Rhodium‐Catalyzed Dynamic Kinetic Asymmetric Hydrosilylation to Access Silicon‐Stereogenic Center

Strategies on the construction of enantiomerically pure silicon‐stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack o...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 51; pp. e202214147 - n/a
Main Authors Zeng, Yan, Fang, Xiao‐Jun, Tang, Ren‐He, Xie, Jing‐Yu, Zhang, Feng‐Jiao, Xu, Zheng, Nie, Yi‐Xue, Xu, Li‐Wen
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 19.12.2022
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Strategies on the construction of enantiomerically pure silicon‐stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh‐catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with “silicon‐centered” racemic hydrosilanes that enables the facile preparation of silicon‐stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non‐diastereopure‐type mixed phosphine‐phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the SN2 substitution of chloride ion to realize the chiral inversion of silicon center. An unprecedented (SiMOS‐Phos) ligand‐controlled Rh‐catalyzed hydrosilylation of “silicon‐centered” racemic hydrosilanes was developed for the highly efficient and enantioselective construction of silicon‐stereogenic centers of benzosiloles (up to 96 : 4 er). This achievement was obtained by using an original synthetic strategy involving dynamic kinetic asymmetric transformations.
AbstractList Strategies on the construction of enantiomerically pure silicon‐stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh‐catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with “silicon‐centered” racemic hydrosilanes that enables the facile preparation of silicon‐stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non‐diastereopure‐type mixed phosphine‐phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the S N 2 substitution of chloride ion to realize the chiral inversion of silicon center.
Strategies on the construction of enantiomerically pure silicon-stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh-catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with "silicon-centered" racemic hydrosilanes that enables the facile preparation of silicon-stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non-diastereopure-type mixed phosphine-phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the S(N)2 substitution of chloride ion to realize the chiral inversion of silicon center.
Strategies on the construction of enantiomerically pure silicon-stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh-catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with "silicon-centered" racemic hydrosilanes that enables the facile preparation of silicon-stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non-diastereopure-type mixed phosphine-phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the SN 2 substitution of chloride ion to realize the chiral inversion of silicon center.Strategies on the construction of enantiomerically pure silicon-stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh-catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with "silicon-centered" racemic hydrosilanes that enables the facile preparation of silicon-stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non-diastereopure-type mixed phosphine-phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the SN 2 substitution of chloride ion to realize the chiral inversion of silicon center.
Strategies on the construction of enantiomerically pure silicon-stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh-catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with "silicon-centered" racemic hydrosilanes that enables the facile preparation of silicon-stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non-diastereopure-type mixed phosphine-phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the S 2 substitution of chloride ion to realize the chiral inversion of silicon center.
Strategies on the construction of enantiomerically pure silicon‐stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh‐catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with “silicon‐centered” racemic hydrosilanes that enables the facile preparation of silicon‐stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non‐diastereopure‐type mixed phosphine‐phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the SN2 substitution of chloride ion to realize the chiral inversion of silicon center.Dedicated to Professor Chungu Xia on the occasion of his 60th birthday
Strategies on the construction of enantiomerically pure silicon‐stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh‐catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with “silicon‐centered” racemic hydrosilanes that enables the facile preparation of silicon‐stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non‐diastereopure‐type mixed phosphine‐phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the SN2 substitution of chloride ion to realize the chiral inversion of silicon center. An unprecedented (SiMOS‐Phos) ligand‐controlled Rh‐catalyzed hydrosilylation of “silicon‐centered” racemic hydrosilanes was developed for the highly efficient and enantioselective construction of silicon‐stereogenic centers of benzosiloles (up to 96 : 4 er). This achievement was obtained by using an original synthetic strategy involving dynamic kinetic asymmetric transformations.
Author Nie, Yi‐Xue
Xie, Jing‐Yu
Xu, Li‐Wen
Fang, Xiao‐Jun
Tang, Ren‐He
Zeng, Yan
Xu, Zheng
Zhang, Feng‐Jiao
Author_xml – sequence: 1
  givenname: Yan
  surname: Zeng
  fullname: Zeng, Yan
  organization: Hangzhou Normal University
– sequence: 2
  givenname: Xiao‐Jun
  surname: Fang
  fullname: Fang, Xiao‐Jun
  organization: Hangzhou Normal University
– sequence: 3
  givenname: Ren‐He
  surname: Tang
  fullname: Tang, Ren‐He
  organization: Hangzhou Normal University
– sequence: 4
  givenname: Jing‐Yu
  surname: Xie
  fullname: Xie, Jing‐Yu
  organization: Hangzhou Normal University
– sequence: 5
  givenname: Feng‐Jiao
  surname: Zhang
  fullname: Zhang, Feng‐Jiao
  organization: Hangzhou Normal University
– sequence: 6
  givenname: Zheng
  surname: Xu
  fullname: Xu, Zheng
  email: zhengxu@hznu.edu.cn
  organization: Hangzhou Normal University
– sequence: 7
  givenname: Yi‐Xue
  surname: Nie
  fullname: Nie, Yi‐Xue
  organization: Hangzhou Normal University
– sequence: 8
  givenname: Li‐Wen
  orcidid: 0000-0001-5705-0015
  surname: Xu
  fullname: Xu, Li‐Wen
  email: liwenxu@hznu.edu.cn
  organization: Hangzhou Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36328976$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2LFDEQhoOsuB969SgDXgTpMZ-d9HHoXd3FRcHVc5NOV2uW7mTtpJH25E_wN_pLrHXGERZET1WB56kUL3VMDkIMQMhjRteMUv7CBg9rTjlnkkl9jxwxxVkhtBYH2EshCm0UOyTHKV0jbwwtH5BDUQpuKl0eEXj3KXZ-Hn98-17bbIflK3Sr0yXY0bvVax8gY92kZRwhT9ieL90Ukx-WwWYfwyrH1cY5SGl15QfvYsBBVxkmiB8hIF9DwNdDcr-3Q4JHu3pCPrw8e1-fF5dvX13Um8vCSVHpwvWi1w46xyujNDNcU-VAVk4IRx2ruNBge11Ko5yRFajWlF1Zqpa2YKzsxAl5tp17M8XPM6TcjD45GAYbIM6p4VpwJbRUCtGnd9DrOE8Bt0NKIaZYyZF6sqPmdoSuuZn8aKel-R0gAs-3wBdoY5-ch-Bgj1FKDUZeCYEdZUib_6drn39lXMc5ZFTXW9Vh_mmCfq8x2tyeQnN7Cs3-FFCQdwS3G5gn64e_a9VuRT_A8o9Pms2bi7M_7k-or8g3
CitedBy_id crossref_primary_10_1002_anie_202407391
crossref_primary_10_1039_D2SC06181C
crossref_primary_10_1021_acs_orglett_3c00946
crossref_primary_10_1016_j_chempr_2023_09_024
crossref_primary_10_1002_ange_202317973
crossref_primary_10_6023_cjoc202306027
crossref_primary_10_1002_chem_202302458
crossref_primary_10_1002_anie_202404732
crossref_primary_10_1038_s41467_024_49988_2
crossref_primary_10_1021_acs_orglett_4c02336
crossref_primary_10_6023_cjoc202400042
crossref_primary_10_1002_anie_202313171
crossref_primary_10_1021_acscatal_4c05675
crossref_primary_10_1002_ange_202217724
crossref_primary_10_1002_chem_202401440
crossref_primary_10_1007_s11426_023_1813_3
crossref_primary_10_1021_acs_orglett_4c04694
crossref_primary_10_3389_fchem_2023_1200494
crossref_primary_10_1002_ange_202407391
crossref_primary_10_6023_cjoc202307025
crossref_primary_10_6023_cjoc202305001
crossref_primary_10_1021_acs_accounts_4c00667
crossref_primary_10_1039_D4CS00417E
crossref_primary_10_1002_anie_202405520
crossref_primary_10_1038_s41467_024_54241_x
crossref_primary_10_1021_jacs_3c00858
crossref_primary_10_1002_anie_202317973
crossref_primary_10_1002_ange_202405520
crossref_primary_10_1038_s41467_024_55592_1
crossref_primary_10_1038_s41467_025_56232_y
crossref_primary_10_1002_ange_202313171
crossref_primary_10_6023_cjoc202300046
crossref_primary_10_1002_ange_202404732
crossref_primary_10_1038_s41467_023_40558_6
crossref_primary_10_1016_j_jcat_2024_115788
crossref_primary_10_1016_j_chempr_2023_06_014
crossref_primary_10_1007_s11426_022_1480_y
crossref_primary_10_1021_acs_orglett_4c03491
crossref_primary_10_1002_anie_202217724
crossref_primary_10_1002_chem_202400440
Cites_doi 10.1038/s41467-022-28439-w
10.1021/jacs.0c04533
10.1002/anie.202009912
10.1002/ange.202205382
10.1002/ange.202117820
10.1002/ange.202013041
10.1021/acs.accounts.1c00212
10.1002/anie.202100775
10.1002/0470025107
10.1002/anie.202103748
10.1021/acs.accounts.1c00326
10.1002/anie.202111025
10.1002/anie.200461624
10.1002/anie.200801995
10.1002/anie.201913060
10.1002/ange.201207932
10.1016/j.catcom.2020.105950
10.1002/ejoc.202101084
10.1002/ange.202005341
10.1002/ange.200704327
10.1002/ange.201802806
10.1002/tcr.201800076
10.1002/asia.201900408
10.1002/ange.201913060
10.1002/0470857250
10.1002/(SICI)1521-3773(19990802)38:15<2196::AID-ANIE2196>3.0.CO;2-9
10.1002/chem.201501568
10.1016/j.ccr.2022.214456
10.1002/ajoc.201500066
10.1039/D1CS00485A
10.1039/D0CC00844C
10.1021/cr0200318
10.1002/anie.202005341
10.1002/ange.202113052
10.1021/acscatal.8b01992
10.1021/jacs.1c01106
10.1016/j.jorganchem.2020.121415
10.1002/ange.202012649
10.1002/anie.202002289
10.1038/s41467-021-21489-6
10.1002/anie.202205382
10.1039/C0CS00037J
10.1002/ange.202103748
10.1039/D1QO01386F
10.1021/acscatal.1c03112
10.1002/anie.201207361
10.1002/anie.202012649
10.1002/anie.202205624
10.1007/s11426-020-9939-1
10.1002/anie.200704327
10.1002/(SICI)1521-3757(19990802)111:15<2333::AID-ANGE2333>3.0.CO;2-7
10.1002/ange.202111025
10.1002/ange.202009912
10.1021/jacs.0c04863
10.1055/s-2007-980385
10.1002/ejic.201600100
10.1002/ange.202100775
10.1002/anie.201605198
10.1002/ange.200801995
10.1021/acs.organomet.6b00110
10.1016/j.ccr.2016.09.011
10.1002/ange.202002289
10.1055/a-1729-9664
10.1002/ange.202205624
10.1002/adsc.201800774
10.1021/jacs.2c00288
10.1002/anie.201207932
10.1021/jacs.0c13335
10.1002/ange.201605198
10.1002/anie.201802806
10.1021/acs.accounts.0c00740
10.1016/j.ccr.2019.02.003
10.1055/s-0039-1691496
10.1021/ja962754c
10.1002/ange.201207361
10.1055/s-0036-1591839
10.1055/a-1408-6795
10.1002/anie.202013041
10.1002/anie.202117820
10.1002/asia.202200104
10.1002/anie.202113052
10.1016/j.isci.2020.101268
10.1021/acs.orglett.1c00935
10.1002/ange.200461624
10.1021/acs.chemrev.5b00559
10.1039/c0cs00037j
10.1055/a-1605-9572
10.1039/d1qo01386f
10.1039/d1cs00485a
10.1002/anie.202115755
10.1039/d0cc00844c
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
1KN
AHQBO
BLEPL
DTL
EGQ
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202214147
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Web of Science
MEDLINE - Academic
PubMed
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 36328976
000888093300001
10_1002_anie_202214147
ANIE202214147
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: "Ten- Thousand Talents Plan" of Hangzhou city, Hangzhou Innovation Team
  funderid: TD20200015
– fundername: Special Support Program for High- level Talents of Zhejiang Province
  funderid: 2021R51005
– fundername: Zhejiang Provincial Natural Science Foundation of China
  funderid: LY21B030007; LY22B020006
– fundername: National Natural Science Foundation of China
  funderid: No. 22072035
– fundername: Zhejiang Provincial Natural Science Foundation of China; Natural Science Foundation of Zhejiang Province
  grantid: LY21B030007; LY22B020006
– fundername: Special Support Program for High-level Talents of Zhejiang Province
  grantid: 2021R51005
– fundername: "Ten-Thousand Talents Plan" of Hangzhou city, Hangzhou Innovation Team
  grantid: TD2020015
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 22072035
– fundername: Special Support Program for High- level Talents of Zhejiang Province
  grantid: 2021R51005
– fundername: "Ten- Thousand Talents Plan" of Hangzhou city, Hangzhou Innovation Team
  grantid: TD20200015
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LY22B020006
– fundername: National Natural Science Foundation of China
  grantid: No. 22072035
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LY21B030007
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
1KN
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4397-cf3f7cedc29857182705ce49c33c0c19237eaf76485c849e5b86d665b0be8a4d3
IEDL.DBID DR2
ISICitedReferencesCount 48
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000888093300001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 07:37:08 EDT 2025
Fri Jul 25 10:45:16 EDT 2025
Wed Feb 19 02:26:22 EST 2025
Fri Aug 29 15:49:37 EDT 2025
Wed Jul 09 18:31:08 EDT 2025
Tue Jul 01 01:46:57 EDT 2025
Thu Apr 24 22:53:08 EDT 2025
Wed Jan 22 16:22:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords Dynamic Kinetic Resolution
PHOSPHORUS
Asymmetric Catalysis
HYDROGENATION
ENANTIOSELECTIVITY
Silacycle
SILANES
CONSTRUCTION
Organosilicon
LIGAND
Silicon-Stereogenic
C-H SILYLATION
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4397-cf3f7cedc29857182705ce49c33c0c19237eaf76485c849e5b86d665b0be8a4d3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5705-0015
PMID 36328976
PQID 2753255162
PQPubID 946352
PageCount 6
ParticipantIDs pubmed_primary_36328976
webofscience_primary_000888093300001CitationCount
proquest_miscellaneous_2732537455
webofscience_primary_000888093300001
wiley_primary_10_1002_anie_202214147_ANIE202214147
crossref_citationtrail_10_1002_anie_202214147
crossref_primary_10_1002_anie_202214147
proquest_journals_2753255162
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 19, 2022
PublicationDateYYYYMMDD 2022-12-19
PublicationDate_xml – month: 12
  year: 2022
  text: December 19, 2022
  day: 19
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2021; 64
2021; 23
2018; 360
1999 1999; 38 111
2019; 14
2020 2020; 59 132
2019; 19
2020; 56
2008 2008; 47 120
2022; 459
2020; 923
2016; 35
2022 2022; 61 134
2018; 8
2021; 32
2000
2012 2012; 51 124
2018 2018; 57 130
2020; 138
2005 2005; 44 117
2016; 116
2021; 8
2018; 29
2015; 4
2020; 142
2022; 51
2011; 40
2007
2017 2017; 56 129
2017; 330
2021; 143
2019; 386
2022; 144
2021; 54
2021; 12
2021; 11
2020; 31
1989 1998
2021
2020
2015; 21
2021 2021; 60 133
2022; 13
2016
2020; 23
2022; 54
2003; 103
2022; 17
1996; 118
e_1_2_3_50_2
e_1_2_3_16_1
e_1_2_3_4_2
e_1_2_3_39_2
e_1_2_3_12_2
e_1_2_3_54_3
e_1_2_3_58_2
e_1_2_3_8_1
e_1_2_3_35_2
e_1_2_3_54_2
e_1_2_3_73_2
e_1_2_3_31_2
e_1_2_3_28_2
e_1_2_3_24_2
e_1_2_3_47_2
e_1_2_3_66_2
e_1_2_3_20_2
e_1_2_3_62_2
e_1_2_3_43_1
e_1_2_3_72_2
(e_1_2_3_37_2) 2022; 134
e_1_2_3_19_2
e_1_2_3_19_3
e_1_2_3_15_2
e_1_2_3_38_1
Brook M. A. (e_1_2_3_3_2) 2000
e_1_2_3_11_2
e_1_2_3_34_1
e_1_2_3_7_2
e_1_2_3_57_2
e_1_2_3_30_2
e_1_2_3_53_3
e_1_2_3_72_3
(e_1_2_3_45_3) 2022; 134
e_1_2_3_53_2
e_1_2_3_61_2
Igawa K. (e_1_2_3_32_2) 2020
e_1_2_3_27_2
e_1_2_3_69_3
e_1_2_3_23_1
e_1_2_3_69_2
e_1_2_3_46_2
e_1_2_3_42_1
e_1_2_3_65_2
e_1_2_3_61_3
e_1_2_3_71_2
e_1_2_3_71_3
e_1_2_3_2_3
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_56_2
e_1_2_3_37_1
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_52_2
e_1_2_3_75_2
e_1_2_3_33_1
e_1_2_3_10_2
e_1_2_3_60_2
e_1_2_3_60_3
e_1_2_3_26_2
e_1_2_3_49_2
e_1_2_3_26_3
e_1_2_3_22_2
e_1_2_3_45_2
e_1_2_3_68_1
e_1_2_3_64_2
e_1_2_3_41_1
e_1_2_3_22_1
e_1_2_3_70_3
e_1_2_3_70_2
(e_1_2_3_20_3) 2022; 134
e_1_2_3_1_1
e_1_2_3_5_2
e_1_2_3_36_3
e_1_2_3_17_2
e_1_2_3_59_2
e_1_2_3_59_3
e_1_2_3_9_2
e_1_2_3_55_2
e_1_2_3_13_2
e_1_2_3_36_2
e_1_2_3_51_3
e_1_2_3_51_2
e_1_2_3_9_3
e_1_2_3_74_2
(e_1_2_3_48_3) 2022; 134
e_1_2_3_48_2
e_1_2_3_29_2
e_1_2_3_67_1
e_1_2_3_25_2
e_1_2_3_40_3
e_1_2_3_63_3
e_1_2_3_40_2
e_1_2_3_44_1
e_1_2_3_21_2
e_1_2_3_63_2
Bauer, JO (WOS:000379751700001) 2016
Lipke, MC (WOS:000395566600006) 2017; 56
Tamao, K (WOS:A1996VX65400033) 1996; 118
Guo, YH (WOS:000651075000001) 2021; 60
Lin, Y (WOS:000471717800006) 2019; 14
Ma, W. (000888093300001.66) 2021; 133
(000888093300001.24) 2012; 124
Chang, X (WOS:000535062900031) 2020; 59
Wu, Y. (000888093300001.40) 2022; 134
(000888093300001.9) 2017; 129
Wu, YC (WOS:000829917800001) 2022; 61
Zheng, L (WOS:000705545500001) 2021; 2021
Xu, C (WOS:000597247500001) 2021; 60
Long, PW (WOS:000526896100006) 2020; 56
Kucinski, K (WOS:000788731400002) 2022; 459
Walkowiak, J (WOS:000740802000001) 2022; 51
Mu, DL (WOS:000558793400029) 2020; 142
Xu, LW (WOS:000312552900006) 2012; 51
Motokura, K (WOS:000477039500005) 2019; 19
Zhang, G (WOS:000533301400001) 2020; 59
Chen, DJ (WOS:000259382900040) 2008; 47
Wang, L. (000888093300001.51) 2022; 134
You, Y. (000888093300001.60) 2021; 133
Yang, B (WOS:000573160400001) 2020; 59
Wu (000888093300001.47) 2022; 134
Zhang, HP (WOS:000693621800005) 2021; 11
Wang, X.B. (000888093300001.70) 2020; 132
Zhao, WT (WOS:000444364800027) 2018; 8
Li, L (WOS:000504096400005) 2020; 31
Zhang, G. (000888093300001.73) 2020; 132
(000888093300001.43) 2021; 133
Iglesias, M (WOS:000462416200012) 2019; 386
Zhang, LX (WOS:000629075900034) 2021; 143
Chang, X. (000888093300001.19) 2020; 132
Rappoport, Z. (000888093300001.2) 1998; 2
Wen, HA (WOS:000432710100062) 2018; 57
You, YE (WOS:000641593900001) 2021; 60
Reetz, M.T. (000888093300001.82) 2008; 120
Xu, LW (WOS:000287585000034) 2011; 40
Cui, YM (WOS:000389556000002) 2017; 330
Corey, JY (WOS:000385469400001) 2016; 116
Yang (000888093300001.68) 2020; 132
Oestreich, M (WOS:000248768200001) 2007
Pati, S. (000888093300001.1) 1989; 1
Reetz, MT (WOS:000226425600011) 2005; 44
Bi, XF (WOS:000641296000067) 2021; 23
Uvarov, VM (WOS:000575167400009) 2020; 923
Chen, SY (WOS:000623781900023) 2021; 12
Faller, JW (WOS:000184821500022) 2003; 103
Blackmond, DG (WOS:000081864800009) 1999; 38
Jagannathan, JR (WOS:000550639000009) 2020; 142
Tang, RH (WOS:000553829700003) 2020; 23
Ye, F (WOS:000612345900019) 2021; 54
Huang, Y.H. (000888093300001.21) 2022; 134
Shintani, R (WOS:000355651000001) 2015; 4
An, K (WOS:000755220500015) 2022; 13
Xie, JL (WOS:000623850700001) 2021; 64
Wang, Q (WOS:000526785900006) 2020; 138
Guo, J (WOS:000659357600014) 2021; 54
Wang, XB (WOS:000502151700001) 2020; 59
Zhu, JF (WOS:000641160700003) 2021; 143
Wen, H. (000888093300001.38) 2018; 130
(000888093300001.55) 2021; 133
Lu, WX (WOS:000799109400005) 2022; 144
(000888093300001.28) 2012; 124
Igawa, K. (000888093300001.34) 2020
Wang, X (WOS:000707138200001) 2021; 8
(000888093300001.58) 2021; 133
Liu, ZC (WOS:000736073600001) 2022; 61
Reetz, M.T. (000888093300001.78) 2005; 117
Ma, WP (WOS:000602711800001) 2021; 60
Igawa, K (WOS:000312305400017) 2012; 51
Kong, YF (WOS:000782298500001) 2022; 17
Jia, J (WOS:000446304600020) 2018; 360
Bähr, S (WOS:000374077200002) 2016; 35
He, P (WOS:000707191000001) 2022; 54
Chen, SY (WOS:000769942600001) 2022; 61
Naganawa, Y (WOS:000356795000006) 2015; 21
Reetz, MT (WOS:000254869800007) 2008; 47
Chen, D. (000888093300001.84) 2008; 120
Ye, F (WOS:000629107800001) 2021; 32
Wang, L (WOS:000808242800001) 2022; 61
Shintani, R (WOS:000425173600008) 2018; 29
Black-mond, D.G. (000888093300001.80) 1999; 111
Zhang, JY (WOS:000713741200001) 2021; 60
Brook, M.A. (000888093300001.3) 2000
Diéguez, M (WOS:000687058900011) 2021; 54
References_xml – volume: 56 129
  start-page: 2260 2298
  year: 2017 2017
  end-page: 2294 2335
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 459
  year: 2022
  publication-title: Coord. Chem. Rev.
– start-page: 1629
  year: 2007
  end-page: 1643
  publication-title: Synlett
– volume: 116
  start-page: 11291
  year: 2016
  end-page: 11435
  publication-title: Chem. Rev.
– volume: 51 124
  start-page: 12745 12917
  year: 2012 2012
  end-page: 12748 12920
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54
  start-page: 2701
  year: 2021
  end-page: 2716
  publication-title: Acc. Chem. Res.
– start-page: 495
  year: 2020
  end-page: 532
– volume: 35
  start-page: 925
  year: 2016
  end-page: 928
  publication-title: Organometallics
– volume: 138
  year: 2020
  publication-title: Catal. Commun.
– volume: 64
  start-page: 761
  year: 2021
  end-page: 769
  publication-title: Sci. China Chem.
– volume: 56
  start-page: 4188
  year: 2020
  end-page: 4191
  publication-title: Chem. Commun.
– volume: 59 132
  start-page: 790 800
  year: 2020 2020
  end-page: 797 807
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47 120
  start-page: 2556 2592
  year: 2008 2008
  end-page: 2588 2626
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  start-page: 21
  year: 2020
  end-page: 34
  publication-title: Synlett
– volume: 51
  start-page: 869
  year: 2022
  end-page: 994
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 6577
  year: 2021
  end-page: 6584
  publication-title: Org. Chem. Front.
– volume: 60 133
  start-page: 4245 4291
  year: 2021 2021
  end-page: 4251 4297
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47 120
  start-page: 7339 7449
  year: 2008 2008
  end-page: 7341 7451
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 118
  start-page: 12469
  year: 1996
  end-page: 12470
  publication-title: J. Am. Chem. Soc.
– start-page: 6006
  year: 2021
  end-page: 6014
  publication-title: Eur. J. Org. Chem.
– volume: 142
  start-page: 13459
  year: 2020
  end-page: 13468
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 5301
  year: 2021
  end-page: 5307
  publication-title: J. Am. Chem. Soc.
– volume: 386
  start-page: 240
  year: 2019
  end-page: 266
  publication-title: Coord. Chem. Rev.
– volume: 14
  start-page: 2082
  year: 2019
  end-page: 2085
  publication-title: Chem. Asian J.
– volume: 23
  start-page: 3201
  year: 2021
  end-page: 3206
  publication-title: Org. Lett.
– volume: 23
  year: 2020
  publication-title: iScience
– volume: 54
  start-page: 452
  year: 2021
  end-page: 470
  publication-title: Acc. Chem. Res.
– volume: 54
  start-page: 3252
  year: 2021
  end-page: 3262
  publication-title: Acc. Chem. Res.
– volume: 17
  year: 2022
  publication-title: Chem. Asian J.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 3189 3226
  year: 2021 2021
  end-page: 3195 3232
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 1989 1998
– volume: 13
  start-page: 847
  year: 2022
  publication-title: Nat. Commun.
– volume: 143
  start-page: 3571
  year: 2021
  end-page: 3582
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 7997
  year: 2018
  end-page: 8005
  publication-title: ACS Catal.
– volume: 44 117
  start-page: 412 416
  year: 2005 2005
  end-page: 415 419
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 8937 9022
  year: 2020 2020
  end-page: 8940 9025
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 510
  year: 2015
  end-page: 514
  publication-title: Asian J. Org. Chem.
– volume: 60 133
  start-page: 12046 12153
  year: 2021 2021
  end-page: 12052 12159
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 19
  start-page: 1199
  year: 2019
  end-page: 1209
  publication-title: Chem. Rec.
– volume: 21
  start-page: 9319
  year: 2015
  end-page: 9322
  publication-title: Chem. Eur. J.
– volume: 144
  start-page: 5233
  year: 2022
  end-page: 5240
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 13887 14006
  year: 2021 2021
  end-page: 13891 14010
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 32
  start-page: 1281
  year: 2021
  end-page: 1288
  publication-title: Synlett
– year: 2000
– volume: 40
  start-page: 1777
  year: 2011
  end-page: 1790
  publication-title: Chem. Soc. Rev.
– volume: 330
  start-page: 37
  year: 2017
  end-page: 52
  publication-title: Coord. Chem. Rev.
– volume: 11
  start-page: 10748
  year: 2021
  end-page: 10753
  publication-title: ACS Catal.
– volume: 57 130
  start-page: 6319 6427
  year: 2018 2018
  end-page: 6323 6431
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 11927 12025
  year: 2020 2020
  end-page: 11931 12029
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 22217 22401
  year: 2020 2020
  end-page: 22222 22406
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 103
  start-page: 3345
  year: 2003
  end-page: 3367
  publication-title: Chem. Rev.
– start-page: 2868
  year: 2016
  end-page: 2881
  publication-title: Eur. J. Org. Chem.
– volume: 142
  start-page: 11674
  year: 2020
  end-page: 11679
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1249
  year: 2021
  publication-title: Nat. Commun.
– volume: 38 111
  start-page: 2196 2333
  year: 1999 1999
  end-page: 2199 2335
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 360
  start-page: 3793
  year: 2018
  end-page: 3800
  publication-title: Adv. Synth. Catal.
– volume: 51 124
  start-page: 12932 13106
  year: 2012 2012
  end-page: 12934 13108
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 923
  year: 2020
  publication-title: J. Organomet. Chem.
– volume: 54
  start-page: 49
  year: 2022
  end-page: 55
  publication-title: Synthesis
– volume: 29
  start-page: 388
  year: 2018
  end-page: 396
  publication-title: Synlett
– volume: 60 133
  start-page: 25723 25927
  year: 2021 2021
  end-page: 25728 25932
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_3_47_2
  doi: 10.1038/s41467-022-28439-w
– ident: e_1_2_3_35_2
  doi: 10.1021/jacs.0c04533
– ident: e_1_2_3_43_1
– ident: e_1_2_3_60_2
  doi: 10.1002/anie.202009912
– volume: 134
  start-page: e202205382
  year: 2022
  ident: e_1_2_3_37_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202205382
– volume: 134
  start-page: e202117820
  year: 2022
  ident: e_1_2_3_45_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202117820
– ident: e_1_2_3_59_3
  doi: 10.1002/ange.202013041
– volume-title: Silicon in Organic, Organometallic, and Polymer Chemistry
  year: 2000
  ident: e_1_2_3_3_2
– ident: e_1_2_3_12_2
  doi: 10.1021/acs.accounts.1c00212
– ident: e_1_2_3_54_2
  doi: 10.1002/anie.202100775
– ident: e_1_2_3_2_2
  doi: 10.1002/0470025107
– ident: e_1_2_3_53_2
  doi: 10.1002/anie.202103748
– ident: e_1_2_3_74_2
  doi: 10.1021/acs.accounts.1c00326
– ident: e_1_2_3_51_2
  doi: 10.1002/anie.202111025
– ident: e_1_2_3_69_2
  doi: 10.1002/anie.200461624
– ident: e_1_2_3_72_2
  doi: 10.1002/anie.200801995
– start-page: 495
  volume-title: in Organosilicon Chemistry: Novel Approaches and Reactions
  year: 2020
  ident: e_1_2_3_32_2
– ident: e_1_2_3_61_2
  doi: 10.1002/anie.201913060
– ident: e_1_2_3_26_3
  doi: 10.1002/ange.201207932
– ident: e_1_2_3_65_2
  doi: 10.1016/j.catcom.2020.105950
– ident: e_1_2_3_31_2
  doi: 10.1002/ejoc.202101084
– ident: e_1_2_3_8_1
– ident: e_1_2_3_63_3
  doi: 10.1002/ange.202005341
– ident: e_1_2_3_71_3
  doi: 10.1002/ange.200704327
– ident: e_1_2_3_36_3
  doi: 10.1002/ange.201802806
– ident: e_1_2_3_4_2
  doi: 10.1002/tcr.201800076
– ident: e_1_2_3_66_2
  doi: 10.1002/asia.201900408
– ident: e_1_2_3_61_3
  doi: 10.1002/ange.201913060
– ident: e_1_2_3_23_1
– ident: e_1_2_3_68_1
– ident: e_1_2_3_2_3
  doi: 10.1002/0470857250
– ident: e_1_2_3_70_2
  doi: 10.1002/(SICI)1521-3773(19990802)38:15<2196::AID-ANIE2196>3.0.CO;2-9
– ident: e_1_2_3_18_2
  doi: 10.1002/chem.201501568
– ident: e_1_2_3_14_2
  doi: 10.1016/j.ccr.2022.214456
– ident: e_1_2_3_27_2
  doi: 10.1002/ajoc.201500066
– ident: e_1_2_3_7_2
  doi: 10.1039/D1CS00485A
– ident: e_1_2_3_64_2
  doi: 10.1039/D0CC00844C
– ident: e_1_2_3_75_2
  doi: 10.1021/cr0200318
– ident: e_1_2_3_63_2
  doi: 10.1002/anie.202005341
– volume: 134
  start-page: e202113052
  year: 2022
  ident: e_1_2_3_20_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202113052
– ident: e_1_2_3_50_2
  doi: 10.1021/acscatal.8b01992
– ident: e_1_2_3_55_2
  doi: 10.1021/jacs.1c01106
– ident: e_1_2_3_10_2
  doi: 10.1016/j.jorganchem.2020.121415
– ident: e_1_2_3_40_3
  doi: 10.1002/ange.202012649
– ident: e_1_2_3_19_2
  doi: 10.1002/anie.202002289
– ident: e_1_2_3_58_2
  doi: 10.1038/s41467-021-21489-6
– ident: e_1_2_3_37_1
  doi: 10.1002/anie.202205382
– ident: e_1_2_3_25_2
  doi: 10.1039/C0CS00037J
– ident: e_1_2_3_53_3
  doi: 10.1002/ange.202103748
– ident: e_1_2_3_41_1
  doi: 10.1039/D1QO01386F
– ident: e_1_2_3_52_2
  doi: 10.1021/acscatal.1c03112
– ident: e_1_2_3_22_1
  doi: 10.1002/anie.201207361
– ident: e_1_2_3_40_2
  doi: 10.1002/anie.202012649
– ident: e_1_2_3_48_2
  doi: 10.1002/anie.202205624
– ident: e_1_2_3_34_1
– ident: e_1_2_3_57_2
  doi: 10.1007/s11426-020-9939-1
– ident: e_1_2_3_71_2
  doi: 10.1002/anie.200704327
– ident: e_1_2_3_70_3
  doi: 10.1002/(SICI)1521-3757(19990802)111:15<2333::AID-ANGE2333>3.0.CO;2-7
– ident: e_1_2_3_51_3
  doi: 10.1002/ange.202111025
– ident: e_1_2_3_67_1
– ident: e_1_2_3_60_3
  doi: 10.1002/ange.202009912
– ident: e_1_2_3_62_2
  doi: 10.1021/jacs.0c04863
– ident: e_1_2_3_24_2
  doi: 10.1055/s-2007-980385
– ident: e_1_2_3_28_2
  doi: 10.1002/ejic.201600100
– ident: e_1_2_3_54_3
  doi: 10.1002/ange.202100775
– ident: e_1_2_3_9_2
  doi: 10.1002/anie.201605198
– ident: e_1_2_3_72_3
  doi: 10.1002/ange.200801995
– ident: e_1_2_3_16_1
– ident: e_1_2_3_39_2
  doi: 10.1021/acs.organomet.6b00110
– ident: e_1_2_3_29_2
  doi: 10.1016/j.ccr.2016.09.011
– ident: e_1_2_3_1_1
– ident: e_1_2_3_19_3
  doi: 10.1002/ange.202002289
– ident: e_1_2_3_11_2
  doi: 10.1055/a-1729-9664
– ident: e_1_2_3_38_1
– volume: 134
  start-page: e202205624
  year: 2022
  ident: e_1_2_3_48_3
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202205624
– ident: e_1_2_3_73_2
  doi: 10.1002/adsc.201800774
– ident: e_1_2_3_46_2
  doi: 10.1021/jacs.2c00288
– ident: e_1_2_3_26_2
  doi: 10.1002/anie.201207932
– ident: e_1_2_3_49_2
  doi: 10.1021/jacs.0c13335
– ident: e_1_2_3_9_3
  doi: 10.1002/ange.201605198
– ident: e_1_2_3_36_2
  doi: 10.1002/anie.201802806
– ident: e_1_2_3_42_1
  doi: 10.1021/acs.accounts.0c00740
– ident: e_1_2_3_5_2
  doi: 10.1016/j.ccr.2019.02.003
– ident: e_1_2_3_6_2
  doi: 10.1055/s-0039-1691496
– ident: e_1_2_3_17_2
  doi: 10.1021/ja962754c
– ident: e_1_2_3_22_2
  doi: 10.1002/ange.201207361
– ident: e_1_2_3_30_2
  doi: 10.1055/s-0036-1591839
– ident: e_1_2_3_13_2
  doi: 10.1055/a-1408-6795
– ident: e_1_2_3_44_1
– ident: e_1_2_3_59_2
  doi: 10.1002/anie.202013041
– ident: e_1_2_3_45_2
  doi: 10.1002/anie.202117820
– ident: e_1_2_3_15_2
  doi: 10.1002/asia.202200104
– ident: e_1_2_3_20_2
  doi: 10.1002/anie.202113052
– ident: e_1_2_3_21_2
  doi: 10.1016/j.isci.2020.101268
– ident: e_1_2_3_56_2
  doi: 10.1021/acs.orglett.1c00935
– ident: e_1_2_3_69_3
  doi: 10.1002/ange.200461624
– ident: e_1_2_3_33_1
  doi: 10.1021/acs.chemrev.5b00559
– volume: 132
  start-page: Z
  year: 2020
  ident: 000888093300001.73
  publication-title: Angew. Chem
– volume: 142
  start-page: 13459
  year: 2020
  ident: WOS:000558793400029
  article-title: Streamlined Construction of Silicon-Stereogenic Silanes by Tandem Enantioselective C-H Silylation/Alkene Hydrosilylation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c04863
– volume: 144
  start-page: 5233
  year: 2022
  ident: WOS:000799109400005
  article-title: Cobalt-Catalyzed Sequential Site- and Stereoselective Hydrosilylation of 1,3-and 1,4-Enynes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c00288
– volume: 51
  start-page: 12745
  year: 2012
  ident: WOS:000312305400017
  article-title: Catalytic Enantioselective Synthesis of Alkenylhydrosilanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201207361
– volume: 19
  start-page: 1199
  year: 2019
  ident: WOS:000477039500005
  article-title: Efficient Conversion of Carbon Dioxide with Si-Based Reducing Agents Catalyzed by Metal Complexes and Salts
  publication-title: CHEMICAL RECORD
  doi: 10.1002/tcr.201800076
– volume: 59
  start-page: 790
  year: 2020
  ident: WOS:000502151700001
  article-title: Controllable Si-C Bond Activation Enables Stereocontrol in the Palladium-Catalyzed [4+2] Annulation of Cyclopropenes with Benzosilacyclobutanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201913060
– volume: 40
  start-page: 1777
  year: 2011
  ident: WOS:000287585000034
  article-title: The recent synthesis and application of silicon-stereogenic silanes: A renewed and significant challenge in asymmetric synthesis
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c0cs00037j
– volume: 2
  year: 1998
  ident: 000888093300001.2
  publication-title: The Chemistry of Organic Silicon Compounds
– volume: 13
  start-page: ARTN 847
  year: 2022
  ident: WOS:000755220500015
  article-title: Rhodium hydride enabled enantioselective intermolecular C-H silylation to access acyclic stereogenic Si-H
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-022-28439-w
– volume: 61
  start-page: ARTN e202117820
  year: 2022
  ident: WOS:000769942600001
  article-title: Enantioselective Intermolecular C-H Silylation of Heteroarenes for the Synthesis of Acyclic Si-Stereogenic Silanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202117820
– volume: 386
  start-page: 240
  year: 2019
  ident: WOS:000462416200012
  article-title: Non-classical hydrosilane mediated reductions promoted by transition metal complexes
  publication-title: COORDINATION CHEMISTRY REVIEWS
  doi: 10.1016/j.ccr.2019.02.003
– volume: 360
  start-page: 3793
  year: 2018
  ident: WOS:000446304600020
  article-title: An Atropos Biphenyl Bisphosphine Ligand with 2,2-tert-Butylmethylphosphino Groups for the Rhodium-Catalyzed Asymmetric Hydrogenation of Enol Esters
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.201800774
– volume: 60
  start-page: 3189
  year: 2021
  ident: WOS:000597247500001
  article-title: Insertion of Metal-Substituted Silylene into Naphthalene's Aromatic Ring and Subsequent Rearrangement for Silaspiro-Benzocycloheptenyl and Cyclobutenosilaindan Derivatives
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202012649
– volume: 130
  start-page: 6427
  year: 2018
  ident: 000888093300001.38
  publication-title: Angew. Chem
– volume: 51
  start-page: 12932
  year: 2012
  ident: WOS:000312552900006
  article-title: Desymmetrization Catalyzed by Transition-Metal Complexes: Enantioselective Formation of Silicon-Stereogenic Silanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201207932
– volume: 103
  start-page: 3345
  year: 2003
  ident: WOS:000184821500022
  article-title: Chiral poisoning and asymmetric activation
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr0200318
– volume: 143
  start-page: 3571
  year: 2021
  ident: WOS:000629075900034
  article-title: A Combined Computational and Experimental Study of Rh-Catalyzed C-H Silylation with Silacyclobutanes: Insights Leading to a More Efficient Catalyst System
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c13335
– volume: 132
  start-page: 800
  year: 2020
  ident: 000888093300001.70
  publication-title: Angew. Chem
– volume: 120
  start-page: 7449
  year: 2008
  ident: 000888093300001.84
  publication-title: Angew. Chem
– volume: 134
  year: 2022
  ident: 000888093300001.40
  publication-title: Angew. Chem
– volume: 133
  start-page: 12153
  year: 2021
  ident: 000888093300001.60
  publication-title: Angew. Chem
– volume: 1
  year: 1989
  ident: 000888093300001.1
  publication-title: The Chemistry of Organic Silicon Compounds
– volume: 44
  start-page: 412
  year: 2005
  ident: WOS:000226425600011
  article-title: Binol-derived monodentate phosphites and phosphoramidites with phosphorus stereogenic centers: Novel ligands for transition-metal catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200461624
– volume: 54
  start-page: 452
  year: 2021
  ident: WOS:000612345900019
  article-title: The Discovery of Multifunctional Chiral P Ligands for the Catalytic Construction of Quaternary Carbon/Silicon and Multiple Stereogenic Centers
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.0c00740
– volume: 142
  start-page: 11674
  year: 2020
  ident: WOS:000550639000009
  article-title: Enantioselective Si-H Insertion Reactions of Diarylcarbenes for the Synthesis of Silicon-Stereogenic Silanes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c04533
– volume: 56
  start-page: 2260
  year: 2017
  ident: WOS:000395566600006
  article-title: Electrophilic Activation of Silicon-Hydrogen Bonds in Catalytic Hydrosilations
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201605198
– volume: 54
  start-page: 49
  year: 2022
  ident: WOS:000707191000001
  article-title: Transition-Metal-Catalyzed Stereo- and Regioselective Hydrosilylation of Unsymmetrical Alkynes
  publication-title: SYNTHESIS-STUTTGART
  doi: 10.1055/a-1605-9572
– volume: 47
  start-page: 7339
  year: 2008
  ident: WOS:000259382900040
  article-title: Enantioselective hydrogenation with racemic and enantiopure binap in the presence of a chiral ionic liquid
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200801995
– volume: 111
  start-page: 2333
  year: 1999
  ident: 000888093300001.80
  publication-title: Angew. Chem
– volume: 60
  start-page: 13887
  year: 2021
  ident: WOS:000651075000001
  article-title: Catalytic Asymmetric Synthesis of Silicon-Stereogenic Dihydrodibenzosilines: Silicon Central-to-Axial Chirality Relay
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202103748
– volume: 8
  start-page: 6577
  year: 2021
  ident: WOS:000707138200001
  article-title: Multifunctional P-ligand-controlled "silicon-centered" selectivity in Rh/Cu-catalyzed Si-C bond cleavage of silacyclobutanes
  publication-title: ORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/d1qo01386f
– volume: 51
  start-page: 869
  year: 2022
  ident: WOS:000740802000001
  article-title: Hydroelementation of diynes
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/d1cs00485a
– start-page: 1629
  year: 2007
  ident: WOS:000248768200001
  article-title: Silicon-stereogenic silanes in asymmetric catalysis
  publication-title: SYNLETT
  doi: 10.1055/s-2007-980385
– volume: 23
  start-page: 3201
  year: 2021
  ident: WOS:000641296000067
  article-title: Construction of Axial Chirality and Silicon-Stereogenic Center via Rh-Catalyzed Asymmetric Ring-Opening of Silafluorenes
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.1c00935
– volume: 23
  start-page: ARTN 101268
  year: 2020
  ident: WOS:000553829700003
  article-title: Catalytic Asymmetric trans-Selective Hydrosilylation of Bisalkynes to Access AIE and CPL-Active Silicon-Stereogenic Benzosiloles
  publication-title: ISCIENCE
  doi: 10.1016/j.isci.2020.101268
– volume: 32
  start-page: 1281
  year: 2021
  ident: WOS:000629107800001
  article-title: A Glimpse and Perspective of Current Organosilicon Chemistry from the View of Hydrosilylation and Synthesis of Silicon-Stereogenic Silanes
  publication-title: SYNLETT
  doi: 10.1055/a-1408-6795
– volume: 54
  start-page: 3252
  year: 2021
  ident: WOS:000687058900011
  article-title: Self-Adaptable Tropos Catalysts
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.1c00326
– volume: 134
  year: 2022
  ident: 000888093300001.51
  publication-title: Angew. Chem
– volume: 134
  year: 2022
  ident: 000888093300001.21
  publication-title: Angew. Chem
– volume: 120
  start-page: 2592
  year: 2008
  ident: 000888093300001.82
  publication-title: Angew. Chem
– volume: 133
  start-page: 14006
  year: 2021
  ident: 000888093300001.58
  publication-title: Angew. Chem
– volume: 61
  start-page: ARTN e202115755
  year: 2022
  ident: WOS:000736073600001
  article-title: Thermo- and Mechanochromic Camouflage and Self-Healing in Biomimetic Soft Actuators Based on Liquid Crystal Elastomers
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202115755
– year: 2000
  ident: 000888093300001.3
  publication-title: Silicon in Organic, Organometallic, and Polymer Chemistry
– volume: 60
  start-page: 12046
  year: 2021
  ident: WOS:000641593900001
  article-title: Asymmetric Cobalt-Catalyzed Regioselective Hydrosilylation/Cyclization of 1,6-Enynes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202100775
– volume: 132
  start-page: 22401
  year: 2020
  ident: 000888093300001.68
  publication-title: Angew. Chem
– volume: 47
  start-page: 2556
  year: 2008
  ident: WOS:000254869800007
  article-title: Combinatorial transition-metal catalysis: Mixing monodentate ligands to control enantio-, diastereo-, and regioselectivity
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200704327
– volume: 129
  start-page: 2298
  year: 2017
  ident: 000888093300001.9
  publication-title: Angew. Chem
– volume: 124
  start-page: 13106
  year: 2012
  ident: 000888093300001.28
  publication-title: Angew. Chem
– volume: 56
  start-page: 4188
  year: 2020
  ident: WOS:000526896100006
  article-title: Stereo- and regio-selective synthesis of silicon-containing diborylalkenes via platinum-catalyzed mono-lateral diboration of dialkynylsilanes
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/d0cc00844c
– volume: 8
  start-page: 7997
  year: 2018
  ident: WOS:000444364800027
  article-title: Rhodium-Catalyzed 2-Arylphenol-Derived Six-Membered Silacyclization: Straightforward Access toward Dibenzooxasilines and Silicon-Containing Planar Chiral Metallocenes
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.8b01992
– start-page: 495
  year: 2020
  ident: 000888093300001.34
  publication-title: in Organosilicon Chemistry: Novel Approaches and Reactions
– volume: 59
  start-page: 22217
  year: 2020
  ident: WOS:000573160400001
  article-title: Enantioselective Silylation of Aliphatic C-H Bonds for the Synthesis of Silicon-Stereogenic Dihydrobenzosiloles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202009912
– volume: 60
  start-page: 25723
  year: 2021
  ident: WOS:000713741200001
  article-title: Nickel(0)-Catalyzed Asymmetric Ring Expansion Toward Enantioenriched Silicon-Stereogenic Benzosiloles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202111025
– volume: 61
  start-page: ARTN e202205382
  year: 2022
  ident: WOS:000829917800001
  article-title: Silicon-Stereogenic Monohydrosilane: Synthesis and Applications
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202205382
– volume: 134
  year: 2022
  ident: 000888093300001.47
  publication-title: Angew. Chem
– volume: 57
  start-page: 6319
  year: 2018
  ident: WOS:000432710100062
  article-title: Asymmetric Synthesis of Silicon-Stereogenic Vinylhydrosilanes by Cobalt-Catalyzed Regio- and Enantioselective Alkyne Hydrosilylation with Dihydrosilanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201802806
– volume: 14
  start-page: 2082
  year: 2019
  ident: WOS:000471717800006
  article-title: Desymmetrization-Oriented Enantioselective Synthesis of Silicon-Stereogenic Silanes by Palladium-Catalyzed C-H Olefinations
  publication-title: CHEMISTRY-AN ASIAN JOURNAL
  doi: 10.1002/asia.201900408
– volume: 132
  start-page: 9022
  year: 2020
  ident: 000888093300001.19
  publication-title: Angew. Chem
– volume: 4
  start-page: 510
  year: 2015
  ident: WOS:000355651000001
  article-title: Recent Advances in the Transition-Metal-Catalyzed Enantioselective Synthesis of Silicon-Stereogenic Organosilanes
  publication-title: ASIAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ajoc.201500066
– volume: 61
  start-page: ARTN e202205624
  year: 2022
  ident: WOS:000808242800001
  article-title: Cobalt-Catalyzed Regio-, Diastereo- and Enantioselective Intermolecular Hydrosilylation of 1,3-Dienes with Prochiral Silanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202205624
– volume: 29
  start-page: 388
  year: 2018
  ident: WOS:000425173600008
  article-title: Recent Progress in Catalytic Enantioselective Desymmetrization of Prochiral Organosilanes for the Synthesis of Silicon-Stereogenic Compounds
  publication-title: SYNLETT
  doi: 10.1055/s-0036-1591839
– volume: 116
  start-page: 11291
  year: 2016
  ident: WOS:000385469400001
  article-title: Reactions of Hydrosilanes with Transition Metal Complexes
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.5b00559
– volume: 38
  start-page: 2196
  year: 1999
  ident: WOS:000081864800009
  article-title: Kinetic influences on enantioselectivity for non-diastereopure catalyst mixtures
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
– volume: 59
  start-page: 8937
  year: 2020
  ident: WOS:000535062900031
  article-title: Asymmetric Synthesis and Application of Chiral Spirosilabiindanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202002289
– volume: 31
  start-page: 21
  year: 2020
  ident: WOS:000504096400005
  article-title: Organosilicon-Mediated Organic Synthesis (SiMOS): A Personal Account
  publication-title: SYNLETT
  doi: 10.1055/s-0039-1691496
– volume: 59
  start-page: 11927
  year: 2020
  ident: WOS:000533301400001
  article-title: Asymmetric Synthesis of Silicon-Stereogenic Silanes by Copper-Catalyzed Desymmetrizing Protoboration of Vinylsilanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202005341
– start-page: 2868
  year: 2016
  ident: WOS:000379751700001
  article-title: Recent Progress in Asymmetric Synthesis and Application of Difunctionalized Silicon-Stereogenic Silanes
  publication-title: EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
  doi: 10.1002/ejic.201600100
– volume: 124
  start-page: 12917
  year: 2012
  ident: 000888093300001.24
  publication-title: Angew. Chem
– volume: 143
  start-page: 5301
  year: 2021
  ident: WOS:000641160700003
  article-title: Catalytic Enantioselective Dehydrogenative Si-O Coupling to Access Chiroptical Silicon-Stereogenic Siloxanes and Alkoxysilanes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c01106
– volume: 11
  start-page: 10748
  year: 2021
  ident: WOS:000693621800005
  article-title: Synthesis of Silicon-Stereogenic Silanols Involving Iridium-Catalyzed Enantioselective C-H Silylation Leading to a New Ligand Scaffold
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.1c03112
– volume: 133
  start-page: 3226
  year: 2021
  ident: 000888093300001.43
  publication-title: Angew. Chem
– volume: 133
  start-page: 4291
  year: 2021
  ident: 000888093300001.66
  publication-title: Angew. Chem
– volume: 459
  start-page: ARTN 214456
  year: 2022
  ident: WOS:000788731400002
  article-title: Catalytic silylation of O-nucleophiles via Si-H or Si-C bond cleavage: A route to silyl ethers, silanols and siloxanes
  publication-title: COORDINATION CHEMISTRY REVIEWS
  doi: 10.1016/j.ccr.2022.214456
– volume: 138
  start-page: ARTN 105950
  year: 2020
  ident: WOS:000526785900006
  article-title: Copper-catalyzed enantioselective desymmetrization of prochiral tetrasubstituted siladiols: Access toward optically active silicon-stereogenic silylmethanols
  publication-title: CATALYSIS COMMUNICATIONS
  doi: 10.1016/j.catcom.2020.105950
– volume: 330
  start-page: 37
  year: 2017
  ident: WOS:000389556000002
  article-title: Catalytic synthesis of chiral organoheteroatom compounds of silicon, phosphorus, and sulfur via asymmetric transition metal-catalyzed C-H functionalization
  publication-title: COORDINATION CHEMISTRY REVIEWS
  doi: 10.1016/j.ccr.2016.09.011
– volume: 21
  start-page: 9319
  year: 2015
  ident: WOS:000356795000006
  article-title: Construction of a Chiral Silicon Center by Rhodium-Catalyzed Enantioselective Intramolecular Hydrosilylation
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201501568
– volume: 64
  start-page: 761
  year: 2021
  ident: WOS:000623850700001
  article-title: Palladium-catalyzed hydrosilylation of ynones to access silicon-stereogenic silylenones by stereospecific aromatic interaction-assisted Si-H activation
  publication-title: SCIENCE CHINA-CHEMISTRY
  doi: 10.1007/s11426-020-9939-1
– volume: 133
  start-page: 25927
  year: 2021
  ident: 000888093300001.55
  publication-title: Angew. Chem
– volume: 923
  start-page: ARTN 121415
  year: 2020
  ident: WOS:000575167400009
  article-title: Recent progress in the development of catalytic systems for homogenous asymmetric hydrosilylation of ketones
  publication-title: JOURNAL OF ORGANOMETALLIC CHEMISTRY
  doi: 10.1016/j.jorganchem.2020.121415
– volume: 17
  start-page: ARTN e202200104
  year: 2022
  ident: WOS:000782298500001
  article-title: Recent Progress in Transition Metal-Catalyzed Hydrosilane-Mediated C-H Silylation
  publication-title: CHEMISTRY-AN ASIAN JOURNAL
  doi: 10.1002/asia.202200104
– volume: 35
  start-page: 925
  year: 2016
  ident: WOS:000374077200002
  article-title: An Air-Stable Dimeric Ru-S Complex with an NHC as Ancillary Ligand for Cooperative Si-H Bond Activation
  publication-title: ORGANOMETALLICS
  doi: 10.1021/acs.organomet.6b00110
– volume: 60
  start-page: 4245
  year: 2021
  ident: WOS:000602711800001
  article-title: Rhodium-Catalyzed Synthesis of Chiral Monohydrosilanes by Intramolecular C-H Functionalization of Dihydrosilanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202013041
– volume: 2021
  start-page: 6006
  year: 2021
  ident: WOS:000705545500001
  article-title: Construction of Si-Stereogenic Silanes through C-H Activation Approach
  publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ejoc.202101084
– volume: 12
  start-page: ARTN 1249
  year: 2021
  ident: WOS:000623781900023
  article-title: Enantioselective construction of six- and seven-membered triorgano-substituted silicon-stereogenic heterocycles
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-021-21489-6
– volume: 54
  start-page: 2701
  year: 2021
  ident: WOS:000659357600014
  article-title: Iron- and Cobalt-Catalyzed Asymmetric Hydrofunctionalization of Alkenes and Alkynes
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.1c00212
– volume: 117
  start-page: 416
  year: 2005
  ident: 000888093300001.78
  publication-title: Angew. Chem
– volume: 118
  start-page: 12469
  year: 1996
  ident: WOS:A1996VX65400033
  article-title: Axially chiral spirosilanes via catalytic asymmetric intramolecular hydrosilation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
SSID ssj0028806
Score 2.5774195
Snippet Strategies on the construction of enantiomerically pure silicon‐stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates....
Strategies on the construction of enantiomerically pure silicon-stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates....
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202214147
SubjectTerms Asymmetric Catalysis
Asymmetry
Catalysts
Chemistry
Chemistry, Multidisciplinary
Chirality
Chloride ions
Density functional theory
Dynamic Kinetic Resolution
Enantiomers
Hydrosilylation
Ligands
Organosilicon
Organosilicon compounds
Phosphine
Phosphines
Physical Sciences
Rhodium
Science & Technology
Silacycle
Silicon
Silicon-Stereogenic
Substitution reactions
Substrates
Title Rhodium‐Catalyzed Dynamic Kinetic Asymmetric Hydrosilylation to Access Silicon‐Stereogenic Center
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202214147
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000888093300001
https://www.ncbi.nlm.nih.gov/pubmed/36328976
https://www.proquest.com/docview/2753255162
https://www.proquest.com/docview/2732537455
Volume 61
WOS 000888093300001
WOSCitedRecordID wos000888093300001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuDCo7wCBQWpEqe0iR07znG1tFpA9NBSqbcofqxYdTdB3exhe-In8Bv7SzoTJ6HbCoHglijjRGN_jr_x4xuA3VxRJkBlI6NtjgGKSyNs5iRSVmCBRErdrp5_OZKT0_TTmTi7cYrf60MME27UM9r_NXXwUi_3f4mG0glsjO8YS9IkpePktGGLWNHxoB_FEJz-eBHnEWWh71UbY7a_WXxzVLpDNW-NSptEth2JDh9B2fvgN6Cc760avWcub8k7_o-Tj-FhR1PDkcfVE7jnqm24P-6zwz0Fd_yttrPV4urHzzHNAK0vnQ0_-PT24Wf8LhYMR8v1YkEpu0w4WVv0fDZf-713YVOHozZXY3gymyMaK3zRCbaxqxHRaE-zzu7iGZweHnwdT6IuZUNkiNlEZsqnmXHWsFwJHPZYFgvj0txwbmJDbDJz5TSTqRJGpbkTWkkrpdCxdqpMLX8OW1VduZcQJkxmBoMZThI6hmlleBnHZWl57hzy2gCivskK0-mZU1qNeeGVmFlBlVcMlRfA-8H-u1fy-K3lTo-AouvRy4JhXMdoVZEF8G54jJVOCyxl5eoV2aAJz1IhAnjhkTN8ikuOsW0mA9i9CaXhOZExhCvNLxHvDiD5G7Nx5zgJGDQBsBZLf3CvGB19PBjuXv1LodfwgK5pW0-S78BWc7Fyb5CcNfpt2wGvAeGnMKA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOZQL74dpC0aqxMmtvetd28cotEppm0MfEjfL-4gakdiodQ7piZ_Ab-SXdMZru6QIgeCYeDbW7H6b_WZ29xuA7SylSoCpCbQyGQYoNg5wmKMgNQIbRFKqZvf8eCxH5_Gnz6I7TUh3YZw-RJ9wo5nR_F_TBKeE9O6taihdwcYAj7EojuLkPjygst5NVHXSK0gxhKe7YMR5QHXoO93GkO2utl9dl34hm3fWpVUq26xF-49BdV64Iyhfdha12tHXdwQe_8vNJ_CoZar-wEHrKdyz5TNYH3YF4p6DPbmozHQx__Ht-5CSQMtra_yPrsK9f4gvxob-4Go5n1PVLu2PlgZdn86W7vidX1f-oCnX6J9OZwjIEn_oFIfZVghqtKfEs718Aef7e2fDUdBWbQg0kZtAT_gk0dZolqUCVz6WhELbONOc61AToUxsMUlknAqdxpkVKpVGSqFCZdMiNvwlrJVVaV-DHzGZaIxnOKnoaKZSzYswLArDM2uR2noQdGOW61bSnCprzHInxsxy6ry87zwPPvT2X52Yx28tNzsI5O2kvsoZhnaMNhaZB-_7x9jptMdSlLZakA2a8CQWwoNXDjr9q7jkGN4m0oPtn7HUPyc-hnilFBNRbw-ivzEbto6ThkHtAWvA9Af38sH4YK__9OZfGr2D9dHZ8VF-dDA-3ICH9D2d8omyTVirLxd2C7lard42s_EG1iM0uw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAXyqsltECQKnFKm9iO4xxXu11tKaxQS6XeosT2ihW7SdVmD9sTP4HfyC_pTF7tFiEQHJOME439Of7Gj28AdmNFmQCV8XRmYgxQrPCwmQNPmRALBFJm1er5p7EcnYoPZ-HZrVP8tT5EN-FGPaP6X1MHPzeT_RvRUDqBjfEdY4EIRHQfHgjpK8L14LgTkGKIzvp8EecepaFvZRt9tr9afnVY-oVr3hmWVplsNRQNNyBtnah3oHzbW5TZnr66o-_4P14-gccNT3V7NbCewj2bP4NH_TY93HOwx18LM13Mf37_0acpoOWVNe6gzm_vHuF3saDbu1zO55SzS7ujpUHPp7NlvfnOLQu3VyVrdE-mM4Rjji86wUa2BUIa7Wna2V68gNPhwZf-yGtyNniaqI2nJ3wSaWs0i1WI4x6L_FBbEWvOta-JTkY2nURSqFArEdswU9JIGWZ-ZlUqDN-EtbzI7UtwAyYjjdEMJw0dzTKleer7aWp4bC0SWwe8tskS3QiaU16NWVJLMbOEKi_pKs-B9539eS3l8VvLnRYBSdOlLxOGgR2jZUXmwLvuMVY6rbCkuS0WZIMmPBJh6MBWjZzuU1xyDG4j6cDubSh1z4mNIVxpgomItwPB35j1G8dJwaB0gFVY-oN7SW98eNBdvfqXQm_h4efBMPl4OD7ahnW6TVt8gngH1sqLhX2NRK3M3lR98RooGjNz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhodium-Catalyzed+Dynamic+Kinetic+Asymmetric+Hydrosilylation+to+Access+Silicon-Stereogenic+Center&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zeng%2C+Yan&rft.au=Fang%2C+Xiao-Jun&rft.au=Tang%2C+Ren-He&rft.au=Xie%2C+Jing-Yu&rft.date=2022-12-19&rft.eissn=1521-3773&rft.volume=61&rft.issue=51&rft.spage=e202214147&rft_id=info:doi/10.1002%2Fanie.202214147&rft_id=info%3Apmid%2F36328976&rft.externalDocID=36328976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon