Rhodium‐Catalyzed Dynamic Kinetic Asymmetric Hydrosilylation to Access Silicon‐Stereogenic Center
Strategies on the construction of enantiomerically pure silicon‐stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack o...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 51; pp. e202214147 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
19.12.2022
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Strategies on the construction of enantiomerically pure silicon‐stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh‐catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with “silicon‐centered” racemic hydrosilanes that enables the facile preparation of silicon‐stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non‐diastereopure‐type mixed phosphine‐phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the SN2 substitution of chloride ion to realize the chiral inversion of silicon center.
An unprecedented (SiMOS‐Phos) ligand‐controlled Rh‐catalyzed hydrosilylation of “silicon‐centered” racemic hydrosilanes was developed for the highly efficient and enantioselective construction of silicon‐stereogenic centers of benzosiloles (up to 96 : 4 er). This achievement was obtained by using an original synthetic strategy involving dynamic kinetic asymmetric transformations. |
---|---|
AbstractList | Strategies on the construction of enantiomerically pure silicon‐stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh‐catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with “silicon‐centered” racemic hydrosilanes that enables the facile preparation of silicon‐stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non‐diastereopure‐type mixed phosphine‐phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the S
N
2 substitution of chloride ion to realize the chiral inversion of silicon center. Strategies on the construction of enantiomerically pure silicon-stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh-catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with "silicon-centered" racemic hydrosilanes that enables the facile preparation of silicon-stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non-diastereopure-type mixed phosphine-phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the S(N)2 substitution of chloride ion to realize the chiral inversion of silicon center. Strategies on the construction of enantiomerically pure silicon-stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh-catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with "silicon-centered" racemic hydrosilanes that enables the facile preparation of silicon-stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non-diastereopure-type mixed phosphine-phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the SN 2 substitution of chloride ion to realize the chiral inversion of silicon center.Strategies on the construction of enantiomerically pure silicon-stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh-catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with "silicon-centered" racemic hydrosilanes that enables the facile preparation of silicon-stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non-diastereopure-type mixed phosphine-phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the SN 2 substitution of chloride ion to realize the chiral inversion of silicon center. Strategies on the construction of enantiomerically pure silicon-stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh-catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with "silicon-centered" racemic hydrosilanes that enables the facile preparation of silicon-stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non-diastereopure-type mixed phosphine-phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the S 2 substitution of chloride ion to realize the chiral inversion of silicon center. Strategies on the construction of enantiomerically pure silicon‐stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh‐catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with “silicon‐centered” racemic hydrosilanes that enables the facile preparation of silicon‐stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non‐diastereopure‐type mixed phosphine‐phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the SN2 substitution of chloride ion to realize the chiral inversion of silicon center.Dedicated to Professor Chungu Xia on the occasion of his 60th birthday Strategies on the construction of enantiomerically pure silicon‐stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh‐catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with “silicon‐centered” racemic hydrosilanes that enables the facile preparation of silicon‐stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non‐diastereopure‐type mixed phosphine‐phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the SN2 substitution of chloride ion to realize the chiral inversion of silicon center. An unprecedented (SiMOS‐Phos) ligand‐controlled Rh‐catalyzed hydrosilylation of “silicon‐centered” racemic hydrosilanes was developed for the highly efficient and enantioselective construction of silicon‐stereogenic centers of benzosiloles (up to 96 : 4 er). This achievement was obtained by using an original synthetic strategy involving dynamic kinetic asymmetric transformations. |
Author | Nie, Yi‐Xue Xie, Jing‐Yu Xu, Li‐Wen Fang, Xiao‐Jun Tang, Ren‐He Zeng, Yan Xu, Zheng Zhang, Feng‐Jiao |
Author_xml | – sequence: 1 givenname: Yan surname: Zeng fullname: Zeng, Yan organization: Hangzhou Normal University – sequence: 2 givenname: Xiao‐Jun surname: Fang fullname: Fang, Xiao‐Jun organization: Hangzhou Normal University – sequence: 3 givenname: Ren‐He surname: Tang fullname: Tang, Ren‐He organization: Hangzhou Normal University – sequence: 4 givenname: Jing‐Yu surname: Xie fullname: Xie, Jing‐Yu organization: Hangzhou Normal University – sequence: 5 givenname: Feng‐Jiao surname: Zhang fullname: Zhang, Feng‐Jiao organization: Hangzhou Normal University – sequence: 6 givenname: Zheng surname: Xu fullname: Xu, Zheng email: zhengxu@hznu.edu.cn organization: Hangzhou Normal University – sequence: 7 givenname: Yi‐Xue surname: Nie fullname: Nie, Yi‐Xue organization: Hangzhou Normal University – sequence: 8 givenname: Li‐Wen orcidid: 0000-0001-5705-0015 surname: Xu fullname: Xu, Li‐Wen email: liwenxu@hznu.edu.cn organization: Hangzhou Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36328976$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk2LFDEQhoOsuB969SgDXgTpMZ-d9HHoXd3FRcHVc5NOV2uW7mTtpJH25E_wN_pLrHXGERZET1WB56kUL3VMDkIMQMhjRteMUv7CBg9rTjlnkkl9jxwxxVkhtBYH2EshCm0UOyTHKV0jbwwtH5BDUQpuKl0eEXj3KXZ-Hn98-17bbIflK3Sr0yXY0bvVax8gY92kZRwhT9ieL90Ukx-WwWYfwyrH1cY5SGl15QfvYsBBVxkmiB8hIF9DwNdDcr-3Q4JHu3pCPrw8e1-fF5dvX13Um8vCSVHpwvWi1w46xyujNDNcU-VAVk4IRx2ruNBge11Ko5yRFajWlF1Zqpa2YKzsxAl5tp17M8XPM6TcjD45GAYbIM6p4VpwJbRUCtGnd9DrOE8Bt0NKIaZYyZF6sqPmdoSuuZn8aKel-R0gAs-3wBdoY5-ch-Bgj1FKDUZeCYEdZUib_6drn39lXMc5ZFTXW9Vh_mmCfq8x2tyeQnN7Cs3-FFCQdwS3G5gn64e_a9VuRT_A8o9Pms2bi7M_7k-or8g3 |
CitedBy_id | crossref_primary_10_1002_anie_202407391 crossref_primary_10_1039_D2SC06181C crossref_primary_10_1021_acs_orglett_3c00946 crossref_primary_10_1016_j_chempr_2023_09_024 crossref_primary_10_1002_ange_202317973 crossref_primary_10_6023_cjoc202306027 crossref_primary_10_1002_chem_202302458 crossref_primary_10_1002_anie_202404732 crossref_primary_10_1038_s41467_024_49988_2 crossref_primary_10_1021_acs_orglett_4c02336 crossref_primary_10_6023_cjoc202400042 crossref_primary_10_1002_anie_202313171 crossref_primary_10_1021_acscatal_4c05675 crossref_primary_10_1002_ange_202217724 crossref_primary_10_1002_chem_202401440 crossref_primary_10_1007_s11426_023_1813_3 crossref_primary_10_1021_acs_orglett_4c04694 crossref_primary_10_3389_fchem_2023_1200494 crossref_primary_10_1002_ange_202407391 crossref_primary_10_6023_cjoc202307025 crossref_primary_10_6023_cjoc202305001 crossref_primary_10_1021_acs_accounts_4c00667 crossref_primary_10_1039_D4CS00417E crossref_primary_10_1002_anie_202405520 crossref_primary_10_1038_s41467_024_54241_x crossref_primary_10_1021_jacs_3c00858 crossref_primary_10_1002_anie_202317973 crossref_primary_10_1002_ange_202405520 crossref_primary_10_1038_s41467_024_55592_1 crossref_primary_10_1038_s41467_025_56232_y crossref_primary_10_1002_ange_202313171 crossref_primary_10_6023_cjoc202300046 crossref_primary_10_1002_ange_202404732 crossref_primary_10_1038_s41467_023_40558_6 crossref_primary_10_1016_j_jcat_2024_115788 crossref_primary_10_1016_j_chempr_2023_06_014 crossref_primary_10_1007_s11426_022_1480_y crossref_primary_10_1021_acs_orglett_4c03491 crossref_primary_10_1002_anie_202217724 crossref_primary_10_1002_chem_202400440 |
Cites_doi | 10.1038/s41467-022-28439-w 10.1021/jacs.0c04533 10.1002/anie.202009912 10.1002/ange.202205382 10.1002/ange.202117820 10.1002/ange.202013041 10.1021/acs.accounts.1c00212 10.1002/anie.202100775 10.1002/0470025107 10.1002/anie.202103748 10.1021/acs.accounts.1c00326 10.1002/anie.202111025 10.1002/anie.200461624 10.1002/anie.200801995 10.1002/anie.201913060 10.1002/ange.201207932 10.1016/j.catcom.2020.105950 10.1002/ejoc.202101084 10.1002/ange.202005341 10.1002/ange.200704327 10.1002/ange.201802806 10.1002/tcr.201800076 10.1002/asia.201900408 10.1002/ange.201913060 10.1002/0470857250 10.1002/(SICI)1521-3773(19990802)38:15<2196::AID-ANIE2196>3.0.CO;2-9 10.1002/chem.201501568 10.1016/j.ccr.2022.214456 10.1002/ajoc.201500066 10.1039/D1CS00485A 10.1039/D0CC00844C 10.1021/cr0200318 10.1002/anie.202005341 10.1002/ange.202113052 10.1021/acscatal.8b01992 10.1021/jacs.1c01106 10.1016/j.jorganchem.2020.121415 10.1002/ange.202012649 10.1002/anie.202002289 10.1038/s41467-021-21489-6 10.1002/anie.202205382 10.1039/C0CS00037J 10.1002/ange.202103748 10.1039/D1QO01386F 10.1021/acscatal.1c03112 10.1002/anie.201207361 10.1002/anie.202012649 10.1002/anie.202205624 10.1007/s11426-020-9939-1 10.1002/anie.200704327 10.1002/(SICI)1521-3757(19990802)111:15<2333::AID-ANGE2333>3.0.CO;2-7 10.1002/ange.202111025 10.1002/ange.202009912 10.1021/jacs.0c04863 10.1055/s-2007-980385 10.1002/ejic.201600100 10.1002/ange.202100775 10.1002/anie.201605198 10.1002/ange.200801995 10.1021/acs.organomet.6b00110 10.1016/j.ccr.2016.09.011 10.1002/ange.202002289 10.1055/a-1729-9664 10.1002/ange.202205624 10.1002/adsc.201800774 10.1021/jacs.2c00288 10.1002/anie.201207932 10.1021/jacs.0c13335 10.1002/ange.201605198 10.1002/anie.201802806 10.1021/acs.accounts.0c00740 10.1016/j.ccr.2019.02.003 10.1055/s-0039-1691496 10.1021/ja962754c 10.1002/ange.201207361 10.1055/s-0036-1591839 10.1055/a-1408-6795 10.1002/anie.202013041 10.1002/anie.202117820 10.1002/asia.202200104 10.1002/anie.202113052 10.1016/j.isci.2020.101268 10.1021/acs.orglett.1c00935 10.1002/ange.200461624 10.1021/acs.chemrev.5b00559 10.1039/c0cs00037j 10.1055/a-1605-9572 10.1039/d1qo01386f 10.1039/d1cs00485a 10.1002/anie.202115755 10.1039/d0cc00844c |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM 1KN AHQBO BLEPL DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202214147 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Web of Science MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 36328976 000888093300001 10_1002_anie_202214147 ANIE202214147 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: "Ten- Thousand Talents Plan" of Hangzhou city, Hangzhou Innovation Team funderid: TD20200015 – fundername: Special Support Program for High- level Talents of Zhejiang Province funderid: 2021R51005 – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LY21B030007; LY22B020006 – fundername: National Natural Science Foundation of China funderid: No. 22072035 – fundername: Zhejiang Provincial Natural Science Foundation of China; Natural Science Foundation of Zhejiang Province grantid: LY21B030007; LY22B020006 – fundername: Special Support Program for High-level Talents of Zhejiang Province grantid: 2021R51005 – fundername: "Ten-Thousand Talents Plan" of Hangzhou city, Hangzhou Innovation Team grantid: TD2020015 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 22072035 – fundername: Special Support Program for High- level Talents of Zhejiang Province grantid: 2021R51005 – fundername: "Ten- Thousand Talents Plan" of Hangzhou city, Hangzhou Innovation Team grantid: TD20200015 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LY22B020006 – fundername: National Natural Science Foundation of China grantid: No. 22072035 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LY21B030007 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4397-cf3f7cedc29857182705ce49c33c0c19237eaf76485c849e5b86d665b0be8a4d3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 48 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000888093300001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 07:37:08 EDT 2025 Fri Jul 25 10:45:16 EDT 2025 Wed Feb 19 02:26:22 EST 2025 Fri Aug 29 15:49:37 EDT 2025 Wed Jul 09 18:31:08 EDT 2025 Tue Jul 01 01:46:57 EDT 2025 Thu Apr 24 22:53:08 EDT 2025 Wed Jan 22 16:22:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | Dynamic Kinetic Resolution PHOSPHORUS Asymmetric Catalysis HYDROGENATION ENANTIOSELECTIVITY Silacycle SILANES CONSTRUCTION Organosilicon LIGAND Silicon-Stereogenic C-H SILYLATION |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c4397-cf3f7cedc29857182705ce49c33c0c19237eaf76485c849e5b86d665b0be8a4d3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5705-0015 |
PMID | 36328976 |
PQID | 2753255162 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | pubmed_primary_36328976 webofscience_primary_000888093300001CitationCount proquest_miscellaneous_2732537455 webofscience_primary_000888093300001 wiley_primary_10_1002_anie_202214147_ANIE202214147 crossref_citationtrail_10_1002_anie_202214147 crossref_primary_10_1002_anie_202214147 proquest_journals_2753255162 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 19, 2022 |
PublicationDateYYYYMMDD | 2022-12-19 |
PublicationDate_xml | – month: 12 year: 2022 text: December 19, 2022 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2021; 64 2021; 23 2018; 360 1999 1999; 38 111 2019; 14 2020 2020; 59 132 2019; 19 2020; 56 2008 2008; 47 120 2022; 459 2020; 923 2016; 35 2022 2022; 61 134 2018; 8 2021; 32 2000 2012 2012; 51 124 2018 2018; 57 130 2020; 138 2005 2005; 44 117 2016; 116 2021; 8 2018; 29 2015; 4 2020; 142 2022; 51 2011; 40 2007 2017 2017; 56 129 2017; 330 2021; 143 2019; 386 2022; 144 2021; 54 2021; 12 2021; 11 2020; 31 1989 1998 2021 2020 2015; 21 2021 2021; 60 133 2022; 13 2016 2020; 23 2022; 54 2003; 103 2022; 17 1996; 118 e_1_2_3_50_2 e_1_2_3_16_1 e_1_2_3_4_2 e_1_2_3_39_2 e_1_2_3_12_2 e_1_2_3_54_3 e_1_2_3_58_2 e_1_2_3_8_1 e_1_2_3_35_2 e_1_2_3_54_2 e_1_2_3_73_2 e_1_2_3_31_2 e_1_2_3_28_2 e_1_2_3_24_2 e_1_2_3_47_2 e_1_2_3_66_2 e_1_2_3_20_2 e_1_2_3_62_2 e_1_2_3_43_1 e_1_2_3_72_2 (e_1_2_3_37_2) 2022; 134 e_1_2_3_19_2 e_1_2_3_19_3 e_1_2_3_15_2 e_1_2_3_38_1 Brook M. A. (e_1_2_3_3_2) 2000 e_1_2_3_11_2 e_1_2_3_34_1 e_1_2_3_7_2 e_1_2_3_57_2 e_1_2_3_30_2 e_1_2_3_53_3 e_1_2_3_72_3 (e_1_2_3_45_3) 2022; 134 e_1_2_3_53_2 e_1_2_3_61_2 Igawa K. (e_1_2_3_32_2) 2020 e_1_2_3_27_2 e_1_2_3_69_3 e_1_2_3_23_1 e_1_2_3_69_2 e_1_2_3_46_2 e_1_2_3_42_1 e_1_2_3_65_2 e_1_2_3_61_3 e_1_2_3_71_2 e_1_2_3_71_3 e_1_2_3_2_3 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_56_2 e_1_2_3_37_1 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_52_2 e_1_2_3_75_2 e_1_2_3_33_1 e_1_2_3_10_2 e_1_2_3_60_2 e_1_2_3_60_3 e_1_2_3_26_2 e_1_2_3_49_2 e_1_2_3_26_3 e_1_2_3_22_2 e_1_2_3_45_2 e_1_2_3_68_1 e_1_2_3_64_2 e_1_2_3_41_1 e_1_2_3_22_1 e_1_2_3_70_3 e_1_2_3_70_2 (e_1_2_3_20_3) 2022; 134 e_1_2_3_1_1 e_1_2_3_5_2 e_1_2_3_36_3 e_1_2_3_17_2 e_1_2_3_59_2 e_1_2_3_59_3 e_1_2_3_9_2 e_1_2_3_55_2 e_1_2_3_13_2 e_1_2_3_36_2 e_1_2_3_51_3 e_1_2_3_51_2 e_1_2_3_9_3 e_1_2_3_74_2 (e_1_2_3_48_3) 2022; 134 e_1_2_3_48_2 e_1_2_3_29_2 e_1_2_3_67_1 e_1_2_3_25_2 e_1_2_3_40_3 e_1_2_3_63_3 e_1_2_3_40_2 e_1_2_3_44_1 e_1_2_3_21_2 e_1_2_3_63_2 Bauer, JO (WOS:000379751700001) 2016 Lipke, MC (WOS:000395566600006) 2017; 56 Tamao, K (WOS:A1996VX65400033) 1996; 118 Guo, YH (WOS:000651075000001) 2021; 60 Lin, Y (WOS:000471717800006) 2019; 14 Ma, W. (000888093300001.66) 2021; 133 (000888093300001.24) 2012; 124 Chang, X (WOS:000535062900031) 2020; 59 Wu, Y. (000888093300001.40) 2022; 134 (000888093300001.9) 2017; 129 Wu, YC (WOS:000829917800001) 2022; 61 Zheng, L (WOS:000705545500001) 2021; 2021 Xu, C (WOS:000597247500001) 2021; 60 Long, PW (WOS:000526896100006) 2020; 56 Kucinski, K (WOS:000788731400002) 2022; 459 Walkowiak, J (WOS:000740802000001) 2022; 51 Mu, DL (WOS:000558793400029) 2020; 142 Xu, LW (WOS:000312552900006) 2012; 51 Motokura, K (WOS:000477039500005) 2019; 19 Zhang, G (WOS:000533301400001) 2020; 59 Chen, DJ (WOS:000259382900040) 2008; 47 Wang, L. (000888093300001.51) 2022; 134 You, Y. (000888093300001.60) 2021; 133 Yang, B (WOS:000573160400001) 2020; 59 Wu (000888093300001.47) 2022; 134 Zhang, HP (WOS:000693621800005) 2021; 11 Wang, X.B. (000888093300001.70) 2020; 132 Zhao, WT (WOS:000444364800027) 2018; 8 Li, L (WOS:000504096400005) 2020; 31 Zhang, G. (000888093300001.73) 2020; 132 (000888093300001.43) 2021; 133 Iglesias, M (WOS:000462416200012) 2019; 386 Zhang, LX (WOS:000629075900034) 2021; 143 Chang, X. (000888093300001.19) 2020; 132 Rappoport, Z. (000888093300001.2) 1998; 2 Wen, HA (WOS:000432710100062) 2018; 57 You, YE (WOS:000641593900001) 2021; 60 Reetz, M.T. (000888093300001.82) 2008; 120 Xu, LW (WOS:000287585000034) 2011; 40 Cui, YM (WOS:000389556000002) 2017; 330 Corey, JY (WOS:000385469400001) 2016; 116 Yang (000888093300001.68) 2020; 132 Oestreich, M (WOS:000248768200001) 2007 Pati, S. (000888093300001.1) 1989; 1 Reetz, MT (WOS:000226425600011) 2005; 44 Bi, XF (WOS:000641296000067) 2021; 23 Uvarov, VM (WOS:000575167400009) 2020; 923 Chen, SY (WOS:000623781900023) 2021; 12 Faller, JW (WOS:000184821500022) 2003; 103 Blackmond, DG (WOS:000081864800009) 1999; 38 Jagannathan, JR (WOS:000550639000009) 2020; 142 Tang, RH (WOS:000553829700003) 2020; 23 Ye, F (WOS:000612345900019) 2021; 54 Huang, Y.H. (000888093300001.21) 2022; 134 Shintani, R (WOS:000355651000001) 2015; 4 An, K (WOS:000755220500015) 2022; 13 Xie, JL (WOS:000623850700001) 2021; 64 Wang, Q (WOS:000526785900006) 2020; 138 Guo, J (WOS:000659357600014) 2021; 54 Wang, XB (WOS:000502151700001) 2020; 59 Zhu, JF (WOS:000641160700003) 2021; 143 Wen, H. (000888093300001.38) 2018; 130 (000888093300001.55) 2021; 133 Lu, WX (WOS:000799109400005) 2022; 144 (000888093300001.28) 2012; 124 Igawa, K. (000888093300001.34) 2020 Wang, X (WOS:000707138200001) 2021; 8 (000888093300001.58) 2021; 133 Liu, ZC (WOS:000736073600001) 2022; 61 Reetz, M.T. (000888093300001.78) 2005; 117 Ma, WP (WOS:000602711800001) 2021; 60 Igawa, K (WOS:000312305400017) 2012; 51 Kong, YF (WOS:000782298500001) 2022; 17 Jia, J (WOS:000446304600020) 2018; 360 Bähr, S (WOS:000374077200002) 2016; 35 He, P (WOS:000707191000001) 2022; 54 Chen, SY (WOS:000769942600001) 2022; 61 Naganawa, Y (WOS:000356795000006) 2015; 21 Reetz, MT (WOS:000254869800007) 2008; 47 Chen, D. (000888093300001.84) 2008; 120 Ye, F (WOS:000629107800001) 2021; 32 Wang, L (WOS:000808242800001) 2022; 61 Shintani, R (WOS:000425173600008) 2018; 29 Black-mond, D.G. (000888093300001.80) 1999; 111 Zhang, JY (WOS:000713741200001) 2021; 60 Brook, M.A. (000888093300001.3) 2000 Diéguez, M (WOS:000687058900011) 2021; 54 |
References_xml | – volume: 56 129 start-page: 2260 2298 year: 2017 2017 end-page: 2294 2335 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 459 year: 2022 publication-title: Coord. Chem. Rev. – start-page: 1629 year: 2007 end-page: 1643 publication-title: Synlett – volume: 116 start-page: 11291 year: 2016 end-page: 11435 publication-title: Chem. Rev. – volume: 51 124 start-page: 12745 12917 year: 2012 2012 end-page: 12748 12920 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 start-page: 2701 year: 2021 end-page: 2716 publication-title: Acc. Chem. Res. – start-page: 495 year: 2020 end-page: 532 – volume: 35 start-page: 925 year: 2016 end-page: 928 publication-title: Organometallics – volume: 138 year: 2020 publication-title: Catal. Commun. – volume: 64 start-page: 761 year: 2021 end-page: 769 publication-title: Sci. China Chem. – volume: 56 start-page: 4188 year: 2020 end-page: 4191 publication-title: Chem. Commun. – volume: 59 132 start-page: 790 800 year: 2020 2020 end-page: 797 807 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 120 start-page: 2556 2592 year: 2008 2008 end-page: 2588 2626 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 start-page: 21 year: 2020 end-page: 34 publication-title: Synlett – volume: 51 start-page: 869 year: 2022 end-page: 994 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 6577 year: 2021 end-page: 6584 publication-title: Org. Chem. Front. – volume: 60 133 start-page: 4245 4291 year: 2021 2021 end-page: 4251 4297 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 120 start-page: 7339 7449 year: 2008 2008 end-page: 7341 7451 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 118 start-page: 12469 year: 1996 end-page: 12470 publication-title: J. Am. Chem. Soc. – start-page: 6006 year: 2021 end-page: 6014 publication-title: Eur. J. Org. Chem. – volume: 142 start-page: 13459 year: 2020 end-page: 13468 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 5301 year: 2021 end-page: 5307 publication-title: J. Am. Chem. Soc. – volume: 386 start-page: 240 year: 2019 end-page: 266 publication-title: Coord. Chem. Rev. – volume: 14 start-page: 2082 year: 2019 end-page: 2085 publication-title: Chem. Asian J. – volume: 23 start-page: 3201 year: 2021 end-page: 3206 publication-title: Org. Lett. – volume: 23 year: 2020 publication-title: iScience – volume: 54 start-page: 452 year: 2021 end-page: 470 publication-title: Acc. Chem. Res. – volume: 54 start-page: 3252 year: 2021 end-page: 3262 publication-title: Acc. Chem. Res. – volume: 17 year: 2022 publication-title: Chem. Asian J. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 3189 3226 year: 2021 2021 end-page: 3195 3232 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 1989 1998 – volume: 13 start-page: 847 year: 2022 publication-title: Nat. Commun. – volume: 143 start-page: 3571 year: 2021 end-page: 3582 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 7997 year: 2018 end-page: 8005 publication-title: ACS Catal. – volume: 44 117 start-page: 412 416 year: 2005 2005 end-page: 415 419 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 8937 9022 year: 2020 2020 end-page: 8940 9025 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 510 year: 2015 end-page: 514 publication-title: Asian J. Org. Chem. – volume: 60 133 start-page: 12046 12153 year: 2021 2021 end-page: 12052 12159 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 19 start-page: 1199 year: 2019 end-page: 1209 publication-title: Chem. Rec. – volume: 21 start-page: 9319 year: 2015 end-page: 9322 publication-title: Chem. Eur. J. – volume: 144 start-page: 5233 year: 2022 end-page: 5240 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 13887 14006 year: 2021 2021 end-page: 13891 14010 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 32 start-page: 1281 year: 2021 end-page: 1288 publication-title: Synlett – year: 2000 – volume: 40 start-page: 1777 year: 2011 end-page: 1790 publication-title: Chem. Soc. Rev. – volume: 330 start-page: 37 year: 2017 end-page: 52 publication-title: Coord. Chem. Rev. – volume: 11 start-page: 10748 year: 2021 end-page: 10753 publication-title: ACS Catal. – volume: 57 130 start-page: 6319 6427 year: 2018 2018 end-page: 6323 6431 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 11927 12025 year: 2020 2020 end-page: 11931 12029 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 22217 22401 year: 2020 2020 end-page: 22222 22406 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 103 start-page: 3345 year: 2003 end-page: 3367 publication-title: Chem. Rev. – start-page: 2868 year: 2016 end-page: 2881 publication-title: Eur. J. Org. Chem. – volume: 142 start-page: 11674 year: 2020 end-page: 11679 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1249 year: 2021 publication-title: Nat. Commun. – volume: 38 111 start-page: 2196 2333 year: 1999 1999 end-page: 2199 2335 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 360 start-page: 3793 year: 2018 end-page: 3800 publication-title: Adv. Synth. Catal. – volume: 51 124 start-page: 12932 13106 year: 2012 2012 end-page: 12934 13108 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 923 year: 2020 publication-title: J. Organomet. Chem. – volume: 54 start-page: 49 year: 2022 end-page: 55 publication-title: Synthesis – volume: 29 start-page: 388 year: 2018 end-page: 396 publication-title: Synlett – volume: 60 133 start-page: 25723 25927 year: 2021 2021 end-page: 25728 25932 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_3_47_2 doi: 10.1038/s41467-022-28439-w – ident: e_1_2_3_35_2 doi: 10.1021/jacs.0c04533 – ident: e_1_2_3_43_1 – ident: e_1_2_3_60_2 doi: 10.1002/anie.202009912 – volume: 134 start-page: e202205382 year: 2022 ident: e_1_2_3_37_2 publication-title: Angew. Chem. doi: 10.1002/ange.202205382 – volume: 134 start-page: e202117820 year: 2022 ident: e_1_2_3_45_3 publication-title: Angew. Chem. doi: 10.1002/ange.202117820 – ident: e_1_2_3_59_3 doi: 10.1002/ange.202013041 – volume-title: Silicon in Organic, Organometallic, and Polymer Chemistry year: 2000 ident: e_1_2_3_3_2 – ident: e_1_2_3_12_2 doi: 10.1021/acs.accounts.1c00212 – ident: e_1_2_3_54_2 doi: 10.1002/anie.202100775 – ident: e_1_2_3_2_2 doi: 10.1002/0470025107 – ident: e_1_2_3_53_2 doi: 10.1002/anie.202103748 – ident: e_1_2_3_74_2 doi: 10.1021/acs.accounts.1c00326 – ident: e_1_2_3_51_2 doi: 10.1002/anie.202111025 – ident: e_1_2_3_69_2 doi: 10.1002/anie.200461624 – ident: e_1_2_3_72_2 doi: 10.1002/anie.200801995 – start-page: 495 volume-title: in Organosilicon Chemistry: Novel Approaches and Reactions year: 2020 ident: e_1_2_3_32_2 – ident: e_1_2_3_61_2 doi: 10.1002/anie.201913060 – ident: e_1_2_3_26_3 doi: 10.1002/ange.201207932 – ident: e_1_2_3_65_2 doi: 10.1016/j.catcom.2020.105950 – ident: e_1_2_3_31_2 doi: 10.1002/ejoc.202101084 – ident: e_1_2_3_8_1 – ident: e_1_2_3_63_3 doi: 10.1002/ange.202005341 – ident: e_1_2_3_71_3 doi: 10.1002/ange.200704327 – ident: e_1_2_3_36_3 doi: 10.1002/ange.201802806 – ident: e_1_2_3_4_2 doi: 10.1002/tcr.201800076 – ident: e_1_2_3_66_2 doi: 10.1002/asia.201900408 – ident: e_1_2_3_61_3 doi: 10.1002/ange.201913060 – ident: e_1_2_3_23_1 – ident: e_1_2_3_68_1 – ident: e_1_2_3_2_3 doi: 10.1002/0470857250 – ident: e_1_2_3_70_2 doi: 10.1002/(SICI)1521-3773(19990802)38:15<2196::AID-ANIE2196>3.0.CO;2-9 – ident: e_1_2_3_18_2 doi: 10.1002/chem.201501568 – ident: e_1_2_3_14_2 doi: 10.1016/j.ccr.2022.214456 – ident: e_1_2_3_27_2 doi: 10.1002/ajoc.201500066 – ident: e_1_2_3_7_2 doi: 10.1039/D1CS00485A – ident: e_1_2_3_64_2 doi: 10.1039/D0CC00844C – ident: e_1_2_3_75_2 doi: 10.1021/cr0200318 – ident: e_1_2_3_63_2 doi: 10.1002/anie.202005341 – volume: 134 start-page: e202113052 year: 2022 ident: e_1_2_3_20_3 publication-title: Angew. Chem. doi: 10.1002/ange.202113052 – ident: e_1_2_3_50_2 doi: 10.1021/acscatal.8b01992 – ident: e_1_2_3_55_2 doi: 10.1021/jacs.1c01106 – ident: e_1_2_3_10_2 doi: 10.1016/j.jorganchem.2020.121415 – ident: e_1_2_3_40_3 doi: 10.1002/ange.202012649 – ident: e_1_2_3_19_2 doi: 10.1002/anie.202002289 – ident: e_1_2_3_58_2 doi: 10.1038/s41467-021-21489-6 – ident: e_1_2_3_37_1 doi: 10.1002/anie.202205382 – ident: e_1_2_3_25_2 doi: 10.1039/C0CS00037J – ident: e_1_2_3_53_3 doi: 10.1002/ange.202103748 – ident: e_1_2_3_41_1 doi: 10.1039/D1QO01386F – ident: e_1_2_3_52_2 doi: 10.1021/acscatal.1c03112 – ident: e_1_2_3_22_1 doi: 10.1002/anie.201207361 – ident: e_1_2_3_40_2 doi: 10.1002/anie.202012649 – ident: e_1_2_3_48_2 doi: 10.1002/anie.202205624 – ident: e_1_2_3_34_1 – ident: e_1_2_3_57_2 doi: 10.1007/s11426-020-9939-1 – ident: e_1_2_3_71_2 doi: 10.1002/anie.200704327 – ident: e_1_2_3_70_3 doi: 10.1002/(SICI)1521-3757(19990802)111:15<2333::AID-ANGE2333>3.0.CO;2-7 – ident: e_1_2_3_51_3 doi: 10.1002/ange.202111025 – ident: e_1_2_3_67_1 – ident: e_1_2_3_60_3 doi: 10.1002/ange.202009912 – ident: e_1_2_3_62_2 doi: 10.1021/jacs.0c04863 – ident: e_1_2_3_24_2 doi: 10.1055/s-2007-980385 – ident: e_1_2_3_28_2 doi: 10.1002/ejic.201600100 – ident: e_1_2_3_54_3 doi: 10.1002/ange.202100775 – ident: e_1_2_3_9_2 doi: 10.1002/anie.201605198 – ident: e_1_2_3_72_3 doi: 10.1002/ange.200801995 – ident: e_1_2_3_16_1 – ident: e_1_2_3_39_2 doi: 10.1021/acs.organomet.6b00110 – ident: e_1_2_3_29_2 doi: 10.1016/j.ccr.2016.09.011 – ident: e_1_2_3_1_1 – ident: e_1_2_3_19_3 doi: 10.1002/ange.202002289 – ident: e_1_2_3_11_2 doi: 10.1055/a-1729-9664 – ident: e_1_2_3_38_1 – volume: 134 start-page: e202205624 year: 2022 ident: e_1_2_3_48_3 publication-title: Angew. Chem. doi: 10.1002/ange.202205624 – ident: e_1_2_3_73_2 doi: 10.1002/adsc.201800774 – ident: e_1_2_3_46_2 doi: 10.1021/jacs.2c00288 – ident: e_1_2_3_26_2 doi: 10.1002/anie.201207932 – ident: e_1_2_3_49_2 doi: 10.1021/jacs.0c13335 – ident: e_1_2_3_9_3 doi: 10.1002/ange.201605198 – ident: e_1_2_3_36_2 doi: 10.1002/anie.201802806 – ident: e_1_2_3_42_1 doi: 10.1021/acs.accounts.0c00740 – ident: e_1_2_3_5_2 doi: 10.1016/j.ccr.2019.02.003 – ident: e_1_2_3_6_2 doi: 10.1055/s-0039-1691496 – ident: e_1_2_3_17_2 doi: 10.1021/ja962754c – ident: e_1_2_3_22_2 doi: 10.1002/ange.201207361 – ident: e_1_2_3_30_2 doi: 10.1055/s-0036-1591839 – ident: e_1_2_3_13_2 doi: 10.1055/a-1408-6795 – ident: e_1_2_3_44_1 – ident: e_1_2_3_59_2 doi: 10.1002/anie.202013041 – ident: e_1_2_3_45_2 doi: 10.1002/anie.202117820 – ident: e_1_2_3_15_2 doi: 10.1002/asia.202200104 – ident: e_1_2_3_20_2 doi: 10.1002/anie.202113052 – ident: e_1_2_3_21_2 doi: 10.1016/j.isci.2020.101268 – ident: e_1_2_3_56_2 doi: 10.1021/acs.orglett.1c00935 – ident: e_1_2_3_69_3 doi: 10.1002/ange.200461624 – ident: e_1_2_3_33_1 doi: 10.1021/acs.chemrev.5b00559 – volume: 132 start-page: Z year: 2020 ident: 000888093300001.73 publication-title: Angew. Chem – volume: 142 start-page: 13459 year: 2020 ident: WOS:000558793400029 article-title: Streamlined Construction of Silicon-Stereogenic Silanes by Tandem Enantioselective C-H Silylation/Alkene Hydrosilylation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c04863 – volume: 144 start-page: 5233 year: 2022 ident: WOS:000799109400005 article-title: Cobalt-Catalyzed Sequential Site- and Stereoselective Hydrosilylation of 1,3-and 1,4-Enynes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c00288 – volume: 51 start-page: 12745 year: 2012 ident: WOS:000312305400017 article-title: Catalytic Enantioselective Synthesis of Alkenylhydrosilanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201207361 – volume: 19 start-page: 1199 year: 2019 ident: WOS:000477039500005 article-title: Efficient Conversion of Carbon Dioxide with Si-Based Reducing Agents Catalyzed by Metal Complexes and Salts publication-title: CHEMICAL RECORD doi: 10.1002/tcr.201800076 – volume: 59 start-page: 790 year: 2020 ident: WOS:000502151700001 article-title: Controllable Si-C Bond Activation Enables Stereocontrol in the Palladium-Catalyzed [4+2] Annulation of Cyclopropenes with Benzosilacyclobutanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201913060 – volume: 40 start-page: 1777 year: 2011 ident: WOS:000287585000034 article-title: The recent synthesis and application of silicon-stereogenic silanes: A renewed and significant challenge in asymmetric synthesis publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c0cs00037j – volume: 2 year: 1998 ident: 000888093300001.2 publication-title: The Chemistry of Organic Silicon Compounds – volume: 13 start-page: ARTN 847 year: 2022 ident: WOS:000755220500015 article-title: Rhodium hydride enabled enantioselective intermolecular C-H silylation to access acyclic stereogenic Si-H publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-022-28439-w – volume: 61 start-page: ARTN e202117820 year: 2022 ident: WOS:000769942600001 article-title: Enantioselective Intermolecular C-H Silylation of Heteroarenes for the Synthesis of Acyclic Si-Stereogenic Silanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202117820 – volume: 386 start-page: 240 year: 2019 ident: WOS:000462416200012 article-title: Non-classical hydrosilane mediated reductions promoted by transition metal complexes publication-title: COORDINATION CHEMISTRY REVIEWS doi: 10.1016/j.ccr.2019.02.003 – volume: 360 start-page: 3793 year: 2018 ident: WOS:000446304600020 article-title: An Atropos Biphenyl Bisphosphine Ligand with 2,2-tert-Butylmethylphosphino Groups for the Rhodium-Catalyzed Asymmetric Hydrogenation of Enol Esters publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.201800774 – volume: 60 start-page: 3189 year: 2021 ident: WOS:000597247500001 article-title: Insertion of Metal-Substituted Silylene into Naphthalene's Aromatic Ring and Subsequent Rearrangement for Silaspiro-Benzocycloheptenyl and Cyclobutenosilaindan Derivatives publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202012649 – volume: 130 start-page: 6427 year: 2018 ident: 000888093300001.38 publication-title: Angew. Chem – volume: 51 start-page: 12932 year: 2012 ident: WOS:000312552900006 article-title: Desymmetrization Catalyzed by Transition-Metal Complexes: Enantioselective Formation of Silicon-Stereogenic Silanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201207932 – volume: 103 start-page: 3345 year: 2003 ident: WOS:000184821500022 article-title: Chiral poisoning and asymmetric activation publication-title: CHEMICAL REVIEWS doi: 10.1021/cr0200318 – volume: 143 start-page: 3571 year: 2021 ident: WOS:000629075900034 article-title: A Combined Computational and Experimental Study of Rh-Catalyzed C-H Silylation with Silacyclobutanes: Insights Leading to a More Efficient Catalyst System publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c13335 – volume: 132 start-page: 800 year: 2020 ident: 000888093300001.70 publication-title: Angew. Chem – volume: 120 start-page: 7449 year: 2008 ident: 000888093300001.84 publication-title: Angew. Chem – volume: 134 year: 2022 ident: 000888093300001.40 publication-title: Angew. Chem – volume: 133 start-page: 12153 year: 2021 ident: 000888093300001.60 publication-title: Angew. Chem – volume: 1 year: 1989 ident: 000888093300001.1 publication-title: The Chemistry of Organic Silicon Compounds – volume: 44 start-page: 412 year: 2005 ident: WOS:000226425600011 article-title: Binol-derived monodentate phosphites and phosphoramidites with phosphorus stereogenic centers: Novel ligands for transition-metal catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200461624 – volume: 54 start-page: 452 year: 2021 ident: WOS:000612345900019 article-title: The Discovery of Multifunctional Chiral P Ligands for the Catalytic Construction of Quaternary Carbon/Silicon and Multiple Stereogenic Centers publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.0c00740 – volume: 142 start-page: 11674 year: 2020 ident: WOS:000550639000009 article-title: Enantioselective Si-H Insertion Reactions of Diarylcarbenes for the Synthesis of Silicon-Stereogenic Silanes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c04533 – volume: 56 start-page: 2260 year: 2017 ident: WOS:000395566600006 article-title: Electrophilic Activation of Silicon-Hydrogen Bonds in Catalytic Hydrosilations publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201605198 – volume: 54 start-page: 49 year: 2022 ident: WOS:000707191000001 article-title: Transition-Metal-Catalyzed Stereo- and Regioselective Hydrosilylation of Unsymmetrical Alkynes publication-title: SYNTHESIS-STUTTGART doi: 10.1055/a-1605-9572 – volume: 47 start-page: 7339 year: 2008 ident: WOS:000259382900040 article-title: Enantioselective hydrogenation with racemic and enantiopure binap in the presence of a chiral ionic liquid publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200801995 – volume: 111 start-page: 2333 year: 1999 ident: 000888093300001.80 publication-title: Angew. Chem – volume: 60 start-page: 13887 year: 2021 ident: WOS:000651075000001 article-title: Catalytic Asymmetric Synthesis of Silicon-Stereogenic Dihydrodibenzosilines: Silicon Central-to-Axial Chirality Relay publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202103748 – volume: 8 start-page: 6577 year: 2021 ident: WOS:000707138200001 article-title: Multifunctional P-ligand-controlled "silicon-centered" selectivity in Rh/Cu-catalyzed Si-C bond cleavage of silacyclobutanes publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/d1qo01386f – volume: 51 start-page: 869 year: 2022 ident: WOS:000740802000001 article-title: Hydroelementation of diynes publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d1cs00485a – start-page: 1629 year: 2007 ident: WOS:000248768200001 article-title: Silicon-stereogenic silanes in asymmetric catalysis publication-title: SYNLETT doi: 10.1055/s-2007-980385 – volume: 23 start-page: 3201 year: 2021 ident: WOS:000641296000067 article-title: Construction of Axial Chirality and Silicon-Stereogenic Center via Rh-Catalyzed Asymmetric Ring-Opening of Silafluorenes publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.1c00935 – volume: 23 start-page: ARTN 101268 year: 2020 ident: WOS:000553829700003 article-title: Catalytic Asymmetric trans-Selective Hydrosilylation of Bisalkynes to Access AIE and CPL-Active Silicon-Stereogenic Benzosiloles publication-title: ISCIENCE doi: 10.1016/j.isci.2020.101268 – volume: 32 start-page: 1281 year: 2021 ident: WOS:000629107800001 article-title: A Glimpse and Perspective of Current Organosilicon Chemistry from the View of Hydrosilylation and Synthesis of Silicon-Stereogenic Silanes publication-title: SYNLETT doi: 10.1055/a-1408-6795 – volume: 54 start-page: 3252 year: 2021 ident: WOS:000687058900011 article-title: Self-Adaptable Tropos Catalysts publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.1c00326 – volume: 134 year: 2022 ident: 000888093300001.51 publication-title: Angew. Chem – volume: 134 year: 2022 ident: 000888093300001.21 publication-title: Angew. Chem – volume: 120 start-page: 2592 year: 2008 ident: 000888093300001.82 publication-title: Angew. Chem – volume: 133 start-page: 14006 year: 2021 ident: 000888093300001.58 publication-title: Angew. Chem – volume: 61 start-page: ARTN e202115755 year: 2022 ident: WOS:000736073600001 article-title: Thermo- and Mechanochromic Camouflage and Self-Healing in Biomimetic Soft Actuators Based on Liquid Crystal Elastomers publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202115755 – year: 2000 ident: 000888093300001.3 publication-title: Silicon in Organic, Organometallic, and Polymer Chemistry – volume: 60 start-page: 12046 year: 2021 ident: WOS:000641593900001 article-title: Asymmetric Cobalt-Catalyzed Regioselective Hydrosilylation/Cyclization of 1,6-Enynes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202100775 – volume: 132 start-page: 22401 year: 2020 ident: 000888093300001.68 publication-title: Angew. Chem – volume: 47 start-page: 2556 year: 2008 ident: WOS:000254869800007 article-title: Combinatorial transition-metal catalysis: Mixing monodentate ligands to control enantio-, diastereo-, and regioselectivity publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200704327 – volume: 129 start-page: 2298 year: 2017 ident: 000888093300001.9 publication-title: Angew. Chem – volume: 124 start-page: 13106 year: 2012 ident: 000888093300001.28 publication-title: Angew. Chem – volume: 56 start-page: 4188 year: 2020 ident: WOS:000526896100006 article-title: Stereo- and regio-selective synthesis of silicon-containing diborylalkenes via platinum-catalyzed mono-lateral diboration of dialkynylsilanes publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/d0cc00844c – volume: 8 start-page: 7997 year: 2018 ident: WOS:000444364800027 article-title: Rhodium-Catalyzed 2-Arylphenol-Derived Six-Membered Silacyclization: Straightforward Access toward Dibenzooxasilines and Silicon-Containing Planar Chiral Metallocenes publication-title: ACS CATALYSIS doi: 10.1021/acscatal.8b01992 – start-page: 495 year: 2020 ident: 000888093300001.34 publication-title: in Organosilicon Chemistry: Novel Approaches and Reactions – volume: 59 start-page: 22217 year: 2020 ident: WOS:000573160400001 article-title: Enantioselective Silylation of Aliphatic C-H Bonds for the Synthesis of Silicon-Stereogenic Dihydrobenzosiloles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202009912 – volume: 60 start-page: 25723 year: 2021 ident: WOS:000713741200001 article-title: Nickel(0)-Catalyzed Asymmetric Ring Expansion Toward Enantioenriched Silicon-Stereogenic Benzosiloles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202111025 – volume: 61 start-page: ARTN e202205382 year: 2022 ident: WOS:000829917800001 article-title: Silicon-Stereogenic Monohydrosilane: Synthesis and Applications publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202205382 – volume: 134 year: 2022 ident: 000888093300001.47 publication-title: Angew. Chem – volume: 57 start-page: 6319 year: 2018 ident: WOS:000432710100062 article-title: Asymmetric Synthesis of Silicon-Stereogenic Vinylhydrosilanes by Cobalt-Catalyzed Regio- and Enantioselective Alkyne Hydrosilylation with Dihydrosilanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201802806 – volume: 14 start-page: 2082 year: 2019 ident: WOS:000471717800006 article-title: Desymmetrization-Oriented Enantioselective Synthesis of Silicon-Stereogenic Silanes by Palladium-Catalyzed C-H Olefinations publication-title: CHEMISTRY-AN ASIAN JOURNAL doi: 10.1002/asia.201900408 – volume: 132 start-page: 9022 year: 2020 ident: 000888093300001.19 publication-title: Angew. Chem – volume: 4 start-page: 510 year: 2015 ident: WOS:000355651000001 article-title: Recent Advances in the Transition-Metal-Catalyzed Enantioselective Synthesis of Silicon-Stereogenic Organosilanes publication-title: ASIAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ajoc.201500066 – volume: 61 start-page: ARTN e202205624 year: 2022 ident: WOS:000808242800001 article-title: Cobalt-Catalyzed Regio-, Diastereo- and Enantioselective Intermolecular Hydrosilylation of 1,3-Dienes with Prochiral Silanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202205624 – volume: 29 start-page: 388 year: 2018 ident: WOS:000425173600008 article-title: Recent Progress in Catalytic Enantioselective Desymmetrization of Prochiral Organosilanes for the Synthesis of Silicon-Stereogenic Compounds publication-title: SYNLETT doi: 10.1055/s-0036-1591839 – volume: 116 start-page: 11291 year: 2016 ident: WOS:000385469400001 article-title: Reactions of Hydrosilanes with Transition Metal Complexes publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.5b00559 – volume: 38 start-page: 2196 year: 1999 ident: WOS:000081864800009 article-title: Kinetic influences on enantioselectivity for non-diastereopure catalyst mixtures publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 59 start-page: 8937 year: 2020 ident: WOS:000535062900031 article-title: Asymmetric Synthesis and Application of Chiral Spirosilabiindanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202002289 – volume: 31 start-page: 21 year: 2020 ident: WOS:000504096400005 article-title: Organosilicon-Mediated Organic Synthesis (SiMOS): A Personal Account publication-title: SYNLETT doi: 10.1055/s-0039-1691496 – volume: 59 start-page: 11927 year: 2020 ident: WOS:000533301400001 article-title: Asymmetric Synthesis of Silicon-Stereogenic Silanes by Copper-Catalyzed Desymmetrizing Protoboration of Vinylsilanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202005341 – start-page: 2868 year: 2016 ident: WOS:000379751700001 article-title: Recent Progress in Asymmetric Synthesis and Application of Difunctionalized Silicon-Stereogenic Silanes publication-title: EUROPEAN JOURNAL OF INORGANIC CHEMISTRY doi: 10.1002/ejic.201600100 – volume: 124 start-page: 12917 year: 2012 ident: 000888093300001.24 publication-title: Angew. Chem – volume: 143 start-page: 5301 year: 2021 ident: WOS:000641160700003 article-title: Catalytic Enantioselective Dehydrogenative Si-O Coupling to Access Chiroptical Silicon-Stereogenic Siloxanes and Alkoxysilanes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c01106 – volume: 11 start-page: 10748 year: 2021 ident: WOS:000693621800005 article-title: Synthesis of Silicon-Stereogenic Silanols Involving Iridium-Catalyzed Enantioselective C-H Silylation Leading to a New Ligand Scaffold publication-title: ACS CATALYSIS doi: 10.1021/acscatal.1c03112 – volume: 133 start-page: 3226 year: 2021 ident: 000888093300001.43 publication-title: Angew. Chem – volume: 133 start-page: 4291 year: 2021 ident: 000888093300001.66 publication-title: Angew. Chem – volume: 459 start-page: ARTN 214456 year: 2022 ident: WOS:000788731400002 article-title: Catalytic silylation of O-nucleophiles via Si-H or Si-C bond cleavage: A route to silyl ethers, silanols and siloxanes publication-title: COORDINATION CHEMISTRY REVIEWS doi: 10.1016/j.ccr.2022.214456 – volume: 138 start-page: ARTN 105950 year: 2020 ident: WOS:000526785900006 article-title: Copper-catalyzed enantioselective desymmetrization of prochiral tetrasubstituted siladiols: Access toward optically active silicon-stereogenic silylmethanols publication-title: CATALYSIS COMMUNICATIONS doi: 10.1016/j.catcom.2020.105950 – volume: 330 start-page: 37 year: 2017 ident: WOS:000389556000002 article-title: Catalytic synthesis of chiral organoheteroatom compounds of silicon, phosphorus, and sulfur via asymmetric transition metal-catalyzed C-H functionalization publication-title: COORDINATION CHEMISTRY REVIEWS doi: 10.1016/j.ccr.2016.09.011 – volume: 21 start-page: 9319 year: 2015 ident: WOS:000356795000006 article-title: Construction of a Chiral Silicon Center by Rhodium-Catalyzed Enantioselective Intramolecular Hydrosilylation publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201501568 – volume: 64 start-page: 761 year: 2021 ident: WOS:000623850700001 article-title: Palladium-catalyzed hydrosilylation of ynones to access silicon-stereogenic silylenones by stereospecific aromatic interaction-assisted Si-H activation publication-title: SCIENCE CHINA-CHEMISTRY doi: 10.1007/s11426-020-9939-1 – volume: 133 start-page: 25927 year: 2021 ident: 000888093300001.55 publication-title: Angew. Chem – volume: 923 start-page: ARTN 121415 year: 2020 ident: WOS:000575167400009 article-title: Recent progress in the development of catalytic systems for homogenous asymmetric hydrosilylation of ketones publication-title: JOURNAL OF ORGANOMETALLIC CHEMISTRY doi: 10.1016/j.jorganchem.2020.121415 – volume: 17 start-page: ARTN e202200104 year: 2022 ident: WOS:000782298500001 article-title: Recent Progress in Transition Metal-Catalyzed Hydrosilane-Mediated C-H Silylation publication-title: CHEMISTRY-AN ASIAN JOURNAL doi: 10.1002/asia.202200104 – volume: 35 start-page: 925 year: 2016 ident: WOS:000374077200002 article-title: An Air-Stable Dimeric Ru-S Complex with an NHC as Ancillary Ligand for Cooperative Si-H Bond Activation publication-title: ORGANOMETALLICS doi: 10.1021/acs.organomet.6b00110 – volume: 60 start-page: 4245 year: 2021 ident: WOS:000602711800001 article-title: Rhodium-Catalyzed Synthesis of Chiral Monohydrosilanes by Intramolecular C-H Functionalization of Dihydrosilanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202013041 – volume: 2021 start-page: 6006 year: 2021 ident: WOS:000705545500001 article-title: Construction of Si-Stereogenic Silanes through C-H Activation Approach publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ejoc.202101084 – volume: 12 start-page: ARTN 1249 year: 2021 ident: WOS:000623781900023 article-title: Enantioselective construction of six- and seven-membered triorgano-substituted silicon-stereogenic heterocycles publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-021-21489-6 – volume: 54 start-page: 2701 year: 2021 ident: WOS:000659357600014 article-title: Iron- and Cobalt-Catalyzed Asymmetric Hydrofunctionalization of Alkenes and Alkynes publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.1c00212 – volume: 117 start-page: 416 year: 2005 ident: 000888093300001.78 publication-title: Angew. Chem – volume: 118 start-page: 12469 year: 1996 ident: WOS:A1996VX65400033 article-title: Axially chiral spirosilanes via catalytic asymmetric intramolecular hydrosilation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY |
SSID | ssj0028806 |
Score | 2.5774195 |
Snippet | Strategies on the construction of enantiomerically pure silicon‐stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates.... Strategies on the construction of enantiomerically pure silicon-stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates.... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202214147 |
SubjectTerms | Asymmetric Catalysis Asymmetry Catalysts Chemistry Chemistry, Multidisciplinary Chirality Chloride ions Density functional theory Dynamic Kinetic Resolution Enantiomers Hydrosilylation Ligands Organosilicon Organosilicon compounds Phosphine Phosphines Physical Sciences Rhodium Science & Technology Silacycle Silicon Silicon-Stereogenic Substitution reactions Substrates |
Title | Rhodium‐Catalyzed Dynamic Kinetic Asymmetric Hydrosilylation to Access Silicon‐Stereogenic Center |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202214147 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000888093300001 https://www.ncbi.nlm.nih.gov/pubmed/36328976 https://www.proquest.com/docview/2753255162 https://www.proquest.com/docview/2732537455 |
Volume | 61 |
WOS | 000888093300001 |
WOSCitedRecordID | wos000888093300001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuDCo7wCBQWpEqe0iR07znG1tFpA9NBSqbcofqxYdTdB3exhe-In8Bv7SzoTJ6HbCoHglijjRGN_jr_x4xuA3VxRJkBlI6NtjgGKSyNs5iRSVmCBRErdrp5_OZKT0_TTmTi7cYrf60MME27UM9r_NXXwUi_3f4mG0glsjO8YS9IkpePktGGLWNHxoB_FEJz-eBHnEWWh71UbY7a_WXxzVLpDNW-NSptEth2JDh9B2fvgN6Cc760avWcub8k7_o-Tj-FhR1PDkcfVE7jnqm24P-6zwz0Fd_yttrPV4urHzzHNAK0vnQ0_-PT24Wf8LhYMR8v1YkEpu0w4WVv0fDZf-713YVOHozZXY3gymyMaK3zRCbaxqxHRaE-zzu7iGZweHnwdT6IuZUNkiNlEZsqnmXHWsFwJHPZYFgvj0txwbmJDbDJz5TSTqRJGpbkTWkkrpdCxdqpMLX8OW1VduZcQJkxmBoMZThI6hmlleBnHZWl57hzy2gCivskK0-mZU1qNeeGVmFlBlVcMlRfA-8H-u1fy-K3lTo-AouvRy4JhXMdoVZEF8G54jJVOCyxl5eoV2aAJz1IhAnjhkTN8ikuOsW0mA9i9CaXhOZExhCvNLxHvDiD5G7Nx5zgJGDQBsBZLf3CvGB19PBjuXv1LodfwgK5pW0-S78BWc7Fyb5CcNfpt2wGvAeGnMKA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOZQL74dpC0aqxMmtvetd28cotEppm0MfEjfL-4gakdiodQ7piZ_Ab-SXdMZru6QIgeCYeDbW7H6b_WZ29xuA7SylSoCpCbQyGQYoNg5wmKMgNQIbRFKqZvf8eCxH5_Gnz6I7TUh3YZw-RJ9wo5nR_F_TBKeE9O6taihdwcYAj7EojuLkPjygst5NVHXSK0gxhKe7YMR5QHXoO93GkO2utl9dl34hm3fWpVUq26xF-49BdV64Iyhfdha12tHXdwQe_8vNJ_CoZar-wEHrKdyz5TNYH3YF4p6DPbmozHQx__Ht-5CSQMtra_yPrsK9f4gvxob-4Go5n1PVLu2PlgZdn86W7vidX1f-oCnX6J9OZwjIEn_oFIfZVghqtKfEs718Aef7e2fDUdBWbQg0kZtAT_gk0dZolqUCVz6WhELbONOc61AToUxsMUlknAqdxpkVKpVGSqFCZdMiNvwlrJVVaV-DHzGZaIxnOKnoaKZSzYswLArDM2uR2noQdGOW61bSnCprzHInxsxy6ry87zwPPvT2X52Yx28tNzsI5O2kvsoZhnaMNhaZB-_7x9jptMdSlLZakA2a8CQWwoNXDjr9q7jkGN4m0oPtn7HUPyc-hnilFBNRbw-ivzEbto6ThkHtAWvA9Af38sH4YK__9OZfGr2D9dHZ8VF-dDA-3ICH9D2d8omyTVirLxd2C7lard42s_EG1iM0uw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAXyqsltECQKnFKm9iO4xxXu11tKaxQS6XeosT2ihW7SdVmD9sTP4HfyC_pTF7tFiEQHJOME439Of7Gj28AdmNFmQCV8XRmYgxQrPCwmQNPmRALBFJm1er5p7EcnYoPZ-HZrVP8tT5EN-FGPaP6X1MHPzeT_RvRUDqBjfEdY4EIRHQfHgjpK8L14LgTkGKIzvp8EecepaFvZRt9tr9afnVY-oVr3hmWVplsNRQNNyBtnah3oHzbW5TZnr66o-_4P14-gccNT3V7NbCewj2bP4NH_TY93HOwx18LM13Mf37_0acpoOWVNe6gzm_vHuF3saDbu1zO55SzS7ujpUHPp7NlvfnOLQu3VyVrdE-mM4Rjji86wUa2BUIa7Wna2V68gNPhwZf-yGtyNniaqI2nJ3wSaWs0i1WI4x6L_FBbEWvOta-JTkY2nURSqFArEdswU9JIGWZ-ZlUqDN-EtbzI7UtwAyYjjdEMJw0dzTKleer7aWp4bC0SWwe8tskS3QiaU16NWVJLMbOEKi_pKs-B9539eS3l8VvLnRYBSdOlLxOGgR2jZUXmwLvuMVY6rbCkuS0WZIMmPBJh6MBWjZzuU1xyDG4j6cDubSh1z4mNIVxpgomItwPB35j1G8dJwaB0gFVY-oN7SW98eNBdvfqXQm_h4efBMPl4OD7ahnW6TVt8gngH1sqLhX2NRK3M3lR98RooGjNz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhodium-Catalyzed+Dynamic+Kinetic+Asymmetric+Hydrosilylation+to+Access+Silicon-Stereogenic+Center&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zeng%2C+Yan&rft.au=Fang%2C+Xiao-Jun&rft.au=Tang%2C+Ren-He&rft.au=Xie%2C+Jing-Yu&rft.date=2022-12-19&rft.eissn=1521-3773&rft.volume=61&rft.issue=51&rft.spage=e202214147&rft_id=info:doi/10.1002%2Fanie.202214147&rft_id=info%3Apmid%2F36328976&rft.externalDocID=36328976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |