.201600356 – ident: e_1_2_8_30_1 doi: 10.1038/s41587-021-00948-x – ident: e_1_2_8_94_1 doi: 10.1021/acsami.9b09265 – ident: e_1_2_8_172_1 doi: 10.3390/polym11091433 – ident: e_1_2_8_184_1 doi: 10.1002/adma.201703456 – ident: e_1_2_8_43_1 doi: 10.1016/j.matt.2021.03.005 – ident: e_1_2_8_116_1 doi: 10.1002/adfm.201402987 – ident: e_1_2_8_18_1 doi: 10.1016/S0140-6736(16)31134-5 – ident: e_1_2_8_83_1 doi: 10.1021/acsami.9b06260 – ident: e_1_2_8_25_1 doi: 10.1021/acsami.0c22784 – ident: e_1_2_8_59_1 doi: 10.1016/j.bspc.2016.09.013 – ident: e_1_2_8_194_1 doi: 10.1038/s41467-020-14814-y – ident: e_1_2_8_153_1 doi: 10.1016/j.nanoen.2018.05.020 – ident: e_1_2_8_180_1 doi: 10.1126/sciadv.1500661 – ident: e_1_2_8_29_1 doi: 10.1016/j.bios.2021.113329 – ident: e_1_2_8_143_1 doi: 10.1016/j.nanoen.2012.01.004 – ident: e_1_2_8_10_1 doi: 10.1016/S0140-6736(09)61457-4 – ident: e_1_2_8_131_1 doi: 10.1002/adfm.201802629 – ident: e_1_2_8_76_1 doi: 10.1038/nature12314 – ident: e_1_2_8_139_1 doi: 10.1126/science.1124005 – ident: e_1_2_8_34_1 doi: 10.1126/sciadv.aay2840 – ident: e_1_2_8_14_1 doi: 10.1177/1474515119826510 – ident: e_1_2_8_185_1 doi: 10.1002/adfm.202102378 – ident: e_1_2_8_40_1 doi: 10.1161/01.HYP.33.6.1392 – ident: e_1_2_8_159_1 doi: 10.1021/acsami.8b19214 – ident: e_1_2_8_3_1 doi: 10.1161/CIR.0000000000000534 – ident: e_1_2_8_11_1 doi: 10.1016/S0140-6736(13)61452-X – ident: e_1_2_8_108_1 doi: 10.1152/ajpheart.00175.2002 – ident: e_1_2_8_118_1 doi: 10.1002/admt.202070056 – ident: e_1_2_8_173_1 doi: 10.1364/OE.20.011740 – ident: e_1_2_8_20_1 doi: 10.1016/j.cplett.2009.06.096 – ident: e_1_2_8_12_1 doi: 10.1016/S0140-6736(14)60147-1 – volume: 2010 start-page: 1930 year: 2010 ident: e_1_2_8_42_1 publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. – ident: e_1_2_8_158_1 doi: 10.1002/adfm.201907312 – ident: e_1_2_8_64_1 doi: 10.1016/j.bios.2020.112078 – ident: e_1_2_8_146_1 doi: 10.1016/j.mseb.2014.12.009 – ident: e_1_2_8_199_1 doi: 10.1002/adma.202104178 – ident: e_1_2_8_166_1 doi: 10.1002/adma.202100859 – ident: e_1_2_8_9_1 doi: 10.1016/S0140-6736(12)60525-X – ident: e_1_2_8_36_1 doi: 10.1016/j.trechm.2021.01.001 – ident: e_1_2_8_53_1 doi: 10.1016/j.ijleo.2012.11.044 – ident: e_1_2_8_88_1 doi: 10.1021/nl300988z – ident: e_1_2_8_138_1 doi: 10.1117/1.JBO.18.5.057006 – ident: e_1_2_8_66_1 doi: 10.1126/sciadv.abl3742 – ident: e_1_2_8_112_1 doi: 10.1039/C9TC05392A – ident: e_1_2_8_74_1 doi: 10.1016/j.scib.2020.10.002 – ident: e_1_2_8_109_1 doi: 10.1016/S0140-6736(00)02636-2 – ident: e_1_2_8_148_1 doi: 10.1088/1361-665X/aadff5 – ident: e_1_2_8_151_1 doi: 10.1038/s41467-021-27066-1 – ident: e_1_2_8_91_1 doi: 10.1002/smll.201800819 – ident: e_1_2_8_100_1 doi: 10.1021/acsnano.7b07613 – ident: e_1_2_8_179_1 doi: 10.1002/adfm.201803413 – ident: e_1_2_8_168_1 doi: 10.1038/s41551-016-0008 – ident: e_1_2_8_5_1 doi: 10.1007/s10916-018-0901-1 – ident: e_1_2_8_170_1 doi: 10.1126/scirobotics.aai7529 – ident: e_1_2_8_44_1 doi: 10.1016/j.tibtech.2020.12.011 – ident: e_1_2_8_69_1 doi: 10.1002/adfm.201907091 – ident: e_1_2_8_32_1 doi: 10.1021/acsami.9b07465 – ident: e_1_2_8_8_1 doi: 10.1016/S2213-8587(17)30039-6 – ident: e_1_2_8_78_1 doi: 10.1016/j.nanoen.2021.106321 – ident: e_1_2_8_22_1 doi: 10.1002/adfm.201805045 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201904765 – ident: e_1_2_8_125_1 doi: 10.1002/adfm.201806388 – ident: e_1_2_8_164_1 doi: 10.1002/smll.201804559 – ident: e_1_2_8_182_1 doi: 10.1002/adma.201702308 – ident: e_1_2_8_48_1 doi: 10.1016/j.ctim.2006.06.004 – ident: e_1_2_8_86_1 doi: 10.1002/chem.201803369 – ident: e_1_2_8_77_1 doi: 10.1038/nmat2896 – ident: e_1_2_8_61_1 doi: 10.1016/j.bios.2020.112714 – ident: e_1_2_8_120_1 doi: 10.1038/s41928-020-0422-z – ident: e_1_2_8_195_1 doi: 10.1038/s41563-020-00902-3 – ident: e_1_2_8_16_1 doi: 10.1016/S0140-6736(19)31145-6 – ident: e_1_2_8_54_1 doi: 10.3390/jcm9041203 – ident: e_1_2_8_38_1 doi: 10.1039/D1CC02091A – ident: e_1_2_8_84_1 doi: 10.1002/adfm.201903100 – ident: e_1_2_8_157_1 doi: 10.1002/smll.201801657 – ident: e_1_2_8_121_1 doi: 10.1126/sciadv.abe2943 – ident: e_1_2_8_50_1 doi: 10.1142/S0192415X09006941 – ident: e_1_2_8_15_1 doi: 10.1016/S0140-6736(15)01225-8 – ident: e_1_2_8_39_1 doi: 10.1016/j.matt.2021.01.006 – ident: e_1_2_8_79_1 doi: 10.34133/2020/7158953 – ident: e_1_2_8_167_1 doi: 10.1002/adhm.202001023 – ident: e_1_2_8_63_1 doi: 10.1016/j.nanoen.2020.104941 – ident: e_1_2_8_27_1 doi: 10.1126/science.aba5132 – ident: e_1_2_8_62_1 doi: 10.1002/adhm.202100975 – ident: e_1_2_8_203_1 doi: 10.1002/adfm.201909954 – ident: e_1_2_8_99_1 doi: 10.1002/adma.201603143 – ident: e_1_2_8_196_1 doi: 10.1038/s41928-020-0415-y – ident: e_1_2_8_87_1 doi: 10.1088/1361-6528/ab1a86 – ident: e_1_2_8_160_1 doi: 10.1038/s41467-020-14446-2 – ident: e_1_2_8_147_1 doi: 10.1109/TMAG.2011.2156771 – ident: e_1_2_8_98_1 doi: 10.1002/adma.201304248 – ident: e_1_2_8_6_1 doi: 10.1097/BOR.0000000000000453 – ident: e_1_2_8_26_1 doi: 10.1038/s41467-020-18503-8 – ident: e_1_2_8_177_1 doi: 10.1109/JSEN.2014.2353640 – ident: e_1_2_8_21_1 doi: 10.1016/j.ahj.2016.11.006 – ident: e_1_2_8_106_1 doi: 10.1021/acsami.0c12561 – ident: e_1_2_8_90_1 doi: 10.1016/j.sna.2018.10.040 – ident: e_1_2_8_188_1 doi: 10.1038/ncomms6745 – ident: e_1_2_8_127_1 doi: 10.1016/j.mee.2011.01.045 – ident: e_1_2_8_152_1 doi: 10.1088/1361-6528/aaa855 – ident: e_1_2_8_144_1 doi: 10.1016/j.nanoen.2014.11.034 – ident: e_1_2_8_175_1 doi: 10.3390/s19133011 – ident: e_1_2_8_60_1 doi: 10.1021/acsami.9b07636 – ident: e_1_2_8_82_1 doi: 10.1038/ncomms2832 – ident: e_1_2_8_171_1 doi: 10.1364/OPTICA.4.001285 – ident: e_1_2_8_189_1 doi: 10.1126/sciadv.1501856 – ident: e_1_2_8_19_1 doi: 10.1007/s00421-019-04142-5 – ident: e_1_2_8_46_1 doi: 10.1016/j.amjhyper.2004.10.009 – ident: e_1_2_8_89_1 doi: 10.1021/acsnano.8b01557 – ident: e_1_2_8_70_1 doi: 10.1002/adma.201503558 – ident: e_1_2_8_92_1 doi: 10.1021/acsami.9b12747 – ident: e_1_2_8_155_1 doi: 10.1038/ncomms2832 – volume: 2 year: 2021 ident: e_1_2_8_37_1 publication-title: Innovation – ident: e_1_2_8_96_1 doi: 10.1088/1361-6528/ab3695 – ident: e_1_2_8_132_1 doi: 10.1002/admt.201700087 – ident: e_1_2_8_105_1 doi: 10.1039/C5TC01723H – ident: e_1_2_8_41_1 doi: 10.1161/hy1001.096106 – ident: e_1_2_8_201_1 doi: 10.1126/sciadv.abd3716 – ident: e_1_2_8_85_1 doi: 10.1002/admi.201800403 – ident: e_1_2_8_104_1 doi: 10.1021/acsami.7b01979 – ident: e_1_2_8_150_1 doi: 10.1016/j.matt.2021.09.012 – ident: e_1_2_8_107_1 doi: 10.1007/s10278-014-9722-z – ident: e_1_2_8_101_1 doi: 10.1021/acsami.0c14314 – ident: e_1_2_8_178_1 doi: 10.3390/s140713088 – ident: e_1_2_8_4_1 doi: 10.1016/S0140-6736(21)00684-X – ident: e_1_2_8_197_1 doi: 10.1038/s41928-021-00663-0 – ident: e_1_2_8_193_1 doi: 10.1126/sciadv.abe3778 – ident: e_1_2_8_28_1 doi: 10.1016/j.matt.2021.06.034 – ident: e_1_2_8_140_1 doi: 10.1002/adfm.201500856 – ident: e_1_2_8_2_1 doi: 10.1002/adhm.202100116 – ident: e_1_2_8_7_1 doi: 10.1016/S2213-8587(18)30267-5 – ident: e_1_2_8_126_1 doi: 10.1021/acsami.6b08172 – ident: e_1_2_8_165_1 doi: 10.1002/adma.201403807 – ident: e_1_2_8_113_1 doi: 10.1002/inf2.12060 – volume-title: History and Development of Traditional Chinese Medicine year: 1999 ident: e_1_2_8_51_1 – ident: e_1_2_8_176_1 doi: 10.1109/JSEN.2017.2731788 – ident: e_1_2_8_183_1 doi: 10.1038/ncomms5496 – ident: e_1_2_8_95_1 doi: 10.1021/acsami.9b23110 – ident: e_1_2_8_24_1 doi: 10.1016/j.matt.2019.12.025 – ident: e_1_2_8_97_1 doi: 10.1038/nmat3380 – ident: e_1_2_8_124_1 doi: 10.1002/adfm.201808247 – ident: e_1_2_8_149_1 doi: 10.1038/s41563-021-01093-1 – ident: e_1_2_8_122_1 doi: 10.1016/j.nanoen.2019.03.005 – ident: e_1_2_8_68_1 doi: 10.1002/adma.201703700 – ident: e_1_2_8_72_1 doi: 10.1002/adma.202101262 – ident: e_1_2_8_141_1 doi: 10.1039/c3ee41063c – ident: e_1_2_8_45_1 doi: 10.1002/adfm.201600008 – ident: e_1_2_8_49_1 doi: 10.1002/adfm.202010962 – ident: e_1_2_8_145_1 doi: 10.1039/C5EE01532D – ident: e_1_2_8_71_1 doi: 10.1002/adma.201603679 – ident: e_1_2_8_110_1 doi: 10.1002/adma.201302240 – ident: e_1_2_8_198_1 doi: 10.1016/j.bios.2020.112064 – ident: e_1_2_8_163_1 doi: 10.1038/s41467-019-14054-9 – ident: e_1_2_8_187_1 doi: 10.1126/sciadv.abi9283 – ident: e_1_2_8_73_1 doi: 10.1038/ncomms4132 – ident: e_1_2_8_111_1 doi: 10.1002/smtd.202001041 – ident: e_1_2_8_161_1 doi: 10.1002/smll.201904774 – ident: e_1_2_8_133_1 doi: 10.1002/adom.202100270 – ident: e_1_2_8_93_1 doi: 10.1021/acsami.9b03261 – ident: e_1_2_8_169_1 doi: 10.1016/j.bios.2019.05.002 – volume: 4 start-page: 195 year: 2018 ident: e_1_2_8_55_1 publication-title: Int. J. Biosens. Bioelectron. – ident: e_1_2_8_202_1 doi: 10.1038/s41551-018-0335-6 – ident: e_1_2_8_33_1 doi: 10.1038/s41928-020-0428-6 – ident: e_1_2_8_192_1 doi: 10.1002/adhm.201901735 – ident: e_1_2_8_154_1 doi: 10.1038/nmat2834 – ident: e_1_2_8_103_1 doi: 10.1021/acsami.9b21197 – ident: e_1_2_8_156_1 doi: 10.1007/s12274-017-1731-z – ident: e_1_2_8_191_1 doi: 10.1126/sciadv.aas9530 – ident: e_1_2_8_130_1 doi: 10.1002/adfm.201902898 – ident: e_1_2_8_31_1 doi: 10.1002/adfm.202105482 – ident: e_1_2_8_57_1 doi: 10.1109/TIM.2006.873784 – ident: e_1_2_8_204_1 doi: 10.1021/acsnano.1c10676 – ident: e_1_2_8_134_1 doi: 10.1002/adom.202001815 – ident: e_1_2_8_181_1 doi: 10.1002/adfm.202010962 – ident: e_1_2_8_102_1 doi: 10.1021/acsami.7b16611 – ident: e_1_2_8_67_1 doi: 10.1038/s41551-021-00723-y – ident: e_1_2_8_117_1 doi: 10.1038/s41467-020-19059-3 – ident: e_1_2_8_174_1 doi: 10.1002/jbio.201700263 – ident: e_1_2_8_186_1 doi: 10.1002/adma.201404794 – ident: e_1_2_8_123_1 doi: 10.1021/acsaem.1c02465 – ident: e_1_2_8_119_1 doi: 10.1007/s41315-018-0060-z – ident: e_1_2_8_75_1 doi: 10.1016/j.nanoen.2020.104706 – ident: e_1_2_8_136_1 doi: 10.1016/j.bbe.2014.02.001 – ident: e_1_2_8_58_1 doi: 10.1109/TIM.2014.2312512 – ident: e_1_2_8_142_1 doi: 10.1134/1.1595194 – ident: e_1_2_8_200_1 doi: 10.1039/D1TA02518J – ident: e_1_2_8_52_1 doi: 10.1109/TBME.2018.2873754 – ident: e_1_2_8_56_1 doi: 10.3390/bios11040126 – ident: e_1_2_8_137_1 doi: 10.3390/s17010111 – ident: e_1_2_8_115_1 doi: 10.1126/sciadv.aav9653 – ident: e_1_2_8_17_1 doi: 10.1016/S0140-6736(18)30309-X – ident: e_1_2_8_23_1 doi: 10.1038/s41551-018-0287-x – ident: e_1_2_8_81_1 doi: 10.1002/adma.201305182 – ident: e_1_2_8_128_1 doi: 10.1002/adfm.201504755 – ident: e_1_2_8_65_1 doi: 10.1021/acsnano.0c01804 – ident: e_1_2_8_114_1 doi: 10.1038/nmat4671 – ident: e_1_2_8_162_1 doi: 10.1002/adfm.201704641 – ident: e_1_2_8_190_1 doi: 10.1002/adma.201802359 – ident: e_1_2_8_1_1 doi: 10.1038/nrcardio.2015.82 – ident: e_1_2_8_80_1 doi: 10.1002/adfm.201400712 – ident: e_1_2_8_135_1 doi: 10.3390/bios5030602 – ident: e_1_2_8_47_1 doi: 10.1088/0967-3334/31/1/R01 – ident: e_1_2_8_13_1 doi: 10.1177/1753944717743920 |
SSID | ssj0009606 |
Score | 2.7383254 |
SecondaryResourceType | review_article |
Snippet | Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2109357 |
SubjectTerms | Biomechanics cardiovascular diseases Cardiovascular system Condition monitoring Materials science Microengineering Optical measuring instruments personalized healthcare Physiology Piezoelectricity Pressure sensors pulse signals Sensors Wave measurement Waveforms wearable electronics Wearable technology Weight reduction |
Title | Wearable Pressure Sensors for Pulse Wave Monitoring |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202109357 https://www.ncbi.nlm.nih.gov/pubmed/35044014 https://www.proquest.com/docview/2669316434 https://www.proquest.com/docview/2621256624 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QTnDg_RgMVCQkTtnapuma4wRMExIIAdN2q5ImvYA6tK0c-PXY6WMbCCHBsYqtpklcf27tz4RcaPDKqQ4VNVwwCFBSlwqZGKq11IFIXCFTmyB7Hw6Gwe2Yj5eq-At-iPqDG1qGfV-jgUs16yxIQ6W2vEE-8iFxLCfHhC1ERY8L_iiE55Zsj3EqwiCqWBtdv7OqvuqVvkHNVeRqXU9_i8hq0kXGyUs7n6t28vGFz_E_T7VNNktc6vSKg7RD1ky2SzaW2Ar3CBuBVWCllVPUFE6N8wRB8GQ6cwD5Og85eFlnJN-NU7woUGufDPs3z1cDWvZcoAlCE2pcxmUaJp5RYVdpFfHUBOD0U1fLSAM-8roaMIeIEh0xA3P0FVPcS4VxDfONZAekkU0yc0Qc7qoQ40mF_ZF0KKMEtIXSaaQt5U2T0GrN46QkJMe-GK9xQaXsx7gYcb0YTXJZy78VVBw_SraqLYxLk5zFgEQEg-CQBU1yXg-DMeEfEpmZSY4y4MkB4Pogc1hsfX0rxrE7twcjvt3AX-YQ967vevXV8V-UTsi6j8UWNr2yRRrzaW5OAQLN1Zk95p_y5_tW |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HIAD78d4FgmJU1nXNF1znIBpwIYQbBq3KmnSC2hDe3Dg12Ona2EghATHKrGaJnH8ObU_A5xotMqpDpVruGDooKSeK2RiXK2lDkTiCZnaANnbsNEJrh95Hk1IuTAZP0Rx4UaaYc9rUnC6kC5_sIZKbYmDfCJE4tVZmKey3taruv9gkCKAbun2GHdFGEQ5b6Pnl6flp-3SN7A5jV2t8amvgMqHncWcPJ2NR-osefvC6Piv71qF5Qk0dWrZXlqDGdNbh6VPhIUbwLqoGJRs5WRphQPjPKAf3B8MHQS_zt0YDa3Tla_Gyc4KktqETv2yfd5wJ2UX3ITQiWs8xmUaJhWjwqrSKuKpCdDup56WkUaIVKlqhB0iSnTEDI7RV0zxSiqMZ5hvJNuCuV6_Z3bA4Z4KyaVUVCJJhzJKUFoonUbast6UwM0nPU4mnORUGuM5ztiU_ZgmIy4mowSnRf-XjI3jx577-RrGE60cxghGBEP_kAUlOC6aUZ_oJ4nsmf6Y-qAxR4zrY5_tbO2LVzFOBbor2OLbFfxlDHHtolUrnnb_InQEC412qxk3r25v9mDRp9wLG225D3OjwdgcICIaqUO7598BtuP_cQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEL8oJkYf_P5AUWdi4tNkrOtYH4lI8IsQlcDb0q7tiwYIHz7413vtYIDGmOjj0rusa3u933W93wFcSPTKWobCVZQRDFC05zKeKFdKLgOWeIxre0G2EdZbwV2Hduay-FN-iOzAzViG3a-NgfelLs5IQ7m0vEG-4UOi5WVYCUIvMuu6-jQjkDL43LLtEeqyMIimtI2eX1zUX3RL37DmInS1vqe2CXza6_TKyevVeCSuko8vhI7_-awt2JgAU6eSrqRtWFLdHVifoyvcBdJGszCpVk6aVDhQzjNGwb3B0EHo6zTH6GadNn9XTrpTGK09aNVuXq7r7qTogpsYbOIqj1Cuw6SkRFgWUkRUqwC9vvYkjyQCpFJZIuhgUSIjorCPviCCljRTniK-4mQfct1eVx2CQz0RmoBSmAJJMuRRgtpMSB1Jy3mTB3c65nEyYSQ3hTHe4pRL2Y_NYMTZYOThMpPvp1wcP0oWplMYT2xyGCMUYQSjQxLk4TxrRmsyv0h4V_XGRgZdOSJcH2UO0qnPXkWoKc9dwhbfTuAvfYgr1cdK9nT0F6UzWG1Wa_HDbeP-GNZ8k3hhr1oWIDcajNUJwqGROLUr_hPHu_4p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Pressure+Sensors+for+Pulse+Wave+Monitoring&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Meng%2C+Keyu&rft.au=Xiao%2C+Xiao&rft.au=Wei%2C+Wenxin&rft.au=Chen%2C+Guorui&rft.date=2022-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202109357&rft.externalDBID=10.1002%252Fadma.202109357&rft.externalDocID=ADMA202109357 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |