Chiral Perovskites: Promising Materials toward Next‐Generation Optoelectronics

Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, off...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 39; pp. e1902237 - n/a
Main Authors Dong, Yuze, Zhang, Yupeng, Li, Xinyue, Feng, Yaqing, Zhang, Han, Xu, Jialiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, offers an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. The present Review summarizes recent advances in such an emerging field regarding the design and construction of chiral perovskite materials, along with their optoelectronic performances. In addition, an outlook of future challenges as well as the potential significance of the chiral perovskite family on the optical communication is proposed. The introduction of chirality into the perovskite scaffolds, leading to the generation of chiral perovskite materials, is an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. Here, the recent advancements in chiral perovskites including their design and construction along with the optoelectronic properties are reviewed, and the future research directions to overcome current challenges are also proposed.
AbstractList Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, offers an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. The present Review summarizes recent advances in such an emerging field regarding the design and construction of chiral perovskite materials, along with their optoelectronic performances. In addition, an outlook of future challenges as well as the potential significance of the chiral perovskite family on the optical communication is proposed.Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, offers an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. The present Review summarizes recent advances in such an emerging field regarding the design and construction of chiral perovskite materials, along with their optoelectronic performances. In addition, an outlook of future challenges as well as the potential significance of the chiral perovskite family on the optical communication is proposed.
Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, offers an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. The present Review summarizes recent advances in such an emerging field regarding the design and construction of chiral perovskite materials, along with their optoelectronic performances. In addition, an outlook of future challenges as well as the potential significance of the chiral perovskite family on the optical communication is proposed.
Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant optoelectronic properties. The introduction of chirality into perovskite scaffolds, generating a novel concept of chiral perovskite materials, offers an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. The present Review summarizes recent advances in such an emerging field regarding the design and construction of chiral perovskite materials, along with their optoelectronic performances. In addition, an outlook of future challenges as well as the potential significance of the chiral perovskite family on the optical communication is proposed. The introduction of chirality into the perovskite scaffolds, leading to the generation of chiral perovskite materials, is an immense step forward toward the development of smart optoelectronic and spintronic materials and devices. Here, the recent advancements in chiral perovskites including their design and construction along with the optoelectronic properties are reviewed, and the future research directions to overcome current challenges are also proposed.
Author Zhang, Yupeng
Zhang, Han
Dong, Yuze
Li, Xinyue
Feng, Yaqing
Xu, Jialiang
Author_xml – sequence: 1
  givenname: Yuze
  surname: Dong
  fullname: Dong, Yuze
  organization: Tianjin University
– sequence: 2
  givenname: Yupeng
  surname: Zhang
  fullname: Zhang, Yupeng
  organization: Shenzhen University
– sequence: 3
  givenname: Xinyue
  surname: Li
  fullname: Li, Xinyue
  organization: Nankai University
– sequence: 4
  givenname: Yaqing
  surname: Feng
  fullname: Feng, Yaqing
  organization: Tianjin University
– sequence: 5
  givenname: Han
  surname: Zhang
  fullname: Zhang, Han
  email: hzhang@szu.edu.cn
  organization: Shenzhen University
– sequence: 6
  givenname: Jialiang
  orcidid: 0000-0003-2441-4809
  surname: Xu
  fullname: Xu, Jialiang
  email: jialiang.xu@tju.edu.cn, jialiang.xu@nankai.edu.cn
  organization: Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31389174$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOGzEUhq0KRCCw7bIaqZtuEnybGbu7Kiq0UiCRgLXleM6AqTNObYfLjkfoM_IkmIYEKVLV1TmL7_t1dP4DtNP5DhD6SPCQYEyP49y5IcVEYkpZ_QHtk4qwQSWo3NnsBPfQQYy3GDNCeb2HeowwIUnN99F0dGODdsUUgr-Lv2yC-LWYBj-30XbXxZlOEKx2sUj-XoemOIeH9Pz05xQ6CDpZ3xWTRfLgwKTgO2viIdptMw9Hb7OPrk6-X45-DMaT05-jb-OB4UzWA1KXklclMFm2JbRSNJrjptWVETPZYEw0lw1tSCUEaWEmGK45E2BEA62oDbA--rLKXQT_ewkxqXyyAed0B34ZFaWVzOElpxn9vIXe-mXo8nWZklXJK05Ipj69UcvZHBq1CHauw6Na_yoDfAWY4GMM0Cpj098fpKCtUwSr10rUayVqU0nWhlvaOvmfglwJ99bB439odXE2Hr-7L8Qon74
CitedBy_id crossref_primary_10_1002_adma_202413967
crossref_primary_10_1021_acsami_0c19507
crossref_primary_10_1002_adom_202102678
crossref_primary_10_1002_adma_202301854
crossref_primary_10_1021_acs_jctc_2c01265
crossref_primary_10_1021_acs_inorgchem_2c01276
crossref_primary_10_1002_anie_202407596
crossref_primary_10_1007_s42247_024_00834_7
crossref_primary_10_1039_D3TA06721A
crossref_primary_10_1515_nanoph_2022_0251
crossref_primary_10_1039_D1NR04274B
crossref_primary_10_1039_D4DT01645A
crossref_primary_10_1002_ange_202107239
crossref_primary_10_1039_D4NR03329A
crossref_primary_10_1002_adom_202101232
crossref_primary_10_1063_5_0180188
crossref_primary_10_1002_adma_202309335
crossref_primary_10_1002_smll_202301034
crossref_primary_10_1039_D2RA03867F
crossref_primary_10_1021_acs_nanolett_2c04224
crossref_primary_10_1021_acsnano_0c03909
crossref_primary_10_1016_j_matt_2022_01_001
crossref_primary_10_1007_s11467_023_1256_8
crossref_primary_10_1002_anie_202214161
crossref_primary_10_1021_acs_chemmater_2c03320
crossref_primary_10_1002_ejic_202400388
crossref_primary_10_1021_acs_nanolett_4c02125
crossref_primary_10_1002_adma_202207265
crossref_primary_10_1002_adma_202205088
crossref_primary_10_1039_D0NJ01235A
crossref_primary_10_1021_acs_jpcb_3c07153
crossref_primary_10_1021_acsnano_1c11101
crossref_primary_10_1021_acs_chemmater_1c03622
crossref_primary_10_1039_D2TC02040H
crossref_primary_10_1007_s42452_023_05562_x
crossref_primary_10_1021_acs_inorgchem_5c00577
crossref_primary_10_1039_D0NR04239K
crossref_primary_10_1002_adom_202202700
crossref_primary_10_1039_D4NA00027G
crossref_primary_10_1021_acs_nanolett_1c04669
crossref_primary_10_1021_jacs_4c13604
crossref_primary_10_1088_2515_7655_ad6e17
crossref_primary_10_1038_s41570_022_00399_1
crossref_primary_10_1002_adfm_202105855
crossref_primary_10_1002_adma_202413669
crossref_primary_10_1002_anie_202013947
crossref_primary_10_1360_SSPMA_2022_0512
crossref_primary_10_1002_adom_202203078
crossref_primary_10_3390_nano14080683
crossref_primary_10_1021_acs_chemmater_4c01199
crossref_primary_10_1021_jacs_2c05063
crossref_primary_10_1016_j_cclet_2020_03_078
crossref_primary_10_1002_ange_202214161
crossref_primary_10_1021_acsenergylett_2c02363
crossref_primary_10_1002_adma_201905585
crossref_primary_10_1021_acs_jpclett_3c02705
crossref_primary_10_1016_j_ccr_2021_213781
crossref_primary_10_1039_D3TC01534C
crossref_primary_10_1021_acsami_2c11390
crossref_primary_10_1080_03772063_2021_1972845
crossref_primary_10_1038_s41557_023_01290_2
crossref_primary_10_1039_D4CE00504J
crossref_primary_10_1002_ange_202103336
crossref_primary_10_1021_jacs_3c09395
crossref_primary_10_1039_D1NR06407J
crossref_primary_10_1360_SSC_2024_0074
crossref_primary_10_1002_chem_202404034
crossref_primary_10_1515_nanoph_2020_0038
crossref_primary_10_1039_D2TC04825F
crossref_primary_10_1063_5_0200692
crossref_primary_10_1039_D0NR05232A
crossref_primary_10_1002_adfm_202214660
crossref_primary_10_1002_anie_202102195
crossref_primary_10_3390_photonics12010036
crossref_primary_10_1002_chem_202002145
crossref_primary_10_1002_ange_202318557
crossref_primary_10_1002_ange_202102195
crossref_primary_10_1039_C9DT04270A
crossref_primary_10_1002_adom_202303039
crossref_primary_10_3390_molecules26154680
crossref_primary_10_1002_anie_202107239
crossref_primary_10_1021_acs_jpcc_4c00150
crossref_primary_10_1016_j_molliq_2024_125290
crossref_primary_10_1039_D4TC01531B
crossref_primary_10_1002_smll_202006416
crossref_primary_10_1002_ange_202013947
crossref_primary_10_1038_s41377_022_00764_1
crossref_primary_10_1002_adma_202108431
crossref_primary_10_1002_adom_202200064
crossref_primary_10_1039_D2TC05349G
crossref_primary_10_1021_acs_nanolett_3c04085
crossref_primary_10_1002_adom_202101545
crossref_primary_10_1007_s11426_024_2473_6
crossref_primary_10_1021_acs_chemmater_0c01605
crossref_primary_10_1039_D2CC05469H
crossref_primary_10_1002_adma_202204119
crossref_primary_10_1021_jacs_1c06841
crossref_primary_10_1002_advs_202412506
crossref_primary_10_1021_acsami_2c20716
crossref_primary_10_1002_adpr_202100056
crossref_primary_10_1002_anie_202318557
crossref_primary_10_1038_s41578_020_0181_5
crossref_primary_10_1002_adfm_202413041
crossref_primary_10_1039_D2CC01811J
crossref_primary_10_1021_acs_jpclett_1c00315
crossref_primary_10_1021_acs_nanolett_2c04823
crossref_primary_10_1063_1_5139044
crossref_primary_10_1039_D0TC02118K
crossref_primary_10_1039_D4CE00542B
crossref_primary_10_1039_D1QM00329A
crossref_primary_10_1002_adma_202008785
crossref_primary_10_1007_s11237_025_09818_y
crossref_primary_10_1007_s11426_021_1146_6
crossref_primary_10_1039_D3MA00953J
crossref_primary_10_1364_PRJ_520965
crossref_primary_10_1002_adom_202301040
crossref_primary_10_1039_D1QM00834J
crossref_primary_10_1038_s41557_024_01694_8
crossref_primary_10_1021_acs_chemmater_2c00094
crossref_primary_10_1039_D3QI01000G
crossref_primary_10_1021_jacs_4c05992
crossref_primary_10_1039_D2MH01429G
crossref_primary_10_1016_j_matt_2020_12_018
crossref_primary_10_1039_D2DT00557C
crossref_primary_10_1002_ange_202407596
crossref_primary_10_1063_5_0025400
crossref_primary_10_1002_adom_202002236
crossref_primary_10_1002_adom_202302766
crossref_primary_10_1002_ejic_202200275
crossref_primary_10_1021_acsami_3c15855
crossref_primary_10_1002_anie_202103336
crossref_primary_10_1002_adom_202302883
crossref_primary_10_1002_aelm_202400525
crossref_primary_10_1021_acs_jpclett_4c01262
crossref_primary_10_1021_jacs_3c05080
crossref_primary_10_1002_lpor_202000514
crossref_primary_10_1002_adfm_202315676
crossref_primary_10_1039_D1QM00223F
crossref_primary_10_1039_D4MH01371A
crossref_primary_10_1002_qute_202300178
crossref_primary_10_1021_acs_cgd_2c00634
crossref_primary_10_1002_adom_202401427
crossref_primary_10_1021_acsnano_0c08903
crossref_primary_10_1002_smll_202103855
crossref_primary_10_1021_acs_jpclett_3c03038
crossref_primary_10_1002_ange_202400644
crossref_primary_10_1021_acs_jpclett_3c00566
crossref_primary_10_1002_smll_202102884
crossref_primary_10_1038_s41467_023_36782_9
crossref_primary_10_1364_PRJ_400259
crossref_primary_10_1021_acs_jpcc_3c04296
crossref_primary_10_1002_adom_202000110
crossref_primary_10_1002_aenm_202100324
crossref_primary_10_1016_j_matt_2021_11_011
crossref_primary_10_1002_smll_202306989
crossref_primary_10_1002_advs_202206191
crossref_primary_10_1021_acsnano_0c05980
crossref_primary_10_1002_adom_202102227
crossref_primary_10_1021_acsnano_0c04017
crossref_primary_10_1007_s11426_024_2052_2
crossref_primary_10_1002_anie_202400644
crossref_primary_10_1016_j_mattod_2022_06_020
crossref_primary_10_1002_inf2_12322
crossref_primary_10_1039_D2TC02090D
crossref_primary_10_1002_aenm_202200792
crossref_primary_10_1021_acs_chemmater_2c01729
crossref_primary_10_1002_adma_202005760
crossref_primary_10_1002_adfm_202209324
crossref_primary_10_1002_adom_202202726
Cites_doi 10.1021/jacs.6b11683
10.1002/advs.201600305
10.1126/science.aaf4603
10.1039/b801638k
10.1021/acs.chemrev.6b00755
10.1002/adma.201808088
10.1103/RevModPhys.76.323
10.1126/sciadv.1500613
10.1021/ar400243m
10.1126/science.282.5390.913
10.1038/nature14133
10.1002/lpor.201000027
10.1103/PhysRevB.42.11099
10.1038/nphoton.2016.269
10.1088/0953-8984/20/43/434201
10.1039/C6CS00369A
10.1002/adma.201705011
10.1038/s41566-018-0220-6
10.1039/C6DT04796C
10.1021/acs.chemrev.6b00136
10.1039/C7MH00197E
10.1021/acsami.7b01709
10.1021/jacs.7b01312
10.1038/s41467-017-00788-x
10.1021/acs.nanolett.7b02827
10.1126/science.aas9330
10.1103/PhysRevLett.90.107404
10.1021/jz300793y
10.1002/adma.201205178
10.1038/nnano.2016.110
10.1002/adma.201800097
10.1021/jz502666j
10.1039/C8TC01150H
10.1126/science.aai8535
10.1038/ncomms14051
10.1038/nphys4145
10.1021/cr00071a001
10.1016/j.physrep.2019.01.005
10.1021/jacs.7b06013
10.1063/1.5001151
10.1021/acs.jpcc.9b05020
10.1021/acsnano.6b03863
10.1021/acs.nanolett.8b01616
10.1002/adfm.201800051
10.1016/0009-2614(94)87122-1
10.1038/ncomms8338
10.1039/b704636g
10.1107/S1600536803010985
10.1002/aenm.201701928
10.1039/df9500900014
10.1002/adfm.201707175
10.1002/adma.201705792
10.1021/acsnano.9b00302
10.1126/science.aaa9272
10.1021/jacs.7b00492
10.1126/science.aan2301
10.1039/C5TC04239A
10.1021/jacs.9b00886
10.1038/nphoton.2014.134
10.1039/p29860001775
10.1364/OE.22.0A1725
10.1039/C0CS00002G
10.1021/acsnano.7b07390
10.1002/anie.201703786
10.1002/adma.201807628
10.1021/jacs.7b12524
10.1126/science.aav3057
10.1021/ja411045r
10.1126/science.286.5441.945
10.1038/nature05802
10.1038/nmat3675
10.1039/B606987H
10.1126/science.1243167
10.1002/adma.201601369
10.1093/acprof:oso/9780198507789.001.0001
10.1103/PhysRevLett.58.2333
10.1126/science.aan2433
10.1126/science.aad5845
10.1002/adfm.201603719
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201902237
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 31389174
10_1002_smll_201902237
SMLL201902237
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21773168; 21761132007
– fundername: National Natural Science Foundation of China
  grantid: 21773168
– fundername: National Natural Science Foundation of China
  grantid: 21761132007
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4397-1759465e395f5ef98da40dfa6c8b9d001a49d2d16881feb8307438ec8def87ce3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 06:54:45 EDT 2025
Fri Jul 25 12:06:35 EDT 2025
Wed Feb 19 02:30:36 EST 2025
Thu Apr 24 23:05:11 EDT 2025
Tue Jul 01 02:10:45 EDT 2025
Wed Jan 22 16:38:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Keywords spintronics
circular dichroism
circularly polarized luminescence
second harmonic generation
chiral perovskites
ferroelectricity
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4397-1759465e395f5ef98da40dfa6c8b9d001a49d2d16881feb8307438ec8def87ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2441-4809
PMID 31389174
PQID 2296546411
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_miscellaneous_2269395542
proquest_journals_2296546411
pubmed_primary_31389174
crossref_citationtrail_10_1002_smll_201902237
crossref_primary_10_1002_smll_201902237
wiley_primary_10_1002_smll_201902237_SMLL201902237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 361
2017; 8
2013; 25
2017; 4
2019; 13
2017; 46
1999; 286
2003; 59
2015; 348
2017; 111
2017; 356
2017; 9
2014; 136
2017; 357
2014; 22
2019; 123
2017; 117
2019; 363
2004; 76
2018; 6
1990; 42
2018; 8
1986; 2
2003; 90
1950; 9
1994; 225
2001
2000
1986; 86
2013; 12
2019; 795
2018; 30
2016; 116
2008; 20
2014; 8
2016; 351
1998; 282
2016; 45
1987; 58
2015; 1
2018; 28
2015; 6
2018; 140
2007; 447
2019; 31
2017; 27
2011; 40
2016; 10
2006; 8
2013; 342
2014; 47
2007
2019; 141
2011; 5
2017; 139
2016; 11
2016; 4
2018; 18
2012; 3
2017; 17
2017; 11
2017; 13
2017; 56
2019
2015; 517
2016; 138
2018; 12
2016; 28
2009; 38
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Berova N. (e_1_2_7_37_1) 2000
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Xu J. (e_1_2_7_52_1) 2019
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 693
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 117
  start-page: 8041
  year: 2017
  publication-title: Chem. Rev.
– volume: 13
  start-page: 3659
  year: 2019
  publication-title: ACS Nano
– volume: 447
  start-page: 190
  year: 2007
  publication-title: Nature
– volume: 356
  start-page: 1376
  year: 2017
  publication-title: Science
– volume: 3
  start-page: 2178
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 22
  start-page: A1725
  year: 2014
  publication-title: Opt. Express
– volume: 361
  start-page: 151
  year: 2018
  publication-title: Science
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– year: 2001
– volume: 42
  year: 1990
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 496
  year: 2011
  publication-title: Laser Photonics Rev.
– volume: 351
  start-page: 1401
  year: 2016
  publication-title: Science
– volume: 9
  start-page: 14
  year: 1950
  publication-title: Discuss. Faraday Soc.
– volume: 38
  start-page: 806
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 40
  start-page: 1259
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 59
  start-page: m381
  year: 2003
  publication-title: Acta Crystallogr., Sect. E: Struct. Rep. Online
– volume: 46
  start-page: 3500
  year: 2017
  publication-title: Dalton Trans.
– volume: 11
  start-page: 108
  year: 2017
  publication-title: Nat. Photonics
– start-page: 3900
  year: 2007
  publication-title: Chem. Commun.
– volume: 361
  start-page: 494
  year: 2018
  publication-title: Science
– volume: 8
  start-page: 506
  year: 2014
  publication-title: Nat. Photonics
– volume: 2
  start-page: 1775
  year: 1986
  publication-title: J. Chem. Soc., Perkin Trans. 2
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 528
  year: 2018
  publication-title: Nat. Photonics
– volume: 111
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 139
  start-page: 3954
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 20
  year: 2008
  publication-title: J. Phys.: Condens. Matter
– volume: 45
  start-page: 6478
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 141
  start-page: 4474
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 90
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 6177
  year: 2017
  publication-title: Nano Lett.
– volume: 8
  start-page: 686
  year: 2006
  publication-title: CrystEngComm
– volume: 286
  start-page: 945
  year: 1999
  publication-title: Science
– volume: 136
  start-page: 1718
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 1088
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 140
  start-page: 3975
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 282
  start-page: 913
  year: 1998
  publication-title: Science
– volume: 351
  start-page: 151
  year: 2016
  publication-title: Science
– volume: 76
  start-page: 323
  year: 2004
  publication-title: Rev. Mod. Phys.
– volume: 58
  start-page: 2333
  year: 1987
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 6033
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 11
  start-page: 872
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 795
  start-page: 1
  year: 2019
  publication-title: Phys. Rep.
– volume: 4
  start-page: 851
  year: 2017
  publication-title: Mater. Horiz.
– volume: 12
  start-page: 611
  year: 2013
  publication-title: Nat. Mater.
– year: 2000
– volume: 6
  start-page: 7338
  year: 2015
  publication-title: Nat. Commun.
– volume: 363
  start-page: 1206
  year: 2019
  publication-title: Science
– volume: 18
  start-page: 5411
  year: 2018
  publication-title: Nano Lett.
– volume: 225
  start-page: 525
  year: 1994
  publication-title: Chem. Phys. Lett.
– volume: 25
  start-page: 2517
  year: 2013
  publication-title: Adv. Mater.
– volume: 13
  start-page: 894
  year: 2017
  publication-title: Nat. Phys.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 357
  start-page: 306
  year: 2017
  publication-title: Science
– volume: 4
  start-page: 4016
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 86
  start-page: 1
  year: 1986
  publication-title: Chem. Rev.
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 742
  year: 2017
  publication-title: Nat. Commun.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 517
  start-page: 476
  year: 2015
  publication-title: Nature
– volume: 10
  start-page: 7943
  year: 2016
  publication-title: ACS Nano
– volume: 28
  start-page: 7515
  year: 2016
  publication-title: Adv. Mater.
– volume: 139
  start-page: 5210
  year: 2017
  publication-title: J. Am. Chem. Soc.
– year: 2019
  publication-title: Adv. Mater.
– ident: e_1_2_7_9_1
  doi: 10.1021/jacs.6b11683
– ident: e_1_2_7_81_1
  doi: 10.1002/advs.201600305
– ident: e_1_2_7_19_1
  doi: 10.1126/science.aaf4603
– ident: e_1_2_7_33_1
  doi: 10.1039/b801638k
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.chemrev.6b00755
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201808088
– ident: e_1_2_7_68_1
  doi: 10.1103/RevModPhys.76.323
– ident: e_1_2_7_80_1
  doi: 10.1126/sciadv.1500613
– ident: e_1_2_7_15_1
  doi: 10.1021/ar400243m
– ident: e_1_2_7_53_1
  doi: 10.1126/science.282.5390.913
– ident: e_1_2_7_3_1
  doi: 10.1038/nature14133
– ident: e_1_2_7_49_1
  doi: 10.1002/lpor.201000027
– ident: e_1_2_7_1_1
  doi: 10.1103/PhysRevB.42.11099
– ident: e_1_2_7_8_1
  doi: 10.1038/nphoton.2016.269
– ident: e_1_2_7_62_1
  doi: 10.1088/0953-8984/20/43/434201
– ident: e_1_2_7_75_1
  doi: 10.1039/C6CS00369A
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201705011
– ident: e_1_2_7_27_1
  doi: 10.1038/s41566-018-0220-6
– ident: e_1_2_7_77_1
  doi: 10.1039/C6DT04796C
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.chemrev.6b00136
– ident: e_1_2_7_28_1
  doi: 10.1039/C7MH00197E
– ident: e_1_2_7_10_1
  doi: 10.1021/acsami.7b01709
– ident: e_1_2_7_45_1
  doi: 10.1021/jacs.7b01312
– ident: e_1_2_7_50_1
  doi: 10.1038/s41467-017-00788-x
– ident: e_1_2_7_70_1
  doi: 10.1021/acs.nanolett.7b02827
– ident: e_1_2_7_63_1
  doi: 10.1126/science.aas9330
– ident: e_1_2_7_54_1
  doi: 10.1103/PhysRevLett.90.107404
– ident: e_1_2_7_69_1
  doi: 10.1021/jz300793y
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201205178
– ident: e_1_2_7_74_1
  doi: 10.1038/nnano.2016.110
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201800097
– ident: e_1_2_7_66_1
  doi: 10.1021/jz502666j
– ident: e_1_2_7_48_1
  doi: 10.1039/C8TC01150H
– ident: e_1_2_7_57_1
  doi: 10.1126/science.aai8535
– ident: e_1_2_7_30_1
  doi: 10.1038/ncomms14051
– ident: e_1_2_7_71_1
  doi: 10.1038/nphys4145
– ident: e_1_2_7_39_1
  doi: 10.1021/cr00071a001
– ident: e_1_2_7_12_1
  doi: 10.1016/j.physrep.2019.01.005
– ident: e_1_2_7_67_1
  doi: 10.1021/jacs.7b06013
– ident: e_1_2_7_24_1
  doi: 10.1063/1.5001151
– ident: e_1_2_7_76_1
  doi: 10.1021/acs.jpcc.9b05020
– ident: e_1_2_7_36_1
  doi: 10.1021/acsnano.6b03863
– ident: e_1_2_7_32_1
  doi: 10.1021/acs.nanolett.8b01616
– ident: e_1_2_7_40_1
  doi: 10.1002/adfm.201800051
– ident: e_1_2_7_55_1
  doi: 10.1016/0009-2614(94)87122-1
– ident: e_1_2_7_59_1
  doi: 10.1038/ncomms8338
– ident: e_1_2_7_38_1
  doi: 10.1039/b704636g
– ident: e_1_2_7_21_1
  doi: 10.1107/S1600536803010985
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.201701928
– ident: e_1_2_7_44_1
  doi: 10.1039/df9500900014
– volume-title: Circular Dichroism, Principles and Applications
  year: 2000
  ident: e_1_2_7_37_1
– ident: e_1_2_7_51_1
  doi: 10.1002/adfm.201707175
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201705792
– ident: e_1_2_7_31_1
  doi: 10.1021/acsnano.9b00302
– ident: e_1_2_7_7_1
  doi: 10.1126/science.aaa9272
– ident: e_1_2_7_58_1
  doi: 10.1021/jacs.7b00492
– ident: e_1_2_7_4_1
  doi: 10.1126/science.aan2301
– ident: e_1_2_7_13_1
  doi: 10.1039/C5TC04239A
– year: 2019
  ident: e_1_2_7_52_1
  publication-title: Adv. Mater.
– ident: e_1_2_7_26_1
  doi: 10.1021/jacs.9b00886
– ident: e_1_2_7_18_1
  doi: 10.1038/nphoton.2014.134
– ident: e_1_2_7_34_1
  doi: 10.1039/p29860001775
– ident: e_1_2_7_41_1
  doi: 10.1364/OE.22.0A1725
– ident: e_1_2_7_35_1
  doi: 10.1039/C0CS00002G
– ident: e_1_2_7_42_1
  doi: 10.1021/acsnano.7b07390
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.201703786
– ident: e_1_2_7_79_1
  doi: 10.1002/adma.201807628
– ident: e_1_2_7_61_1
  doi: 10.1021/jacs.7b12524
– ident: e_1_2_7_60_1
  doi: 10.1126/science.aav3057
– ident: e_1_2_7_46_1
  doi: 10.1021/ja411045r
– ident: e_1_2_7_2_1
  doi: 10.1126/science.286.5441.945
– ident: e_1_2_7_72_1
  doi: 10.1038/nature05802
– ident: e_1_2_7_73_1
  doi: 10.1038/nmat3675
– ident: e_1_2_7_22_1
  doi: 10.1039/B606987H
– ident: e_1_2_7_78_1
  doi: 10.1126/science.1243167
– ident: e_1_2_7_47_1
  doi: 10.1002/adma.201601369
– ident: e_1_2_7_56_1
  doi: 10.1093/acprof:oso/9780198507789.001.0001
– ident: e_1_2_7_64_1
  doi: 10.1103/PhysRevLett.58.2333
– ident: e_1_2_7_65_1
  doi: 10.1126/science.aan2433
– ident: e_1_2_7_5_1
  doi: 10.1126/science.aad5845
– ident: e_1_2_7_43_1
  doi: 10.1002/adfm.201603719
SSID ssj0031247
Score 2.6429462
SecondaryResourceType review_article
Snippet Halide perovskites have emerged as a type of extremely promising material for their diverse chemical and electronic structures along with their brilliant...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1902237
SubjectTerms chiral perovskites
Chirality
circular dichroism
circularly polarized luminescence
ferroelectricity
Nanotechnology
Optical communication
Optoelectronic devices
Organic chemistry
Perovskites
second harmonic generation
spintronics
Title Chiral Perovskites: Promising Materials toward Next‐Generation Optoelectronics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201902237
https://www.ncbi.nlm.nih.gov/pubmed/31389174
https://www.proquest.com/docview/2296546411
https://www.proquest.com/docview/2269395542
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8hnuBhwMafjDJlEhJPgcZxEoc3VFGhqYUKqMRb5NiOmNY1VZPywNM-wj4jn4S7uA10aJo03hLlnNi-s-8X-_w7gEMT6zgRPPAyzo3HpYk8ibgEf1XayteE4BWtd_Qvo4sh_3YX3r06xW_5IZoFNxoZ9XxNA1xm5ckLaWj5c0RbB-jQ0MPRcXIK2CJUdN3wRwXovOrsKuizPCLeWrA2ttnJcvFlr_QGai4j19r1dDdALiptI05-HM-q7Fg9_sHn-J5WbcKHOS51z6whbcGKGX-E9VdshZ9g0Ln_PkWZgZkWDyWt-pan7mBaoKXgc7cvK2vNblWH4rqXOO8__fptia1J_-7VpCpe8u6U2zDsnt92Lrx5QgZPEW7xEGokPApNkIR5aPJEaMnbOpeRElmi0eFJnmim_UgIPzeZCAifCKOENrmIlQl2YHVcjM0euJGvifmdM24oATvD9yLYiKUf5r5RYeiAt1BIquZs5ZQ0Y5RanmWWUk-lTU85cNTITyxPx18lWwv9pvPxWqaMJXSqi_u-A1-bx9h_tH0ix6aYkUyUYMtDzhzYtXbRfCqo93tj7gCrtfuPOqQ3_V6vufv8P4X2YY2ubbhbC1ar6cwcID6qsi_1GHgGpYYHDw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_P8ECgQJxCntxnESB4kDaqm2dHdZQSv1FhJ7IhBlU22yIDjxCLwKr8Ij8CTMxEnKghASUg8cEzuOf2b8je3xNwD3MTZxomTg5VKiJzOMvIzsElqqDLRv2ILXvN8xnkTDffnsIDxYga_dXRjLD9FvuLFmNPM1KzhvSG8cs4ZW7w757IAQjSAubv0qd_HjB1q1VY93tmiIHwix_XRvc-i1gQU8zfjrEWQmMgoxSMIixCJRJpMDU2SRVnliaOLOZGKE8SOl_AJzFTDOKtTKYKFijQGVewpOcxhxpuvfetEzVgUEl008F0JJj6m-Op7IgdhYru8yDv5m3C7byg3YbV-Ab103WR-Xt-uLOl_Xn35hkPyv-vEinG9Nb_eJ1ZVLsIKzy3DuJ0LGKzDdfP1mTnmmOC_fV7yxXT1yp_OSlIHS3XFWW4V168bb2J0QtH3__MVyd7OIu8-P6vI4tFB1FfZPpEnXYHVWzvAGuJFvmNxeCokcY15QuWRPxZkfFj7qMHTA6yQg1S0hO8cFOUwtlbRIeWTSfmQceNjnP7JUJH_MudYJVNpOSVUqRMIX16TvO3CvT6b-4xOibIblgvNECbU8lMKB61YQ-18FzZF2LB0QjTj9pQ7py_Fo1D_d_JeP7sKZ4d54lI52Jru34Cy_t959a7Bazxd4m8zBOr_TKKALr05aUn8Aw_tlYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48P8TKBAkEKe0G8dJbCQOVZdVS3eXFVCptzSxHYEom9Um2wpOPAKPwqvwCn0SZuIkZUEICakHjokdxz8z_sb2-BuAxybWsRQ88DLOjcdTE3kp2iW4VOkpX5MFr2i_YzSOtvf4y_1wfwW-tXdhLD9Et-FGmlHP16TgM51vnJKGlh8P6egAAQ0RLm7cKnfNp2NctJXPd_o4wk8YG7x4u7XtNXEFPEXw6yFiSh6FJpBhHppcCp3yns7TSIlMapy3Uy41034khJ-bTAQEs8IooU0uYmUCLPccnOdRT1KwiP7rjrAqQLSsw7kgSHrE9NXSRPbYxnJ9l2HwN9t22VSusW5wBb63vWRdXD6sL6psXX3-hUDyf-rGq3C5MbzdTasp12DFTK_DpZ_oGG_AZOvd-znmmZh5cVTStnb5zJ3MC1QFTHdHaWXV1a1qX2N3jMB28uWrZe4mAXdfzariNLBQeRP2zqRJt2B1WkzNHXAjXxO1PWfcUIR5huWiNRWnfpj7RoWhA14rAIlq6NgpKshhYomkWUIjk3Qj48DTLv_MEpH8MedaK09JMyGVCWOSrq1x33fgUZeM_UfnQ-nUFAvKE0lseciZA7etHHa_CuoD7Zg7wGpp-ksdkjej4bB7uvsvHz2EC5P-IBnujHfvwUV6bV371mC1mi_MfbQFq-xBrX4uHJy1oP4AEKhkEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+Perovskites%3A+Promising+Materials+toward+Next-Generation+Optoelectronics&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Dong%2C+Yuze&rft.au=Zhang%2C+Yupeng&rft.au=Li%2C+Xinyue&rft.au=Feng%2C+Yaqing&rft.date=2019-09-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=15&rft.issue=39&rft.spage=e1902237&rft_id=info:doi/10.1002%2Fsmll.201902237&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon