Chiral Perovskites: Promising Materials toward Next‐Generation Optoelectronics
Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, off...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 39; pp. e1902237 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, offers an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. The present Review summarizes recent advances in such an emerging field regarding the design and construction of chiral perovskite materials, along with their optoelectronic performances. In addition, an outlook of future challenges as well as the potential significance of the chiral perovskite family on the optical communication is proposed.
The introduction of chirality into the perovskite scaffolds, leading to the generation of chiral perovskite materials, is an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. Here, the recent advancements in chiral perovskites including their design and construction along with the optoelectronic properties are reviewed, and the future research directions to overcome current challenges are also proposed. |
---|---|
AbstractList | Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, offers an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. The present Review summarizes recent advances in such an emerging field regarding the design and construction of chiral perovskite materials, along with their optoelectronic performances. In addition, an outlook of future challenges as well as the potential significance of the chiral perovskite family on the optical communication is proposed.Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, offers an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. The present Review summarizes recent advances in such an emerging field regarding the design and construction of chiral perovskite materials, along with their optoelectronic performances. In addition, an outlook of future challenges as well as the potential significance of the chiral perovskite family on the optical communication is proposed. Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, offers an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. The present Review summarizes recent advances in such an emerging field regarding the design and construction of chiral perovskite materials, along with their optoelectronic performances. In addition, an outlook of future challenges as well as the potential significance of the chiral perovskite family on the optical communication is proposed. Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, offers an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. The present Review summarizes recent advances in such an emerging field regarding the design and construction of chiral perovskite materials, along with their optoelectronic performances. In addition, an outlook of future challenges as well as the potential significance of the chiral perovskite family on the optical communication is proposed. The introduction of chirality into the perovskite scaffolds, leading to the generation of chiral perovskite materials, is an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. Here, the recent advancements in chiral perovskites including their design and construction along with the optoelectronic properties are reviewed, and the future research directions to overcome current challenges are also proposed. |
Author | Zhang, Yupeng Zhang, Han Dong, Yuze Li, Xinyue Feng, Yaqing Xu, Jialiang |
Author_xml | – sequence: 1 givenname: Yuze surname: Dong fullname: Dong, Yuze organization: Tianjin University – sequence: 2 givenname: Yupeng surname: Zhang fullname: Zhang, Yupeng organization: Shenzhen University – sequence: 3 givenname: Xinyue surname: Li fullname: Li, Xinyue organization: Nankai University – sequence: 4 givenname: Yaqing surname: Feng fullname: Feng, Yaqing organization: Tianjin University – sequence: 5 givenname: Han surname: Zhang fullname: Zhang, Han email: hzhang@szu.edu.cn organization: Shenzhen University – sequence: 6 givenname: Jialiang orcidid: 0000-0003-2441-4809 surname: Xu fullname: Xu, Jialiang email: jialiang.xu@tju.edu.cn, jialiang.xu@nankai.edu.cn organization: Nankai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31389174$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctOGzEUhq0KRCCw7bIaqZtuEnybGbu7Kiq0UiCRgLXleM6AqTNObYfLjkfoM_IkmIYEKVLV1TmL7_t1dP4DtNP5DhD6SPCQYEyP49y5IcVEYkpZ_QHtk4qwQSWo3NnsBPfQQYy3GDNCeb2HeowwIUnN99F0dGODdsUUgr-Lv2yC-LWYBj-30XbXxZlOEKx2sUj-XoemOIeH9Pz05xQ6CDpZ3xWTRfLgwKTgO2viIdptMw9Hb7OPrk6-X45-DMaT05-jb-OB4UzWA1KXklclMFm2JbRSNJrjptWVETPZYEw0lw1tSCUEaWEmGK45E2BEA62oDbA--rLKXQT_ewkxqXyyAed0B34ZFaWVzOElpxn9vIXe-mXo8nWZklXJK05Ipj69UcvZHBq1CHauw6Na_yoDfAWY4GMM0Cpj098fpKCtUwSr10rUayVqU0nWhlvaOvmfglwJ99bB439odXE2Hr-7L8Qon74 |
CitedBy_id | crossref_primary_10_1002_adma_202413967 crossref_primary_10_1021_acsami_0c19507 crossref_primary_10_1002_adom_202102678 crossref_primary_10_1002_adma_202301854 crossref_primary_10_1021_acs_jctc_2c01265 crossref_primary_10_1021_acs_inorgchem_2c01276 crossref_primary_10_1002_anie_202407596 crossref_primary_10_1007_s42247_024_00834_7 crossref_primary_10_1039_D3TA06721A crossref_primary_10_1515_nanoph_2022_0251 crossref_primary_10_1039_D1NR04274B crossref_primary_10_1039_D4DT01645A crossref_primary_10_1002_ange_202107239 crossref_primary_10_1039_D4NR03329A crossref_primary_10_1002_adom_202101232 crossref_primary_10_1063_5_0180188 crossref_primary_10_1002_adma_202309335 crossref_primary_10_1002_smll_202301034 crossref_primary_10_1039_D2RA03867F crossref_primary_10_1021_acs_nanolett_2c04224 crossref_primary_10_1021_acsnano_0c03909 crossref_primary_10_1016_j_matt_2022_01_001 crossref_primary_10_1007_s11467_023_1256_8 crossref_primary_10_1002_anie_202214161 crossref_primary_10_1021_acs_chemmater_2c03320 crossref_primary_10_1002_ejic_202400388 crossref_primary_10_1021_acs_nanolett_4c02125 crossref_primary_10_1002_adma_202207265 crossref_primary_10_1002_adma_202205088 crossref_primary_10_1039_D0NJ01235A crossref_primary_10_1021_acs_jpcb_3c07153 crossref_primary_10_1021_acsnano_1c11101 crossref_primary_10_1021_acs_chemmater_1c03622 crossref_primary_10_1039_D2TC02040H crossref_primary_10_1007_s42452_023_05562_x crossref_primary_10_1021_acs_inorgchem_5c00577 crossref_primary_10_1039_D0NR04239K crossref_primary_10_1002_adom_202202700 crossref_primary_10_1039_D4NA00027G crossref_primary_10_1021_acs_nanolett_1c04669 crossref_primary_10_1021_jacs_4c13604 crossref_primary_10_1088_2515_7655_ad6e17 crossref_primary_10_1038_s41570_022_00399_1 crossref_primary_10_1002_adfm_202105855 crossref_primary_10_1002_adma_202413669 crossref_primary_10_1002_anie_202013947 crossref_primary_10_1360_SSPMA_2022_0512 crossref_primary_10_1002_adom_202203078 crossref_primary_10_3390_nano14080683 crossref_primary_10_1021_acs_chemmater_4c01199 crossref_primary_10_1021_jacs_2c05063 crossref_primary_10_1016_j_cclet_2020_03_078 crossref_primary_10_1002_ange_202214161 crossref_primary_10_1021_acsenergylett_2c02363 crossref_primary_10_1002_adma_201905585 crossref_primary_10_1021_acs_jpclett_3c02705 crossref_primary_10_1016_j_ccr_2021_213781 crossref_primary_10_1039_D3TC01534C crossref_primary_10_1021_acsami_2c11390 crossref_primary_10_1080_03772063_2021_1972845 crossref_primary_10_1038_s41557_023_01290_2 crossref_primary_10_1039_D4CE00504J crossref_primary_10_1002_ange_202103336 crossref_primary_10_1021_jacs_3c09395 crossref_primary_10_1039_D1NR06407J crossref_primary_10_1360_SSC_2024_0074 crossref_primary_10_1002_chem_202404034 crossref_primary_10_1515_nanoph_2020_0038 crossref_primary_10_1039_D2TC04825F crossref_primary_10_1063_5_0200692 crossref_primary_10_1039_D0NR05232A crossref_primary_10_1002_adfm_202214660 crossref_primary_10_1002_anie_202102195 crossref_primary_10_3390_photonics12010036 crossref_primary_10_1002_chem_202002145 crossref_primary_10_1002_ange_202318557 crossref_primary_10_1002_ange_202102195 crossref_primary_10_1039_C9DT04270A crossref_primary_10_1002_adom_202303039 crossref_primary_10_3390_molecules26154680 crossref_primary_10_1002_anie_202107239 crossref_primary_10_1021_acs_jpcc_4c00150 crossref_primary_10_1016_j_molliq_2024_125290 crossref_primary_10_1039_D4TC01531B crossref_primary_10_1002_smll_202006416 crossref_primary_10_1002_ange_202013947 crossref_primary_10_1038_s41377_022_00764_1 crossref_primary_10_1002_adma_202108431 crossref_primary_10_1002_adom_202200064 crossref_primary_10_1039_D2TC05349G crossref_primary_10_1021_acs_nanolett_3c04085 crossref_primary_10_1002_adom_202101545 crossref_primary_10_1007_s11426_024_2473_6 crossref_primary_10_1021_acs_chemmater_0c01605 crossref_primary_10_1039_D2CC05469H crossref_primary_10_1002_adma_202204119 crossref_primary_10_1021_jacs_1c06841 crossref_primary_10_1002_advs_202412506 crossref_primary_10_1021_acsami_2c20716 crossref_primary_10_1002_adpr_202100056 crossref_primary_10_1002_anie_202318557 crossref_primary_10_1038_s41578_020_0181_5 crossref_primary_10_1002_adfm_202413041 crossref_primary_10_1039_D2CC01811J crossref_primary_10_1021_acs_jpclett_1c00315 crossref_primary_10_1021_acs_nanolett_2c04823 crossref_primary_10_1063_1_5139044 crossref_primary_10_1039_D0TC02118K crossref_primary_10_1039_D4CE00542B crossref_primary_10_1039_D1QM00329A crossref_primary_10_1002_adma_202008785 crossref_primary_10_1007_s11237_025_09818_y crossref_primary_10_1007_s11426_021_1146_6 crossref_primary_10_1039_D3MA00953J crossref_primary_10_1364_PRJ_520965 crossref_primary_10_1002_adom_202301040 crossref_primary_10_1039_D1QM00834J crossref_primary_10_1038_s41557_024_01694_8 crossref_primary_10_1021_acs_chemmater_2c00094 crossref_primary_10_1039_D3QI01000G crossref_primary_10_1021_jacs_4c05992 crossref_primary_10_1039_D2MH01429G crossref_primary_10_1016_j_matt_2020_12_018 crossref_primary_10_1039_D2DT00557C crossref_primary_10_1002_ange_202407596 crossref_primary_10_1063_5_0025400 crossref_primary_10_1002_adom_202002236 crossref_primary_10_1002_adom_202302766 crossref_primary_10_1002_ejic_202200275 crossref_primary_10_1021_acsami_3c15855 crossref_primary_10_1002_anie_202103336 crossref_primary_10_1002_adom_202302883 crossref_primary_10_1002_aelm_202400525 crossref_primary_10_1021_acs_jpclett_4c01262 crossref_primary_10_1021_jacs_3c05080 crossref_primary_10_1002_lpor_202000514 crossref_primary_10_1002_adfm_202315676 crossref_primary_10_1039_D1QM00223F crossref_primary_10_1039_D4MH01371A crossref_primary_10_1002_qute_202300178 crossref_primary_10_1021_acs_cgd_2c00634 crossref_primary_10_1002_adom_202401427 crossref_primary_10_1021_acsnano_0c08903 crossref_primary_10_1002_smll_202103855 crossref_primary_10_1021_acs_jpclett_3c03038 crossref_primary_10_1002_ange_202400644 crossref_primary_10_1021_acs_jpclett_3c00566 crossref_primary_10_1002_smll_202102884 crossref_primary_10_1038_s41467_023_36782_9 crossref_primary_10_1364_PRJ_400259 crossref_primary_10_1021_acs_jpcc_3c04296 crossref_primary_10_1002_adom_202000110 crossref_primary_10_1002_aenm_202100324 crossref_primary_10_1016_j_matt_2021_11_011 crossref_primary_10_1002_smll_202306989 crossref_primary_10_1002_advs_202206191 crossref_primary_10_1021_acsnano_0c05980 crossref_primary_10_1002_adom_202102227 crossref_primary_10_1021_acsnano_0c04017 crossref_primary_10_1007_s11426_024_2052_2 crossref_primary_10_1002_anie_202400644 crossref_primary_10_1016_j_mattod_2022_06_020 crossref_primary_10_1002_inf2_12322 crossref_primary_10_1039_D2TC02090D crossref_primary_10_1002_aenm_202200792 crossref_primary_10_1021_acs_chemmater_2c01729 crossref_primary_10_1002_adma_202005760 crossref_primary_10_1002_adfm_202209324 crossref_primary_10_1002_adom_202202726 |
Cites_doi | 10.1021/jacs.6b11683 10.1002/advs.201600305 10.1126/science.aaf4603 10.1039/b801638k 10.1021/acs.chemrev.6b00755 10.1002/adma.201808088 10.1103/RevModPhys.76.323 10.1126/sciadv.1500613 10.1021/ar400243m 10.1126/science.282.5390.913 10.1038/nature14133 10.1002/lpor.201000027 10.1103/PhysRevB.42.11099 10.1038/nphoton.2016.269 10.1088/0953-8984/20/43/434201 10.1039/C6CS00369A 10.1002/adma.201705011 10.1038/s41566-018-0220-6 10.1039/C6DT04796C 10.1021/acs.chemrev.6b00136 10.1039/C7MH00197E 10.1021/acsami.7b01709 10.1021/jacs.7b01312 10.1038/s41467-017-00788-x 10.1021/acs.nanolett.7b02827 10.1126/science.aas9330 10.1103/PhysRevLett.90.107404 10.1021/jz300793y 10.1002/adma.201205178 10.1038/nnano.2016.110 10.1002/adma.201800097 10.1021/jz502666j 10.1039/C8TC01150H 10.1126/science.aai8535 10.1038/ncomms14051 10.1038/nphys4145 10.1021/cr00071a001 10.1016/j.physrep.2019.01.005 10.1021/jacs.7b06013 10.1063/1.5001151 10.1021/acs.jpcc.9b05020 10.1021/acsnano.6b03863 10.1021/acs.nanolett.8b01616 10.1002/adfm.201800051 10.1016/0009-2614(94)87122-1 10.1038/ncomms8338 10.1039/b704636g 10.1107/S1600536803010985 10.1002/aenm.201701928 10.1039/df9500900014 10.1002/adfm.201707175 10.1002/adma.201705792 10.1021/acsnano.9b00302 10.1126/science.aaa9272 10.1021/jacs.7b00492 10.1126/science.aan2301 10.1039/C5TC04239A 10.1021/jacs.9b00886 10.1038/nphoton.2014.134 10.1039/p29860001775 10.1364/OE.22.0A1725 10.1039/C0CS00002G 10.1021/acsnano.7b07390 10.1002/anie.201703786 10.1002/adma.201807628 10.1021/jacs.7b12524 10.1126/science.aav3057 10.1021/ja411045r 10.1126/science.286.5441.945 10.1038/nature05802 10.1038/nmat3675 10.1039/B606987H 10.1126/science.1243167 10.1002/adma.201601369 10.1093/acprof:oso/9780198507789.001.0001 10.1103/PhysRevLett.58.2333 10.1126/science.aan2433 10.1126/science.aad5845 10.1002/adfm.201603719 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201902237 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 31389174 10_1002_smll_201902237 SMLL201902237 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21773168; 21761132007 – fundername: National Natural Science Foundation of China grantid: 21773168 – fundername: National Natural Science Foundation of China grantid: 21761132007 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4397-1759465e395f5ef98da40dfa6c8b9d001a49d2d16881feb8307438ec8def87ce3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 06:54:45 EDT 2025 Fri Jul 25 12:06:35 EDT 2025 Wed Feb 19 02:30:36 EST 2025 Thu Apr 24 23:05:11 EDT 2025 Tue Jul 01 02:10:45 EDT 2025 Wed Jan 22 16:38:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Keywords | spintronics circular dichroism circularly polarized luminescence second harmonic generation chiral perovskites ferroelectricity |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4397-1759465e395f5ef98da40dfa6c8b9d001a49d2d16881feb8307438ec8def87ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2441-4809 |
PMID | 31389174 |
PQID | 2296546411 |
PQPubID | 1046358 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2269395542 proquest_journals_2296546411 pubmed_primary_31389174 crossref_citationtrail_10_1002_smll_201902237 crossref_primary_10_1002_smll_201902237 wiley_primary_10_1002_smll_201902237_SMLL201902237 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 361 2017; 8 2013; 25 2017; 4 2019; 13 2017; 46 1999; 286 2003; 59 2015; 348 2017; 111 2017; 356 2017; 9 2014; 136 2017; 357 2014; 22 2019; 123 2017; 117 2019; 363 2004; 76 2018; 6 1990; 42 2018; 8 1986; 2 2003; 90 1950; 9 1994; 225 2001 2000 1986; 86 2013; 12 2019; 795 2018; 30 2016; 116 2008; 20 2014; 8 2016; 351 1998; 282 2016; 45 1987; 58 2015; 1 2018; 28 2015; 6 2018; 140 2007; 447 2019; 31 2017; 27 2011; 40 2016; 10 2006; 8 2013; 342 2014; 47 2007 2019; 141 2011; 5 2017; 139 2016; 11 2016; 4 2018; 18 2012; 3 2017; 17 2017; 11 2017; 13 2017; 56 2019 2015; 517 2016; 138 2018; 12 2016; 28 2009; 38 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Berova N. (e_1_2_7_37_1) 2000 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Xu J. (e_1_2_7_52_1) 2019 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 693 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 117 start-page: 8041 year: 2017 publication-title: Chem. Rev. – volume: 13 start-page: 3659 year: 2019 publication-title: ACS Nano – volume: 447 start-page: 190 year: 2007 publication-title: Nature – volume: 356 start-page: 1376 year: 2017 publication-title: Science – volume: 3 start-page: 2178 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 22 start-page: A1725 year: 2014 publication-title: Opt. Express – volume: 361 start-page: 151 year: 2018 publication-title: Science – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – year: 2001 – volume: 42 year: 1990 publication-title: Phys. Rev. B – volume: 5 start-page: 496 year: 2011 publication-title: Laser Photonics Rev. – volume: 351 start-page: 1401 year: 2016 publication-title: Science – volume: 9 start-page: 14 year: 1950 publication-title: Discuss. Faraday Soc. – volume: 38 start-page: 806 year: 2009 publication-title: Chem. Soc. Rev. – volume: 40 start-page: 1259 year: 2011 publication-title: Chem. Soc. Rev. – volume: 59 start-page: m381 year: 2003 publication-title: Acta Crystallogr., Sect. E: Struct. Rep. Online – volume: 46 start-page: 3500 year: 2017 publication-title: Dalton Trans. – volume: 11 start-page: 108 year: 2017 publication-title: Nat. Photonics – start-page: 3900 year: 2007 publication-title: Chem. Commun. – volume: 361 start-page: 494 year: 2018 publication-title: Science – volume: 8 start-page: 506 year: 2014 publication-title: Nat. Photonics – volume: 2 start-page: 1775 year: 1986 publication-title: J. Chem. Soc., Perkin Trans. 2 – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 528 year: 2018 publication-title: Nat. Photonics – volume: 111 year: 2017 publication-title: Appl. Phys. Lett. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 139 start-page: 3954 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 342 start-page: 344 year: 2013 publication-title: Science – volume: 20 year: 2008 publication-title: J. Phys.: Condens. Matter – volume: 45 start-page: 6478 year: 2016 publication-title: Chem. Soc. Rev. – volume: 141 start-page: 4474 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 90 year: 2003 publication-title: Phys. Rev. Lett. – volume: 17 start-page: 6177 year: 2017 publication-title: Nano Lett. – volume: 8 start-page: 686 year: 2006 publication-title: CrystEngComm – volume: 286 start-page: 945 year: 1999 publication-title: Science – volume: 136 start-page: 1718 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 47 start-page: 1088 year: 2014 publication-title: Acc. Chem. Res. – volume: 140 start-page: 3975 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 282 start-page: 913 year: 1998 publication-title: Science – volume: 351 start-page: 151 year: 2016 publication-title: Science – volume: 76 start-page: 323 year: 2004 publication-title: Rev. Mod. Phys. – volume: 58 start-page: 2333 year: 1987 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 6033 year: 2018 publication-title: J. Mater. Chem. C – volume: 11 start-page: 872 year: 2016 publication-title: Nat. Nanotechnol. – volume: 795 start-page: 1 year: 2019 publication-title: Phys. Rep. – volume: 4 start-page: 851 year: 2017 publication-title: Mater. Horiz. – volume: 12 start-page: 611 year: 2013 publication-title: Nat. Mater. – year: 2000 – volume: 6 start-page: 7338 year: 2015 publication-title: Nat. Commun. – volume: 363 start-page: 1206 year: 2019 publication-title: Science – volume: 18 start-page: 5411 year: 2018 publication-title: Nano Lett. – volume: 225 start-page: 525 year: 1994 publication-title: Chem. Phys. Lett. – volume: 25 start-page: 2517 year: 2013 publication-title: Adv. Mater. – volume: 13 start-page: 894 year: 2017 publication-title: Nat. Phys. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 357 start-page: 306 year: 2017 publication-title: Science – volume: 4 start-page: 4016 year: 2016 publication-title: J. Mater. Chem. C – volume: 86 start-page: 1 year: 1986 publication-title: Chem. Rev. – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 742 year: 2017 publication-title: Nat. Commun. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 517 start-page: 476 year: 2015 publication-title: Nature – volume: 10 start-page: 7943 year: 2016 publication-title: ACS Nano – volume: 28 start-page: 7515 year: 2016 publication-title: Adv. Mater. – volume: 139 start-page: 5210 year: 2017 publication-title: J. Am. Chem. Soc. – year: 2019 publication-title: Adv. Mater. – ident: e_1_2_7_9_1 doi: 10.1021/jacs.6b11683 – ident: e_1_2_7_81_1 doi: 10.1002/advs.201600305 – ident: e_1_2_7_19_1 doi: 10.1126/science.aaf4603 – ident: e_1_2_7_33_1 doi: 10.1039/b801638k – ident: e_1_2_7_16_1 doi: 10.1021/acs.chemrev.6b00755 – ident: e_1_2_7_25_1 doi: 10.1002/adma.201808088 – ident: e_1_2_7_68_1 doi: 10.1103/RevModPhys.76.323 – ident: e_1_2_7_80_1 doi: 10.1126/sciadv.1500613 – ident: e_1_2_7_15_1 doi: 10.1021/ar400243m – ident: e_1_2_7_53_1 doi: 10.1126/science.282.5390.913 – ident: e_1_2_7_3_1 doi: 10.1038/nature14133 – ident: e_1_2_7_49_1 doi: 10.1002/lpor.201000027 – ident: e_1_2_7_1_1 doi: 10.1103/PhysRevB.42.11099 – ident: e_1_2_7_8_1 doi: 10.1038/nphoton.2016.269 – ident: e_1_2_7_62_1 doi: 10.1088/0953-8984/20/43/434201 – ident: e_1_2_7_75_1 doi: 10.1039/C6CS00369A – ident: e_1_2_7_29_1 doi: 10.1002/adma.201705011 – ident: e_1_2_7_27_1 doi: 10.1038/s41566-018-0220-6 – ident: e_1_2_7_77_1 doi: 10.1039/C6DT04796C – ident: e_1_2_7_14_1 doi: 10.1021/acs.chemrev.6b00136 – ident: e_1_2_7_28_1 doi: 10.1039/C7MH00197E – ident: e_1_2_7_10_1 doi: 10.1021/acsami.7b01709 – ident: e_1_2_7_45_1 doi: 10.1021/jacs.7b01312 – ident: e_1_2_7_50_1 doi: 10.1038/s41467-017-00788-x – ident: e_1_2_7_70_1 doi: 10.1021/acs.nanolett.7b02827 – ident: e_1_2_7_63_1 doi: 10.1126/science.aas9330 – ident: e_1_2_7_54_1 doi: 10.1103/PhysRevLett.90.107404 – ident: e_1_2_7_69_1 doi: 10.1021/jz300793y – ident: e_1_2_7_17_1 doi: 10.1002/adma.201205178 – ident: e_1_2_7_74_1 doi: 10.1038/nnano.2016.110 – ident: e_1_2_7_23_1 doi: 10.1002/adma.201800097 – ident: e_1_2_7_66_1 doi: 10.1021/jz502666j – ident: e_1_2_7_48_1 doi: 10.1039/C8TC01150H – ident: e_1_2_7_57_1 doi: 10.1126/science.aai8535 – ident: e_1_2_7_30_1 doi: 10.1038/ncomms14051 – ident: e_1_2_7_71_1 doi: 10.1038/nphys4145 – ident: e_1_2_7_39_1 doi: 10.1021/cr00071a001 – ident: e_1_2_7_12_1 doi: 10.1016/j.physrep.2019.01.005 – ident: e_1_2_7_67_1 doi: 10.1021/jacs.7b06013 – ident: e_1_2_7_24_1 doi: 10.1063/1.5001151 – ident: e_1_2_7_76_1 doi: 10.1021/acs.jpcc.9b05020 – ident: e_1_2_7_36_1 doi: 10.1021/acsnano.6b03863 – ident: e_1_2_7_32_1 doi: 10.1021/acs.nanolett.8b01616 – ident: e_1_2_7_40_1 doi: 10.1002/adfm.201800051 – ident: e_1_2_7_55_1 doi: 10.1016/0009-2614(94)87122-1 – ident: e_1_2_7_59_1 doi: 10.1038/ncomms8338 – ident: e_1_2_7_38_1 doi: 10.1039/b704636g – ident: e_1_2_7_21_1 doi: 10.1107/S1600536803010985 – ident: e_1_2_7_6_1 doi: 10.1002/aenm.201701928 – ident: e_1_2_7_44_1 doi: 10.1039/df9500900014 – volume-title: Circular Dichroism, Principles and Applications year: 2000 ident: e_1_2_7_37_1 – ident: e_1_2_7_51_1 doi: 10.1002/adfm.201707175 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201705792 – ident: e_1_2_7_31_1 doi: 10.1021/acsnano.9b00302 – ident: e_1_2_7_7_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_7_58_1 doi: 10.1021/jacs.7b00492 – ident: e_1_2_7_4_1 doi: 10.1126/science.aan2301 – ident: e_1_2_7_13_1 doi: 10.1039/C5TC04239A – year: 2019 ident: e_1_2_7_52_1 publication-title: Adv. Mater. – ident: e_1_2_7_26_1 doi: 10.1021/jacs.9b00886 – ident: e_1_2_7_18_1 doi: 10.1038/nphoton.2014.134 – ident: e_1_2_7_34_1 doi: 10.1039/p29860001775 – ident: e_1_2_7_41_1 doi: 10.1364/OE.22.0A1725 – ident: e_1_2_7_35_1 doi: 10.1039/C0CS00002G – ident: e_1_2_7_42_1 doi: 10.1021/acsnano.7b07390 – ident: e_1_2_7_11_1 doi: 10.1002/anie.201703786 – ident: e_1_2_7_79_1 doi: 10.1002/adma.201807628 – ident: e_1_2_7_61_1 doi: 10.1021/jacs.7b12524 – ident: e_1_2_7_60_1 doi: 10.1126/science.aav3057 – ident: e_1_2_7_46_1 doi: 10.1021/ja411045r – ident: e_1_2_7_2_1 doi: 10.1126/science.286.5441.945 – ident: e_1_2_7_72_1 doi: 10.1038/nature05802 – ident: e_1_2_7_73_1 doi: 10.1038/nmat3675 – ident: e_1_2_7_22_1 doi: 10.1039/B606987H – ident: e_1_2_7_78_1 doi: 10.1126/science.1243167 – ident: e_1_2_7_47_1 doi: 10.1002/adma.201601369 – ident: e_1_2_7_56_1 doi: 10.1093/acprof:oso/9780198507789.001.0001 – ident: e_1_2_7_64_1 doi: 10.1103/PhysRevLett.58.2333 – ident: e_1_2_7_65_1 doi: 10.1126/science.aan2433 – ident: e_1_2_7_5_1 doi: 10.1126/science.aad5845 – ident: e_1_2_7_43_1 doi: 10.1002/adfm.201603719 |
SSID | ssj0031247 |
Score | 2.6429462 |
SecondaryResourceType | review_article |
Snippet | Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1902237 |
SubjectTerms | chiral perovskites Chirality circular dichroism circularly polarized luminescence ferroelectricity Nanotechnology Optical communication Optoelectronic devices Organic chemistry Perovskites second harmonic generation spintronics |
Title | Chiral Perovskites: Promising Materials toward Next‐Generation Optoelectronics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201902237 https://www.ncbi.nlm.nih.gov/pubmed/31389174 https://www.proquest.com/docview/2296546411 https://www.proquest.com/docview/2269395542 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8hnuBhwMafjDJlEhJPgcZxEoc3VFGhqYUKqMRb5NiOmNY1VZPywNM-wj4jn4S7uA10aJo03hLlnNi-s-8X-_w7gEMT6zgRPPAyzo3HpYk8ibgEf1XayteE4BWtd_Qvo4sh_3YX3r06xW_5IZoFNxoZ9XxNA1xm5ckLaWj5c0RbB-jQ0MPRcXIK2CJUdN3wRwXovOrsKuizPCLeWrA2ttnJcvFlr_QGai4j19r1dDdALiptI05-HM-q7Fg9_sHn-J5WbcKHOS51z6whbcGKGX-E9VdshZ9g0Ln_PkWZgZkWDyWt-pan7mBaoKXgc7cvK2vNblWH4rqXOO8__fptia1J_-7VpCpe8u6U2zDsnt92Lrx5QgZPEW7xEGokPApNkIR5aPJEaMnbOpeRElmi0eFJnmim_UgIPzeZCAifCKOENrmIlQl2YHVcjM0euJGvifmdM24oATvD9yLYiKUf5r5RYeiAt1BIquZs5ZQ0Y5RanmWWUk-lTU85cNTITyxPx18lWwv9pvPxWqaMJXSqi_u-A1-bx9h_tH0ix6aYkUyUYMtDzhzYtXbRfCqo93tj7gCrtfuPOqQ3_V6vufv8P4X2YY2ubbhbC1ar6cwcID6qsi_1GHgGpYYHDw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_P8ECgQJxCntxnESB4kDaqm2dHdZQSv1FhJ7IhBlU22yIDjxCLwKr8Ij8CTMxEnKghASUg8cEzuOf2b8je3xNwD3MTZxomTg5VKiJzOMvIzsElqqDLRv2ILXvN8xnkTDffnsIDxYga_dXRjLD9FvuLFmNPM1KzhvSG8cs4ZW7w757IAQjSAubv0qd_HjB1q1VY93tmiIHwix_XRvc-i1gQU8zfjrEWQmMgoxSMIixCJRJpMDU2SRVnliaOLOZGKE8SOl_AJzFTDOKtTKYKFijQGVewpOcxhxpuvfetEzVgUEl008F0JJj6m-Op7IgdhYru8yDv5m3C7byg3YbV-Ab103WR-Xt-uLOl_Xn35hkPyv-vEinG9Nb_eJ1ZVLsIKzy3DuJ0LGKzDdfP1mTnmmOC_fV7yxXT1yp_OSlIHS3XFWW4V168bb2J0QtH3__MVyd7OIu8-P6vI4tFB1FfZPpEnXYHVWzvAGuJFvmNxeCokcY15QuWRPxZkfFj7qMHTA6yQg1S0hO8cFOUwtlbRIeWTSfmQceNjnP7JUJH_MudYJVNpOSVUqRMIX16TvO3CvT6b-4xOibIblgvNECbU8lMKB61YQ-18FzZF2LB0QjTj9pQ7py_Fo1D_d_JeP7sKZ4d54lI52Jru34Cy_t959a7Bazxd4m8zBOr_TKKALr05aUn8Aw_tlYw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48P8TKBAkEKe0G8dJbCQOVZdVS3eXFVCptzSxHYEom9Um2wpOPAKPwqvwCn0SZuIkZUEICakHjokdxz8z_sb2-BuAxybWsRQ88DLOjcdTE3kp2iW4VOkpX5MFr2i_YzSOtvf4y_1wfwW-tXdhLD9Et-FGmlHP16TgM51vnJKGlh8P6egAAQ0RLm7cKnfNp2NctJXPd_o4wk8YG7x4u7XtNXEFPEXw6yFiSh6FJpBhHppcCp3yns7TSIlMapy3Uy41034khJ-bTAQEs8IooU0uYmUCLPccnOdRT1KwiP7rjrAqQLSsw7kgSHrE9NXSRPbYxnJ9l2HwN9t22VSusW5wBb63vWRdXD6sL6psXX3-hUDyf-rGq3C5MbzdTasp12DFTK_DpZ_oGG_AZOvd-znmmZh5cVTStnb5zJ3MC1QFTHdHaWXV1a1qX2N3jMB28uWrZe4mAXdfzariNLBQeRP2zqRJt2B1WkzNHXAjXxO1PWfcUIR5huWiNRWnfpj7RoWhA14rAIlq6NgpKshhYomkWUIjk3Qj48DTLv_MEpH8MedaK09JMyGVCWOSrq1x33fgUZeM_UfnQ-nUFAvKE0lseciZA7etHHa_CuoD7Zg7wGpp-ksdkjej4bB7uvsvHz2EC5P-IBnujHfvwUV6bV371mC1mi_MfbQFq-xBrX4uHJy1oP4AEKhkEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Perovskites%3A+Promising+Materials+toward+Next-Generation+Optoelectronics&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Dong%2C+Yuze&rft.au=Zhang%2C+Yupeng&rft.au=Li%2C+Xinyue&rft.au=Feng%2C+Yaqing&rft.date=2019-09-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=15&rft.issue=39&rft.spage=e1902237&rft_id=info:doi/10.1002%2Fsmll.201902237&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |