Multivariate t linear mixed models for irregularly observed multiple repeated measures with missing outcomes

Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or he...

Full description

Saved in:
Bibliographic Details
Published inBiometrical journal Vol. 55; no. 4; pp. 554 - 571
Main Author Wang, Wan-Lun
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.07.2013
Wiley - VCH Verlag GmbH & Co. KGaA
Subjects
Online AccessGet full text
ISSN0323-3847
1521-4036
1521-4036
DOI10.1002/bimj.201200001

Cover

Loading…
Abstract Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or heavy‐tailed noises. This paper presents a framework for fitting the MtLMM with an arbitrary missing data pattern embodied within multiple outcome variables recorded at irregular occasions. To address the serial correlation among the within‐subject errors, a damped exponential correlation structure is considered in the model. Under the missing at random mechanism, an efficient alternating expectation‐conditional maximization (AECM) algorithm is used to carry out estimation of parameters and imputation of missing values. The techniques for the estimation of random effects and the prediction of future responses are also investigated. Applications to an HIV‐AIDS study and a pregnancy study involving analysis of multivariate longitudinal data with missing outcomes as well as a simulation study have highlighted the superiority of MtLMMs on the provision of more adequate estimation, imputation and prediction performances.
AbstractList Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or heavy-tailed noises. This paper presents a framework for fitting the MtLMM with an arbitrary missing data pattern embodied within multiple outcome variables recorded at irregular occasions. To address the serial correlation among the within-subject errors, a damped exponential correlation structure is considered in the model. Under the missing at random mechanism, an efficient alternating expectation-conditional maximization (AECM) algorithm is used to carry out estimation of parameters and imputation of missing values. The techniques for the estimation of random effects and the prediction of future responses are also investigated. Applications to an HIV-AIDS study and a pregnancy study involving analysis of multivariate longitudinal data with missing outcomes as well as a simulation study have highlighted the superiority of MtLMMs on the provision of more adequate estimation, imputation and prediction performances. [PUBLICATION ABSTRACT]
Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or heavy-tailed noises. This paper presents a framework for fitting the MtLMM with an arbitrary missing data pattern embodied within multiple outcome variables recorded at irregular occasions. To address the serial correlation among the within-subject errors, a damped exponential correlation structure is considered in the model. Under the missing at random mechanism, an efficient alternating expectation-conditional maximization (AECM) algorithm is used to carry out estimation of parameters and imputation of missing values. The techniques for the estimation of random effects and the prediction of future responses are also investigated. Applications to an HIV-AIDS study and a pregnancy study involving analysis of multivariate longitudinal data with missing outcomes as well as a simulation study have highlighted the superiority of MtLMMs on the provision of more adequate estimation, imputation and prediction performances.
Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or heavy‐tailed noises. This paper presents a framework for fitting the MtLMM with an arbitrary missing data pattern embodied within multiple outcome variables recorded at irregular occasions. To address the serial correlation among the within‐subject errors, a damped exponential correlation structure is considered in the model. Under the missing at random mechanism, an efficient alternating expectation‐conditional maximization (AECM) algorithm is used to carry out estimation of parameters and imputation of missing values. The techniques for the estimation of random effects and the prediction of future responses are also investigated. Applications to an HIV‐AIDS study and a pregnancy study involving analysis of multivariate longitudinal data with missing outcomes as well as a simulation study have highlighted the superiority of MtLMMs on the provision of more adequate estimation, imputation and prediction performances.
Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or heavy-tailed noises. This paper presents a framework for fitting the MtLMM with an arbitrary missing data pattern embodied within multiple outcome variables recorded at irregular occasions. To address the serial correlation among the within-subject errors, a damped exponential correlation structure is considered in the model. Under the missing at random mechanism, an efficient alternating expectation-conditional maximization (AECM) algorithm is used to carry out estimation of parameters and imputation of missing values. The techniques for the estimation of random effects and the prediction of future responses are also investigated. Applications to an HIV-AIDS study and a pregnancy study involving analysis of multivariate longitudinal data with missing outcomes as well as a simulation study have highlighted the superiority of MtLMMs on the provision of more adequate estimation, imputation and prediction performances.Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or heavy-tailed noises. This paper presents a framework for fitting the MtLMM with an arbitrary missing data pattern embodied within multiple outcome variables recorded at irregular occasions. To address the serial correlation among the within-subject errors, a damped exponential correlation structure is considered in the model. Under the missing at random mechanism, an efficient alternating expectation-conditional maximization (AECM) algorithm is used to carry out estimation of parameters and imputation of missing values. The techniques for the estimation of random effects and the prediction of future responses are also investigated. Applications to an HIV-AIDS study and a pregnancy study involving analysis of multivariate longitudinal data with missing outcomes as well as a simulation study have highlighted the superiority of MtLMMs on the provision of more adequate estimation, imputation and prediction performances.
Author Wang, Wan-Lun
Author_xml – sequence: 1
  givenname: Wan-Lun
  surname: Wang
  fullname: Wang, Wan-Lun
  email: wlunwang@fcu.edu.tw
  organization: Department of Statistics, Graduate Institute of Statistics and Actuarial Science, Feng Chia University, Taichung 40724, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23740830$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAQgC1URLeFK0dkiQuXLH7GzhEqKK1aEBIPiYvlJJPixYkX22m7_x6vtuyhl_XFsv19M56ZE3Q0hQkQeknJkhLC3rZuXC0ZoYyURZ-gBZWMVoLw-ggtCGe84lqoY3SS0qoQDRHsGTpmXAmiOVkgfz377G5tdDYDzti7CWzEo7uHHo-hB5_wECJ2McLN7G30GxzaBPF2-7511x5whDUUv9yATXOEhO9c_l2ipOSmGxzm3IUR0nP0dLA-wYuH_RR9__jh29mn6urL-cXZu6uqE7ypKy2h5WpQtm_LudGDtaVC2fFWctnQRrOBcEsbbiXUtW5UL1QnBtlLWRDL-Cl6s4u7juHvDCmb8pMOvLcThDkZKrnQQpNaHUYFVZIzVsuCvn6ErsIcp1LINiAhum4kKdSrB2puR-jNOrrRxo353_ICLHdAF0NKEYY9QonZztRsZ2r2My2CeCR0LtvswpSjdf6gduc8bA4kMe8vri9LrXXRqp3mUob7vWbjH1PapaT5-fnc6K-X9IdUvwzn_wDSRMPR
CitedBy_id crossref_primary_10_1002_bimj_202100233
crossref_primary_10_1080_02331888_2018_1527841
crossref_primary_10_1177_0962280214551191
crossref_primary_10_1080_00949655_2014_989852
crossref_primary_10_1177_0962280218815301
crossref_primary_10_1111_biom_12201
crossref_primary_10_1002_sim_8554
crossref_primary_10_1177_09622802241309349
crossref_primary_10_1007_s11634_016_0262_x
crossref_primary_10_1007_s11749_016_0486_2
crossref_primary_10_1002_sim_8017
crossref_primary_10_1080_00949655_2020_1812608
crossref_primary_10_1080_10543406_2014_920660
crossref_primary_10_1007_s11749_018_0612_4
crossref_primary_10_51387_24_NEJSDS68
crossref_primary_10_3390_e17085353
crossref_primary_10_1016_j_csda_2016_05_024
crossref_primary_10_1080_03610918_2019_1694153
crossref_primary_10_1002_bimj_202000015
crossref_primary_10_1177_0962280219857103
crossref_primary_10_1002_sim_6144
crossref_primary_10_1007_s00362_024_01612_7
crossref_primary_10_1177_0962280215620229
crossref_primary_10_1007_s00357_022_09415_x
crossref_primary_10_1080_10543406_2020_1852246
crossref_primary_10_1002_cjs_11338
crossref_primary_10_1007_s00184_023_00929_x
crossref_primary_10_1007_s11749_018_0603_5
crossref_primary_10_1016_j_neucom_2017_03_097
Cites_doi 10.5705/ss.2009.306
10.1111/j.1541-0420.2008.01016.x
10.1201/9781439821862
10.1111/1467-9868.00176
10.1111/1541-0420.00032
10.1002/sim.1505
10.1111/1467-9868.00082
10.1097/00002030-200103300-00012
10.1093/biomet/63.3.581
10.1002/sim.2667
10.1016/j.jmva.2011.10.006
10.1214/aos/1176344136
10.1111/j.2517-6161.1977.tb01600.x
10.2307/2532340
10.2307/2529876
10.1201/9781420011180
10.1002/9780470316436
10.1017/CBO9780511550683
10.1016/j.csda.2009.11.021
10.1214/ss/1177013119
10.1080/01621459.1995.10476615
10.1002/sim.4780070132
10.2307/2533455
10.1097/00002030-199708000-00006
10.1111/j.1467-9868.2004.00438.x
10.1002/9781119013563
10.1086/517359
10.1002/9780470316696
10.1198/106186002760180608
10.1002/bimj.200900184
10.1002/sim.2361
10.1080/01621459.1997.10474030
10.1002/(SICI)1097-0258(19990915/30)18:17/18<2479::AID-SIM270>3.0.CO;2-F
10.1093/biostatistics/kxs028
10.1086/514213
10.1002/sim.2384
10.1093/biostatistics/3.4.511
10.1097/00042560-199705010-00009
10.1002/bimj.200510192
10.1086/517436
10.1198/016214502753479211
10.1002/sim.3026
10.1002/sim.4780070131
ContentType Journal Article
Copyright 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/bimj.201200001
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-4036
EndPage 571
ExternalDocumentID 3318196691
23740830
10_1002_bimj_201200001
BIMJ1416
ark_67375_WNG_8QJ1V57Z_3
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Council
  funderid: NSC101‐2118‐M‐035‐003‐MY2
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M67
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
YHZ
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4396-85eb37f7adb43998faa2015c3b53591982f03a193a5e66897d47c4f5d553b5a23
IEDL.DBID DR2
ISSN 0323-3847
1521-4036
IngestDate Fri Jul 11 01:53:41 EDT 2025
Fri Jul 11 04:56:18 EDT 2025
Fri Jul 25 10:36:23 EDT 2025
Mon Jul 21 05:48:54 EDT 2025
Tue Jul 01 04:17:57 EDT 2025
Thu Apr 24 23:02:05 EDT 2025
Wed Jan 22 16:36:32 EST 2025
Wed Oct 30 09:53:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Outliers
Damped exponential model
AECM algorithm
Missing values
Prediction
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4396-85eb37f7adb43998faa2015c3b53591982f03a193a5e66897d47c4f5d553b5a23
Notes ArticleID:BIMJ1416
National Science Council - No. NSC101-2118-M-035-003-MY2
istex:DD68D2685BBEAA4816DB6AB47FA4BD0AB813831A
ark:/67375/WNG-8QJ1V57Z-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23740830
PQID 1530086950
PQPubID 105592
PageCount 18
ParticipantIDs proquest_miscellaneous_1534848067
proquest_miscellaneous_1417532265
proquest_journals_1530086950
pubmed_primary_23740830
crossref_primary_10_1002_bimj_201200001
crossref_citationtrail_10_1002_bimj_201200001
wiley_primary_10_1002_bimj_201200001_BIMJ1416
istex_primary_ark_67375_WNG_8QJ1V57Z_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2013
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: July 2013
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Biometrical journal
PublicationTitleAlternate Biom. J
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley - VCH Verlag GmbH & Co. KGaA
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley - VCH Verlag GmbH & Co. KGaA
References Sammel, M., Lin, X. and Ryan, L. (1999). Multivariate linear mixed models for multiple outcomes. Statistics in Medicine 18, 2479-2492.
Chakraborty, H., Sen, P. K., Helms, R. W., Vernazza, P. L., Fiscus, S. A., Eron, J. J., Patterson, B. K., Coombs, R. W., Krieger, J. N. and Cohen, M. S. (2001). Viral burden in genital secretions determines male-to-female sexual transmission of HIV-1: a probabilistic empiric model. AIDS 15, 621-627.
Rao, C. R. (1987). Prediction of future observations in growth curve models. Statistical Science 2, 434-471.
Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.
Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York.
Stram, D. O. and Lee, J. W. (1994). Variance components testing in the longitudinal mixed effects model. Biometrics 50, 1171-1177.
Schluchter, M. D. (1988). Analysis of incomplete multivariate data using linear models with structured covariance matrices. Statistics in Medicine 7, 317-324.
Schafer, J. L. and Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics 11, 437-457.
Dyer, J. R., Eron, J. J., Hoffman, I. F., Kazembe, P., Vernazza, P. L., Nkata, E., Castello, D. C., Fiscus, S. A. and Cohen, M. S. (1998a). Association of CD4 cell depletion and elevated blood and seminal plasma human immunodeficiency virus type 1 (HIV-1) RNA concentrations with genital ulcer disease in HIV-1-infected men in Malawi. Journal of Infectious Disease 177, 224-227.
Meng, X. L. and van Dyk, D. (1997). The EM algorithm-an old folk-song sung to a fast new tune. Journal of the Royal Statistical Society, Series B 59, 511-567.
Wang, W. L. and Fan, T. H. (2010). ECM-based maximum likelihood inference for multivariate linear mixed models with autoregressive errors. Computational Statistics and Data Analysis 54, 1328-1341.
Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated measures studies. Journal of the American Statistal Association 90, 1112-1121.
Drikvandi, R., Verbeke, G., Khodadadi, A. and Partovi Nia, V. (2013). Testing multiple variance components in linear mixed-effects models. Biostatistics 14, 144-159.
Verbeke, G. and Molenberghs, G. (2009). Linear Mixed Models for Longitudinal Data. Springer, New York.
Daniels, M. J. and Hogan, J. W. (2008). Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis. Chapman & Hall/CRC, New York.
Muñoz, A., Carey, V., Schouten, J. P., Segal, M. and Rosner, B. (1992). A parametric family of correlation structures for the analysis of longitudinal data. Biometrics 48, 733-742.
Ho, H. J. and Lin, T. I. (2010). Robust linear mixed models using the skew t distribution with application to schizophrenia data. Biometrical Journal 52, 449-469.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461-464.
Chakraborty, H., Helms, R., Sen, P. K. and Cohen, M. S. (2003). Estimating correlation by using a general linear mixed model: evaluation of the relationship between the concentration of HIV-RNA in blood and semen. Statistics in Medicine 22, 1457-1464.
Gilliam, B. L., Dyer, J. R., Fiscus, S. A., Marcus, C., Zhou, S., Wathen, L., Freimuth, Cohen, M. S. and Eron, J. J. (1997). Effects of reverse transcriptase inhibitor therapy on the HIV-1 viral burden in semen. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology 15, 54-60.
Song, X., Davidian, M. and Tsiatis, A. A. (2002). An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 3, 511-528.
Coombs, R. W., Speck, C. E., Hughes, J. P., Lee, W., Sampoleo, R., Ross, S. O., Dragavon, J., Peterson, G., Hooton, T. M., Collier, A. C., Corey, L., Koutsky, L. and Krieger, J. N. (1998). Association between culturable human immunodeficiency virus type 1 (HIV-1) in semen and HIV-1 RNA levels in semen and blood: evidence for compartmentalization of HIV-1 between semen and blood. The Journal of Infectious Diseases 177, 320-330.
Ghosh, P., Branco, M. D. and Chakraborty, H. (2007). Bivariate random effect model using skew-normal distribution with application to HIV-RNA. Statistics in Medicine 26, 1255-1267.
Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data (2nd ed.). Wiley, New York.
Marshall, G., De la Cruz-Mesía, R., Barón, A. E., Rutledge, J. H. and Zerbe, G. O. (2006). Non-linear random effects model for multivariate responses with missing data. Statistics in Medicine 25, 2817-2830.
Shah, A., Laird, N. and Schoenfeld, D. (1997). A random-effects model for multiple characteristics with possibly missing data. Journal of the American Statistical Association 92, 775-779.
Marshall, G., De la Cruz-Mesía, R., Quintana, F. A. and Barón, A. E. (2009). Discriminant analysis for longitudinal data with multiple continuous responses and possibly missing data. Biometrics 65, 69-80.
Rao, C. R. (1973). Linear Statistical Inference and Its Application (2nd edn.). John Wiley, New York.
Wang, W. L. and Fan, T. H. (2012). Bayesian analysis of multivariate t linear mixed models using a combination of IBF and Gibbs samplers. Journal of Multivariate Analysis 105, 300-310.
Lin, T. I. and Lee, J. C. (2008). Estimation and prediction in linear mixed models with skew normal random effects for longitudinal data. Statistics in Medicine 27, 1490-1507.
Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. Wiley, New York.
Vernazza, P. L., Gilliam, B. L., Dyer, J. R., Fiscus, S. A, Eron, J. J., Frank, A. C. and Cohen, M. S. (1997). Quantitation of HIV-1 in semen: correlation with antiviral treatment and immune status. AIDS 11, 987-993.
Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society Series B 61, 265-285.
Roy, A. (2006). Estimating correlation coefficient between two variables with repeated observations using mixed effects model. Biometrical Journal 48, 286-301.
Roy, J. and Lin, X. (2002). Analysis of multivariate longitudinal outcomes with nonignorable dropouts and missing covariates: changes in methadone treatment practices. Journal of the American Statistical Association 97, 40-52.
Wang, W. L. and Fan, T. H. (2011). Estimation in multivariate t linear mixed models for multiple longitudinal data. Statistica Sinica 21, 1857-1880.
Crainiceanu, C. M. and Ruppert, D. (2004). Likelihood ratio tests in linear mixed models with one variance component. Journal of the Royal Statistical Society Series B 66, 165-185.
Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. Chapman & Hall, London.
Kotz, S. and Nadarajah, S. (2004). Multivariate t Distributions and Their Applications. Cambridge University Press, Cambridge.
Dyer, J. R., Kazembe, P., Vernazza, P. L., Gilliam, B. L., Maida, M., Zimba, D., Hoffman, I. F., Royce, R. A., Schock, J. L., Fiscus, S. A., Cohen, M. S. and Eron, J. J. (1998b). High levels of human immunodeficiency virus type 1 in blood and semen of seropositive men in sub-Saharan Africa. Journal of Infectious Diseases 177, 1742-1746.
Verbeke, G. and Molenberghs, G. (2003). The use of score tests for inference on variance components. Biometrics 59, 254-262.
Lin, T. I. and Lee, J. C. (2006). A robust approach to t linear mixed models applied to multiple sclerosis data. Statistics in Medicine 25, 1397-1412.
Laird, N. M. (1988). Missing data in longitudinal studies. Statistics in Medicine 7, 305-315.
Laird, N. M. and Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics 38, 963-974.
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B 39, 1-38.
2004; 66
1987; 2
1976; 63
2010; 54
1982; 38
1998b; 177
2009; 65
1995; 90
2012
2002; 97
2002; 11
2009
2008
1997
1998a; 177
2002; 3
2003; 59
2007
1973
2004
1999; 61
2002
1998; 177
2012; 105
1978; 6
2013; 14
1997; 92
1997; 11
1977; 39
1999; 18
1997; 15
1997; 59
2006; 25
2008; 27
1988; 7
2006; 48
1987
2011; 21
2001; 15
1992; 48
1994; 50
2010; 52
2003; 22
2007; 26
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Little R. J. A. (e_1_2_9_22_1) 1987
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_45_1
e_1_2_9_21_1
Verbeke G. (e_1_2_9_44_1) 2009
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Dempster A. P. (e_1_2_9_9_1) 1977; 39
Akaike H. (e_1_2_9_2_1) 1973
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – reference: Vernazza, P. L., Gilliam, B. L., Dyer, J. R., Fiscus, S. A, Eron, J. J., Frank, A. C. and Cohen, M. S. (1997). Quantitation of HIV-1 in semen: correlation with antiviral treatment and immune status. AIDS 11, 987-993.
– reference: Drikvandi, R., Verbeke, G., Khodadadi, A. and Partovi Nia, V. (2013). Testing multiple variance components in linear mixed-effects models. Biostatistics 14, 144-159.
– reference: Rao, C. R. (1973). Linear Statistical Inference and Its Application (2nd edn.). John Wiley, New York.
– reference: Stram, D. O. and Lee, J. W. (1994). Variance components testing in the longitudinal mixed effects model. Biometrics 50, 1171-1177.
– reference: Kotz, S. and Nadarajah, S. (2004). Multivariate t Distributions and Their Applications. Cambridge University Press, Cambridge.
– reference: Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.
– reference: Sammel, M., Lin, X. and Ryan, L. (1999). Multivariate linear mixed models for multiple outcomes. Statistics in Medicine 18, 2479-2492.
– reference: Verbeke, G. and Molenberghs, G. (2003). The use of score tests for inference on variance components. Biometrics 59, 254-262.
– reference: Chakraborty, H., Sen, P. K., Helms, R. W., Vernazza, P. L., Fiscus, S. A., Eron, J. J., Patterson, B. K., Coombs, R. W., Krieger, J. N. and Cohen, M. S. (2001). Viral burden in genital secretions determines male-to-female sexual transmission of HIV-1: a probabilistic empiric model. AIDS 15, 621-627.
– reference: Crainiceanu, C. M. and Ruppert, D. (2004). Likelihood ratio tests in linear mixed models with one variance component. Journal of the Royal Statistical Society Series B 66, 165-185.
– reference: Muñoz, A., Carey, V., Schouten, J. P., Segal, M. and Rosner, B. (1992). A parametric family of correlation structures for the analysis of longitudinal data. Biometrics 48, 733-742.
– reference: Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated measures studies. Journal of the American Statistal Association 90, 1112-1121.
– reference: Marshall, G., De la Cruz-Mesía, R., Quintana, F. A. and Barón, A. E. (2009). Discriminant analysis for longitudinal data with multiple continuous responses and possibly missing data. Biometrics 65, 69-80.
– reference: Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York.
– reference: Meng, X. L. and van Dyk, D. (1997). The EM algorithm-an old folk-song sung to a fast new tune. Journal of the Royal Statistical Society, Series B 59, 511-567.
– reference: Roy, J. and Lin, X. (2002). Analysis of multivariate longitudinal outcomes with nonignorable dropouts and missing covariates: changes in methadone treatment practices. Journal of the American Statistical Association 97, 40-52.
– reference: Wang, W. L. and Fan, T. H. (2012). Bayesian analysis of multivariate t linear mixed models using a combination of IBF and Gibbs samplers. Journal of Multivariate Analysis 105, 300-310.
– reference: Schluchter, M. D. (1988). Analysis of incomplete multivariate data using linear models with structured covariance matrices. Statistics in Medicine 7, 317-324.
– reference: Daniels, M. J. and Hogan, J. W. (2008). Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis. Chapman & Hall/CRC, New York.
– reference: Ghosh, P., Branco, M. D. and Chakraborty, H. (2007). Bivariate random effect model using skew-normal distribution with application to HIV-RNA. Statistics in Medicine 26, 1255-1267.
– reference: Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461-464.
– reference: Wang, W. L. and Fan, T. H. (2011). Estimation in multivariate t linear mixed models for multiple longitudinal data. Statistica Sinica 21, 1857-1880.
– reference: Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. Wiley, New York.
– reference: Marshall, G., De la Cruz-Mesía, R., Barón, A. E., Rutledge, J. H. and Zerbe, G. O. (2006). Non-linear random effects model for multivariate responses with missing data. Statistics in Medicine 25, 2817-2830.
– reference: Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society Series B 61, 265-285.
– reference: Schafer, J. L. and Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics 11, 437-457.
– reference: Verbeke, G. and Molenberghs, G. (2009). Linear Mixed Models for Longitudinal Data. Springer, New York.
– reference: Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. Chapman & Hall, London.
– reference: Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data (2nd ed.). Wiley, New York.
– reference: Gilliam, B. L., Dyer, J. R., Fiscus, S. A., Marcus, C., Zhou, S., Wathen, L., Freimuth, Cohen, M. S. and Eron, J. J. (1997). Effects of reverse transcriptase inhibitor therapy on the HIV-1 viral burden in semen. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology 15, 54-60.
– reference: Lin, T. I. and Lee, J. C. (2008). Estimation and prediction in linear mixed models with skew normal random effects for longitudinal data. Statistics in Medicine 27, 1490-1507.
– reference: Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B 39, 1-38.
– reference: Laird, N. M. (1988). Missing data in longitudinal studies. Statistics in Medicine 7, 305-315.
– reference: Dyer, J. R., Kazembe, P., Vernazza, P. L., Gilliam, B. L., Maida, M., Zimba, D., Hoffman, I. F., Royce, R. A., Schock, J. L., Fiscus, S. A., Cohen, M. S. and Eron, J. J. (1998b). High levels of human immunodeficiency virus type 1 in blood and semen of seropositive men in sub-Saharan Africa. Journal of Infectious Diseases 177, 1742-1746.
– reference: Dyer, J. R., Eron, J. J., Hoffman, I. F., Kazembe, P., Vernazza, P. L., Nkata, E., Castello, D. C., Fiscus, S. A. and Cohen, M. S. (1998a). Association of CD4 cell depletion and elevated blood and seminal plasma human immunodeficiency virus type 1 (HIV-1) RNA concentrations with genital ulcer disease in HIV-1-infected men in Malawi. Journal of Infectious Disease 177, 224-227.
– reference: Ho, H. J. and Lin, T. I. (2010). Robust linear mixed models using the skew t distribution with application to schizophrenia data. Biometrical Journal 52, 449-469.
– reference: Lin, T. I. and Lee, J. C. (2006). A robust approach to t linear mixed models applied to multiple sclerosis data. Statistics in Medicine 25, 1397-1412.
– reference: Rao, C. R. (1987). Prediction of future observations in growth curve models. Statistical Science 2, 434-471.
– reference: Laird, N. M. and Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics 38, 963-974.
– reference: Roy, A. (2006). Estimating correlation coefficient between two variables with repeated observations using mixed effects model. Biometrical Journal 48, 286-301.
– reference: Song, X., Davidian, M. and Tsiatis, A. A. (2002). An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 3, 511-528.
– reference: Wang, W. L. and Fan, T. H. (2010). ECM-based maximum likelihood inference for multivariate linear mixed models with autoregressive errors. Computational Statistics and Data Analysis 54, 1328-1341.
– reference: Chakraborty, H., Helms, R., Sen, P. K. and Cohen, M. S. (2003). Estimating correlation by using a general linear mixed model: evaluation of the relationship between the concentration of HIV-RNA in blood and semen. Statistics in Medicine 22, 1457-1464.
– reference: Coombs, R. W., Speck, C. E., Hughes, J. P., Lee, W., Sampoleo, R., Ross, S. O., Dragavon, J., Peterson, G., Hooton, T. M., Collier, A. C., Corey, L., Koutsky, L. and Krieger, J. N. (1998). Association between culturable human immunodeficiency virus type 1 (HIV-1) in semen and HIV-1 RNA levels in semen and blood: evidence for compartmentalization of HIV-1 between semen and blood. The Journal of Infectious Diseases 177, 320-330.
– reference: Shah, A., Laird, N. and Schoenfeld, D. (1997). A random-effects model for multiple characteristics with possibly missing data. Journal of the American Statistical Association 92, 775-779.
– volume: 2
  start-page: 434
  year: 1987
  end-page: 471
  article-title: Prediction of future observations in growth curve models
  publication-title: Statistical Science
– year: 2009
– volume: 3
  start-page: 511
  year: 2002
  end-page: 528
  article-title: An estimator for the proportional hazards model with multiple longitudinal covariates measured with error
  publication-title: Biostatistics
– volume: 59
  start-page: 511
  year: 1997
  end-page: 567
  article-title: The EM algorithm—an old folk‐song sung to a fast new tune
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 66
  start-page: 165
  year: 2004
  end-page: 185
  article-title: Likelihood ratio tests in linear mixed models with one variance component
  publication-title: Journal of the Royal Statistical Society Series B
– volume: 25
  start-page: 1397
  year: 2006
  end-page: 1412
  article-title: A robust approach to linear mixed models applied to multiple sclerosis data
  publication-title: Statistics in Medicine
– volume: 65
  start-page: 69
  year: 2009
  end-page: 80
  article-title: Discriminant analysis for longitudinal data with multiple continuous responses and possibly missing data
  publication-title: Biometrics
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 97
  start-page: 40
  year: 2002
  end-page: 52
  article-title: Analysis of multivariate longitudinal outcomes with nonignorable dropouts and missing covariates: changes in methadone treatment practices
  publication-title: Journal of the American Statistical Association
– volume: 90
  start-page: 1112
  year: 1995
  end-page: 1121
  article-title: Modeling the drop‐out mechanism in repeated measures studies
  publication-title: Journal of the American Statistal Association
– volume: 92
  start-page: 775
  year: 1997
  end-page: 779
  article-title: A random‐effects model for multiple characteristics with possibly missing data
  publication-title: Journal of the American Statistical Association
– volume: 26
  start-page: 1255
  year: 2007
  end-page: 1267
  article-title: Bivariate random effect model using skew‐normal distribution with application to HIV‐RNA
  publication-title: Statistics in Medicine
– year: 1987
– volume: 11
  start-page: 987
  year: 1997
  end-page: 993
  article-title: Quantitation of HIV‐1 in semen: correlation with antiviral treatment and immune status
  publication-title: AIDS
– year: 2007
– volume: 11
  start-page: 437
  year: 2002
  end-page: 457
  article-title: Computational strategies for multivariate linear mixed‐effects models with missing values
  publication-title: Journal of Computational and Graphical Statistics
– year: 1973
– volume: 50
  start-page: 1171
  year: 1994
  end-page: 1177
  article-title: Variance components testing in the longitudinal mixed effects model
  publication-title: Biometrics
– volume: 48
  start-page: 286
  year: 2006
  end-page: 301
  article-title: Estimating correlation coefficient between two variables with repeated observations using mixed effects model
  publication-title: Biometrical Journal
– volume: 15
  start-page: 54
  year: 1997
  end-page: 60
  article-title: Effects of reverse transcriptase inhibitor therapy on the HIV‐1 viral burden in semen
  publication-title: Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology
– volume: 63
  start-page: 581
  year: 1976
  end-page: 592
  article-title: Inference and missing data
  publication-title: Biometrika
– volume: 177
  start-page: 1742
  year: 1998b
  end-page: 1746
  article-title: High levels of human immunodeficiency virus type 1 in blood and semen of seropositive men in sub‐Saharan Africa
  publication-title: Journal of Infectious Diseases
– volume: 52
  start-page: 449
  year: 2010
  end-page: 469
  article-title: Robust linear mixed models using the skew distribution with application to schizophrenia data
  publication-title: Biometrical Journal
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
– volume: 21
  start-page: 1857
  year: 2011
  end-page: 1880
  article-title: Estimation in multivariate linear mixed models for multiple longitudinal data
  publication-title: Statistica Sinica
– year: 2012
– volume: 61
  start-page: 265
  year: 1999
  end-page: 285
  article-title: Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
  publication-title: Journal of the Royal Statistical Society Series B
– volume: 14
  start-page: 144
  year: 2013
  end-page: 159
  article-title: Testing multiple variance components in linear mixed‐effects models
  publication-title: Biostatistics
– volume: 54
  start-page: 1328
  year: 2010
  end-page: 1341
  article-title: ECM‐based maximum likelihood inference for multivariate linear mixed models with autoregressive errors
  publication-title: Computational Statistics and Data Analysis
– volume: 48
  start-page: 733
  year: 1992
  end-page: 742
  article-title: A parametric family of correlation structures for the analysis of longitudinal data
  publication-title: Biometrics
– volume: 38
  start-page: 963
  year: 1982
  end-page: 974
  article-title: Random effects models for longitudinal data
  publication-title: Biometrics
– volume: 15
  start-page: 621
  year: 2001
  end-page: 627
  article-title: Viral burden in genital secretions determines male‐to‐female sexual transmission of HIV‐1: a probabilistic empiric model
  publication-title: AIDS
– year: 2002
– year: 2008
– volume: 177
  start-page: 224
  year: 1998a
  end-page: 227
  article-title: Association of CD4 cell depletion and elevated blood and seminal plasma human immunodeficiency virus type 1 (HIV‐1) RNA concentrations with genital ulcer disease in HIV‐1‐infected men in Malawi
  publication-title: Journal of Infectious Disease
– volume: 59
  start-page: 254
  year: 2003
  end-page: 262
  article-title: The use of score tests for inference on variance components
  publication-title: Biometrics
– year: 2004
– year: 1997
– volume: 7
  start-page: 305
  year: 1988
  end-page: 315
  article-title: Missing data in longitudinal studies
  publication-title: Statistics in Medicine
– start-page: 267
  year: 1973
  end-page: 281
– volume: 25
  start-page: 2817
  year: 2006
  end-page: 2830
  article-title: Non‐linear random effects model for multivariate responses with missing data
  publication-title: Statistics in Medicine
– volume: 7
  start-page: 317
  year: 1988
  end-page: 324
  article-title: Analysis of incomplete multivariate data using linear models with structured covariance matrices
  publication-title: Statistics in Medicine
– volume: 105
  start-page: 300
  year: 2012
  end-page: 310
  article-title: Bayesian analysis of multivariate linear mixed models using a combination of IBF and Gibbs samplers
  publication-title: Journal of Multivariate Analysis
– volume: 18
  start-page: 2479
  year: 1999
  end-page: 2492
  article-title: Multivariate linear mixed models for multiple outcomes
  publication-title: Statistics in Medicine
– volume: 177
  start-page: 320
  year: 1998
  end-page: 330
  article-title: Association between culturable human immunodeficiency virus type 1 (HIV‐1) in semen and HIV‐1 RNA levels in semen and blood: evidence for compartmentalization of HIV‐1 between semen and blood
  publication-title: The Journal of Infectious Diseases
– volume: 22
  start-page: 1457
  year: 2003
  end-page: 1464
  article-title: Estimating correlation by using a general linear mixed model: evaluation of the relationship between the concentration of HIV‐RNA in blood and semen
  publication-title: Statistics in Medicine
– volume: 27
  start-page: 1490
  year: 2008
  end-page: 1507
  article-title: Estimation and prediction in linear mixed models with skew normal random effects for longitudinal data
  publication-title: Statistics in Medicine
– ident: e_1_2_9_47_1
  doi: 10.5705/ss.2009.306
– volume-title: Statistical Analysis with Missing Data
  year: 1987
  ident: e_1_2_9_22_1
– ident: e_1_2_9_25_1
  doi: 10.1111/j.1541-0420.2008.01016.x
– ident: e_1_2_9_36_1
  doi: 10.1201/9781439821862
– ident: e_1_2_9_3_1
  doi: 10.1111/1467-9868.00176
– ident: e_1_2_9_28_1
– ident: e_1_2_9_43_1
  doi: 10.1111/1541-0420.00032
– ident: e_1_2_9_4_1
  doi: 10.1002/sim.1505
– ident: e_1_2_9_26_1
  doi: 10.1111/1467-9868.00082
– ident: e_1_2_9_5_1
  doi: 10.1097/00002030-200103300-00012
– ident: e_1_2_9_33_1
  doi: 10.1093/biomet/63.3.581
– ident: e_1_2_9_13_1
  doi: 10.1002/sim.2667
– ident: e_1_2_9_48_1
  doi: 10.1016/j.jmva.2011.10.006
– ident: e_1_2_9_39_1
  doi: 10.1214/aos/1176344136
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_2_9_9_1
  article-title: Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_9_27_1
  doi: 10.2307/2532340
– ident: e_1_2_9_18_1
  doi: 10.2307/2529876
– ident: e_1_2_9_8_1
  doi: 10.1201/9781420011180
– ident: e_1_2_9_29_1
  doi: 10.1002/9780470316436
– ident: e_1_2_9_16_1
  doi: 10.1017/CBO9780511550683
– ident: e_1_2_9_46_1
  doi: 10.1016/j.csda.2009.11.021
– ident: e_1_2_9_30_1
  doi: 10.1214/ss/1177013119
– ident: e_1_2_9_21_1
  doi: 10.1080/01621459.1995.10476615
– ident: e_1_2_9_38_1
  doi: 10.1002/sim.4780070132
– ident: e_1_2_9_42_1
  doi: 10.2307/2533455
– ident: e_1_2_9_45_1
  doi: 10.1097/00002030-199708000-00006
– ident: e_1_2_9_7_1
  doi: 10.1111/j.1467-9868.2004.00438.x
– ident: e_1_2_9_23_1
  doi: 10.1002/9781119013563
– ident: e_1_2_9_11_1
  doi: 10.1086/517359
– ident: e_1_2_9_34_1
  doi: 10.1002/9780470316696
– ident: e_1_2_9_37_1
  doi: 10.1198/106186002760180608
– ident: e_1_2_9_15_1
  doi: 10.1002/bimj.200900184
– ident: e_1_2_9_24_1
  doi: 10.1002/sim.2361
– ident: e_1_2_9_40_1
  doi: 10.1080/01621459.1997.10474030
– ident: e_1_2_9_35_1
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2479::AID-SIM270>3.0.CO;2-F
– ident: e_1_2_9_49_1
– ident: e_1_2_9_10_1
  doi: 10.1093/biostatistics/kxs028
– ident: e_1_2_9_6_1
  doi: 10.1086/514213
– ident: e_1_2_9_19_1
  doi: 10.1002/sim.2384
– volume-title: Linear Mixed Models for Longitudinal Data
  year: 2009
  ident: e_1_2_9_44_1
– ident: e_1_2_9_41_1
  doi: 10.1093/biostatistics/3.4.511
– start-page: 267
  volume-title: Proceedings of the 2nd International Symposium on Information Theory
  year: 1973
  ident: e_1_2_9_2_1
– ident: e_1_2_9_14_1
  doi: 10.1097/00042560-199705010-00009
– ident: e_1_2_9_31_1
  doi: 10.1002/bimj.200510192
– ident: e_1_2_9_12_1
  doi: 10.1086/517436
– ident: e_1_2_9_32_1
  doi: 10.1198/016214502753479211
– ident: e_1_2_9_20_1
  doi: 10.1002/sim.3026
– ident: e_1_2_9_17_1
  doi: 10.1002/sim.4780070131
SSID ssj0009042
Score 2.140659
Snippet Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed...
Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 554
SubjectTerms Acquired Immunodeficiency Syndrome - blood
Adult
AECM algorithm
Algorithms
Bayes Theorem
Clinical Trials as Topic
Damped exponential model
Data Interpretation, Statistical
Female
Human immunodeficiency virus
Humans
Linear Models
Longitudinal Studies
Middle Aged
Missing values
Multivariate Analysis
Outliers
Prediction
Pregnancy
RNA, Viral - blood
Young Adult
Title Multivariate t linear mixed models for irregularly observed multiple repeated measures with missing outcomes
URI https://api.istex.fr/ark:/67375/WNG-8QJ1V57Z-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.201200001
https://www.ncbi.nlm.nih.gov/pubmed/23740830
https://www.proquest.com/docview/1530086950
https://www.proquest.com/docview/1417532265
https://www.proquest.com/docview/1534848067
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQERIXoLy60CIjITil3Y3t2D6WRykrtRKIQsXFsh1HWrrdrZIsavn1nbGzKYt4CHFMPInf9jfj8TeEPNNSeF9Km7lC6ozjPR_tVJlVXldB5bz00Rnz4LDYP-LjY3H8wy3-xA_RG9xwZsT1Gie4dc3OFWmom5x-RdesPBqoYREesQLJ819_uOKP0kOejhFyljFYh5esjcN8Z_XzlV3pOjbw-a8g5yqCjVvQ3m1il4VPnicn24vWbfvvP_E6_k_t7pBbHT6lu2lArZNrYXaX3EgRKy_ukWm8sPsNFGzAqLSlmJGt6enkPJQ0RtVpKMBgOqnrGOS-nl7QuUPLL6Z3zou0DmewBeCbZKFsKJqD4S8NWi7ofNFCcUNznxztvfn4aj_rAjZkHnBNkSkBqrmspC0dqjmqshaqIDxzggk90iqvhswCZLQiFIXSsuTS80qUQoCIzdkDsjabz8IGocxr4WTQahRAQZRSVfCsYDkCeKIZYwOSLTvM-I7NHINqTE3iYc4NtqDpW3BAXvTyZ4nH47eSz2P_92K2PkHvNynM58O3Rr0fjz4J-cVAETaXA8R0E78xsIGglqjFcECe9snQfngOY2dhvgAZjvSogHvFH2QE44orwBID8jANvr5AOZMckDPkkMUh9JcKmZfvDsaQZ_HoH-Ufk5t5DP6BzsmbZK2tF2ELIFjrnsRpdgn4IifF
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgE4IX7pfCACMheMrWxnZsP3IbXVkrgTZAvFi240hlXTslKdr49ZzjpJmKuAjxmOQkvuTY_s7x8XcIeaql8D6XNnGZ1AnHcz7aqTwpvC6CSnnuYzDmeJIND_nos1hFE-JZmIYfonO44ciI8zUOcHRI75yzhrrp8VeMzUqjh_oi2eSANtD-ev3hnEFK93mzkZCyhMFMvOJt7Kc76--vrUub2MWnvwKd6xg2LkK714hbVb-JPTnaXtZu23__idnxv9p3nVxtISp90ejUDXIhzG-SS03SyrNbZBbP7H4DGxtgKq0plmRLejw9DTmNiXUqCkiYTssy5rkvZ2d04dD5i8_b-EVahhNYBfBO46SsKHqE4SsVOi_oYllDfUN1mxzuvjl4NUzanA2JB2iTJUqAdS4LaXOHlo4qrIUmCM-cYEIPtEqLPrOAGq0IWaa0zLn0vBC5ECBiU3aHbMwX83CPUOa1cDJoNQhgI0qpCrhWMCMBQtGMsR5JVn_M-JbQHPNqzExDxZwa7EHT9WCPPO_kTxoqj99KPosK0InZ8ggD4KQwnyZvjXo_GnwU8ouBKmytNMS0Y78ysIagoahFv0eedI-h_3Arxs7DYgkyHBlSAfqKP8gIxhVXACd65G6jfV2FUiY5gGcoIYk69JcGmZd74xGUmd3_R_nH5PLwYLxv9vcm7x6QK2nMBYKxyltkoy6X4SEgsto9imPuB3R1K-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgE2gvjM9RGGAkBE_Z2tiO7cfxUbbCKkCMTbxYjuNIZV1bJSna9tfvzkkzivgQ4jHJJf7I2f7d-fw7Qp5pKZzLpI3SROqI4zkfnaosyp3OvYp55kIw5v4w2T3ggyNx9MMp_pofonW44cgI8zUO8FmWb1-Shqajk28YmhUHB_VVssoTgBMIiz5dEkjpLq_3EWIWMZiIF7SN3Xh7-f2lZWkVe_j0V5hzGcKGNai_Tuyi9nXoyfHWvEq33PlPxI7_07yb5EYDUOlOrVG3yBU_uU2u1Skrz-6QcTix-x0sbACptKJYkC3oyejUZzSk1Skp4GA6KoqQ5b4Yn9Fpiq5ffN5EL9LCz2ANwDu1i7Kk6A-Gr5TouqDTeQXV9eVdctB_8_nVbtRkbIgcAJskUgJsc5lLm6Vo56jcWmiCcCwVTOieVnHeZRYwoxU-SZSWGZeO5yITAkRszO6Rlcl04u8TypwWqfRa9TxYiFKqHK4VzEeATzRjrEOixQ8zrqEzx6waY1MTMccGe9C0PdghL1r5WU3k8VvJ5-H_t2K2OMbwNynM4fCtUR8HvS9CfjVQhc2Fgphm5JcGVhA0E7XodsjT9jH0H27E2ImfzkGGIz8qAF_xBxnBuOIKwESHbNTK11YoZpKDrkMJUVChvzTIvNzbH0CZyYN_lH9Crn943Tfv94bvHpK1OCQCwUDlTbJSFXP_COBYlT4OI-4CxdYqkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+t+linear+mixed+models+for+irregularly+observed+multiple+repeated+measures+with+missing+outcomes&rft.jtitle=Biometrical+journal&rft.au=Wang%2C+Wan-Lun&rft.date=2013-07-01&rft.issn=0323-3847&rft.eissn=1521-4036&rft.volume=55&rft.issue=4&rft.spage=554&rft.epage=571&rft_id=info:doi/10.1002%2Fbimj.201200001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon