Structural Engineering toward Gold Nanocluster Catalysis
Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold catalysts. A nanocluster consists of a metal core and a surface ligand shell, and both the core and shell have significant effects on the catalytic properties...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 51; pp. e202209725 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
19.12.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold catalysts. A nanocluster consists of a metal core and a surface ligand shell, and both the core and shell have significant effects on the catalytic properties. Thanks to their precise structures, the active metal site of the clusters can be readily identified and the effects of ligands on catalysis can be disclosed. In this Minireview, we summarize recent advances in catalytic research of gold nanoclusters, emphasizing four strategies for constructing open metal sites, including by post‐treatment, the bulky ligands strategy, the surface geometric mismatch method, and heteroatom doping procedures. We also discuss the effects of ligands on the catalytic activity, selectivity, and stability of gold cluster catalysts. Finally, we present future challenges relating to gold cluster catalysis.
Structurally well‐defined gold nanoclusters are promising catalysts, and their molecular nature facilitates the design and controlled synthesis of cluster catalysts. This Minireview summarizes the strategies for constructing active sites and the effects of the ligands on cluster catalysis. The challenges and key future issues regarding catalytic applications of gold nanoclusters are discussed. |
---|---|
AbstractList | Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold catalysts. A nanocluster consists of a metal core and a surface ligand shell, and both the core and shell have significant effects on the catalytic properties. Thanks to their precise structures, the active metal site of the clusters can be readily identified and the effects of ligands on catalysis can be disclosed. In this Minireview, we summarize recent advances in catalytic research of gold nanoclusters, emphasizing four strategies for constructing open metal sites, including by post‐treatment, the bulky ligands strategy, the surface geometric mismatch method, and heteroatom doping procedures. We also discuss the effects of ligands on the catalytic activity, selectivity, and stability of gold cluster catalysts. Finally, we present future challenges relating to gold cluster catalysis.
Structurally well‐defined gold nanoclusters are promising catalysts, and their molecular nature facilitates the design and controlled synthesis of cluster catalysts. This Minireview summarizes the strategies for constructing active sites and the effects of the ligands on cluster catalysis. The challenges and key future issues regarding catalytic applications of gold nanoclusters are discussed. Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold catalysts. A nanocluster consists of a metal core and a surface ligand shell, and both the core and shell have significant effects on the catalytic properties. Thanks to their precise structures, the active metal site of the clusters can be readily identified and the effects of ligands on catalysis can be disclosed. In this Minireview, we summarize recent advances in catalytic research of gold nanoclusters, emphasizing four strategies for constructing open metal sites, including by post‐treatment, the bulky ligands strategy, the surface geometric mismatch method, and heteroatom doping procedures. We also discuss the effects of ligands on the catalytic activity, selectivity, and stability of gold cluster catalysts. Finally, we present future challenges relating to gold cluster catalysis. Abstract Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold catalysts. A nanocluster consists of a metal core and a surface ligand shell, and both the core and shell have significant effects on the catalytic properties. Thanks to their precise structures, the active metal site of the clusters can be readily identified and the effects of ligands on catalysis can be disclosed. In this Minireview, we summarize recent advances in catalytic research of gold nanoclusters, emphasizing four strategies for constructing open metal sites, including by post‐treatment, the bulky ligands strategy, the surface geometric mismatch method, and heteroatom doping procedures. We also discuss the effects of ligands on the catalytic activity, selectivity, and stability of gold cluster catalysts. Finally, we present future challenges relating to gold cluster catalysis. |
Author | Li, Jiao‐Jiao Guan, Zong‐Jie Wang, Quan‐Ming Hu, Feng |
Author_xml | – sequence: 1 givenname: Zong‐Jie orcidid: 0000-0001-8977-0850 surname: Guan fullname: Guan, Zong‐Jie organization: Hunan University – sequence: 2 givenname: Jiao‐Jiao surname: Li fullname: Li, Jiao‐Jiao organization: Tsinghua University – sequence: 3 givenname: Feng surname: Hu fullname: Hu, Feng organization: Tsinghua University – sequence: 4 givenname: Quan‐Ming orcidid: 0000-0002-3764-6409 surname: Wang fullname: Wang, Quan‐Ming email: qmwang@tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36169269$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0M1LwzAYBvAgE_ehV49S8OKlMx9N2xzHmHMw5kE9lzR5Ozq6ZCYtY_-9GZsTvHhKDr_34eEZop6xBhC6J3hMMKbP0tQwpphSLDLKr9CAcEpilmWsF_4JY3GWc9JHQ-83wec5Tm9Qn6UkFTQVA5S_t65TbedkE83MujYArjbrqLV76XQ0t42OVtJY1XS-BRdNZSubg6_9LbquZOPh7vyO0OfL7GP6Gi_f5ovpZBmrhAkeQyYqpSVPVMl5CVJTAK0rzphKpMoZyZQmUkumGIRyUuRZCQyzJBQtlRJshJ5OuTtnvzrwbbGtvYKmkQZs5wuakVykFBMS6OMfurGdM6FdUJxRzinGQY1PSjnrvYOq2Ll6K92hILg4blocNy0um4aDh3NsV25BX_jPiAGIE9jXDRz-iSsmq8XsN_wb1OaE5A |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_3c02965 crossref_primary_10_1039_D3NR05328H crossref_primary_10_1021_acs_jpclett_3c01837 crossref_primary_10_1002_ejic_202300161 crossref_primary_10_1021_jacs_3c12982 crossref_primary_10_1021_jacs_4c00019 crossref_primary_10_3390_molecules29071574 crossref_primary_10_1002_smll_202301633 crossref_primary_10_1021_prechem_3c00036 crossref_primary_10_1002_adma_202305095 crossref_primary_10_1039_D3SC04682F crossref_primary_10_1126_sciadv_adn7556 crossref_primary_10_3390_molecules29122724 crossref_primary_10_1038_s41467_023_42688_3 crossref_primary_10_1002_asia_202300463 crossref_primary_10_1007_s12274_023_5862_0 crossref_primary_10_1021_acs_jpclett_3c03021 crossref_primary_10_1016_j_dyepig_2024_112273 crossref_primary_10_1002_advs_202400699 crossref_primary_10_1021_acsanm_4c00243 crossref_primary_10_1021_jacs_3c02215 crossref_primary_10_1002_adma_202313032 crossref_primary_10_1021_prechem_3c00003 crossref_primary_10_1021_acs_nanolett_3c02026 crossref_primary_10_1039_D3NA00869J crossref_primary_10_1021_acs_jpclett_4c00130 crossref_primary_10_1002_smll_202208287 crossref_primary_10_1021_acs_chemrev_2c00733 crossref_primary_10_1002_adfm_202315675 crossref_primary_10_1021_jacs_3c02165 crossref_primary_10_1021_jacs_4c02411 crossref_primary_10_1039_D3AY01821K crossref_primary_10_1002_ange_202402025 crossref_primary_10_1016_j_ccr_2023_215364 crossref_primary_10_1021_acs_jpclett_4c00577 crossref_primary_10_26599_POM_2023_9140031 crossref_primary_10_1039_D2CC06719F crossref_primary_10_1002_anie_202400011 crossref_primary_10_1016_j_jssc_2023_124281 crossref_primary_10_1039_D4CC02085E crossref_primary_10_1002_ange_202305604 crossref_primary_10_1007_s11426_023_1775_y crossref_primary_10_1016_j_bbagen_2024_130611 crossref_primary_10_1039_D3NR06015B crossref_primary_10_1016_j_jcis_2023_07_198 crossref_primary_10_1039_D3GC02281A crossref_primary_10_1016_j_nxmate_2023_100091 crossref_primary_10_1063_5_0186422 crossref_primary_10_1002_zaac_202300179 crossref_primary_10_1021_acs_inorgchem_3c00302 crossref_primary_10_1039_D3RA03781A crossref_primary_10_1002_ange_202400011 crossref_primary_10_1021_acsanm_3c00351 crossref_primary_10_1002_anie_202402025 crossref_primary_10_1039_D3DT00202K crossref_primary_10_1016_j_mtener_2024_101498 crossref_primary_10_1021_acsnano_3c01068 crossref_primary_10_1016_j_foodchem_2023_136083 crossref_primary_10_1002_anie_202305604 crossref_primary_10_1016_j_ccr_2024_215907 crossref_primary_10_1021_acsapm_3c00842 crossref_primary_10_1002_cey2_547 crossref_primary_10_1016_j_snb_2024_136069 crossref_primary_10_1360_TB_2023_0480 crossref_primary_10_1039_D3TA07400E |
Cites_doi | 10.1021/jacs.9b11836 10.1021/acs.jpcb.6b03287 10.1038/s41467-019-13682-5 10.1002/ange.202100071 10.1002/anie.202013718 10.1002/anie.201311177 10.1002/anie.201811859 10.1039/b707314n 10.1021/acs.accounts.8b00349 10.1021/ja4131142 10.1021/jacs.5b12747 10.1002/anie.201901478 10.1021/jacs.6b07178 10.1021/acs.chemrev.6b00769 10.1039/C8SC03756F 10.1002/ange.201610736 10.1038/nature07194 10.1002/anie.202116965 10.1021/acs.jpcc.1c08197 10.1021/ja801173r 10.1002/anie.202200823 10.1021/cs500533h 10.1002/ange.202012499 10.1002/anie.201804481 10.1002/ange.202206742 10.1002/ange.201908983 10.1021/ar400209a 10.1021/acs.chemrev.0c00495 10.1038/s41467-022-29819-y 10.1021/ja305477a 10.1021/acs.jpclett.9b02920 10.1002/anie.201001055 10.1038/nchem.860 10.1002/ange.201207098 10.1021/nl101225f 10.1021/jacs.2c04156 10.1021/ja411061e 10.1021/nn301019f 10.1246/cl.1987.405 10.1126/science.aak9750 10.1021/ja810045y 10.1002/ange.202206019 10.1016/0021-9517(85)90383-5 10.1021/acsnano.6b03964 10.1016/j.jcat.2006.07.006 10.1021/jacs.8b11096 10.1002/anie.201912984 10.1039/C5RA25646A 10.1002/anie.202207492 10.1038/s41557-019-0246-5 10.1126/science.1148624 10.1039/D0NR02986F 10.1002/ange.202103060 10.1246/cl.160813 10.1021/acs.chemrev.5b00703 10.1002/anie.202206742 10.1002/anie.201706021 10.1002/anie.202103060 10.1002/anie.202103290 10.1021/acs.chemrev.9b00551 10.1039/C8TA00461G 10.1002/anie.202012499 10.1002/ange.201804481 10.1126/science.1128383 10.1039/C9CP03469B 10.1002/anie.202206019 10.1021/cr200260m 10.1021/acs.chemrev.7b00208 10.1039/D0DT00477D 10.1021/acs.nanolett.6b03221 10.1002/cctc.201701472 10.1021/jacs.1c11643 10.1002/anie.202014154 10.1039/D0NR07832H 10.1002/anie.202100071 10.1021/cr000436x 10.1126/sciadv.1701823 10.1021/jacs.1c06716 10.1002/ange.201811859 10.1002/ange.202013718 10.1002/anie.202108207 10.1126/sciadv.1600323 10.1021/cm304098x 10.1021/acs.accounts.8b00359 10.1021/jacs.5b12730 10.1039/C9NR10198E 10.1002/anie.201610736 10.1002/ange.202116965 10.1021/ja4059074 10.1038/376238a0 10.1021/jacs.5b07716 10.1021/acs.jpclett.8b02784 10.1002/ange.201001055 10.1002/anie.201908983 10.1038/4371098a 10.1002/smll.200902398 10.1021/acs.chemrev.8b00726 10.1021/ja5018706 10.1016/j.ccr.2018.04.016 10.1021/acs.accounts.8b00065 10.1002/chem.201002390 10.1002/anie.201207098 10.1002/ange.201706021 10.1002/ange.201311177 10.1126/sciadv.aat7259 10.1002/ange.202103290 10.1021/jp4063687 10.1021/jacs.6b04835 10.1002/ange.202200823 10.1002/ange.202108207 10.1002/ange.202207492 10.1021/acs.jpclett.6b02294 10.1016/S0926-860X(02)00278-8 10.1002/ange.201901478 10.1039/C8NR02973C 10.1021/acs.accounts.8b00371 10.1002/ange.201912984 10.1021/jz301191t 10.1002/ange.202014154 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | NPM AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202209725 |
DatabaseName | PubMed CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202209725 36169269 ANIE202209725 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 91961201, 21971136 – fundername: National Natural Science Foundation of China grantid: 91961201, 21971136 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT NPM AAYXX CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4395-e79fcda54cb55bead2eeddf533c4ac8317cd1ada3c3e880a987be3034806bcc93 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Fri Aug 16 10:23:17 EDT 2024 Thu Oct 10 17:54:56 EDT 2024 Fri Aug 23 02:00:13 EDT 2024 Sat Sep 28 08:21:52 EDT 2024 Sat Aug 24 01:06:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | Ligand Effects Active Sites Gold Catalysis Nanoclusters |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4395-e79fcda54cb55bead2eeddf533c4ac8317cd1ada3c3e880a987be3034806bcc93 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0001-8977-0850 0000-0002-3764-6409 |
PMID | 36169269 |
PQID | 2753255200 |
PQPubID | 946352 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2718962011 proquest_journals_2753255200 crossref_primary_10_1002_anie_202209725 pubmed_primary_36169269 wiley_primary_10_1002_anie_202209725_ANIE202209725 |
PublicationCentury | 2000 |
PublicationDate | December 19, 2022 |
PublicationDateYYYYMMDD | 2022-12-19 |
PublicationDate_xml | – month: 12 year: 2022 text: December 19, 2022 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2010; 10 2007; 107 2013; 25 2017; 3 2020; 120 2019; 11 2019; 10 2021; 125 2018; 368 2020 2020; 59 132 2008; 37 2002; 236 2020; 12 1995; 376 2020; 11 2021; 121 2011; 17 2014; 136 2017; 117 2018; 6 2018; 9 2022 2022; 61 134 2014; 4 2012; 134 2018; 4 2015; 137 2019; 21 2012 2012; 51 124 2018 2018; 57 130 2013; 117 2016; 354 2020; 49 1985; 96 2016; 116 2010; 2 2010; 6 2006; 243 2016; 45 2011 2020; 142 2005; 437 2016; 10 2014; 47 2010 2010; 49 122 2021; 143 2009; 131 2017 2017; 56 129 2019; 141 2006; 313 2016; 16 2016; 120 2019 2019; 58 131 1987; 16 2022; 144 2021; 13 2016; 6 2016; 7 2012; 3 2012; 112 2016; 2 2018; 118 2021 2021; 60 133 2022; 13 2013; 135 2018; 51 2016; 138 2008; 454 2012; 6 2007; 318 2018; 10 2008; 130 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_68_2 e_1_2_8_9_2 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_64_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_60_2 e_1_2_8_19_1 e_1_2_8_34_2 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_95_2 e_1_2_8_99_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_53_2 e_1_2_8_72_2 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_2 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 Ross J. R. (e_1_2_8_39_1) 2011 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 (e_1_2_8_56_2) 2022; 134 e_1_2_8_71_2 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_89_2 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_20_2 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_62_2 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 (e_1_2_8_75_2) 2022; 134 e_1_2_8_97_1 e_1_2_8_97_2 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_74_2 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_93_2 e_1_2_8_93_1 (e_1_2_8_55_2) 2022; 134 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_2 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_88_2 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 (e_1_2_8_90_2) 2022; 134 e_1_2_8_96_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_50_1 |
References_xml | – year: 2011 – volume: 136 start-page: 92 year: 2014 end-page: 95 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 4509 year: 2016 end-page: 4513 publication-title: J. Phys. Chem. Lett. – volume: 120 start-page: 5759 year: 2016 end-page: 5766 publication-title: J. Phys. Chem. B – volume: 144 start-page: 11405 year: 2022 end-page: 11412 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 308 year: 2020 publication-title: Nat. Commun. – volume: 313 start-page: 332 year: 2006 end-page: 334 publication-title: Science – volume: 236 start-page: 77 year: 2002 end-page: 89 publication-title: Appl. Catal. A – volume: 60 133 start-page: 14415 14536 year: 2021 2021 end-page: 14419 14540 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 122 start-page: 5545 5677 year: 2010 2010 end-page: 5548 5680 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 7173 year: 2018 end-page: 7179 publication-title: J. Phys. Chem. Lett. – volume: 13 start-page: 2082 year: 2022 publication-title: Nat. Commun. – volume: 51 start-page: 2475 year: 2018 end-page: 2483 publication-title: Acc. Chem. Res. – volume: 6 start-page: 7532 year: 2018 end-page: 7537 publication-title: J. Mater. Chem. A – volume: 138 start-page: 8710 year: 2016 end-page: 8713 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 946 year: 2013 end-page: 952 publication-title: Chem. Mater. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 138 start-page: 3278 year: 2016 end-page: 3281 publication-title: J. Am. Chem. Soc. – volume: 318 start-page: 430 year: 2007 end-page: 433 publication-title: Science – volume: 11 start-page: 419 year: 2019 end-page: 425 publication-title: Nat. Chem. – volume: 120 start-page: 526 year: 2020 end-page: 622 publication-title: Chem. Rev. – volume: 21 start-page: 20144 year: 2019 end-page: 20150 publication-title: Phys. Chem. Chem. Phys. – volume: 56 129 start-page: 2709 2753 year: 2017 2017 end-page: 2713 2757 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 125 start-page: 23226 year: 2021 end-page: 23230 publication-title: J. Phys. Chem. C – volume: 137 start-page: 14295 year: 2015 end-page: 14304 publication-title: J. Am. Chem. Soc. – volume: 121 start-page: 567 year: 2021 end-page: 648 publication-title: Chem. Rev. – volume: 117 start-page: 20007 year: 2013 end-page: 20016 publication-title: J. Phys. Chem. C – volume: 3 start-page: 2649 year: 2012 end-page: 2652 publication-title: J. Phys. Chem. Lett. – volume: 243 start-page: 64 year: 2006 end-page: 73 publication-title: J. Catal. – volume: 376 start-page: 238 year: 1995 end-page: 240 publication-title: Nature – volume: 10 start-page: 7998 year: 2016 end-page: 8005 publication-title: ACS Nano – volume: 58 131 start-page: 17731 17895 year: 2019 2019 end-page: 17735 17899 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 8639 8775 year: 2018 2018 end-page: 8643 8779 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 136 start-page: 6111 year: 2014 end-page: 6122 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 6892 year: 2019 end-page: 6896 publication-title: J. Phys. Chem. Lett. – volume: 37 start-page: 2096 year: 2008 end-page: 2126 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 395 year: 2018 end-page: 402 publication-title: ChemCatChem – volume: 13 start-page: 2333 year: 2021 end-page: 2337 publication-title: Nanoscale – volume: 16 start-page: 405 year: 1987 end-page: 408 publication-title: Chem. Lett. – volume: 51 start-page: 2465 year: 2018 end-page: 2474 publication-title: Acc. Chem. Res. – volume: 138 start-page: 3950 year: 2016 end-page: 3953 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1062 year: 2010 end-page: 1068 publication-title: Nat. Chem. – volume: 107 start-page: 3180 year: 2007 end-page: 3211 publication-title: Chem. Rev. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 6 start-page: 28688 year: 2016 end-page: 28727 publication-title: RSC Adv. – volume: 454 start-page: 981 year: 2008 end-page: 983 publication-title: Nature – volume: 51 124 start-page: 13114 13291 year: 2012 2012 end-page: 13118 13295 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 16 start-page: 6560 year: 2016 end-page: 6567 publication-title: Nano Lett. – volume: 131 start-page: 7086 year: 2009 end-page: 7093 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 6020 year: 2020 end-page: 6028 publication-title: Nanoscale – volume: 51 start-page: 1338 year: 2018 end-page: 1348 publication-title: Acc. Chem. Res. – volume: 96 start-page: 292 year: 1985 end-page: 295 publication-title: J. Catal. – volume: 56 129 start-page: 11494 11652 year: 2017 2017 end-page: 11497 11655 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 144 start-page: 690 year: 2022 end-page: 694 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 20748 20916 year: 2021 2021 end-page: 20753 20921 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 118 start-page: 3209 year: 2018 end-page: 3250 publication-title: Chem. Rev. – volume: 134 start-page: 14295 year: 2012 end-page: 14297 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 5906 5967 year: 2019 2019 end-page: 5909 5970 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 6014 year: 2012 end-page: 6022 publication-title: ACS Nano – volume: 6 start-page: 1216 year: 2010 end-page: 1220 publication-title: Small – volume: 116 start-page: 10346 year: 2016 end-page: 10413 publication-title: Chem. Rev. – volume: 12 start-page: 13346 year: 2020 end-page: 13350 publication-title: Nanoscale – volume: 136 start-page: 2963 year: 2014 end-page: 2965 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 8208 year: 2017 end-page: 8271 publication-title: Chem. Rev. – volume: 135 start-page: 12944 year: 2013 end-page: 12947 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 6584 year: 2011 end-page: 6593 publication-title: Chem. Eur. J. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 60 133 start-page: 10573 10667 year: 2021 2021 end-page: 10576 10670 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 2463 year: 2014 end-page: 2469 publication-title: ACS Catal. – volume: 112 start-page: 2467 year: 2012 end-page: 2505 publication-title: Chem. Rev. – volume: 142 start-page: 2995 year: 2020 end-page: 3001 publication-title: J. Am. Chem. Soc. – volume: 368 start-page: 60 year: 2018 end-page: 79 publication-title: Coord. Chem. Rev. – volume: 49 start-page: 5406 year: 2020 end-page: 5415 publication-title: Dalton Trans. – volume: 10 start-page: 2568 year: 2010 end-page: 2573 publication-title: Nano Lett. – volume: 60 133 start-page: 3752 3796 year: 2021 2021 end-page: 3758 3802 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 120 start-page: 464 year: 2020 end-page: 525 publication-title: Chem. Rev. – volume: 354 start-page: 1580 year: 2016 end-page: 1584 publication-title: Science – volume: 53 126 start-page: 4623 4711 year: 2014 2014 end-page: 4627 4715 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 start-page: 3084 year: 2018 end-page: 3093 publication-title: Acc. Chem. Res. – volume: 141 start-page: 2384 year: 2019 end-page: 2390 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 5225 5285 year: 2021 2021 end-page: 5229 5289 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 130 start-page: 5883 year: 2008 end-page: 5885 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 2309 2329 year: 2020 2020 end-page: 2312 2332 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 start-page: 816 year: 2014 end-page: 824 publication-title: Acc. Chem. Res. – volume: 143 start-page: 17059 year: 2021 end-page: 17067 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 10425 year: 2016 end-page: 10428 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 14345 14466 year: 2021 2021 end-page: 14349 14470 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 10758 year: 2018 end-page: 10834 publication-title: Nanoscale – volume: 45 start-page: 1457 year: 2016 end-page: 1459 publication-title: Chem. Lett. – volume: 58 131 start-page: 1083 1095 year: 2019 2019 end-page: 1087 1099 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 3360 year: 2019 end-page: 3365 publication-title: Chem. Sci. – volume: 60 133 start-page: 6699 6773 year: 2021 2021 end-page: 6703 6777 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 437 start-page: 1098 year: 2005 end-page: 1099 publication-title: Nature – ident: e_1_2_8_26_1 doi: 10.1021/jacs.9b11836 – ident: e_1_2_8_19_1 doi: 10.1021/acs.jpcb.6b03287 – ident: e_1_2_8_54_1 doi: 10.1038/s41467-019-13682-5 – ident: e_1_2_8_64_2 doi: 10.1002/ange.202100071 – ident: e_1_2_8_44_1 doi: 10.1002/anie.202013718 – ident: e_1_2_8_95_1 doi: 10.1002/anie.201311177 – ident: e_1_2_8_72_1 doi: 10.1002/anie.201811859 – ident: e_1_2_8_6_1 doi: 10.1039/b707314n – ident: e_1_2_8_15_1 doi: 10.1021/acs.accounts.8b00349 – ident: e_1_2_8_66_1 doi: 10.1021/ja4131142 – ident: e_1_2_8_70_1 doi: 10.1021/jacs.5b12747 – ident: e_1_2_8_89_1 doi: 10.1002/anie.201901478 – ident: e_1_2_8_27_1 doi: 10.1021/jacs.6b07178 – ident: e_1_2_8_12_1 doi: 10.1021/acs.chemrev.6b00769 – ident: e_1_2_8_52_1 doi: 10.1039/C8SC03756F – ident: e_1_2_8_80_2 doi: 10.1002/ange.201610736 – ident: e_1_2_8_17_1 doi: 10.1038/nature07194 – ident: e_1_2_8_53_1 doi: 10.1002/anie.202116965 – ident: e_1_2_8_81_1 doi: 10.1021/acs.jpcc.1c08197 – ident: e_1_2_8_22_1 doi: 10.1021/ja801173r – ident: e_1_2_8_56_1 doi: 10.1002/anie.202200823 – ident: e_1_2_8_92_1 doi: 10.1021/cs500533h – ident: e_1_2_8_60_2 doi: 10.1002/ange.202012499 – ident: e_1_2_8_68_1 doi: 10.1002/anie.201804481 – volume: 134 start-page: e202206742 year: 2022 ident: e_1_2_8_55_2 publication-title: Angew. Chem. doi: 10.1002/ange.202206742 – ident: e_1_2_8_88_2 doi: 10.1002/ange.201908983 – ident: e_1_2_8_16_1 doi: 10.1021/ar400209a – ident: e_1_2_8_30_1 doi: 10.1021/acs.chemrev.0c00495 – ident: e_1_2_8_99_1 doi: 10.1038/s41467-022-29819-y – ident: e_1_2_8_48_1 doi: 10.1021/ja305477a – ident: e_1_2_8_73_1 doi: 10.1021/acs.jpclett.9b02920 – ident: e_1_2_8_9_1 doi: 10.1002/anie.201001055 – ident: e_1_2_8_49_1 doi: 10.1038/nchem.860 – ident: e_1_2_8_20_2 doi: 10.1002/ange.201207098 – ident: e_1_2_8_38_1 doi: 10.1021/nl101225f – ident: e_1_2_8_98_1 doi: 10.1021/jacs.2c04156 – ident: e_1_2_8_43_1 doi: 10.1021/ja411061e – ident: e_1_2_8_77_1 doi: 10.1021/nn301019f – ident: e_1_2_8_3_1 doi: 10.1246/cl.1987.405 – ident: e_1_2_8_24_1 doi: 10.1126/science.aak9750 – ident: e_1_2_8_61_1 doi: 10.1021/ja810045y – volume: 134 start-page: e202206019 year: 2022 ident: e_1_2_8_90_2 publication-title: Angew. Chem. doi: 10.1002/ange.202206019 – ident: e_1_2_8_2_1 doi: 10.1016/0021-9517(85)90383-5 – ident: e_1_2_8_33_1 doi: 10.1021/acsnano.6b03964 – ident: e_1_2_8_47_1 doi: 10.1016/j.jcat.2006.07.006 – ident: e_1_2_8_37_1 doi: 10.1021/jacs.8b11096 – ident: e_1_2_8_74_1 doi: 10.1002/anie.201912984 – ident: e_1_2_8_8_1 doi: 10.1039/C5RA25646A – ident: e_1_2_8_75_1 doi: 10.1002/anie.202207492 – ident: e_1_2_8_35_1 doi: 10.1038/s41557-019-0246-5 – ident: e_1_2_8_40_1 doi: 10.1126/science.1148624 – ident: e_1_2_8_41_1 doi: 10.1039/D0NR02986F – ident: e_1_2_8_34_2 doi: 10.1002/ange.202103060 – ident: e_1_2_8_79_1 doi: 10.1246/cl.160813 – ident: e_1_2_8_11_1 doi: 10.1021/acs.chemrev.5b00703 – ident: e_1_2_8_55_1 doi: 10.1002/anie.202206742 – ident: e_1_2_8_71_1 doi: 10.1002/anie.201706021 – ident: e_1_2_8_34_1 doi: 10.1002/anie.202103060 – ident: e_1_2_8_93_1 doi: 10.1002/anie.202103290 – ident: e_1_2_8_5_1 doi: 10.1021/acs.chemrev.9b00551 – ident: e_1_2_8_59_1 doi: 10.1039/C8TA00461G – ident: e_1_2_8_60_1 doi: 10.1002/anie.202012499 – ident: e_1_2_8_68_2 doi: 10.1002/ange.201804481 – ident: e_1_2_8_85_1 doi: 10.1126/science.1128383 – ident: e_1_2_8_58_1 doi: 10.1039/C9CP03469B – ident: e_1_2_8_90_1 doi: 10.1002/anie.202206019 – ident: e_1_2_8_7_1 doi: 10.1021/cr200260m – ident: e_1_2_8_87_1 doi: 10.1021/acs.chemrev.7b00208 – ident: e_1_2_8_31_1 doi: 10.1039/D0DT00477D – ident: e_1_2_8_57_1 doi: 10.1021/acs.nanolett.6b03221 – ident: e_1_2_8_28_1 – ident: e_1_2_8_91_1 doi: 10.1002/cctc.201701472 – ident: e_1_2_8_25_1 doi: 10.1021/jacs.1c11643 – ident: e_1_2_8_97_1 doi: 10.1002/anie.202014154 – ident: e_1_2_8_86_1 doi: 10.1039/D0NR07832H – volume-title: Heterogeneous catalysis: fundamentals and applications year: 2011 ident: e_1_2_8_39_1 contributor: fullname: Ross J. R. – ident: e_1_2_8_64_1 doi: 10.1002/anie.202100071 – ident: e_1_2_8_83_1 doi: 10.1021/cr000436x – ident: e_1_2_8_32_1 doi: 10.1126/sciadv.1701823 – ident: e_1_2_8_42_1 doi: 10.1021/jacs.1c06716 – ident: e_1_2_8_72_2 doi: 10.1002/ange.201811859 – ident: e_1_2_8_44_2 doi: 10.1002/ange.202013718 – ident: e_1_2_8_62_1 doi: 10.1002/anie.202108207 – ident: e_1_2_8_51_1 doi: 10.1126/sciadv.1600323 – ident: e_1_2_8_96_1 doi: 10.1021/cm304098x – ident: e_1_2_8_13_1 doi: 10.1021/acs.accounts.8b00359 – ident: e_1_2_8_65_1 doi: 10.1021/jacs.5b12730 – ident: e_1_2_8_63_1 doi: 10.1039/C9NR10198E – ident: e_1_2_8_80_1 doi: 10.1002/anie.201610736 – ident: e_1_2_8_53_2 doi: 10.1002/ange.202116965 – ident: e_1_2_8_50_1 doi: 10.1021/ja4059074 – ident: e_1_2_8_1_1 doi: 10.1038/376238a0 – ident: e_1_2_8_78_1 doi: 10.1021/jacs.5b07716 – ident: e_1_2_8_84_1 doi: 10.1021/acs.jpclett.8b02784 – ident: e_1_2_8_9_2 doi: 10.1002/ange.201001055 – ident: e_1_2_8_88_1 doi: 10.1002/anie.201908983 – ident: e_1_2_8_4_1 doi: 10.1038/4371098a – ident: e_1_2_8_23_1 doi: 10.1002/smll.200902398 – ident: e_1_2_8_10_1 doi: 10.1021/acs.chemrev.8b00726 – ident: e_1_2_8_45_1 doi: 10.1021/ja5018706 – ident: e_1_2_8_29_1 doi: 10.1016/j.ccr.2018.04.016 – ident: e_1_2_8_94_1 doi: 10.1021/acs.accounts.8b00065 – ident: e_1_2_8_18_1 doi: 10.1002/chem.201002390 – ident: e_1_2_8_20_1 doi: 10.1002/anie.201207098 – ident: e_1_2_8_71_2 doi: 10.1002/ange.201706021 – ident: e_1_2_8_95_2 doi: 10.1002/ange.201311177 – ident: e_1_2_8_67_1 doi: 10.1126/sciadv.aat7259 – ident: e_1_2_8_93_2 doi: 10.1002/ange.202103290 – ident: e_1_2_8_46_1 doi: 10.1021/jp4063687 – ident: e_1_2_8_21_1 doi: 10.1021/jacs.6b04835 – volume: 134 start-page: e202200823 year: 2022 ident: e_1_2_8_56_2 publication-title: Angew. Chem. doi: 10.1002/ange.202200823 – ident: e_1_2_8_62_2 doi: 10.1002/ange.202108207 – volume: 134 start-page: e202207492 year: 2022 ident: e_1_2_8_75_2 publication-title: Angew. Chem. doi: 10.1002/ange.202207492 – ident: e_1_2_8_36_1 doi: 10.1021/acs.jpclett.6b02294 – ident: e_1_2_8_82_1 doi: 10.1016/S0926-860X(02)00278-8 – ident: e_1_2_8_89_2 doi: 10.1002/ange.201901478 – ident: e_1_2_8_76_1 doi: 10.1039/C8NR02973C – ident: e_1_2_8_14_1 doi: 10.1021/acs.accounts.8b00371 – ident: e_1_2_8_74_2 doi: 10.1002/ange.201912984 – ident: e_1_2_8_69_1 doi: 10.1021/jz301191t – ident: e_1_2_8_97_2 doi: 10.1002/ange.202014154 |
SSID | ssj0028806 |
Score | 2.6431892 |
SecondaryResourceType | review_article |
Snippet | Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold catalysts. A... Abstract Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202209725 |
SubjectTerms | Active Sites Catalysis Catalysts Catalytic activity Clusters Gold Ligand Effects Ligands Nanoclusters Reviews Selectivity Structural engineering |
Title | Structural Engineering toward Gold Nanocluster Catalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202209725 https://www.ncbi.nlm.nih.gov/pubmed/36169269 https://www.proquest.com/docview/2753255200 https://search.proquest.com/docview/2718962011 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQF1h4PwIFBQmJKW3iRxqPVWkpDB2ASt0i27EXUILUduHXc5c0oYUBCbZEsRPnHvFn5-47Qm4yTYVTDqkvmQ645i7QGORowsyKSFEsgoTRFpN4POWPMzFby-Kv-CGaDTf0jPJ7jQ6u9Lz7RRqKGdiwvqMUCWgwyzxiPYzpuntq-KMoGGeVXsRYgFXoa9bGkHY3u2_OSj-g5iZyLaee0R5R9aCriJPXznKhO-bjG5_jf95qn-yucKnfrwzpgGzZ_JBsD-pycEckeS6ZZpGlw18jMfQXZdytf1-8ZT58qgvztkTuBX-A-0JId3JMpqPhy2AcrMouBAbQiQhsTzqTKcGNFkKDpVGYRzMHuNBwZRIAHCaLVKaYYRYErGTS0xZmQg7C1sZIdkJaeZHbM-JLl4XWhc5xk8C9jeZYeVFwFXJoR6VHbmuxp-8Vu0Za8SjTFCWRNpLwSLvWSrrysnlKYa0FSyJwdI9cN5dBLvjTQ-W2WGKbKJExwhyPnFbabB7F4iiWNIZh0FInv4wh7U8ehs3Z-V86XZAdPMZ4mEi2SQs0Zy8B1Sz0VWm5n7L47l4 |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGcrC-1EoECQkprSJY6fJiEpLy6MDtBJbZDv2QtUi0S78eu6SJlAYkGBMYifOPXKfnfN3ABepYsJKS9SXgXK54tZVlOSovdQIXzIqgkTZFoOwN-K3z6LIJqS9MDk_RLngRp6Rfa_JwWlBuvnJGkpbsHGCxxgx0IhVWEOfD6h6w_VjySDF0DzzDUZB4FId-oK30WPN5f7LcekH2FzGrlnw6W6CKoad55y8NOYz1dDv3xgd__VeW7CxgKbOVW5L27BiJjtQbRcV4XYhesrIZomow_nCY-jMstRb52Y6Th38Wk_1eE70C06bloaI8WQPRt3OsN1zF5UXXI0ARbimFVudSsG1EkKhsTEMpalFaKi51BFiDp36MpWBDgxKWMZRSxkMhhylrbSOg32oTKYTcwhObFPPWM9ariO8t1acii8KLj2O7Vhcg8tC7slrTrCR5FTKLCFJJKUkalAv1JIsHO0tYTjdwlkR-noNzsvLKBf67yEnZjqnNn4Uh4R0anCQq7N8VBD6YcxCHAbLlPLLGJKrQb9THh39pdMZVHvDh_vkvj-4O4Z1Ok_pMX5chwpq0ZwgyJmp08yMPwCbKPJ2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5oTdSL70e1KiYmnrCw7FI4mtpq1TTGR-KN7POiaU1sL_56Z6BgqwcTPQK7sMyD-XaZ_QbgxCgmnHREfRkpnyvufEVJjjowVoSSUREkyrbox1dP_PpZPE_t4i_4IaoFN_KM_HtNDv5mXPOLNJR2YOP8jjEioBHzsMBjhL8Ei-4rAimG1lnsL4oin8rQl7SNAWvO9p8NSz-w5ix0zWNPdxVkOeoi5eTlbDxSZ_rjG6Hjf15rDVYmwNQ7LyxpHebsYAOW2mU9uE1IHnKqWaLp8KZYDL1RnnjrXQ5fjYff6qF-HRP5gtemhSHiO9mCp27nsX3lT-ou-BrhifBtK3XaSMG1EkKhqTEMpMYhMNRc6gQRhzahNDLSkUUByzRpKYuhkKOwldZptA21wXBgd8FLnQmsC5zjOsF7a8Wp9KLgMuDYjqV1OC3Fnr0V9BpZQaTMMpJEVkmiDo1SK9nEzd4zhpMtnBOhp9fhuLqMcqG_HnJgh2NqEyZpTDinDjuFNqtHRXEYpyzGYbBcJ7-MITvv9zrV0d5fOh3B4t1FN7vt9W_2YZlOU25MmDaghkq0B4hwRuowN-JPyn7xJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Engineering+toward+Gold+Nanocluster+Catalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guan%2C+Zong%E2%80%90Jie&rft.au=Li%2C+Jiao%E2%80%90Jiao&rft.au=Hu%2C+Feng&rft.au=Wang%2C+Quan%E2%80%90Ming&rft.date=2022-12-19&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=51&rft_id=info:doi/10.1002%2Fanie.202209725&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202209725 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |