Multivariate t linear mixed models for irregularly observed multiple repeated measures with missing outcomes
Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or he...
Saved in:
Published in | Biometrical journal Vol. 55; no. 4; pp. 554 - 571 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.07.2013
Wiley - VCH Verlag GmbH & Co. KGaA |
Subjects | |
Online Access | Get full text |
ISSN | 0323-3847 1521-4036 1521-4036 |
DOI | 10.1002/bimj.201200001 |
Cover
Loading…
Abstract | Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or heavy‐tailed noises. This paper presents a framework for fitting the MtLMM with an arbitrary missing data pattern embodied within multiple outcome variables recorded at irregular occasions. To address the serial correlation among the within‐subject errors, a damped exponential correlation structure is considered in the model. Under the missing at random mechanism, an efficient alternating expectation‐conditional maximization (AECM) algorithm is used to carry out estimation of parameters and imputation of missing values. The techniques for the estimation of random effects and the prediction of future responses are also investigated. Applications to an HIV‐AIDS study and a pregnancy study involving analysis of multivariate longitudinal data with missing outcomes as well as a simulation study have highlighted the superiority of MtLMMs on the provision of more adequate estimation, imputation and prediction performances. |
---|---|
AbstractList | Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or heavy-tailed noises. This paper presents a framework for fitting the MtLMM with an arbitrary missing data pattern embodied within multiple outcome variables recorded at irregular occasions. To address the serial correlation among the within-subject errors, a damped exponential correlation structure is considered in the model. Under the missing at random mechanism, an efficient alternating expectation-conditional maximization (AECM) algorithm is used to carry out estimation of parameters and imputation of missing values. The techniques for the estimation of random effects and the prediction of future responses are also investigated. Applications to an HIV-AIDS study and a pregnancy study involving analysis of multivariate longitudinal data with missing outcomes as well as a simulation study have highlighted the superiority of MtLMMs on the provision of more adequate estimation, imputation and prediction performances. [PUBLICATION ABSTRACT] Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or heavy-tailed noises. This paper presents a framework for fitting the MtLMM with an arbitrary missing data pattern embodied within multiple outcome variables recorded at irregular occasions. To address the serial correlation among the within-subject errors, a damped exponential correlation structure is considered in the model. Under the missing at random mechanism, an efficient alternating expectation-conditional maximization (AECM) algorithm is used to carry out estimation of parameters and imputation of missing values. The techniques for the estimation of random effects and the prediction of future responses are also investigated. Applications to an HIV-AIDS study and a pregnancy study involving analysis of multivariate longitudinal data with missing outcomes as well as a simulation study have highlighted the superiority of MtLMMs on the provision of more adequate estimation, imputation and prediction performances. Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or heavy‐tailed noises. This paper presents a framework for fitting the MtLMM with an arbitrary missing data pattern embodied within multiple outcome variables recorded at irregular occasions. To address the serial correlation among the within‐subject errors, a damped exponential correlation structure is considered in the model. Under the missing at random mechanism, an efficient alternating expectation‐conditional maximization (AECM) algorithm is used to carry out estimation of parameters and imputation of missing values. The techniques for the estimation of random effects and the prediction of future responses are also investigated. Applications to an HIV‐AIDS study and a pregnancy study involving analysis of multivariate longitudinal data with missing outcomes as well as a simulation study have highlighted the superiority of MtLMMs on the provision of more adequate estimation, imputation and prediction performances. Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or heavy-tailed noises. This paper presents a framework for fitting the MtLMM with an arbitrary missing data pattern embodied within multiple outcome variables recorded at irregular occasions. To address the serial correlation among the within-subject errors, a damped exponential correlation structure is considered in the model. Under the missing at random mechanism, an efficient alternating expectation-conditional maximization (AECM) algorithm is used to carry out estimation of parameters and imputation of missing values. The techniques for the estimation of random effects and the prediction of future responses are also investigated. Applications to an HIV-AIDS study and a pregnancy study involving analysis of multivariate longitudinal data with missing outcomes as well as a simulation study have highlighted the superiority of MtLMMs on the provision of more adequate estimation, imputation and prediction performances.Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or heavy-tailed noises. This paper presents a framework for fitting the MtLMM with an arbitrary missing data pattern embodied within multiple outcome variables recorded at irregular occasions. To address the serial correlation among the within-subject errors, a damped exponential correlation structure is considered in the model. Under the missing at random mechanism, an efficient alternating expectation-conditional maximization (AECM) algorithm is used to carry out estimation of parameters and imputation of missing values. The techniques for the estimation of random effects and the prediction of future responses are also investigated. Applications to an HIV-AIDS study and a pregnancy study involving analysis of multivariate longitudinal data with missing outcomes as well as a simulation study have highlighted the superiority of MtLMMs on the provision of more adequate estimation, imputation and prediction performances. |
Author | Wang, Wan-Lun |
Author_xml | – sequence: 1 givenname: Wan-Lun surname: Wang fullname: Wang, Wan-Lun email: wlunwang@fcu.edu.tw organization: Department of Statistics, Graduate Institute of Statistics and Actuarial Science, Feng Chia University, Taichung 40724, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23740830$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAQgC1URLeFK0dkiQuXLH7GzhEqKK1aEBIPiYvlJJPixYkX22m7_x6vtuyhl_XFsv19M56ZE3Q0hQkQeknJkhLC3rZuXC0ZoYyURZ-gBZWMVoLw-ggtCGe84lqoY3SS0qoQDRHsGTpmXAmiOVkgfz377G5tdDYDzti7CWzEo7uHHo-hB5_wECJ2McLN7G30GxzaBPF2-7511x5whDUUv9yATXOEhO9c_l2ipOSmGxzm3IUR0nP0dLA-wYuH_RR9__jh29mn6urL-cXZu6uqE7ypKy2h5WpQtm_LudGDtaVC2fFWctnQRrOBcEsbbiXUtW5UL1QnBtlLWRDL-Cl6s4u7juHvDCmb8pMOvLcThDkZKrnQQpNaHUYFVZIzVsuCvn6ErsIcp1LINiAhum4kKdSrB2puR-jNOrrRxo353_ICLHdAF0NKEYY9QonZztRsZ2r2My2CeCR0LtvswpSjdf6gduc8bA4kMe8vri9LrXXRqp3mUob7vWbjH1PapaT5-fnc6K-X9IdUvwzn_wDSRMPR |
CitedBy_id | crossref_primary_10_1002_bimj_202100233 crossref_primary_10_1080_02331888_2018_1527841 crossref_primary_10_1177_0962280214551191 crossref_primary_10_1080_00949655_2014_989852 crossref_primary_10_1177_0962280218815301 crossref_primary_10_1111_biom_12201 crossref_primary_10_1002_sim_8554 crossref_primary_10_1177_09622802241309349 crossref_primary_10_1007_s11634_016_0262_x crossref_primary_10_1007_s11749_016_0486_2 crossref_primary_10_1002_sim_8017 crossref_primary_10_1080_00949655_2020_1812608 crossref_primary_10_1080_10543406_2014_920660 crossref_primary_10_1007_s11749_018_0612_4 crossref_primary_10_51387_24_NEJSDS68 crossref_primary_10_3390_e17085353 crossref_primary_10_1016_j_csda_2016_05_024 crossref_primary_10_1080_03610918_2019_1694153 crossref_primary_10_1002_bimj_202000015 crossref_primary_10_1177_0962280219857103 crossref_primary_10_1002_sim_6144 crossref_primary_10_1007_s00362_024_01612_7 crossref_primary_10_1177_0962280215620229 crossref_primary_10_1007_s00357_022_09415_x crossref_primary_10_1080_10543406_2020_1852246 crossref_primary_10_1002_cjs_11338 crossref_primary_10_1007_s00184_023_00929_x crossref_primary_10_1007_s11749_018_0603_5 crossref_primary_10_1016_j_neucom_2017_03_097 |
Cites_doi | 10.5705/ss.2009.306 10.1111/j.1541-0420.2008.01016.x 10.1201/9781439821862 10.1111/1467-9868.00176 10.1111/1541-0420.00032 10.1002/sim.1505 10.1111/1467-9868.00082 10.1097/00002030-200103300-00012 10.1093/biomet/63.3.581 10.1002/sim.2667 10.1016/j.jmva.2011.10.006 10.1214/aos/1176344136 10.1111/j.2517-6161.1977.tb01600.x 10.2307/2532340 10.2307/2529876 10.1201/9781420011180 10.1002/9780470316436 10.1017/CBO9780511550683 10.1016/j.csda.2009.11.021 10.1214/ss/1177013119 10.1080/01621459.1995.10476615 10.1002/sim.4780070132 10.2307/2533455 10.1097/00002030-199708000-00006 10.1111/j.1467-9868.2004.00438.x 10.1002/9781119013563 10.1086/517359 10.1002/9780470316696 10.1198/106186002760180608 10.1002/bimj.200900184 10.1002/sim.2361 10.1080/01621459.1997.10474030 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2479::AID-SIM270>3.0.CO;2-F 10.1093/biostatistics/kxs028 10.1086/514213 10.1002/sim.2384 10.1093/biostatistics/3.4.511 10.1097/00042560-199705010-00009 10.1002/bimj.200510192 10.1086/517436 10.1198/016214502753479211 10.1002/sim.3026 10.1002/sim.4780070131 |
ContentType | Journal Article |
Copyright | 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/bimj.201200001 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) Engineering Research Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1521-4036 |
EndPage | 571 |
ExternalDocumentID | 3318196691 23740830 10_1002_bimj_201200001 BIMJ1416 ark_67375_WNG_8QJ1V57Z_3 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Council funderid: NSC101‐2118‐M‐035‐003‐MY2 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 3-9 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M67 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XPP XV2 Y6R YHZ ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4396-85eb37f7adb43998faa2015c3b53591982f03a193a5e66897d47c4f5d553b5a23 |
IEDL.DBID | DR2 |
ISSN | 0323-3847 1521-4036 |
IngestDate | Fri Jul 11 01:53:41 EDT 2025 Fri Jul 11 04:56:18 EDT 2025 Fri Jul 25 10:36:23 EDT 2025 Mon Jul 21 05:48:54 EDT 2025 Tue Jul 01 04:17:57 EDT 2025 Thu Apr 24 23:02:05 EDT 2025 Wed Jan 22 16:36:32 EST 2025 Wed Oct 30 09:53:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Outliers Damped exponential model AECM algorithm Missing values Prediction |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4396-85eb37f7adb43998faa2015c3b53591982f03a193a5e66897d47c4f5d553b5a23 |
Notes | ArticleID:BIMJ1416 National Science Council - No. NSC101-2118-M-035-003-MY2 istex:DD68D2685BBEAA4816DB6AB47FA4BD0AB813831A ark:/67375/WNG-8QJ1V57Z-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 23740830 |
PQID | 1530086950 |
PQPubID | 105592 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1534848067 proquest_miscellaneous_1417532265 proquest_journals_1530086950 pubmed_primary_23740830 crossref_primary_10_1002_bimj_201200001 crossref_citationtrail_10_1002_bimj_201200001 wiley_primary_10_1002_bimj_201200001_BIMJ1416 istex_primary_ark_67375_WNG_8QJ1V57Z_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2013 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: July 2013 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Biometrical journal |
PublicationTitleAlternate | Biom. J |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley - VCH Verlag GmbH & Co. KGaA |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley - VCH Verlag GmbH & Co. KGaA |
References | Sammel, M., Lin, X. and Ryan, L. (1999). Multivariate linear mixed models for multiple outcomes. Statistics in Medicine 18, 2479-2492. Chakraborty, H., Sen, P. K., Helms, R. W., Vernazza, P. L., Fiscus, S. A., Eron, J. J., Patterson, B. K., Coombs, R. W., Krieger, J. N. and Cohen, M. S. (2001). Viral burden in genital secretions determines male-to-female sexual transmission of HIV-1: a probabilistic empiric model. AIDS 15, 621-627. Rao, C. R. (1987). Prediction of future observations in growth curve models. Statistical Science 2, 434-471. Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592. Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York. Stram, D. O. and Lee, J. W. (1994). Variance components testing in the longitudinal mixed effects model. Biometrics 50, 1171-1177. Schluchter, M. D. (1988). Analysis of incomplete multivariate data using linear models with structured covariance matrices. Statistics in Medicine 7, 317-324. Schafer, J. L. and Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics 11, 437-457. Dyer, J. R., Eron, J. J., Hoffman, I. F., Kazembe, P., Vernazza, P. L., Nkata, E., Castello, D. C., Fiscus, S. A. and Cohen, M. S. (1998a). Association of CD4 cell depletion and elevated blood and seminal plasma human immunodeficiency virus type 1 (HIV-1) RNA concentrations with genital ulcer disease in HIV-1-infected men in Malawi. Journal of Infectious Disease 177, 224-227. Meng, X. L. and van Dyk, D. (1997). The EM algorithm-an old folk-song sung to a fast new tune. Journal of the Royal Statistical Society, Series B 59, 511-567. Wang, W. L. and Fan, T. H. (2010). ECM-based maximum likelihood inference for multivariate linear mixed models with autoregressive errors. Computational Statistics and Data Analysis 54, 1328-1341. Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated measures studies. Journal of the American Statistal Association 90, 1112-1121. Drikvandi, R., Verbeke, G., Khodadadi, A. and Partovi Nia, V. (2013). Testing multiple variance components in linear mixed-effects models. Biostatistics 14, 144-159. Verbeke, G. and Molenberghs, G. (2009). Linear Mixed Models for Longitudinal Data. Springer, New York. Daniels, M. J. and Hogan, J. W. (2008). Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis. Chapman & Hall/CRC, New York. Muñoz, A., Carey, V., Schouten, J. P., Segal, M. and Rosner, B. (1992). A parametric family of correlation structures for the analysis of longitudinal data. Biometrics 48, 733-742. Ho, H. J. and Lin, T. I. (2010). Robust linear mixed models using the skew t distribution with application to schizophrenia data. Biometrical Journal 52, 449-469. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461-464. Chakraborty, H., Helms, R., Sen, P. K. and Cohen, M. S. (2003). Estimating correlation by using a general linear mixed model: evaluation of the relationship between the concentration of HIV-RNA in blood and semen. Statistics in Medicine 22, 1457-1464. Gilliam, B. L., Dyer, J. R., Fiscus, S. A., Marcus, C., Zhou, S., Wathen, L., Freimuth, Cohen, M. S. and Eron, J. J. (1997). Effects of reverse transcriptase inhibitor therapy on the HIV-1 viral burden in semen. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology 15, 54-60. Song, X., Davidian, M. and Tsiatis, A. A. (2002). An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 3, 511-528. Coombs, R. W., Speck, C. E., Hughes, J. P., Lee, W., Sampoleo, R., Ross, S. O., Dragavon, J., Peterson, G., Hooton, T. M., Collier, A. C., Corey, L., Koutsky, L. and Krieger, J. N. (1998). Association between culturable human immunodeficiency virus type 1 (HIV-1) in semen and HIV-1 RNA levels in semen and blood: evidence for compartmentalization of HIV-1 between semen and blood. The Journal of Infectious Diseases 177, 320-330. Ghosh, P., Branco, M. D. and Chakraborty, H. (2007). Bivariate random effect model using skew-normal distribution with application to HIV-RNA. Statistics in Medicine 26, 1255-1267. Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data (2nd ed.). Wiley, New York. Marshall, G., De la Cruz-Mesía, R., Barón, A. E., Rutledge, J. H. and Zerbe, G. O. (2006). Non-linear random effects model for multivariate responses with missing data. Statistics in Medicine 25, 2817-2830. Shah, A., Laird, N. and Schoenfeld, D. (1997). A random-effects model for multiple characteristics with possibly missing data. Journal of the American Statistical Association 92, 775-779. Marshall, G., De la Cruz-Mesía, R., Quintana, F. A. and Barón, A. E. (2009). Discriminant analysis for longitudinal data with multiple continuous responses and possibly missing data. Biometrics 65, 69-80. Rao, C. R. (1973). Linear Statistical Inference and Its Application (2nd edn.). John Wiley, New York. Wang, W. L. and Fan, T. H. (2012). Bayesian analysis of multivariate t linear mixed models using a combination of IBF and Gibbs samplers. Journal of Multivariate Analysis 105, 300-310. Lin, T. I. and Lee, J. C. (2008). Estimation and prediction in linear mixed models with skew normal random effects for longitudinal data. Statistics in Medicine 27, 1490-1507. Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. Wiley, New York. Vernazza, P. L., Gilliam, B. L., Dyer, J. R., Fiscus, S. A, Eron, J. J., Frank, A. C. and Cohen, M. S. (1997). Quantitation of HIV-1 in semen: correlation with antiviral treatment and immune status. AIDS 11, 987-993. Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society Series B 61, 265-285. Roy, A. (2006). Estimating correlation coefficient between two variables with repeated observations using mixed effects model. Biometrical Journal 48, 286-301. Roy, J. and Lin, X. (2002). Analysis of multivariate longitudinal outcomes with nonignorable dropouts and missing covariates: changes in methadone treatment practices. Journal of the American Statistical Association 97, 40-52. Wang, W. L. and Fan, T. H. (2011). Estimation in multivariate t linear mixed models for multiple longitudinal data. Statistica Sinica 21, 1857-1880. Crainiceanu, C. M. and Ruppert, D. (2004). Likelihood ratio tests in linear mixed models with one variance component. Journal of the Royal Statistical Society Series B 66, 165-185. Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. Chapman & Hall, London. Kotz, S. and Nadarajah, S. (2004). Multivariate t Distributions and Their Applications. Cambridge University Press, Cambridge. Dyer, J. R., Kazembe, P., Vernazza, P. L., Gilliam, B. L., Maida, M., Zimba, D., Hoffman, I. F., Royce, R. A., Schock, J. L., Fiscus, S. A., Cohen, M. S. and Eron, J. J. (1998b). High levels of human immunodeficiency virus type 1 in blood and semen of seropositive men in sub-Saharan Africa. Journal of Infectious Diseases 177, 1742-1746. Verbeke, G. and Molenberghs, G. (2003). The use of score tests for inference on variance components. Biometrics 59, 254-262. Lin, T. I. and Lee, J. C. (2006). A robust approach to t linear mixed models applied to multiple sclerosis data. Statistics in Medicine 25, 1397-1412. Laird, N. M. (1988). Missing data in longitudinal studies. Statistics in Medicine 7, 305-315. Laird, N. M. and Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics 38, 963-974. Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B 39, 1-38. 2004; 66 1987; 2 1976; 63 2010; 54 1982; 38 1998b; 177 2009; 65 1995; 90 2012 2002; 97 2002; 11 2009 2008 1997 1998a; 177 2002; 3 2003; 59 2007 1973 2004 1999; 61 2002 1998; 177 2012; 105 1978; 6 2013; 14 1997; 92 1997; 11 1977; 39 1999; 18 1997; 15 1997; 59 2006; 25 2008; 27 1988; 7 2006; 48 1987 2011; 21 2001; 15 1992; 48 1994; 50 2010; 52 2003; 22 2007; 26 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Little R. J. A. (e_1_2_9_22_1) 1987 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_45_1 e_1_2_9_21_1 Verbeke G. (e_1_2_9_44_1) 2009 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 Dempster A. P. (e_1_2_9_9_1) 1977; 39 Akaike H. (e_1_2_9_2_1) 1973 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – reference: Vernazza, P. L., Gilliam, B. L., Dyer, J. R., Fiscus, S. A, Eron, J. J., Frank, A. C. and Cohen, M. S. (1997). Quantitation of HIV-1 in semen: correlation with antiviral treatment and immune status. AIDS 11, 987-993. – reference: Drikvandi, R., Verbeke, G., Khodadadi, A. and Partovi Nia, V. (2013). Testing multiple variance components in linear mixed-effects models. Biostatistics 14, 144-159. – reference: Rao, C. R. (1973). Linear Statistical Inference and Its Application (2nd edn.). John Wiley, New York. – reference: Stram, D. O. and Lee, J. W. (1994). Variance components testing in the longitudinal mixed effects model. Biometrics 50, 1171-1177. – reference: Kotz, S. and Nadarajah, S. (2004). Multivariate t Distributions and Their Applications. Cambridge University Press, Cambridge. – reference: Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592. – reference: Sammel, M., Lin, X. and Ryan, L. (1999). Multivariate linear mixed models for multiple outcomes. Statistics in Medicine 18, 2479-2492. – reference: Verbeke, G. and Molenberghs, G. (2003). The use of score tests for inference on variance components. Biometrics 59, 254-262. – reference: Chakraborty, H., Sen, P. K., Helms, R. W., Vernazza, P. L., Fiscus, S. A., Eron, J. J., Patterson, B. K., Coombs, R. W., Krieger, J. N. and Cohen, M. S. (2001). Viral burden in genital secretions determines male-to-female sexual transmission of HIV-1: a probabilistic empiric model. AIDS 15, 621-627. – reference: Crainiceanu, C. M. and Ruppert, D. (2004). Likelihood ratio tests in linear mixed models with one variance component. Journal of the Royal Statistical Society Series B 66, 165-185. – reference: Muñoz, A., Carey, V., Schouten, J. P., Segal, M. and Rosner, B. (1992). A parametric family of correlation structures for the analysis of longitudinal data. Biometrics 48, 733-742. – reference: Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated measures studies. Journal of the American Statistal Association 90, 1112-1121. – reference: Marshall, G., De la Cruz-Mesía, R., Quintana, F. A. and Barón, A. E. (2009). Discriminant analysis for longitudinal data with multiple continuous responses and possibly missing data. Biometrics 65, 69-80. – reference: Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York. – reference: Meng, X. L. and van Dyk, D. (1997). The EM algorithm-an old folk-song sung to a fast new tune. Journal of the Royal Statistical Society, Series B 59, 511-567. – reference: Roy, J. and Lin, X. (2002). Analysis of multivariate longitudinal outcomes with nonignorable dropouts and missing covariates: changes in methadone treatment practices. Journal of the American Statistical Association 97, 40-52. – reference: Wang, W. L. and Fan, T. H. (2012). Bayesian analysis of multivariate t linear mixed models using a combination of IBF and Gibbs samplers. Journal of Multivariate Analysis 105, 300-310. – reference: Schluchter, M. D. (1988). Analysis of incomplete multivariate data using linear models with structured covariance matrices. Statistics in Medicine 7, 317-324. – reference: Daniels, M. J. and Hogan, J. W. (2008). Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis. Chapman & Hall/CRC, New York. – reference: Ghosh, P., Branco, M. D. and Chakraborty, H. (2007). Bivariate random effect model using skew-normal distribution with application to HIV-RNA. Statistics in Medicine 26, 1255-1267. – reference: Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461-464. – reference: Wang, W. L. and Fan, T. H. (2011). Estimation in multivariate t linear mixed models for multiple longitudinal data. Statistica Sinica 21, 1857-1880. – reference: Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. Wiley, New York. – reference: Marshall, G., De la Cruz-Mesía, R., Barón, A. E., Rutledge, J. H. and Zerbe, G. O. (2006). Non-linear random effects model for multivariate responses with missing data. Statistics in Medicine 25, 2817-2830. – reference: Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society Series B 61, 265-285. – reference: Schafer, J. L. and Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics 11, 437-457. – reference: Verbeke, G. and Molenberghs, G. (2009). Linear Mixed Models for Longitudinal Data. Springer, New York. – reference: Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. Chapman & Hall, London. – reference: Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data (2nd ed.). Wiley, New York. – reference: Gilliam, B. L., Dyer, J. R., Fiscus, S. A., Marcus, C., Zhou, S., Wathen, L., Freimuth, Cohen, M. S. and Eron, J. J. (1997). Effects of reverse transcriptase inhibitor therapy on the HIV-1 viral burden in semen. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology 15, 54-60. – reference: Lin, T. I. and Lee, J. C. (2008). Estimation and prediction in linear mixed models with skew normal random effects for longitudinal data. Statistics in Medicine 27, 1490-1507. – reference: Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B 39, 1-38. – reference: Laird, N. M. (1988). Missing data in longitudinal studies. Statistics in Medicine 7, 305-315. – reference: Dyer, J. R., Kazembe, P., Vernazza, P. L., Gilliam, B. L., Maida, M., Zimba, D., Hoffman, I. F., Royce, R. A., Schock, J. L., Fiscus, S. A., Cohen, M. S. and Eron, J. J. (1998b). High levels of human immunodeficiency virus type 1 in blood and semen of seropositive men in sub-Saharan Africa. Journal of Infectious Diseases 177, 1742-1746. – reference: Dyer, J. R., Eron, J. J., Hoffman, I. F., Kazembe, P., Vernazza, P. L., Nkata, E., Castello, D. C., Fiscus, S. A. and Cohen, M. S. (1998a). Association of CD4 cell depletion and elevated blood and seminal plasma human immunodeficiency virus type 1 (HIV-1) RNA concentrations with genital ulcer disease in HIV-1-infected men in Malawi. Journal of Infectious Disease 177, 224-227. – reference: Ho, H. J. and Lin, T. I. (2010). Robust linear mixed models using the skew t distribution with application to schizophrenia data. Biometrical Journal 52, 449-469. – reference: Lin, T. I. and Lee, J. C. (2006). A robust approach to t linear mixed models applied to multiple sclerosis data. Statistics in Medicine 25, 1397-1412. – reference: Rao, C. R. (1987). Prediction of future observations in growth curve models. Statistical Science 2, 434-471. – reference: Laird, N. M. and Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics 38, 963-974. – reference: Roy, A. (2006). Estimating correlation coefficient between two variables with repeated observations using mixed effects model. Biometrical Journal 48, 286-301. – reference: Song, X., Davidian, M. and Tsiatis, A. A. (2002). An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 3, 511-528. – reference: Wang, W. L. and Fan, T. H. (2010). ECM-based maximum likelihood inference for multivariate linear mixed models with autoregressive errors. Computational Statistics and Data Analysis 54, 1328-1341. – reference: Chakraborty, H., Helms, R., Sen, P. K. and Cohen, M. S. (2003). Estimating correlation by using a general linear mixed model: evaluation of the relationship between the concentration of HIV-RNA in blood and semen. Statistics in Medicine 22, 1457-1464. – reference: Coombs, R. W., Speck, C. E., Hughes, J. P., Lee, W., Sampoleo, R., Ross, S. O., Dragavon, J., Peterson, G., Hooton, T. M., Collier, A. C., Corey, L., Koutsky, L. and Krieger, J. N. (1998). Association between culturable human immunodeficiency virus type 1 (HIV-1) in semen and HIV-1 RNA levels in semen and blood: evidence for compartmentalization of HIV-1 between semen and blood. The Journal of Infectious Diseases 177, 320-330. – reference: Shah, A., Laird, N. and Schoenfeld, D. (1997). A random-effects model for multiple characteristics with possibly missing data. Journal of the American Statistical Association 92, 775-779. – volume: 2 start-page: 434 year: 1987 end-page: 471 article-title: Prediction of future observations in growth curve models publication-title: Statistical Science – year: 2009 – volume: 3 start-page: 511 year: 2002 end-page: 528 article-title: An estimator for the proportional hazards model with multiple longitudinal covariates measured with error publication-title: Biostatistics – volume: 59 start-page: 511 year: 1997 end-page: 567 article-title: The EM algorithm—an old folk‐song sung to a fast new tune publication-title: Journal of the Royal Statistical Society, Series B – volume: 66 start-page: 165 year: 2004 end-page: 185 article-title: Likelihood ratio tests in linear mixed models with one variance component publication-title: Journal of the Royal Statistical Society Series B – volume: 25 start-page: 1397 year: 2006 end-page: 1412 article-title: A robust approach to linear mixed models applied to multiple sclerosis data publication-title: Statistics in Medicine – volume: 65 start-page: 69 year: 2009 end-page: 80 article-title: Discriminant analysis for longitudinal data with multiple continuous responses and possibly missing data publication-title: Biometrics – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion) publication-title: Journal of the Royal Statistical Society, Series B – volume: 97 start-page: 40 year: 2002 end-page: 52 article-title: Analysis of multivariate longitudinal outcomes with nonignorable dropouts and missing covariates: changes in methadone treatment practices publication-title: Journal of the American Statistical Association – volume: 90 start-page: 1112 year: 1995 end-page: 1121 article-title: Modeling the drop‐out mechanism in repeated measures studies publication-title: Journal of the American Statistal Association – volume: 92 start-page: 775 year: 1997 end-page: 779 article-title: A random‐effects model for multiple characteristics with possibly missing data publication-title: Journal of the American Statistical Association – volume: 26 start-page: 1255 year: 2007 end-page: 1267 article-title: Bivariate random effect model using skew‐normal distribution with application to HIV‐RNA publication-title: Statistics in Medicine – year: 1987 – volume: 11 start-page: 987 year: 1997 end-page: 993 article-title: Quantitation of HIV‐1 in semen: correlation with antiviral treatment and immune status publication-title: AIDS – year: 2007 – volume: 11 start-page: 437 year: 2002 end-page: 457 article-title: Computational strategies for multivariate linear mixed‐effects models with missing values publication-title: Journal of Computational and Graphical Statistics – year: 1973 – volume: 50 start-page: 1171 year: 1994 end-page: 1177 article-title: Variance components testing in the longitudinal mixed effects model publication-title: Biometrics – volume: 48 start-page: 286 year: 2006 end-page: 301 article-title: Estimating correlation coefficient between two variables with repeated observations using mixed effects model publication-title: Biometrical Journal – volume: 15 start-page: 54 year: 1997 end-page: 60 article-title: Effects of reverse transcriptase inhibitor therapy on the HIV‐1 viral burden in semen publication-title: Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology – volume: 63 start-page: 581 year: 1976 end-page: 592 article-title: Inference and missing data publication-title: Biometrika – volume: 177 start-page: 1742 year: 1998b end-page: 1746 article-title: High levels of human immunodeficiency virus type 1 in blood and semen of seropositive men in sub‐Saharan Africa publication-title: Journal of Infectious Diseases – volume: 52 start-page: 449 year: 2010 end-page: 469 article-title: Robust linear mixed models using the skew distribution with application to schizophrenia data publication-title: Biometrical Journal – volume: 6 start-page: 461 year: 1978 end-page: 464 article-title: Estimating the dimension of a model publication-title: The Annals of Statistics – volume: 21 start-page: 1857 year: 2011 end-page: 1880 article-title: Estimation in multivariate linear mixed models for multiple longitudinal data publication-title: Statistica Sinica – year: 2012 – volume: 61 start-page: 265 year: 1999 end-page: 285 article-title: Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm publication-title: Journal of the Royal Statistical Society Series B – volume: 14 start-page: 144 year: 2013 end-page: 159 article-title: Testing multiple variance components in linear mixed‐effects models publication-title: Biostatistics – volume: 54 start-page: 1328 year: 2010 end-page: 1341 article-title: ECM‐based maximum likelihood inference for multivariate linear mixed models with autoregressive errors publication-title: Computational Statistics and Data Analysis – volume: 48 start-page: 733 year: 1992 end-page: 742 article-title: A parametric family of correlation structures for the analysis of longitudinal data publication-title: Biometrics – volume: 38 start-page: 963 year: 1982 end-page: 974 article-title: Random effects models for longitudinal data publication-title: Biometrics – volume: 15 start-page: 621 year: 2001 end-page: 627 article-title: Viral burden in genital secretions determines male‐to‐female sexual transmission of HIV‐1: a probabilistic empiric model publication-title: AIDS – year: 2002 – year: 2008 – volume: 177 start-page: 224 year: 1998a end-page: 227 article-title: Association of CD4 cell depletion and elevated blood and seminal plasma human immunodeficiency virus type 1 (HIV‐1) RNA concentrations with genital ulcer disease in HIV‐1‐infected men in Malawi publication-title: Journal of Infectious Disease – volume: 59 start-page: 254 year: 2003 end-page: 262 article-title: The use of score tests for inference on variance components publication-title: Biometrics – year: 2004 – year: 1997 – volume: 7 start-page: 305 year: 1988 end-page: 315 article-title: Missing data in longitudinal studies publication-title: Statistics in Medicine – start-page: 267 year: 1973 end-page: 281 – volume: 25 start-page: 2817 year: 2006 end-page: 2830 article-title: Non‐linear random effects model for multivariate responses with missing data publication-title: Statistics in Medicine – volume: 7 start-page: 317 year: 1988 end-page: 324 article-title: Analysis of incomplete multivariate data using linear models with structured covariance matrices publication-title: Statistics in Medicine – volume: 105 start-page: 300 year: 2012 end-page: 310 article-title: Bayesian analysis of multivariate linear mixed models using a combination of IBF and Gibbs samplers publication-title: Journal of Multivariate Analysis – volume: 18 start-page: 2479 year: 1999 end-page: 2492 article-title: Multivariate linear mixed models for multiple outcomes publication-title: Statistics in Medicine – volume: 177 start-page: 320 year: 1998 end-page: 330 article-title: Association between culturable human immunodeficiency virus type 1 (HIV‐1) in semen and HIV‐1 RNA levels in semen and blood: evidence for compartmentalization of HIV‐1 between semen and blood publication-title: The Journal of Infectious Diseases – volume: 22 start-page: 1457 year: 2003 end-page: 1464 article-title: Estimating correlation by using a general linear mixed model: evaluation of the relationship between the concentration of HIV‐RNA in blood and semen publication-title: Statistics in Medicine – volume: 27 start-page: 1490 year: 2008 end-page: 1507 article-title: Estimation and prediction in linear mixed models with skew normal random effects for longitudinal data publication-title: Statistics in Medicine – ident: e_1_2_9_47_1 doi: 10.5705/ss.2009.306 – volume-title: Statistical Analysis with Missing Data year: 1987 ident: e_1_2_9_22_1 – ident: e_1_2_9_25_1 doi: 10.1111/j.1541-0420.2008.01016.x – ident: e_1_2_9_36_1 doi: 10.1201/9781439821862 – ident: e_1_2_9_3_1 doi: 10.1111/1467-9868.00176 – ident: e_1_2_9_28_1 – ident: e_1_2_9_43_1 doi: 10.1111/1541-0420.00032 – ident: e_1_2_9_4_1 doi: 10.1002/sim.1505 – ident: e_1_2_9_26_1 doi: 10.1111/1467-9868.00082 – ident: e_1_2_9_5_1 doi: 10.1097/00002030-200103300-00012 – ident: e_1_2_9_33_1 doi: 10.1093/biomet/63.3.581 – ident: e_1_2_9_13_1 doi: 10.1002/sim.2667 – ident: e_1_2_9_48_1 doi: 10.1016/j.jmva.2011.10.006 – ident: e_1_2_9_39_1 doi: 10.1214/aos/1176344136 – volume: 39 start-page: 1 year: 1977 ident: e_1_2_9_9_1 article-title: Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion) publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_9_27_1 doi: 10.2307/2532340 – ident: e_1_2_9_18_1 doi: 10.2307/2529876 – ident: e_1_2_9_8_1 doi: 10.1201/9781420011180 – ident: e_1_2_9_29_1 doi: 10.1002/9780470316436 – ident: e_1_2_9_16_1 doi: 10.1017/CBO9780511550683 – ident: e_1_2_9_46_1 doi: 10.1016/j.csda.2009.11.021 – ident: e_1_2_9_30_1 doi: 10.1214/ss/1177013119 – ident: e_1_2_9_21_1 doi: 10.1080/01621459.1995.10476615 – ident: e_1_2_9_38_1 doi: 10.1002/sim.4780070132 – ident: e_1_2_9_42_1 doi: 10.2307/2533455 – ident: e_1_2_9_45_1 doi: 10.1097/00002030-199708000-00006 – ident: e_1_2_9_7_1 doi: 10.1111/j.1467-9868.2004.00438.x – ident: e_1_2_9_23_1 doi: 10.1002/9781119013563 – ident: e_1_2_9_11_1 doi: 10.1086/517359 – ident: e_1_2_9_34_1 doi: 10.1002/9780470316696 – ident: e_1_2_9_37_1 doi: 10.1198/106186002760180608 – ident: e_1_2_9_15_1 doi: 10.1002/bimj.200900184 – ident: e_1_2_9_24_1 doi: 10.1002/sim.2361 – ident: e_1_2_9_40_1 doi: 10.1080/01621459.1997.10474030 – ident: e_1_2_9_35_1 doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2479::AID-SIM270>3.0.CO;2-F – ident: e_1_2_9_49_1 – ident: e_1_2_9_10_1 doi: 10.1093/biostatistics/kxs028 – ident: e_1_2_9_6_1 doi: 10.1086/514213 – ident: e_1_2_9_19_1 doi: 10.1002/sim.2384 – volume-title: Linear Mixed Models for Longitudinal Data year: 2009 ident: e_1_2_9_44_1 – ident: e_1_2_9_41_1 doi: 10.1093/biostatistics/3.4.511 – start-page: 267 volume-title: Proceedings of the 2nd International Symposium on Information Theory year: 1973 ident: e_1_2_9_2_1 – ident: e_1_2_9_14_1 doi: 10.1097/00042560-199705010-00009 – ident: e_1_2_9_31_1 doi: 10.1002/bimj.200510192 – ident: e_1_2_9_12_1 doi: 10.1086/517436 – ident: e_1_2_9_32_1 doi: 10.1198/016214502753479211 – ident: e_1_2_9_20_1 doi: 10.1002/sim.3026 – ident: e_1_2_9_17_1 doi: 10.1002/sim.4780070131 |
SSID | ssj0009042 |
Score | 2.140659 |
Snippet | Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed... Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 554 |
SubjectTerms | Acquired Immunodeficiency Syndrome - blood Adult AECM algorithm Algorithms Bayes Theorem Clinical Trials as Topic Damped exponential model Data Interpretation, Statistical Female Human immunodeficiency virus Humans Linear Models Longitudinal Studies Middle Aged Missing values Multivariate Analysis Outliers Prediction Pregnancy RNA, Viral - blood Young Adult |
Title | Multivariate t linear mixed models for irregularly observed multiple repeated measures with missing outcomes |
URI | https://api.istex.fr/ark:/67375/WNG-8QJ1V57Z-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.201200001 https://www.ncbi.nlm.nih.gov/pubmed/23740830 https://www.proquest.com/docview/1530086950 https://www.proquest.com/docview/1417532265 https://www.proquest.com/docview/1534848067 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQERIXoLy60CIjITil3Y3t2D6WRykrtRKIQsXFsh1HWrrdrZIsavn1nbGzKYt4CHFMPInf9jfj8TeEPNNSeF9Km7lC6ozjPR_tVJlVXldB5bz00Rnz4LDYP-LjY3H8wy3-xA_RG9xwZsT1Gie4dc3OFWmom5x-RdesPBqoYREesQLJ819_uOKP0kOejhFyljFYh5esjcN8Z_XzlV3pOjbw-a8g5yqCjVvQ3m1il4VPnicn24vWbfvvP_E6_k_t7pBbHT6lu2lArZNrYXaX3EgRKy_ukWm8sPsNFGzAqLSlmJGt6enkPJQ0RtVpKMBgOqnrGOS-nl7QuUPLL6Z3zou0DmewBeCbZKFsKJqD4S8NWi7ofNFCcUNznxztvfn4aj_rAjZkHnBNkSkBqrmspC0dqjmqshaqIDxzggk90iqvhswCZLQiFIXSsuTS80qUQoCIzdkDsjabz8IGocxr4WTQahRAQZRSVfCsYDkCeKIZYwOSLTvM-I7NHINqTE3iYc4NtqDpW3BAXvTyZ4nH47eSz2P_92K2PkHvNynM58O3Rr0fjz4J-cVAETaXA8R0E78xsIGglqjFcECe9snQfngOY2dhvgAZjvSogHvFH2QE44orwBID8jANvr5AOZMckDPkkMUh9JcKmZfvDsaQZ_HoH-Ufk5t5DP6BzsmbZK2tF2ELIFjrnsRpdgn4IifF |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgE4IX7pfCACMheMrWxnZsP3IbXVkrgTZAvFi240hlXTslKdr49ZzjpJmKuAjxmOQkvuTY_s7x8XcIeaql8D6XNnGZ1AnHcz7aqTwpvC6CSnnuYzDmeJIND_nos1hFE-JZmIYfonO44ciI8zUOcHRI75yzhrrp8VeMzUqjh_oi2eSANtD-ev3hnEFK93mzkZCyhMFMvOJt7Kc76--vrUub2MWnvwKd6xg2LkK714hbVb-JPTnaXtZu23__idnxv9p3nVxtISp90ejUDXIhzG-SS03SyrNbZBbP7H4DGxtgKq0plmRLejw9DTmNiXUqCkiYTssy5rkvZ2d04dD5i8_b-EVahhNYBfBO46SsKHqE4SsVOi_oYllDfUN1mxzuvjl4NUzanA2JB2iTJUqAdS4LaXOHlo4qrIUmCM-cYEIPtEqLPrOAGq0IWaa0zLn0vBC5ECBiU3aHbMwX83CPUOa1cDJoNQhgI0qpCrhWMCMBQtGMsR5JVn_M-JbQHPNqzExDxZwa7EHT9WCPPO_kTxoqj99KPosK0InZ8ggD4KQwnyZvjXo_GnwU8ouBKmytNMS0Y78ysIagoahFv0eedI-h_3Arxs7DYgkyHBlSAfqKP8gIxhVXACd65G6jfV2FUiY5gGcoIYk69JcGmZd74xGUmd3_R_nH5PLwYLxv9vcm7x6QK2nMBYKxyltkoy6X4SEgsto9imPuB3R1K-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgE2gvjM9RGGAkBE_Z2tiO7cfxUbbCKkCMTbxYjuNIZV1bJSna9tfvzkkzivgQ4jHJJf7I2f7d-fw7Qp5pKZzLpI3SROqI4zkfnaosyp3OvYp55kIw5v4w2T3ggyNx9MMp_pofonW44cgI8zUO8FmWb1-Shqajk28YmhUHB_VVssoTgBMIiz5dEkjpLq_3EWIWMZiIF7SN3Xh7-f2lZWkVe_j0V5hzGcKGNai_Tuyi9nXoyfHWvEq33PlPxI7_07yb5EYDUOlOrVG3yBU_uU2u1Skrz-6QcTix-x0sbACptKJYkC3oyejUZzSk1Skp4GA6KoqQ5b4Yn9Fpiq5ffN5EL9LCz2ANwDu1i7Kk6A-Gr5TouqDTeQXV9eVdctB_8_nVbtRkbIgcAJskUgJsc5lLm6Vo56jcWmiCcCwVTOieVnHeZRYwoxU-SZSWGZeO5yITAkRszO6Rlcl04u8TypwWqfRa9TxYiFKqHK4VzEeATzRjrEOixQ8zrqEzx6waY1MTMccGe9C0PdghL1r5WU3k8VvJ5-H_t2K2OMbwNynM4fCtUR8HvS9CfjVQhc2Fgphm5JcGVhA0E7XodsjT9jH0H27E2ImfzkGGIz8qAF_xBxnBuOIKwESHbNTK11YoZpKDrkMJUVChvzTIvNzbH0CZyYN_lH9Crn943Tfv94bvHpK1OCQCwUDlTbJSFXP_COBYlT4OI-4CxdYqkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+t+linear+mixed+models+for+irregularly+observed+multiple+repeated+measures+with+missing+outcomes&rft.jtitle=Biometrical+journal&rft.au=Wang%2C+Wan-Lun&rft.date=2013-07-01&rft.issn=0323-3847&rft.eissn=1521-4036&rft.volume=55&rft.issue=4&rft.spage=554&rft.epage=571&rft_id=info:doi/10.1002%2Fbimj.201200001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon |