Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn‐Ion Batteries
Rechargeable zinc‐ion batteries (ZIBs) have shown great potential as an alternative to lithium‐ion batteries. The ZIBs utilize Zn metal as the anode, which possesses many advantages such as low cost, high safety, eco‐friendliness, and high capacity. However, on the other hand, the Zn anode also suff...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 21; pp. e2200006 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable zinc‐ion batteries (ZIBs) have shown great potential as an alternative to lithium‐ion batteries. The ZIBs utilize Zn metal as the anode, which possesses many advantages such as low cost, high safety, eco‐friendliness, and high capacity. However, on the other hand, the Zn anode also suffers from many issues, including dendritic growth, corrosion, and passivation. These issues are largely related to the surface and interface properties of the Zn anode. Many efforts have therefore been devoted to the modification of the Zn anode, aiming to eliminate the above‐mentioned problems. This review gives a comprehensive summary on the mechanism behind these issues as well as the recent progress on Zn anode modification with focus on the strategies of surface and interface engineering, covering the design and application of both the Zn anode supports and surface protective layers, along with abundant examples. In addition, the promising research directions and perspective on these strategies are also presented.
Zn anodes in aqueous Zn‐ion batteries suffer from dendritic growth, corrosion, and passivation issues. A comprehensive review of the recent progress in Zn anode modification with focus on the design and application of both Zn anode supports and surface protective layers is presented. Additionally, promising research directions are also suggested to promote the development of highly reversible Zn anodes. |
---|---|
AbstractList | Rechargeable zinc‐ion batteries (ZIBs) have shown great potential as an alternative to lithium‐ion batteries. The ZIBs utilize Zn metal as the anode, which possesses many advantages such as low cost, high safety, eco‐friendliness, and high capacity. However, on the other hand, the Zn anode also suffers from many issues, including dendritic growth, corrosion, and passivation. These issues are largely related to the surface and interface properties of the Zn anode. Many efforts have therefore been devoted to the modification of the Zn anode, aiming to eliminate the above‐mentioned problems. This review gives a comprehensive summary on the mechanism behind these issues as well as the recent progress on Zn anode modification with focus on the strategies of surface and interface engineering, covering the design and application of both the Zn anode supports and surface protective layers, along with abundant examples. In addition, the promising research directions and perspective on these strategies are also presented.
Zn anodes in aqueous Zn‐ion batteries suffer from dendritic growth, corrosion, and passivation issues. A comprehensive review of the recent progress in Zn anode modification with focus on the design and application of both Zn anode supports and surface protective layers is presented. Additionally, promising research directions are also suggested to promote the development of highly reversible Zn anodes. Rechargeable zinc-ion batteries (ZIBs) have shown great potential as an alternative to lithium-ion batteries. The ZIBs utilize Zn metal as the anode, which possesses many advantages such as low cost, high safety, eco-friendliness, and high capacity. However, on the other hand, the Zn anode also suffers from many issues, including dendritic growth, corrosion, and passivation. These issues are largely related to the surface and interface properties of the Zn anode. Many efforts have therefore been devoted to the modification of the Zn anode, aiming to eliminate the above-mentioned problems. This review gives a comprehensive summary on the mechanism behind these issues as well as the recent progress on Zn anode modification with focus on the strategies of surface and interface engineering, covering the design and application of both the Zn anode supports and surface protective layers, along with abundant examples. In addition, the promising research directions and perspective on these strategies are also presented.Rechargeable zinc-ion batteries (ZIBs) have shown great potential as an alternative to lithium-ion batteries. The ZIBs utilize Zn metal as the anode, which possesses many advantages such as low cost, high safety, eco-friendliness, and high capacity. However, on the other hand, the Zn anode also suffers from many issues, including dendritic growth, corrosion, and passivation. These issues are largely related to the surface and interface properties of the Zn anode. Many efforts have therefore been devoted to the modification of the Zn anode, aiming to eliminate the above-mentioned problems. This review gives a comprehensive summary on the mechanism behind these issues as well as the recent progress on Zn anode modification with focus on the strategies of surface and interface engineering, covering the design and application of both the Zn anode supports and surface protective layers, along with abundant examples. In addition, the promising research directions and perspective on these strategies are also presented. Rechargeable zinc-ion batteries (ZIBs) have shown great potential as an alternative to lithium-ion batteries. The ZIBs utilize Zn metal as the anode, which possesses many advantages such as low cost, high safety, eco-friendliness, and high capacity. However, on the other hand, the Zn anode also suffers from many issues, including dendritic growth, corrosion, and passivation. These issues are largely related to the surface and interface properties of the Zn anode. Many efforts have therefore been devoted to the modification of the Zn anode, aiming to eliminate the above-mentioned problems. This review gives a comprehensive summary on the mechanism behind these issues as well as the recent progress on Zn anode modification with focus on the strategies of surface and interface engineering, covering the design and application of both the Zn anode supports and surface protective layers, along with abundant examples. In addition, the promising research directions and perspective on these strategies are also presented. |
Author | Zheng, Jiaxian Ming, Fangwang Zeng, Ye Jiang, Qiu Huang, Zihao Wei, Binbin Qi, Zhengbing Wang, Zhoucheng Liang, Hanfeng |
Author_xml | – sequence: 1 givenname: Jiaxian surname: Zheng fullname: Zheng, Jiaxian organization: Xiamen University – sequence: 2 givenname: Zihao surname: Huang fullname: Huang, Zihao organization: Xiamen University – sequence: 3 givenname: Fangwang surname: Ming fullname: Ming, Fangwang organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Ye surname: Zeng fullname: Zeng, Ye organization: Xiamen University – sequence: 5 givenname: Binbin surname: Wei fullname: Wei, Binbin organization: Tsinghua University – sequence: 6 givenname: Qiu surname: Jiang fullname: Jiang, Qiu email: jiangqiu@uestc.edu.cn organization: University of Electronic Science and Technology of China – sequence: 7 givenname: Zhengbing surname: Qi fullname: Qi, Zhengbing email: zbqi@xmut.edu.cn organization: Xiamen University of Technology – sequence: 8 givenname: Zhoucheng surname: Wang fullname: Wang, Zhoucheng organization: Xiamen University – sequence: 9 givenname: Hanfeng orcidid: 0000-0002-1778-3975 surname: Liang fullname: Liang, Hanfeng email: hfliang@xmu.edu.cn organization: Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35261146$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKAzEUhoMoatWtSxlw46Y1t8nMLKt4KVQELwvdDJnMSY1Mk5rMIN35CD6jT2JKtYIgns05ge8_-Tl_D61bZwGhfYIHBGN6HKZNM6CYUhxLrKFtIgjri5wW66uZ4C3UC-EZY0YozzbRFkupIISLbfRw23ktFSTS1snItrB8ndmJsQDe2EnidPJok6F1NYTExOmlA9eF5AbUk_QTkFUDkfh4ex85m5zINi4xEHbRhpZNgL2vvoPuz8_uTi_74-uL0elw3FecFaJfFUxynUulOU1pnXPJSQVC5HmWp0QxQjRLpU6zmoACTinBdQa6ir3AuarYDjpa7p15F52FtpyaoKBppF3YLKlgWZrTlPGIHv5Cn13nbXQXKVEwTBheUAdfVFdNoS5n3kyln5ffR4vAYAko70LwoFcIweUilXKRSrlKJQr4L4EyrWyNs62XpvlbVixlr6aB-T-flLdX4_GP9hO_CaCY |
CitedBy_id | crossref_primary_10_1016_j_jcis_2022_11_030 crossref_primary_10_1002_adfm_202209642 crossref_primary_10_1002_adfm_202316223 crossref_primary_10_1021_acsaem_4c02016 crossref_primary_10_1002_anie_202411056 crossref_primary_10_1021_acs_langmuir_4c03380 crossref_primary_10_1002_smll_202309154 crossref_primary_10_1021_jacs_2c13540 crossref_primary_10_1002_adma_202208764 crossref_primary_10_1002_cssc_202300632 crossref_primary_10_1016_j_scib_2024_12_017 crossref_primary_10_54227_mlab_20240007 crossref_primary_10_1016_j_est_2024_112790 crossref_primary_10_1016_j_apsusc_2023_156704 crossref_primary_10_1016_j_est_2023_108851 crossref_primary_10_1021_acsami_4c01356 crossref_primary_10_1016_j_jcis_2022_09_062 crossref_primary_10_3390_molecules28062721 crossref_primary_10_1016_S1872_5805_23_60740_1 crossref_primary_10_1002_aenm_202301743 crossref_primary_10_1002_smtd_202402213 crossref_primary_10_1016_j_jcis_2024_05_153 crossref_primary_10_1002_batt_202300486 crossref_primary_10_1016_j_cej_2023_141334 crossref_primary_10_1016_j_jcis_2024_08_022 crossref_primary_10_1021_acsami_3c04250 crossref_primary_10_1016_j_chempr_2023_03_033 crossref_primary_10_1016_j_trechm_2024_10_007 crossref_primary_10_1002_cssc_202400076 crossref_primary_10_1002_smll_202403062 crossref_primary_10_1016_j_jiec_2023_03_061 crossref_primary_10_1002_ange_202309957 crossref_primary_10_1016_j_cej_2022_140145 crossref_primary_10_3390_batteries9010041 crossref_primary_10_1002_anie_202308454 crossref_primary_10_1016_j_jcis_2023_05_171 crossref_primary_10_1002_bte2_20230063 crossref_primary_10_1002_smtd_202401499 crossref_primary_10_1002_smll_202311851 crossref_primary_10_1002_chem_202303461 crossref_primary_10_1002_smll_202203583 crossref_primary_10_1016_j_ensm_2025_104127 crossref_primary_10_1039_D4CS00779D crossref_primary_10_1007_s12598_024_03084_y crossref_primary_10_1002_smll_202405379 crossref_primary_10_1016_j_ccr_2024_216255 crossref_primary_10_1016_j_electacta_2023_141883 crossref_primary_10_1021_acsami_4c06463 crossref_primary_10_1002_smll_202306308 crossref_primary_10_1002_adfm_202413495 crossref_primary_10_1007_s12598_023_02541_4 crossref_primary_10_1007_s40843_023_2807_5 crossref_primary_10_1021_acsami_4c09699 crossref_primary_10_1021_acs_jpcc_3c01386 crossref_primary_10_1016_j_ensm_2023_03_028 crossref_primary_10_1002_sus2_118 crossref_primary_10_1002_ange_202411056 crossref_primary_10_1016_j_jechem_2022_11_028 crossref_primary_10_1002_adfm_202208288 crossref_primary_10_1002_batt_202400071 crossref_primary_10_1002_aenm_202300331 crossref_primary_10_1016_j_ensm_2024_103300 crossref_primary_10_1021_jacs_3c07764 crossref_primary_10_26599_NRE_2023_9120039 crossref_primary_10_1016_j_apsusc_2023_156384 crossref_primary_10_1002_anie_202309957 crossref_primary_10_1021_acsenergylett_2c01960 crossref_primary_10_1039_D3SC05283D crossref_primary_10_1002_cnl2_22 crossref_primary_10_1002_batt_202400237 crossref_primary_10_1016_j_cej_2022_137710 crossref_primary_10_1002_advs_202411995 crossref_primary_10_1002_est2_540 crossref_primary_10_1002_celc_202400192 crossref_primary_10_1002_aenm_202300606 crossref_primary_10_1016_j_jallcom_2024_177775 crossref_primary_10_1016_j_cej_2023_143054 crossref_primary_10_1016_j_matchar_2025_114715 crossref_primary_10_1002_sstr_202400343 crossref_primary_10_1016_j_cej_2023_143561 crossref_primary_10_1002_smll_202401916 crossref_primary_10_1002_adfm_202313150 crossref_primary_10_3390_molecules28114459 crossref_primary_10_1016_j_jpowsour_2024_234977 crossref_primary_10_1021_acsnano_2c08196 crossref_primary_10_1039_D3NR01306E crossref_primary_10_1002_aenm_202401018 crossref_primary_10_1021_acs_energyfuels_4c02552 crossref_primary_10_1002_aenm_202204365 crossref_primary_10_1039_D3DT02212A crossref_primary_10_1016_j_jcis_2023_11_117 crossref_primary_10_1002_advs_202308087 crossref_primary_10_1002_smll_202301874 crossref_primary_10_1016_j_ensm_2024_103364 crossref_primary_10_1021_acs_nanolett_3c03161 crossref_primary_10_1360_SSC_2023_0075 crossref_primary_10_1021_acs_inorgchem_4c00556 crossref_primary_10_1016_j_jcis_2024_05_112 crossref_primary_10_1088_2515_7655_ad34fc crossref_primary_10_1039_D3GC03447J crossref_primary_10_1002_adfm_202309840 crossref_primary_10_1039_D3TA06778E crossref_primary_10_1002_bte2_20230024 crossref_primary_10_1002_smll_202400390 crossref_primary_10_1007_s11664_023_10793_0 crossref_primary_10_1002_adfm_202410158 crossref_primary_10_23919_IEN_2024_0003 crossref_primary_10_1016_j_cej_2025_161688 crossref_primary_10_1039_D4QI00808A crossref_primary_10_1002_batt_202200468 crossref_primary_10_1002_aenm_202301670 crossref_primary_10_3390_molecules29143416 crossref_primary_10_1021_acsenergylett_3c01017 crossref_primary_10_1002_eem2_12769 crossref_primary_10_1016_j_jelechem_2024_118558 crossref_primary_10_1002_advs_202303343 crossref_primary_10_1002_adfm_202405318 crossref_primary_10_1021_acsnano_4c11486 crossref_primary_10_1016_j_est_2023_109808 crossref_primary_10_1002_advs_202206077 crossref_primary_10_1038_s41467_023_40462_z crossref_primary_10_1016_j_nxener_2023_100073 crossref_primary_10_1016_j_apsusc_2023_158591 crossref_primary_10_1016_j_est_2024_112898 crossref_primary_10_1021_acsenergylett_2c02282 crossref_primary_10_1021_acs_nanolett_3c01706 crossref_primary_10_1002_aenm_202403739 crossref_primary_10_1016_j_est_2023_109085 crossref_primary_10_1016_j_est_2024_115245 crossref_primary_10_1039_D3TA07497H crossref_primary_10_1039_D4TA02639J crossref_primary_10_1016_j_apsusc_2023_157936 crossref_primary_10_1016_j_progpolymsci_2023_101714 crossref_primary_10_1002_cnl2_109 crossref_primary_10_1016_j_ensm_2024_103869 crossref_primary_10_1002_smll_202304723 crossref_primary_10_1016_j_colsurfa_2022_130802 crossref_primary_10_1002_adma_202413515 crossref_primary_10_1002_ange_202308454 crossref_primary_10_1016_j_nanoen_2022_107791 crossref_primary_10_1016_j_ensm_2023_02_028 crossref_primary_10_1007_s12274_022_4458_4 crossref_primary_10_1016_j_ccr_2024_216044 crossref_primary_10_3390_en16217443 crossref_primary_10_1002_eom2_12328 crossref_primary_10_1016_j_ensm_2023_103168 crossref_primary_10_1007_s12274_022_4477_1 crossref_primary_10_1002_chem_202302502 crossref_primary_10_1016_j_cej_2024_154154 crossref_primary_10_1016_j_mtcomm_2024_108606 crossref_primary_10_1021_acssuschemeng_4c02541 crossref_primary_10_1002_adfm_202408662 crossref_primary_10_1002_adfm_202310884 crossref_primary_10_1002_adfm_202315539 crossref_primary_10_1007_s12598_023_02571_y crossref_primary_10_1021_acsami_3c19112 crossref_primary_10_1155_2024_2329261 crossref_primary_10_1088_1361_6528_ad0245 crossref_primary_10_1002_smll_202306615 crossref_primary_10_3390_molecules30030529 crossref_primary_10_1016_j_molstruc_2025_141924 crossref_primary_10_1039_D4NJ05238B crossref_primary_10_1002_smtd_202201683 |
Cites_doi | 10.1002/adma.201903778 10.1016/j.nanoen.2019.05.059 10.1039/D0SC00022A 10.1039/C9EE00596J 10.1002/adfm.202100186 10.1021/acsami.8b04085 10.1039/D0EE00723D 10.1016/j.mtener.2021.100692 10.1021/acsaem.8b02011 10.1002/aenm.202003927 10.1021/acsami.9b11243 10.1002/eom2.12035 10.1038/nenergy.2016.10 10.1002/smll.202101901 10.1002/anie.202005472 10.1002/adfm.201802016 10.1007/s11661-011-0908-4 10.1016/j.ensm.2020.10.027 10.1021/acsami.9b10905 10.1038/s41467-019-13436-3 10.1149/2.1031610jes 10.1002/anie.201508848 10.1021/acsenergylett.1c00939 10.1021/acsnano.9b05599 10.1039/C6TA09985H 10.1002/adfm.202100398 10.1002/adfm.202008894 10.1002/aenm.201904215 10.1126/science.aan8285 10.1038/s41560-021-00797-7 10.1002/aenm.202001599 10.1021/acsaem.9b00675 10.1002/aenm.202100186 10.1039/D0TA05253A 10.1016/S0169-4332(99)00334-7 10.1021/acsenergylett.1c01521 10.1038/s41560-018-0309-7 10.1016/j.apsusc.2019.03.197 10.1126/science.aax6873 10.1039/D1EE00783A 10.1038/s41467-020-17752-x 10.1039/C9CS00806C 10.1002/adfm.201908528 10.1038/s41563-018-0063-z 10.1016/j.jechem.2020.07.021 10.1002/aenm.201801090 10.1007/BF01023596 10.1002/adma.202106897 10.1002/adma.202100187 10.1002/smll.202101728 10.1016/j.electacta.2015.01.217 10.1021/acsaem.8b00583 10.1038/s41560-018-0276-z 10.1002/aenm.202003419 10.1016/j.mser.2018.10.002 10.1002/adma.202007406 10.1002/adfm.202106114 10.1039/D0EE01277G 10.1002/anie.202001844 10.1002/adma.202106867 10.1002/adfm.202001263 10.1002/celc.201800572 10.1016/j.jpowsour.2019.227244 10.1002/batt.201900052 10.1002/adma.202105426 10.1016/j.ensm.2021.09.021 10.1021/acsenergylett.0c01235 10.1021/acsnano.1c02928 10.1021/acsaem.9b01063 10.1021/acsenergylett.8b01426 10.1021/acs.nanolett.1c03917 10.1016/j.ensm.2019.09.004 10.1016/j.ensm.2019.04.022 10.1038/s41467-020-18284-0 10.1016/j.enchem.2019.100022 10.1039/D0EE03898A 10.1021/acsenergylett.8b01552 10.1002/smll.202001736 10.1016/j.nanoen.2020.104880 10.1002/aenm.202102797 10.1002/smll.202001323 10.1002/adma.202101649 10.1002/adma.201905681 10.1002/adma.201704303 10.1002/adfm.202000599 10.1002/aenm.202100982 10.1016/j.joule.2019.02.012 10.1007/s40820-021-00599-2 10.1002/anie.201907830 10.1002/adfm.202101607 10.1002/adma.202105951 10.1039/D1EE01851E 10.1038/s41467-020-15478-4 10.1039/C9TA05053A 10.1021/acsenergylett.0c02343 10.1002/anie.201702099 10.1002/anie.201813223 10.1002/adfm.202107397 10.1002/adfm.201907120 10.1039/D0TA00748J 10.1021/acssuschemeng.8b05568 10.1021/acsenergylett.1c02088 10.1038/s41560-020-0584-y 10.1016/j.jechem.2021.09.042 10.1007/s40820-021-00764-7 10.1021/acsami.1c04797 10.1063/1.3265431 10.1021/acsenergylett.0c02684 10.1038/s41467-018-04060-8 10.1021/acssuschemeng.9b04085 10.1039/C4TA05565A 10.1002/admi.201800848 10.1039/C9EE02356A 10.1002/aenm.202003065 10.1016/S0257-8972(99)00325-4 10.1002/adfm.202001867 10.1021/acsami.8b07781 10.1016/j.nanoen.2018.12.086 10.1021/acsenergylett.1c02299 10.1016/j.nanoen.2019.05.042 10.1016/j.ensm.2021.09.012 10.1007/s40820-020-00487-1 10.1016/j.joule.2018.11.007 10.1002/adma.202001755 10.1021/jacs.0c11753 10.1002/adma.202007388 10.1002/adsu.202000082 10.1002/adma.201801213 10.1002/aenm.202003931 10.1016/j.ensm.2020.01.003 10.1039/D0TA12177K 10.1039/D1EE03377H 10.1002/anie.202000162 10.1021/acs.chemrev.0c01100 10.1039/C9EE03545A 10.1002/adma.201903675 10.1038/s41578-019-0166-4 10.1002/batt.201900229 10.1021/acsenergylett.1c01249 10.1002/aenm.202101299 10.1002/adfm.202108533 10.1039/C8CC07730D 10.1021/acs.chemrev.8b00252 10.1002/advs.202002173 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202200006 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 35261146 10_1002_smll_202200006 SMLL202200006 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22001081; 22075236 – fundername: National Natural Science Foundation of China grantid: 22001081 – fundername: National Natural Science Foundation of China grantid: 22075236 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4396-b93a4f8acf4252d84a41be66887851c311f35af57d1ece42210d7efb210908cb3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 06:39:47 EDT 2025 Fri Jul 25 11:52:25 EDT 2025 Thu Apr 03 07:04:04 EDT 2025 Tue Jul 01 02:54:10 EDT 2025 Thu Apr 24 23:01:45 EDT 2025 Wed Jan 22 16:24:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | surface engineering support materials zinc-ion batteries protective coating interface engineering |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4396-b93a4f8acf4252d84a41be66887851c311f35af57d1ece42210d7efb210908cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1778-3975 |
PMID | 35261146 |
PQID | 2669301304 |
PQPubID | 1046358 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_2637582534 proquest_journals_2669301304 pubmed_primary_35261146 crossref_primary_10_1002_smll_202200006 crossref_citationtrail_10_1002_smll_202200006 wiley_primary_10_1002_smll_202200006_SMLL202200006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2021; 20 2019; 11 2019; 10 2019; 13 2019; 57 2019; 12 2019; 58 2022; 67 2020; 16 2019; 366 2020; 59 2019; 443 2020; 13 2020; 12 2020; 11 1999; 122 2020; 10 2021; 121 2022; 22 2019; 481 2020; 8 2021; 35 2020; 7 2018; 9 2020; 5 2018; 8 2018; 3 2020; 4 2021; 32 2018; 2 2020; 3 2021; 31 2019; 62 2020; 2 2021; 34 2018; 5 2021; 33 2019; 20 2018; 1 2020; 49 2018; 30 2021; 9 2019; 7 2021; 7 2018; 29 2021; 6 2018; 28 2021; 43 2019; 4 2019; 3 2015; 3 2019; 31 2019; 30 2019; 2 2019; 1 2015; 54 2020; 32 2021; 143 1987; 17 2016; 163 2021; 14 2021; 13 2021; 15 2018; 17 2016; 1 2021; 11 2021; 55 2015; 159 2020; 31 2020; 74 2020; 30 2018; 118 2022; 7 2021; 17 2017; 56 2022; 12 1999; 153 2020; 27 2019; 135 2022; 15 2011; 43 2020; 25 2018; 10 2018; 54 2009; 106 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_121_1 Zhang Q. (e_1_2_9_19_1) 2020; 59 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 Li C. (e_1_2_9_29_1) 2020; 3 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_136_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_48_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 481 start-page: 852 year: 2019 publication-title: Appl. Surf. Sci. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 3961 year: 2020 publication-title: Nat. Commun. – volume: 14 start-page: 3120 year: 2021 publication-title: Energy Environ. Sci. – volume: 9 start-page: 1656 year: 2018 publication-title: Nat. Commun. – volume: 8 start-page: 7836 year: 2020 publication-title: J. Mater. Chem. A – volume: 6 start-page: 3063 year: 2021 publication-title: ACS Energy Lett. – volume: 159 start-page: 198 year: 2015 publication-title: Electrochim. Acta – volume: 22 start-page: 1017 year: 2022 publication-title: Nano Lett. – volume: 1 start-page: 1 year: 2016 publication-title: Nat. Energy – volume: 1 start-page: 2434 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 3 start-page: 323 year: 2020 publication-title: Batteries Supercaps – volume: 13 start-page: 2839 year: 2020 publication-title: Energy Environ. Sci. – volume: 5 start-page: 2409 year: 2018 publication-title: ChemElectroChem – volume: 17 start-page: 1129 year: 1987 publication-title: J. Appl. Electrochem. – volume: 10 start-page: 5374 year: 2019 publication-title: Nat. Commun. – volume: 58 start-page: 2760 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 1 year: 2019 publication-title: EnergyChem – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 1076 year: 2018 publication-title: Nat. Energy – volume: 12 start-page: 1938 year: 2019 publication-title: Energy Environ. Sci. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 3 start-page: 146 year: 2020 publication-title: Energy Environ. Sci. – volume: 5 start-page: 2844 year: 2017 publication-title: J. Mater. Chem. A – volume: 3 start-page: 2480 year: 2018 publication-title: ACS Energy Lett. – volume: 2 start-page: 1460 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 12 start-page: 3203 year: 2019 publication-title: Energy Environ. Sci. – volume: 4 start-page: 123 year: 2019 publication-title: Nat. Energy – volume: 366 start-page: 8285 year: 2019 publication-title: Science – volume: 163 year: 2016 publication-title: J. Electrochem. Soc. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 6 start-page: 2765 year: 2021 publication-title: ACS Energy Lett. – volume: 3 start-page: 2620 year: 2018 publication-title: ACS Energy Lett. – volume: 366 start-page: 645 year: 2019 publication-title: Science – volume: 2 start-page: 6490 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 3 start-page: 1289 year: 2019 publication-title: Joule – volume: 20 start-page: 410 year: 2019 publication-title: Energy Storage Mater. – volume: 143 start-page: 3143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 3364 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 17 year: 2021 publication-title: Small – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 7 start-page: 197 year: 2022 publication-title: ACS Energy Lett. – volume: 106 year: 2009 publication-title: J. Appl. Phys. – volume: 6 start-page: 398 year: 2021 publication-title: Nat. Energy – volume: 29 year: 2018 publication-title: Adv. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 2519 year: 2018 publication-title: Joule – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 2 start-page: 4428 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2028 year: 2020 publication-title: Chem. Sci. – volume: 121 start-page: 5986 year: 2021 publication-title: Chem. Rev. – volume: 43 start-page: 375 year: 2021 publication-title: Energy Storage Mater. – volume: 14 start-page: 6 year: 2021 publication-title: Nano‑Micro Lett. – volume: 34 year: 2021 publication-title: Adv. Mater. – volume: 11 start-page: 4463 year: 2020 publication-title: Nat. Commun. – volume: 74 year: 2020 publication-title: Nano Energy – volume: 122 start-page: 143 year: 1999 publication-title: Surf. Coat. Technol. – volume: 13 start-page: 79 year: 2021 publication-title: Nano‑Micro Lett. – volume: 9 start-page: 8452 year: 2021 publication-title: J. Mater. Chem. A – volume: 14 start-page: 5947 year: 2021 publication-title: Energy Environ. Sci. – volume: 49 start-page: 3142 year: 2020 publication-title: Chem. Soc. Rev. – volume: 135 start-page: 58 year: 2019 publication-title: Mater. Sci. Eng., R – volume: 5 start-page: 276 year: 2020 publication-title: Nat. Rev. Mater. – volume: 153 start-page: 53 year: 1999 publication-title: Appl. Surf. Sci. – volume: 43 start-page: 619 year: 2011 publication-title: Metall. Mater. Trans. A – volume: 62 start-page: 550 year: 2019 publication-title: Nano Energy – volume: 62 start-page: 275 year: 2019 publication-title: Nano Energy – volume: 443 year: 2019 publication-title: J. Power Sources – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 5 start-page: 2466 year: 2020 publication-title: ACS Energy Lett. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 16 year: 2020 publication-title: Small – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 17 start-page: 543 year: 2018 publication-title: Nat. Mater. – volume: 6 start-page: 404 year: 2021 publication-title: ACS Energy Lett. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 20 year: 2021 publication-title: Mater. Today Energy – volume: 4 year: 2020 publication-title: Adv. Sustainable Syst. – volume: 59 start-page: 9377 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 55 start-page: 549 year: 2021 publication-title: J. Energy Chem. – volume: 14 start-page: 4077 year: 2021 publication-title: Energy Environ. Sci. – volume: 67 start-page: 82 year: 2022 publication-title: J. Energy Chem. – volume: 12 start-page: 152 year: 2020 publication-title: Nano‑Micro Lett. – volume: 35 start-page: 19 year: 2021 publication-title: Energy Storage Mater. – volume: 11 start-page: 1634 year: 2020 publication-title: Nat. Commun. – volume: 57 start-page: 625 year: 2019 publication-title: Nano Energy – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 503 year: 2020 publication-title: Energy Environ. Sci. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 6 start-page: 1015 year: 2021 publication-title: ACS Energy Lett. – volume: 25 start-page: 858 year: 2020 publication-title: Energy Storage Mater. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 56 start-page: 7764 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 3078 year: 2021 publication-title: ACS Energy Lett. – volume: 7 start-page: 247 year: 2021 publication-title: ACS Energy Lett. – volume: 43 start-page: 317 year: 2021 publication-title: Energy Storage Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 13 start-page: 4406 year: 2020 publication-title: Energy Environ. Sci. – volume: 15 start-page: 499 year: 2022 publication-title: Energy Environ. Sci. – volume: 118 start-page: 9233 year: 2018 publication-title: Chem. Rev. – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – volume: 2 year: 2020 publication-title: EcoMat – volume: 5 start-page: 440 year: 2020 publication-title: Nat. Energy – volume: 2 start-page: 743 year: 2019 publication-title: Batteries Supercaps – volume: 3 start-page: 1364 year: 2015 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 27 start-page: 1 year: 2020 publication-title: Energy Storage Mater. – ident: e_1_2_9_25_1 doi: 10.1002/adma.201903778 – ident: e_1_2_9_11_1 doi: 10.1016/j.nanoen.2019.05.059 – ident: e_1_2_9_18_1 doi: 10.1039/D0SC00022A – ident: e_1_2_9_105_1 doi: 10.1039/C9EE00596J – ident: e_1_2_9_121_1 doi: 10.1002/adfm.202100186 – ident: e_1_2_9_103_1 doi: 10.1021/acsami.8b04085 – ident: e_1_2_9_43_1 doi: 10.1039/D0EE00723D – ident: e_1_2_9_78_1 doi: 10.1016/j.mtener.2021.100692 – volume: 59 year: 2020 ident: e_1_2_9_19_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_9_40_1 doi: 10.1021/acsaem.8b02011 – ident: e_1_2_9_50_1 doi: 10.1002/aenm.202003927 – ident: e_1_2_9_92_1 doi: 10.1021/acsami.9b11243 – ident: e_1_2_9_58_1 doi: 10.1002/eom2.12035 – ident: e_1_2_9_33_1 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_9_128_1 doi: 10.1002/smll.202101901 – ident: e_1_2_9_110_1 doi: 10.1002/anie.202005472 – ident: e_1_2_9_74_1 doi: 10.1002/adfm.201802016 – ident: e_1_2_9_75_1 doi: 10.1007/s11661-011-0908-4 – ident: e_1_2_9_79_1 doi: 10.1016/j.ensm.2020.10.027 – ident: e_1_2_9_137_1 doi: 10.1021/acsami.9b10905 – ident: e_1_2_9_141_1 doi: 10.1038/s41467-019-13436-3 – ident: e_1_2_9_36_1 doi: 10.1149/2.1031610jes – ident: e_1_2_9_34_1 doi: 10.1002/anie.201508848 – ident: e_1_2_9_24_1 doi: 10.1021/acsenergylett.1c00939 – ident: e_1_2_9_76_1 doi: 10.1021/acsnano.9b05599 – ident: e_1_2_9_111_1 doi: 10.1039/C6TA09985H – ident: e_1_2_9_120_1 doi: 10.1002/adfm.202100398 – ident: e_1_2_9_42_1 doi: 10.1002/adfm.202008894 – ident: e_1_2_9_115_1 doi: 10.1002/aenm.201904215 – ident: e_1_2_9_2_1 doi: 10.1126/science.aan8285 – ident: e_1_2_9_49_1 doi: 10.1038/s41560-021-00797-7 – ident: e_1_2_9_32_1 doi: 10.1002/aenm.202001599 – ident: e_1_2_9_38_1 doi: 10.1021/acsaem.9b00675 – ident: e_1_2_9_80_1 doi: 10.1002/aenm.202100186 – ident: e_1_2_9_108_1 doi: 10.1039/D0TA05253A – ident: e_1_2_9_62_1 doi: 10.1016/S0169-4332(99)00334-7 – ident: e_1_2_9_134_1 doi: 10.1021/acsenergylett.1c01521 – ident: e_1_2_9_47_1 doi: 10.1038/s41560-018-0309-7 – ident: e_1_2_9_98_1 doi: 10.1016/j.apsusc.2019.03.197 – ident: e_1_2_9_48_1 doi: 10.1126/science.aax6873 – ident: e_1_2_9_56_1 doi: 10.1039/D1EE00783A – ident: e_1_2_9_83_1 doi: 10.1038/s41467-020-17752-x – ident: e_1_2_9_91_1 doi: 10.1039/C9CS00806C – ident: e_1_2_9_85_1 doi: 10.1002/adfm.201908528 – ident: e_1_2_9_146_1 doi: 10.1038/s41563-018-0063-z – ident: e_1_2_9_130_1 doi: 10.1016/j.jechem.2020.07.021 – ident: e_1_2_9_84_1 doi: 10.1002/aenm.201801090 – ident: e_1_2_9_57_1 doi: 10.1007/BF01023596 – ident: e_1_2_9_72_1 doi: 10.1002/adma.202106897 – ident: e_1_2_9_61_1 doi: 10.1002/adma.202100187 – ident: e_1_2_9_73_1 doi: 10.1126/science.aax6873 – ident: e_1_2_9_123_1 doi: 10.1002/smll.202101728 – ident: e_1_2_9_27_1 doi: 10.1016/j.electacta.2015.01.217 – ident: e_1_2_9_39_1 doi: 10.1021/acsaem.8b00583 – ident: e_1_2_9_31_1 doi: 10.1038/s41560-018-0276-z – ident: e_1_2_9_44_1 doi: 10.1002/aenm.202003419 – ident: e_1_2_9_9_1 doi: 10.1016/j.mser.2018.10.002 – ident: e_1_2_9_118_1 doi: 10.1002/adma.202007406 – ident: e_1_2_9_116_1 doi: 10.1002/adfm.202106114 – ident: e_1_2_9_100_1 doi: 10.1039/D0EE01277G – ident: e_1_2_9_93_1 doi: 10.1002/anie.202001844 – ident: e_1_2_9_64_1 doi: 10.1002/adma.202106867 – ident: e_1_2_9_106_1 doi: 10.1002/adfm.202001263 – ident: e_1_2_9_143_1 doi: 10.1002/celc.201800572 – ident: e_1_2_9_35_1 doi: 10.1016/j.jpowsour.2019.227244 – ident: e_1_2_9_8_1 doi: 10.1002/batt.201900052 – ident: e_1_2_9_69_1 doi: 10.1002/adma.202105426 – ident: e_1_2_9_127_1 doi: 10.1016/j.ensm.2021.09.021 – ident: e_1_2_9_107_1 doi: 10.1021/acsenergylett.0c01235 – ident: e_1_2_9_55_1 doi: 10.1021/acsnano.1c02928 – ident: e_1_2_9_95_1 doi: 10.1021/acsaem.9b01063 – ident: e_1_2_9_4_1 doi: 10.1021/acsenergylett.8b01426 – ident: e_1_2_9_97_1 doi: 10.1021/acs.nanolett.1c03917 – ident: e_1_2_9_133_1 doi: 10.1016/j.ensm.2019.09.004 – ident: e_1_2_9_13_1 doi: 10.1016/j.ensm.2019.04.022 – ident: e_1_2_9_145_1 doi: 10.1038/s41467-020-18284-0 – ident: e_1_2_9_10_1 doi: 10.1016/j.enchem.2019.100022 – ident: e_1_2_9_132_1 doi: 10.1039/D0EE03898A – ident: e_1_2_9_5_1 doi: 10.1021/acsenergylett.8b01552 – ident: e_1_2_9_96_1 doi: 10.1002/smll.202001736 – ident: e_1_2_9_20_1 doi: 10.1016/j.nanoen.2020.104880 – ident: e_1_2_9_30_1 doi: 10.1002/aenm.202102797 – ident: e_1_2_9_71_1 doi: 10.1002/smll.202001323 – ident: e_1_2_9_104_1 doi: 10.1002/adma.202101649 – ident: e_1_2_9_142_1 doi: 10.1002/adma.201905681 – ident: e_1_2_9_90_1 doi: 10.1002/adma.201704303 – ident: e_1_2_9_87_1 doi: 10.1002/adfm.202000599 – ident: e_1_2_9_131_1 doi: 10.1002/aenm.202100982 – ident: e_1_2_9_77_1 doi: 10.1016/j.joule.2019.02.012 – ident: e_1_2_9_81_1 doi: 10.1007/s40820-021-00599-2 – ident: e_1_2_9_53_1 doi: 10.1002/anie.201907830 – ident: e_1_2_9_67_1 doi: 10.1002/adfm.202101607 – ident: e_1_2_9_122_1 doi: 10.1002/adma.202105951 – ident: e_1_2_9_126_1 doi: 10.1039/D1EE01851E – ident: e_1_2_9_70_1 doi: 10.1038/s41467-020-15478-4 – ident: e_1_2_9_12_1 doi: 10.1039/C9TA05053A – ident: e_1_2_9_65_1 doi: 10.1021/acsenergylett.0c02343 – ident: e_1_2_9_46_1 doi: 10.1002/anie.201702099 – ident: e_1_2_9_144_1 doi: 10.1002/anie.201813223 – ident: e_1_2_9_129_1 doi: 10.1002/adfm.202107397 – ident: e_1_2_9_101_1 doi: 10.1002/adfm.201907120 – ident: e_1_2_9_86_1 doi: 10.1039/D0TA00748J – ident: e_1_2_9_51_1 doi: 10.1021/acssuschemeng.8b05568 – ident: e_1_2_9_16_1 doi: 10.1021/acsenergylett.1c02088 – ident: e_1_2_9_147_1 doi: 10.1038/s41560-020-0584-y – ident: e_1_2_9_7_1 doi: 10.1016/j.jechem.2021.09.042 – ident: e_1_2_9_15_1 doi: 10.1007/s40820-021-00764-7 – ident: e_1_2_9_68_1 doi: 10.1021/acsami.1c04797 – ident: e_1_2_9_45_1 doi: 10.1063/1.3265431 – ident: e_1_2_9_17_1 doi: 10.1021/acsenergylett.0c02684 – ident: e_1_2_9_138_1 doi: 10.1038/s41467-018-04060-8 – ident: e_1_2_9_52_1 doi: 10.1021/acssuschemeng.9b04085 – ident: e_1_2_9_112_1 doi: 10.1039/C4TA05565A – volume: 3 start-page: 146 year: 2020 ident: e_1_2_9_29_1 publication-title: Energy Environ. Sci. – ident: e_1_2_9_88_1 doi: 10.1002/admi.201800848 – ident: e_1_2_9_1_1 doi: 10.1039/C9EE02356A – ident: e_1_2_9_22_1 doi: 10.1002/aenm.202003065 – ident: e_1_2_9_63_1 doi: 10.1016/S0257-8972(99)00325-4 – ident: e_1_2_9_89_1 doi: 10.1002/adfm.202001867 – ident: e_1_2_9_99_1 doi: 10.1021/acsami.8b07781 – ident: e_1_2_9_140_1 doi: 10.1016/j.nanoen.2018.12.086 – ident: e_1_2_9_113_1 doi: 10.1021/acsenergylett.1c02299 – ident: e_1_2_9_139_1 doi: 10.1016/j.nanoen.2019.05.042 – ident: e_1_2_9_28_1 doi: 10.1016/j.ensm.2021.09.012 – ident: e_1_2_9_94_1 doi: 10.1007/s40820-020-00487-1 – ident: e_1_2_9_6_1 doi: 10.1016/j.joule.2018.11.007 – ident: e_1_2_9_102_1 doi: 10.1002/adma.202001755 – ident: e_1_2_9_124_1 doi: 10.1021/jacs.0c11753 – ident: e_1_2_9_117_1 doi: 10.1002/adma.202007388 – ident: e_1_2_9_21_1 doi: 10.1002/adsu.202000082 – ident: e_1_2_9_37_1 doi: 10.1002/adma.201801213 – ident: e_1_2_9_54_1 doi: 10.1002/aenm.202003931 – ident: e_1_2_9_109_1 doi: 10.1016/j.ensm.2020.01.003 – ident: e_1_2_9_125_1 doi: 10.1039/D0TA12177K – ident: e_1_2_9_14_1 doi: 10.1039/D1EE03377H – ident: e_1_2_9_23_1 doi: 10.1002/anie.202000162 – ident: e_1_2_9_60_1 doi: 10.1021/acs.chemrev.0c01100 – ident: e_1_2_9_82_1 doi: 10.1039/C9EE03545A – ident: e_1_2_9_41_1 doi: 10.1002/adma.201903675 – ident: e_1_2_9_26_1 doi: 10.1038/s41578-019-0166-4 – ident: e_1_2_9_135_1 doi: 10.1002/batt.201900229 – ident: e_1_2_9_119_1 doi: 10.1021/acsenergylett.1c01249 – ident: e_1_2_9_59_1 doi: 10.1002/aenm.202101299 – ident: e_1_2_9_66_1 doi: 10.1002/adfm.202108533 – ident: e_1_2_9_136_1 doi: 10.1039/C8CC07730D – ident: e_1_2_9_3_1 doi: 10.1021/acs.chemrev.8b00252 – ident: e_1_2_9_114_1 doi: 10.1002/advs.202002173 |
SSID | ssj0031247 |
Score | 2.6813293 |
SecondaryResourceType | review_article |
Snippet | Rechargeable zinc‐ion batteries (ZIBs) have shown great potential as an alternative to lithium‐ion batteries. The ZIBs utilize Zn metal as the anode, which... Rechargeable zinc-ion batteries (ZIBs) have shown great potential as an alternative to lithium-ion batteries. The ZIBs utilize Zn metal as the anode, which... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2200006 |
SubjectTerms | Anodes Anodic protection interface engineering Interfacial properties Lithium-ion batteries Nanotechnology protective coating Rechargeable batteries support materials surface engineering Zinc zinc‐ion batteries |
Title | Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202200006 https://www.ncbi.nlm.nih.gov/pubmed/35261146 https://www.proquest.com/docview/2669301304 https://www.proquest.com/docview/2637582534 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iSQ--H_VFBMFTbDfJvo4iior1oBaqlyXJJiDWXXHbiyd_gr_RX-LMbru2igh6S9gJm9dMvsnjG0L2opbxuJEhS4NAMxnrFot56jEujYiFbIlI42vk9mVw2pHnXb879oq_4oeoN9xQM0p7jQqudNH8JA0tHnt4dMB5aXLBCOOFLURFVzV_lIDFq4yuAmsWQ-KtEWtjizcni0-uSt-g5iRyLZeek3miRpWubpw8HAz6-sC8fOFz_E-rFsjcEJfSw2oiLZIpmy2R2TG2wmVyez14dspYqrKUljuJZW5MhuaO3mX0MMtTW9B7SEED80FBAZwiI5PFd1og8f76dpZntOL2BFd9hXROjm-OTtkwMgMzAGACpmOhpIuUcaDyPI2kkp62QQAWCxCcEZ7nhK-cH6aeNVZy8CvT0DrN8RpoZLRYJdNZntl1Qo0AzBWjKxgYaZ1Q4A_aNPRDZaVxImgQNhqZxAxpyzF6Ri-pCJd5gl2W1F3WIPu1_FNF2PGj5NZooJOh4hYJVCMWeJorG2S3_gwqh-coKsM-AxkBXhb3BcisVROk_hWGG8CH3g3Cy2H-pQ7Jdfvios5t_KXQJpnBdHUJc4tM958HdhuAUl_vlMrwAUAbCGw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeqAcSqEtbEupkZA4GTa28zoiVLTQXQ48pNJLZDu2VAEJYncvPfUn9Df2l3TG2aRsq6pSucXJWPFrPDP2zDcAO1nfRsKqlJdJYrjKTZ_nooy4UFbmUvVlZigaeXSaDC7Vyae49SakWJgGH6I7cCPOCPs1MTgdSO__Qg0d397Q3YEQYc9dgKeU1jtYVWcdgpRE8RXyq6DU4gS91eI29sX-fP15ufSHsjmvuwbhc7QCpm1243NyvTedmD379TdEx0f16wU8n6mm7KBZS6vwxFVrsPwAsPAlXJ1P7722jumqZOEwMZQe0LDas88VO6jq0o3ZF3zCHtbTMUP9lECZHIVqIcWPb9-P64o18J5orb-Cy6MPF4cDPkvOwC3qMAk3udTKZ9p65HpRZkqryLgkwU0LlTgro8jLWPs4LSNnnRJoWpap80aQJ2hmjXwNi1VduQ1gVqLalZM1mFjlvNRoEroyjVPtlPUy6QFvp6awM-RySqBxUzSYy6KgISu6IevBbkd_12B2_JVys53pYsa74wKbkUu60FU92O4-I9fRVYquaMyQRqKhJWKJNOvNCul-RRkHKNa7ByLM8z_aUJyPhsOu9OZ_Kr2HpcHFaFgMj08_voVn9L7xydyExcn91L1DvWlitgJn_ATJqwyH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAcoOW50IKRkDi5TWzHSY5V21UL26qiVCpcIj8lREmq7u6FEz-B38gvYSbZDbtUqBLc4mSs-DX2N7bnG4DXReJS4VTOvdaWq9ImvBQ-5UI5WUqVyMKSN_Lhkd4_VW_PsrMFL_6OH6LfcCPNaOdrUvALH7d-k4aOv57T0YEQ7ZR7E24pnRQ0rnff9wRSElevNrwKLlqcmLfmtI2J2FrOv7wsXcGay9C1XXuG98HMS91dOfmyOZ3YTfftD0LH_6nWKtybAVO23Y2kNbgR6gdwd4Gu8CF8PJleRuMCM7Vn7VZim1qQYU1kn2q2XTc-jNlnfMIKNtMxQ3RKlEyBHLVQ4uf3HwdNzTpyT7TVH8HpcO_Dzj6fhWbgDhGM5raURsXCuIg6L3yhjEpt0BqnLIRwTqZplJmJWe7T4IISaFj6PEQr6B5o4ax8DCt1U4enwJxE0FWSLaidClEaNAiDz7PcBOWi1APg856p3Iy3nMJnnFcd47KoqMmqvskG8KaXv-gYO_4quT7v6GqmueMKi1FKOs5VA3jVf0ado4MUU1OboYxEM0tkEmWedAOk_xXFGyBP7wGItpuvKUN1cjga9aln_5LpJdw-3h1Wo4Ojd8_hDr3uLmSuw8rkcho2EDRN7ItWL34BrSoLPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+and+Interface+Engineering+of+Zn+Anodes+in+Aqueous+Rechargeable+Zn%E2%80%90Ion+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zheng%2C+Jiaxian&rft.au=Huang%2C+Zihao&rft.au=Ming%2C+Fangwang&rft.au=Zeng%2C+Ye&rft.date=2022-05-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202200006&rft.externalDBID=10.1002%252Fsmll.202200006&rft.externalDocID=SMLL202200006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |