Inorganic and Layered Perovskites for Optoelectronic Devices
Organic–inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light‐emitting diodes (LEDs), continuous‐wave lasing and ultralow lasing thresh...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 47; pp. e1807095 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic–inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light‐emitting diodes (LEDs), continuous‐wave lasing and ultralow lasing thresholds in optically pumped lasers, and detectivity in photodetectors on a par with commercial GaAs rivals are being witnessed, making them the fastest ever emerging material technology. Still, questions on their toxicity and long‐term stability raise concerns toward their market entry. The intrinsic instability in these materials arises due to the organic cation, typically the volatile methylamine (MA), which contributes to hysteresis in the current–voltage characteristics and ion migration. Alternative inorganic substitutes to MA, such as cesium, and large organic cations that lead to a layered structure, enhance structural as well as device operational stability. These perovskites also provide a high exciton binding energy that is a prerequisite to enhance radiative emission yield in LEDs. The incorporation of inorganic and layered perovskites, in the form of polycrystalline films or as single‐crystalline nanostructure morphologies, is now leading to the demonstration of stable devices with excellent performance parameters. Herein, key developments made in various optoelectronic devices using these perovskites are summarized and an outlook toward stable yet efficient devices is presented.
Inorganic and layered perovskites have broadened research paradigm for a range of optoelectronic devices. Their unique electronic and photophysical properties show that they are an excellent material, leading forefronts of solar cells, light‐emitting diodes, photodetectors, lasers, and beyond. An overview of key research activities for these devices is provided and challenges for their future research are identified. |
---|---|
AbstractList | Organic–inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light‐emitting diodes (LEDs), continuous‐wave lasing and ultralow lasing thresholds in optically pumped lasers, and detectivity in photodetectors on a par with commercial GaAs rivals are being witnessed, making them the fastest ever emerging material technology. Still, questions on their toxicity and long‐term stability raise concerns toward their market entry. The intrinsic instability in these materials arises due to the organic cation, typically the volatile methylamine (MA), which contributes to hysteresis in the current–voltage characteristics and ion migration. Alternative inorganic substitutes to MA, such as cesium, and large organic cations that lead to a layered structure, enhance structural as well as device operational stability. These perovskites also provide a high exciton binding energy that is a prerequisite to enhance radiative emission yield in LEDs. The incorporation of inorganic and layered perovskites, in the form of polycrystalline films or as single‐crystalline nanostructure morphologies, is now leading to the demonstration of stable devices with excellent performance parameters. Herein, key developments made in various optoelectronic devices using these perovskites are summarized and an outlook toward stable yet efficient devices is presented. Organic–inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light‐emitting diodes (LEDs), continuous‐wave lasing and ultralow lasing thresholds in optically pumped lasers, and detectivity in photodetectors on a par with commercial GaAs rivals are being witnessed, making them the fastest ever emerging material technology. Still, questions on their toxicity and long‐term stability raise concerns toward their market entry. The intrinsic instability in these materials arises due to the organic cation, typically the volatile methylamine (MA), which contributes to hysteresis in the current–voltage characteristics and ion migration. Alternative inorganic substitutes to MA, such as cesium, and large organic cations that lead to a layered structure, enhance structural as well as device operational stability. These perovskites also provide a high exciton binding energy that is a prerequisite to enhance radiative emission yield in LEDs. The incorporation of inorganic and layered perovskites, in the form of polycrystalline films or as single‐crystalline nanostructure morphologies, is now leading to the demonstration of stable devices with excellent performance parameters. Herein, key developments made in various optoelectronic devices using these perovskites are summarized and an outlook toward stable yet efficient devices is presented. Inorganic and layered perovskites have broadened research paradigm for a range of optoelectronic devices. Their unique electronic and photophysical properties show that they are an excellent material, leading forefronts of solar cells, light‐emitting diodes, photodetectors, lasers, and beyond. An overview of key research activities for these devices is provided and challenges for their future research are identified. Organic-inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light-emitting diodes (LEDs), continuous-wave lasing and ultralow lasing thresholds in optically pumped lasers, and detectivity in photodetectors on a par with commercial GaAs rivals are being witnessed, making them the fastest ever emerging material technology. Still, questions on their toxicity and long-term stability raise concerns toward their market entry. The intrinsic instability in these materials arises due to the organic cation, typically the volatile methylamine (MA), which contributes to hysteresis in the current-voltage characteristics and ion migration. Alternative inorganic substitutes to MA, such as cesium, and large organic cations that lead to a layered structure, enhance structural as well as device operational stability. These perovskites also provide a high exciton binding energy that is a prerequisite to enhance radiative emission yield in LEDs. The incorporation of inorganic and layered perovskites, in the form of polycrystalline films or as single-crystalline nanostructure morphologies, is now leading to the demonstration of stable devices with excellent performance parameters. Herein, key developments made in various optoelectronic devices using these perovskites are summarized and an outlook toward stable yet efficient devices is presented.Organic-inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light-emitting diodes (LEDs), continuous-wave lasing and ultralow lasing thresholds in optically pumped lasers, and detectivity in photodetectors on a par with commercial GaAs rivals are being witnessed, making them the fastest ever emerging material technology. Still, questions on their toxicity and long-term stability raise concerns toward their market entry. The intrinsic instability in these materials arises due to the organic cation, typically the volatile methylamine (MA), which contributes to hysteresis in the current-voltage characteristics and ion migration. Alternative inorganic substitutes to MA, such as cesium, and large organic cations that lead to a layered structure, enhance structural as well as device operational stability. These perovskites also provide a high exciton binding energy that is a prerequisite to enhance radiative emission yield in LEDs. The incorporation of inorganic and layered perovskites, in the form of polycrystalline films or as single-crystalline nanostructure morphologies, is now leading to the demonstration of stable devices with excellent performance parameters. Herein, key developments made in various optoelectronic devices using these perovskites are summarized and an outlook toward stable yet efficient devices is presented. |
Author | Qiu, Weiming Heremans, Paul Iqbal, Tahir Sultan, Muhammad Fakharuddin, Azhar Shabbir, Umair Schmidt‐Mende, Lukas |
Author_xml | – sequence: 1 givenname: Azhar surname: Fakharuddin fullname: Fakharuddin, Azhar email: azhar.fakhar.uddin@imec.be organization: University of Konstanz – sequence: 2 givenname: Umair surname: Shabbir fullname: Shabbir, Umair organization: University Campus – sequence: 3 givenname: Weiming surname: Qiu fullname: Qiu, Weiming email: weiming.qiu@imec.be organization: KU Leuven – sequence: 4 givenname: Tahir surname: Iqbal fullname: Iqbal, Tahir organization: University of Gujrat – sequence: 5 givenname: Muhammad surname: Sultan fullname: Sultan, Muhammad email: sultan@ncp.edu.pk organization: University Campus – sequence: 6 givenname: Paul surname: Heremans fullname: Heremans, Paul organization: KU Leuven – sequence: 7 givenname: Lukas orcidid: 0000-0001-6867-443X surname: Schmidt‐Mende fullname: Schmidt‐Mende, Lukas email: lukas.schmidt-mende@uni-konstanz.de organization: University of Konstanz |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31012172$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLAzEQgIMoWh9Xj7LgxcvWJJtkE_BS6hMqetBzmG5mJbrd1GSr9N-7pT5AEE-Zw_fNhG-XbLahRUIOGR0ySvkpuBkMOWWaltTIDTJgkrNc9PMmGVBTyNwooXfIbkrPlFKjqNomOwWjjLOSD8jZTRviE7S-yqB12QSWGNFl9xjDW3rxHaasDjG7m3cBG6y6GFboOb75CtM-2aqhSXjw-e6Rx8uLh_F1Prm7uhmPJnklCiNzJ4TmWGqh6oqKmmMNqlRcMxTMOaPrQgIrEbSUBtxUghOqEHoK4HhNURV75GS9dx7D6wJTZ2c-Vdg00GJYJMs5K5hkhRE9evwLfQ6L2Pa_s7xnpJZKyp46-qQW0xk6O49-BnFpv7r0wHANVDGkFLH-Rhi1q_B2Fd5-h-8F8UuofAedD20XwTd_a2atvfsGl_8csaPz29GP-wFlcZYW |
CitedBy_id | crossref_primary_10_1007_s12274_021_3586_6 crossref_primary_10_1039_D1TC06173A crossref_primary_10_1140_epjp_s13360_024_05548_7 crossref_primary_10_1021_acsaem_1c00750 crossref_primary_10_1002_smtd_201900652 crossref_primary_10_1021_acsaelm_2c00102 crossref_primary_10_1016_j_ijleo_2023_170565 crossref_primary_10_1002_adfm_202102210 crossref_primary_10_1002_adom_202000779 crossref_primary_10_1016_j_jlumin_2021_118531 crossref_primary_10_1021_acsaelm_0c00431 crossref_primary_10_1016_j_jallcom_2020_156827 crossref_primary_10_1002_adom_202002167 crossref_primary_10_1007_s00894_024_05861_z crossref_primary_10_1007_s11082_024_07968_2 crossref_primary_10_1002_adom_201901643 crossref_primary_10_1360_TB_2022_1217 crossref_primary_10_1002_aenm_202101443 crossref_primary_10_1088_1674_4926_41_5_052204 crossref_primary_10_1103_PhysRevApplied_13_064071 crossref_primary_10_1002_adfm_201909771 crossref_primary_10_1016_j_heliyon_2024_e38898 crossref_primary_10_1039_D0NR08043H crossref_primary_10_1016_j_jechem_2022_02_018 crossref_primary_10_1039_D0NR01394C crossref_primary_10_1021_acsami_0c09047 crossref_primary_10_1016_j_carbon_2022_08_003 crossref_primary_10_1007_s11468_019_00992_z crossref_primary_10_1016_j_cej_2023_141602 crossref_primary_10_1016_j_jmrt_2020_06_086 crossref_primary_10_1364_PRJ_450483 crossref_primary_10_1002_adpr_202400065 crossref_primary_10_1002_adfm_201906756 crossref_primary_10_1039_D0QM00478B crossref_primary_10_1021_acsanm_1c02041 crossref_primary_10_1016_j_rio_2023_100531 crossref_primary_10_1002_pssb_202300577 crossref_primary_10_1063_5_0019554 crossref_primary_10_1002_ange_202417036 crossref_primary_10_59717_j_xinn_mater_2024_100084 crossref_primary_10_1016_j_mssp_2020_105313 crossref_primary_10_1039_D1DT04047B crossref_primary_10_1088_1674_4926_41_4_041603 crossref_primary_10_1002_adfm_201904101 crossref_primary_10_1063_1_5133151 crossref_primary_10_1002_adom_202001647 crossref_primary_10_3390_photonics12030261 crossref_primary_10_1364_OL_458832 crossref_primary_10_1002_aenm_202100818 crossref_primary_10_1021_acs_jpcc_1c03458 crossref_primary_10_1002_anie_202417036 crossref_primary_10_3390_molecules26185712 crossref_primary_10_1021_acs_nanolett_3c02285 crossref_primary_10_1364_OE_525735 crossref_primary_10_3389_fenrg_2022_840817 crossref_primary_10_1016_j_nxmate_2025_100563 crossref_primary_10_1039_C9TC05403K crossref_primary_10_1002_admi_202002053 crossref_primary_10_1002_asia_201901510 crossref_primary_10_1002_advs_202003334 crossref_primary_10_1002_inf2_12099 crossref_primary_10_1002_adom_202302494 crossref_primary_10_1039_D4QM00560K crossref_primary_10_1002_lpor_202000401 crossref_primary_10_1063_5_0238223 crossref_primary_10_1016_j_surfin_2024_104493 crossref_primary_10_1021_acsanm_0c01887 crossref_primary_10_1021_acsmaterialslett_0c00505 crossref_primary_10_1002_smll_202008131 crossref_primary_10_1007_s12274_023_5922_5 crossref_primary_10_1021_acsaem_9b01827 crossref_primary_10_1021_acsenergylett_9b02450 crossref_primary_10_1002_cphc_202200860 crossref_primary_10_1039_C9TA11639G crossref_primary_10_1016_j_physb_2024_415742 crossref_primary_10_3390_nano10061226 crossref_primary_10_1002_adfm_202307896 crossref_primary_10_1088_1361_6463_abd8f2 crossref_primary_10_1002_adfm_202002526 crossref_primary_10_1039_C9TC04164H crossref_primary_10_1002_adom_202200605 crossref_primary_10_1016_j_commatsci_2025_113681 crossref_primary_10_1039_D3NR01921G crossref_primary_10_1002_aenm_202002422 crossref_primary_10_1039_D2TC04626A crossref_primary_10_1021_acsnano_0c08903 crossref_primary_10_3390_nano12142396 crossref_primary_10_1021_acsanm_4c02311 crossref_primary_10_1016_j_optcom_2023_130046 crossref_primary_10_1039_C9CS00598F crossref_primary_10_1016_j_solmat_2021_111096 crossref_primary_10_1063_5_0047616 crossref_primary_10_35848_1347_4065_ac2038 crossref_primary_10_1002_adma_202207617 crossref_primary_10_1002_adfm_202010076 crossref_primary_10_1021_acs_inorgchem_1c02897 crossref_primary_10_3390_nano9071007 crossref_primary_10_1021_acs_jpcc_1c06377 crossref_primary_10_1039_D0TC03983G crossref_primary_10_1117_1_AP_3_3_034002 crossref_primary_10_1002_smll_202401545 crossref_primary_10_1016_j_jlumin_2022_119104 crossref_primary_10_1364_PRJ_418450 crossref_primary_10_1002_inf2_12604 crossref_primary_10_1088_1361_6528_abe672 crossref_primary_10_1088_1674_1056_ac2b20 crossref_primary_10_11648_j_ijmsa_20241306_11 crossref_primary_10_1002_advs_202301149 crossref_primary_10_1039_D2MA00071G crossref_primary_10_1002_adom_202303194 crossref_primary_10_1088_1674_1056_ac5988 |
Cites_doi | 10.1021/acs.chemmater.6b03980 10.1021/cg400645t 10.1039/C4TA04994B 10.1002/anie.201504379 10.1149/2.0101801jss 10.1002/anie.201704739 10.1002/aenm.201702073 10.1021/acs.jpcc.7b03939 10.1038/s41467-018-03169-0 10.1038/ncomms5007 10.1021/acs.jpclett.6b00376 10.1002/adma.200302151 10.1002/adom.201800324 10.1039/C7NR09607K 10.1126/science.aaa5760 10.1039/C7TC03612D 10.1002/adma.201803336 10.1002/adom.201800152 10.1038/s41928-018-0101-5 10.1038/s41586-018-0576-2 10.1039/C6EE01137C 10.1002/aenm.201501119 10.1002/aenm.201500963 10.1021/jacs.6b03166 10.1146/annurev-matsci-073012-125702 10.1021/acs.chemmater.8b02999 10.1126/science.aad1818 10.1002/anie.201605909 10.1016/j.joule.2018.06.013 10.1039/C5NR08350H 10.1021/acs.nanolett.7b00976 10.1021/acs.chemrev.5b00715 10.1038/nphoton.2008.248 10.1002/adma.201700095 10.1143/JPSJ.37.1393 10.1021/acsnano.6b05775 10.1021/acs.nanolett.8b00560 10.1021/acs.chemmater.5b04231 10.1103/PhysRevB.92.235210 10.1039/C7TA09657G 10.1038/s41566-017-0047-6 10.1039/C8TA06553E 10.1002/chem.201705031 10.1038/38693 10.1021/acs.nanolett.8b00603 10.1002/smll.201700611 10.1002/adma.201806105 10.1039/C6TC05578H 10.1103/PhysRevB.51.14370 10.1126/science.1060367 10.1021/acs.nanolett.8b02811 10.1038/nenergy.2017.135 10.1038/nphoton.2015.156 10.1002/adma.201804771 10.1021/acs.jpcc.7b06268 10.1021/acsanm.7b00212 10.1021/acs.jpcc.8b00998 10.1021/jz5005285 10.1021/acsenergylett.8b00035 10.1039/C5EE03874J 10.1021/acs.jpclett.6b02682 10.1038/nenergy.2016.142 10.1126/science.aag2700 10.1002/adma.201403965 10.1021/acsnano.8b06441 10.1039/C6RA08699C 10.1002/adfm.201601690 10.1039/b403482a 10.1021/acs.jpclett.6b01942 10.1021/acsnano.7b08357 10.1039/C7NR06116A 10.1002/aenm.201700162 10.1002/adma.201602513 10.1039/C7NR09126E 10.1021/acsphotonics.8b00348 10.1002/adma.201705393 10.1038/s41467-018-06425-5 10.1002/aenm.201802060 10.1021/jz4020162 10.1038/nphys3357 10.1021/acs.chemmater.6b00847 10.1021/acsnano.7b05442 10.1039/C7TC02137B 10.1039/C5TA05741H 10.1002/adma.201401991 10.1039/C8TC01214H 10.1021/acsenergylett.8b00835 10.1039/C6NR01828A 10.1039/c2ee23073a 10.1002/adma.201501978 10.1002/aenm.201800525 10.1021/jacs.7b02120 10.1021/jacs.6b10227 10.1039/C8TC00289D 10.1039/C7SE00100B 10.1038/natrevmats.2016.100 10.1021/ic401215x 10.1021/acs.nanolett.7b01544 10.1021/acsenergylett.6b00499 10.1002/adfm.201601571 10.1038/nmat4795 10.1021/acsenergylett.8b02239 10.1038/natrevmats.2016.28 10.1038/nphoton.2015.36 10.1002/adma.201707093 10.1038/s41566-018-0260-y 10.1021/jacs.7b08628 10.1002/adma.201603885 10.1002/adfm.201603734 10.1038/s41467-018-03757-0 10.1039/C6CP08177K 10.1126/science.1243982 10.1002/adma.201605005 10.1038/ncomms15684 10.1021/nl401011x 10.1021/acsnano.7b08201 10.1021/acs.jpclett.7b01042 10.1021/jacs.7b10647 10.1021/acsenergylett.7b00926 10.1021/jz500113x 10.1002/adma.201606859 10.1039/C7TA04690A 10.1002/smll.201702107 10.1038/nature01939 10.1126/science.aaf9717 10.1021/jacs.7b02817 10.1021/acsnano.6b03863 10.1002/advs.201500201 10.1021/acsenergylett.6b00341 10.1016/j.jechem.2017.10.013 10.1038/nphoton.2016.62 10.1038/nphoton.2015.82 10.1021/acs.jpclett.6b00002 10.1021/acs.nanolett.7b04659 10.1039/C8NR09885A 10.1039/C8TA02288G 10.1039/C6DT04758K 10.1002/adma.201706226 10.1038/nenergy.2016.178 10.1021/acsenergylett.7b00707 10.1021/acs.chemmater.7b00260 10.1007/978-981-10-5924-7_5 10.1002/adma.200702846 10.1021/acs.chemmater.5b01989 10.1364/OE.18.005912 10.1039/C6MH00519E 10.1038/nnano.2016.110 10.1039/C6TA08332C 10.1557/mrc.2015.6 10.1002/aenm.201701136 10.1021/jacs.6b13079 10.1021/acsnano.5b08193 10.1021/am503889z 10.1021/acs.nanolett.6b04381 10.1002/aenm.201700979 10.1021/jacs.5b05404 10.1002/adom.201700157 10.1002/aenm.201700623 10.1038/nphoton.2016.185 10.1016/j.solener.2018.05.092 10.1021/acs.jpclett.7b03294 10.1021/acsphotonics.7b00837 10.1021/ja507086b 10.1039/C8EE00995C 10.1021/acs.jpcc.7b10370 10.1063/1.5023797 10.1021/acsnano.7b04683 10.1002/smtd.201700163 10.1021/jacs.6b08178 10.1126/sciadv.aao4204 10.1016/0584-8539(75)80016-X 10.1021/jacs.5b11199 10.1039/C5EE03255E 10.1038/nphoton.2014.134 10.1021/jacs.7b02227 10.1021/ja508464w 10.1021/acs.chemmater.6b00433 10.1021/nl5048779 10.1021/acs.nanolett.5b02595 10.1021/jacs.7b07949 10.1021/acs.jpcc.6b06853 10.1021/jacs.7b08818 10.1038/ncomms9056 10.1021/acsami.8b00048 10.1021/jacs.7b09379 10.1002/adma.201706186 10.1021/acsenergylett.7b00258 10.1021/jp5126624 10.1126/science.1228604 10.1038/ncomms15640 10.1021/jacs.5b12124 10.1021/acs.chemmater.6b02939 10.1021/nl304362u 10.1038/s41467-018-02978-7 10.1126/science.1108712 10.1002/adma.201700775 10.1039/C5CP03102H 10.1038/s41566-017-0012-4 10.1021/acsenergylett.7b00751 10.1016/j.solmat.2016.09.022 10.1021/acsnano.5b06295 10.1021/acs.chemmater.6b02151 10.1038/srep00591 10.1002/pssr.201600166 10.1002/adma.201503573 10.1038/nphoton.2016.41 10.1039/C8TC01837E 10.1038/nature08003 10.1039/C5TA06398A 10.1039/C7EE01145H 10.1016/j.jallcom.2017.02.147 10.1002/adfm.201706923 10.1002/aenm.201502458 10.1016/j.nanoen.2014.04.017 10.1039/C7NR07776A 10.1039/C6CS00896H 10.1002/anie.201700600 10.1143/JJAP.48.112402 10.1021/acs.chemmater.6b03310 10.1021/acsenergylett.7b00442 10.1039/C6EE03014A 10.1107/S0108768108032734 10.1021/acsami.8b18200 10.1038/nmat4271 10.1103/PhysRevB.51.6135 10.1002/aenm.201702498 10.1021/acsnano.5b03265 10.1002/adma.201601369 10.1021/acs.jpcc.5b06211 10.1021/acs.jpclett.6b01576 10.1039/C7TA11154A 10.1021/acsenergylett.7b00547 10.1021/acs.jchemed.7b00144 10.1039/C7CS00886D 10.1038/s41586-018-0575-3 10.1002/adma.201605290 10.1021/acs.jpclett.7b01992 10.1063/1.4748888 10.1002/adma.201704217 10.1038/nnano.2014.149 10.1002/anie.201405334 10.1002/aenm.201602358 10.1016/j.nanoen.2018.08.012 10.1021/cm503122j 10.1021/acs.nanolett.8b00789 10.1038/nature12340 10.1038/nphoton.2009.32 10.1039/C5EE01265A 10.1039/C8EE00293B 10.1021/acs.jpcc.7b12464 10.1002/adfm.201302090 10.1038/nature13829 10.1002/smll.201700364 10.1002/adma.201606666 10.1038/nphoton.2016.269 10.1021/acs.nanolett.7b00050 10.1002/adfm.201600109 10.1021/jacs.7b12551 10.1021/nn504856g 10.1021/jacs.8b00542 10.1039/C7TC01998J 10.1021/acs.chemmater.7b00478 10.1021/jacs.6b10734 10.1016/j.mser.2018.12.001 10.1002/adfm.201706401 10.1002/adma.201600784 10.1021/acs.jpcc.8b02699 10.1016/j.mser.2010.07.001 10.1002/adma.201605317 10.1126/science.aal4211 10.1002/adma.201703758 10.1016/j.joule.2017.07.017 10.1021/acs.chemmater.5b03769 10.1038/s41467-018-03049-7 10.1016/j.joule.2018.01.009 10.1021/jacs.7b13229 10.1007/978-3-642-36705-2 10.1021/jacs.5b05602 10.1038/ncomms6404 10.1002/adma.201707235 10.1002/adma.200800123 10.1002/aenm.201502202 10.1016/j.solmat.2018.07.023 10.1021/acsphotonics.7b01567 10.1002/aenm.201703246 10.1021/acs.jpclett.8b00600 10.1002/smll.201701770 10.1021/acsnano.8b02793 10.1126/sciadv.1700841 10.1002/cplu.201800014 10.1002/smll.201703762 10.1021/acsphotonics.7b00520 10.1021/acs.jpclett.6b02594 10.1021/acsami.6b11393 10.1039/C8CP06418K 10.1038/s41467-018-05909-8 10.1021/jacs.5b13294 10.1103/PhysRevB.45.6961 10.1007/s00706-017-1933-9 10.1002/adma.201602940 10.1021/acs.jpclett.5b02597 10.1016/j.jpowsour.2015.02.084 10.1016/j.joule.2018.04.012 10.1021/acsnano.5b01154 10.1002/adfm.201604818 10.1021/acs.jpclett.7b00134 10.1021/acs.chemmater.7b03751 10.1021/acs.nanolett.6b02688 10.1021/acs.nanolett.5b02404 10.1002/adfm.201604580 10.1002/adma.201100423 10.1021/acsenergylett.7b00654 10.1002/adma.201004324 10.1002/aenm.201700946 10.1021/acsnano.7b05191 10.1002/adma.201600225 10.1073/pnas.1600789113 10.1021/jz400892a 10.1021/acs.chemmater.8b01283 10.1038/nature18306 10.1063/1.4962143 10.1002/smll.201702523 10.1002/smll.201702433 10.1002/adma.201502567 10.1002/adma.201703487 10.1021/jp502696w 10.1039/C7QM00472A 10.1002/anie.201406466 10.1002/adma.201605993 10.1021/acs.jpclett.8b00700 10.1021/ic970659e 10.1021/acsami.7b03445 10.1002/adma.201301603 10.1021/acsenergylett.7b00508 10.1021/jacs.6b09645 10.1021/jacs.5b03796 10.1002/adom.201600704 10.1126/sciadv.aaq0208 10.1021/acsnano.7b09148 10.1002/smll.201603996 10.1021/acsnano.6b08194 10.1038/s41566-018-0283-4 10.1021/acs.jpclett.5b00968 10.1021/acs.jpclett.5b02460 10.1002/adfm.201803269 10.1038/s41467-018-07383-8 10.1039/C6NR03428D 10.1002/aenm.201601307 10.1021/jz500279b 10.1021/jacs.5b11740 10.1002/adfm.201801193 10.1103/PhysRevB.88.165203 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201807095 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 31012172 10_1002_adma_201807095 ADMA201807095 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Research Foundation Flanders funderid: 12Z4618N – fundername: German‐Pakistan bi‐lateral framework funderid: 57345608; 57458981 – fundername: Deutscher Akademischer Austauschdienst – fundername: Research Foundation Flanders grantid: 12Z4618N – fundername: German-Pakistan bi-lateral framework grantid: 57458981 – fundername: German-Pakistan bi-lateral framework grantid: 57345608 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4395-d4482e7846fc04f2efa676281e41dd98f35a17ea8559adb5ad46348baad2f0e63 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 17:07:40 EDT 2025 Fri Jul 25 06:51:52 EDT 2025 Thu Apr 03 07:02:35 EDT 2025 Tue Jul 01 00:44:52 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Wed Jan 22 16:37:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | layered perovskites light emission from perovskites perovskite photonic devices stability of inorganic perovskites all-inorganic perovskites |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4395-d4482e7846fc04f2efa676281e41dd98f35a17ea8559adb5ad46348baad2f0e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6867-443X |
PMID | 31012172 |
PQID | 2315585655 |
PQPubID | 2045203 |
PageCount | 39 |
ParticipantIDs | proquest_miscellaneous_2213151394 proquest_journals_2315585655 pubmed_primary_31012172 crossref_primary_10_1002_adma_201807095 crossref_citationtrail_10_1002_adma_201807095 wiley_primary_10_1002_adma_201807095_ADMA201807095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 562 2013 2005; 43 308 2016 2016 2018; 138 8 30 1992 2004; 45 14 2019; 11 2018 2017; 6 29 2019; 13 2018 2018; 28 52 2014; 26 2014; 24 2015 2016; 27 138 2014; 136 2018; 47 2017 2015; 11 137 2018 2017; 5 8 2018; 6 1997; 389 2018; 9 2018; 8 2018; 3 2018; 2 2018; 5 2015; 137 2018; 1 2018; 0 2016 2016; 26 10 2018; 30 1981 2008; 20 2015 2017 2018; 137 17 18 2017 2017; 46 13 1995; 51 2018; 28 2019; 4 1988 2007 2013 2012; 101 2019; 31 2017 2018; 13 12 2015 2015 2015 2018 2018; 3 283 9 10 2016; 10 2013; 342 2008 2014; 20 6 1975 2013; 31 88 2018 2017; 7 94 2009; 459 2016; 16 2018; 27 2013 2013; 4 4 2017; 139 2016; 11 2016; 4 2015; 350 2018; 18 2016; 6 2016; 7 2016; 1 2016; 3 2017 2017 2018; 139 11 3 2018; 112 2015 2015; 27 27 2017; 56 2015; 119 2018; 12 2018; 11 2016; 28 2018; 10 2016; 26 2017; 148 2016; 8 2016; 9 2018; 14 2017; 5 2017; 7 2018; 122 2017; 8 2009 1998; 48 37 2017; 1 2017; 2 2013; 25 2017; 3 2013 2011; 13 23 2017; 4 2015; 347 2014 2017; 136 159 2017; 46 2003; 15 2018; 83 2017; 355 2017; 9 2017 2018; 7 6 2017 1974; 705 37 2014; 5 2017 2018; 29 122 2013; 13 2001; 292 2017 2018 2018 2017; 5 1 28 17 2018 2018 2018; 122 10 10 2016; 113 2016; 354 2012 2012; 338 2 2016; 116 2011; 23 2008; 64 2017; 121 2014; 9 2014; 8 2014; 7 2014; 53 2010; 71 2014; 118 2014; 515 2015; 15 2015; 14 2015; 6 2015; 17 2015; 5 2018; 140 2015 2018; 54 170 2015; 3 2015; 92 2016 2018; 26 187 2017; 27 2015; 11 2016 2016; 10 8 2017 2018 2016; 121 122 55 2017; 29 2015; 9 2015; 8 2016; 120 2018 2017 2017; 24 139 139 2017 2018; 2 20 2015; 27 2014 2013; 26 52 2003; 424 2017; 17 2016; 536 2017; 16 2017; 11 2018 2018; 14 18 2017; 10 2017; 13 2010 2016; 18 28 2019; 137 2018 2013; 499 2017 2017; 19 2016; 138 2009; 3 2012; 5 e_1_2_8_241_1 e_1_2_8_287_1 e_1_2_8_264_1 e_1_2_8_309_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_249_1 e_1_2_8_249_2 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_1_2 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_290_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_193_2 e_1_2_8_301_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_155_2 e_1_2_8_38_2 e_1_2_8_230_1 e_1_2_8_276_1 e_1_2_8_253_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_291_1 e_1_2_8_238_1 e_1_2_8_215_1 e_1_2_8_299_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_181_2 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_25_1 e_1_2_8_48_1 Lee J.‐W. (e_1_2_8_31_1) 2015; 5 e_1_2_8_227_1 e_1_2_8_288_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_171_2 e_1_2_8_302_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_254_1 e_1_2_8_14_1 e_1_2_8_292_1 e_1_2_8_37_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_277_1 e_1_2_8_277_2 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_129_2 e_1_2_8_182_2 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_182_3 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_243_1 e_1_2_8_220_1 e_1_2_8_281_1 e_1_2_8_228_1 e_1_2_8_266_1 e_1_2_8_205_1 e_1_2_8_289_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_172_2 e_1_2_8_303_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_293_1 e_1_2_8_270_1 e_1_2_8_255_2 e_1_2_8_217_1 e_1_2_8_255_1 e_1_2_8_278_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_183_2 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_282_1 e_1_2_8_27_1 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_267_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_3 e_1_2_8_150_2 e_1_2_8_229_2 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_304_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_294_3 e_1_2_8_210_1 e_1_2_8_271_1 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_233_1 e_1_2_8_256_1 e_1_2_8_279_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_184_2 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_184_3 e_1_2_8_146_1 e_1_2_8_283_1 e_1_2_8_68_1 e_1_2_8_260_2 e_1_2_8_260_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_245_1 e_1_2_8_268_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_5_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_136_2 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_197_2 e_1_2_8_305_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_272_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_257_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 Sze S. M. (e_1_2_8_280_1) 1981 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_101_2 e_1_2_8_147_2 e_1_2_8_185_2 e_1_2_8_72_1 e_1_2_8_101_3 e_1_2_8_29_1 e_1_2_8_284_1 e_1_2_8_261_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_246_1 e_1_2_8_269_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_306_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_273_1 e_1_2_8_296_1 e_1_2_8_250_1 e_1_2_8_79_1 e_1_2_8_235_3 e_1_2_8_235_4 e_1_2_8_212_1 e_1_2_8_235_5 e_1_2_8_235_1 e_1_2_8_258_1 e_1_2_8_235_2 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 Saleh B. (e_1_2_8_294_2) 2007 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_102_2 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_262_2 Sum T. C. (e_1_2_8_295_1) 2017 e_1_2_8_262_1 e_1_2_8_307_1 e_1_2_8_285_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_153_2 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_130_2 e_1_2_8_191_2 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_251_1 e_1_2_8_297_1 e_1_2_8_274_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_259_1 e_1_2_8_236_1 e_1_2_8_187_3 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_187_2 e_1_2_8_240_1 e_1_2_8_263_1 e_1_2_8_286_1 e_1_2_8_308_1 e_1_2_8_69_4 e_1_2_8_23_2 e_1_2_8_69_2 e_1_2_8_46_1 e_1_2_8_69_3 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 Eberly J. H. (e_1_2_8_294_1) 1988 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_139_2 e_1_2_8_192_1 e_1_2_8_300_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_2 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_252_1 e_1_2_8_275_1 e_1_2_8_298_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_180_2 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_3 e_1_2_8_73_2 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 3 start-page: 54 year: 2018 publication-title: ACS Energy Lett. – volume: 112 year: 2018 publication-title: Appl. Phys. Lett. – volume: 14 18 start-page: 3502 year: 2018 2018 publication-title: Small Nano Lett. – volume: 5 start-page: 2524 year: 2018 publication-title: ACS Photonics. – volume: 8 start-page: 1278 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 206 year: 2017 publication-title: Mater. Horiz. – volume: 562 start-page: 249 year: 2018 publication-title: Nature – volume: 9 start-page: 3892 year: 2018 publication-title: Nat. Commun. – volume: 19 start-page: 6257 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 3825 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2095 year: 2017 publication-title: Energy Environ. Sci. – volume: 9 start-page: 687 year: 2014 publication-title: Nat. Nanotechnol. – volume: 18 start-page: 6915 year: 2018 publication-title: Nano Lett. – volume: 11 start-page: 726 year: 2017 publication-title: Nat. Photonics – volume: 5 start-page: 1421 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 11 start-page: 784 year: 2017 publication-title: Nat. Photonics – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 424 start-page: 839 year: 2003 publication-title: Nature – volume: 29 start-page: 189 year: 2017 publication-title: Chem. Mater. – volume: 139 start-page: 6054 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 2038 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 24 start-page: 151 year: 2014 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 7496 year: 2016 publication-title: Chem. Mater. – volume: 8 start-page: 2118 year: 2015 publication-title: Energy Environ. Sci. – volume: 6 start-page: 2452 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 11 start-page: 872 year: 2016 publication-title: Nat. Nanotechnol. – volume: 29 start-page: 3644 year: 2017 publication-title: Chem. Mater. – volume: 18 start-page: 3157 year: 2018 publication-title: Nano Lett. – volume: 2 start-page: 1571 year: 2017 publication-title: ACS Energy Lett. – volume: 18 28 start-page: 5912 7515 year: 2010 2016 publication-title: Opt. Express Adv. Mater. – volume: 7 start-page: 1254 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 9 start-page: 1124 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 13 start-page: 1080 year: 2013 publication-title: Nano Lett. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 11 start-page: 582 year: 2015 publication-title: Nat. Phys. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 28 start-page: 1348 year: 2016 publication-title: Chem. Mater. – volume: 136 159 start-page: 227 year: 2014 2017 publication-title: J. Am. Chem. Soc. Sol. Energy Mater. Sol. Cells – volume: 140 start-page: 3775 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 1118 year: 2018 publication-title: Nano Lett. – volume: 7 start-page: 80 year: 2014 publication-title: Nano Energy. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 7 start-page: 746 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 6115 year: 2017 publication-title: J. Mater. Chem. C – volume: 139 start-page: 836 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 772 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 122 10 10 start-page: 6060 3429 year: 2018 2018 2018 publication-title: J. Phys. Chem. C Nanoscale Nanoscale – volume: 53 start-page: 9898 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 2015 year: 2017 publication-title: ACS Nano – volume: 92 year: 2015 publication-title: Phys. Rev. B – volume: 13 year: 2017 publication-title: Small – volume: 10 start-page: 587 year: 2016 publication-title: Phys. Status Solidi RRL – volume: 56 start-page: 5232 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 354 start-page: 861 year: 2016 publication-title: Science – volume: 20 start-page: 1661 year: 2008 publication-title: Adv. Mater. – volume: 5 start-page: 2113 year: 2018 publication-title: ACS Photonics. – volume: 17 start-page: 2028 year: 2017 publication-title: Nano Lett. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 5 1 28 17 start-page: 4565 488 5277 year: 2017 2018 2018 2017 publication-title: J. Mater. Chem. C ACS Appl. Nano Mater. Adv. Funct. Mater. Nano Lett. – volume: 47 start-page: 6046 year: 2018 publication-title: Chem. Soc. Rev. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 9 start-page: 1076 year: 2018 publication-title: Nat. Commun. – volume: 11 start-page: 2188 year: 2018 publication-title: Energy Environ. Sci. – volume: 11 start-page: 108 year: 2017 publication-title: Nat. Photonics – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 64 start-page: 702 year: 2008 publication-title: Acta Crystallogr., Sect. B: Struct. Sci. – volume: 3 start-page: 180 year: 2009 publication-title: Nat. Photonics – volume: 389 start-page: 362 year: 1997 publication-title: Nature – volume: 499 start-page: 316 year: 2013 publication-title: Nature – volume: 14 start-page: 636 year: 2015 publication-title: Nat. Mater. – volume: 138 8 30 start-page: 7240 3854 year: 2016 2016 2018 publication-title: J. Am. Chem. Soc. Nanoscale Chem. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 9 start-page: 1336 year: 2018 publication-title: Nat. Commun. – volume: 46 13 start-page: 5204 year: 2017 2017 publication-title: Chem. Soc. Rev. Small – volume: 27 start-page: 8066 year: 2015 publication-title: Chem. Mater. – volume: 28 start-page: 4861 year: 2016 publication-title: Adv. Mater. – volume: 10 8 start-page: 3648 year: 2016 2016 publication-title: ACS Nano Nanoscale – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 355 start-page: 1288 year: 2017 publication-title: Science – volume: 17 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 5635 year: 2015 publication-title: Nano Lett. – volume: 139 start-page: 4087 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 24 139 139 start-page: 2305 2630 6718 year: 2018 2017 2017 publication-title: Chem. ‐ Eur. J. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 3 283 9 10 start-page: 8970 61 8420 187 year: 2015 2015 2015 2018 2018 publication-title: J. Mater. Chem. A J. Power Sources ACS Nano ACS Appl. Mater. Interfaces – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 0 year: 2018 publication-title: Adv. Mater. – volume: 27 start-page: 53 year: 2015 publication-title: Adv. Mater. – volume: 139 11 3 start-page: 6566 641 year: 2017 2017 2018 publication-title: J. Am. Chem. Soc. ACS Nano ACS Energy Lett. – volume: 148 start-page: 795 year: 2017 publication-title: Monatsh.Chem. – volume: 25 start-page: 6801 year: 2013 publication-title: Adv. Mater. – volume: 27 27 start-page: 6806 5622 year: 2015 2015 publication-title: Adv. Mater. Chem. Mater. – volume: 10 start-page: 4173 year: 2018 publication-title: Nanoscale – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 12 start-page: 783 year: 2018 publication-title: Nat. Photonics – volume: 28 start-page: 2315 year: 2016 publication-title: Chem. Mater. – volume: 26 187 start-page: 5903 69 year: 2016 2018 publication-title: Adv. Funct. Mater. Sol. Energy Mater. Sol. Cells – volume: 27 138 start-page: 7162 year: 2015 2016 publication-title: Adv. Mater. J. Am. Chem. Soc. – volume: 29 122 year: 2017 2018 publication-title: Adv. Mater. J. Phys. Chem. C – volume: 15 start-page: 7319 year: 2015 publication-title: Nano Lett. – volume: 113 start-page: 1993 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 3692 year: 2015 publication-title: Nano Lett. – volume: 26 start-page: 2435 year: 2016 publication-title: Adv. Funct. Mater. – volume: 140 start-page: 562 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 6 29 start-page: 3945 year: 2018 2017 publication-title: J. Mater. Chem. C Adv. Mater. – volume: 27 start-page: 7101 year: 2015 publication-title: Adv. Mater. – volume: 8 year: 2014 publication-title: ACS Nano – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 167 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 31 88 start-page: 239 year: 1975 2013 publication-title: Spectrochim. Acta, Part A Phys. Rev. B – volume: 459 start-page: 234 year: 2009 publication-title: Nature – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 54 170 start-page: 9705 541 year: 2015 2018 publication-title: Angew. Chem., Int. Ed. Sol. Energy – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 404 year: 2018 publication-title: Nat. Electron. – volume: 7 start-page: 3603 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 28 52 start-page: 408 year: 2018 2018 publication-title: Adv. Funct. Mater. Nano Energy. – start-page: SM4N.1 year: 2017 – volume: 5 start-page: 4007 year: 2014 publication-title: Nat. Commun. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 2722 year: 2013 publication-title: Cryst. Growth Des. – volume: 10 start-page: 7943 year: 2016 publication-title: ACS Nano – volume: 140 start-page: 2890 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – year: 1981 – volume: 2 start-page: 1500 year: 2018 publication-title: Joule – volume: 5 year: 2017 publication-title: J. Mater. Chem. C – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 83 year: 2019 publication-title: Chem. Mater. – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 14 year: 2018 publication-title: Small – volume: 10 start-page: 1072 year: 2018 publication-title: Nanoscale – volume: 71 start-page: 1 year: 2010 publication-title: Mater. Sci. Eng.: R – volume: 2 20 start-page: 1969 year: 2017 2018 publication-title: ACS Energy Lett. Phys. Chem. Chem. Phys. – volume: 4 start-page: 242 year: 2019 publication-title: ACS Energy Lett. – volume: 4 4 start-page: 2423 3623 year: 2013 2013 publication-title: J. Phys. Chem. Lett. J. Phys. Chem. Lett. – volume: 8 start-page: 4691 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 6792 year: 2016 publication-title: Nanoscale – volume: 8 start-page: 506 year: 2014 publication-title: Nat. Photonics – volume: 122 start-page: 158 year: 2018 publication-title: J. Phys. Chem. C – volume: 137 17 18 start-page: 9230 1007 3538 year: 2015 2017 2018 publication-title: J. Am. Chem. Soc. Nano Lett. Nano Lett. – volume: 46 start-page: 1766 year: 2017 publication-title: Dalton Trans. – volume: 83 start-page: 294 year: 2018 publication-title: ChemPlusChem – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 8 start-page: 67 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 11 start-page: 9294 year: 2017 publication-title: ACS Nano – volume: 1 start-page: 710 year: 2017 publication-title: Sustainable Energy Fuels – volume: 6 start-page: 5580 year: 2018 publication-title: J. Mater. Chem. A – volume: 5 start-page: 7 year: 2015 publication-title: MRS Commun. – volume: 13 start-page: 1645 year: 2019 publication-title: ACS Nano – volume: 137 start-page: 7843 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 9173 year: 2012 publication-title: Energy Environ. Sci. – volume: 9 start-page: 679 year: 2015 publication-title: Nat. Photonics – volume: 28 start-page: 9033 year: 2016 publication-title: Chem. Mater. – volume: 16 start-page: 522 year: 2017 publication-title: Nat. Mater. – volume: 338 2 start-page: 643 591 year: 2012 2012 publication-title: Science Sci. Rep. – volume: 118 start-page: 9412 year: 2014 publication-title: J. Phys. Chem. C – volume: 1 start-page: 573 year: 2016 publication-title: ACS Energy Lett. – volume: 350 start-page: 1222 year: 2015 publication-title: Science – volume: 7 start-page: 4059 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 13 23 start-page: 2782 2199 year: 2013 2011 publication-title: Nano Lett. Adv. Mater. – volume: 5 start-page: 5404 year: 2014 publication-title: Nat. Commun. – volume: 51 start-page: 6135 year: 1995 publication-title: Phys. Rev. B – volume: 6 start-page: 6287 year: 2018 publication-title: J. Mater. Chem. C – volume: 292 start-page: 1897 year: 2001 publication-title: Science – volume: 5 8 start-page: 398 2999 year: 2018 2017 publication-title: ACS Photonics. J. Phys. Chem. Lett. – volume: 15 start-page: 1043 year: 2003 publication-title: Adv. Mater. – volume: 1 start-page: 371 year: 2017 publication-title: Joule – volume: 2 start-page: 121 year: 2018 publication-title: Mater. Chem. Front. – volume: 119 year: 2015 publication-title: J. Phys. Chem. C – volume: 26 start-page: 8478 year: 2016 publication-title: Adv. Funct. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 start-page: 1989 year: 2016 publication-title: Energy Environ. Sci. – volume: 138 start-page: 2138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1770 year: 2018 publication-title: Energy Environ. Sci. – volume: 6 start-page: 5027 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 27 start-page: 1091 year: 2018 publication-title: J. Energy Chem. – volume: 26 52 start-page: 6068 9019 year: 2014 2013 publication-title: Chem. Mater. Inorg. Chem. – volume: 9 start-page: 3007 year: 2016 publication-title: Energy Environ. Sci. – volume: 16 start-page: 5866 year: 2016 publication-title: Nano Lett. – volume: 10 start-page: 9720 year: 2016 publication-title: ACS Nano – volume: 5 start-page: 1035 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 2183 year: 2017 publication-title: ACS Energy Lett. – volume: 26 start-page: 7122 year: 2014 publication-title: Adv. Mater. – volume: 2 start-page: 558 year: 2018 publication-title: Joule – volume: 5 start-page: 1511 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 699 year: 2016 publication-title: Nat. Photonics – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 9 start-page: 656 year: 2016 publication-title: Energy Environ. Sci. – volume: 116 start-page: 4558 year: 2016 publication-title: Chem. Rev. – volume: 43 308 start-page: 481 1274 year: 2013 2005 publication-title: Annu. Rev. Mater. Res. Science – volume: 7 6 start-page: 2122 year: 2017 2018 publication-title: Adv. Energy Mater. J. Mater. Chem. A – volume: 45 14 start-page: 6961 2355 year: 1992 2004 publication-title: Phys. Rev. B J. Mater. Chem. – volume: 28 start-page: 2852 year: 2016 publication-title: Chem. Mater. – volume: 562 start-page: 245 year: 2018 publication-title: Nature – volume: 28 start-page: 8983 year: 2016 publication-title: Adv. Mater. – volume: 23 start-page: 1829 year: 2011 publication-title: Adv. Mater. – volume: 2 start-page: 2319 year: 2017 publication-title: ACS Energy Lett. – volume: 26 10 start-page: 8757 2071 year: 2016 2016 publication-title: Adv. Funct. Mater. ACS Nano – volume: 28 start-page: 8718 year: 2016 publication-title: Adv. Mater. – year: 2018 – volume: 9 start-page: 4533 year: 2015 publication-title: ACS Nano – volume: 11 137 year: 2017 2015 publication-title: ACS Nano J. Am. Chem. Soc. – volume: 6 start-page: 8056 year: 2015 publication-title: Nat. Commun. – volume: 9 start-page: 608 year: 2018 publication-title: Nat. Commun. – volume: 9 start-page: 259 year: 2015 publication-title: Nat. Photonics. – volume: 9 start-page: 4893 year: 2018 publication-title: Nat. Commun. – volume: 2 start-page: 1043 year: 2017 publication-title: ACS Energy Lett. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 121 122 55 year: 2017 2018 2016 publication-title: J. Phys. Chem. C J. Phys. Chem. C Angew. Chem., Int. Ed. – volume: 138 start-page: 1010 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 2281 year: 2017 publication-title: ACS Photonics. – volume: 11 start-page: 2109 year: 2019 publication-title: Nanoscale – volume: 29 start-page: 3181 year: 2017 publication-title: Chem. Mater. – volume: 26 start-page: 6238 year: 2016 publication-title: Adv. Funct. Mater. – volume: 51 year: 1995 publication-title: Phys. Rev. B – volume: 2 start-page: 2071 year: 2017 publication-title: ACS Energy Lett. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 3 start-page: 46 year: 2009 publication-title: Nat. Photonics – volume: 10 start-page: 295 year: 2016 publication-title: Nat. Photonics – volume: 536 start-page: 312 year: 2016 publication-title: Nature – volume: 9 start-page: 570 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 8355 year: 2017 publication-title: J. Mater. Chem. C – volume: 354 start-page: 92 year: 2016 publication-title: Science – volume: 119 start-page: 1763 year: 2015 publication-title: J. Phys. Chem. C – volume: 20 6 start-page: 2696 year: 2008 2014 publication-title: Adv. Mater. ACS Appl. Mater. Interfaces – volume: 3 start-page: 1571 year: 2018 publication-title: ACS Energy Lett. – volume: 12 start-page: 681 year: 2018 publication-title: Nat. Photonics – volume: 137 start-page: 38 year: 2019 publication-title: Mater. Sci. Eng.: R – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 48 37 start-page: 407 year: 2009 1998 publication-title: Jpn. J. Appl. Phys. Inorg. Chem. – volume: 12 start-page: 3417 year: 2018 publication-title: ACS Nano – volume: 17 start-page: 3701 year: 2017 publication-title: Nano Lett. – volume: 101 year: 2012 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 2065 year: 2018 publication-title: Joule – volume: 10 start-page: 333 year: 2016 publication-title: Nat. Photonics – volume: 29 start-page: 9767 year: 2017 publication-title: Chem. Mater. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 1233 year: 2016 publication-title: ACS Energy Lett. – volume: 2 start-page: 2219 year: 2017 publication-title: ACS Energy Lett. – volume: 1 year: 2017 publication-title: Small Methods – volume: 9 start-page: 444 year: 2015 publication-title: Nat. Photonics – volume: 6 start-page: 4831 year: 2018 publication-title: J. Mater. Chem. C – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 9 start-page: 2043 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 1611 year: 2018 publication-title: ACS Nano – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 138 start-page: 2649 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2017 publication-title: Adv. Opt. Mater. – volume: 13 12 start-page: 1704 year: 2017 2018 publication-title: Small ACS Nano – year: 1988 2007 2013 – volume: 705 37 start-page: 828 1393 year: 2017 1974 publication-title: J. Alloys Compd. J. Phys. Soc. Jpn. – volume: 7 94 start-page: R3040 1150 year: 2018 2017 publication-title: ECS J. Solid State Sci. Technol. J. Chem. Educ. – volume: 4 year: 2016 publication-title: APL Mater. – volume: 515 start-page: 96 year: 2014 publication-title: Nature – volume: 12 start-page: 6170 year: 2018 publication-title: ACS Nano – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 3541 year: 2018 publication-title: Nat. Commun. – volume: 10 start-page: 361 year: 2017 publication-title: Energy Environ. Sci. – volume: 28 start-page: 6560 year: 2016 publication-title: Chem. Mater. – ident: e_1_2_8_166_1 doi: 10.1021/acs.chemmater.6b03980 – ident: e_1_2_8_103_1 doi: 10.1021/cg400645t – ident: e_1_2_8_235_1 doi: 10.1039/C4TA04994B – ident: e_1_2_8_28_1 doi: 10.1002/anie.201504379 – ident: e_1_2_8_155_1 doi: 10.1149/2.0101801jss – ident: e_1_2_8_170_1 doi: 10.1002/anie.201704739 – ident: e_1_2_8_190_1 doi: 10.1002/aenm.201702073 – ident: e_1_2_8_187_1 doi: 10.1021/acs.jpcc.7b03939 – ident: e_1_2_8_124_1 doi: 10.1038/s41467-018-03169-0 – ident: e_1_2_8_287_1 doi: 10.1038/ncomms5007 – ident: e_1_2_8_141_1 doi: 10.1021/acs.jpclett.6b00376 – ident: e_1_2_8_251_1 doi: 10.1002/adma.200302151 – ident: e_1_2_8_86_1 doi: 10.1002/adom.201800324 – ident: e_1_2_8_101_2 doi: 10.1039/C7NR09607K – ident: e_1_2_8_7_1 doi: 10.1126/science.aaa5760 – ident: e_1_2_8_278_1 doi: 10.1039/C7TC03612D – ident: e_1_2_8_246_1 doi: 10.1002/adma.201803336 – ident: e_1_2_8_285_1 doi: 10.1002/adom.201800152 – ident: e_1_2_8_14_1 doi: 10.1038/s41928-018-0101-5 – ident: e_1_2_8_52_1 doi: 10.1038/s41586-018-0576-2 – ident: e_1_2_8_2_1 doi: 10.1039/C6EE01137C – ident: e_1_2_8_226_1 – ident: e_1_2_8_227_1 doi: 10.1002/aenm.201501119 – ident: e_1_2_8_24_1 doi: 10.1002/aenm.201500963 – ident: e_1_2_8_184_1 doi: 10.1021/jacs.6b03166 – ident: e_1_2_8_260_1 doi: 10.1146/annurev-matsci-073012-125702 – ident: e_1_2_8_67_1 doi: 10.1021/acs.chemmater.8b02999 – ident: e_1_2_8_253_1 doi: 10.1126/science.aad1818 – ident: e_1_2_8_187_3 doi: 10.1002/anie.201605909 – ident: e_1_2_8_125_1 doi: 10.1016/j.joule.2018.06.013 – ident: e_1_2_8_178_1 doi: 10.1039/C5NR08350H – ident: e_1_2_8_202_1 doi: 10.1021/acs.nanolett.7b00976 – ident: e_1_2_8_97_1 doi: 10.1021/acs.chemrev.5b00715 – ident: e_1_2_8_305_1 doi: 10.1038/nphoton.2008.248 – ident: e_1_2_8_168_1 doi: 10.1002/adma.201700095 – ident: e_1_2_8_102_2 doi: 10.1143/JPSJ.37.1393 – ident: e_1_2_8_275_1 doi: 10.1021/acsnano.6b05775 – ident: e_1_2_8_171_2 doi: 10.1021/acs.nanolett.8b00560 – ident: e_1_2_8_144_1 doi: 10.1021/acs.chemmater.5b04231 – ident: e_1_2_8_104_1 doi: 10.1103/PhysRevB.92.235210 – ident: e_1_2_8_193_2 doi: 10.1039/C7TA09657G – ident: e_1_2_8_21_1 doi: 10.1038/s41566-017-0047-6 – ident: e_1_2_8_309_1 doi: 10.1039/C8TA06553E – ident: e_1_2_8_150_1 doi: 10.1002/chem.201705031 – ident: e_1_2_8_292_1 doi: 10.1038/38693 – ident: e_1_2_8_182_3 doi: 10.1021/acs.nanolett.8b00603 – ident: e_1_2_8_209_1 doi: 10.1002/smll.201700611 – ident: e_1_2_8_273_1 doi: 10.1002/adma.201806105 – ident: e_1_2_8_69_1 doi: 10.1039/C6TC05578H – ident: e_1_2_8_199_1 doi: 10.1103/PhysRevB.51.14370 – ident: e_1_2_8_302_1 doi: 10.1126/science.1060367 – ident: e_1_2_8_92_1 doi: 10.1021/acs.nanolett.8b02811 – ident: e_1_2_8_48_1 doi: 10.1038/nenergy.2017.135 – ident: e_1_2_8_279_1 doi: 10.1038/nphoton.2015.156 – ident: e_1_2_8_47_1 doi: 10.1002/adma.201804771 – ident: e_1_2_8_217_1 doi: 10.1021/acs.jpcc.7b06268 – ident: e_1_2_8_69_2 doi: 10.1021/acsanm.7b00212 – ident: e_1_2_8_249_2 doi: 10.1021/acs.jpcc.8b00998 – ident: e_1_2_8_299_1 doi: 10.1021/jz5005285 – ident: e_1_2_8_73_3 doi: 10.1021/acsenergylett.8b00035 – ident: e_1_2_8_29_1 doi: 10.1039/C5EE03874J – ident: e_1_2_8_146_1 doi: 10.1021/acs.jpclett.6b02682 – ident: e_1_2_8_243_1 doi: 10.1038/nenergy.2016.142 – ident: e_1_2_8_119_1 doi: 10.1126/science.aag2700 – ident: e_1_2_8_297_1 doi: 10.1002/adma.201403965 – ident: e_1_2_8_65_1 doi: 10.1021/acsnano.8b06441 – ident: e_1_2_8_85_1 doi: 10.1039/C6RA08699C – ident: e_1_2_8_22_1 doi: 10.1002/adfm.201601690 – ident: e_1_2_8_197_2 doi: 10.1039/b403482a – ident: e_1_2_8_274_1 doi: 10.1021/acs.jpclett.6b01942 – ident: e_1_2_8_172_2 doi: 10.1021/acsnano.7b08357 – ident: e_1_2_8_174_1 doi: 10.1039/C7NR06116A – ident: e_1_2_8_208_1 doi: 10.1002/aenm.201700162 – ident: e_1_2_8_248_1 doi: 10.1002/adma.201602513 – ident: e_1_2_8_250_1 doi: 10.1039/C7NR09126E – ident: e_1_2_8_282_1 doi: 10.1021/acsphotonics.8b00348 – ident: e_1_2_8_224_1 doi: 10.1002/adma.201705393 – ident: e_1_2_8_55_1 doi: 10.1038/s41467-018-06425-5 – ident: e_1_2_8_113_1 doi: 10.1002/aenm.201802060 – ident: e_1_2_8_5_2 doi: 10.1021/jz4020162 – ident: e_1_2_8_32_1 doi: 10.1038/nphys3357 – ident: e_1_2_8_200_1 doi: 10.1021/acs.chemmater.6b00847 – ident: e_1_2_8_73_2 doi: 10.1021/acsnano.7b05442 – ident: e_1_2_8_79_1 doi: 10.1039/C7TC02137B – ident: e_1_2_8_131_1 doi: 10.1039/C5TA05741H – ident: e_1_2_8_128_1 doi: 10.1002/adma.201401991 – ident: e_1_2_8_157_1 doi: 10.1039/C8TC01214H – ident: e_1_2_8_62_1 doi: 10.1021/acsenergylett.8b00835 – ident: e_1_2_8_181_2 doi: 10.1039/C6NR01828A – ident: e_1_2_8_10_1 doi: 10.1039/c2ee23073a – ident: e_1_2_8_139_1 doi: 10.1002/adma.201501978 – ident: e_1_2_8_118_1 doi: 10.1002/aenm.201800525 – ident: e_1_2_8_150_3 doi: 10.1021/jacs.7b02120 – ident: e_1_2_8_225_1 doi: 10.1021/jacs.6b10227 – ident: e_1_2_8_153_1 doi: 10.1039/C8TC00289D – ident: e_1_2_8_135_1 doi: 10.1039/C7SE00100B – ident: e_1_2_8_15_1 doi: 10.1038/natrevmats.2016.100 – ident: e_1_2_8_229_2 doi: 10.1021/ic401215x – ident: e_1_2_8_69_4 doi: 10.1021/acs.nanolett.7b01544 – ident: e_1_2_8_100_1 doi: 10.1021/acsenergylett.6b00499 – ident: e_1_2_8_84_1 doi: 10.1002/adfm.201601571 – ident: e_1_2_8_211_1 doi: 10.1038/nmat4795 – ident: e_1_2_8_68_1 doi: 10.1021/acsenergylett.8b02239 – ident: e_1_2_8_293_1 doi: 10.1038/natrevmats.2016.28 – ident: e_1_2_8_258_1 doi: 10.1038/nphoton.2015.36 – ident: e_1_2_8_271_1 doi: 10.1002/adma.201707093 – ident: e_1_2_8_51_1 doi: 10.1038/s41566-018-0260-y – ident: e_1_2_8_126_1 doi: 10.1021/jacs.7b08628 – ident: e_1_2_8_176_1 doi: 10.1002/adma.201603885 – ident: e_1_2_8_175_1 doi: 10.1002/adfm.201603734 – ident: e_1_2_8_207_1 doi: 10.1038/s41467-018-03757-0 – ident: e_1_2_8_244_1 doi: 10.1039/C6CP08177K – ident: e_1_2_8_6_1 doi: 10.1126/science.1243982 – ident: e_1_2_8_228_1 doi: 10.1002/adma.201605005 – ident: e_1_2_8_45_1 doi: 10.1038/ncomms15684 – ident: e_1_2_8_23_1 doi: 10.1021/nl401011x – ident: e_1_2_8_77_1 doi: 10.1021/acsnano.7b08201 – ident: e_1_2_8_147_2 doi: 10.1021/acs.jpclett.7b01042 – ident: e_1_2_8_272_1 doi: 10.1021/jacs.7b10647 – ident: e_1_2_8_34_1 doi: 10.1021/acsenergylett.7b00926 – ident: e_1_2_8_27_1 doi: 10.1021/jz500113x – ident: e_1_2_8_276_1 doi: 10.1002/adma.201606859 – ident: e_1_2_8_151_1 doi: 10.1039/C7TA04690A – ident: e_1_2_8_277_2 doi: 10.1002/smll.201702107 – ident: e_1_2_8_304_1 doi: 10.1038/nature01939 – ident: e_1_2_8_214_1 doi: 10.1126/science.aaf9717 – ident: e_1_2_8_73_1 doi: 10.1021/jacs.7b02817 – ident: e_1_2_8_173_1 doi: 10.1021/acsnano.6b03863 – ident: e_1_2_8_241_1 doi: 10.1002/advs.201500201 – ident: e_1_2_8_115_1 doi: 10.1021/acsenergylett.6b00341 – ident: e_1_2_8_189_1 doi: 10.1016/j.jechem.2017.10.013 – ident: e_1_2_8_11_1 doi: 10.1038/nphoton.2016.62 – ident: e_1_2_8_288_1 doi: 10.1038/nphoton.2015.82 – ident: e_1_2_8_112_1 doi: 10.1021/acs.jpclett.6b00002 – ident: e_1_2_8_143_1 doi: 10.1021/acs.nanolett.7b04659 – ident: e_1_2_8_259_1 doi: 10.1039/C8NR09885A – ident: e_1_2_8_188_1 doi: 10.1039/C8TA02288G – ident: e_1_2_8_284_1 doi: 10.1039/C6DT04758K – ident: e_1_2_8_71_1 doi: 10.1002/adma.201706226 – ident: e_1_2_8_39_1 doi: 10.1038/nenergy.2016.178 – ident: e_1_2_8_110_1 doi: 10.1021/acsenergylett.7b00707 – ident: e_1_2_8_308_1 doi: 10.1021/acs.chemmater.7b00260 – ident: e_1_2_8_235_4 doi: 10.1007/978-981-10-5924-7_5 – ident: e_1_2_8_262_1 doi: 10.1002/adma.200702846 – ident: e_1_2_8_139_2 doi: 10.1021/acs.chemmater.5b01989 – ident: e_1_2_8_255_1 doi: 10.1364/OE.18.005912 – ident: e_1_2_8_145_1 doi: 10.1039/C6MH00519E – ident: e_1_2_8_198_1 doi: 10.1038/nnano.2016.110 – ident: e_1_2_8_133_1 doi: 10.1039/C6TA08332C – ident: e_1_2_8_4_1 doi: 10.1557/mrc.2015.6 – ident: e_1_2_8_127_1 doi: 10.1002/aenm.201701136 – ident: e_1_2_8_167_1 doi: 10.1021/jacs.6b13079 – ident: e_1_2_8_181_1 doi: 10.1021/acsnano.5b08193 – ident: e_1_2_8_262_2 doi: 10.1021/am503889z – ident: e_1_2_8_182_2 doi: 10.1021/acs.nanolett.6b04381 – ident: e_1_2_8_204_1 doi: 10.1002/aenm.201700979 – ident: e_1_2_8_182_1 doi: 10.1021/jacs.5b05404 – ident: e_1_2_8_291_1 doi: 10.1002/adom.201700157 – ident: e_1_2_8_9_1 doi: 10.1002/aenm.201700623 – ident: e_1_2_8_61_1 doi: 10.1038/nphoton.2016.185 – ident: e_1_2_8_28_2 doi: 10.1016/j.solener.2018.05.092 – ident: e_1_2_8_206_1 doi: 10.1021/acs.jpclett.7b03294 – ident: e_1_2_8_147_1 doi: 10.1021/acsphotonics.7b00837 – ident: e_1_2_8_263_1 doi: 10.1021/ja507086b – ident: e_1_2_8_50_1 doi: 10.1039/C8EE00995C – ident: e_1_2_8_149_1 doi: 10.1021/acs.jpcc.7b10370 – ident: e_1_2_8_70_1 doi: 10.1063/1.5023797 – ident: e_1_2_8_74_1 doi: 10.1021/acsnano.7b04683 – ident: e_1_2_8_17_1 doi: 10.1002/smtd.201700163 – ident: e_1_2_8_185_2 doi: 10.1021/jacs.6b08178 – ident: e_1_2_8_35_1 doi: 10.1126/sciadv.aao4204 – ident: e_1_2_8_129_1 doi: 10.1016/0584-8539(75)80016-X – ident: e_1_2_8_183_2 doi: 10.1021/jacs.5b11199 – ident: e_1_2_8_215_1 doi: 10.1039/C5EE03255E – ident: e_1_2_8_3_1 doi: 10.1038/nphoton.2014.134 – ident: e_1_2_8_148_1 doi: 10.1021/jacs.7b02227 – ident: e_1_2_8_136_1 doi: 10.1021/ja508464w – ident: e_1_2_8_233_1 doi: 10.1021/acs.chemmater.6b00433 – ident: e_1_2_8_105_1 doi: 10.1021/nl5048779 – ident: e_1_2_8_306_1 doi: 10.1021/acs.nanolett.5b02595 – ident: e_1_2_8_40_1 doi: 10.1021/jacs.7b07949 – ident: e_1_2_8_218_1 doi: 10.1021/acs.jpcc.6b06853 – ident: e_1_2_8_88_1 doi: 10.1021/jacs.7b08818 – ident: e_1_2_8_94_1 doi: 10.1038/ncomms9056 – ident: e_1_2_8_266_1 doi: 10.1021/acsami.8b00048 – ident: e_1_2_8_99_1 doi: 10.1021/jacs.7b09379 – ident: e_1_2_8_19_1 doi: 10.1002/adma.201706186 – ident: e_1_2_8_117_1 doi: 10.1021/acsenergylett.7b00258 – ident: e_1_2_8_132_1 doi: 10.1021/jp5126624 – ident: e_1_2_8_1_1 doi: 10.1126/science.1228604 – ident: e_1_2_8_254_1 doi: 10.1038/ncomms15640 – ident: e_1_2_8_159_1 doi: 10.1021/jacs.5b12124 – ident: e_1_2_8_177_1 doi: 10.1021/acs.chemmater.6b02939 – ident: e_1_2_8_303_1 doi: 10.1021/nl304362u – ident: e_1_2_8_56_1 doi: 10.1038/s41467-018-02978-7 – ident: e_1_2_8_260_2 doi: 10.1126/science.1108712 – ident: e_1_2_8_163_1 doi: 10.1002/adma.201700775 – ident: e_1_2_8_230_1 doi: 10.1039/C5CP03102H – ident: e_1_2_8_289_1 doi: 10.1038/s41566-017-0012-4 – ident: e_1_2_8_109_1 doi: 10.1021/acsenergylett.7b00751 – ident: e_1_2_8_136_2 doi: 10.1016/j.solmat.2016.09.022 – ident: e_1_2_8_180_2 doi: 10.1021/acsnano.5b06295 – ident: e_1_2_8_195_1 doi: 10.1021/acs.chemmater.6b02151 – ident: e_1_2_8_1_2 doi: 10.1038/srep00591 – ident: e_1_2_8_232_1 doi: 10.1002/pssr.201600166 – ident: e_1_2_8_93_1 doi: 10.1002/adma.201503573 – ident: e_1_2_8_16_1 doi: 10.1038/nphoton.2016.41 – ident: e_1_2_8_78_1 doi: 10.1039/C8TC01837E – ident: e_1_2_8_257_1 doi: 10.1038/nature08003 – ident: e_1_2_8_106_1 doi: 10.1039/C5TA06398A – ident: e_1_2_8_44_1 doi: 10.1039/C7EE01145H – ident: e_1_2_8_102_1 doi: 10.1016/j.jallcom.2017.02.147 – ident: e_1_2_8_49_1 doi: 10.1002/adfm.201706923 – ident: e_1_2_8_111_1 doi: 10.1002/aenm.201502458 – ident: e_1_2_8_212_1 doi: 10.1016/j.nanoen.2014.04.017 – ident: e_1_2_8_101_3 doi: 10.1039/C7NR07776A – ident: e_1_2_8_277_1 doi: 10.1039/C6CS00896H – ident: e_1_2_8_87_1 doi: 10.1002/anie.201700600 – ident: e_1_2_8_130_1 doi: 10.1143/JJAP.48.112402 – ident: e_1_2_8_140_1 doi: 10.1021/acs.chemmater.6b03310 – ident: e_1_2_8_26_1 doi: 10.1021/acsenergylett.7b00442 – ident: e_1_2_8_30_1 doi: 10.1039/C6EE03014A – ident: e_1_2_8_98_1 doi: 10.1107/S0108768108032734 – ident: e_1_2_8_235_5 doi: 10.1021/acsami.8b18200 – ident: e_1_2_8_20_1 doi: 10.1038/nmat4271 – ident: e_1_2_8_120_1 doi: 10.1103/PhysRevB.51.6135 – ident: e_1_2_8_210_1 doi: 10.1002/aenm.201702498 – ident: e_1_2_8_235_3 doi: 10.1021/acsnano.5b03265 – ident: e_1_2_8_255_2 doi: 10.1002/adma.201601369 – ident: e_1_2_8_264_1 doi: 10.1021/acs.jpcc.5b06211 – ident: e_1_2_8_219_1 doi: 10.1021/acs.jpclett.6b01576 – ident: e_1_2_8_108_1 doi: 10.1039/C7TA11154A – ident: e_1_2_8_307_1 doi: 10.1021/acsenergylett.7b00547 – ident: e_1_2_8_155_2 doi: 10.1021/acs.jchemed.7b00144 – ident: e_1_2_8_154_1 doi: 10.1039/C7CS00886D – ident: e_1_2_8_53_1 doi: 10.1038/s41586-018-0575-3 – ident: e_1_2_8_220_1 doi: 10.1002/adma.201605290 – ident: e_1_2_8_270_1 doi: 10.1021/acs.jpclett.7b01992 – ident: e_1_2_8_231_1 doi: 10.1063/1.4748888 – ident: e_1_2_8_205_1 doi: 10.1002/adma.201704217 – ident: e_1_2_8_300_1 doi: 10.1038/nnano.2014.149 – ident: e_1_2_8_238_1 doi: 10.1002/anie.201405334 – ident: e_1_2_8_245_1 doi: 10.1002/aenm.201602358 – ident: e_1_2_8_38_2 doi: 10.1016/j.nanoen.2018.08.012 – ident: e_1_2_8_229_1 doi: 10.1021/cm503122j – ident: e_1_2_8_58_1 doi: 10.1021/acs.nanolett.8b00789 – ident: e_1_2_8_242_1 doi: 10.1038/nature12340 – ident: e_1_2_8_256_1 doi: 10.1038/nphoton.2009.32 – ident: e_1_2_8_25_1 doi: 10.1039/C5EE01265A – ident: e_1_2_8_57_1 doi: 10.1039/C8EE00293B – ident: e_1_2_8_101_1 doi: 10.1021/acs.jpcc.7b12464 – ident: e_1_2_8_239_1 doi: 10.1002/adfm.201302090 – ident: e_1_2_8_268_1 doi: 10.1038/nature13829 – ident: e_1_2_8_82_1 doi: 10.1002/smll.201700364 – ident: e_1_2_8_186_1 doi: 10.1002/adma.201606666 – ident: e_1_2_8_252_1 doi: 10.1038/nphoton.2016.269 – ident: e_1_2_8_213_1 doi: 10.1021/acs.nanolett.7b00050 – ident: e_1_2_8_152_1 doi: 10.1002/adfm.201600109 – ident: e_1_2_8_203_1 doi: 10.1021/jacs.7b12551 – ident: e_1_2_8_298_1 doi: 10.1021/nn504856g – volume: 5 start-page: 201501310 year: 2015 ident: e_1_2_8_31_1 publication-title: Adv. Energy Mater. – ident: e_1_2_8_192_1 doi: 10.1021/jacs.8b00542 – ident: e_1_2_8_89_1 doi: 10.1039/C7TC01998J – ident: e_1_2_8_158_1 doi: 10.1021/acs.chemmater.7b00478 – ident: e_1_2_8_134_1 doi: 10.1021/jacs.6b10734 – ident: e_1_2_8_33_1 doi: 10.1016/j.mser.2018.12.001 – ident: e_1_2_8_123_1 doi: 10.1002/adfm.201706401 – ident: e_1_2_8_66_1 doi: 10.1002/adma.201600784 – ident: e_1_2_8_187_2 doi: 10.1021/acs.jpcc.8b02699 – start-page: SM4N.1 volume-title: Lasers and Electro‐Optics year: 2017 ident: e_1_2_8_295_1 – ident: e_1_2_8_261_1 doi: 10.1016/j.mser.2010.07.001 – ident: e_1_2_8_249_1 doi: 10.1002/adma.201605317 – ident: e_1_2_8_201_1 doi: 10.1126/science.aal4211 – ident: e_1_2_8_80_1 doi: 10.1002/adma.201703758 – ident: e_1_2_8_121_1 doi: 10.1016/j.joule.2017.07.017 – ident: e_1_2_8_265_1 doi: 10.1021/acs.chemmater.5b03769 – ident: e_1_2_8_59_1 doi: 10.1038/s41467-018-03049-7 – ident: e_1_2_8_137_1 doi: 10.1016/j.joule.2018.01.009 – ident: e_1_2_8_42_1 doi: 10.1021/jacs.7b13229 – ident: e_1_2_8_294_3 doi: 10.1007/978-3-642-36705-2 – ident: e_1_2_8_165_1 doi: 10.1021/jacs.5b05602 – ident: e_1_2_8_286_1 doi: 10.1038/ncomms6404 – ident: e_1_2_8_91_1 doi: 10.1002/adma.201707235 – ident: e_1_2_8_301_1 doi: 10.1002/adma.200800123 – ident: e_1_2_8_114_1 doi: 10.1002/aenm.201502202 – ident: e_1_2_8_84_2 doi: 10.1016/j.solmat.2018.07.023 – ident: e_1_2_8_76_1 doi: 10.1021/acsphotonics.7b01567 – ident: e_1_2_8_36_1 doi: 10.1002/aenm.201703246 – ident: e_1_2_8_63_1 doi: 10.1021/acs.jpclett.8b00600 – ident: e_1_2_8_13_1 doi: 10.1002/smll.201701770 – ident: e_1_2_8_90_1 doi: 10.1021/acsnano.8b02793 – ident: e_1_2_8_122_1 doi: 10.1126/sciadv.1700841 – ident: e_1_2_8_162_1 doi: 10.1002/cplu.201800014 – volume-title: Physics of Semiconductor Devices year: 1981 ident: e_1_2_8_280_1 – ident: e_1_2_8_171_1 doi: 10.1002/smll.201703762 – ident: e_1_2_8_96_1 doi: 10.1021/acsphotonics.7b00520 – ident: e_1_2_8_221_1 doi: 10.1021/acs.jpclett.6b02594 – ident: e_1_2_8_222_1 doi: 10.1021/acsami.6b11393 – ident: e_1_2_8_191_2 doi: 10.1039/C8CP06418K – ident: e_1_2_8_64_1 doi: 10.1038/s41467-018-05909-8 – ident: e_1_2_8_142_1 doi: 10.1021/jacs.5b13294 – ident: e_1_2_8_197_1 doi: 10.1103/PhysRevB.45.6961 – ident: e_1_2_8_138_1 doi: 10.1007/s00706-017-1933-9 – ident: e_1_2_8_153_2 doi: 10.1002/adma.201602940 – ident: e_1_2_8_216_1 doi: 10.1021/acs.jpclett.5b02597 – ident: e_1_2_8_235_2 doi: 10.1016/j.jpowsour.2015.02.084 – ident: e_1_2_8_37_1 doi: 10.1016/j.joule.2018.04.012 – ident: e_1_2_8_161_1 doi: 10.1021/acsnano.5b01154 – ident: e_1_2_8_234_1 doi: 10.1002/adfm.201604818 – ident: e_1_2_8_107_1 doi: 10.1021/acs.jpclett.7b00134 – ident: e_1_2_8_179_1 doi: 10.1021/acs.chemmater.7b03751 – ident: e_1_2_8_160_1 doi: 10.1021/acs.nanolett.6b02688 – ident: e_1_2_8_164_1 doi: 10.1021/acs.nanolett.5b02404 – ident: e_1_2_8_180_1 doi: 10.1002/adfm.201604580 – ident: e_1_2_8_23_2 doi: 10.1002/adma.201100423 – ident: e_1_2_8_191_1 doi: 10.1021/acsenergylett.7b00654 – ident: e_1_2_8_247_1 doi: 10.1002/adma.201004324 – ident: e_1_2_8_116_1 doi: 10.1002/aenm.201700946 – ident: e_1_2_8_183_1 doi: 10.1021/acsnano.7b05191 – ident: e_1_2_8_281_1 doi: 10.1002/adma.201600225 – ident: e_1_2_8_18_1 doi: 10.1073/pnas.1600789113 – ident: e_1_2_8_5_1 doi: 10.1021/jz400892a – ident: e_1_2_8_184_3 doi: 10.1021/acs.chemmater.8b01283 – ident: e_1_2_8_43_1 doi: 10.1038/nature18306 – ident: e_1_2_8_236_1 doi: 10.1063/1.4962143 – ident: e_1_2_8_81_1 doi: 10.1002/smll.201702523 – ident: e_1_2_8_156_1 doi: 10.1002/smll.201702433 – ident: e_1_2_8_185_1 doi: 10.1002/adma.201502567 – ident: e_1_2_8_12_1 doi: 10.1002/adma.201703487 – ident: e_1_2_8_240_1 doi: 10.1021/jp502696w – ident: e_1_2_8_194_1 doi: 10.1039/C7QM00472A – ident: e_1_2_8_196_1 doi: 10.1002/anie.201406466 – volume-title: Fundamentals of Photonics year: 2007 ident: e_1_2_8_294_2 – ident: e_1_2_8_75_1 doi: 10.1002/adma.201605993 – ident: e_1_2_8_83_1 doi: 10.1021/acs.jpclett.8b00700 – ident: e_1_2_8_130_2 doi: 10.1021/ic970659e – ident: e_1_2_8_169_1 doi: 10.1021/acsami.7b03445 – ident: e_1_2_8_267_1 doi: 10.1002/adma.201301603 – ident: e_1_2_8_41_1 doi: 10.1021/acsenergylett.7b00508 – ident: e_1_2_8_150_2 doi: 10.1021/jacs.6b09645 – ident: e_1_2_8_237_1 doi: 10.1021/jacs.5b03796 – ident: e_1_2_8_290_1 doi: 10.1002/adom.201600704 – ident: e_1_2_8_72_1 doi: 10.1126/sciadv.aaq0208 – ident: e_1_2_8_60_1 doi: 10.1021/acsnano.7b09148 – ident: e_1_2_8_172_1 doi: 10.1002/smll.201603996 – ident: e_1_2_8_283_1 doi: 10.1021/acsnano.6b08194 – ident: e_1_2_8_54_1 doi: 10.1038/s41566-018-0283-4 – ident: e_1_2_8_8_1 – ident: e_1_2_8_223_1 doi: 10.1021/acs.jpclett.5b00968 – ident: e_1_2_8_95_1 doi: 10.1021/acs.jpclett.5b02460 – ident: e_1_2_8_38_1 doi: 10.1002/adfm.201803269 – ident: e_1_2_8_269_1 doi: 10.1038/s41467-018-07383-8 – ident: e_1_2_8_184_2 doi: 10.1039/C6NR03428D – ident: e_1_2_8_193_1 doi: 10.1002/aenm.201601307 – volume-title: Lasers year: 1988 ident: e_1_2_8_294_1 – ident: e_1_2_8_296_1 doi: 10.1021/jz500279b – ident: e_1_2_8_46_1 doi: 10.1021/jacs.5b11740 – ident: e_1_2_8_69_3 doi: 10.1002/adfm.201801193 – ident: e_1_2_8_129_2 doi: 10.1103/PhysRevB.88.165203 |
SSID | ssj0009606 |
Score | 2.5898302 |
SecondaryResourceType | review_article |
Snippet | Organic–inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in... Organic-inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1807095 |
SubjectTerms | all‐inorganic perovskites Cations Cesium Current voltage characteristics Devices Diodes Energy conversion efficiency Excitons Ion migration Lasing layered perovskites light emission from perovskites Market entry Materials science Morphology Optoelectronic devices Organic light emitting diodes perovskite photonic devices Perovskites Photovoltaic cells Quantum efficiency stability of inorganic perovskites Toxicity |
Title | Inorganic and Layered Perovskites for Optoelectronic Devices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201807095 https://www.ncbi.nlm.nih.gov/pubmed/31012172 https://www.proquest.com/docview/2315585655 https://www.proquest.com/docview/2213151394 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ikz54v1SnVBB8ytamSS_gy3COKU5FHOytpEn6orRj7QT99Z70tk0RQd9ackJzOSf5TprzHYTOfU0CJhXHVPMMUcEkDiRT2IsYLI3gvVmejkYe3ruDEb0ds_FCFH_JD9EcuGnLKNZrbeA8yjpz0lAuC94g2welDXSUub6wpVHR05w_SsPzgmzPYThwqV-zNlqks1x9eVf6BjWXkWux9fQ3Ea8bXd44eWnP8qgtPr7wOf6nV1too8KlZrdUpG20opIdtL7AVriLLm-SMgeUMHkizTv-rvN8mo9qmr5l-hA4MwEBmw-TPJ0n1zF7qliL9tCof_18NcBV8gUsAKMwLMFvI8oDeBILi8ZExRymlfi2oraUgR87jNue4j64JFxGjEvqOtSPOJcktpTr7KPVJE3UITIltYWQ4Mcwpal0nCDmXiw8m0TSBm2IDYTrwQ9FxUyuE2S8hiWnMgn1qITNqBjoopGflJwcP0q26rkMK9vMQkC0DJwkl0HxWVMMVqV_lfBEpTOQITZIATqmBjoodaD5lKMp0QD3GYgUM_lLG8Jub9ht3o7-UukYrcFzUIZAttBqPp2pE8BCeXRa6PsnnwT-xA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB6l4dByoA8opKR0K7XiZBKvd_2QyiEiREnzoEKJlJu73l1fQA4iCSj9V_0r_UXM2rFDWqFKlXLo0d6xPdp5r3e_AfjkGxAwpYXFDM4Qk1xZgeLa8iKOrhGrt7pnTiP3B257xL6O-bgEP_OzMBk-RLHgZiwj9dfGwM2CdG2FGipUChxk-6i1Qb6vsqsX91i1TU87TRTxZ0pb58OztrVsLGBJjL_cUliTUO1h6I1lncVUxwJZpr6tma1U4McOF7anhY_ptlARF4q5DvMjIRSN69p18L3PYMu0ETdw_c3LFWKVKQhSeD-HW4HL_Bwnsk5r6_yux8E_ktv1XDkNdq2X8CufpmyPy9XJfBadyB-_IUj-V_P4CnaWqTdpZLbyGko6eQPbjwAZd-FLJ8naXEkiEkV6YmFamZJv-nZyNzXr3FOCST65uJlNVv2DSFOn7nYPRhth_y2Uk0miD4AoZkupsFTj2qAFOUEsvFh6No2UjQofV8DKpR3KJfi66QFyHWaw0TQ0UggLKVTguKC_yWBHnqSs5soTLt3PNMSknWMd6HIc_lgMo-Mwf4NEoidzpKE2UmEBwCqwnyld8SnHoL5halsBmqrOX3gIG81-o7h69y8PfYDn7WG_F_Y6g-4hvMD7QXbiswrl2e1cv8fUbxYdpcZG4PumtfIB0iZdaQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BlRAcaMtzC6VGKuIUSBw7D6k9rBpWLG8hkLgFx48LKLtid0H0V_FX-EeMk022S4UqVeLAMbGTjOx5fOPY3wB8jywJmNLCYZZniEmunFhx7YQZR9eI2Zsb2tPIR8fB3gXbv-SXE_BYnYUp-SHqBTdrGYW_tgbeVWZnRBoqVMEb5EWotHG1rfJAP9xj0tb72U5whjcpbe2e_9pzhnUFHInhlzsKUxKqQ4y8RrrMUG0ESkwjTzNPqTgyPhdeqEWEaFuojAvFAp9FmRCKGlcHPr53Ej6wwI1tsYjkbERYZfOBgt3P504csKiiiXTpzri842HwL2w7DpWLWNf6CE_VKJVbXK63B_1sW_5-QSD5nobxE8wNgTdplpbyGSZ0Pg-zf9AxLsCPdl4WuZJE5IocigdbyJSc6tvOXc-ucvcIQnxy0u13RtWDSKILZ7sIF28i_hJM5Z1crwBRzJNSYaLGteUK8mMjQiNDj2bKQ3U3DXCqyU7lkHrdVgC5SUvSaJraWUjrWWjAVt2_W5KOvNpzrdKddOh8eilCdo5ZYMCxeaNuRrdh_wWJXHcG2Id62AvhP2vAcqlz9ad8y_mGwLYBtNCcf8iQNpOjZn315X8e-gbTp0krPWwfH6zCDN6Oy-OeazDVvx3or4j7-tl6YWoErt5aKZ8BOV5cGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inorganic+and+Layered+Perovskites+for+Optoelectronic+Devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Fakharuddin%2C+Azhar&rft.au=Shabbir%2C+Umair&rft.au=Qiu%2C+Weiming&rft.au=Iqbal%2C+Tahir&rft.date=2019-11-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=31&rft.issue=47&rft.spage=e1807095&rft_id=info:doi/10.1002%2Fadma.201807095&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |