Ultra‐Stretchable and Fast Self‐Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber

Self‐healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self‐healing ability is unreservedly lost and even becomes rigid and fragile in the cryog...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 16; pp. e2105416 - n/a
Main Authors Wang, Chan, Liu, Ying, Qu, Xuecheng, Shi, Bojing, Zheng, Qiang, Lin, Xubo, Chao, Shengyu, Wang, Changyong, Zhou, Jin, Sun, Yu, Mao, Gengsheng, Li, Zhou
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Self‐healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self‐healing ability is unreservedly lost and even becomes rigid and fragile in the cryogenic environment where BIR are precisely needed. Here, the authors report a versatile ionic hydrogel with fast self‐healing ability, ultra‐stretchability, and stable conductivity, even at −80 °C. The hydrogel is systematically optimized to improve a hydrogen‐bonded network nanostructure, coordinated achieving a quick self‐healing ability within 10 min, large deformation tolerance of over 7000%, superior conductivity of 11.76 S cm−1 and anti‐freezing ability, which is difficult to obtain simultaneously. Such a hydrogel provides new opportunities for artificial electronic devices in harsh environments. As a prospective application, they fabricate an artificial nerve fiber by mimicking the structure and functions of the myelinated axon, exhibiting the property of fast and potential‐gated signal transmission. This artificial nerve fiber is integrated into a robot for demonstrating a real‐time high fidelity and high throughput information interaction under big deformation and cryogenic temperature. The hydrogel and bionic device will bring pioneering functions for robots and open a broad application scenario in extreme conditions. The authors propose an ionic hydrogel with outstanding self‐healing ability, ultra‐stretchability, and conductivity in cryogenic environments. The artificial nerve fiber (SSANF) is fabricated based on the ionic hydrogel through bionic structural design. The SSANF enables stable information and energy transmission when connected to the biomimetic intelligent robot, even under big deformation and −78.5 °C.
AbstractList Abstract Self‐healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self‐healing ability is unreservedly lost and even becomes rigid and fragile in the cryogenic environment where BIR are precisely needed. Here, the authors report a versatile ionic hydrogel with fast self‐healing ability, ultra‐stretchability, and stable conductivity, even at −80 °C. The hydrogel is systematically optimized to improve a hydrogen‐bonded network nanostructure, coordinated achieving a quick self‐healing ability within 10 min, large deformation tolerance of over 7000%, superior conductivity of 11.76 S cm −1 and anti‐freezing ability, which is difficult to obtain simultaneously. Such a hydrogel provides new opportunities for artificial electronic devices in harsh environments. As a prospective application, they fabricate an artificial nerve fiber by mimicking the structure and functions of the myelinated axon, exhibiting the property of fast and potential‐gated signal transmission. This artificial nerve fiber is integrated into a robot for demonstrating a real‐time high fidelity and high throughput information interaction under big deformation and cryogenic temperature. The hydrogel and bionic device will bring pioneering functions for robots and open a broad application scenario in extreme conditions.
Self‐healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self‐healing ability is unreservedly lost and even becomes rigid and fragile in the cryogenic environment where BIR are precisely needed. Here, the authors report a versatile ionic hydrogel with fast self‐healing ability, ultra‐stretchability, and stable conductivity, even at −80 °C. The hydrogel is systematically optimized to improve a hydrogen‐bonded network nanostructure, coordinated achieving a quick self‐healing ability within 10 min, large deformation tolerance of over 7000%, superior conductivity of 11.76 S cm−1 and anti‐freezing ability, which is difficult to obtain simultaneously. Such a hydrogel provides new opportunities for artificial electronic devices in harsh environments. As a prospective application, they fabricate an artificial nerve fiber by mimicking the structure and functions of the myelinated axon, exhibiting the property of fast and potential‐gated signal transmission. This artificial nerve fiber is integrated into a robot for demonstrating a real‐time high fidelity and high throughput information interaction under big deformation and cryogenic temperature. The hydrogel and bionic device will bring pioneering functions for robots and open a broad application scenario in extreme conditions.
Self-healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self-healing ability is unreservedly lost and even becomes rigid and fragile in the cryogenic environment where BIR are precisely needed. Here, the authors report a versatile ionic hydrogel with fast self-healing ability, ultra-stretchability, and stable conductivity, even at -80 °C. The hydrogel is systematically optimized to improve a hydrogen-bonded network nanostructure, coordinated achieving a quick self-healing ability within 10 min, large deformation tolerance of over 7000%, superior conductivity of 11.76 S cm and anti-freezing ability, which is difficult to obtain simultaneously. Such a hydrogel provides new opportunities for artificial electronic devices in harsh environments. As a prospective application, they fabricate an artificial nerve fiber by mimicking the structure and functions of the myelinated axon, exhibiting the property of fast and potential-gated signal transmission. This artificial nerve fiber is integrated into a robot for demonstrating a real-time high fidelity and high throughput information interaction under big deformation and cryogenic temperature. The hydrogel and bionic device will bring pioneering functions for robots and open a broad application scenario in extreme conditions.
Self‐healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self‐healing ability is unreservedly lost and even becomes rigid and fragile in the cryogenic environment where BIR are precisely needed. Here, the authors report a versatile ionic hydrogel with fast self‐healing ability, ultra‐stretchability, and stable conductivity, even at −80 °C. The hydrogel is systematically optimized to improve a hydrogen‐bonded network nanostructure, coordinated achieving a quick self‐healing ability within 10 min, large deformation tolerance of over 7000%, superior conductivity of 11.76 S cm−1 and anti‐freezing ability, which is difficult to obtain simultaneously. Such a hydrogel provides new opportunities for artificial electronic devices in harsh environments. As a prospective application, they fabricate an artificial nerve fiber by mimicking the structure and functions of the myelinated axon, exhibiting the property of fast and potential‐gated signal transmission. This artificial nerve fiber is integrated into a robot for demonstrating a real‐time high fidelity and high throughput information interaction under big deformation and cryogenic temperature. The hydrogel and bionic device will bring pioneering functions for robots and open a broad application scenario in extreme conditions. The authors propose an ionic hydrogel with outstanding self‐healing ability, ultra‐stretchability, and conductivity in cryogenic environments. The artificial nerve fiber (SSANF) is fabricated based on the ionic hydrogel through bionic structural design. The SSANF enables stable information and energy transmission when connected to the biomimetic intelligent robot, even under big deformation and −78.5 °C.
Author Chao, Shengyu
Liu, Ying
Sun, Yu
Lin, Xubo
Zheng, Qiang
Mao, Gengsheng
Wang, Chan
Zhou, Jin
Shi, Bojing
Wang, Changyong
Qu, Xuecheng
Li, Zhou
Author_xml – sequence: 1
  givenname: Chan
  surname: Wang
  fullname: Wang, Chan
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Xuecheng
  surname: Qu
  fullname: Qu, Xuecheng
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Bojing
  surname: Shi
  fullname: Shi, Bojing
  organization: Beihang University
– sequence: 5
  givenname: Qiang
  surname: Zheng
  fullname: Zheng, Qiang
  organization: Guizhou Medical University
– sequence: 6
  givenname: Xubo
  surname: Lin
  fullname: Lin, Xubo
  organization: Beihang University
– sequence: 7
  givenname: Shengyu
  surname: Chao
  fullname: Chao, Shengyu
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Changyong
  surname: Wang
  fullname: Wang, Changyong
  organization: Beijing Institute of Basic Medical Sciences
– sequence: 9
  givenname: Jin
  surname: Zhou
  fullname: Zhou, Jin
  organization: Beijing Institute of Basic Medical Sciences
– sequence: 10
  givenname: Yu
  surname: Sun
  fullname: Sun, Yu
  organization: The Third Medical Centre Chinese People's Liberation Army General Hospital
– sequence: 11
  givenname: Gengsheng
  surname: Mao
  fullname: Mao, Gengsheng
  organization: The Third Medical Centre Chinese People's Liberation Army General Hospital
– sequence: 12
  givenname: Zhou
  orcidid: 0000-0002-9952-7296
  surname: Li
  fullname: Li, Zhou
  email: zli@binn.cas.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35103354$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9OGzEQhy1EBYFy5VhZ6qWXTcd_Nz5GgRAk2h4o55WznqVGXpvaG6rc-gh9Rp6kG4VSqZeePPJ882k0vxNyGFNEQs4ZTBkA_2hdb6ccOAMlmT4gE6Y4qyQYdUgmYISqjJazY3JSygMAGA36iBwLxUAIJSck3YUh2-efv26HjEP7za4DUhsdXdoy0FsM3dhboQ0-3tPrFH1LV1uX0z0G6iNd5O1Y7n4v45PPKfYYh0K7lOk8D77zrbeBfsb8hHTp15jfkjedDQXPXt5Tcre8_LpYVTdfrq4X85uqlcLoygFoo2vBpOY1F1rjjItaonGtddpAq0FAK9QawThEIazEmRPMWCe7TlpxSj7svY85fd9gGZrelxZDsBHTpjRcc6mVBFWP6Pt_0Ie0yXHcbqQUrzWb1XKkpnuqzamUjF3zmH1v87Zh0OyiaHZRNK9RjAPvXrSbdY_uFf9z-xEwe-CHD7j9j66ZX3ya_5X_BmjNmBY
CitedBy_id crossref_primary_10_1002_adfm_202301404
crossref_primary_10_1002_adfm_202208271
crossref_primary_10_1021_acs_chemmater_2c03330
crossref_primary_10_1002_adfm_202301127
crossref_primary_10_1002_anie_202317944
crossref_primary_10_1007_s12274_023_5804_x
crossref_primary_10_1007_s42765_023_00265_9
crossref_primary_10_1038_s41467_024_44848_5
crossref_primary_10_1007_s11708_023_0896_2
crossref_primary_10_1021_acsaem_2c01771
crossref_primary_10_1021_acs_chemrev_2c00720
crossref_primary_10_1021_acsnano_3c05253
crossref_primary_10_1016_j_cej_2023_143087
crossref_primary_10_1002_smll_202400912
crossref_primary_10_1021_jacs_4c00541
crossref_primary_10_1039_D3QM00902E
crossref_primary_10_1039_D2TA02576K
crossref_primary_10_1021_acsmaterialslett_3c00397
crossref_primary_10_1016_j_cej_2023_144849
crossref_primary_10_1515_epoly_2022_0083
crossref_primary_10_1002_wnan_1827
crossref_primary_10_1016_j_pmatsci_2023_101156
crossref_primary_10_1007_s12274_023_5879_4
crossref_primary_10_1002_advs_202203808
crossref_primary_10_1016_j_colcom_2023_100697
crossref_primary_10_1002_sus2_205
crossref_primary_10_1016_j_compositesa_2023_107858
crossref_primary_10_1002_adma_202306350
crossref_primary_10_1016_j_eurpolymj_2022_111394
crossref_primary_10_26599_NRE_2024_9120123
crossref_primary_10_1021_acs_nanolett_2c00848
crossref_primary_10_1021_acsmaterialslett_3c00320
crossref_primary_10_1021_acsnano_3c08859
crossref_primary_10_1002_jbm_a_37529
crossref_primary_10_1016_j_pmatsci_2024_101288
crossref_primary_10_1002_adfm_202309626
crossref_primary_10_1002_adhm_202200653
crossref_primary_10_1021_acsapm_2c01993
crossref_primary_10_1021_acsami_2c18989
crossref_primary_10_1021_acsbiomaterials_3c00761
crossref_primary_10_1557_s43578_023_01240_1
crossref_primary_10_1039_D3TA05615E
crossref_primary_10_1039_D4EE00171K
crossref_primary_10_1016_j_mattod_2023_02_023
crossref_primary_10_1021_acsami_3c00432
crossref_primary_10_3390_gels10020144
crossref_primary_10_1002_adhm_202400562
crossref_primary_10_1016_j_eurpolymj_2023_112715
crossref_primary_10_1016_j_ccr_2024_215790
crossref_primary_10_1021_acsnano_2c10142
crossref_primary_10_1002_adfm_202308136
crossref_primary_10_1039_D2SM01417C
crossref_primary_10_1021_acsnano_2c06164
crossref_primary_10_1002_adhm_202300475
crossref_primary_10_3390_polym15183768
crossref_primary_10_1002_adfm_202204878
crossref_primary_10_1002_smll_202303949
crossref_primary_10_1039_D3TA00302G
crossref_primary_10_1002_smll_202304353
crossref_primary_10_1002_smll_202305448
crossref_primary_10_1039_D3MH01496G
crossref_primary_10_1016_j_cej_2023_144385
crossref_primary_10_1002_adfm_202213545
crossref_primary_10_1002_smtd_202300338
crossref_primary_10_1002_advs_202205485
crossref_primary_10_1039_D2TA06884B
crossref_primary_10_1088_2515_7639_ad05e7
crossref_primary_10_1002_adfm_202214479
crossref_primary_10_1088_1361_6439_ac7b0c
crossref_primary_10_1021_acssuschemeng_3c06488
crossref_primary_10_1039_D3GC05109A
crossref_primary_10_1002_inf2_12534
crossref_primary_10_1007_s13233_023_00165_2
crossref_primary_10_1002_admt_202200362
crossref_primary_10_1016_j_cis_2022_102749
crossref_primary_10_3390_polym14214705
crossref_primary_10_1002_adfm_202204304
crossref_primary_10_3390_polym15102406
crossref_primary_10_1002_mame_202200128
crossref_primary_10_1002_advs_202301713
crossref_primary_10_1002_admt_202302048
crossref_primary_10_1021_acs_biomac_2c01335
crossref_primary_10_1021_acsmacrolett_3c00298
crossref_primary_10_1016_j_carbpol_2023_120759
crossref_primary_10_1002_adfm_202303696
crossref_primary_10_1038_s41467_023_38269_z
crossref_primary_10_1002_adom_202303330
crossref_primary_10_1021_acssensors_3c02172
crossref_primary_10_1021_acsami_3c03919
crossref_primary_10_1021_acsapm_3c03211
crossref_primary_10_1021_acs_chemmater_3c02234
crossref_primary_10_1039_D3TA08069B
crossref_primary_10_1016_j_xpro_2023_102045
crossref_primary_10_1039_D3MH00174A
crossref_primary_10_1038_s41467_022_34522_z
crossref_primary_10_1021_acsami_2c21704
crossref_primary_10_1109_JSEN_2022_3156286
crossref_primary_10_1002_adfm_202307400
crossref_primary_10_1002_ange_202404603
crossref_primary_10_1039_D2TC02524H
crossref_primary_10_1039_D3QM00109A
crossref_primary_10_3390_machines11090859
crossref_primary_10_1016_j_ijbiomac_2023_129068
crossref_primary_10_1039_D4GC01465K
crossref_primary_10_1016_j_apmt_2022_101537
crossref_primary_10_1002_agt2_566
crossref_primary_10_1002_smll_202201597
crossref_primary_10_1039_D2MH00296E
crossref_primary_10_1021_acsami_2c03110
crossref_primary_10_1002_adhm_202303792
crossref_primary_10_1002_ange_202317944
crossref_primary_10_1021_acsaelm_2c01608
crossref_primary_10_3390_ma15196770
crossref_primary_10_1002_admt_202201442
crossref_primary_10_1002_anie_202404603
crossref_primary_10_1016_j_nanoen_2022_107438
crossref_primary_10_1021_acsami_3c11117
crossref_primary_10_1002_adma_202402501
crossref_primary_10_1002_smm2_1189
crossref_primary_10_1021_acsbiomaterials_3c01003
crossref_primary_10_1021_acsnano_2c04984
Cites_doi 10.1038/s41467-020-15949-8
10.1126/sciadv.1602076
10.1038/s41578-018-0018-7
10.1016/j.giant.2020.100014
10.1002/smll.201904758
10.1039/C9SM00179D
10.1038/nmat1934
10.1126/science.1065879
10.1038/s41565-018-0244-6
10.1038/s41467-017-02492-2
10.1038/s41467-021-21577-7
10.1002/adfm.202101957
10.1002/adfm.201802576
10.1002/adma.202004290
10.1021/nn900918w
10.1038/s41928-019-0235-0
10.1016/S0065-3233(08)60376-9
10.1088/1361-665X/aad7a1
10.1016/j.apmt.2019.100542
10.1016/j.eml.2015.03.001
10.1038/s41563-020-0736-2
10.1038/nature21002
10.1002/adma.201601613
10.1007/s10965-013-0177-6
10.1002/anie.201708614
10.1021/acsami.8b12279
10.1126/science.aao0350
10.1021/ic0487979
10.1038/nmat4037
10.1038/s41467-020-14446-2
10.1038/35057232
10.1002/cphc.201900545
10.1038/s41428-018-0080-4
10.1038/nature10447
10.1002/adfm.202104665
10.1038/nchem.2492
10.1002/adfm.201901058
10.1002/adma.201901402
10.1038/s41928-019-0206-5
10.1038/s41467-020-19405-5
10.1021/jo971176v
10.1038/s41578-020-0202-4
10.1016/j.elspec.2010.01.006
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202105416
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202105416
35103354
ADMA202105416
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: T2125003; 61875015; 82001982; 32101117
– fundername: Beijing Natural Science Foundation
  funderid: JQ20038; L212010
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDA16021101
– fundername: National Natural Science Foundation of China
  grantid: 32101117
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDA16021101
– fundername: Beijing Natural Science Foundation
  grantid: JQ20038
– fundername: National Natural Science Foundation of China
  grantid: 61875015
– fundername: National Natural Science Foundation of China
  grantid: 82001982
– fundername: National Natural Science Foundation of China
  grantid: T2125003
– fundername: Beijing Natural Science Foundation
  grantid: L212010
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
CGR
CUY
CVF
ECM
EIF
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4396-d0069673146272366e82374e9dcad690c6030c35be09dee33a4e8d319ad4ff4a3
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Aug 16 10:47:36 EDT 2024
Thu Oct 10 16:59:07 EDT 2024
Thu Sep 26 16:08:58 EDT 2024
Sat Sep 28 08:21:30 EDT 2024
Sat Aug 24 00:59:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords self-healing ionic hydrogels
ultra-stretchability
anti-freezing
artificial nerve fibers
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4396-d0069673146272366e82374e9dcad690c6030c35be09dee33a4e8d319ad4ff4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9952-7296
PMID 35103354
PQID 2652761874
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2624654057
proquest_journals_2652761874
crossref_primary_10_1002_adma_202105416
pubmed_primary_35103354
wiley_primary_10_1002_adma_202105416_ADMA202105416
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 43
2009 1988; 3 39
2018; 28
2017; 3
2015; 3
2019; 2
2002; 295
2020 2019 2017; 2 15 358
2013; 20
2020; 16
2016; 540
2001; 409
2020 2018; 19 27
2020; 11
2019 1997; 62
2020; 32
2020; 19
2018; 9
2020; 5
2018; 3
2021; 31
2019; 20
2010; 178
2017; 56
2020 2021 2021; 11 12 31
2007; 6
2014; 13
2016 2011 2019; 8 477 29
2018; 50
2016; 28
2018; 10
2018; 13
e_1_2_10_23_1
e_1_2_10_23_2
e_1_2_10_24_1
e_1_2_10_20_2
e_1_2_10_21_1
e_1_2_10_20_3
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_1_1
e_1_2_10_2_1
e_1_2_10_3_2
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_14_3
e_1_2_10_16_1
e_1_2_10_3_3
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_14_2
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_31_2
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_25_2
e_1_2_10_26_1
References_xml – volume: 3 39
  start-page: 3273 125
  year: 2009 1988
  publication-title: ACS Nano Adv. Protein Chem.
– volume: 20
  start-page: 177
  year: 2013
  publication-title: J. Polym. Res.
– volume: 409
  start-page: 794
  year: 2001
  publication-title: Nature
– volume: 11 12 31
  start-page: 2037 1291
  year: 2020 2021 2021
  publication-title: Nat. Commun. Nat. Commun. Adv. Funct. Mater.
– volume: 19
  start-page: 1230
  year: 2020
  publication-title: Nat. Mater.
– volume: 8 477 29
  start-page: 618 443
  year: 2016 2011 2019
  publication-title: Nat. Chem. Nature Adv. Funct. Mater.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 2
  start-page: 144
  year: 2019
  publication-title: Nat. Electron.
– volume: 62
  start-page: 7512
  year: 2019 1997
  publication-title: Adv. Mater. J. Org. Chem.
– volume: 6
  start-page: 581
  year: 2007
  publication-title: Nat. Mater.
– volume: 295
  start-page: 1698
  year: 2002
  publication-title: Science
– volume: 9
  start-page: 75
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1107
  year: 2020
  publication-title: Nat. Commun.
– volume: 28
  start-page: 9060
  year: 2016
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1057
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 20
  start-page: 2139
  year: 2019
  publication-title: ChemPhysChem
– volume: 11
  start-page: 5743
  year: 2020
  publication-title: Nat. Commun.
– volume: 50
  start-page: 857
  year: 2018
  publication-title: Polym. J.
– volume: 2
  start-page: 75
  year: 2019
  publication-title: Nat. Electron.
– volume: 13
  start-page: 867
  year: 2014
  publication-title: Nat. Mater.
– volume: 19 27
  year: 2020 2018
  publication-title: Appl. Mater. Today Smart Mater. Struct.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 2 15 358
  start-page: 3680 502
  year: 2020 2019 2017
  publication-title: Giant Soft Matter Science
– volume: 3
  start-page: 125
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 3
  start-page: 59
  year: 2015
  publication-title: Extreme Mech. Lett.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 540
  start-page: 363
  year: 2016
  publication-title: Nature
– volume: 5
  start-page: 562
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 178
  start-page: 2
  year: 2010
  publication-title: J. Electron Spectrosc. Relat. Phenom.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 8227
  year: 2004
  publication-title: Inorg. Chem.
– ident: e_1_2_10_3_1
  doi: 10.1038/s41467-020-15949-8
– ident: e_1_2_10_30_1
  doi: 10.1126/sciadv.1602076
– ident: e_1_2_10_33_1
  doi: 10.1038/s41578-018-0018-7
– ident: e_1_2_10_20_1
  doi: 10.1016/j.giant.2020.100014
– ident: e_1_2_10_22_1
  doi: 10.1002/smll.201904758
– ident: e_1_2_10_20_2
  doi: 10.1039/C9SM00179D
– ident: e_1_2_10_10_1
  doi: 10.1038/nmat1934
– ident: e_1_2_10_9_1
  doi: 10.1126/science.1065879
– ident: e_1_2_10_13_1
  doi: 10.1038/s41565-018-0244-6
– ident: e_1_2_10_17_1
  doi: 10.1038/s41467-017-02492-2
– ident: e_1_2_10_3_2
  doi: 10.1038/s41467-021-21577-7
– ident: e_1_2_10_19_1
  doi: 10.1002/adfm.202101957
– ident: e_1_2_10_5_1
  doi: 10.1002/adfm.201802576
– ident: e_1_2_10_2_1
  doi: 10.1002/adma.202004290
– ident: e_1_2_10_23_1
  doi: 10.1021/nn900918w
– ident: e_1_2_10_1_1
  doi: 10.1038/s41928-019-0235-0
– ident: e_1_2_10_23_2
  doi: 10.1016/S0065-3233(08)60376-9
– ident: e_1_2_10_31_2
  doi: 10.1088/1361-665X/aad7a1
– ident: e_1_2_10_31_1
  doi: 10.1016/j.apmt.2019.100542
– ident: e_1_2_10_34_1
  doi: 10.1016/j.eml.2015.03.001
– ident: e_1_2_10_4_1
  doi: 10.1038/s41563-020-0736-2
– ident: e_1_2_10_8_1
  doi: 10.1038/nature21002
– ident: e_1_2_10_6_1
  doi: 10.1002/adma.201601613
– ident: e_1_2_10_24_1
  doi: 10.1007/s10965-013-0177-6
– ident: e_1_2_10_28_1
  doi: 10.1002/anie.201708614
– ident: e_1_2_10_32_1
  doi: 10.1021/acsami.8b12279
– ident: e_1_2_10_20_3
  doi: 10.1126/science.aao0350
– ident: e_1_2_10_21_1
  doi: 10.1021/ic0487979
– ident: e_1_2_10_15_1
  doi: 10.1038/nmat4037
– ident: e_1_2_10_7_1
  doi: 10.1038/s41467-020-14446-2
– ident: e_1_2_10_11_1
  doi: 10.1038/35057232
– ident: e_1_2_10_29_1
  doi: 10.1002/cphc.201900545
– ident: e_1_2_10_27_1
  doi: 10.1038/s41428-018-0080-4
– ident: e_1_2_10_14_2
  doi: 10.1038/nature10447
– ident: e_1_2_10_3_3
  doi: 10.1002/adfm.202104665
– ident: e_1_2_10_14_1
  doi: 10.1038/nchem.2492
– ident: e_1_2_10_14_3
  doi: 10.1002/adfm.201901058
– ident: e_1_2_10_25_1
  doi: 10.1002/adma.201901402
– ident: e_1_2_10_16_1
  doi: 10.1038/s41928-019-0206-5
– ident: e_1_2_10_18_1
  doi: 10.1038/s41467-020-19405-5
– ident: e_1_2_10_25_2
  doi: 10.1021/jo971176v
– ident: e_1_2_10_12_1
  doi: 10.1038/s41578-020-0202-4
– ident: e_1_2_10_26_1
  doi: 10.1016/j.elspec.2010.01.006
SSID ssj0009606
Score 2.7170796
Snippet Self‐healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses...
Self-healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses...
Abstract Self‐healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2105416
SubjectTerms anti‐freezing
artificial nerve fibers
Biomimetic materials
Bionics
Cryogenic temperature
Deformation
Economic impact
Electric Conductivity
Electronic devices
Electronics
Freezing
Hazard mitigation
Healing
Hydrogels
Hydrogels - chemistry
Ions
Materials science
Nerve Fibers
Nerves
Robots
self‐healing ionic hydrogels
Signal transmission
Stretchability
ultra‐stretchability
Title Ultra‐Stretchable and Fast Self‐Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202105416
https://www.ncbi.nlm.nih.gov/pubmed/35103354
https://www.proquest.com/docview/2652761874
https://search.proquest.com/docview/2624654057
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMdPiAkG3o_wkpGQmEKp7TjpWJVWBakdgEpskRM7CFGlqE0HmPgIfEY-CXdJm7YwIMGW2I7sxOfL34nvZ4CzKBGBNYq7sSe5K6tR4GojE1diBqZUA12jQOFOV7V78ubBe5iL4i_4EOUHNxoZub-mAa6jUWUGDdUm5wbhlMVDUYFOmGh6pIpuZ_wokuc5bE94bk3JYEptvOSVxcsX30o_pOaics1fPa110NNGFytOni_GWXQRv33jOf7nrjZgbaJLWb0wpE1YsukWrM7RCrdh0OtnQ_35_kF_srGzKeiK6dSwlh5l7M72E8yjsCYsza4Jucvar2Y4eLR99pSyxvAVDym1ORdcx1A057UWJAvWpRWYrEXrWHag12reN9ruZL8GN0ZZo1xD2GPlC3S-3OdCKUskHGlrJtYGZ-GxQo8SCy-ylzVjrRBa2sCgDyDrSKQWu7CcDlK7DyzxCWLpR9VqYmSg4gCVpwkSISOplIl9B86n_RW-FFiOsAAw85AeYVg-QgeOpt0ZTobnKOTK476i7QgdOC2zcWDR3xKd2sGYynBizaGedWCvMIOyKkEcQrRlB3jemb-0Iaxfderl2cFfLjqEFU6BF_maoSNYzoZje4xyKItOcpP_AiEcAe0
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTuMwEMdHUA4LBz52Fwgfi5GQOAWo7TjpsSpUZZf2AFTiFjmxgxBVikp6gBOPwDPyJMwkTaBwQGJvSWwriT3j_JPM_AywFyUisEZxN_Ykd2U9ClxtZOJKLMAj9UA3KFG421Odvvx75ZXRhJQLU_Ahqg9u5Bn5fE0OTh-kD9-oodrk4CB8Z_FQVczCHPq8R755fP5GkCKBnuP2hOc2lAxKbuMRP5xuP_1c-iQ2p7Vr_vBpL0FUXnYRc3J7MM6ig_jxA9Hxv-5rGRYn0pQ1C1tagRmb_oSFd8DCXzDsD7KRfnl6pp_ZON6Ud8V0alhb32fswg4SLKPMJqzNTom6yzoPZjS8tgN2k7LW6AE36ejJu_w6hro5P2sBs2A9CsJkbQpl-Q399sllq-NOlmxwY1Q2yjVEPla-wPmX-1woZQmGI23DxNrgi3iscFKJhRfZo4axVggtbWBwGiADSaQWq1BLh6ldB5b4xLH0o3o9MTJQcYDi0wSJkJFUysS-A_vlgIV3BZkjLBjMPKQuDKsudGCrHM9w4qH3IVce9xWtSOjAblWMvkU_THRqh2Oqwwk3h5LWgbXCDqpTCUIRojk7wPPR_OIawuZxt1ntbXyn0Q786Fx2z8Kz096_TZjnlIeRhxBtQS0bje02qqMs-pPb_ytPEgYN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMefBpMmOMDGz4wfM9IkTinUdpz0WFGiFtZq2qjUW-TEDkJUKSrpAU78Cfsb95fsvaQNLRwmwS2JHcXxe3a-jv0-BvgepyKwRnE38SR3ZT0OXG1k6kpMwCv1QDcoULjbU-2-vBh4g7ko_pIPUf1wo5ZR9NfUwO9MevIMDdWm4AbhkMVDUbEEH6USnIZfrV_PACnS5wVtT3huQ8lghm085SeL9y9-ll5pzUXpWnx7wnXQs1KXS05ua5M8riWPL4CO73mtz7A2FaasWXrSF_hgsw1YncMVbsKoP8zH-u_TH5rKRmtT1BXTmWGhvs_ZbztMMY3imjA36xBzl7UfzHh0bYfsJmNn4wc8pKvnc9F1DFVz8dQSZcF6tASThbSQZQv64fnVWdudbtjgJqhrlGuIe6x8gb0v97lQyhIKR9qGSbTBYXiisEtJhBfb04axVggtbWCwEyD3SKUW27CcjTK7Cyz1iWLpx_V6amSgkgClpwlSIWOplEl8B45n9oruSi5HVBKYeURVGFVV6MD-zJzRtH3eR1x53Fe0H6EDR1UytiyaLtGZHU0oDyfYHApaB3ZKN6geJQhEiM7sAC-M-Z8yRM1Wt1mdfX3LTd_g089WGP3o9C73YIVTEEaxfmgflvPxxB6gNMrjw8L7_wE0VwS8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra%E2%80%90Stretchable+and+Fast+Self%E2%80%90Healing+Ionic+Hydrogel+in+Cryogenic+Environments+for+Artificial+Nerve+Fiber&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Chan&rft.au=Liu%2C+Ying&rft.au=Qu%2C+Xuecheng&rft.au=Shi%2C+Bojing&rft.date=2022-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=16&rft_id=info:doi/10.1002%2Fadma.202105416&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202105416
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon