Structural Engineering toward Gold Nanocluster Catalysis

Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold catalysts. A nanocluster consists of a metal core and a surface ligand shell, and both the core and shell have significant effects on the catalytic properties...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 51; pp. e202209725 - n/a
Main Authors Guan, Zong‐Jie, Li, Jiao‐Jiao, Hu, Feng, Wang, Quan‐Ming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 19.12.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold catalysts. A nanocluster consists of a metal core and a surface ligand shell, and both the core and shell have significant effects on the catalytic properties. Thanks to their precise structures, the active metal site of the clusters can be readily identified and the effects of ligands on catalysis can be disclosed. In this Minireview, we summarize recent advances in catalytic research of gold nanoclusters, emphasizing four strategies for constructing open metal sites, including by post‐treatment, the bulky ligands strategy, the surface geometric mismatch method, and heteroatom doping procedures. We also discuss the effects of ligands on the catalytic activity, selectivity, and stability of gold cluster catalysts. Finally, we present future challenges relating to gold cluster catalysis. Structurally well‐defined gold nanoclusters are promising catalysts, and their molecular nature facilitates the design and controlled synthesis of cluster catalysts. This Minireview summarizes the strategies for constructing active sites and the effects of the ligands on cluster catalysis. The challenges and key future issues regarding catalytic applications of gold nanoclusters are discussed.
AbstractList Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold catalysts. A nanocluster consists of a metal core and a surface ligand shell, and both the core and shell have significant effects on the catalytic properties. Thanks to their precise structures, the active metal site of the clusters can be readily identified and the effects of ligands on catalysis can be disclosed. In this Minireview, we summarize recent advances in catalytic research of gold nanoclusters, emphasizing four strategies for constructing open metal sites, including by post‐treatment, the bulky ligands strategy, the surface geometric mismatch method, and heteroatom doping procedures. We also discuss the effects of ligands on the catalytic activity, selectivity, and stability of gold cluster catalysts. Finally, we present future challenges relating to gold cluster catalysis. Structurally well‐defined gold nanoclusters are promising catalysts, and their molecular nature facilitates the design and controlled synthesis of cluster catalysts. This Minireview summarizes the strategies for constructing active sites and the effects of the ligands on cluster catalysis. The challenges and key future issues regarding catalytic applications of gold nanoclusters are discussed.
Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold catalysts. A nanocluster consists of a metal core and a surface ligand shell, and both the core and shell have significant effects on the catalytic properties. Thanks to their precise structures, the active metal site of the clusters can be readily identified and the effects of ligands on catalysis can be disclosed. In this Minireview, we summarize recent advances in catalytic research of gold nanoclusters, emphasizing four strategies for constructing open metal sites, including by post‐treatment, the bulky ligands strategy, the surface geometric mismatch method, and heteroatom doping procedures. We also discuss the effects of ligands on the catalytic activity, selectivity, and stability of gold cluster catalysts. Finally, we present future challenges relating to gold cluster catalysis.
Abstract Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold catalysts. A nanocluster consists of a metal core and a surface ligand shell, and both the core and shell have significant effects on the catalytic properties. Thanks to their precise structures, the active metal site of the clusters can be readily identified and the effects of ligands on catalysis can be disclosed. In this Minireview, we summarize recent advances in catalytic research of gold nanoclusters, emphasizing four strategies for constructing open metal sites, including by post‐treatment, the bulky ligands strategy, the surface geometric mismatch method, and heteroatom doping procedures. We also discuss the effects of ligands on the catalytic activity, selectivity, and stability of gold cluster catalysts. Finally, we present future challenges relating to gold cluster catalysis.
Author Li, Jiao‐Jiao
Guan, Zong‐Jie
Wang, Quan‐Ming
Hu, Feng
Author_xml – sequence: 1
  givenname: Zong‐Jie
  orcidid: 0000-0001-8977-0850
  surname: Guan
  fullname: Guan, Zong‐Jie
  organization: Hunan University
– sequence: 2
  givenname: Jiao‐Jiao
  surname: Li
  fullname: Li, Jiao‐Jiao
  organization: Tsinghua University
– sequence: 3
  givenname: Feng
  surname: Hu
  fullname: Hu, Feng
  organization: Tsinghua University
– sequence: 4
  givenname: Quan‐Ming
  orcidid: 0000-0002-3764-6409
  surname: Wang
  fullname: Wang, Quan‐Ming
  email: qmwang@tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36169269$$D View this record in MEDLINE/PubMed
BookMark eNqF0M1LwzAYBvAgE_ehV49S8OKlMx9N2xzHmHMw5kE9lzR5Ozq6ZCYtY_-9GZsTvHhKDr_34eEZop6xBhC6J3hMMKbP0tQwpphSLDLKr9CAcEpilmWsF_4JY3GWc9JHQ-83wec5Tm9Qn6UkFTQVA5S_t65TbedkE83MujYArjbrqLV76XQ0t42OVtJY1XS-BRdNZSubg6_9LbquZOPh7vyO0OfL7GP6Gi_f5ovpZBmrhAkeQyYqpSVPVMl5CVJTAK0rzphKpMoZyZQmUkumGIRyUuRZCQyzJBQtlRJshJ5OuTtnvzrwbbGtvYKmkQZs5wuakVykFBMS6OMfurGdM6FdUJxRzinGQY1PSjnrvYOq2Ll6K92hILg4blocNy0um4aDh3NsV25BX_jPiAGIE9jXDRz-iSsmq8XsN_wb1OaE5A
CitedBy_id crossref_primary_10_1021_acs_jpclett_3c02965
crossref_primary_10_1039_D3NR05328H
crossref_primary_10_1021_acs_jpclett_3c01837
crossref_primary_10_1002_ejic_202300161
crossref_primary_10_1021_jacs_3c12982
crossref_primary_10_1021_jacs_4c00019
crossref_primary_10_3390_molecules29071574
crossref_primary_10_1002_smll_202301633
crossref_primary_10_1021_prechem_3c00036
crossref_primary_10_1002_adma_202305095
crossref_primary_10_1039_D3SC04682F
crossref_primary_10_1126_sciadv_adn7556
crossref_primary_10_3390_molecules29122724
crossref_primary_10_1038_s41467_023_42688_3
crossref_primary_10_1002_asia_202300463
crossref_primary_10_1007_s12274_023_5862_0
crossref_primary_10_1021_acs_jpclett_3c03021
crossref_primary_10_1016_j_dyepig_2024_112273
crossref_primary_10_1002_advs_202400699
crossref_primary_10_1021_acsanm_4c00243
crossref_primary_10_1021_jacs_3c02215
crossref_primary_10_1002_adma_202313032
crossref_primary_10_1021_prechem_3c00003
crossref_primary_10_1021_acs_nanolett_3c02026
crossref_primary_10_1039_D3NA00869J
crossref_primary_10_1021_acs_jpclett_4c00130
crossref_primary_10_1002_smll_202208287
crossref_primary_10_1021_acs_chemrev_2c00733
crossref_primary_10_1002_adfm_202315675
crossref_primary_10_1021_jacs_3c02165
crossref_primary_10_1021_jacs_4c02411
crossref_primary_10_1039_D3AY01821K
crossref_primary_10_1002_ange_202402025
crossref_primary_10_1016_j_ccr_2023_215364
crossref_primary_10_1021_acs_jpclett_4c00577
crossref_primary_10_26599_POM_2023_9140031
crossref_primary_10_1039_D2CC06719F
crossref_primary_10_1002_anie_202400011
crossref_primary_10_1016_j_jssc_2023_124281
crossref_primary_10_1039_D4CC02085E
crossref_primary_10_1002_ange_202305604
crossref_primary_10_1007_s11426_023_1775_y
crossref_primary_10_1016_j_bbagen_2024_130611
crossref_primary_10_1039_D3NR06015B
crossref_primary_10_1016_j_jcis_2023_07_198
crossref_primary_10_1039_D3GC02281A
crossref_primary_10_1016_j_nxmate_2023_100091
crossref_primary_10_1063_5_0186422
crossref_primary_10_1002_zaac_202300179
crossref_primary_10_1021_acs_inorgchem_3c00302
crossref_primary_10_1039_D3RA03781A
crossref_primary_10_1002_ange_202400011
crossref_primary_10_1021_acsanm_3c00351
crossref_primary_10_1002_anie_202402025
crossref_primary_10_1039_D3DT00202K
crossref_primary_10_1016_j_mtener_2024_101498
crossref_primary_10_1021_acsnano_3c01068
crossref_primary_10_1016_j_foodchem_2023_136083
crossref_primary_10_1002_anie_202305604
crossref_primary_10_1016_j_ccr_2024_215907
crossref_primary_10_1021_acsapm_3c00842
crossref_primary_10_1002_cey2_547
crossref_primary_10_1016_j_snb_2024_136069
crossref_primary_10_1360_TB_2023_0480
crossref_primary_10_1039_D3TA07400E
Cites_doi 10.1021/jacs.9b11836
10.1021/acs.jpcb.6b03287
10.1038/s41467-019-13682-5
10.1002/ange.202100071
10.1002/anie.202013718
10.1002/anie.201311177
10.1002/anie.201811859
10.1039/b707314n
10.1021/acs.accounts.8b00349
10.1021/ja4131142
10.1021/jacs.5b12747
10.1002/anie.201901478
10.1021/jacs.6b07178
10.1021/acs.chemrev.6b00769
10.1039/C8SC03756F
10.1002/ange.201610736
10.1038/nature07194
10.1002/anie.202116965
10.1021/acs.jpcc.1c08197
10.1021/ja801173r
10.1002/anie.202200823
10.1021/cs500533h
10.1002/ange.202012499
10.1002/anie.201804481
10.1002/ange.202206742
10.1002/ange.201908983
10.1021/ar400209a
10.1021/acs.chemrev.0c00495
10.1038/s41467-022-29819-y
10.1021/ja305477a
10.1021/acs.jpclett.9b02920
10.1002/anie.201001055
10.1038/nchem.860
10.1002/ange.201207098
10.1021/nl101225f
10.1021/jacs.2c04156
10.1021/ja411061e
10.1021/nn301019f
10.1246/cl.1987.405
10.1126/science.aak9750
10.1021/ja810045y
10.1002/ange.202206019
10.1016/0021-9517(85)90383-5
10.1021/acsnano.6b03964
10.1016/j.jcat.2006.07.006
10.1021/jacs.8b11096
10.1002/anie.201912984
10.1039/C5RA25646A
10.1002/anie.202207492
10.1038/s41557-019-0246-5
10.1126/science.1148624
10.1039/D0NR02986F
10.1002/ange.202103060
10.1246/cl.160813
10.1021/acs.chemrev.5b00703
10.1002/anie.202206742
10.1002/anie.201706021
10.1002/anie.202103060
10.1002/anie.202103290
10.1021/acs.chemrev.9b00551
10.1039/C8TA00461G
10.1002/anie.202012499
10.1002/ange.201804481
10.1126/science.1128383
10.1039/C9CP03469B
10.1002/anie.202206019
10.1021/cr200260m
10.1021/acs.chemrev.7b00208
10.1039/D0DT00477D
10.1021/acs.nanolett.6b03221
10.1002/cctc.201701472
10.1021/jacs.1c11643
10.1002/anie.202014154
10.1039/D0NR07832H
10.1002/anie.202100071
10.1021/cr000436x
10.1126/sciadv.1701823
10.1021/jacs.1c06716
10.1002/ange.201811859
10.1002/ange.202013718
10.1002/anie.202108207
10.1126/sciadv.1600323
10.1021/cm304098x
10.1021/acs.accounts.8b00359
10.1021/jacs.5b12730
10.1039/C9NR10198E
10.1002/anie.201610736
10.1002/ange.202116965
10.1021/ja4059074
10.1038/376238a0
10.1021/jacs.5b07716
10.1021/acs.jpclett.8b02784
10.1002/ange.201001055
10.1002/anie.201908983
10.1038/4371098a
10.1002/smll.200902398
10.1021/acs.chemrev.8b00726
10.1021/ja5018706
10.1016/j.ccr.2018.04.016
10.1021/acs.accounts.8b00065
10.1002/chem.201002390
10.1002/anie.201207098
10.1002/ange.201706021
10.1002/ange.201311177
10.1126/sciadv.aat7259
10.1002/ange.202103290
10.1021/jp4063687
10.1021/jacs.6b04835
10.1002/ange.202200823
10.1002/ange.202108207
10.1002/ange.202207492
10.1021/acs.jpclett.6b02294
10.1016/S0926-860X(02)00278-8
10.1002/ange.201901478
10.1039/C8NR02973C
10.1021/acs.accounts.8b00371
10.1002/ange.201912984
10.1021/jz301191t
10.1002/ange.202014154
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202209725
DatabaseName PubMed
CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202209725
36169269
ANIE202209725
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 91961201, 21971136
– fundername: National Natural Science Foundation of China
  grantid: 91961201, 21971136
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c4395-e79fcda54cb55bead2eeddf533c4ac8317cd1ada3c3e880a987be3034806bcc93
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Fri Aug 16 10:23:17 EDT 2024
Thu Oct 10 17:54:56 EDT 2024
Fri Aug 23 02:00:13 EDT 2024
Sat Sep 28 08:21:52 EDT 2024
Sat Aug 24 01:06:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords Ligand Effects
Active Sites
Gold
Catalysis
Nanoclusters
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4395-e79fcda54cb55bead2eeddf533c4ac8317cd1ada3c3e880a987be3034806bcc93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0001-8977-0850
0000-0002-3764-6409
PMID 36169269
PQID 2753255200
PQPubID 946352
PageCount 14
ParticipantIDs proquest_miscellaneous_2718962011
proquest_journals_2753255200
crossref_primary_10_1002_anie_202209725
pubmed_primary_36169269
wiley_primary_10_1002_anie_202209725_ANIE202209725
PublicationCentury 2000
PublicationDate December 19, 2022
PublicationDateYYYYMMDD 2022-12-19
PublicationDate_xml – month: 12
  year: 2022
  text: December 19, 2022
  day: 19
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2010; 10
2007; 107
2013; 25
2017; 3
2020; 120
2019; 11
2019; 10
2021; 125
2018; 368
2020 2020; 59 132
2008; 37
2002; 236
2020; 12
1995; 376
2020; 11
2021; 121
2011; 17
2014; 136
2017; 117
2018; 6
2018; 9
2022 2022; 61 134
2014; 4
2012; 134
2018; 4
2015; 137
2019; 21
2012 2012; 51 124
2018 2018; 57 130
2013; 117
2016; 354
2020; 49
1985; 96
2016; 116
2010; 2
2010; 6
2006; 243
2016; 45
2011
2020; 142
2005; 437
2016; 10
2014; 47
2010 2010; 49 122
2021; 143
2009; 131
2017 2017; 56 129
2019; 141
2006; 313
2016; 16
2016; 120
2019 2019; 58 131
1987; 16
2022; 144
2021; 13
2016; 6
2016; 7
2012; 3
2012; 112
2016; 2
2018; 118
2021 2021; 60 133
2022; 13
2013; 135
2018; 51
2016; 138
2008; 454
2012; 6
2007; 318
2018; 10
2008; 130
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_68_2
e_1_2_8_9_2
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_64_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_60_2
e_1_2_8_19_1
e_1_2_8_34_2
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_95_2
e_1_2_8_99_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_53_2
e_1_2_8_72_2
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_2
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
Ross J. R. (e_1_2_8_39_1) 2011
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
(e_1_2_8_56_2) 2022; 134
e_1_2_8_71_2
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_89_2
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_20_2
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_62_2
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
(e_1_2_8_75_2) 2022; 134
e_1_2_8_97_1
e_1_2_8_97_2
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_74_2
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_93_2
e_1_2_8_93_1
(e_1_2_8_55_2) 2022; 134
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_2
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_88_2
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
(e_1_2_8_90_2) 2022; 134
e_1_2_8_96_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_50_1
References_xml – year: 2011
– volume: 136
  start-page: 92
  year: 2014
  end-page: 95
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 4509
  year: 2016
  end-page: 4513
  publication-title: J. Phys. Chem. Lett.
– volume: 120
  start-page: 5759
  year: 2016
  end-page: 5766
  publication-title: J. Phys. Chem. B
– volume: 144
  start-page: 11405
  year: 2022
  end-page: 11412
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 308
  year: 2020
  publication-title: Nat. Commun.
– volume: 313
  start-page: 332
  year: 2006
  end-page: 334
  publication-title: Science
– volume: 236
  start-page: 77
  year: 2002
  end-page: 89
  publication-title: Appl. Catal. A
– volume: 60 133
  start-page: 14415 14536
  year: 2021 2021
  end-page: 14419 14540
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49 122
  start-page: 5545 5677
  year: 2010 2010
  end-page: 5548 5680
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 7173
  year: 2018
  end-page: 7179
  publication-title: J. Phys. Chem. Lett.
– volume: 13
  start-page: 2082
  year: 2022
  publication-title: Nat. Commun.
– volume: 51
  start-page: 2475
  year: 2018
  end-page: 2483
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 7532
  year: 2018
  end-page: 7537
  publication-title: J. Mater. Chem. A
– volume: 138
  start-page: 8710
  year: 2016
  end-page: 8713
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 946
  year: 2013
  end-page: 952
  publication-title: Chem. Mater.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 138
  start-page: 3278
  year: 2016
  end-page: 3281
  publication-title: J. Am. Chem. Soc.
– volume: 318
  start-page: 430
  year: 2007
  end-page: 433
  publication-title: Science
– volume: 11
  start-page: 419
  year: 2019
  end-page: 425
  publication-title: Nat. Chem.
– volume: 120
  start-page: 526
  year: 2020
  end-page: 622
  publication-title: Chem. Rev.
– volume: 21
  start-page: 20144
  year: 2019
  end-page: 20150
  publication-title: Phys. Chem. Chem. Phys.
– volume: 56 129
  start-page: 2709 2753
  year: 2017 2017
  end-page: 2713 2757
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 125
  start-page: 23226
  year: 2021
  end-page: 23230
  publication-title: J. Phys. Chem. C
– volume: 137
  start-page: 14295
  year: 2015
  end-page: 14304
  publication-title: J. Am. Chem. Soc.
– volume: 121
  start-page: 567
  year: 2021
  end-page: 648
  publication-title: Chem. Rev.
– volume: 117
  start-page: 20007
  year: 2013
  end-page: 20016
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 2649
  year: 2012
  end-page: 2652
  publication-title: J. Phys. Chem. Lett.
– volume: 243
  start-page: 64
  year: 2006
  end-page: 73
  publication-title: J. Catal.
– volume: 376
  start-page: 238
  year: 1995
  end-page: 240
  publication-title: Nature
– volume: 10
  start-page: 7998
  year: 2016
  end-page: 8005
  publication-title: ACS Nano
– volume: 58 131
  start-page: 17731 17895
  year: 2019 2019
  end-page: 17735 17899
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 8639 8775
  year: 2018 2018
  end-page: 8643 8779
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 136
  start-page: 6111
  year: 2014
  end-page: 6122
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 6892
  year: 2019
  end-page: 6896
  publication-title: J. Phys. Chem. Lett.
– volume: 37
  start-page: 2096
  year: 2008
  end-page: 2126
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 395
  year: 2018
  end-page: 402
  publication-title: ChemCatChem
– volume: 13
  start-page: 2333
  year: 2021
  end-page: 2337
  publication-title: Nanoscale
– volume: 16
  start-page: 405
  year: 1987
  end-page: 408
  publication-title: Chem. Lett.
– volume: 51
  start-page: 2465
  year: 2018
  end-page: 2474
  publication-title: Acc. Chem. Res.
– volume: 138
  start-page: 3950
  year: 2016
  end-page: 3953
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1062
  year: 2010
  end-page: 1068
  publication-title: Nat. Chem.
– volume: 107
  start-page: 3180
  year: 2007
  end-page: 3211
  publication-title: Chem. Rev.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 6
  start-page: 28688
  year: 2016
  end-page: 28727
  publication-title: RSC Adv.
– volume: 454
  start-page: 981
  year: 2008
  end-page: 983
  publication-title: Nature
– volume: 51 124
  start-page: 13114 13291
  year: 2012 2012
  end-page: 13118 13295
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 6560
  year: 2016
  end-page: 6567
  publication-title: Nano Lett.
– volume: 131
  start-page: 7086
  year: 2009
  end-page: 7093
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 6020
  year: 2020
  end-page: 6028
  publication-title: Nanoscale
– volume: 51
  start-page: 1338
  year: 2018
  end-page: 1348
  publication-title: Acc. Chem. Res.
– volume: 96
  start-page: 292
  year: 1985
  end-page: 295
  publication-title: J. Catal.
– volume: 56 129
  start-page: 11494 11652
  year: 2017 2017
  end-page: 11497 11655
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 144
  start-page: 690
  year: 2022
  end-page: 694
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 20748 20916
  year: 2021 2021
  end-page: 20753 20921
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 118
  start-page: 3209
  year: 2018
  end-page: 3250
  publication-title: Chem. Rev.
– volume: 134
  start-page: 14295
  year: 2012
  end-page: 14297
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 5906 5967
  year: 2019 2019
  end-page: 5909 5970
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 6014
  year: 2012
  end-page: 6022
  publication-title: ACS Nano
– volume: 6
  start-page: 1216
  year: 2010
  end-page: 1220
  publication-title: Small
– volume: 116
  start-page: 10346
  year: 2016
  end-page: 10413
  publication-title: Chem. Rev.
– volume: 12
  start-page: 13346
  year: 2020
  end-page: 13350
  publication-title: Nanoscale
– volume: 136
  start-page: 2963
  year: 2014
  end-page: 2965
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 8208
  year: 2017
  end-page: 8271
  publication-title: Chem. Rev.
– volume: 135
  start-page: 12944
  year: 2013
  end-page: 12947
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 6584
  year: 2011
  end-page: 6593
  publication-title: Chem. Eur. J.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 60 133
  start-page: 10573 10667
  year: 2021 2021
  end-page: 10576 10670
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 2463
  year: 2014
  end-page: 2469
  publication-title: ACS Catal.
– volume: 112
  start-page: 2467
  year: 2012
  end-page: 2505
  publication-title: Chem. Rev.
– volume: 142
  start-page: 2995
  year: 2020
  end-page: 3001
  publication-title: J. Am. Chem. Soc.
– volume: 368
  start-page: 60
  year: 2018
  end-page: 79
  publication-title: Coord. Chem. Rev.
– volume: 49
  start-page: 5406
  year: 2020
  end-page: 5415
  publication-title: Dalton Trans.
– volume: 10
  start-page: 2568
  year: 2010
  end-page: 2573
  publication-title: Nano Lett.
– volume: 60 133
  start-page: 3752 3796
  year: 2021 2021
  end-page: 3758 3802
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 120
  start-page: 464
  year: 2020
  end-page: 525
  publication-title: Chem. Rev.
– volume: 354
  start-page: 1580
  year: 2016
  end-page: 1584
  publication-title: Science
– volume: 53 126
  start-page: 4623 4711
  year: 2014 2014
  end-page: 4627 4715
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51
  start-page: 3084
  year: 2018
  end-page: 3093
  publication-title: Acc. Chem. Res.
– volume: 141
  start-page: 2384
  year: 2019
  end-page: 2390
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 5225 5285
  year: 2021 2021
  end-page: 5229 5289
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 130
  start-page: 5883
  year: 2008
  end-page: 5885
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 2309 2329
  year: 2020 2020
  end-page: 2312 2332
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47
  start-page: 816
  year: 2014
  end-page: 824
  publication-title: Acc. Chem. Res.
– volume: 143
  start-page: 17059
  year: 2021
  end-page: 17067
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 10425
  year: 2016
  end-page: 10428
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 14345 14466
  year: 2021 2021
  end-page: 14349 14470
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 10758
  year: 2018
  end-page: 10834
  publication-title: Nanoscale
– volume: 45
  start-page: 1457
  year: 2016
  end-page: 1459
  publication-title: Chem. Lett.
– volume: 58 131
  start-page: 1083 1095
  year: 2019 2019
  end-page: 1087 1099
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 3360
  year: 2019
  end-page: 3365
  publication-title: Chem. Sci.
– volume: 60 133
  start-page: 6699 6773
  year: 2021 2021
  end-page: 6703 6777
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 437
  start-page: 1098
  year: 2005
  end-page: 1099
  publication-title: Nature
– ident: e_1_2_8_26_1
  doi: 10.1021/jacs.9b11836
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.jpcb.6b03287
– ident: e_1_2_8_54_1
  doi: 10.1038/s41467-019-13682-5
– ident: e_1_2_8_64_2
  doi: 10.1002/ange.202100071
– ident: e_1_2_8_44_1
  doi: 10.1002/anie.202013718
– ident: e_1_2_8_95_1
  doi: 10.1002/anie.201311177
– ident: e_1_2_8_72_1
  doi: 10.1002/anie.201811859
– ident: e_1_2_8_6_1
  doi: 10.1039/b707314n
– ident: e_1_2_8_15_1
  doi: 10.1021/acs.accounts.8b00349
– ident: e_1_2_8_66_1
  doi: 10.1021/ja4131142
– ident: e_1_2_8_70_1
  doi: 10.1021/jacs.5b12747
– ident: e_1_2_8_89_1
  doi: 10.1002/anie.201901478
– ident: e_1_2_8_27_1
  doi: 10.1021/jacs.6b07178
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.chemrev.6b00769
– ident: e_1_2_8_52_1
  doi: 10.1039/C8SC03756F
– ident: e_1_2_8_80_2
  doi: 10.1002/ange.201610736
– ident: e_1_2_8_17_1
  doi: 10.1038/nature07194
– ident: e_1_2_8_53_1
  doi: 10.1002/anie.202116965
– ident: e_1_2_8_81_1
  doi: 10.1021/acs.jpcc.1c08197
– ident: e_1_2_8_22_1
  doi: 10.1021/ja801173r
– ident: e_1_2_8_56_1
  doi: 10.1002/anie.202200823
– ident: e_1_2_8_92_1
  doi: 10.1021/cs500533h
– ident: e_1_2_8_60_2
  doi: 10.1002/ange.202012499
– ident: e_1_2_8_68_1
  doi: 10.1002/anie.201804481
– volume: 134
  start-page: e202206742
  year: 2022
  ident: e_1_2_8_55_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202206742
– ident: e_1_2_8_88_2
  doi: 10.1002/ange.201908983
– ident: e_1_2_8_16_1
  doi: 10.1021/ar400209a
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.chemrev.0c00495
– ident: e_1_2_8_99_1
  doi: 10.1038/s41467-022-29819-y
– ident: e_1_2_8_48_1
  doi: 10.1021/ja305477a
– ident: e_1_2_8_73_1
  doi: 10.1021/acs.jpclett.9b02920
– ident: e_1_2_8_9_1
  doi: 10.1002/anie.201001055
– ident: e_1_2_8_49_1
  doi: 10.1038/nchem.860
– ident: e_1_2_8_20_2
  doi: 10.1002/ange.201207098
– ident: e_1_2_8_38_1
  doi: 10.1021/nl101225f
– ident: e_1_2_8_98_1
  doi: 10.1021/jacs.2c04156
– ident: e_1_2_8_43_1
  doi: 10.1021/ja411061e
– ident: e_1_2_8_77_1
  doi: 10.1021/nn301019f
– ident: e_1_2_8_3_1
  doi: 10.1246/cl.1987.405
– ident: e_1_2_8_24_1
  doi: 10.1126/science.aak9750
– ident: e_1_2_8_61_1
  doi: 10.1021/ja810045y
– volume: 134
  start-page: e202206019
  year: 2022
  ident: e_1_2_8_90_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202206019
– ident: e_1_2_8_2_1
  doi: 10.1016/0021-9517(85)90383-5
– ident: e_1_2_8_33_1
  doi: 10.1021/acsnano.6b03964
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jcat.2006.07.006
– ident: e_1_2_8_37_1
  doi: 10.1021/jacs.8b11096
– ident: e_1_2_8_74_1
  doi: 10.1002/anie.201912984
– ident: e_1_2_8_8_1
  doi: 10.1039/C5RA25646A
– ident: e_1_2_8_75_1
  doi: 10.1002/anie.202207492
– ident: e_1_2_8_35_1
  doi: 10.1038/s41557-019-0246-5
– ident: e_1_2_8_40_1
  doi: 10.1126/science.1148624
– ident: e_1_2_8_41_1
  doi: 10.1039/D0NR02986F
– ident: e_1_2_8_34_2
  doi: 10.1002/ange.202103060
– ident: e_1_2_8_79_1
  doi: 10.1246/cl.160813
– ident: e_1_2_8_11_1
  doi: 10.1021/acs.chemrev.5b00703
– ident: e_1_2_8_55_1
  doi: 10.1002/anie.202206742
– ident: e_1_2_8_71_1
  doi: 10.1002/anie.201706021
– ident: e_1_2_8_34_1
  doi: 10.1002/anie.202103060
– ident: e_1_2_8_93_1
  doi: 10.1002/anie.202103290
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.chemrev.9b00551
– ident: e_1_2_8_59_1
  doi: 10.1039/C8TA00461G
– ident: e_1_2_8_60_1
  doi: 10.1002/anie.202012499
– ident: e_1_2_8_68_2
  doi: 10.1002/ange.201804481
– ident: e_1_2_8_85_1
  doi: 10.1126/science.1128383
– ident: e_1_2_8_58_1
  doi: 10.1039/C9CP03469B
– ident: e_1_2_8_90_1
  doi: 10.1002/anie.202206019
– ident: e_1_2_8_7_1
  doi: 10.1021/cr200260m
– ident: e_1_2_8_87_1
  doi: 10.1021/acs.chemrev.7b00208
– ident: e_1_2_8_31_1
  doi: 10.1039/D0DT00477D
– ident: e_1_2_8_57_1
  doi: 10.1021/acs.nanolett.6b03221
– ident: e_1_2_8_28_1
– ident: e_1_2_8_91_1
  doi: 10.1002/cctc.201701472
– ident: e_1_2_8_25_1
  doi: 10.1021/jacs.1c11643
– ident: e_1_2_8_97_1
  doi: 10.1002/anie.202014154
– ident: e_1_2_8_86_1
  doi: 10.1039/D0NR07832H
– volume-title: Heterogeneous catalysis: fundamentals and applications
  year: 2011
  ident: e_1_2_8_39_1
  contributor:
    fullname: Ross J. R.
– ident: e_1_2_8_64_1
  doi: 10.1002/anie.202100071
– ident: e_1_2_8_83_1
  doi: 10.1021/cr000436x
– ident: e_1_2_8_32_1
  doi: 10.1126/sciadv.1701823
– ident: e_1_2_8_42_1
  doi: 10.1021/jacs.1c06716
– ident: e_1_2_8_72_2
  doi: 10.1002/ange.201811859
– ident: e_1_2_8_44_2
  doi: 10.1002/ange.202013718
– ident: e_1_2_8_62_1
  doi: 10.1002/anie.202108207
– ident: e_1_2_8_51_1
  doi: 10.1126/sciadv.1600323
– ident: e_1_2_8_96_1
  doi: 10.1021/cm304098x
– ident: e_1_2_8_13_1
  doi: 10.1021/acs.accounts.8b00359
– ident: e_1_2_8_65_1
  doi: 10.1021/jacs.5b12730
– ident: e_1_2_8_63_1
  doi: 10.1039/C9NR10198E
– ident: e_1_2_8_80_1
  doi: 10.1002/anie.201610736
– ident: e_1_2_8_53_2
  doi: 10.1002/ange.202116965
– ident: e_1_2_8_50_1
  doi: 10.1021/ja4059074
– ident: e_1_2_8_1_1
  doi: 10.1038/376238a0
– ident: e_1_2_8_78_1
  doi: 10.1021/jacs.5b07716
– ident: e_1_2_8_84_1
  doi: 10.1021/acs.jpclett.8b02784
– ident: e_1_2_8_9_2
  doi: 10.1002/ange.201001055
– ident: e_1_2_8_88_1
  doi: 10.1002/anie.201908983
– ident: e_1_2_8_4_1
  doi: 10.1038/4371098a
– ident: e_1_2_8_23_1
  doi: 10.1002/smll.200902398
– ident: e_1_2_8_10_1
  doi: 10.1021/acs.chemrev.8b00726
– ident: e_1_2_8_45_1
  doi: 10.1021/ja5018706
– ident: e_1_2_8_29_1
  doi: 10.1016/j.ccr.2018.04.016
– ident: e_1_2_8_94_1
  doi: 10.1021/acs.accounts.8b00065
– ident: e_1_2_8_18_1
  doi: 10.1002/chem.201002390
– ident: e_1_2_8_20_1
  doi: 10.1002/anie.201207098
– ident: e_1_2_8_71_2
  doi: 10.1002/ange.201706021
– ident: e_1_2_8_95_2
  doi: 10.1002/ange.201311177
– ident: e_1_2_8_67_1
  doi: 10.1126/sciadv.aat7259
– ident: e_1_2_8_93_2
  doi: 10.1002/ange.202103290
– ident: e_1_2_8_46_1
  doi: 10.1021/jp4063687
– ident: e_1_2_8_21_1
  doi: 10.1021/jacs.6b04835
– volume: 134
  start-page: e202200823
  year: 2022
  ident: e_1_2_8_56_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202200823
– ident: e_1_2_8_62_2
  doi: 10.1002/ange.202108207
– volume: 134
  start-page: e202207492
  year: 2022
  ident: e_1_2_8_75_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202207492
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.jpclett.6b02294
– ident: e_1_2_8_82_1
  doi: 10.1016/S0926-860X(02)00278-8
– ident: e_1_2_8_89_2
  doi: 10.1002/ange.201901478
– ident: e_1_2_8_76_1
  doi: 10.1039/C8NR02973C
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.accounts.8b00371
– ident: e_1_2_8_74_2
  doi: 10.1002/ange.201912984
– ident: e_1_2_8_69_1
  doi: 10.1021/jz301191t
– ident: e_1_2_8_97_2
  doi: 10.1002/ange.202014154
SSID ssj0028806
Score 2.6431892
SecondaryResourceType review_article
Snippet Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold catalysts. A...
Abstract Atomically precise gold nanoclusters provide great opportunities to explore the relationship between the structure and properties of nanogold...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202209725
SubjectTerms Active Sites
Catalysis
Catalysts
Catalytic activity
Clusters
Gold
Ligand Effects
Ligands
Nanoclusters
Reviews
Selectivity
Structural engineering
Title Structural Engineering toward Gold Nanocluster Catalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202209725
https://www.ncbi.nlm.nih.gov/pubmed/36169269
https://www.proquest.com/docview/2753255200
https://search.proquest.com/docview/2718962011
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQF1h4PwIFBQmJKW3iRxqPVWkpDB2ASt0i27EXUILUduHXc5c0oYUBCbZEsRPnHvFn5-47Qm4yTYVTDqkvmQ645i7QGORowsyKSFEsgoTRFpN4POWPMzFby-Kv-CGaDTf0jPJ7jQ6u9Lz7RRqKGdiwvqMUCWgwyzxiPYzpuntq-KMoGGeVXsRYgFXoa9bGkHY3u2_OSj-g5iZyLaee0R5R9aCriJPXznKhO-bjG5_jf95qn-yucKnfrwzpgGzZ_JBsD-pycEckeS6ZZpGlw18jMfQXZdytf1-8ZT58qgvztkTuBX-A-0JId3JMpqPhy2AcrMouBAbQiQhsTzqTKcGNFkKDpVGYRzMHuNBwZRIAHCaLVKaYYRYErGTS0xZmQg7C1sZIdkJaeZHbM-JLl4XWhc5xk8C9jeZYeVFwFXJoR6VHbmuxp-8Vu0Za8SjTFCWRNpLwSLvWSrrysnlKYa0FSyJwdI9cN5dBLvjTQ-W2WGKbKJExwhyPnFbabB7F4iiWNIZh0FInv4wh7U8ehs3Z-V86XZAdPMZ4mEi2SQs0Zy8B1Sz0VWm5n7L47l4
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGcrC-1EoECQkprSJY6fJiEpLy6MDtBJbZDv2QtUi0S78eu6SJlAYkGBMYifOPXKfnfN3ABepYsJKS9SXgXK54tZVlOSovdQIXzIqgkTZFoOwN-K3z6LIJqS9MDk_RLngRp6Rfa_JwWlBuvnJGkpbsHGCxxgx0IhVWEOfD6h6w_VjySDF0DzzDUZB4FId-oK30WPN5f7LcekH2FzGrlnw6W6CKoad55y8NOYz1dDv3xgd__VeW7CxgKbOVW5L27BiJjtQbRcV4XYhesrIZomow_nCY-jMstRb52Y6Th38Wk_1eE70C06bloaI8WQPRt3OsN1zF5UXXI0ARbimFVudSsG1EkKhsTEMpalFaKi51BFiDp36MpWBDgxKWMZRSxkMhhylrbSOg32oTKYTcwhObFPPWM9ariO8t1acii8KLj2O7Vhcg8tC7slrTrCR5FTKLCFJJKUkalAv1JIsHO0tYTjdwlkR-noNzsvLKBf67yEnZjqnNn4Uh4R0anCQq7N8VBD6YcxCHAbLlPLLGJKrQb9THh39pdMZVHvDh_vkvj-4O4Z1Ok_pMX5chwpq0ZwgyJmp08yMPwCbKPJ2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5oTdSL70e1KiYmnrCw7FI4mtpq1TTGR-KN7POiaU1sL_56Z6BgqwcTPQK7sMyD-XaZ_QbgxCgmnHREfRkpnyvufEVJjjowVoSSUREkyrbox1dP_PpZPE_t4i_4IaoFN_KM_HtNDv5mXPOLNJR2YOP8jjEioBHzsMBjhL8Ei-4rAimG1lnsL4oin8rQl7SNAWvO9p8NSz-w5ix0zWNPdxVkOeoi5eTlbDxSZ_rjG6Hjf15rDVYmwNQ7LyxpHebsYAOW2mU9uE1IHnKqWaLp8KZYDL1RnnjrXQ5fjYff6qF-HRP5gtemhSHiO9mCp27nsX3lT-ou-BrhifBtK3XaSMG1EkKhqTEMpMYhMNRc6gQRhzahNDLSkUUByzRpKYuhkKOwldZptA21wXBgd8FLnQmsC5zjOsF7a8Wp9KLgMuDYjqV1OC3Fnr0V9BpZQaTMMpJEVkmiDo1SK9nEzd4zhpMtnBOhp9fhuLqMcqG_HnJgh2NqEyZpTDinDjuFNqtHRXEYpyzGYbBcJ7-MITvv9zrV0d5fOh3B4t1FN7vt9W_2YZlOU25MmDaghkq0B4hwRuowN-JPyn7xJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Engineering+toward+Gold+Nanocluster+Catalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guan%2C+Zong%E2%80%90Jie&rft.au=Li%2C+Jiao%E2%80%90Jiao&rft.au=Hu%2C+Feng&rft.au=Wang%2C+Quan%E2%80%90Ming&rft.date=2022-12-19&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=51&rft_id=info:doi/10.1002%2Fanie.202209725&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202209725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon