Wearable Pressure Sensors for Pulse Wave Monitoring

Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long‐term and real‐time cardiovascular status monitoring. Owing to compelling...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 21; pp. e2109357 - n/a
Main Authors Meng, Keyu, Xiao, Xiao, Wei, Wenxin, Chen, Guorui, Nashalian, Ardo, Shen, Sophia, Chen, Jun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long‐term and real‐time cardiovascular status monitoring. Owing to compelling characteristics, including light weight, wearing comfort, and high sensitivity to pulse pressures, physiological pulse waveforms can be precisely and continuously monitored by flexible pressure sensors for wearable health monitoring. Herein, an overview of wearable pressure sensors for human pulse wave monitoring is presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The conceptualizations and methods for the acquisition of physiological and pathological information related to the cardiovascular system are outlined. The biomechanics of arterial pulse waves and the working mechanism of various wearable pressure sensors, including triboelectric, piezoelectric, magnetoelastic, piezoresistive, capacitive, and optical sensors, are also subject to systematic debate. Exemple applications of pulse wave measurement based on microengineering structured devices are then summarized. Finally, a discussion of the opportunities and challenges that wearable pressure sensors face, as well as their potential as a wearable intelligent system for personalized healthcare is given in conclusion. The current advances of wearable pressure sensors for human pulse wave monitoring are presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The biomechanics of arterial pulse waves, the working mechanism of various wearable pressure sensors, as well as opportunities and challenges are also concluded.
AbstractList Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long‐term and real‐time cardiovascular status monitoring. Owing to compelling characteristics, including light weight, wearing comfort, and high sensitivity to pulse pressures, physiological pulse waveforms can be precisely and continuously monitored by flexible pressure sensors for wearable health monitoring. Herein, an overview of wearable pressure sensors for human pulse wave monitoring is presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The conceptualizations and methods for the acquisition of physiological and pathological information related to the cardiovascular system are outlined. The biomechanics of arterial pulse waves and the working mechanism of various wearable pressure sensors, including triboelectric, piezoelectric, magnetoelastic, piezoresistive, capacitive, and optical sensors, are also subject to systematic debate. Exemple applications of pulse wave measurement based on microengineering structured devices are then summarized. Finally, a discussion of the opportunities and challenges that wearable pressure sensors face, as well as their potential as a wearable intelligent system for personalized healthcare is given in conclusion.
Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long-term and real-time cardiovascular status monitoring. Owing to compelling characteristics, including light weight, wearing comfort, and high sensitivity to pulse pressures, physiological pulse waveforms can be precisely and continuously monitored by flexible pressure sensors for wearable health monitoring. Herein, an overview of wearable pressure sensors for human pulse wave monitoring is presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The conceptualizations and methods for the acquisition of physiological and pathological information related to the cardiovascular system are outlined. The biomechanics of arterial pulse waves and the working mechanism of various wearable pressure sensors, including triboelectric, piezoelectric, magnetoelastic, piezoresistive, capacitive, and optical sensors, are also subject to systematic debate. Exemple applications of pulse wave measurement based on microengineering structured devices are then summarized. Finally, a discussion of the opportunities and challenges that wearable pressure sensors face, as well as their potential as a wearable intelligent system for personalized healthcare is given in conclusion.Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long-term and real-time cardiovascular status monitoring. Owing to compelling characteristics, including light weight, wearing comfort, and high sensitivity to pulse pressures, physiological pulse waveforms can be precisely and continuously monitored by flexible pressure sensors for wearable health monitoring. Herein, an overview of wearable pressure sensors for human pulse wave monitoring is presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The conceptualizations and methods for the acquisition of physiological and pathological information related to the cardiovascular system are outlined. The biomechanics of arterial pulse waves and the working mechanism of various wearable pressure sensors, including triboelectric, piezoelectric, magnetoelastic, piezoresistive, capacitive, and optical sensors, are also subject to systematic debate. Exemple applications of pulse wave measurement based on microengineering structured devices are then summarized. Finally, a discussion of the opportunities and challenges that wearable pressure sensors face, as well as their potential as a wearable intelligent system for personalized healthcare is given in conclusion.
Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have attracted keen research interest and have been widely used for long‐term and real‐time cardiovascular status monitoring. Owing to compelling characteristics, including light weight, wearing comfort, and high sensitivity to pulse pressures, physiological pulse waveforms can be precisely and continuously monitored by flexible pressure sensors for wearable health monitoring. Herein, an overview of wearable pressure sensors for human pulse wave monitoring is presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The conceptualizations and methods for the acquisition of physiological and pathological information related to the cardiovascular system are outlined. The biomechanics of arterial pulse waves and the working mechanism of various wearable pressure sensors, including triboelectric, piezoelectric, magnetoelastic, piezoresistive, capacitive, and optical sensors, are also subject to systematic debate. Exemple applications of pulse wave measurement based on microengineering structured devices are then summarized. Finally, a discussion of the opportunities and challenges that wearable pressure sensors face, as well as their potential as a wearable intelligent system for personalized healthcare is given in conclusion. The current advances of wearable pressure sensors for human pulse wave monitoring are presented, with a focus on the transduction mechanism, microengineering structures, and related applications in pulse wave monitoring and cardiovascular condition assessment. The biomechanics of arterial pulse waves, the working mechanism of various wearable pressure sensors, as well as opportunities and challenges are also concluded.
Author Xiao, Xiao
Nashalian, Ardo
Chen, Guorui
Chen, Jun
Wei, Wenxin
Meng, Keyu
Shen, Sophia
Author_xml – sequence: 1
  givenname: Keyu
  surname: Meng
  fullname: Meng, Keyu
  organization: University of California, Los Angeles
– sequence: 2
  givenname: Xiao
  surname: Xiao
  fullname: Xiao, Xiao
  organization: University of California, Los Angeles
– sequence: 3
  givenname: Wenxin
  surname: Wei
  fullname: Wei, Wenxin
  organization: China Medical University
– sequence: 4
  givenname: Guorui
  surname: Chen
  fullname: Chen, Guorui
  organization: University of California, Los Angeles
– sequence: 5
  givenname: Ardo
  surname: Nashalian
  fullname: Nashalian, Ardo
  organization: University of California, Los Angeles
– sequence: 6
  givenname: Sophia
  surname: Shen
  fullname: Shen, Sophia
  organization: University of California, Los Angeles
– sequence: 7
  givenname: Xiao
  surname: Xiao
  fullname: Xiao, Xiao
  organization: University of California, Los Angeles
– sequence: 8
  givenname: Jun
  orcidid: 0000-0002-3439-0495
  surname: Chen
  fullname: Chen, Jun
  email: jun.chen@ucla.edu
  organization: University of California, Los Angeles
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35044014$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLw0AURgdR7EO3LiXgxk3qvDLJLEt9QosFlS6HSXIjKWmmziRK_70T2ioUxNWFyznfvXwDdFybGhC6IHhEMKY3Ol_pEcWUYMmi-Aj1SURJyLGMjlG_24VS8KSHBs4tMcZSYHGKeizCnGPC-4gtQFudVhDMLTjXWgheoHbGuqAwNpi3lYNgoT8hmJm6bIwt6_czdFJovz_fzSF6u797nTyG0-eHp8l4GmacyTgEzCJdiIxAKuI0T5OoAH9VFDjXSU4jQeKcMyKTLE8Y-FdpytKIFBIwMAqaDdH1NndtzUcLrlGr0mVQVboG0zpFBSU-RlDu0asDdGlaW_vvPCUkI4KzjrrcUW26glytbbnSdqP2dXiAb4HMGucsFCorG92Upm6sLitFsOpaV13r6qd1r40OtH3yn4LcCl9lBZt_aDW-nY1_3W_gd5Jp
CitedBy_id crossref_primary_10_1080_00405000_2024_2356459
crossref_primary_10_1007_s12598_024_02890_8
crossref_primary_10_1002_aelm_202200782
crossref_primary_10_1021_acsami_3c08720
crossref_primary_10_1016_j_cej_2023_145825
crossref_primary_10_1063_5_0217328
crossref_primary_10_1002_adfm_202401415
crossref_primary_10_1016_j_cej_2023_143408
crossref_primary_10_1016_j_cej_2024_151660
crossref_primary_10_1002_adfm_202410360
crossref_primary_10_1016_j_ijbiomac_2024_138106
crossref_primary_10_1007_s42765_023_00302_7
crossref_primary_10_1109_TED_2024_3487081
crossref_primary_10_3390_bios13060630
crossref_primary_10_1039_D4TC03256J
crossref_primary_10_3390_smartcities7010012
crossref_primary_10_3390_photonics9080557
crossref_primary_10_1002_smll_202207879
crossref_primary_10_1007_s11517_024_03082_3
crossref_primary_10_1002_adfm_202503693
crossref_primary_10_1021_acsanm_4c01654
crossref_primary_10_1016_j_cej_2024_149117
crossref_primary_10_1021_acsami_3c14281
crossref_primary_10_1016_j_cej_2023_143635
crossref_primary_10_1002_smll_202400593
crossref_primary_10_1021_acsaelm_3c01097
crossref_primary_10_1016_j_cej_2024_154812
crossref_primary_10_1039_D3TA01627G
crossref_primary_10_3390_s23094457
crossref_primary_10_1039_D3RA05932D
crossref_primary_10_1016_j_colsurfa_2023_132306
crossref_primary_10_1021_acsami_4c22301
crossref_primary_10_1115_1_4064211
crossref_primary_10_1007_s12274_024_6759_2
crossref_primary_10_1021_acs_langmuir_4c05344
crossref_primary_10_1007_s12274_023_5725_8
crossref_primary_10_1021_acsnano_4c06774
crossref_primary_10_1021_acsami_2c12240
crossref_primary_10_1021_acsami_3c15368
crossref_primary_10_3390_bios13010113
crossref_primary_10_1016_j_cej_2024_152984
crossref_primary_10_3390_bios13060656
crossref_primary_10_1002_adfm_202212083
crossref_primary_10_1007_s10570_022_05023_5
crossref_primary_10_1038_s41528_025_00388_6
crossref_primary_10_1002_adsr_202400185
crossref_primary_10_1002_adhm_202301838
crossref_primary_10_1021_acsami_4c00423
crossref_primary_10_1021_acsnano_4c15134
crossref_primary_10_1002_adfm_202214265
crossref_primary_10_1002_adfm_202306591
crossref_primary_10_1016_j_mser_2024_100804
crossref_primary_10_1021_acsami_2c23269
crossref_primary_10_1038_s41578_024_00729_3
crossref_primary_10_3390_ma17102463
crossref_primary_10_1088_1361_6579_acead2
crossref_primary_10_1039_D2NA00866A
crossref_primary_10_1088_2631_8695_ada8f6
crossref_primary_10_1021_acsami_2c16730
crossref_primary_10_1002_adfm_202212093
crossref_primary_10_1002_bte2_20230005
crossref_primary_10_1021_acsaelm_2c01760
crossref_primary_10_1016_j_nanoen_2024_109977
crossref_primary_10_1038_s41528_023_00261_4
crossref_primary_10_1063_5_0102253
crossref_primary_10_3390_mi13101699
crossref_primary_10_1002_smo_20240008
crossref_primary_10_1021_acsnano_4c04291
crossref_primary_10_1002_aesr_202400116
crossref_primary_10_1002_smll_202207600
crossref_primary_10_1088_1361_6528_acf2a2
crossref_primary_10_1177_00952443241240076
crossref_primary_10_1002_adfm_202402707
crossref_primary_10_1038_s41378_024_00703_7
crossref_primary_10_1007_s11431_023_2550_4
crossref_primary_10_56712_latam_v4i4_1273
crossref_primary_10_1080_00405000_2024_2360758
crossref_primary_10_1002_admi_202200294
crossref_primary_10_1002_adsr_202400082
crossref_primary_10_1109_ACCESS_2024_3359058
crossref_primary_10_1021_acs_nanolett_3c04755
crossref_primary_10_1021_acs_nanolett_4c00817
crossref_primary_10_1021_acsami_4c22118
crossref_primary_10_1002_advs_202303114
crossref_primary_10_3390_nano13192630
crossref_primary_10_1007_s10118_023_2905_7
crossref_primary_10_3390_s24165354
crossref_primary_10_1063_5_0159162
crossref_primary_10_1039_D3TA00522D
crossref_primary_10_1021_acsnano_3c11166
crossref_primary_10_1002_adma_202206933
crossref_primary_10_1021_acsaelm_5c00015
crossref_primary_10_1063_5_0204104
crossref_primary_10_1002_adem_202302214
crossref_primary_10_1007_s42114_023_00650_3
crossref_primary_10_1016_j_cej_2023_147075
crossref_primary_10_1002_admt_202300949
crossref_primary_10_1021_acsami_3c18203
crossref_primary_10_1016_j_nanoen_2024_109796
crossref_primary_10_1088_1361_6463_ad0e95
crossref_primary_10_1007_s00339_024_07329_6
crossref_primary_10_1021_acssensors_4c02716
crossref_primary_10_1021_acs_biomac_4c01709
crossref_primary_10_1021_acsami_3c09837
crossref_primary_10_1016_j_cej_2023_141527
crossref_primary_10_1002_adma_202200252
crossref_primary_10_1016_j_cej_2024_157399
crossref_primary_10_1109_JSEN_2024_3516773
crossref_primary_10_1002_adfm_202409242
crossref_primary_10_1109_JSEN_2024_3419243
crossref_primary_10_3390_bios12100863
crossref_primary_10_1016_j_nanoen_2025_110803
crossref_primary_10_1016_j_xcrp_2022_101093
crossref_primary_10_1063_5_0220902
crossref_primary_10_1002_aelm_202300021
crossref_primary_10_1021_acsaelm_2c00758
crossref_primary_10_1016_j_cis_2022_102828
crossref_primary_10_1007_s42765_022_00218_8
crossref_primary_10_1016_j_cej_2024_156292
crossref_primary_10_1021_acsami_3c08874
crossref_primary_10_1109_TED_2024_3401653
crossref_primary_10_1016_j_cej_2022_139815
crossref_primary_10_1093_nsr_nwae333
crossref_primary_10_1007_s40820_022_00999_y
crossref_primary_10_1002_smtd_202402164
crossref_primary_10_1109_LSENS_2024_3512200
crossref_primary_10_1021_acsami_3c04526
crossref_primary_10_1016_j_compositesa_2022_107171
crossref_primary_10_3390_mi15101226
crossref_primary_10_1039_D4TC03434A
crossref_primary_10_1002_adfm_202417715
crossref_primary_10_1007_s42242_024_00292_4
crossref_primary_10_1021_acsami_3c17605
crossref_primary_10_1063_5_0187539
crossref_primary_10_1088_1361_6439_ad4cf8
crossref_primary_10_1039_D3NR05372E
crossref_primary_10_1021_acsami_2c17879
crossref_primary_10_1021_acsapm_3c00771
crossref_primary_10_1039_D2LC00921H
crossref_primary_10_1038_s41528_024_00310_6
crossref_primary_10_1002_advs_202405501
crossref_primary_10_1002_admt_202400355
crossref_primary_10_1016_j_xcrp_2024_102047
crossref_primary_10_1021_acsami_4c22054
crossref_primary_10_1002_flm2_10
crossref_primary_10_1002_smll_202405520
crossref_primary_10_3390_nano13111702
crossref_primary_10_1021_acsnano_2c08166
crossref_primary_10_55905_cuadv16n5_005
crossref_primary_10_1021_acsnano_3c08357
crossref_primary_10_1002_admt_202200691
crossref_primary_10_1039_D1CS00858G
crossref_primary_10_1109_JSEN_2024_3411716
crossref_primary_10_1039_D3MH00718A
crossref_primary_10_1002_app_54746
crossref_primary_10_1002_adma_202306350
crossref_primary_10_1002_adma_202407859
crossref_primary_10_1002_adma_202212161
crossref_primary_10_1007_s12274_023_5974_6
crossref_primary_10_1021_acsanm_4c01940
crossref_primary_10_1109_LSENS_2023_3307114
crossref_primary_10_1002_adma_202202478
crossref_primary_10_1002_admt_202300079
crossref_primary_10_1002_smll_202202928
crossref_primary_10_1021_acsnano_3c09310
crossref_primary_10_1109_JSEN_2024_3522380
crossref_primary_10_3390_s23135956
crossref_primary_10_1002_aelm_202300201
crossref_primary_10_1002_advs_202413141
crossref_primary_10_1016_j_measurement_2024_115382
crossref_primary_10_1007_s42114_024_00906_6
crossref_primary_10_1021_acssensors_3c02180
crossref_primary_10_1002_adfm_202402356
crossref_primary_10_1021_acsami_2c05610
crossref_primary_10_3390_nano13040645
crossref_primary_10_1038_s41378_022_00465_0
crossref_primary_10_3390_s22197566
crossref_primary_10_1021_acsanm_4c06040
crossref_primary_10_1002_smll_202405301
crossref_primary_10_1021_acsami_2c06701
crossref_primary_10_1021_acs_iecr_4c04197
crossref_primary_10_1002_smtd_202200830
crossref_primary_10_3390_app13095664
crossref_primary_10_1155_2022_8312564
crossref_primary_10_1039_D3EE01408H
crossref_primary_10_1021_acs_nanolett_4c04215
crossref_primary_10_1088_1402_4896_ad3405
crossref_primary_10_1021_acsaelm_4c00210
crossref_primary_10_1002_admt_202302162
crossref_primary_10_1007_s42235_025_00670_3
crossref_primary_10_1016_j_cej_2024_153533
crossref_primary_10_1155_2023_5079256
crossref_primary_10_1002_advs_202416318
crossref_primary_10_1021_acsnano_2c12606
crossref_primary_10_1126_sciadv_adh0615
crossref_primary_10_1021_acsapm_2c01696
crossref_primary_10_1039_D2TA10002A
crossref_primary_10_1016_j_matt_2025_101992
crossref_primary_10_3389_fbioe_2023_1335188
crossref_primary_10_1039_D3DT02587J
crossref_primary_10_1016_j_chip_2024_100116
crossref_primary_10_1002_INMD_20230037
crossref_primary_10_1039_D2NR06084A
crossref_primary_10_1021_acsami_4c00163
crossref_primary_10_1002_advs_202203057
crossref_primary_10_1021_acsami_4c00161
crossref_primary_10_1002_admt_202301077
crossref_primary_10_1093_nsr_nwae158
crossref_primary_10_1002_admt_202302172
crossref_primary_10_1007_s40820_024_01488_0
crossref_primary_10_1016_j_nxmate_2023_100049
crossref_primary_10_1016_j_cej_2024_154731
crossref_primary_10_1016_j_sna_2024_115364
crossref_primary_10_1039_D3CC04310J
crossref_primary_10_1007_s12668_024_01358_4
crossref_primary_10_1097_MBP_0000000000000711
crossref_primary_10_1002_smll_202311498
crossref_primary_10_3390_bios12121131
crossref_primary_10_3390_ma17010123
crossref_primary_10_1002_VIW_20220024
crossref_primary_10_1021_acsmaterialsau_3c00050
crossref_primary_10_3390_chemosensors10110484
crossref_primary_10_1002_VIW_20220027
crossref_primary_10_1002_inf2_12552
crossref_primary_10_1021_acsami_4c02466
crossref_primary_10_1016_j_apsusc_2023_156328
crossref_primary_10_1016_j_isci_2023_107397
crossref_primary_10_1002_smll_202310032
crossref_primary_10_1038_s41467_024_52462_8
crossref_primary_10_1021_acsami_3c02255
crossref_primary_10_1002_smll_202310038
crossref_primary_10_1002_smtd_202300170
crossref_primary_10_1007_s40820_025_01692_6
crossref_primary_10_1016_j_compag_2024_109183
crossref_primary_10_1021_acsnano_3c10324
crossref_primary_10_1109_JSEN_2023_3323318
crossref_primary_10_1016_j_cej_2024_153745
crossref_primary_10_1021_acsnano_3c07283
crossref_primary_10_1021_acsami_3c12043
crossref_primary_10_3390_electronics12112531
crossref_primary_10_1007_s42114_022_00610_3
crossref_primary_10_1002_adfm_202203585
crossref_primary_10_1007_s42114_024_00949_9
crossref_primary_10_1109_ACCESS_2025_3532492
crossref_primary_10_20517_ss_2024_05
crossref_primary_10_1002_adma_202403880
crossref_primary_10_1016_j_measurement_2024_114905
crossref_primary_10_1109_JEDS_2023_3270583
crossref_primary_10_3390_biomedicines12102307
crossref_primary_10_3390_polym14183875
crossref_primary_10_1002_adfm_202403163
crossref_primary_10_1038_s43246_024_00480_w
crossref_primary_10_3390_s24113395
crossref_primary_10_1007_s42765_022_00212_0
crossref_primary_10_1039_D2TC00889K
crossref_primary_10_1002_adma_202409071
crossref_primary_10_1016_j_nanoen_2024_110188
crossref_primary_10_1002_advs_202309407
crossref_primary_10_1039_D4TA04154B
crossref_primary_10_1039_D3LC00164D
crossref_primary_10_1016_j_nanoen_2023_108606
crossref_primary_10_1002_admt_202201703
crossref_primary_10_1002_sus2_207
crossref_primary_10_1039_D4TA07129H
crossref_primary_10_1016_j_cej_2023_146464
crossref_primary_10_1007_s10853_024_10509_7
crossref_primary_10_1021_acs_iecr_4c00547
crossref_primary_10_1002_sus2_244
crossref_primary_10_1016_j_mtcomm_2025_112187
crossref_primary_10_3390_bioengineering12030252
crossref_primary_10_1016_j_mattod_2022_07_012
crossref_primary_10_1002_adhm_202303461
crossref_primary_10_1016_j_nantod_2024_102469
crossref_primary_10_3390_s25051348
crossref_primary_10_1007_s40820_024_01534_x
crossref_primary_10_1016_j_cej_2024_157878
crossref_primary_10_1016_j_mattod_2022_07_009
crossref_primary_10_1021_acsami_3c00432
crossref_primary_10_1016_j_entcom_2024_100838
crossref_primary_10_1021_acsaelm_4c00086
crossref_primary_10_1002_adfm_202416482
crossref_primary_10_1021_acs_nanolett_2c01486
crossref_primary_10_1016_j_cej_2024_157865
crossref_primary_10_1109_TBME_2024_3434344
crossref_primary_10_3390_chemosensors11080459
crossref_primary_10_1021_acsami_2c21885
crossref_primary_10_1021_acsanm_3c03619
crossref_primary_10_1002_adma_202310102
crossref_primary_10_3390_s23052479
crossref_primary_10_1002_adma_202313612
crossref_primary_10_1002_adma_202402542
crossref_primary_10_1002_smll_202304752
crossref_primary_10_1002_smll_202303301
crossref_primary_10_1007_s42114_024_00959_7
crossref_primary_10_3390_jpm12111768
crossref_primary_10_1002_admt_202400144
crossref_primary_10_1109_JSEN_2023_3334868
crossref_primary_10_1016_j_ijbiomac_2024_134746
crossref_primary_10_1039_D2CS00207H
crossref_primary_10_1039_D4CS00220B
crossref_primary_10_1039_D4TC01223B
crossref_primary_10_1109_JSEN_2024_3359279
crossref_primary_10_1002_adfm_202312692
crossref_primary_10_1002_admt_202401365
crossref_primary_10_1002_adfm_202316314
crossref_primary_10_1002_admt_202400035
crossref_primary_10_1039_D3TC02890A
crossref_primary_10_29026_oes_2024_240009
crossref_primary_10_1021_acssensors_4c03572
crossref_primary_10_1021_acsaelm_4c00184
crossref_primary_10_29026_oes_2024_240005
crossref_primary_10_3390_act13010042
crossref_primary_10_1002_admt_202301480
crossref_primary_10_1021_acsaelm_4c01159
crossref_primary_10_1007_s10854_023_10535_2
crossref_primary_10_1021_acsnano_3c09766
crossref_primary_10_1016_j_jcis_2022_09_096
crossref_primary_10_1039_D2TC02177C
crossref_primary_10_1021_acs_chemmater_3c00453
crossref_primary_10_1002_adfm_202407975
crossref_primary_10_1109_JSEN_2024_3467995
crossref_primary_10_3390_ma15155185
crossref_primary_10_1007_s42765_024_00417_5
crossref_primary_10_1039_D3MH02074F
crossref_primary_10_1016_j_mser_2025_100971
crossref_primary_10_1039_D2TA04433A
crossref_primary_10_1002_pssa_202300128
crossref_primary_10_1002_smll_202303234
crossref_primary_10_1021_acsami_4c06546
crossref_primary_10_3390_bios12111057
crossref_primary_10_1016_j_measurement_2024_116271
crossref_primary_10_3390_su152115444
crossref_primary_10_1002_fle2_12009
crossref_primary_10_1021_acsami_4c18412
crossref_primary_10_1021_acssensors_4c02141
crossref_primary_10_1021_acsaelm_4c00288
crossref_primary_10_1016_j_nanoen_2023_108824
crossref_primary_10_1109_LED_2024_3496859
crossref_primary_10_1021_acsami_4c15197
crossref_primary_10_1038_s43246_024_00518_z
crossref_primary_10_3390_molecules28041627
crossref_primary_10_1016_j_carbpol_2024_123015
crossref_primary_10_1002_adma_202312596
crossref_primary_10_1080_09544828_2024_2307299
crossref_primary_10_1002_adsr_202300158
crossref_primary_10_1039_D4TC01611D
crossref_primary_10_1002_adfm_202412703
crossref_primary_10_1021_acs_analchem_2c04291
crossref_primary_10_3390_polym15122736
crossref_primary_10_1063_5_0202910
crossref_primary_10_1021_acsanm_4c00286
crossref_primary_10_1002_smtd_202401368
crossref_primary_10_1038_s41528_022_00226_z
crossref_primary_10_1007_s40820_023_01260_w
crossref_primary_10_1007_s12274_023_5837_1
crossref_primary_10_1002_cmt2_33
crossref_primary_10_1039_D2NA00339B
crossref_primary_10_1002_smtd_202201340
crossref_primary_10_1007_s42114_023_00701_9
crossref_primary_10_1016_j_jallcom_2024_175576
crossref_primary_10_1002_adfm_202406022
crossref_primary_10_1021_acsnano_2c09933
crossref_primary_10_1039_D3MH01999C
crossref_primary_10_1016_j_sna_2024_115858
crossref_primary_10_1021_acsanm_3c02020
crossref_primary_10_1002_admt_202301602
crossref_primary_10_1002_adfm_202422733
crossref_primary_10_1002_aelm_202201333
crossref_primary_10_1002_adma_202209673
crossref_primary_10_1002_smll_202407168
crossref_primary_10_1007_s42765_024_00412_w
crossref_primary_10_1007_s40843_023_2619_7
crossref_primary_10_1007_s40843_023_2849_6
crossref_primary_10_1016_j_mser_2024_100892
crossref_primary_10_1002_adma_202403905
crossref_primary_10_3390_bios12080651
crossref_primary_10_1002_adfm_202410661
crossref_primary_10_1021_acsami_2c10226
crossref_primary_10_1002_advs_202305672
crossref_primary_10_1002_advs_202305552
crossref_primary_10_1002_agt2_522
crossref_primary_10_1109_ACCESS_2024_3524614
crossref_primary_10_1038_s41598_022_19096_6
crossref_primary_10_1021_acsami_3c07589
crossref_primary_10_1021_acsnano_4c05851
crossref_primary_10_1002_aesr_202300245
crossref_primary_10_1002_admt_202202057
crossref_primary_10_1002_admt_202201088
crossref_primary_10_1021_acsami_3c05281
crossref_primary_10_1088_1361_6439_acfdb5
crossref_primary_10_1088_1361_6579_ad838d
crossref_primary_10_1038_s44222_024_00175_4
crossref_primary_10_1039_D5TA00742A
crossref_primary_10_1186_s12938_024_01201_7
crossref_primary_10_3390_bios15010005
crossref_primary_10_1080_09205063_2024_2334974
crossref_primary_10_1016_j_cej_2024_157332
crossref_primary_10_1038_s41467_024_49864_z
crossref_primary_10_3390_mi14081638
crossref_primary_10_1002_admt_202402052
crossref_primary_10_1021_acs_chemmater_4c00966
crossref_primary_10_1016_j_sna_2023_114547
crossref_primary_10_3390_s24165091
crossref_primary_10_1088_1361_6528_ad93df
crossref_primary_10_1007_s40820_025_01656_w
crossref_primary_10_1088_2399_6528_ad7d5d
crossref_primary_10_1002_pat_6264
crossref_primary_10_1002_adfm_202409602
crossref_primary_10_1021_acsnano_4c04100
crossref_primary_10_3390_ma16237428
crossref_primary_10_1021_acsami_3c09587
crossref_primary_10_1109_JBHI_2024_3423461
crossref_primary_10_1007_s44258_023_00001_3
crossref_primary_10_1021_acsami_3c09580
crossref_primary_10_1016_j_matdes_2023_112115
crossref_primary_10_1016_j_nanoen_2023_108642
crossref_primary_10_1016_j_nanoen_2022_107282
crossref_primary_10_1002_adfm_202211983
crossref_primary_10_1002_admt_202301407
crossref_primary_10_1002_adem_202201678
crossref_primary_10_3390_bios15030191
crossref_primary_10_3390_app13137473
crossref_primary_10_1002_adfm_202300299
crossref_primary_10_1002_EXP_20230109
crossref_primary_10_1080_14686996_2024_2311635
crossref_primary_10_1038_s41528_022_00191_7
crossref_primary_10_1109_JSEN_2024_3403522
crossref_primary_10_1002_aelm_202400852
crossref_primary_10_1039_D3MH00325F
crossref_primary_10_3390_bios13080787
crossref_primary_10_1021_acsnano_3c05797
crossref_primary_10_1016_j_cej_2024_148950
crossref_primary_10_1021_acsami_4c09659
crossref_primary_10_1088_1361_6528_acd19a
crossref_primary_10_1039_D2RA06487A
crossref_primary_10_1002_admt_202301895
crossref_primary_10_1002_adfm_202416163
crossref_primary_10_1002_adsr_202300162
crossref_primary_10_1038_s41528_023_00244_5
crossref_primary_10_1002_adfm_202404064
crossref_primary_10_1002_adsu_202500075
crossref_primary_10_1039_D4TA07127A
Cites_doi 10.1002/aelm.201600356
10.1038/s41587-021-00948-x
10.1021/acsami.9b09265
10.3390/polym11091433
10.1002/adma.201703456
10.1016/j.matt.2021.03.005
10.1002/adfm.201402987
10.1016/S0140-6736(16)31134-5
10.1021/acsami.9b06260
10.1021/acsami.0c22784
10.1016/j.bspc.2016.09.013
10.1038/s41467-020-14814-y
10.1016/j.nanoen.2018.05.020
10.1126/sciadv.1500661
10.1016/j.bios.2021.113329
10.1016/j.nanoen.2012.01.004
10.1016/S0140-6736(09)61457-4
10.1002/adfm.201802629
10.1038/nature12314
10.1126/science.1124005
10.1126/sciadv.aay2840
10.1177/1474515119826510
10.1002/adfm.202102378
10.1161/01.HYP.33.6.1392
10.1021/acsami.8b19214
10.1161/CIR.0000000000000534
10.1016/S0140-6736(13)61452-X
10.1152/ajpheart.00175.2002
10.1002/admt.202070056
10.1364/OE.20.011740
10.1016/j.cplett.2009.06.096
10.1016/S0140-6736(14)60147-1
10.1002/adfm.201907312
10.1016/j.bios.2020.112078
10.1016/j.mseb.2014.12.009
10.1002/adma.202104178
10.1002/adma.202100859
10.1016/S0140-6736(12)60525-X
10.1016/j.trechm.2021.01.001
10.1016/j.ijleo.2012.11.044
10.1021/nl300988z
10.1117/1.JBO.18.5.057006
10.1126/sciadv.abl3742
10.1039/C9TC05392A
10.1016/j.scib.2020.10.002
10.1016/S0140-6736(00)02636-2
10.1088/1361-665X/aadff5
10.1038/s41467-021-27066-1
10.1002/smll.201800819
10.1021/acsnano.7b07613
10.1002/adfm.201803413
10.1038/s41551-016-0008
10.1007/s10916-018-0901-1
10.1126/scirobotics.aai7529
10.1016/j.tibtech.2020.12.011
10.1002/adfm.201907091
10.1021/acsami.9b07465
10.1016/S2213-8587(17)30039-6
10.1016/j.nanoen.2021.106321
10.1002/adfm.201805045
10.1002/adma.201904765
10.1002/adfm.201806388
10.1002/smll.201804559
10.1002/adma.201702308
10.1016/j.ctim.2006.06.004
10.1002/chem.201803369
10.1038/nmat2896
10.1016/j.bios.2020.112714
10.1038/s41928-020-0422-z
10.1038/s41563-020-00902-3
10.1016/S0140-6736(19)31145-6
10.3390/jcm9041203
10.1039/D1CC02091A
10.1002/adfm.201903100
10.1002/smll.201801657
10.1126/sciadv.abe2943
10.1142/S0192415X09006941
10.1016/S0140-6736(15)01225-8
10.1016/j.matt.2021.01.006
10.34133/2020/7158953
10.1002/adhm.202001023
10.1016/j.nanoen.2020.104941
10.1126/science.aba5132
10.1002/adhm.202100975
10.1002/adfm.201909954
10.1002/adma.201603143
10.1038/s41928-020-0415-y
10.1088/1361-6528/ab1a86
10.1038/s41467-020-14446-2
10.1109/TMAG.2011.2156771
10.1002/adma.201304248
10.1097/BOR.0000000000000453
10.1038/s41467-020-18503-8
10.1109/JSEN.2014.2353640
10.1016/j.ahj.2016.11.006
10.1021/acsami.0c12561
10.1016/j.sna.2018.10.040
10.1038/ncomms6745
10.1016/j.mee.2011.01.045
10.1088/1361-6528/aaa855
10.1016/j.nanoen.2014.11.034
10.3390/s19133011
10.1021/acsami.9b07636
10.1038/ncomms2832
10.1364/OPTICA.4.001285
10.1126/sciadv.1501856
10.1007/s00421-019-04142-5
10.1016/j.amjhyper.2004.10.009
10.1021/acsnano.8b01557
10.1002/adma.201503558
10.1021/acsami.9b12747
10.1088/1361-6528/ab3695
10.1002/admt.201700087
10.1039/C5TC01723H
10.1161/hy1001.096106
10.1126/sciadv.abd3716
10.1002/admi.201800403
10.1021/acsami.7b01979
10.1016/j.matt.2021.09.012
10.1007/s10278-014-9722-z
10.1021/acsami.0c14314
10.3390/s140713088
10.1016/S0140-6736(21)00684-X
10.1038/s41928-021-00663-0
10.1126/sciadv.abe3778
10.1016/j.matt.2021.06.034
10.1002/adfm.201500856
10.1002/adhm.202100116
10.1016/S2213-8587(18)30267-5
10.1021/acsami.6b08172
10.1002/adma.201403807
10.1002/inf2.12060
10.1109/JSEN.2017.2731788
10.1038/ncomms5496
10.1021/acsami.9b23110
10.1016/j.matt.2019.12.025
10.1038/nmat3380
10.1002/adfm.201808247
10.1038/s41563-021-01093-1
10.1016/j.nanoen.2019.03.005
10.1002/adma.201703700
10.1002/adma.202101262
10.1039/c3ee41063c
10.1002/adfm.201600008
10.1002/adfm.202010962
10.1039/C5EE01532D
10.1002/adma.201603679
10.1002/adma.201302240
10.1016/j.bios.2020.112064
10.1038/s41467-019-14054-9
10.1126/sciadv.abi9283
10.1038/ncomms4132
10.1002/smtd.202001041
10.1002/smll.201904774
10.1002/adom.202100270
10.1021/acsami.9b03261
10.1016/j.bios.2019.05.002
10.1038/s41551-018-0335-6
10.1038/s41928-020-0428-6
10.1002/adhm.201901735
10.1038/nmat2834
10.1021/acsami.9b21197
10.1007/s12274-017-1731-z
10.1126/sciadv.aas9530
10.1002/adfm.201902898
10.1002/adfm.202105482
10.1109/TIM.2006.873784
10.1021/acsnano.1c10676
10.1002/adom.202001815
10.1021/acsami.7b16611
10.1038/s41551-021-00723-y
10.1038/s41467-020-19059-3
10.1002/jbio.201700263
10.1002/adma.201404794
10.1021/acsaem.1c02465
10.1007/s41315-018-0060-z
10.1016/j.nanoen.2020.104706
10.1016/j.bbe.2014.02.001
10.1109/TIM.2014.2312512
10.1134/1.1595194
10.1039/D1TA02518J
10.1109/TBME.2018.2873754
10.3390/bios11040126
10.3390/s17010111
10.1126/sciadv.aav9653
10.1016/S0140-6736(18)30309-X
10.1038/s41551-018-0287-x
10.1002/adma.201305182
10.1002/adfm.201504755
10.1021/acsnano.0c01804
10.1038/nmat4671
10.1002/adfm.201704641
10.1002/adma.201802359
10.1038/nrcardio.2015.82
10.1002/adfm.201400712
10.3390/bios5030602
10.1088/0967-3334/31/1/R01
10.1177/1753944717743920
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202109357
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35044014
10_1002_adma_202109357
ADMA202109357
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: 2021 Hellman Fellow Research
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4397-e035af6c1eb67bdb85fe4406f0da8d25617d43198cd83e9352b3b51f9e0e32ea3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 02:57:25 EDT 2025
Fri Jul 25 04:18:46 EDT 2025
Thu Apr 03 07:04:03 EDT 2025
Tue Jul 01 02:33:12 EDT 2025
Thu Apr 24 22:50:21 EDT 2025
Wed Jan 22 16:24:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords microengineering
personalized healthcare
cardiovascular diseases
pulse signals
pressure sensors
wearable electronics
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4397-e035af6c1eb67bdb85fe4406f0da8d25617d43198cd83e9352b3b51f9e0e32ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3439-0495
PMID 35044014
PQID 2669316434
PQPubID 2045203
PageCount 23
ParticipantIDs proquest_miscellaneous_2621256624
proquest_journals_2669316434
pubmed_primary_35044014
crossref_citationtrail_10_1002_adma_202109357
crossref_primary_10_1002_adma_202109357
wiley_primary_10_1002_adma_202109357_ADMA202109357
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 284
2013; 4
2021; 66
2019; 11
2019; 15
2016; 388
2016; 387
2014; 26
2020; 16
2019; 19
2019; 18
2013; 124
2020; 14
2014; 24
2020; 12
2020; 11
2012; 12
2018; 42
2012; 11
2013; 6
2009; 477
2018; 6
2018; 2
2018; 5
2018; 4
2003; 48
2014; 14
2019; 29
2018; 30
2021; 397
2012; 379
2019; 394
2012; 20
2010; 9
2003; 284
2019; 7
2018; 29
2018; 28
2010; 31
2019; 3
2010; 2010
2019; 5
2019; 31
2019; 30
2000; 356
2019; 2
2006; 55
2017; 136
2016; 15
2018; 27
2007; 15
2018; 24
2021; 57
2015; 193
2016; 1
2020; 2020
2016; 2
2020; 30
2020; 154
1999; 33
2011; 88
2020; 155
2001; 38
2018; 12
2016; 28
2018; 11
2014; 383
2018; 10
2016; 26
2005; 18
2016; 8
2014; 34
2018; 14
2017; 5
2017; 1
2013; 25
2017; 2
2021; 20
2017; 4
2019; 59
2014; 63
2017; 9
2013; 18
2020; 6
2017; 31
2020; 5
2014; 5
2021; 31
2020; 3
2020; 2
2021; 33
2019; 66
2021; 39
2020; 370
2020; 9
2019; 119
2021; 9
2015; 12
2015; 1
2021; 7
2015; 15
2015; 14
2021; 5
2021; 4
2015; 5
2021; 3
2021; 89
2021; 2
2015; 3
2009; 374
2013; 382
2017; 29
2021; 187
1999; 1
2015; 8
2006; 312
2021; 13
2015; 25
2021; 15
2021; 10
2018; 391
2015; 28
2015; 27
2021; 12
2021; 11
2012; 1
2020; 74
2021
2017; 17
2020; 72
2021; 171
2019; 137
2013; 499
2017; 185
2018; 50
2011; 47
2009; 37
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_15_1
e_1_2_8_38_1
Chen P. (e_1_2_8_51_1) 1999
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_14_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_27_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
Castaneda D. (e_1_2_8_55_1) 2018; 4
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
Lee Q. Y. (e_1_2_8_42_1) 2010; 2010
e_1_2_8_16_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
Xiao X. (e_1_2_8_37_1) 2021; 2
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_200_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_201_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 374
  start-page: 1677
  year: 2009
  publication-title: Lancet
– volume: 397
  start-page: 2385
  year: 2021
  publication-title: Lancet
– volume: 2
  start-page: 687
  year: 2018
  publication-title: Nat. Biomed. Eng.
– volume: 382
  start-page: 644
  year: 2013
  publication-title: Lancet
– volume: 356
  start-page: 737
  year: 2000
  publication-title: Lancet
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 6037
  year: 2017
  publication-title: IEEE Sens. J.
– volume: 11
  start-page: 209
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 9
  start-page: 1203
  year: 2020
  publication-title: J. Clin. Med.
– volume: 9
  year: 2020
  publication-title: Adv. Healthcare Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 193
  start-page: 121
  year: 2015
  publication-title: Mater. Sci. Eng., B
– volume: 89
  year: 2021
  publication-title: Nano Energy
– volume: 14
  year: 2018
  publication-title: Small
– volume: 12
  start-page: 2346
  year: 2018
  publication-title: ACS Nano
– volume: 20
  year: 2012
  publication-title: Opt. Express
– volume: 12
  start-page: 3964
  year: 2018
  publication-title: ACS Nano
– volume: 55
  start-page: 869
  year: 2006
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 33
  start-page: 1392
  year: 1999
  publication-title: Hypertension
– volume: 4
  start-page: 845
  year: 2021
  publication-title: Matter
– volume: 25
  start-page: 5997
  year: 2013
  publication-title: Adv. Mater.
– volume: 388
  start-page: 2665
  year: 2016
  publication-title: Lancet
– volume: 187
  year: 2021
  publication-title: Biosens. Bioelectron.
– volume: 499
  start-page: 458
  year: 2013
  publication-title: Nature
– volume: 4
  start-page: 2886
  year: 2021
  publication-title: Matter
– volume: 370
  start-page: 961
  year: 2020
  publication-title: Science
– volume: 6
  start-page: 2631
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 1124
  year: 2018
  publication-title: Nano Res.
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 6
  start-page: 756
  year: 2018
  publication-title: Lancet Diabetes Endocrinol.
– volume: 12
  start-page: 85
  year: 2018
  publication-title: Ther. Adv. Cardiovasc. Dis.
– volume: 39
  start-page: 1078
  year: 2021
  publication-title: Trend Biotechnol.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2019
  publication-title: Nanotechnology
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 0008
  year: 2017
  publication-title: Nat. Biomed. Eng.
– volume: 66
  start-page: 1412
  year: 2019
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 25
  start-page: 3203
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 2250
  year: 2015
  publication-title: Energy Environ.
– volume: 3
  start-page: 9594
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 14
  year: 2014
  publication-title: Sensors
– volume: 27
  start-page: 634
  year: 2015
  publication-title: Adv. Mater.
– volume: 24
  start-page: 5427
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 1670
  year: 2021
  publication-title: Nat. Mater.
– volume: 29
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 563
  year: 2020
  publication-title: Nat. Electron.
– volume: 38
  start-page: 932
  year: 2001
  publication-title: Hypertension
– volume: 5
  start-page: 602
  year: 2015
  publication-title: Biosensors
– volume: 27
  start-page: 1316
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 136
  year: 2017
  publication-title: Circulation
– volume: 28
  start-page: 9512
  year: 2016
  publication-title: Adv. Mater.
– volume: 379
  start-page: 2243
  year: 2012
  publication-title: Lancet
– volume: 72
  year: 2020
  publication-title: Nano Energy
– volume: 50
  start-page: 79
  year: 2018
  publication-title: Nano Energy
– volume: 66
  start-page: 490
  year: 2021
  publication-title: Sci. Bull.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 63
  start-page: 2620
  year: 2014
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 11
  year: 2018
  publication-title: J. Biophotonics
– volume: 394
  start-page: 639
  year: 2019
  publication-title: Lancet
– volume: 2010
  start-page: 1930
  year: 2010
  publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
– volume: 39
  start-page: 1228
  year: 2021
  publication-title: Nat. Biotechnol.
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 11
  start-page: 1002
  year: 2020
  publication-title: Nat. Commun.
– volume: 42
  start-page: 43
  year: 2018
  publication-title: J. Med. Syst.
– volume: 11
  start-page: 4683
  year: 2020
  publication-title: Nat. Commun.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 1
  start-page: 328
  year: 2012
  publication-title: Nano Energy
– volume: 119
  start-page: 1525
  year: 2019
  publication-title: Eur. J. Appl. Physiol.
– volume: 18
  year: 2013
  publication-title: J. Biomed. Opt.
– volume: 3
  start-page: 58
  year: 2019
  publication-title: Nat. Biomed. Eng.
– volume: 124
  start-page: 3954
  year: 2013
  publication-title: Optik
– volume: 27
  start-page: 7365
  year: 2015
  publication-title: Adv. Mater.
– volume: 19
  start-page: 3011
  year: 2019
  publication-title: Sensors
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 477
  start-page: 231
  year: 2009
  publication-title: Chem. Phys. Lett.
– volume: 155
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 28
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 279
  year: 2021
  publication-title: Trends Chem.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2021
  publication-title: Small Methods
– volume: 12
  start-page: 6755
  year: 2021
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1015
  year: 2010
  publication-title: Nat. Mater.
– volume: 2
  start-page: 313
  year: 2018
  publication-title: Int. J. Intell. Rob. Appl.
– volume: 154
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 27
  year: 2018
  publication-title: Smart Mater. Struct.
– volume: 37
  start-page: 411
  year: 2009
  publication-title: Am. J. Chin. Med.
– volume: 312
  start-page: 242
  year: 2006
  publication-title: Science
– volume: 387
  start-page: 957
  year: 2016
  publication-title: Lancet
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 284
  start-page: 260
  year: 2018
  publication-title: Sens. Actuators, A
– volume: 185
  start-page: 67
  year: 2017
  publication-title: Am. Heart J.
– volume: 2020
  year: 2020
  publication-title: Research
– volume: 12
  start-page: 5601
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 5871
  year: 2021
  publication-title: Chem. Commun.
– volume: 3
  start-page: 571
  year: 2020
  publication-title: Nat. Electron.
– volume: 4
  start-page: 3725
  year: 2021
  publication-title: Matter
– volume: 14
  start-page: 161
  year: 2015
  publication-title: Nano Energy
– volume: 1
  year: 2016
  publication-title: Sci. Rob.
– volume: 11
  start-page: 1107
  year: 2020
  publication-title: Nat. Commun.
– volume: 12
  start-page: 508
  year: 2015
  publication-title: Nat. Rev. Cardiol.
– volume: 88
  start-page: 1811
  year: 2011
  publication-title: Microelectron. Eng.
– volume: 26
  start-page: 1336
  year: 2014
  publication-title: Adv. Mater.
– volume: 2
  start-page: 184
  year: 2019
  publication-title: InfoMat
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 26
  start-page: 3640
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 284
  year: 2003
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 12
  start-page: 3109
  year: 2012
  publication-title: Nano Lett.
– volume: 59
  start-page: 689
  year: 2019
  publication-title: Nano Energy
– volume: 28
  start-page: 91
  year: 2015
  publication-title: J. Digital Imaging
– volume: 48
  start-page: 649
  year: 2003
  publication-title: Crystallogr. Rep.
– volume: 4
  start-page: 808
  year: 2021
  publication-title: Nat. Electron.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 47
  start-page: 2901
  year: 2011
  publication-title: IEEE Trans. Magn.
– volume: 10
  year: 2021
  publication-title: Adv. Healthcare Mater.
– volume: 34
  start-page: 101
  year: 2014
  publication-title: Biocybern. Biomed. Eng.
– volume: 15
  start-page: 757
  year: 2015
  publication-title: IEEE Sens. J.
– year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 4
  start-page: 1285
  year: 2017
  publication-title: Optica
– volume: 4
  start-page: 1859
  year: 2013
  publication-title: Nat. Commun.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 190
  year: 2007
  publication-title: Complementary Ther. Med.
– volume: 383
  start-page: 409
  year: 2014
  publication-title: Lancet
– volume: 137
  start-page: 25
  year: 2019
  publication-title: Biosens. Bioelectron.
– volume: 2
  year: 2017
  publication-title: Adv. Mater. Technol.
– volume: 11
  start-page: 795
  year: 2012
  publication-title: Nat. Mater.
– volume: 15
  start-page: 937
  year: 2016
  publication-title: Nat. Mater.
– volume: 31
  start-page: R1
  year: 2010
  publication-title: Physiol. Meas.
– volume: 18
  start-page: 3S
  year: 2005
  publication-title: Am. J. Hypertens.
– volume: 20
  start-page: 859
  year: 2021
  publication-title: Nat. Mater.
– volume: 26
  start-page: 3451
  year: 2014
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4086
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 1433
  year: 2019
  publication-title: Polymers
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 30
  start-page: 36
  year: 2018
  publication-title: Curr. Opin. Rheumatol.
– volume: 391
  start-page: 949
  year: 2018
  publication-title: Lancet
– volume: 4
  start-page: 1102
  year: 2021
  publication-title: Matter
– volume: 25
  start-page: 375
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 1503
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 6067
  year: 2020
  publication-title: ACS Nano
– volume: 9
  start-page: 859
  year: 2010
  publication-title: Nat. Mater.
– volume: 5
  start-page: 759
  year: 2021
  publication-title: Nat. Biomed. Eng.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 18
  start-page: 260
  year: 2019
  publication-title: Eur. J. Cardiovasc. Nurs.
– volume: 171
  year: 2021
  publication-title: Biosens. Bioelectron.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 11
  start-page: 126
  year: 2021
  publication-title: Biosensors
– volume: 15
  year: 2019
  publication-title: Small
– volume: 24
  year: 2018
  publication-title: Chemistry
– volume: 5
  start-page: 4496
  year: 2014
  publication-title: Nat. Commun.
– volume: 5
  start-page: 5745
  year: 2014
  publication-title: Nat. Commun.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 1678
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 896
  year: 2020
  publication-title: Matter
– volume: 1
  year: 1999
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  start-page: 163
  year: 2017
  publication-title: Lancet Diabetes Endocrinol.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 3132
  year: 2014
  publication-title: Nat. Commun.
– volume: 11
  start-page: 5381
  year: 2020
  publication-title: Nat. Commun.
– volume: 3
  start-page: 316
  year: 2020
  publication-title: Nat. Electron.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 419
  year: 2017
  publication-title: Biomed. Signal Process Control
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 2
  year: 2021
  publication-title: Innovation
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 17
  start-page: 111
  year: 2017
  publication-title: Sensors
– volume: 4
  start-page: 195
  year: 2018
  publication-title: Int. J. Biosens. Bioelectron.
– ident: e_1_2_8_129_1
  doi: 10.1002/aelm.201600356
– ident: e_1_2_8_30_1
  doi: 10.1038/s41587-021-00948-x
– ident: e_1_2_8_94_1
  doi: 10.1021/acsami.9b09265
– ident: e_1_2_8_172_1
  doi: 10.3390/polym11091433
– ident: e_1_2_8_184_1
  doi: 10.1002/adma.201703456
– ident: e_1_2_8_43_1
  doi: 10.1016/j.matt.2021.03.005
– ident: e_1_2_8_116_1
  doi: 10.1002/adfm.201402987
– ident: e_1_2_8_18_1
  doi: 10.1016/S0140-6736(16)31134-5
– ident: e_1_2_8_83_1
  doi: 10.1021/acsami.9b06260
– ident: e_1_2_8_25_1
  doi: 10.1021/acsami.0c22784
– ident: e_1_2_8_59_1
  doi: 10.1016/j.bspc.2016.09.013
– ident: e_1_2_8_194_1
  doi: 10.1038/s41467-020-14814-y
– ident: e_1_2_8_153_1
  doi: 10.1016/j.nanoen.2018.05.020
– ident: e_1_2_8_180_1
  doi: 10.1126/sciadv.1500661
– ident: e_1_2_8_29_1
  doi: 10.1016/j.bios.2021.113329
– ident: e_1_2_8_143_1
  doi: 10.1016/j.nanoen.2012.01.004
– ident: e_1_2_8_10_1
  doi: 10.1016/S0140-6736(09)61457-4
– ident: e_1_2_8_131_1
  doi: 10.1002/adfm.201802629
– ident: e_1_2_8_76_1
  doi: 10.1038/nature12314
– ident: e_1_2_8_139_1
  doi: 10.1126/science.1124005
– ident: e_1_2_8_34_1
  doi: 10.1126/sciadv.aay2840
– ident: e_1_2_8_14_1
  doi: 10.1177/1474515119826510
– ident: e_1_2_8_185_1
  doi: 10.1002/adfm.202102378
– ident: e_1_2_8_40_1
  doi: 10.1161/01.HYP.33.6.1392
– ident: e_1_2_8_159_1
  doi: 10.1021/acsami.8b19214
– ident: e_1_2_8_3_1
  doi: 10.1161/CIR.0000000000000534
– ident: e_1_2_8_11_1
  doi: 10.1016/S0140-6736(13)61452-X
– ident: e_1_2_8_108_1
  doi: 10.1152/ajpheart.00175.2002
– ident: e_1_2_8_118_1
  doi: 10.1002/admt.202070056
– ident: e_1_2_8_173_1
  doi: 10.1364/OE.20.011740
– ident: e_1_2_8_20_1
  doi: 10.1016/j.cplett.2009.06.096
– ident: e_1_2_8_12_1
  doi: 10.1016/S0140-6736(14)60147-1
– volume: 2010
  start-page: 1930
  year: 2010
  ident: e_1_2_8_42_1
  publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
– ident: e_1_2_8_158_1
  doi: 10.1002/adfm.201907312
– ident: e_1_2_8_64_1
  doi: 10.1016/j.bios.2020.112078
– ident: e_1_2_8_146_1
  doi: 10.1016/j.mseb.2014.12.009
– ident: e_1_2_8_199_1
  doi: 10.1002/adma.202104178
– ident: e_1_2_8_166_1
  doi: 10.1002/adma.202100859
– ident: e_1_2_8_9_1
  doi: 10.1016/S0140-6736(12)60525-X
– ident: e_1_2_8_36_1
  doi: 10.1016/j.trechm.2021.01.001
– ident: e_1_2_8_53_1
  doi: 10.1016/j.ijleo.2012.11.044
– ident: e_1_2_8_88_1
  doi: 10.1021/nl300988z
– ident: e_1_2_8_138_1
  doi: 10.1117/1.JBO.18.5.057006
– ident: e_1_2_8_66_1
  doi: 10.1126/sciadv.abl3742
– ident: e_1_2_8_112_1
  doi: 10.1039/C9TC05392A
– ident: e_1_2_8_74_1
  doi: 10.1016/j.scib.2020.10.002
– ident: e_1_2_8_109_1
  doi: 10.1016/S0140-6736(00)02636-2
– ident: e_1_2_8_148_1
  doi: 10.1088/1361-665X/aadff5
– ident: e_1_2_8_151_1
  doi: 10.1038/s41467-021-27066-1
– ident: e_1_2_8_91_1
  doi: 10.1002/smll.201800819
– ident: e_1_2_8_100_1
  doi: 10.1021/acsnano.7b07613
– ident: e_1_2_8_179_1
  doi: 10.1002/adfm.201803413
– ident: e_1_2_8_168_1
  doi: 10.1038/s41551-016-0008
– ident: e_1_2_8_5_1
  doi: 10.1007/s10916-018-0901-1
– ident: e_1_2_8_170_1
  doi: 10.1126/scirobotics.aai7529
– ident: e_1_2_8_44_1
  doi: 10.1016/j.tibtech.2020.12.011
– ident: e_1_2_8_69_1
  doi: 10.1002/adfm.201907091
– ident: e_1_2_8_32_1
  doi: 10.1021/acsami.9b07465
– ident: e_1_2_8_8_1
  doi: 10.1016/S2213-8587(17)30039-6
– ident: e_1_2_8_78_1
  doi: 10.1016/j.nanoen.2021.106321
– ident: e_1_2_8_22_1
  doi: 10.1002/adfm.201805045
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201904765
– ident: e_1_2_8_125_1
  doi: 10.1002/adfm.201806388
– ident: e_1_2_8_164_1
  doi: 10.1002/smll.201804559
– ident: e_1_2_8_182_1
  doi: 10.1002/adma.201702308
– ident: e_1_2_8_48_1
  doi: 10.1016/j.ctim.2006.06.004
– ident: e_1_2_8_86_1
  doi: 10.1002/chem.201803369
– ident: e_1_2_8_77_1
  doi: 10.1038/nmat2896
– ident: e_1_2_8_61_1
  doi: 10.1016/j.bios.2020.112714
– ident: e_1_2_8_120_1
  doi: 10.1038/s41928-020-0422-z
– ident: e_1_2_8_195_1
  doi: 10.1038/s41563-020-00902-3
– ident: e_1_2_8_16_1
  doi: 10.1016/S0140-6736(19)31145-6
– ident: e_1_2_8_54_1
  doi: 10.3390/jcm9041203
– ident: e_1_2_8_38_1
  doi: 10.1039/D1CC02091A
– ident: e_1_2_8_84_1
  doi: 10.1002/adfm.201903100
– ident: e_1_2_8_157_1
  doi: 10.1002/smll.201801657
– ident: e_1_2_8_121_1
  doi: 10.1126/sciadv.abe2943
– ident: e_1_2_8_50_1
  doi: 10.1142/S0192415X09006941
– ident: e_1_2_8_15_1
  doi: 10.1016/S0140-6736(15)01225-8
– ident: e_1_2_8_39_1
  doi: 10.1016/j.matt.2021.01.006
– ident: e_1_2_8_79_1
  doi: 10.34133/2020/7158953
– ident: e_1_2_8_167_1
  doi: 10.1002/adhm.202001023
– ident: e_1_2_8_63_1
  doi: 10.1016/j.nanoen.2020.104941
– ident: e_1_2_8_27_1
  doi: 10.1126/science.aba5132
– ident: e_1_2_8_62_1
  doi: 10.1002/adhm.202100975
– ident: e_1_2_8_203_1
  doi: 10.1002/adfm.201909954
– ident: e_1_2_8_99_1
  doi: 10.1002/adma.201603143
– ident: e_1_2_8_196_1
  doi: 10.1038/s41928-020-0415-y
– ident: e_1_2_8_87_1
  doi: 10.1088/1361-6528/ab1a86
– ident: e_1_2_8_160_1
  doi: 10.1038/s41467-020-14446-2
– ident: e_1_2_8_147_1
  doi: 10.1109/TMAG.2011.2156771
– ident: e_1_2_8_98_1
  doi: 10.1002/adma.201304248
– ident: e_1_2_8_6_1
  doi: 10.1097/BOR.0000000000000453
– ident: e_1_2_8_26_1
  doi: 10.1038/s41467-020-18503-8
– ident: e_1_2_8_177_1
  doi: 10.1109/JSEN.2014.2353640
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ahj.2016.11.006
– ident: e_1_2_8_106_1
  doi: 10.1021/acsami.0c12561
– ident: e_1_2_8_90_1
  doi: 10.1016/j.sna.2018.10.040
– ident: e_1_2_8_188_1
  doi: 10.1038/ncomms6745
– ident: e_1_2_8_127_1
  doi: 10.1016/j.mee.2011.01.045
– ident: e_1_2_8_152_1
  doi: 10.1088/1361-6528/aaa855
– ident: e_1_2_8_144_1
  doi: 10.1016/j.nanoen.2014.11.034
– ident: e_1_2_8_175_1
  doi: 10.3390/s19133011
– ident: e_1_2_8_60_1
  doi: 10.1021/acsami.9b07636
– ident: e_1_2_8_82_1
  doi: 10.1038/ncomms2832
– ident: e_1_2_8_171_1
  doi: 10.1364/OPTICA.4.001285
– ident: e_1_2_8_189_1
  doi: 10.1126/sciadv.1501856
– ident: e_1_2_8_19_1
  doi: 10.1007/s00421-019-04142-5
– ident: e_1_2_8_46_1
  doi: 10.1016/j.amjhyper.2004.10.009
– ident: e_1_2_8_89_1
  doi: 10.1021/acsnano.8b01557
– ident: e_1_2_8_70_1
  doi: 10.1002/adma.201503558
– ident: e_1_2_8_92_1
  doi: 10.1021/acsami.9b12747
– ident: e_1_2_8_155_1
  doi: 10.1038/ncomms2832
– volume: 2
  year: 2021
  ident: e_1_2_8_37_1
  publication-title: Innovation
– ident: e_1_2_8_96_1
  doi: 10.1088/1361-6528/ab3695
– ident: e_1_2_8_132_1
  doi: 10.1002/admt.201700087
– ident: e_1_2_8_105_1
  doi: 10.1039/C5TC01723H
– ident: e_1_2_8_41_1
  doi: 10.1161/hy1001.096106
– ident: e_1_2_8_201_1
  doi: 10.1126/sciadv.abd3716
– ident: e_1_2_8_85_1
  doi: 10.1002/admi.201800403
– ident: e_1_2_8_104_1
  doi: 10.1021/acsami.7b01979
– ident: e_1_2_8_150_1
  doi: 10.1016/j.matt.2021.09.012
– ident: e_1_2_8_107_1
  doi: 10.1007/s10278-014-9722-z
– ident: e_1_2_8_101_1
  doi: 10.1021/acsami.0c14314
– ident: e_1_2_8_178_1
  doi: 10.3390/s140713088
– ident: e_1_2_8_4_1
  doi: 10.1016/S0140-6736(21)00684-X
– ident: e_1_2_8_197_1
  doi: 10.1038/s41928-021-00663-0
– ident: e_1_2_8_193_1
  doi: 10.1126/sciadv.abe3778
– ident: e_1_2_8_28_1
  doi: 10.1016/j.matt.2021.06.034
– ident: e_1_2_8_140_1
  doi: 10.1002/adfm.201500856
– ident: e_1_2_8_2_1
  doi: 10.1002/adhm.202100116
– ident: e_1_2_8_7_1
  doi: 10.1016/S2213-8587(18)30267-5
– ident: e_1_2_8_126_1
  doi: 10.1021/acsami.6b08172
– ident: e_1_2_8_165_1
  doi: 10.1002/adma.201403807
– ident: e_1_2_8_113_1
  doi: 10.1002/inf2.12060
– volume-title: History and Development of Traditional Chinese Medicine
  year: 1999
  ident: e_1_2_8_51_1
– ident: e_1_2_8_176_1
  doi: 10.1109/JSEN.2017.2731788
– ident: e_1_2_8_183_1
  doi: 10.1038/ncomms5496
– ident: e_1_2_8_95_1
  doi: 10.1021/acsami.9b23110
– ident: e_1_2_8_24_1
  doi: 10.1016/j.matt.2019.12.025
– ident: e_1_2_8_97_1
  doi: 10.1038/nmat3380
– ident: e_1_2_8_124_1
  doi: 10.1002/adfm.201808247
– ident: e_1_2_8_149_1
  doi: 10.1038/s41563-021-01093-1
– ident: e_1_2_8_122_1
  doi: 10.1016/j.nanoen.2019.03.005
– ident: e_1_2_8_68_1
  doi: 10.1002/adma.201703700
– ident: e_1_2_8_72_1
  doi: 10.1002/adma.202101262
– ident: e_1_2_8_141_1
  doi: 10.1039/c3ee41063c
– ident: e_1_2_8_45_1
  doi: 10.1002/adfm.201600008
– ident: e_1_2_8_49_1
  doi: 10.1002/adfm.202010962
– ident: e_1_2_8_145_1
  doi: 10.1039/C5EE01532D
– ident: e_1_2_8_71_1
  doi: 10.1002/adma.201603679
– ident: e_1_2_8_110_1
  doi: 10.1002/adma.201302240
– ident: e_1_2_8_198_1
  doi: 10.1016/j.bios.2020.112064
– ident: e_1_2_8_163_1
  doi: 10.1038/s41467-019-14054-9
– ident: e_1_2_8_187_1
  doi: 10.1126/sciadv.abi9283
– ident: e_1_2_8_73_1
  doi: 10.1038/ncomms4132
– ident: e_1_2_8_111_1
  doi: 10.1002/smtd.202001041
– ident: e_1_2_8_161_1
  doi: 10.1002/smll.201904774
– ident: e_1_2_8_133_1
  doi: 10.1002/adom.202100270
– ident: e_1_2_8_93_1
  doi: 10.1021/acsami.9b03261
– ident: e_1_2_8_169_1
  doi: 10.1016/j.bios.2019.05.002
– volume: 4
  start-page: 195
  year: 2018
  ident: e_1_2_8_55_1
  publication-title: Int. J. Biosens. Bioelectron.
– ident: e_1_2_8_202_1
  doi: 10.1038/s41551-018-0335-6
– ident: e_1_2_8_33_1
  doi: 10.1038/s41928-020-0428-6
– ident: e_1_2_8_192_1
  doi: 10.1002/adhm.201901735
– ident: e_1_2_8_154_1
  doi: 10.1038/nmat2834
– ident: e_1_2_8_103_1
  doi: 10.1021/acsami.9b21197
– ident: e_1_2_8_156_1
  doi: 10.1007/s12274-017-1731-z
– ident: e_1_2_8_191_1
  doi: 10.1126/sciadv.aas9530
– ident: e_1_2_8_130_1
  doi: 10.1002/adfm.201902898
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.202105482
– ident: e_1_2_8_57_1
  doi: 10.1109/TIM.2006.873784
– ident: e_1_2_8_204_1
  doi: 10.1021/acsnano.1c10676
– ident: e_1_2_8_134_1
  doi: 10.1002/adom.202001815
– ident: e_1_2_8_181_1
  doi: 10.1002/adfm.202010962
– ident: e_1_2_8_102_1
  doi: 10.1021/acsami.7b16611
– ident: e_1_2_8_67_1
  doi: 10.1038/s41551-021-00723-y
– ident: e_1_2_8_117_1
  doi: 10.1038/s41467-020-19059-3
– ident: e_1_2_8_174_1
  doi: 10.1002/jbio.201700263
– ident: e_1_2_8_186_1
  doi: 10.1002/adma.201404794
– ident: e_1_2_8_123_1
  doi: 10.1021/acsaem.1c02465
– ident: e_1_2_8_119_1
  doi: 10.1007/s41315-018-0060-z
– ident: e_1_2_8_75_1
  doi: 10.1016/j.nanoen.2020.104706
– ident: e_1_2_8_136_1
  doi: 10.1016/j.bbe.2014.02.001
– ident: e_1_2_8_58_1
  doi: 10.1109/TIM.2014.2312512
– ident: e_1_2_8_142_1
  doi: 10.1134/1.1595194
– ident: e_1_2_8_200_1
  doi: 10.1039/D1TA02518J
– ident: e_1_2_8_52_1
  doi: 10.1109/TBME.2018.2873754
– ident: e_1_2_8_56_1
  doi: 10.3390/bios11040126
– ident: e_1_2_8_137_1
  doi: 10.3390/s17010111
– ident: e_1_2_8_115_1
  doi: 10.1126/sciadv.aav9653
– ident: e_1_2_8_17_1
  doi: 10.1016/S0140-6736(18)30309-X
– ident: e_1_2_8_23_1
  doi: 10.1038/s41551-018-0287-x
– ident: e_1_2_8_81_1
  doi: 10.1002/adma.201305182
– ident: e_1_2_8_128_1
  doi: 10.1002/adfm.201504755
– ident: e_1_2_8_65_1
  doi: 10.1021/acsnano.0c01804
– ident: e_1_2_8_114_1
  doi: 10.1038/nmat4671
– ident: e_1_2_8_162_1
  doi: 10.1002/adfm.201704641
– ident: e_1_2_8_190_1
  doi: 10.1002/adma.201802359
– ident: e_1_2_8_1_1
  doi: 10.1038/nrcardio.2015.82
– ident: e_1_2_8_80_1
  doi: 10.1002/adfm.201400712
– ident: e_1_2_8_135_1
  doi: 10.3390/bios5030602
– ident: e_1_2_8_47_1
  doi: 10.1088/0967-3334/31/1/R01
– ident: e_1_2_8_13_1
  doi: 10.1177/1753944717743920
SSID ssj0009606
Score 2.7383254
SecondaryResourceType review_article
Snippet Cardiovascular diseases remain the leading cause of death worldwide. The rapid development of flexible sensing technologies and wearable pressure sensors have...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2109357
SubjectTerms Biomechanics
cardiovascular diseases
Cardiovascular system
Condition monitoring
Materials science
Microengineering
Optical measuring instruments
personalized healthcare
Physiology
Piezoelectricity
Pressure sensors
pulse signals
Sensors
Wave measurement
Waveforms
wearable electronics
Wearable technology
Weight reduction
Title Wearable Pressure Sensors for Pulse Wave Monitoring
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202109357
https://www.ncbi.nlm.nih.gov/pubmed/35044014
https://www.proquest.com/docview/2669316434
https://www.proquest.com/docview/2621256624
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QTnDg_RgMVCQkTtnapuma4wRMExIIAdN2q5ImvYA6tK0c-PXY6WMbCCHBsYqtpklcf27tz4RcaPDKqQ4VNVwwCFBSlwqZGKq11IFIXCFTmyB7Hw6Gwe2Yj5eq-At-iPqDG1qGfV-jgUs16yxIQ6W2vEE-8iFxLCfHhC1ERY8L_iiE55Zsj3EqwiCqWBtdv7OqvuqVvkHNVeRqXU9_i8hq0kXGyUs7n6t28vGFz_E_T7VNNktc6vSKg7RD1ky2SzaW2Ar3CBuBVWCllVPUFE6N8wRB8GQ6cwD5Og85eFlnJN-NU7woUGufDPs3z1cDWvZcoAlCE2pcxmUaJp5RYVdpFfHUBOD0U1fLSAM-8roaMIeIEh0xA3P0FVPcS4VxDfONZAekkU0yc0Qc7qoQ40mF_ZF0KKMEtIXSaaQt5U2T0GrN46QkJMe-GK9xQaXsx7gYcb0YTXJZy78VVBw_SraqLYxLk5zFgEQEg-CQBU1yXg-DMeEfEpmZSY4y4MkB4Pogc1hsfX0rxrE7twcjvt3AX-YQ967vevXV8V-UTsi6j8UWNr2yRRrzaW5OAQLN1Zk95p_y5_tW
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HIAD78d4FgmJU1nXNF1znIBpwIYQbBq3KmnSC2hDe3Dg12Ona2EghATHKrGaJnH8ObU_A5xotMqpDpVruGDooKSeK2RiXK2lDkTiCZnaANnbsNEJrh95Hk1IuTAZP0Rx4UaaYc9rUnC6kC5_sIZKbYmDfCJE4tVZmKey3taruv9gkCKAbun2GHdFGEQ5b6Pnl6flp-3SN7A5jV2t8amvgMqHncWcPJ2NR-osefvC6Piv71qF5Qk0dWrZXlqDGdNbh6VPhIUbwLqoGJRs5WRphQPjPKAf3B8MHQS_zt0YDa3Tla_Gyc4KktqETv2yfd5wJ2UX3ITQiWs8xmUaJhWjwqrSKuKpCdDup56WkUaIVKlqhB0iSnTEDI7RV0zxSiqMZ5hvJNuCuV6_Z3bA4Z4KyaVUVCJJhzJKUFoonUbast6UwM0nPU4mnORUGuM5ztiU_ZgmIy4mowSnRf-XjI3jx577-RrGE60cxghGBEP_kAUlOC6aUZ_oJ4nsmf6Y-qAxR4zrY5_tbO2LVzFOBbor2OLbFfxlDHHtolUrnnb_InQEC412qxk3r25v9mDRp9wLG225D3OjwdgcICIaqUO7598BtuP_cQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEL8oJkYf_P5AUWdi4tNkrOtYH4lI8IsQlcDb0q7tiwYIHz7413vtYIDGmOjj0rusa3u933W93wFcSPTKWobCVZQRDFC05zKeKFdKLgOWeIxre0G2EdZbwV2Hduay-FN-iOzAzViG3a-NgfelLs5IQ7m0vEG-4UOi5WVYCUIvMuu6-jQjkDL43LLtEeqyMIimtI2eX1zUX3RL37DmInS1vqe2CXza6_TKyevVeCSuko8vhI7_-awt2JgAU6eSrqRtWFLdHVifoyvcBdJGszCpVk6aVDhQzjNGwb3B0EHo6zTH6GadNn9XTrpTGK09aNVuXq7r7qTogpsYbOIqj1Cuw6SkRFgWUkRUqwC9vvYkjyQCpFJZIuhgUSIjorCPviCCljRTniK-4mQfct1eVx2CQz0RmoBSmAJJMuRRgtpMSB1Jy3mTB3c65nEyYSQ3hTHe4pRL2Y_NYMTZYOThMpPvp1wcP0oWplMYT2xyGCMUYQSjQxLk4TxrRmsyv0h4V_XGRgZdOSJcH2UO0qnPXkWoKc9dwhbfTuAvfYgr1cdK9nT0F6UzWG1Wa_HDbeP-GNZ8k3hhr1oWIDcajNUJwqGROLUr_hPHu_4p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Pressure+Sensors+for+Pulse+Wave+Monitoring&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Meng%2C+Keyu&rft.au=Xiao%2C+Xiao&rft.au=Wei%2C+Wenxin&rft.au=Chen%2C+Guorui&rft.date=2022-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202109357&rft.externalDBID=10.1002%252Fadma.202109357&rft.externalDocID=ADMA202109357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon