Artificial Neuron and Synapse Realized in an Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin–Orbit Torque Switching

Efficient information processing in the human brain is achieved by dynamics of neurons and synapses, motivating effective implementation of artificial spiking neural networks. Here, the dynamics of spin–orbit torque switching in antiferromagnet/ferromagnet heterostructures is studied to show the cap...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 23; pp. e1900636 - n/a
Main Authors Kurenkov, Aleksandr, DuttaGupta, Samik, Zhang, Chaoliang, Fukami, Shunsuke, Horio, Yoshihiko, Ohno, Hideo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficient information processing in the human brain is achieved by dynamics of neurons and synapses, motivating effective implementation of artificial spiking neural networks. Here, the dynamics of spin–orbit torque switching in antiferromagnet/ferromagnet heterostructures is studied to show the capability of the material system to form artificial neurons and synapses for asynchronous spiking neural networks. The magnetization switching, driven by a single current pulse or trains of pulses, is examined as a function of the pulse width (1 s to 1 ns), amplitude, number, and pulse‐to‐pulse interval. Based on this dynamics and the unique ability of the system to exhibit binary or analog behavior depending on the device size, key functionalities of a synapse (spike‐timing‐dependent plasticity) and a neuron (leaky integrate‐and‐fire) are reproduced in the same material and on the basis of the same working principle. These results open a way toward spintronics‐based neuromorphic hardware that executes cognitive tasks with the efficiency of the human brain. Control of spintronics‐based binary and analog devices by pulses down to 1 ns and its applications are studied. It is found that the response of the binary device reproduces the behavior of a biological neuron while the analog device responds like a synapse. This is the first implementation of both elements based on the same material and working principle.
AbstractList Abstract Efficient information processing in the human brain is achieved by dynamics of neurons and synapses, motivating effective implementation of artificial spiking neural networks. Here, the dynamics of spin–orbit torque switching in antiferromagnet/ferromagnet heterostructures is studied to show the capability of the material system to form artificial neurons and synapses for asynchronous spiking neural networks. The magnetization switching, driven by a single current pulse or trains of pulses, is examined as a function of the pulse width (1 s to 1 ns), amplitude, number, and pulse‐to‐pulse interval. Based on this dynamics and the unique ability of the system to exhibit binary or analog behavior depending on the device size, key functionalities of a synapse (spike‐timing‐dependent plasticity) and a neuron (leaky integrate‐and‐fire) are reproduced in the same material and on the basis of the same working principle. These results open a way toward spintronics‐based neuromorphic hardware that executes cognitive tasks with the efficiency of the human brain.
Efficient information processing in the human brain is achieved by dynamics of neurons and synapses, motivating effective implementation of artificial spiking neural networks. Here, the dynamics of spin–orbit torque switching in antiferromagnet/ferromagnet heterostructures is studied to show the capability of the material system to form artificial neurons and synapses for asynchronous spiking neural networks. The magnetization switching, driven by a single current pulse or trains of pulses, is examined as a function of the pulse width (1 s to 1 ns), amplitude, number, and pulse‐to‐pulse interval. Based on this dynamics and the unique ability of the system to exhibit binary or analog behavior depending on the device size, key functionalities of a synapse (spike‐timing‐dependent plasticity) and a neuron (leaky integrate‐and‐fire) are reproduced in the same material and on the basis of the same working principle. These results open a way toward spintronics‐based neuromorphic hardware that executes cognitive tasks with the efficiency of the human brain. Control of spintronics‐based binary and analog devices by pulses down to 1 ns and its applications are studied. It is found that the response of the binary device reproduces the behavior of a biological neuron while the analog device responds like a synapse. This is the first implementation of both elements based on the same material and working principle.
Efficient information processing in the human brain is achieved by dynamics of neurons and synapses, motivating effective implementation of artificial spiking neural networks. Here, the dynamics of spin-orbit torque switching in antiferromagnet/ferromagnet heterostructures is studied to show the capability of the material system to form artificial neurons and synapses for asynchronous spiking neural networks. The magnetization switching, driven by a single current pulse or trains of pulses, is examined as a function of the pulse width (1 s to 1 ns), amplitude, number, and pulse-to-pulse interval. Based on this dynamics and the unique ability of the system to exhibit binary or analog behavior depending on the device size, key functionalities of a synapse (spike-timing-dependent plasticity) and a neuron (leaky integrate-and-fire) are reproduced in the same material and on the basis of the same working principle. These results open a way toward spintronics-based neuromorphic hardware that executes cognitive tasks with the efficiency of the human brain.
Author DuttaGupta, Samik
Fukami, Shunsuke
Horio, Yoshihiko
Zhang, Chaoliang
Kurenkov, Aleksandr
Ohno, Hideo
Author_xml – sequence: 1
  givenname: Aleksandr
  surname: Kurenkov
  fullname: Kurenkov, Aleksandr
  organization: Tohoku University
– sequence: 2
  givenname: Samik
  surname: DuttaGupta
  fullname: DuttaGupta, Samik
  organization: Tohoku University
– sequence: 3
  givenname: Chaoliang
  surname: Zhang
  fullname: Zhang, Chaoliang
  organization: Tohoku University
– sequence: 4
  givenname: Shunsuke
  orcidid: 0000-0001-5750-2990
  surname: Fukami
  fullname: Fukami, Shunsuke
  email: s-fukami@riec.tohoku.ac.jp
  organization: Tohoku University
– sequence: 5
  givenname: Yoshihiko
  surname: Horio
  fullname: Horio, Yoshihiko
  organization: Tohoku University
– sequence: 6
  givenname: Hideo
  surname: Ohno
  fullname: Ohno, Hideo
  organization: Tohoku University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30989740$$D View this record in MEDLINE/PubMed
BookMark eNqF0T1v1DAYB3ALFdFrYWVEllhYcn38Eiceo74iFSpxxxw5zpPiKnEOO1F1TIzs_YZ8Eny60kosTI9l_fy3rf8ROfCjR0LeMlgyAH5i2sEsOTANoIR6QRYs5yyToPMDsgAt8kwrWR6SoxjvAEArUK_IoQBd6kLCgvyqwuQ6Z53p6Wecw-ip8S1dbb3ZRKRf0PTuB7bU7fZp5RPGEMbB3HqcTi6e1_QKJwxjnMJspzkg_Rqdv6VnKWhwNtKxo6uN879_PtyExk10PYbvM9LVvZvstyRfk5ed6SO-eZzHZH1xvj69yq5vLj-eVteZlUKrTIhWylY3UILlHbNSqbbUedmAYqzkplAIqhFQGqOZNFwjFEqkKRgIq8Ux-bCP3YQx3R-nenDRYt8bj-Mca84ZcMW4zhN9_w-9G-fg0-OSEqKQusiLpJZ7ZdPnY8Cu3gQ3mLCtGdS7iupdRfVTRenAu8fYuRmwfeJ_O0lA78G963H7n7i6OvtUPYf_AfGAoIU
CitedBy_id crossref_primary_10_1007_s11433_019_1499_3
crossref_primary_10_1103_PhysRevApplied_19_034039
crossref_primary_10_1063_5_0011448
crossref_primary_10_1002_adma_201907148
crossref_primary_10_1002_aelm_201900782
crossref_primary_10_1063_5_0039069
crossref_primary_10_1063_5_0009482
crossref_primary_10_3389_fnano_2021_732916
crossref_primary_10_1088_0256_307X_37_7_078501
crossref_primary_10_1016_j_procs_2020_02_122
crossref_primary_10_1063_1_5129829
crossref_primary_10_1039_D0NA00009D
crossref_primary_10_1063_5_0035667
crossref_primary_10_1002_smll_202006662
crossref_primary_10_1587_essfr_14_1_6
crossref_primary_10_1002_adfm_201909092
crossref_primary_10_7498_aps_72_20230285
crossref_primary_10_1002_aelm_202200939
crossref_primary_10_1063_5_0193436
crossref_primary_10_1002_aelm_201901107
crossref_primary_10_1021_acs_nanolett_4c01712
crossref_primary_10_1063_5_0155559
crossref_primary_10_1103_PhysRevApplied_13_024052
crossref_primary_10_1002_adfm_202107870
crossref_primary_10_1021_acs_nanolett_1c04786
crossref_primary_10_1039_D1CS00886B
crossref_primary_10_3390_electronics11040516
crossref_primary_10_1109_TMAG_2020_3032099
crossref_primary_10_3390_electronics11030365
crossref_primary_10_1002_adma_202301063
crossref_primary_10_1063_5_0142374
crossref_primary_10_1063_5_0079532
crossref_primary_10_1002_pi_5980
crossref_primary_10_1038_s41467_020_19511_4
crossref_primary_10_7498_aps_70_20210611
crossref_primary_10_1063_5_0094205
crossref_primary_10_1557_s43577_023_00613_5
crossref_primary_10_1109_TNANO_2023_3313313
crossref_primary_10_1002_aelm_202101127
crossref_primary_10_1021_acsaelm_9b00560
crossref_primary_10_1103_PhysRevB_109_L060405
crossref_primary_10_1109_TMAG_2021_3078583
crossref_primary_10_1063_5_0053430
crossref_primary_10_1021_acsaelm_3c00429
crossref_primary_10_3389_fnins_2020_00309
crossref_primary_10_1021_acsami_1c18017
crossref_primary_10_1038_s41598_024_60929_3
crossref_primary_10_35848_1347_4065_acbc2a
crossref_primary_10_1021_acsaelm_4c00521
crossref_primary_10_1002_adma_202311831
crossref_primary_10_3389_fnins_2021_717947
crossref_primary_10_35848_1347_4065_ab6867
crossref_primary_10_1002_adma_202104960
crossref_primary_10_1021_acsaelm_2c01488
crossref_primary_10_15541_jim20230405
crossref_primary_10_1063_5_0014771
crossref_primary_10_1103_PhysRevApplied_19_064010
crossref_primary_10_1038_s41565_023_01452_w
crossref_primary_10_1039_D1NR00346A
crossref_primary_10_1038_s41467_023_36728_1
crossref_primary_10_1103_PhysRevApplied_14_044036
crossref_primary_10_1021_acs_nanolett_2c02409
crossref_primary_10_1103_PhysRevMaterials_8_064407
crossref_primary_10_1007_s11433_022_2081_5
crossref_primary_10_1063_1_5143382
crossref_primary_10_1016_j_pmatsci_2020_100761
crossref_primary_10_1021_acs_nanolett_9b05271
crossref_primary_10_1109_TCSII_2023_3324584
crossref_primary_10_1016_j_isci_2020_101614
crossref_primary_10_1109_JEDS_2020_3025336
crossref_primary_10_1103_PhysRevApplied_13_034072
crossref_primary_10_1103_PhysRevLett_125_207202
crossref_primary_10_1002_adfm_202008971
crossref_primary_10_1038_s41928_020_00506_4
crossref_primary_10_1038_s41928_022_00870_3
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1038_s41598_024_60492_x
crossref_primary_10_1002_adfm_202111996
crossref_primary_10_1002_aelm_202001133
crossref_primary_10_1063_5_0128530
crossref_primary_10_1002_adfm_202404679
crossref_primary_10_1063_5_0054025
crossref_primary_10_3389_fnins_2021_786694
crossref_primary_10_1080_14686996_2023_2188878
crossref_primary_10_1109_TNANO_2023_3315071
crossref_primary_10_3389_fnins_2021_661667
crossref_primary_10_1002_adma_202205047
crossref_primary_10_1038_s41928_020_0373_4
crossref_primary_10_3390_cryst13060940
crossref_primary_10_1007_s11433_022_2012_2
crossref_primary_10_1063_5_0101981
crossref_primary_10_1002_adfm_202305238
crossref_primary_10_1021_acsmaterialslett_3c00088
crossref_primary_10_1021_acsaelm_3c01179
crossref_primary_10_1016_j_jmmm_2022_169974
crossref_primary_10_1109_LMAG_2021_3136154
crossref_primary_10_1587_nolta_12_309
crossref_primary_10_1002_adma_202403142
crossref_primary_10_1002_adma_201903800
crossref_primary_10_3390_magnetochemistry7100139
crossref_primary_10_1063_5_0149290
crossref_primary_10_1080_21663831_2022_2147803
crossref_primary_10_1002_aisy_202200123
crossref_primary_10_1002_advs_202203006
crossref_primary_10_1038_s41586_020_2211_2
crossref_primary_10_1109_TMAG_2023_3283034
crossref_primary_10_1002_aisy_202000182
crossref_primary_10_1142_S201032472340026X
crossref_primary_10_1002_adfm_202111653
crossref_primary_10_1063_5_0145497
crossref_primary_10_1039_D1MA00862E
crossref_primary_10_1063_5_0013917
crossref_primary_10_1016_j_jmmm_2022_169960
crossref_primary_10_1063_5_0177232
crossref_primary_10_1063_5_0131399
crossref_primary_10_1088_1361_6463_abea3b
crossref_primary_10_1109_TED_2023_3327031
crossref_primary_10_1002_aelm_202100465
crossref_primary_10_1063_5_0092115
crossref_primary_10_1063_1_5120565
crossref_primary_10_1002_aisy_202000111
crossref_primary_10_1063_5_0049928
crossref_primary_10_1002_sstr_202200064
crossref_primary_10_1088_2634_4386_acdb96
crossref_primary_10_1007_s12274_024_6447_2
crossref_primary_10_1002_adma_202103672
crossref_primary_10_7498_aps_71_20220252
Cites_doi 10.1088/1741-2552/aa7075
10.1038/nnano.2016.29
10.1038/ncomms14736
10.1038/nmat4566
10.1073/pnas.0913991107
10.1103/PhysRevApplied.9.064040
10.1063/1.4977838
10.1038/srep01619
10.1038/s41928-018-0131-z
10.55782/ane-2011-1862
10.1038/s41928-017-0006-8
10.3389/fncom.2015.00099
10.3389/fnins.2016.00474
10.1038/s41467-017-02780-x
10.1126/science.1218197
10.1109/TMAG.2017.2703817
10.3389/fnins.2011.00026
10.1126/science.1225266
10.1109/TNNLS.2015.2388544
10.1103/PhysRevApplied.9.064018
10.1038/nn.4241
10.1038/78829
10.1016/S0896-6273(01)00451-2
10.1063/1.2926374
10.1126/science.1254642
10.1038/ncomms15434
10.1038/nn.3948
10.1103/PhysRevApplied.9.014034
10.1016/j.neunet.2014.01.006
10.1002/adfm.201604740
10.1126/science.aab1031
10.1002/adma.201802353
10.1021/nl201040y
10.1162/jocn.1990.2.1.58
10.1002/adma.201103723
10.1038/srep10150
10.1038/nature23011
10.1038/236
10.1109/JPROC.2014.2313954
10.7554/eLife.23612
10.1038/nature06932
10.1038/s41598-017-07418-y
10.1371/journal.pcbi.1003408
10.1038/nature10309
10.1073/pnas.0712231105
10.1523/JNEUROSCI.18-24-10464.1998
10.1002/adfm.201101935
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201900636
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_201900636
30989740
ADMA201900636
Genre article
Journal Article
GrantInformation_xml – fundername: JSPS KAKENHI
  funderid: 17H06093; 18KK0143
– fundername: JSPS KAKENHI
  grantid: 17H06093
– fundername: JSPS KAKENHI
  grantid: 18KK0143
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4396-33d44d9b080c2f1c466d8958b061182a76e06b308aa914a29e0763a293103c93
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Aug 16 09:03:51 EDT 2024
Thu Oct 10 16:41:13 EDT 2024
Thu Sep 26 21:14:02 EDT 2024
Wed Oct 16 00:51:51 EDT 2024
Sat Aug 24 01:19:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords spintronics
antiferromagnets
synapses
neurons
neural networks
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4396-33d44d9b080c2f1c466d8958b061182a76e06b308aa914a29e0763a293103c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5750-2990
PMID 30989740
PQID 2233749757
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2210261295
proquest_journals_2233749757
crossref_primary_10_1002_adma_201900636
pubmed_primary_30989740
wiley_primary_10_1002_adma_201900636_ADMA201900636
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2017; 7
2017; 8
2011; 476
2013; 3
2015; 5
2015; 19
2016; 19
2015; 18
2010; 107
2000; 3
2017; 27
2016; 10
2008; 105
2017; 110
2015; 9
2012; 12
2008; 92
2016; 15
2011; 5
2016; 11
1990; 2
2015; 26
1998; 18
2018; 9
2017; 53
2017; 14
2018; 1
2011; 71
2018
2018; 30
1998; 1
2014; 52
2008; 453
2012; 24
2012; 336
2012; 22
2012; 338
2014; 345
2016; 351
2014; 10
2014; 102
2017; 547
2001; 32
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
Ballestero J. (e_1_2_5_39_1) 2015; 19
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
Ponulak F. (e_1_2_5_4_1) 2011; 71
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_28_1
e_1_2_5_49_1
Wang Z. (e_1_2_5_24_1) 2018
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_50_1
References_xml – volume: 338
  start-page: 1202
  year: 2012
  publication-title: Science
– volume: 345
  start-page: 668
  year: 2014
  publication-title: Science
– volume: 9
  start-page: 014034
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 32
  start-page: 339
  year: 2001
  publication-title: Neuron
– volume: 22
  start-page: 609
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 350
  year: 2016
  publication-title: Nat. Neurosci.
– volume: 453
  start-page: 80
  year: 2008
  publication-title: Nature
– volume: 18
  start-page: 10464
  year: 1998
  publication-title: J. Neurosci.
– volume: 9
  start-page: 064018
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 14
  start-page: 046021
  year: 2017
  publication-title: J. Neural Eng.
– volume: 110
  start-page: 092410
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 064040
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 3
  start-page: 1619
  year: 2013
  publication-title: Sci. Rep.
– volume: 26
  start-page: 2635
  year: 2015
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 107
  start-page: 1648
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2018
– volume: 105
  start-page: 3593
  year: 2008
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 348
  year: 2018
  publication-title: Nat. Commun.
– volume: 1
  start-page: 22
  year: 2018
  publication-title: Nat. Electron.
– volume: 10
  start-page: e1003408
  year: 2014
  publication-title: PLoS Comput. Biol.
– volume: 1
  start-page: 36
  year: 1998
  publication-title: Nat. Neurosci.
– volume: 8
  start-page: 15434
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  start-page: 26
  year: 2011
  publication-title: Front. Neurosci.
– volume: 8
  start-page: 14736
  year: 2017
  publication-title: Nat. Commun.
– volume: 27
  start-page: 1604740
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 336
  start-page: 555
  year: 2012
  publication-title: Science
– volume: 30
  start-page: 1802353
  year: 2018
  publication-title: Adv. Mater.
– volume: 10
  start-page: 474
  year: 2016
  publication-title: Front. Neurosci.
– volume: 9
  start-page: 99
  year: 2015
  publication-title: Front. Computat. Neurosci.
– volume: 5
  start-page: 10150
  year: 2015
  publication-title: Sci. Rep.
– volume: 11
  start-page: 621
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 102
  start-page: 1367
  year: 2014
  publication-title: Proc. IEEE
– volume: 6
  start-page: 23612
  year: 2017
  publication-title: eLife
– volume: 476
  start-page: 189
  year: 2011
  publication-title: Nature
– volume: 18
  start-page: 444
  year: 2015
  publication-title: Nat. Neurosci.
– volume: 12
  start-page: 2179
  year: 2012
  publication-title: Nano Lett.
– volume: 2
  start-page: 58
  year: 1990
  publication-title: J. Cognit. Neurosci.
– start-page: 13.3.1
  year: 2018
– volume: 1
  start-page: 508
  year: 2018
  publication-title: Nat. Electron.
– volume: 24
  start-page: 762
  year: 2012
  publication-title: Adv. Mater.
– volume: 547
  start-page: 428
  year: 2017
  publication-title: Nature
– volume: 92
  start-page: 192509
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 535
  year: 2016
  publication-title: Nat. Mater.
– volume: 71
  start-page: 409
  year: 2011
  publication-title: Acta Neurobiol. Exp.
– volume: 3
  start-page: 919
  year: 2000
  publication-title: Nat. Neurosci.
– volume: 351
  start-page: 587
  year: 2016
  publication-title: Science
– volume: 53
  start-page: 1
  year: 2017
  publication-title: IEEE Trans. Magn.
– volume: 19
  start-page: 1
  year: 2015
  publication-title: Trends Hear.
– volume: 52
  start-page: 62
  year: 2014
  publication-title: Neural Networks
– volume: 7
  start-page: 8257
  year: 2017
  publication-title: Sci. Rep.
– ident: e_1_2_5_41_1
  doi: 10.1088/1741-2552/aa7075
– ident: e_1_2_5_44_1
  doi: 10.1038/nnano.2016.29
– ident: e_1_2_5_16_1
  doi: 10.1038/ncomms14736
– start-page: 13.3.1
  volume-title: Proc. Int. Electron Devices Meeting (IEDM)
  year: 2018
  ident: e_1_2_5_24_1
  contributor:
    fullname: Wang Z.
– volume: 19
  start-page: 1
  year: 2015
  ident: e_1_2_5_39_1
  publication-title: Trends Hear.
  contributor:
    fullname: Ballestero J.
– ident: e_1_2_5_31_1
  doi: 10.1038/nmat4566
– ident: e_1_2_5_7_1
  doi: 10.1073/pnas.0913991107
– ident: e_1_2_5_49_1
  doi: 10.1103/PhysRevApplied.9.064040
– ident: e_1_2_5_32_1
  doi: 10.1063/1.4977838
– ident: e_1_2_5_20_1
  doi: 10.1038/srep01619
– ident: e_1_2_5_45_1
  doi: 10.1038/s41928-018-0131-z
– volume: 71
  start-page: 409
  year: 2011
  ident: e_1_2_5_4_1
  publication-title: Acta Neurobiol. Exp.
  doi: 10.55782/ane-2011-1862
  contributor:
    fullname: Ponulak F.
– ident: e_1_2_5_1_1
  doi: 10.1038/s41928-017-0006-8
– ident: e_1_2_5_5_1
  doi: 10.3389/fncom.2015.00099
– ident: e_1_2_5_8_1
  doi: 10.3389/fnins.2016.00474
– ident: e_1_2_5_48_1
  doi: 10.1038/s41467-017-02780-x
– ident: e_1_2_5_43_1
  doi: 10.1126/science.1218197
– ident: e_1_2_5_50_1
  doi: 10.1109/TMAG.2017.2703817
– ident: e_1_2_5_36_1
  doi: 10.3389/fnins.2011.00026
– ident: e_1_2_5_10_1
  doi: 10.1126/science.1225266
– ident: e_1_2_5_6_1
  doi: 10.1109/TNNLS.2015.2388544
– ident: e_1_2_5_28_1
  doi: 10.1103/PhysRevApplied.9.064018
– ident: e_1_2_5_3_1
  doi: 10.1038/nn.4241
– ident: e_1_2_5_13_1
  doi: 10.1038/78829
– ident: e_1_2_5_35_1
  doi: 10.1016/S0896-6273(01)00451-2
– ident: e_1_2_5_33_1
  doi: 10.1063/1.2926374
– ident: e_1_2_5_11_1
  doi: 10.1126/science.1254642
– ident: e_1_2_5_27_1
– ident: e_1_2_5_47_1
  doi: 10.1038/ncomms15434
– ident: e_1_2_5_42_1
  doi: 10.1038/nn.3948
– ident: e_1_2_5_25_1
  doi: 10.1103/PhysRevApplied.9.014034
– ident: e_1_2_5_9_1
  doi: 10.1016/j.neunet.2014.01.006
– ident: e_1_2_5_22_1
  doi: 10.1002/adfm.201604740
– ident: e_1_2_5_46_1
  doi: 10.1126/science.aab1031
– ident: e_1_2_5_21_1
  doi: 10.1002/adma.201802353
– ident: e_1_2_5_18_1
  doi: 10.1021/nl201040y
– ident: e_1_2_5_37_1
  doi: 10.1162/jocn.1990.2.1.58
– ident: e_1_2_5_15_1
  doi: 10.1002/adma.201103723
– ident: e_1_2_5_17_1
  doi: 10.1038/srep10150
– ident: e_1_2_5_26_1
  doi: 10.1038/nature23011
– ident: e_1_2_5_34_1
  doi: 10.1038/236
– ident: e_1_2_5_14_1
  doi: 10.1109/JPROC.2014.2313954
– ident: e_1_2_5_38_1
  doi: 10.7554/eLife.23612
– ident: e_1_2_5_30_1
  doi: 10.1038/nature06932
– ident: e_1_2_5_23_1
  doi: 10.1038/s41598-017-07418-y
– ident: e_1_2_5_40_1
  doi: 10.1371/journal.pcbi.1003408
– ident: e_1_2_5_29_1
  doi: 10.1038/nature10309
– ident: e_1_2_5_2_1
  doi: 10.1073/pnas.0712231105
– ident: e_1_2_5_12_1
  doi: 10.1523/JNEUROSCI.18-24-10464.1998
– ident: e_1_2_5_19_1
  doi: 10.1002/adfm.201101935
SSID ssj0009606
Score 2.651932
Snippet Efficient information processing in the human brain is achieved by dynamics of neurons and synapses, motivating effective implementation of artificial spiking...
Abstract Efficient information processing in the human brain is achieved by dynamics of neurons and synapses, motivating effective implementation of artificial...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e1900636
SubjectTerms Antiferromagnetism
antiferromagnets
Brain
Cognitive tasks
Data processing
Dynamics
Ferromagnetism
Heterostructures
Materials science
Neural networks
Neurons
Orbital mechanics
Pulse duration
Spiking
Spin dynamics
Spintronics
Switching theory
Synapses
Torque
Title Artificial Neuron and Synapse Realized in an Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin–Orbit Torque Switching
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201900636
https://www.ncbi.nlm.nih.gov/pubmed/30989740
https://www.proquest.com/docview/2233749757
https://search.proquest.com/docview/2210261295
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pa9swFMfF6Kk77PcPd-3QYLCTW8f6YesY2oYw2AZNBr0Z_cowo3ZwEkZ76nH3_Yf7S_aelDjNdhhsJ8s_ZMuSnt7X9vNHhLwFF-fFTMhU69ymoP95quBBKGXlLHNSuVzoECD7UY4_8_eX4vLOX_yRD9G_cEPLCOM1Grg2i5MtNFS7wA0ChwZeFpnbSNNDVXSx5UehPA-wPSZSJXm5oTZm-clu9l2v9IfU3FWuwfWMHhK9KXSMOPl6vFqaY3vzG8_xf-7qEXmw1qV0GDvSY3LPN0_I_Tu0wqfkO-6MwAkamB4N1Y2jk-tGzxeeXoDkrG-8ozVup0OMQvJd117pL_j6Y7RN0zHG4LQRXbvqPA1xC_QMTnRV2wVtZ3Qyr5uftz8-daZe0mnbQUXRybd6GSI_n5Hp6Hx6Ok7XEzmkFvSOTBlznDtlQJ3afDawXEpXKlEaEBPwfKML6TNpWFZqrQZc58pnMOzBEidBs4o9J3tN2_iXhAqjTWZZ7hBrA1pEa-fLTMHJRGkHRZmQd5t2rOYR11FFMHNeYdVWfdUm5HDTzNXabBcVaCVWcFWIIiFv-t1gcPgVRTe-XeExg8BdUyIhL2L36C_FsCgFzxKSh0b-Sxmq4dmHYb928C-ZXpF9TMfgtUOyBy3nj0AmLc3rYAq_APsfCbY
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFL2CYQEseA8EBjASEqvMpPEj8bKiVAVmBmlaJHaRY7soQpNUaSvErFiy5w_5Eq7tJqWwQIJVEjt2HNvX99g5OQZ4ji7O8jkXsVKpjhH_s1jiRCim-TwxQpqUK0-QPRWT9-zNB96xCd2_MEEfol9wc5bhx2tn4G5B-mirGqqMFw5Cj4ZuVlyGK2jz3Nnm6GyrIOUAupfbozyWguWdbmOSHu2m3_VLf4DNXezqnc_4JpRdsQPn5NPhelUe6ovfFB3_671uwY0NNCXD0JduwyVb34HrvwgW3oVvLjJoThAv61ETVRsy_VKrxdKSM0Sd1YU1pHLhZOiISLZtm3P10a2AjLfnZOJoOE1Qr123lnjqAhlhRueVXpJmTqaLqv7x9fu7tqxWZNa0WFNk-rlaefLnPZiNX81eTuLNXg6xRsgjYkoNY0aWCFB1Oh9oJoTJJc9LxBM4xVGZsIkoaZIrJQdMpdImOPLh0e2DpiXdh726qe0DILxUZaJpapyyDcIRpYzNE4mZ8VwPsjyCF11DFoug2FEEbea0cFVb9FUbwUHXzsXGcpcFwiWaMZnxLIJnfTTanPuQomrbrN09Ay-9JnkE90P_6B9FXVEylkSQ-lb-SxmK4ehk2F89_JdET-HqZHZyXBy_Pn37CK658MBlO4A9bEX7GFHTqnzi7eInoVcN1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BIiE48H4EFjASEqfspn4lPlaUqrwWtC3S3iLHdlCENqnSVog9ceTOP-SXMHbadAsHJDglsWPH8Xg83ziTzwDP0MQ5UQoZa01NjPifxwodoZhlZWKlslToECB7JCcf-esTcXLuL_6OH6JfcPOaEeZrr-BzWx5uSUO1DbxBaNDQysqLcIlLRr37NTreEkh5fB7Y9piIleTZhrYxoYe75XfN0h9Ycxe6Btszvg560-ou5OTzwWpZHJiz3wgd_-e1bsC1NTAlw24k3YQLrr4FV8_RFd6G7z6zY5wggdSjJrq2ZPq11vOFI8eIOaszZ0nl08nQhyG5tm1O9Se__jHenpOJD8JpOu7aVetICFwgI6zotDIL0pRkOq_qn99-vG-LaklmTYsdRaZfqmUI_bwDs_HL2YtJvN7JITYIeGTMmOXcqgLhqaHlwHApbaZEViCaQAdHp9IlsmBJprUacE2VS3Dew6PfBc0odhf26qZ294GIQheJYdR6XhsEI1pblyUKKxOZGaRZBM83csznHV9H3jEz09x3bd53bQT7GzHna71d5AiWWMpVKtIInvbZqHH-M4quXbPy9wwC8ZoSEdzrhkf_KOabkvIkAhqE_Jc25MPRu2F_9eBfCj2Byx9G4_ztq6M3D-GKT-4C2fZhD4XoHiFkWhaPg1b8AmkpDIU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neuron+and+Synapse+Realized+in+an+Antiferromagnet%2FFerromagnet+Heterostructure+Using+Dynamics+of+Spin%E2%80%93Orbit+Torque+Switching&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kurenkov%2C+Aleksandr&rft.au=DuttaGupta%2C+Samik&rft.au=Zhang%2C+Chaoliang&rft.au=Fukami%2C+Shunsuke&rft.date=2019-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201900636&rft.externalDBID=10.1002%252Fadma.201900636&rft.externalDocID=ADMA201900636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon