Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn‐Ion Batteries

Rechargeable zinc‐ion batteries (ZIBs) have shown great potential as an alternative to lithium‐ion batteries. The ZIBs utilize Zn metal as the anode, which possesses many advantages such as low cost, high safety, eco‐friendliness, and high capacity. However, on the other hand, the Zn anode also suff...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 21; pp. e2200006 - n/a
Main Authors Zheng, Jiaxian, Huang, Zihao, Ming, Fangwang, Zeng, Ye, Wei, Binbin, Jiang, Qiu, Qi, Zhengbing, Wang, Zhoucheng, Liang, Hanfeng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable zinc‐ion batteries (ZIBs) have shown great potential as an alternative to lithium‐ion batteries. The ZIBs utilize Zn metal as the anode, which possesses many advantages such as low cost, high safety, eco‐friendliness, and high capacity. However, on the other hand, the Zn anode also suffers from many issues, including dendritic growth, corrosion, and passivation. These issues are largely related to the surface and interface properties of the Zn anode. Many efforts have therefore been devoted to the modification of the Zn anode, aiming to eliminate the above‐mentioned problems. This review gives a comprehensive summary on the mechanism behind these issues as well as the recent progress on Zn anode modification with focus on the strategies of surface and interface engineering, covering the design and application of both the Zn anode supports and surface protective layers, along with abundant examples. In addition, the promising research directions and perspective on these strategies are also presented. Zn anodes in aqueous Zn‐ion batteries suffer from dendritic growth, corrosion, and passivation issues. A comprehensive review of the recent progress in Zn anode modification with focus on the design and application of both Zn anode supports and surface protective layers is presented. Additionally, promising research directions are also suggested to promote the development of highly reversible Zn anodes.
AbstractList Rechargeable zinc‐ion batteries (ZIBs) have shown great potential as an alternative to lithium‐ion batteries. The ZIBs utilize Zn metal as the anode, which possesses many advantages such as low cost, high safety, eco‐friendliness, and high capacity. However, on the other hand, the Zn anode also suffers from many issues, including dendritic growth, corrosion, and passivation. These issues are largely related to the surface and interface properties of the Zn anode. Many efforts have therefore been devoted to the modification of the Zn anode, aiming to eliminate the above‐mentioned problems. This review gives a comprehensive summary on the mechanism behind these issues as well as the recent progress on Zn anode modification with focus on the strategies of surface and interface engineering, covering the design and application of both the Zn anode supports and surface protective layers, along with abundant examples. In addition, the promising research directions and perspective on these strategies are also presented. Zn anodes in aqueous Zn‐ion batteries suffer from dendritic growth, corrosion, and passivation issues. A comprehensive review of the recent progress in Zn anode modification with focus on the design and application of both Zn anode supports and surface protective layers is presented. Additionally, promising research directions are also suggested to promote the development of highly reversible Zn anodes.
Rechargeable zinc-ion batteries (ZIBs) have shown great potential as an alternative to lithium-ion batteries. The ZIBs utilize Zn metal as the anode, which possesses many advantages such as low cost, high safety, eco-friendliness, and high capacity. However, on the other hand, the Zn anode also suffers from many issues, including dendritic growth, corrosion, and passivation. These issues are largely related to the surface and interface properties of the Zn anode. Many efforts have therefore been devoted to the modification of the Zn anode, aiming to eliminate the above-mentioned problems. This review gives a comprehensive summary on the mechanism behind these issues as well as the recent progress on Zn anode modification with focus on the strategies of surface and interface engineering, covering the design and application of both the Zn anode supports and surface protective layers, along with abundant examples. In addition, the promising research directions and perspective on these strategies are also presented.Rechargeable zinc-ion batteries (ZIBs) have shown great potential as an alternative to lithium-ion batteries. The ZIBs utilize Zn metal as the anode, which possesses many advantages such as low cost, high safety, eco-friendliness, and high capacity. However, on the other hand, the Zn anode also suffers from many issues, including dendritic growth, corrosion, and passivation. These issues are largely related to the surface and interface properties of the Zn anode. Many efforts have therefore been devoted to the modification of the Zn anode, aiming to eliminate the above-mentioned problems. This review gives a comprehensive summary on the mechanism behind these issues as well as the recent progress on Zn anode modification with focus on the strategies of surface and interface engineering, covering the design and application of both the Zn anode supports and surface protective layers, along with abundant examples. In addition, the promising research directions and perspective on these strategies are also presented.
Rechargeable zinc-ion batteries (ZIBs) have shown great potential as an alternative to lithium-ion batteries. The ZIBs utilize Zn metal as the anode, which possesses many advantages such as low cost, high safety, eco-friendliness, and high capacity. However, on the other hand, the Zn anode also suffers from many issues, including dendritic growth, corrosion, and passivation. These issues are largely related to the surface and interface properties of the Zn anode. Many efforts have therefore been devoted to the modification of the Zn anode, aiming to eliminate the above-mentioned problems. This review gives a comprehensive summary on the mechanism behind these issues as well as the recent progress on Zn anode modification with focus on the strategies of surface and interface engineering, covering the design and application of both the Zn anode supports and surface protective layers, along with abundant examples. In addition, the promising research directions and perspective on these strategies are also presented.
Author Zheng, Jiaxian
Ming, Fangwang
Zeng, Ye
Jiang, Qiu
Huang, Zihao
Wei, Binbin
Qi, Zhengbing
Wang, Zhoucheng
Liang, Hanfeng
Author_xml – sequence: 1
  givenname: Jiaxian
  surname: Zheng
  fullname: Zheng, Jiaxian
  organization: Xiamen University
– sequence: 2
  givenname: Zihao
  surname: Huang
  fullname: Huang, Zihao
  organization: Xiamen University
– sequence: 3
  givenname: Fangwang
  surname: Ming
  fullname: Ming, Fangwang
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Ye
  surname: Zeng
  fullname: Zeng, Ye
  organization: Xiamen University
– sequence: 5
  givenname: Binbin
  surname: Wei
  fullname: Wei, Binbin
  organization: Tsinghua University
– sequence: 6
  givenname: Qiu
  surname: Jiang
  fullname: Jiang, Qiu
  email: jiangqiu@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
– sequence: 7
  givenname: Zhengbing
  surname: Qi
  fullname: Qi, Zhengbing
  email: zbqi@xmut.edu.cn
  organization: Xiamen University of Technology
– sequence: 8
  givenname: Zhoucheng
  surname: Wang
  fullname: Wang, Zhoucheng
  organization: Xiamen University
– sequence: 9
  givenname: Hanfeng
  orcidid: 0000-0002-1778-3975
  surname: Liang
  fullname: Liang, Hanfeng
  email: hfliang@xmu.edu.cn
  organization: Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35261146$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKAzEUhoMoatWtSxlw46Y1t8nMLKt4KVQELwvdDJnMSY1Mk5rMIN35CD6jT2JKtYIgns05ge8_-Tl_D61bZwGhfYIHBGN6HKZNM6CYUhxLrKFtIgjri5wW66uZ4C3UC-EZY0YozzbRFkupIISLbfRw23ktFSTS1snItrB8ndmJsQDe2EnidPJok6F1NYTExOmlA9eF5AbUk_QTkFUDkfh4ex85m5zINi4xEHbRhpZNgL2vvoPuz8_uTi_74-uL0elw3FecFaJfFUxynUulOU1pnXPJSQVC5HmWp0QxQjRLpU6zmoACTinBdQa6ir3AuarYDjpa7p15F52FtpyaoKBppF3YLKlgWZrTlPGIHv5Cn13nbXQXKVEwTBheUAdfVFdNoS5n3kyln5ffR4vAYAko70LwoFcIweUilXKRSrlKJQr4L4EyrWyNs62XpvlbVixlr6aB-T-flLdX4_GP9hO_CaCY
CitedBy_id crossref_primary_10_1016_j_jcis_2022_11_030
crossref_primary_10_1002_adfm_202209642
crossref_primary_10_1002_adfm_202316223
crossref_primary_10_1021_acsaem_4c02016
crossref_primary_10_1002_anie_202411056
crossref_primary_10_1021_acs_langmuir_4c03380
crossref_primary_10_1002_smll_202309154
crossref_primary_10_1021_jacs_2c13540
crossref_primary_10_1002_adma_202208764
crossref_primary_10_1002_cssc_202300632
crossref_primary_10_1016_j_scib_2024_12_017
crossref_primary_10_54227_mlab_20240007
crossref_primary_10_1016_j_est_2024_112790
crossref_primary_10_1016_j_apsusc_2023_156704
crossref_primary_10_1016_j_est_2023_108851
crossref_primary_10_1021_acsami_4c01356
crossref_primary_10_1016_j_jcis_2022_09_062
crossref_primary_10_3390_molecules28062721
crossref_primary_10_1016_S1872_5805_23_60740_1
crossref_primary_10_1002_aenm_202301743
crossref_primary_10_1002_smtd_202402213
crossref_primary_10_1016_j_jcis_2024_05_153
crossref_primary_10_1002_batt_202300486
crossref_primary_10_1016_j_cej_2023_141334
crossref_primary_10_1016_j_jcis_2024_08_022
crossref_primary_10_1021_acsami_3c04250
crossref_primary_10_1016_j_chempr_2023_03_033
crossref_primary_10_1016_j_trechm_2024_10_007
crossref_primary_10_1002_cssc_202400076
crossref_primary_10_1002_smll_202403062
crossref_primary_10_1016_j_jiec_2023_03_061
crossref_primary_10_1002_ange_202309957
crossref_primary_10_1016_j_cej_2022_140145
crossref_primary_10_3390_batteries9010041
crossref_primary_10_1002_anie_202308454
crossref_primary_10_1016_j_jcis_2023_05_171
crossref_primary_10_1002_bte2_20230063
crossref_primary_10_1002_smtd_202401499
crossref_primary_10_1002_smll_202311851
crossref_primary_10_1002_chem_202303461
crossref_primary_10_1002_smll_202203583
crossref_primary_10_1016_j_ensm_2025_104127
crossref_primary_10_1039_D4CS00779D
crossref_primary_10_1007_s12598_024_03084_y
crossref_primary_10_1002_smll_202405379
crossref_primary_10_1016_j_ccr_2024_216255
crossref_primary_10_1016_j_electacta_2023_141883
crossref_primary_10_1021_acsami_4c06463
crossref_primary_10_1002_smll_202306308
crossref_primary_10_1002_adfm_202413495
crossref_primary_10_1007_s12598_023_02541_4
crossref_primary_10_1007_s40843_023_2807_5
crossref_primary_10_1021_acsami_4c09699
crossref_primary_10_1021_acs_jpcc_3c01386
crossref_primary_10_1016_j_ensm_2023_03_028
crossref_primary_10_1002_sus2_118
crossref_primary_10_1002_ange_202411056
crossref_primary_10_1016_j_jechem_2022_11_028
crossref_primary_10_1002_adfm_202208288
crossref_primary_10_1002_batt_202400071
crossref_primary_10_1002_aenm_202300331
crossref_primary_10_1016_j_ensm_2024_103300
crossref_primary_10_1021_jacs_3c07764
crossref_primary_10_26599_NRE_2023_9120039
crossref_primary_10_1016_j_apsusc_2023_156384
crossref_primary_10_1002_anie_202309957
crossref_primary_10_1021_acsenergylett_2c01960
crossref_primary_10_1039_D3SC05283D
crossref_primary_10_1002_cnl2_22
crossref_primary_10_1002_batt_202400237
crossref_primary_10_1016_j_cej_2022_137710
crossref_primary_10_1002_advs_202411995
crossref_primary_10_1002_est2_540
crossref_primary_10_1002_celc_202400192
crossref_primary_10_1002_aenm_202300606
crossref_primary_10_1016_j_jallcom_2024_177775
crossref_primary_10_1016_j_cej_2023_143054
crossref_primary_10_1016_j_matchar_2025_114715
crossref_primary_10_1002_sstr_202400343
crossref_primary_10_1016_j_cej_2023_143561
crossref_primary_10_1002_smll_202401916
crossref_primary_10_1002_adfm_202313150
crossref_primary_10_3390_molecules28114459
crossref_primary_10_1016_j_jpowsour_2024_234977
crossref_primary_10_1021_acsnano_2c08196
crossref_primary_10_1039_D3NR01306E
crossref_primary_10_1002_aenm_202401018
crossref_primary_10_1021_acs_energyfuels_4c02552
crossref_primary_10_1002_aenm_202204365
crossref_primary_10_1039_D3DT02212A
crossref_primary_10_1016_j_jcis_2023_11_117
crossref_primary_10_1002_advs_202308087
crossref_primary_10_1002_smll_202301874
crossref_primary_10_1016_j_ensm_2024_103364
crossref_primary_10_1021_acs_nanolett_3c03161
crossref_primary_10_1360_SSC_2023_0075
crossref_primary_10_1021_acs_inorgchem_4c00556
crossref_primary_10_1016_j_jcis_2024_05_112
crossref_primary_10_1088_2515_7655_ad34fc
crossref_primary_10_1039_D3GC03447J
crossref_primary_10_1002_adfm_202309840
crossref_primary_10_1039_D3TA06778E
crossref_primary_10_1002_bte2_20230024
crossref_primary_10_1002_smll_202400390
crossref_primary_10_1007_s11664_023_10793_0
crossref_primary_10_1002_adfm_202410158
crossref_primary_10_23919_IEN_2024_0003
crossref_primary_10_1016_j_cej_2025_161688
crossref_primary_10_1039_D4QI00808A
crossref_primary_10_1002_batt_202200468
crossref_primary_10_1002_aenm_202301670
crossref_primary_10_3390_molecules29143416
crossref_primary_10_1021_acsenergylett_3c01017
crossref_primary_10_1002_eem2_12769
crossref_primary_10_1016_j_jelechem_2024_118558
crossref_primary_10_1002_advs_202303343
crossref_primary_10_1002_adfm_202405318
crossref_primary_10_1021_acsnano_4c11486
crossref_primary_10_1016_j_est_2023_109808
crossref_primary_10_1002_advs_202206077
crossref_primary_10_1038_s41467_023_40462_z
crossref_primary_10_1016_j_nxener_2023_100073
crossref_primary_10_1016_j_apsusc_2023_158591
crossref_primary_10_1016_j_est_2024_112898
crossref_primary_10_1021_acsenergylett_2c02282
crossref_primary_10_1021_acs_nanolett_3c01706
crossref_primary_10_1002_aenm_202403739
crossref_primary_10_1016_j_est_2023_109085
crossref_primary_10_1016_j_est_2024_115245
crossref_primary_10_1039_D3TA07497H
crossref_primary_10_1039_D4TA02639J
crossref_primary_10_1016_j_apsusc_2023_157936
crossref_primary_10_1016_j_progpolymsci_2023_101714
crossref_primary_10_1002_cnl2_109
crossref_primary_10_1016_j_ensm_2024_103869
crossref_primary_10_1002_smll_202304723
crossref_primary_10_1016_j_colsurfa_2022_130802
crossref_primary_10_1002_adma_202413515
crossref_primary_10_1002_ange_202308454
crossref_primary_10_1016_j_nanoen_2022_107791
crossref_primary_10_1016_j_ensm_2023_02_028
crossref_primary_10_1007_s12274_022_4458_4
crossref_primary_10_1016_j_ccr_2024_216044
crossref_primary_10_3390_en16217443
crossref_primary_10_1002_eom2_12328
crossref_primary_10_1016_j_ensm_2023_103168
crossref_primary_10_1007_s12274_022_4477_1
crossref_primary_10_1002_chem_202302502
crossref_primary_10_1016_j_cej_2024_154154
crossref_primary_10_1016_j_mtcomm_2024_108606
crossref_primary_10_1021_acssuschemeng_4c02541
crossref_primary_10_1002_adfm_202408662
crossref_primary_10_1002_adfm_202310884
crossref_primary_10_1002_adfm_202315539
crossref_primary_10_1007_s12598_023_02571_y
crossref_primary_10_1021_acsami_3c19112
crossref_primary_10_1155_2024_2329261
crossref_primary_10_1088_1361_6528_ad0245
crossref_primary_10_1002_smll_202306615
crossref_primary_10_3390_molecules30030529
crossref_primary_10_1016_j_molstruc_2025_141924
crossref_primary_10_1039_D4NJ05238B
crossref_primary_10_1002_smtd_202201683
Cites_doi 10.1002/adma.201903778
10.1016/j.nanoen.2019.05.059
10.1039/D0SC00022A
10.1039/C9EE00596J
10.1002/adfm.202100186
10.1021/acsami.8b04085
10.1039/D0EE00723D
10.1016/j.mtener.2021.100692
10.1021/acsaem.8b02011
10.1002/aenm.202003927
10.1021/acsami.9b11243
10.1002/eom2.12035
10.1038/nenergy.2016.10
10.1002/smll.202101901
10.1002/anie.202005472
10.1002/adfm.201802016
10.1007/s11661-011-0908-4
10.1016/j.ensm.2020.10.027
10.1021/acsami.9b10905
10.1038/s41467-019-13436-3
10.1149/2.1031610jes
10.1002/anie.201508848
10.1021/acsenergylett.1c00939
10.1021/acsnano.9b05599
10.1039/C6TA09985H
10.1002/adfm.202100398
10.1002/adfm.202008894
10.1002/aenm.201904215
10.1126/science.aan8285
10.1038/s41560-021-00797-7
10.1002/aenm.202001599
10.1021/acsaem.9b00675
10.1002/aenm.202100186
10.1039/D0TA05253A
10.1016/S0169-4332(99)00334-7
10.1021/acsenergylett.1c01521
10.1038/s41560-018-0309-7
10.1016/j.apsusc.2019.03.197
10.1126/science.aax6873
10.1039/D1EE00783A
10.1038/s41467-020-17752-x
10.1039/C9CS00806C
10.1002/adfm.201908528
10.1038/s41563-018-0063-z
10.1016/j.jechem.2020.07.021
10.1002/aenm.201801090
10.1007/BF01023596
10.1002/adma.202106897
10.1002/adma.202100187
10.1002/smll.202101728
10.1016/j.electacta.2015.01.217
10.1021/acsaem.8b00583
10.1038/s41560-018-0276-z
10.1002/aenm.202003419
10.1016/j.mser.2018.10.002
10.1002/adma.202007406
10.1002/adfm.202106114
10.1039/D0EE01277G
10.1002/anie.202001844
10.1002/adma.202106867
10.1002/adfm.202001263
10.1002/celc.201800572
10.1016/j.jpowsour.2019.227244
10.1002/batt.201900052
10.1002/adma.202105426
10.1016/j.ensm.2021.09.021
10.1021/acsenergylett.0c01235
10.1021/acsnano.1c02928
10.1021/acsaem.9b01063
10.1021/acsenergylett.8b01426
10.1021/acs.nanolett.1c03917
10.1016/j.ensm.2019.09.004
10.1016/j.ensm.2019.04.022
10.1038/s41467-020-18284-0
10.1016/j.enchem.2019.100022
10.1039/D0EE03898A
10.1021/acsenergylett.8b01552
10.1002/smll.202001736
10.1016/j.nanoen.2020.104880
10.1002/aenm.202102797
10.1002/smll.202001323
10.1002/adma.202101649
10.1002/adma.201905681
10.1002/adma.201704303
10.1002/adfm.202000599
10.1002/aenm.202100982
10.1016/j.joule.2019.02.012
10.1007/s40820-021-00599-2
10.1002/anie.201907830
10.1002/adfm.202101607
10.1002/adma.202105951
10.1039/D1EE01851E
10.1038/s41467-020-15478-4
10.1039/C9TA05053A
10.1021/acsenergylett.0c02343
10.1002/anie.201702099
10.1002/anie.201813223
10.1002/adfm.202107397
10.1002/adfm.201907120
10.1039/D0TA00748J
10.1021/acssuschemeng.8b05568
10.1021/acsenergylett.1c02088
10.1038/s41560-020-0584-y
10.1016/j.jechem.2021.09.042
10.1007/s40820-021-00764-7
10.1021/acsami.1c04797
10.1063/1.3265431
10.1021/acsenergylett.0c02684
10.1038/s41467-018-04060-8
10.1021/acssuschemeng.9b04085
10.1039/C4TA05565A
10.1002/admi.201800848
10.1039/C9EE02356A
10.1002/aenm.202003065
10.1016/S0257-8972(99)00325-4
10.1002/adfm.202001867
10.1021/acsami.8b07781
10.1016/j.nanoen.2018.12.086
10.1021/acsenergylett.1c02299
10.1016/j.nanoen.2019.05.042
10.1016/j.ensm.2021.09.012
10.1007/s40820-020-00487-1
10.1016/j.joule.2018.11.007
10.1002/adma.202001755
10.1021/jacs.0c11753
10.1002/adma.202007388
10.1002/adsu.202000082
10.1002/adma.201801213
10.1002/aenm.202003931
10.1016/j.ensm.2020.01.003
10.1039/D0TA12177K
10.1039/D1EE03377H
10.1002/anie.202000162
10.1021/acs.chemrev.0c01100
10.1039/C9EE03545A
10.1002/adma.201903675
10.1038/s41578-019-0166-4
10.1002/batt.201900229
10.1021/acsenergylett.1c01249
10.1002/aenm.202101299
10.1002/adfm.202108533
10.1039/C8CC07730D
10.1021/acs.chemrev.8b00252
10.1002/advs.202002173
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202200006
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 35261146
10_1002_smll_202200006
SMLL202200006
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22001081; 22075236
– fundername: National Natural Science Foundation of China
  grantid: 22001081
– fundername: National Natural Science Foundation of China
  grantid: 22075236
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4396-b93a4f8acf4252d84a41be66887851c311f35af57d1ece42210d7efb210908cb3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 06:39:47 EDT 2025
Fri Jul 25 11:52:25 EDT 2025
Thu Apr 03 07:04:04 EDT 2025
Tue Jul 01 02:54:10 EDT 2025
Thu Apr 24 23:01:45 EDT 2025
Wed Jan 22 16:24:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords surface engineering
support materials
zinc-ion batteries
protective coating
interface engineering
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4396-b93a4f8acf4252d84a41be66887851c311f35af57d1ece42210d7efb210908cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1778-3975
PMID 35261146
PQID 2669301304
PQPubID 1046358
PageCount 24
ParticipantIDs proquest_miscellaneous_2637582534
proquest_journals_2669301304
pubmed_primary_35261146
crossref_primary_10_1002_smll_202200006
crossref_citationtrail_10_1002_smll_202200006
wiley_primary_10_1002_smll_202200006_SMLL202200006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2021; 20
2019; 11
2019; 10
2019; 13
2019; 57
2019; 12
2019; 58
2022; 67
2020; 16
2019; 366
2020; 59
2019; 443
2020; 13
2020; 12
2020; 11
1999; 122
2020; 10
2021; 121
2022; 22
2019; 481
2020; 8
2021; 35
2020; 7
2018; 9
2020; 5
2018; 8
2018; 3
2020; 4
2021; 32
2018; 2
2020; 3
2021; 31
2019; 62
2020; 2
2021; 34
2018; 5
2021; 33
2019; 20
2018; 1
2020; 49
2018; 30
2021; 9
2019; 7
2021; 7
2018; 29
2021; 6
2018; 28
2021; 43
2019; 4
2019; 3
2015; 3
2019; 31
2019; 30
2019; 2
2019; 1
2015; 54
2020; 32
2021; 143
1987; 17
2016; 163
2021; 14
2021; 13
2021; 15
2018; 17
2016; 1
2021; 11
2021; 55
2015; 159
2020; 31
2020; 74
2020; 30
2018; 118
2022; 7
2021; 17
2017; 56
2022; 12
1999; 153
2020; 27
2019; 135
2022; 15
2011; 43
2020; 25
2018; 10
2018; 54
2009; 106
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_121_1
Zhang Q. (e_1_2_9_19_1) 2020; 59
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
Li C. (e_1_2_9_29_1) 2020; 3
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_136_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_48_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 481
  start-page: 852
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 3961
  year: 2020
  publication-title: Nat. Commun.
– volume: 14
  start-page: 3120
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 1656
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  start-page: 7836
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 3063
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 159
  start-page: 198
  year: 2015
  publication-title: Electrochim. Acta
– volume: 22
  start-page: 1017
  year: 2022
  publication-title: Nano Lett.
– volume: 1
  start-page: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 1
  start-page: 2434
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 3
  start-page: 323
  year: 2020
  publication-title: Batteries Supercaps
– volume: 13
  start-page: 2839
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 2409
  year: 2018
  publication-title: ChemElectroChem
– volume: 17
  start-page: 1129
  year: 1987
  publication-title: J. Appl. Electrochem.
– volume: 10
  start-page: 5374
  year: 2019
  publication-title: Nat. Commun.
– volume: 58
  start-page: 2760
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  year: 2019
  publication-title: EnergyChem
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 1076
  year: 2018
  publication-title: Nat. Energy
– volume: 12
  start-page: 1938
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 146
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 2844
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 2480
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 1460
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 12
  start-page: 3203
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 123
  year: 2019
  publication-title: Nat. Energy
– volume: 366
  start-page: 8285
  year: 2019
  publication-title: Science
– volume: 163
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 2765
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 2620
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 366
  start-page: 645
  year: 2019
  publication-title: Science
– volume: 2
  start-page: 6490
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 3
  start-page: 1289
  year: 2019
  publication-title: Joule
– volume: 20
  start-page: 410
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 143
  start-page: 3143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 3364
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 7
  start-page: 197
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 106
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 398
  year: 2021
  publication-title: Nat. Energy
– volume: 29
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 2519
  year: 2018
  publication-title: Joule
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 2
  start-page: 4428
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 32
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 2028
  year: 2020
  publication-title: Chem. Sci.
– volume: 121
  start-page: 5986
  year: 2021
  publication-title: Chem. Rev.
– volume: 43
  start-page: 375
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 14
  start-page: 6
  year: 2021
  publication-title: Nano‑Micro Lett.
– volume: 34
  year: 2021
  publication-title: Adv. Mater.
– volume: 11
  start-page: 4463
  year: 2020
  publication-title: Nat. Commun.
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 122
  start-page: 143
  year: 1999
  publication-title: Surf. Coat. Technol.
– volume: 13
  start-page: 79
  year: 2021
  publication-title: Nano‑Micro Lett.
– volume: 9
  start-page: 8452
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 5947
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 49
  start-page: 3142
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 135
  start-page: 58
  year: 2019
  publication-title: Mater. Sci. Eng., R
– volume: 5
  start-page: 276
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 153
  start-page: 53
  year: 1999
  publication-title: Appl. Surf. Sci.
– volume: 43
  start-page: 619
  year: 2011
  publication-title: Metall. Mater. Trans. A
– volume: 62
  start-page: 550
  year: 2019
  publication-title: Nano Energy
– volume: 62
  start-page: 275
  year: 2019
  publication-title: Nano Energy
– volume: 443
  year: 2019
  publication-title: J. Power Sources
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 5
  start-page: 2466
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 543
  year: 2018
  publication-title: Nat. Mater.
– volume: 6
  start-page: 404
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 20
  year: 2021
  publication-title: Mater. Today Energy
– volume: 4
  year: 2020
  publication-title: Adv. Sustainable Syst.
– volume: 59
  start-page: 9377
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 55
  start-page: 549
  year: 2021
  publication-title: J. Energy Chem.
– volume: 14
  start-page: 4077
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 67
  start-page: 82
  year: 2022
  publication-title: J. Energy Chem.
– volume: 12
  start-page: 152
  year: 2020
  publication-title: Nano‑Micro Lett.
– volume: 35
  start-page: 19
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 11
  start-page: 1634
  year: 2020
  publication-title: Nat. Commun.
– volume: 57
  start-page: 625
  year: 2019
  publication-title: Nano Energy
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 503
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 6
  start-page: 1015
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 25
  start-page: 858
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 56
  start-page: 7764
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 3078
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 247
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 43
  start-page: 317
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 13
  start-page: 4406
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 499
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 118
  start-page: 9233
  year: 2018
  publication-title: Chem. Rev.
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 2
  year: 2020
  publication-title: EcoMat
– volume: 5
  start-page: 440
  year: 2020
  publication-title: Nat. Energy
– volume: 2
  start-page: 743
  year: 2019
  publication-title: Batteries Supercaps
– volume: 3
  start-page: 1364
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 1
  year: 2020
  publication-title: Energy Storage Mater.
– ident: e_1_2_9_25_1
  doi: 10.1002/adma.201903778
– ident: e_1_2_9_11_1
  doi: 10.1016/j.nanoen.2019.05.059
– ident: e_1_2_9_18_1
  doi: 10.1039/D0SC00022A
– ident: e_1_2_9_105_1
  doi: 10.1039/C9EE00596J
– ident: e_1_2_9_121_1
  doi: 10.1002/adfm.202100186
– ident: e_1_2_9_103_1
  doi: 10.1021/acsami.8b04085
– ident: e_1_2_9_43_1
  doi: 10.1039/D0EE00723D
– ident: e_1_2_9_78_1
  doi: 10.1016/j.mtener.2021.100692
– volume: 59
  year: 2020
  ident: e_1_2_9_19_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_9_40_1
  doi: 10.1021/acsaem.8b02011
– ident: e_1_2_9_50_1
  doi: 10.1002/aenm.202003927
– ident: e_1_2_9_92_1
  doi: 10.1021/acsami.9b11243
– ident: e_1_2_9_58_1
  doi: 10.1002/eom2.12035
– ident: e_1_2_9_33_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_9_128_1
  doi: 10.1002/smll.202101901
– ident: e_1_2_9_110_1
  doi: 10.1002/anie.202005472
– ident: e_1_2_9_74_1
  doi: 10.1002/adfm.201802016
– ident: e_1_2_9_75_1
  doi: 10.1007/s11661-011-0908-4
– ident: e_1_2_9_79_1
  doi: 10.1016/j.ensm.2020.10.027
– ident: e_1_2_9_137_1
  doi: 10.1021/acsami.9b10905
– ident: e_1_2_9_141_1
  doi: 10.1038/s41467-019-13436-3
– ident: e_1_2_9_36_1
  doi: 10.1149/2.1031610jes
– ident: e_1_2_9_34_1
  doi: 10.1002/anie.201508848
– ident: e_1_2_9_24_1
  doi: 10.1021/acsenergylett.1c00939
– ident: e_1_2_9_76_1
  doi: 10.1021/acsnano.9b05599
– ident: e_1_2_9_111_1
  doi: 10.1039/C6TA09985H
– ident: e_1_2_9_120_1
  doi: 10.1002/adfm.202100398
– ident: e_1_2_9_42_1
  doi: 10.1002/adfm.202008894
– ident: e_1_2_9_115_1
  doi: 10.1002/aenm.201904215
– ident: e_1_2_9_2_1
  doi: 10.1126/science.aan8285
– ident: e_1_2_9_49_1
  doi: 10.1038/s41560-021-00797-7
– ident: e_1_2_9_32_1
  doi: 10.1002/aenm.202001599
– ident: e_1_2_9_38_1
  doi: 10.1021/acsaem.9b00675
– ident: e_1_2_9_80_1
  doi: 10.1002/aenm.202100186
– ident: e_1_2_9_108_1
  doi: 10.1039/D0TA05253A
– ident: e_1_2_9_62_1
  doi: 10.1016/S0169-4332(99)00334-7
– ident: e_1_2_9_134_1
  doi: 10.1021/acsenergylett.1c01521
– ident: e_1_2_9_47_1
  doi: 10.1038/s41560-018-0309-7
– ident: e_1_2_9_98_1
  doi: 10.1016/j.apsusc.2019.03.197
– ident: e_1_2_9_48_1
  doi: 10.1126/science.aax6873
– ident: e_1_2_9_56_1
  doi: 10.1039/D1EE00783A
– ident: e_1_2_9_83_1
  doi: 10.1038/s41467-020-17752-x
– ident: e_1_2_9_91_1
  doi: 10.1039/C9CS00806C
– ident: e_1_2_9_85_1
  doi: 10.1002/adfm.201908528
– ident: e_1_2_9_146_1
  doi: 10.1038/s41563-018-0063-z
– ident: e_1_2_9_130_1
  doi: 10.1016/j.jechem.2020.07.021
– ident: e_1_2_9_84_1
  doi: 10.1002/aenm.201801090
– ident: e_1_2_9_57_1
  doi: 10.1007/BF01023596
– ident: e_1_2_9_72_1
  doi: 10.1002/adma.202106897
– ident: e_1_2_9_61_1
  doi: 10.1002/adma.202100187
– ident: e_1_2_9_73_1
  doi: 10.1126/science.aax6873
– ident: e_1_2_9_123_1
  doi: 10.1002/smll.202101728
– ident: e_1_2_9_27_1
  doi: 10.1016/j.electacta.2015.01.217
– ident: e_1_2_9_39_1
  doi: 10.1021/acsaem.8b00583
– ident: e_1_2_9_31_1
  doi: 10.1038/s41560-018-0276-z
– ident: e_1_2_9_44_1
  doi: 10.1002/aenm.202003419
– ident: e_1_2_9_9_1
  doi: 10.1016/j.mser.2018.10.002
– ident: e_1_2_9_118_1
  doi: 10.1002/adma.202007406
– ident: e_1_2_9_116_1
  doi: 10.1002/adfm.202106114
– ident: e_1_2_9_100_1
  doi: 10.1039/D0EE01277G
– ident: e_1_2_9_93_1
  doi: 10.1002/anie.202001844
– ident: e_1_2_9_64_1
  doi: 10.1002/adma.202106867
– ident: e_1_2_9_106_1
  doi: 10.1002/adfm.202001263
– ident: e_1_2_9_143_1
  doi: 10.1002/celc.201800572
– ident: e_1_2_9_35_1
  doi: 10.1016/j.jpowsour.2019.227244
– ident: e_1_2_9_8_1
  doi: 10.1002/batt.201900052
– ident: e_1_2_9_69_1
  doi: 10.1002/adma.202105426
– ident: e_1_2_9_127_1
  doi: 10.1016/j.ensm.2021.09.021
– ident: e_1_2_9_107_1
  doi: 10.1021/acsenergylett.0c01235
– ident: e_1_2_9_55_1
  doi: 10.1021/acsnano.1c02928
– ident: e_1_2_9_95_1
  doi: 10.1021/acsaem.9b01063
– ident: e_1_2_9_4_1
  doi: 10.1021/acsenergylett.8b01426
– ident: e_1_2_9_97_1
  doi: 10.1021/acs.nanolett.1c03917
– ident: e_1_2_9_133_1
  doi: 10.1016/j.ensm.2019.09.004
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ensm.2019.04.022
– ident: e_1_2_9_145_1
  doi: 10.1038/s41467-020-18284-0
– ident: e_1_2_9_10_1
  doi: 10.1016/j.enchem.2019.100022
– ident: e_1_2_9_132_1
  doi: 10.1039/D0EE03898A
– ident: e_1_2_9_5_1
  doi: 10.1021/acsenergylett.8b01552
– ident: e_1_2_9_96_1
  doi: 10.1002/smll.202001736
– ident: e_1_2_9_20_1
  doi: 10.1016/j.nanoen.2020.104880
– ident: e_1_2_9_30_1
  doi: 10.1002/aenm.202102797
– ident: e_1_2_9_71_1
  doi: 10.1002/smll.202001323
– ident: e_1_2_9_104_1
  doi: 10.1002/adma.202101649
– ident: e_1_2_9_142_1
  doi: 10.1002/adma.201905681
– ident: e_1_2_9_90_1
  doi: 10.1002/adma.201704303
– ident: e_1_2_9_87_1
  doi: 10.1002/adfm.202000599
– ident: e_1_2_9_131_1
  doi: 10.1002/aenm.202100982
– ident: e_1_2_9_77_1
  doi: 10.1016/j.joule.2019.02.012
– ident: e_1_2_9_81_1
  doi: 10.1007/s40820-021-00599-2
– ident: e_1_2_9_53_1
  doi: 10.1002/anie.201907830
– ident: e_1_2_9_67_1
  doi: 10.1002/adfm.202101607
– ident: e_1_2_9_122_1
  doi: 10.1002/adma.202105951
– ident: e_1_2_9_126_1
  doi: 10.1039/D1EE01851E
– ident: e_1_2_9_70_1
  doi: 10.1038/s41467-020-15478-4
– ident: e_1_2_9_12_1
  doi: 10.1039/C9TA05053A
– ident: e_1_2_9_65_1
  doi: 10.1021/acsenergylett.0c02343
– ident: e_1_2_9_46_1
  doi: 10.1002/anie.201702099
– ident: e_1_2_9_144_1
  doi: 10.1002/anie.201813223
– ident: e_1_2_9_129_1
  doi: 10.1002/adfm.202107397
– ident: e_1_2_9_101_1
  doi: 10.1002/adfm.201907120
– ident: e_1_2_9_86_1
  doi: 10.1039/D0TA00748J
– ident: e_1_2_9_51_1
  doi: 10.1021/acssuschemeng.8b05568
– ident: e_1_2_9_16_1
  doi: 10.1021/acsenergylett.1c02088
– ident: e_1_2_9_147_1
  doi: 10.1038/s41560-020-0584-y
– ident: e_1_2_9_7_1
  doi: 10.1016/j.jechem.2021.09.042
– ident: e_1_2_9_15_1
  doi: 10.1007/s40820-021-00764-7
– ident: e_1_2_9_68_1
  doi: 10.1021/acsami.1c04797
– ident: e_1_2_9_45_1
  doi: 10.1063/1.3265431
– ident: e_1_2_9_17_1
  doi: 10.1021/acsenergylett.0c02684
– ident: e_1_2_9_138_1
  doi: 10.1038/s41467-018-04060-8
– ident: e_1_2_9_52_1
  doi: 10.1021/acssuschemeng.9b04085
– ident: e_1_2_9_112_1
  doi: 10.1039/C4TA05565A
– volume: 3
  start-page: 146
  year: 2020
  ident: e_1_2_9_29_1
  publication-title: Energy Environ. Sci.
– ident: e_1_2_9_88_1
  doi: 10.1002/admi.201800848
– ident: e_1_2_9_1_1
  doi: 10.1039/C9EE02356A
– ident: e_1_2_9_22_1
  doi: 10.1002/aenm.202003065
– ident: e_1_2_9_63_1
  doi: 10.1016/S0257-8972(99)00325-4
– ident: e_1_2_9_89_1
  doi: 10.1002/adfm.202001867
– ident: e_1_2_9_99_1
  doi: 10.1021/acsami.8b07781
– ident: e_1_2_9_140_1
  doi: 10.1016/j.nanoen.2018.12.086
– ident: e_1_2_9_113_1
  doi: 10.1021/acsenergylett.1c02299
– ident: e_1_2_9_139_1
  doi: 10.1016/j.nanoen.2019.05.042
– ident: e_1_2_9_28_1
  doi: 10.1016/j.ensm.2021.09.012
– ident: e_1_2_9_94_1
  doi: 10.1007/s40820-020-00487-1
– ident: e_1_2_9_6_1
  doi: 10.1016/j.joule.2018.11.007
– ident: e_1_2_9_102_1
  doi: 10.1002/adma.202001755
– ident: e_1_2_9_124_1
  doi: 10.1021/jacs.0c11753
– ident: e_1_2_9_117_1
  doi: 10.1002/adma.202007388
– ident: e_1_2_9_21_1
  doi: 10.1002/adsu.202000082
– ident: e_1_2_9_37_1
  doi: 10.1002/adma.201801213
– ident: e_1_2_9_54_1
  doi: 10.1002/aenm.202003931
– ident: e_1_2_9_109_1
  doi: 10.1016/j.ensm.2020.01.003
– ident: e_1_2_9_125_1
  doi: 10.1039/D0TA12177K
– ident: e_1_2_9_14_1
  doi: 10.1039/D1EE03377H
– ident: e_1_2_9_23_1
  doi: 10.1002/anie.202000162
– ident: e_1_2_9_60_1
  doi: 10.1021/acs.chemrev.0c01100
– ident: e_1_2_9_82_1
  doi: 10.1039/C9EE03545A
– ident: e_1_2_9_41_1
  doi: 10.1002/adma.201903675
– ident: e_1_2_9_26_1
  doi: 10.1038/s41578-019-0166-4
– ident: e_1_2_9_135_1
  doi: 10.1002/batt.201900229
– ident: e_1_2_9_119_1
  doi: 10.1021/acsenergylett.1c01249
– ident: e_1_2_9_59_1
  doi: 10.1002/aenm.202101299
– ident: e_1_2_9_66_1
  doi: 10.1002/adfm.202108533
– ident: e_1_2_9_136_1
  doi: 10.1039/C8CC07730D
– ident: e_1_2_9_3_1
  doi: 10.1021/acs.chemrev.8b00252
– ident: e_1_2_9_114_1
  doi: 10.1002/advs.202002173
SSID ssj0031247
Score 2.6813293
SecondaryResourceType review_article
Snippet Rechargeable zinc‐ion batteries (ZIBs) have shown great potential as an alternative to lithium‐ion batteries. The ZIBs utilize Zn metal as the anode, which...
Rechargeable zinc-ion batteries (ZIBs) have shown great potential as an alternative to lithium-ion batteries. The ZIBs utilize Zn metal as the anode, which...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2200006
SubjectTerms Anodes
Anodic protection
interface engineering
Interfacial properties
Lithium-ion batteries
Nanotechnology
protective coating
Rechargeable batteries
support materials
surface engineering
Zinc
zinc‐ion batteries
Title Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202200006
https://www.ncbi.nlm.nih.gov/pubmed/35261146
https://www.proquest.com/docview/2669301304
https://www.proquest.com/docview/2637582534
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7iSQ--H_VFBMFTbDfJvo4iior1oBaqlyXJJiDWXXHbiyd_gr_RX-LMbru2igh6S9gJm9dMvsnjG0L2opbxuJEhS4NAMxnrFot56jEujYiFbIlI42vk9mVw2pHnXb879oq_4oeoN9xQM0p7jQqudNH8JA0tHnt4dMB5aXLBCOOFLURFVzV_lIDFq4yuAmsWQ-KtEWtjizcni0-uSt-g5iRyLZeek3miRpWubpw8HAz6-sC8fOFz_E-rFsjcEJfSw2oiLZIpmy2R2TG2wmVyez14dspYqrKUljuJZW5MhuaO3mX0MMtTW9B7SEED80FBAZwiI5PFd1og8f76dpZntOL2BFd9hXROjm-OTtkwMgMzAGACpmOhpIuUcaDyPI2kkp62QQAWCxCcEZ7nhK-cH6aeNVZy8CvT0DrN8RpoZLRYJdNZntl1Qo0AzBWjKxgYaZ1Q4A_aNPRDZaVxImgQNhqZxAxpyzF6Ri-pCJd5gl2W1F3WIPu1_FNF2PGj5NZooJOh4hYJVCMWeJorG2S3_gwqh-coKsM-AxkBXhb3BcisVROk_hWGG8CH3g3Cy2H-pQ7Jdfvios5t_KXQJpnBdHUJc4tM958HdhuAUl_vlMrwAUAbCGw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeqAcSqEtbEupkZA4GTa28zoiVLTQXQ48pNJLZDu2VAEJYncvPfUn9Df2l3TG2aRsq6pSucXJWPFrPDP2zDcAO1nfRsKqlJdJYrjKTZ_nooy4UFbmUvVlZigaeXSaDC7Vyae49SakWJgGH6I7cCPOCPs1MTgdSO__Qg0d397Q3YEQYc9dgKeU1jtYVWcdgpRE8RXyq6DU4gS91eI29sX-fP15ufSHsjmvuwbhc7QCpm1243NyvTedmD379TdEx0f16wU8n6mm7KBZS6vwxFVrsPwAsPAlXJ1P7722jumqZOEwMZQe0LDas88VO6jq0o3ZF3zCHtbTMUP9lECZHIVqIcWPb9-P64o18J5orb-Cy6MPF4cDPkvOwC3qMAk3udTKZ9p65HpRZkqryLgkwU0LlTgro8jLWPs4LSNnnRJoWpap80aQJ2hmjXwNi1VduQ1gVqLalZM1mFjlvNRoEroyjVPtlPUy6QFvp6awM-RySqBxUzSYy6KgISu6IevBbkd_12B2_JVys53pYsa74wKbkUu60FU92O4-I9fRVYquaMyQRqKhJWKJNOvNCul-RRkHKNa7ByLM8z_aUJyPhsOu9OZ_Kr2HpcHFaFgMj08_voVn9L7xydyExcn91L1DvWlitgJn_ATJqwyH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAcoOW50IKRkDi5TWzHSY5V21UL26qiVCpcIj8lREmq7u6FEz-B38gvYSbZDbtUqBLc4mSs-DX2N7bnG4DXReJS4VTOvdaWq9ImvBQ-5UI5WUqVyMKSN_Lhkd4_VW_PsrMFL_6OH6LfcCPNaOdrUvALH7d-k4aOv57T0YEQ7ZR7E24pnRQ0rnff9wRSElevNrwKLlqcmLfmtI2J2FrOv7wsXcGay9C1XXuG98HMS91dOfmyOZ3YTfftD0LH_6nWKtybAVO23Y2kNbgR6gdwd4Gu8CF8PJleRuMCM7Vn7VZim1qQYU1kn2q2XTc-jNlnfMIKNtMxQ3RKlEyBHLVQ4uf3HwdNzTpyT7TVH8HpcO_Dzj6fhWbgDhGM5raURsXCuIg6L3yhjEpt0BqnLIRwTqZplJmJWe7T4IISaFj6PEQr6B5o4ax8DCt1U4enwJxE0FWSLaidClEaNAiDz7PcBOWi1APg856p3Iy3nMJnnFcd47KoqMmqvskG8KaXv-gYO_4quT7v6GqmueMKi1FKOs5VA3jVf0ado4MUU1OboYxEM0tkEmWedAOk_xXFGyBP7wGItpuvKUN1cjga9aln_5LpJdw-3h1Wo4Ojd8_hDr3uLmSuw8rkcho2EDRN7ItWL34BrSoLPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+and+Interface+Engineering+of+Zn+Anodes+in+Aqueous+Rechargeable+Zn%E2%80%90Ion+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zheng%2C+Jiaxian&rft.au=Huang%2C+Zihao&rft.au=Ming%2C+Fangwang&rft.au=Zeng%2C+Ye&rft.date=2022-05-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202200006&rft.externalDBID=10.1002%252Fsmll.202200006&rft.externalDocID=SMLL202200006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon