Inorganic and Layered Perovskites for Optoelectronic Devices

Organic–inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light‐emitting diodes (LEDs), continuous‐wave lasing and ultralow lasing thresh...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 47; pp. e1807095 - n/a
Main Authors Fakharuddin, Azhar, Shabbir, Umair, Qiu, Weiming, Iqbal, Tahir, Sultan, Muhammad, Heremans, Paul, Schmidt‐Mende, Lukas
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic–inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light‐emitting diodes (LEDs), continuous‐wave lasing and ultralow lasing thresholds in optically pumped lasers, and detectivity in photodetectors on a par with commercial GaAs rivals are being witnessed, making them the fastest ever emerging material technology. Still, questions on their toxicity and long‐term stability raise concerns toward their market entry. The intrinsic instability in these materials arises due to the organic cation, typically the volatile methylamine (MA), which contributes to hysteresis in the current–voltage characteristics and ion migration. Alternative inorganic substitutes to MA, such as cesium, and large organic cations that lead to a layered structure, enhance structural as well as device operational stability. These perovskites also provide a high exciton binding energy that is a prerequisite to enhance radiative emission yield in LEDs. The incorporation of inorganic and layered perovskites, in the form of polycrystalline films or as single‐crystalline nanostructure morphologies, is now leading to the demonstration of stable devices with excellent performance parameters. Herein, key developments made in various optoelectronic devices using these perovskites are summarized and an outlook toward stable yet efficient devices is presented. Inorganic and layered perovskites have broadened research paradigm for a range of optoelectronic devices. Their unique electronic and photophysical properties show that they are an excellent material, leading forefronts of solar cells, light‐emitting diodes, photodetectors, lasers, and beyond. An overview of key research activities for these devices is provided and challenges for their future research are identified.
AbstractList Organic–inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light‐emitting diodes (LEDs), continuous‐wave lasing and ultralow lasing thresholds in optically pumped lasers, and detectivity in photodetectors on a par with commercial GaAs rivals are being witnessed, making them the fastest ever emerging material technology. Still, questions on their toxicity and long‐term stability raise concerns toward their market entry. The intrinsic instability in these materials arises due to the organic cation, typically the volatile methylamine (MA), which contributes to hysteresis in the current–voltage characteristics and ion migration. Alternative inorganic substitutes to MA, such as cesium, and large organic cations that lead to a layered structure, enhance structural as well as device operational stability. These perovskites also provide a high exciton binding energy that is a prerequisite to enhance radiative emission yield in LEDs. The incorporation of inorganic and layered perovskites, in the form of polycrystalline films or as single‐crystalline nanostructure morphologies, is now leading to the demonstration of stable devices with excellent performance parameters. Herein, key developments made in various optoelectronic devices using these perovskites are summarized and an outlook toward stable yet efficient devices is presented.
Organic–inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light‐emitting diodes (LEDs), continuous‐wave lasing and ultralow lasing thresholds in optically pumped lasers, and detectivity in photodetectors on a par with commercial GaAs rivals are being witnessed, making them the fastest ever emerging material technology. Still, questions on their toxicity and long‐term stability raise concerns toward their market entry. The intrinsic instability in these materials arises due to the organic cation, typically the volatile methylamine (MA), which contributes to hysteresis in the current–voltage characteristics and ion migration. Alternative inorganic substitutes to MA, such as cesium, and large organic cations that lead to a layered structure, enhance structural as well as device operational stability. These perovskites also provide a high exciton binding energy that is a prerequisite to enhance radiative emission yield in LEDs. The incorporation of inorganic and layered perovskites, in the form of polycrystalline films or as single‐crystalline nanostructure morphologies, is now leading to the demonstration of stable devices with excellent performance parameters. Herein, key developments made in various optoelectronic devices using these perovskites are summarized and an outlook toward stable yet efficient devices is presented. Inorganic and layered perovskites have broadened research paradigm for a range of optoelectronic devices. Their unique electronic and photophysical properties show that they are an excellent material, leading forefronts of solar cells, light‐emitting diodes, photodetectors, lasers, and beyond. An overview of key research activities for these devices is provided and challenges for their future research are identified.
Organic-inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light-emitting diodes (LEDs), continuous-wave lasing and ultralow lasing thresholds in optically pumped lasers, and detectivity in photodetectors on a par with commercial GaAs rivals are being witnessed, making them the fastest ever emerging material technology. Still, questions on their toxicity and long-term stability raise concerns toward their market entry. The intrinsic instability in these materials arises due to the organic cation, typically the volatile methylamine (MA), which contributes to hysteresis in the current-voltage characteristics and ion migration. Alternative inorganic substitutes to MA, such as cesium, and large organic cations that lead to a layered structure, enhance structural as well as device operational stability. These perovskites also provide a high exciton binding energy that is a prerequisite to enhance radiative emission yield in LEDs. The incorporation of inorganic and layered perovskites, in the form of polycrystalline films or as single-crystalline nanostructure morphologies, is now leading to the demonstration of stable devices with excellent performance parameters. Herein, key developments made in various optoelectronic devices using these perovskites are summarized and an outlook toward stable yet efficient devices is presented.Organic-inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light-emitting diodes (LEDs), continuous-wave lasing and ultralow lasing thresholds in optically pumped lasers, and detectivity in photodetectors on a par with commercial GaAs rivals are being witnessed, making them the fastest ever emerging material technology. Still, questions on their toxicity and long-term stability raise concerns toward their market entry. The intrinsic instability in these materials arises due to the organic cation, typically the volatile methylamine (MA), which contributes to hysteresis in the current-voltage characteristics and ion migration. Alternative inorganic substitutes to MA, such as cesium, and large organic cations that lead to a layered structure, enhance structural as well as device operational stability. These perovskites also provide a high exciton binding energy that is a prerequisite to enhance radiative emission yield in LEDs. The incorporation of inorganic and layered perovskites, in the form of polycrystalline films or as single-crystalline nanostructure morphologies, is now leading to the demonstration of stable devices with excellent performance parameters. Herein, key developments made in various optoelectronic devices using these perovskites are summarized and an outlook toward stable yet efficient devices is presented.
Author Qiu, Weiming
Heremans, Paul
Iqbal, Tahir
Sultan, Muhammad
Fakharuddin, Azhar
Shabbir, Umair
Schmidt‐Mende, Lukas
Author_xml – sequence: 1
  givenname: Azhar
  surname: Fakharuddin
  fullname: Fakharuddin, Azhar
  email: azhar.fakhar.uddin@imec.be
  organization: University of Konstanz
– sequence: 2
  givenname: Umair
  surname: Shabbir
  fullname: Shabbir, Umair
  organization: University Campus
– sequence: 3
  givenname: Weiming
  surname: Qiu
  fullname: Qiu, Weiming
  email: weiming.qiu@imec.be
  organization: KU Leuven
– sequence: 4
  givenname: Tahir
  surname: Iqbal
  fullname: Iqbal, Tahir
  organization: University of Gujrat
– sequence: 5
  givenname: Muhammad
  surname: Sultan
  fullname: Sultan, Muhammad
  email: sultan@ncp.edu.pk
  organization: University Campus
– sequence: 6
  givenname: Paul
  surname: Heremans
  fullname: Heremans, Paul
  organization: KU Leuven
– sequence: 7
  givenname: Lukas
  orcidid: 0000-0001-6867-443X
  surname: Schmidt‐Mende
  fullname: Schmidt‐Mende, Lukas
  email: lukas.schmidt-mende@uni-konstanz.de
  organization: University of Konstanz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31012172$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLAzEQgIMoWh9Xj7LgxcvWJJtkE_BS6hMqetBzmG5mJbrd1GSr9N-7pT5AEE-Zw_fNhG-XbLahRUIOGR0ySvkpuBkMOWWaltTIDTJgkrNc9PMmGVBTyNwooXfIbkrPlFKjqNomOwWjjLOSD8jZTRviE7S-yqB12QSWGNFl9xjDW3rxHaasDjG7m3cBG6y6GFboOb75CtM-2aqhSXjw-e6Rx8uLh_F1Prm7uhmPJnklCiNzJ4TmWGqh6oqKmmMNqlRcMxTMOaPrQgIrEbSUBtxUghOqEHoK4HhNURV75GS9dx7D6wJTZ2c-Vdg00GJYJMs5K5hkhRE9evwLfQ6L2Pa_s7xnpJZKyp46-qQW0xk6O49-BnFpv7r0wHANVDGkFLH-Rhi1q_B2Fd5-h-8F8UuofAedD20XwTd_a2atvfsGl_8csaPz29GP-wFlcZYW
CitedBy_id crossref_primary_10_1007_s12274_021_3586_6
crossref_primary_10_1039_D1TC06173A
crossref_primary_10_1140_epjp_s13360_024_05548_7
crossref_primary_10_1021_acsaem_1c00750
crossref_primary_10_1002_smtd_201900652
crossref_primary_10_1021_acsaelm_2c00102
crossref_primary_10_1016_j_ijleo_2023_170565
crossref_primary_10_1002_adfm_202102210
crossref_primary_10_1002_adom_202000779
crossref_primary_10_1016_j_jlumin_2021_118531
crossref_primary_10_1021_acsaelm_0c00431
crossref_primary_10_1016_j_jallcom_2020_156827
crossref_primary_10_1002_adom_202002167
crossref_primary_10_1007_s00894_024_05861_z
crossref_primary_10_1007_s11082_024_07968_2
crossref_primary_10_1002_adom_201901643
crossref_primary_10_1360_TB_2022_1217
crossref_primary_10_1002_aenm_202101443
crossref_primary_10_1088_1674_4926_41_5_052204
crossref_primary_10_1103_PhysRevApplied_13_064071
crossref_primary_10_1002_adfm_201909771
crossref_primary_10_1016_j_heliyon_2024_e38898
crossref_primary_10_1039_D0NR08043H
crossref_primary_10_1016_j_jechem_2022_02_018
crossref_primary_10_1039_D0NR01394C
crossref_primary_10_1021_acsami_0c09047
crossref_primary_10_1016_j_carbon_2022_08_003
crossref_primary_10_1007_s11468_019_00992_z
crossref_primary_10_1016_j_cej_2023_141602
crossref_primary_10_1016_j_jmrt_2020_06_086
crossref_primary_10_1364_PRJ_450483
crossref_primary_10_1002_adpr_202400065
crossref_primary_10_1002_adfm_201906756
crossref_primary_10_1039_D0QM00478B
crossref_primary_10_1021_acsanm_1c02041
crossref_primary_10_1016_j_rio_2023_100531
crossref_primary_10_1002_pssb_202300577
crossref_primary_10_1063_5_0019554
crossref_primary_10_1002_ange_202417036
crossref_primary_10_59717_j_xinn_mater_2024_100084
crossref_primary_10_1016_j_mssp_2020_105313
crossref_primary_10_1039_D1DT04047B
crossref_primary_10_1088_1674_4926_41_4_041603
crossref_primary_10_1002_adfm_201904101
crossref_primary_10_1063_1_5133151
crossref_primary_10_1002_adom_202001647
crossref_primary_10_3390_photonics12030261
crossref_primary_10_1364_OL_458832
crossref_primary_10_1002_aenm_202100818
crossref_primary_10_1021_acs_jpcc_1c03458
crossref_primary_10_1002_anie_202417036
crossref_primary_10_3390_molecules26185712
crossref_primary_10_1021_acs_nanolett_3c02285
crossref_primary_10_1364_OE_525735
crossref_primary_10_3389_fenrg_2022_840817
crossref_primary_10_1016_j_nxmate_2025_100563
crossref_primary_10_1039_C9TC05403K
crossref_primary_10_1002_admi_202002053
crossref_primary_10_1002_asia_201901510
crossref_primary_10_1002_advs_202003334
crossref_primary_10_1002_inf2_12099
crossref_primary_10_1002_adom_202302494
crossref_primary_10_1039_D4QM00560K
crossref_primary_10_1002_lpor_202000401
crossref_primary_10_1063_5_0238223
crossref_primary_10_1016_j_surfin_2024_104493
crossref_primary_10_1021_acsanm_0c01887
crossref_primary_10_1021_acsmaterialslett_0c00505
crossref_primary_10_1002_smll_202008131
crossref_primary_10_1007_s12274_023_5922_5
crossref_primary_10_1021_acsaem_9b01827
crossref_primary_10_1021_acsenergylett_9b02450
crossref_primary_10_1002_cphc_202200860
crossref_primary_10_1039_C9TA11639G
crossref_primary_10_1016_j_physb_2024_415742
crossref_primary_10_3390_nano10061226
crossref_primary_10_1002_adfm_202307896
crossref_primary_10_1088_1361_6463_abd8f2
crossref_primary_10_1002_adfm_202002526
crossref_primary_10_1039_C9TC04164H
crossref_primary_10_1002_adom_202200605
crossref_primary_10_1016_j_commatsci_2025_113681
crossref_primary_10_1039_D3NR01921G
crossref_primary_10_1002_aenm_202002422
crossref_primary_10_1039_D2TC04626A
crossref_primary_10_1021_acsnano_0c08903
crossref_primary_10_3390_nano12142396
crossref_primary_10_1021_acsanm_4c02311
crossref_primary_10_1016_j_optcom_2023_130046
crossref_primary_10_1039_C9CS00598F
crossref_primary_10_1016_j_solmat_2021_111096
crossref_primary_10_1063_5_0047616
crossref_primary_10_35848_1347_4065_ac2038
crossref_primary_10_1002_adma_202207617
crossref_primary_10_1002_adfm_202010076
crossref_primary_10_1021_acs_inorgchem_1c02897
crossref_primary_10_3390_nano9071007
crossref_primary_10_1021_acs_jpcc_1c06377
crossref_primary_10_1039_D0TC03983G
crossref_primary_10_1117_1_AP_3_3_034002
crossref_primary_10_1002_smll_202401545
crossref_primary_10_1016_j_jlumin_2022_119104
crossref_primary_10_1364_PRJ_418450
crossref_primary_10_1002_inf2_12604
crossref_primary_10_1088_1361_6528_abe672
crossref_primary_10_1088_1674_1056_ac2b20
crossref_primary_10_11648_j_ijmsa_20241306_11
crossref_primary_10_1002_advs_202301149
crossref_primary_10_1039_D2MA00071G
crossref_primary_10_1002_adom_202303194
crossref_primary_10_1088_1674_1056_ac5988
Cites_doi 10.1021/acs.chemmater.6b03980
10.1021/cg400645t
10.1039/C4TA04994B
10.1002/anie.201504379
10.1149/2.0101801jss
10.1002/anie.201704739
10.1002/aenm.201702073
10.1021/acs.jpcc.7b03939
10.1038/s41467-018-03169-0
10.1038/ncomms5007
10.1021/acs.jpclett.6b00376
10.1002/adma.200302151
10.1002/adom.201800324
10.1039/C7NR09607K
10.1126/science.aaa5760
10.1039/C7TC03612D
10.1002/adma.201803336
10.1002/adom.201800152
10.1038/s41928-018-0101-5
10.1038/s41586-018-0576-2
10.1039/C6EE01137C
10.1002/aenm.201501119
10.1002/aenm.201500963
10.1021/jacs.6b03166
10.1146/annurev-matsci-073012-125702
10.1021/acs.chemmater.8b02999
10.1126/science.aad1818
10.1002/anie.201605909
10.1016/j.joule.2018.06.013
10.1039/C5NR08350H
10.1021/acs.nanolett.7b00976
10.1021/acs.chemrev.5b00715
10.1038/nphoton.2008.248
10.1002/adma.201700095
10.1143/JPSJ.37.1393
10.1021/acsnano.6b05775
10.1021/acs.nanolett.8b00560
10.1021/acs.chemmater.5b04231
10.1103/PhysRevB.92.235210
10.1039/C7TA09657G
10.1038/s41566-017-0047-6
10.1039/C8TA06553E
10.1002/chem.201705031
10.1038/38693
10.1021/acs.nanolett.8b00603
10.1002/smll.201700611
10.1002/adma.201806105
10.1039/C6TC05578H
10.1103/PhysRevB.51.14370
10.1126/science.1060367
10.1021/acs.nanolett.8b02811
10.1038/nenergy.2017.135
10.1038/nphoton.2015.156
10.1002/adma.201804771
10.1021/acs.jpcc.7b06268
10.1021/acsanm.7b00212
10.1021/acs.jpcc.8b00998
10.1021/jz5005285
10.1021/acsenergylett.8b00035
10.1039/C5EE03874J
10.1021/acs.jpclett.6b02682
10.1038/nenergy.2016.142
10.1126/science.aag2700
10.1002/adma.201403965
10.1021/acsnano.8b06441
10.1039/C6RA08699C
10.1002/adfm.201601690
10.1039/b403482a
10.1021/acs.jpclett.6b01942
10.1021/acsnano.7b08357
10.1039/C7NR06116A
10.1002/aenm.201700162
10.1002/adma.201602513
10.1039/C7NR09126E
10.1021/acsphotonics.8b00348
10.1002/adma.201705393
10.1038/s41467-018-06425-5
10.1002/aenm.201802060
10.1021/jz4020162
10.1038/nphys3357
10.1021/acs.chemmater.6b00847
10.1021/acsnano.7b05442
10.1039/C7TC02137B
10.1039/C5TA05741H
10.1002/adma.201401991
10.1039/C8TC01214H
10.1021/acsenergylett.8b00835
10.1039/C6NR01828A
10.1039/c2ee23073a
10.1002/adma.201501978
10.1002/aenm.201800525
10.1021/jacs.7b02120
10.1021/jacs.6b10227
10.1039/C8TC00289D
10.1039/C7SE00100B
10.1038/natrevmats.2016.100
10.1021/ic401215x
10.1021/acs.nanolett.7b01544
10.1021/acsenergylett.6b00499
10.1002/adfm.201601571
10.1038/nmat4795
10.1021/acsenergylett.8b02239
10.1038/natrevmats.2016.28
10.1038/nphoton.2015.36
10.1002/adma.201707093
10.1038/s41566-018-0260-y
10.1021/jacs.7b08628
10.1002/adma.201603885
10.1002/adfm.201603734
10.1038/s41467-018-03757-0
10.1039/C6CP08177K
10.1126/science.1243982
10.1002/adma.201605005
10.1038/ncomms15684
10.1021/nl401011x
10.1021/acsnano.7b08201
10.1021/acs.jpclett.7b01042
10.1021/jacs.7b10647
10.1021/acsenergylett.7b00926
10.1021/jz500113x
10.1002/adma.201606859
10.1039/C7TA04690A
10.1002/smll.201702107
10.1038/nature01939
10.1126/science.aaf9717
10.1021/jacs.7b02817
10.1021/acsnano.6b03863
10.1002/advs.201500201
10.1021/acsenergylett.6b00341
10.1016/j.jechem.2017.10.013
10.1038/nphoton.2016.62
10.1038/nphoton.2015.82
10.1021/acs.jpclett.6b00002
10.1021/acs.nanolett.7b04659
10.1039/C8NR09885A
10.1039/C8TA02288G
10.1039/C6DT04758K
10.1002/adma.201706226
10.1038/nenergy.2016.178
10.1021/acsenergylett.7b00707
10.1021/acs.chemmater.7b00260
10.1007/978-981-10-5924-7_5
10.1002/adma.200702846
10.1021/acs.chemmater.5b01989
10.1364/OE.18.005912
10.1039/C6MH00519E
10.1038/nnano.2016.110
10.1039/C6TA08332C
10.1557/mrc.2015.6
10.1002/aenm.201701136
10.1021/jacs.6b13079
10.1021/acsnano.5b08193
10.1021/am503889z
10.1021/acs.nanolett.6b04381
10.1002/aenm.201700979
10.1021/jacs.5b05404
10.1002/adom.201700157
10.1002/aenm.201700623
10.1038/nphoton.2016.185
10.1016/j.solener.2018.05.092
10.1021/acs.jpclett.7b03294
10.1021/acsphotonics.7b00837
10.1021/ja507086b
10.1039/C8EE00995C
10.1021/acs.jpcc.7b10370
10.1063/1.5023797
10.1021/acsnano.7b04683
10.1002/smtd.201700163
10.1021/jacs.6b08178
10.1126/sciadv.aao4204
10.1016/0584-8539(75)80016-X
10.1021/jacs.5b11199
10.1039/C5EE03255E
10.1038/nphoton.2014.134
10.1021/jacs.7b02227
10.1021/ja508464w
10.1021/acs.chemmater.6b00433
10.1021/nl5048779
10.1021/acs.nanolett.5b02595
10.1021/jacs.7b07949
10.1021/acs.jpcc.6b06853
10.1021/jacs.7b08818
10.1038/ncomms9056
10.1021/acsami.8b00048
10.1021/jacs.7b09379
10.1002/adma.201706186
10.1021/acsenergylett.7b00258
10.1021/jp5126624
10.1126/science.1228604
10.1038/ncomms15640
10.1021/jacs.5b12124
10.1021/acs.chemmater.6b02939
10.1021/nl304362u
10.1038/s41467-018-02978-7
10.1126/science.1108712
10.1002/adma.201700775
10.1039/C5CP03102H
10.1038/s41566-017-0012-4
10.1021/acsenergylett.7b00751
10.1016/j.solmat.2016.09.022
10.1021/acsnano.5b06295
10.1021/acs.chemmater.6b02151
10.1038/srep00591
10.1002/pssr.201600166
10.1002/adma.201503573
10.1038/nphoton.2016.41
10.1039/C8TC01837E
10.1038/nature08003
10.1039/C5TA06398A
10.1039/C7EE01145H
10.1016/j.jallcom.2017.02.147
10.1002/adfm.201706923
10.1002/aenm.201502458
10.1016/j.nanoen.2014.04.017
10.1039/C7NR07776A
10.1039/C6CS00896H
10.1002/anie.201700600
10.1143/JJAP.48.112402
10.1021/acs.chemmater.6b03310
10.1021/acsenergylett.7b00442
10.1039/C6EE03014A
10.1107/S0108768108032734
10.1021/acsami.8b18200
10.1038/nmat4271
10.1103/PhysRevB.51.6135
10.1002/aenm.201702498
10.1021/acsnano.5b03265
10.1002/adma.201601369
10.1021/acs.jpcc.5b06211
10.1021/acs.jpclett.6b01576
10.1039/C7TA11154A
10.1021/acsenergylett.7b00547
10.1021/acs.jchemed.7b00144
10.1039/C7CS00886D
10.1038/s41586-018-0575-3
10.1002/adma.201605290
10.1021/acs.jpclett.7b01992
10.1063/1.4748888
10.1002/adma.201704217
10.1038/nnano.2014.149
10.1002/anie.201405334
10.1002/aenm.201602358
10.1016/j.nanoen.2018.08.012
10.1021/cm503122j
10.1021/acs.nanolett.8b00789
10.1038/nature12340
10.1038/nphoton.2009.32
10.1039/C5EE01265A
10.1039/C8EE00293B
10.1021/acs.jpcc.7b12464
10.1002/adfm.201302090
10.1038/nature13829
10.1002/smll.201700364
10.1002/adma.201606666
10.1038/nphoton.2016.269
10.1021/acs.nanolett.7b00050
10.1002/adfm.201600109
10.1021/jacs.7b12551
10.1021/nn504856g
10.1021/jacs.8b00542
10.1039/C7TC01998J
10.1021/acs.chemmater.7b00478
10.1021/jacs.6b10734
10.1016/j.mser.2018.12.001
10.1002/adfm.201706401
10.1002/adma.201600784
10.1021/acs.jpcc.8b02699
10.1016/j.mser.2010.07.001
10.1002/adma.201605317
10.1126/science.aal4211
10.1002/adma.201703758
10.1016/j.joule.2017.07.017
10.1021/acs.chemmater.5b03769
10.1038/s41467-018-03049-7
10.1016/j.joule.2018.01.009
10.1021/jacs.7b13229
10.1007/978-3-642-36705-2
10.1021/jacs.5b05602
10.1038/ncomms6404
10.1002/adma.201707235
10.1002/adma.200800123
10.1002/aenm.201502202
10.1016/j.solmat.2018.07.023
10.1021/acsphotonics.7b01567
10.1002/aenm.201703246
10.1021/acs.jpclett.8b00600
10.1002/smll.201701770
10.1021/acsnano.8b02793
10.1126/sciadv.1700841
10.1002/cplu.201800014
10.1002/smll.201703762
10.1021/acsphotonics.7b00520
10.1021/acs.jpclett.6b02594
10.1021/acsami.6b11393
10.1039/C8CP06418K
10.1038/s41467-018-05909-8
10.1021/jacs.5b13294
10.1103/PhysRevB.45.6961
10.1007/s00706-017-1933-9
10.1002/adma.201602940
10.1021/acs.jpclett.5b02597
10.1016/j.jpowsour.2015.02.084
10.1016/j.joule.2018.04.012
10.1021/acsnano.5b01154
10.1002/adfm.201604818
10.1021/acs.jpclett.7b00134
10.1021/acs.chemmater.7b03751
10.1021/acs.nanolett.6b02688
10.1021/acs.nanolett.5b02404
10.1002/adfm.201604580
10.1002/adma.201100423
10.1021/acsenergylett.7b00654
10.1002/adma.201004324
10.1002/aenm.201700946
10.1021/acsnano.7b05191
10.1002/adma.201600225
10.1073/pnas.1600789113
10.1021/jz400892a
10.1021/acs.chemmater.8b01283
10.1038/nature18306
10.1063/1.4962143
10.1002/smll.201702523
10.1002/smll.201702433
10.1002/adma.201502567
10.1002/adma.201703487
10.1021/jp502696w
10.1039/C7QM00472A
10.1002/anie.201406466
10.1002/adma.201605993
10.1021/acs.jpclett.8b00700
10.1021/ic970659e
10.1021/acsami.7b03445
10.1002/adma.201301603
10.1021/acsenergylett.7b00508
10.1021/jacs.6b09645
10.1021/jacs.5b03796
10.1002/adom.201600704
10.1126/sciadv.aaq0208
10.1021/acsnano.7b09148
10.1002/smll.201603996
10.1021/acsnano.6b08194
10.1038/s41566-018-0283-4
10.1021/acs.jpclett.5b00968
10.1021/acs.jpclett.5b02460
10.1002/adfm.201803269
10.1038/s41467-018-07383-8
10.1039/C6NR03428D
10.1002/aenm.201601307
10.1021/jz500279b
10.1021/jacs.5b11740
10.1002/adfm.201801193
10.1103/PhysRevB.88.165203
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201807095
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31012172
10_1002_adma_201807095
ADMA201807095
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Research Foundation Flanders
  funderid: 12Z4618N
– fundername: German‐Pakistan bi‐lateral framework
  funderid: 57345608; 57458981
– fundername: Deutscher Akademischer Austauschdienst
– fundername: Research Foundation Flanders
  grantid: 12Z4618N
– fundername: German-Pakistan bi-lateral framework
  grantid: 57458981
– fundername: German-Pakistan bi-lateral framework
  grantid: 57345608
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4395-d4482e7846fc04f2efa676281e41dd98f35a17ea8559adb5ad46348baad2f0e63
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 17:07:40 EDT 2025
Fri Jul 25 06:51:52 EDT 2025
Thu Apr 03 07:02:35 EDT 2025
Tue Jul 01 00:44:52 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Wed Jan 22 16:37:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords layered perovskites
light emission from perovskites
perovskite photonic devices
stability of inorganic perovskites
all-inorganic perovskites
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4395-d4482e7846fc04f2efa676281e41dd98f35a17ea8559adb5ad46348baad2f0e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6867-443X
PMID 31012172
PQID 2315585655
PQPubID 2045203
PageCount 39
ParticipantIDs proquest_miscellaneous_2213151394
proquest_journals_2315585655
pubmed_primary_31012172
crossref_primary_10_1002_adma_201807095
crossref_citationtrail_10_1002_adma_201807095
wiley_primary_10_1002_adma_201807095_ADMA201807095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 562
2013 2005; 43 308
2016 2016 2018; 138 8 30
1992 2004; 45 14
2019; 11
2018 2017; 6 29
2019; 13
2018 2018; 28 52
2014; 26
2014; 24
2015 2016; 27 138
2014; 136
2018; 47
2017 2015; 11 137
2018 2017; 5 8
2018; 6
1997; 389
2018; 9
2018; 8
2018; 3
2018; 2
2018; 5
2015; 137
2018; 1
2018; 0
2016 2016; 26 10
2018; 30
1981
2008; 20
2015 2017 2018; 137 17 18
2017 2017; 46 13
1995; 51
2018; 28
2019; 4
1988 2007 2013
2012; 101
2019; 31
2017 2018; 13 12
2015 2015 2015 2018 2018; 3 283 9 10
2016; 10
2013; 342
2008 2014; 20 6
1975 2013; 31 88
2018 2017; 7 94
2009; 459
2016; 16
2018; 27
2013 2013; 4 4
2017; 139
2016; 11
2016; 4
2015; 350
2018; 18
2016; 6
2016; 7
2016; 1
2016; 3
2017 2017 2018; 139 11 3
2018; 112
2015 2015; 27 27
2017; 56
2015; 119
2018; 12
2018; 11
2016; 28
2018; 10
2016; 26
2017; 148
2016; 8
2016; 9
2018; 14
2017; 5
2017; 7
2018; 122
2017; 8
2009 1998; 48 37
2017; 1
2017; 2
2013; 25
2017; 3
2013 2011; 13 23
2017; 4
2015; 347
2014 2017; 136 159
2017; 46
2003; 15
2018; 83
2017; 355
2017; 9
2017 2018; 7 6
2017 1974; 705 37
2014; 5
2017 2018; 29 122
2013; 13
2001; 292
2017 2018 2018 2017; 5 1 28 17
2018 2018 2018; 122 10 10
2016; 113
2016; 354
2012 2012; 338 2
2016; 116
2011; 23
2008; 64
2017; 121
2014; 9
2014; 8
2014; 7
2014; 53
2010; 71
2014; 118
2014; 515
2015; 15
2015; 14
2015; 6
2015; 17
2015; 5
2018; 140
2015 2018; 54 170
2015; 3
2015; 92
2016 2018; 26 187
2017; 27
2015; 11
2016 2016; 10 8
2017 2018 2016; 121 122 55
2017; 29
2015; 9
2015; 8
2016; 120
2018 2017 2017; 24 139 139
2017 2018; 2 20
2015; 27
2014 2013; 26 52
2003; 424
2017; 17
2016; 536
2017; 16
2017; 11
2018 2018; 14 18
2017; 10
2017; 13
2010 2016; 18 28
2019; 137
2018
2013; 499
2017
2017; 19
2016; 138
2009; 3
2012; 5
e_1_2_8_241_1
e_1_2_8_287_1
e_1_2_8_264_1
e_1_2_8_309_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_249_1
e_1_2_8_249_2
e_1_2_8_226_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_1_2
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_290_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_193_2
e_1_2_8_301_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_155_2
e_1_2_8_38_2
e_1_2_8_230_1
e_1_2_8_276_1
e_1_2_8_253_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_291_1
e_1_2_8_238_1
e_1_2_8_215_1
e_1_2_8_299_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_181_2
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_242_1
e_1_2_8_265_1
e_1_2_8_25_1
e_1_2_8_48_1
Lee J.‐W. (e_1_2_8_31_1) 2015; 5
e_1_2_8_227_1
e_1_2_8_288_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_171_2
e_1_2_8_302_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_254_1
e_1_2_8_14_1
e_1_2_8_292_1
e_1_2_8_37_1
e_1_2_8_239_1
e_1_2_8_216_1
e_1_2_8_277_1
e_1_2_8_277_2
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_129_2
e_1_2_8_182_2
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_182_3
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_243_1
e_1_2_8_220_1
e_1_2_8_281_1
e_1_2_8_228_1
e_1_2_8_266_1
e_1_2_8_205_1
e_1_2_8_289_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_172_2
e_1_2_8_303_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_293_1
e_1_2_8_270_1
e_1_2_8_255_2
e_1_2_8_217_1
e_1_2_8_255_1
e_1_2_8_278_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_183_2
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_282_1
e_1_2_8_27_1
e_1_2_8_229_1
e_1_2_8_244_1
e_1_2_8_267_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_3
e_1_2_8_150_2
e_1_2_8_229_2
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_304_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_294_3
e_1_2_8_210_1
e_1_2_8_271_1
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_233_1
e_1_2_8_256_1
e_1_2_8_279_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_184_2
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_184_3
e_1_2_8_146_1
e_1_2_8_283_1
e_1_2_8_68_1
e_1_2_8_260_2
e_1_2_8_260_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_245_1
e_1_2_8_268_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_5_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_136_2
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_197_2
e_1_2_8_305_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_272_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_257_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
Sze S. M. (e_1_2_8_280_1) 1981
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_101_2
e_1_2_8_147_2
e_1_2_8_185_2
e_1_2_8_72_1
e_1_2_8_101_3
e_1_2_8_29_1
e_1_2_8_284_1
e_1_2_8_261_1
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_246_1
e_1_2_8_269_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_306_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_273_1
e_1_2_8_296_1
e_1_2_8_250_1
e_1_2_8_79_1
e_1_2_8_235_3
e_1_2_8_235_4
e_1_2_8_212_1
e_1_2_8_235_5
e_1_2_8_235_1
e_1_2_8_258_1
e_1_2_8_235_2
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
Saleh B. (e_1_2_8_294_2) 2007
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_102_2
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_262_2
Sum T. C. (e_1_2_8_295_1) 2017
e_1_2_8_262_1
e_1_2_8_307_1
e_1_2_8_285_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_247_1
e_1_2_8_3_1
e_1_2_8_153_2
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_130_2
e_1_2_8_191_2
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_251_1
e_1_2_8_297_1
e_1_2_8_274_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_259_1
e_1_2_8_236_1
e_1_2_8_187_3
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_187_2
e_1_2_8_240_1
e_1_2_8_263_1
e_1_2_8_286_1
e_1_2_8_308_1
e_1_2_8_69_4
e_1_2_8_23_2
e_1_2_8_69_2
e_1_2_8_46_1
e_1_2_8_69_3
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_248_1
Eberly J. H. (e_1_2_8_294_1) 1988
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_139_2
e_1_2_8_192_1
e_1_2_8_300_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_2
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_252_1
e_1_2_8_275_1
e_1_2_8_298_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_180_2
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_3
e_1_2_8_73_2
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 3
  start-page: 54
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 112
  year: 2018
  publication-title: Appl. Phys. Lett.
– volume: 14 18
  start-page: 3502
  year: 2018 2018
  publication-title: Small Nano Lett.
– volume: 5
  start-page: 2524
  year: 2018
  publication-title: ACS Photonics.
– volume: 8
  start-page: 1278
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 206
  year: 2017
  publication-title: Mater. Horiz.
– volume: 562
  start-page: 249
  year: 2018
  publication-title: Nature
– volume: 9
  start-page: 3892
  year: 2018
  publication-title: Nat. Commun.
– volume: 19
  start-page: 6257
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 3825
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2095
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 687
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 18
  start-page: 6915
  year: 2018
  publication-title: Nano Lett.
– volume: 11
  start-page: 726
  year: 2017
  publication-title: Nat. Photonics
– volume: 5
  start-page: 1421
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 784
  year: 2017
  publication-title: Nat. Photonics
– volume: 347
  start-page: 967
  year: 2015
  publication-title: Science
– volume: 424
  start-page: 839
  year: 2003
  publication-title: Nature
– volume: 29
  start-page: 189
  year: 2017
  publication-title: Chem. Mater.
– volume: 139
  start-page: 6054
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 2038
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 24
  start-page: 151
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 7496
  year: 2016
  publication-title: Chem. Mater.
– volume: 8
  start-page: 2118
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 2452
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 872
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 29
  start-page: 3644
  year: 2017
  publication-title: Chem. Mater.
– volume: 18
  start-page: 3157
  year: 2018
  publication-title: Nano Lett.
– volume: 2
  start-page: 1571
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 18 28
  start-page: 5912 7515
  year: 2010 2016
  publication-title: Opt. Express Adv. Mater.
– volume: 7
  start-page: 1254
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  start-page: 1124
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 13
  start-page: 1080
  year: 2013
  publication-title: Nano Lett.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 11
  start-page: 582
  year: 2015
  publication-title: Nat. Phys.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 28
  start-page: 1348
  year: 2016
  publication-title: Chem. Mater.
– volume: 136 159
  start-page: 227
  year: 2014 2017
  publication-title: J. Am. Chem. Soc. Sol. Energy Mater. Sol. Cells
– volume: 140
  start-page: 3775
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 1118
  year: 2018
  publication-title: Nano Lett.
– volume: 7
  start-page: 80
  year: 2014
  publication-title: Nano Energy.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 746
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 6115
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 139
  start-page: 836
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 772
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 122 10 10
  start-page: 6060 3429
  year: 2018 2018 2018
  publication-title: J. Phys. Chem. C Nanoscale Nanoscale
– volume: 53
  start-page: 9898
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 2015
  year: 2017
  publication-title: ACS Nano
– volume: 92
  year: 2015
  publication-title: Phys. Rev. B
– volume: 13
  year: 2017
  publication-title: Small
– volume: 10
  start-page: 587
  year: 2016
  publication-title: Phys. Status Solidi RRL
– volume: 56
  start-page: 5232
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 354
  start-page: 861
  year: 2016
  publication-title: Science
– volume: 20
  start-page: 1661
  year: 2008
  publication-title: Adv. Mater.
– volume: 5
  start-page: 2113
  year: 2018
  publication-title: ACS Photonics.
– volume: 17
  start-page: 2028
  year: 2017
  publication-title: Nano Lett.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 5 1 28 17
  start-page: 4565 488 5277
  year: 2017 2018 2018 2017
  publication-title: J. Mater. Chem. C ACS Appl. Nano Mater. Adv. Funct. Mater. Nano Lett.
– volume: 47
  start-page: 6046
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 9
  start-page: 1076
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2188
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 108
  year: 2017
  publication-title: Nat. Photonics
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 64
  start-page: 702
  year: 2008
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
– volume: 3
  start-page: 180
  year: 2009
  publication-title: Nat. Photonics
– volume: 389
  start-page: 362
  year: 1997
  publication-title: Nature
– volume: 499
  start-page: 316
  year: 2013
  publication-title: Nature
– volume: 14
  start-page: 636
  year: 2015
  publication-title: Nat. Mater.
– volume: 138 8 30
  start-page: 7240 3854
  year: 2016 2016 2018
  publication-title: J. Am. Chem. Soc. Nanoscale Chem. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 9
  start-page: 1336
  year: 2018
  publication-title: Nat. Commun.
– volume: 46 13
  start-page: 5204
  year: 2017 2017
  publication-title: Chem. Soc. Rev. Small
– volume: 27
  start-page: 8066
  year: 2015
  publication-title: Chem. Mater.
– volume: 28
  start-page: 4861
  year: 2016
  publication-title: Adv. Mater.
– volume: 10 8
  start-page: 3648
  year: 2016 2016
  publication-title: ACS Nano Nanoscale
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 355
  start-page: 1288
  year: 2017
  publication-title: Science
– volume: 17
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 5635
  year: 2015
  publication-title: Nano Lett.
– volume: 139
  start-page: 4087
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 24 139 139
  start-page: 2305 2630 6718
  year: 2018 2017 2017
  publication-title: Chem. ‐ Eur. J. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 3 283 9 10
  start-page: 8970 61 8420 187
  year: 2015 2015 2015 2018 2018
  publication-title: J. Mater. Chem. A J. Power Sources ACS Nano ACS Appl. Mater. Interfaces
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 0
  year: 2018
  publication-title: Adv. Mater.
– volume: 27
  start-page: 53
  year: 2015
  publication-title: Adv. Mater.
– volume: 139 11 3
  start-page: 6566 641
  year: 2017 2017 2018
  publication-title: J. Am. Chem. Soc. ACS Nano ACS Energy Lett.
– volume: 148
  start-page: 795
  year: 2017
  publication-title: Monatsh.Chem.
– volume: 25
  start-page: 6801
  year: 2013
  publication-title: Adv. Mater.
– volume: 27 27
  start-page: 6806 5622
  year: 2015 2015
  publication-title: Adv. Mater. Chem. Mater.
– volume: 10
  start-page: 4173
  year: 2018
  publication-title: Nanoscale
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 12
  start-page: 783
  year: 2018
  publication-title: Nat. Photonics
– volume: 28
  start-page: 2315
  year: 2016
  publication-title: Chem. Mater.
– volume: 26 187
  start-page: 5903 69
  year: 2016 2018
  publication-title: Adv. Funct. Mater. Sol. Energy Mater. Sol. Cells
– volume: 27 138
  start-page: 7162
  year: 2015 2016
  publication-title: Adv. Mater. J. Am. Chem. Soc.
– volume: 29 122
  year: 2017 2018
  publication-title: Adv. Mater. J. Phys. Chem. C
– volume: 15
  start-page: 7319
  year: 2015
  publication-title: Nano Lett.
– volume: 113
  start-page: 1993
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 3692
  year: 2015
  publication-title: Nano Lett.
– volume: 26
  start-page: 2435
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 140
  start-page: 562
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 6 29
  start-page: 3945
  year: 2018 2017
  publication-title: J. Mater. Chem. C Adv. Mater.
– volume: 27
  start-page: 7101
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 167
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 31 88
  start-page: 239
  year: 1975 2013
  publication-title: Spectrochim. Acta, Part A Phys. Rev. B
– volume: 459
  start-page: 234
  year: 2009
  publication-title: Nature
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 54 170
  start-page: 9705 541
  year: 2015 2018
  publication-title: Angew. Chem., Int. Ed. Sol. Energy
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 404
  year: 2018
  publication-title: Nat. Electron.
– volume: 7
  start-page: 3603
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 28 52
  start-page: 408
  year: 2018 2018
  publication-title: Adv. Funct. Mater. Nano Energy.
– start-page: SM4N.1
  year: 2017
– volume: 5
  start-page: 4007
  year: 2014
  publication-title: Nat. Commun.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 2722
  year: 2013
  publication-title: Cryst. Growth Des.
– volume: 10
  start-page: 7943
  year: 2016
  publication-title: ACS Nano
– volume: 140
  start-page: 2890
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– year: 1981
– volume: 2
  start-page: 1500
  year: 2018
  publication-title: Joule
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 83
  year: 2019
  publication-title: Chem. Mater.
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 14
  year: 2018
  publication-title: Small
– volume: 10
  start-page: 1072
  year: 2018
  publication-title: Nanoscale
– volume: 71
  start-page: 1
  year: 2010
  publication-title: Mater. Sci. Eng.: R
– volume: 2 20
  start-page: 1969
  year: 2017 2018
  publication-title: ACS Energy Lett. Phys. Chem. Chem. Phys.
– volume: 4
  start-page: 242
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 4 4
  start-page: 2423 3623
  year: 2013 2013
  publication-title: J. Phys. Chem. Lett. J. Phys. Chem. Lett.
– volume: 8
  start-page: 4691
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 6792
  year: 2016
  publication-title: Nanoscale
– volume: 8
  start-page: 506
  year: 2014
  publication-title: Nat. Photonics
– volume: 122
  start-page: 158
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 137 17 18
  start-page: 9230 1007 3538
  year: 2015 2017 2018
  publication-title: J. Am. Chem. Soc. Nano Lett. Nano Lett.
– volume: 46
  start-page: 1766
  year: 2017
  publication-title: Dalton Trans.
– volume: 83
  start-page: 294
  year: 2018
  publication-title: ChemPlusChem
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 8
  start-page: 67
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 9294
  year: 2017
  publication-title: ACS Nano
– volume: 1
  start-page: 710
  year: 2017
  publication-title: Sustainable Energy Fuels
– volume: 6
  start-page: 5580
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 7
  year: 2015
  publication-title: MRS Commun.
– volume: 13
  start-page: 1645
  year: 2019
  publication-title: ACS Nano
– volume: 137
  start-page: 7843
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 9173
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 679
  year: 2015
  publication-title: Nat. Photonics
– volume: 28
  start-page: 9033
  year: 2016
  publication-title: Chem. Mater.
– volume: 16
  start-page: 522
  year: 2017
  publication-title: Nat. Mater.
– volume: 338 2
  start-page: 643 591
  year: 2012 2012
  publication-title: Science Sci. Rep.
– volume: 118
  start-page: 9412
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 573
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 350
  start-page: 1222
  year: 2015
  publication-title: Science
– volume: 7
  start-page: 4059
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 13 23
  start-page: 2782 2199
  year: 2013 2011
  publication-title: Nano Lett. Adv. Mater.
– volume: 5
  start-page: 5404
  year: 2014
  publication-title: Nat. Commun.
– volume: 51
  start-page: 6135
  year: 1995
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 6287
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 292
  start-page: 1897
  year: 2001
  publication-title: Science
– volume: 5 8
  start-page: 398 2999
  year: 2018 2017
  publication-title: ACS Photonics. J. Phys. Chem. Lett.
– volume: 15
  start-page: 1043
  year: 2003
  publication-title: Adv. Mater.
– volume: 1
  start-page: 371
  year: 2017
  publication-title: Joule
– volume: 2
  start-page: 121
  year: 2018
  publication-title: Mater. Chem. Front.
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 26
  start-page: 8478
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1989
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 138
  start-page: 2138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1770
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 5027
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 27
  start-page: 1091
  year: 2018
  publication-title: J. Energy Chem.
– volume: 26 52
  start-page: 6068 9019
  year: 2014 2013
  publication-title: Chem. Mater. Inorg. Chem.
– volume: 9
  start-page: 3007
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 5866
  year: 2016
  publication-title: Nano Lett.
– volume: 10
  start-page: 9720
  year: 2016
  publication-title: ACS Nano
– volume: 5
  start-page: 1035
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 2183
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 26
  start-page: 7122
  year: 2014
  publication-title: Adv. Mater.
– volume: 2
  start-page: 558
  year: 2018
  publication-title: Joule
– volume: 5
  start-page: 1511
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 699
  year: 2016
  publication-title: Nat. Photonics
– volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 9
  start-page: 656
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 116
  start-page: 4558
  year: 2016
  publication-title: Chem. Rev.
– volume: 43 308
  start-page: 481 1274
  year: 2013 2005
  publication-title: Annu. Rev. Mater. Res. Science
– volume: 7 6
  start-page: 2122
  year: 2017 2018
  publication-title: Adv. Energy Mater. J. Mater. Chem. A
– volume: 45 14
  start-page: 6961 2355
  year: 1992 2004
  publication-title: Phys. Rev. B J. Mater. Chem.
– volume: 28
  start-page: 2852
  year: 2016
  publication-title: Chem. Mater.
– volume: 562
  start-page: 245
  year: 2018
  publication-title: Nature
– volume: 28
  start-page: 8983
  year: 2016
  publication-title: Adv. Mater.
– volume: 23
  start-page: 1829
  year: 2011
  publication-title: Adv. Mater.
– volume: 2
  start-page: 2319
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 26 10
  start-page: 8757 2071
  year: 2016 2016
  publication-title: Adv. Funct. Mater. ACS Nano
– volume: 28
  start-page: 8718
  year: 2016
  publication-title: Adv. Mater.
– year: 2018
– volume: 9
  start-page: 4533
  year: 2015
  publication-title: ACS Nano
– volume: 11 137
  year: 2017 2015
  publication-title: ACS Nano J. Am. Chem. Soc.
– volume: 6
  start-page: 8056
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  start-page: 608
  year: 2018
  publication-title: Nat. Commun.
– volume: 9
  start-page: 259
  year: 2015
  publication-title: Nat. Photonics.
– volume: 9
  start-page: 4893
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  start-page: 1043
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 121 122 55
  year: 2017 2018 2016
  publication-title: J. Phys. Chem. C J. Phys. Chem. C Angew. Chem., Int. Ed.
– volume: 138
  start-page: 1010
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 2281
  year: 2017
  publication-title: ACS Photonics.
– volume: 11
  start-page: 2109
  year: 2019
  publication-title: Nanoscale
– volume: 29
  start-page: 3181
  year: 2017
  publication-title: Chem. Mater.
– volume: 26
  start-page: 6238
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 51
  year: 1995
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 2071
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 3
  start-page: 46
  year: 2009
  publication-title: Nat. Photonics
– volume: 10
  start-page: 295
  year: 2016
  publication-title: Nat. Photonics
– volume: 536
  start-page: 312
  year: 2016
  publication-title: Nature
– volume: 9
  start-page: 570
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 8355
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 354
  start-page: 92
  year: 2016
  publication-title: Science
– volume: 119
  start-page: 1763
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 20 6
  start-page: 2696
  year: 2008 2014
  publication-title: Adv. Mater. ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 1571
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 681
  year: 2018
  publication-title: Nat. Photonics
– volume: 137
  start-page: 38
  year: 2019
  publication-title: Mater. Sci. Eng.: R
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 48 37
  start-page: 407
  year: 2009 1998
  publication-title: Jpn. J. Appl. Phys. Inorg. Chem.
– volume: 12
  start-page: 3417
  year: 2018
  publication-title: ACS Nano
– volume: 17
  start-page: 3701
  year: 2017
  publication-title: Nano Lett.
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 2065
  year: 2018
  publication-title: Joule
– volume: 10
  start-page: 333
  year: 2016
  publication-title: Nat. Photonics
– volume: 29
  start-page: 9767
  year: 2017
  publication-title: Chem. Mater.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 1233
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 2219
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 9
  start-page: 444
  year: 2015
  publication-title: Nat. Photonics
– volume: 6
  start-page: 4831
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 2043
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 1611
  year: 2018
  publication-title: ACS Nano
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 138
  start-page: 2649
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 13 12
  start-page: 1704
  year: 2017 2018
  publication-title: Small ACS Nano
– year: 1988 2007 2013
– volume: 705 37
  start-page: 828 1393
  year: 2017 1974
  publication-title: J. Alloys Compd. J. Phys. Soc. Jpn.
– volume: 7 94
  start-page: R3040 1150
  year: 2018 2017
  publication-title: ECS J. Solid State Sci. Technol. J. Chem. Educ.
– volume: 4
  year: 2016
  publication-title: APL Mater.
– volume: 515
  start-page: 96
  year: 2014
  publication-title: Nature
– volume: 12
  start-page: 6170
  year: 2018
  publication-title: ACS Nano
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 3541
  year: 2018
  publication-title: Nat. Commun.
– volume: 10
  start-page: 361
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 6560
  year: 2016
  publication-title: Chem. Mater.
– ident: e_1_2_8_166_1
  doi: 10.1021/acs.chemmater.6b03980
– ident: e_1_2_8_103_1
  doi: 10.1021/cg400645t
– ident: e_1_2_8_235_1
  doi: 10.1039/C4TA04994B
– ident: e_1_2_8_28_1
  doi: 10.1002/anie.201504379
– ident: e_1_2_8_155_1
  doi: 10.1149/2.0101801jss
– ident: e_1_2_8_170_1
  doi: 10.1002/anie.201704739
– ident: e_1_2_8_190_1
  doi: 10.1002/aenm.201702073
– ident: e_1_2_8_187_1
  doi: 10.1021/acs.jpcc.7b03939
– ident: e_1_2_8_124_1
  doi: 10.1038/s41467-018-03169-0
– ident: e_1_2_8_287_1
  doi: 10.1038/ncomms5007
– ident: e_1_2_8_141_1
  doi: 10.1021/acs.jpclett.6b00376
– ident: e_1_2_8_251_1
  doi: 10.1002/adma.200302151
– ident: e_1_2_8_86_1
  doi: 10.1002/adom.201800324
– ident: e_1_2_8_101_2
  doi: 10.1039/C7NR09607K
– ident: e_1_2_8_7_1
  doi: 10.1126/science.aaa5760
– ident: e_1_2_8_278_1
  doi: 10.1039/C7TC03612D
– ident: e_1_2_8_246_1
  doi: 10.1002/adma.201803336
– ident: e_1_2_8_285_1
  doi: 10.1002/adom.201800152
– ident: e_1_2_8_14_1
  doi: 10.1038/s41928-018-0101-5
– ident: e_1_2_8_52_1
  doi: 10.1038/s41586-018-0576-2
– ident: e_1_2_8_2_1
  doi: 10.1039/C6EE01137C
– ident: e_1_2_8_226_1
– ident: e_1_2_8_227_1
  doi: 10.1002/aenm.201501119
– ident: e_1_2_8_24_1
  doi: 10.1002/aenm.201500963
– ident: e_1_2_8_184_1
  doi: 10.1021/jacs.6b03166
– ident: e_1_2_8_260_1
  doi: 10.1146/annurev-matsci-073012-125702
– ident: e_1_2_8_67_1
  doi: 10.1021/acs.chemmater.8b02999
– ident: e_1_2_8_253_1
  doi: 10.1126/science.aad1818
– ident: e_1_2_8_187_3
  doi: 10.1002/anie.201605909
– ident: e_1_2_8_125_1
  doi: 10.1016/j.joule.2018.06.013
– ident: e_1_2_8_178_1
  doi: 10.1039/C5NR08350H
– ident: e_1_2_8_202_1
  doi: 10.1021/acs.nanolett.7b00976
– ident: e_1_2_8_97_1
  doi: 10.1021/acs.chemrev.5b00715
– ident: e_1_2_8_305_1
  doi: 10.1038/nphoton.2008.248
– ident: e_1_2_8_168_1
  doi: 10.1002/adma.201700095
– ident: e_1_2_8_102_2
  doi: 10.1143/JPSJ.37.1393
– ident: e_1_2_8_275_1
  doi: 10.1021/acsnano.6b05775
– ident: e_1_2_8_171_2
  doi: 10.1021/acs.nanolett.8b00560
– ident: e_1_2_8_144_1
  doi: 10.1021/acs.chemmater.5b04231
– ident: e_1_2_8_104_1
  doi: 10.1103/PhysRevB.92.235210
– ident: e_1_2_8_193_2
  doi: 10.1039/C7TA09657G
– ident: e_1_2_8_21_1
  doi: 10.1038/s41566-017-0047-6
– ident: e_1_2_8_309_1
  doi: 10.1039/C8TA06553E
– ident: e_1_2_8_150_1
  doi: 10.1002/chem.201705031
– ident: e_1_2_8_292_1
  doi: 10.1038/38693
– ident: e_1_2_8_182_3
  doi: 10.1021/acs.nanolett.8b00603
– ident: e_1_2_8_209_1
  doi: 10.1002/smll.201700611
– ident: e_1_2_8_273_1
  doi: 10.1002/adma.201806105
– ident: e_1_2_8_69_1
  doi: 10.1039/C6TC05578H
– ident: e_1_2_8_199_1
  doi: 10.1103/PhysRevB.51.14370
– ident: e_1_2_8_302_1
  doi: 10.1126/science.1060367
– ident: e_1_2_8_92_1
  doi: 10.1021/acs.nanolett.8b02811
– ident: e_1_2_8_48_1
  doi: 10.1038/nenergy.2017.135
– ident: e_1_2_8_279_1
  doi: 10.1038/nphoton.2015.156
– ident: e_1_2_8_47_1
  doi: 10.1002/adma.201804771
– ident: e_1_2_8_217_1
  doi: 10.1021/acs.jpcc.7b06268
– ident: e_1_2_8_69_2
  doi: 10.1021/acsanm.7b00212
– ident: e_1_2_8_249_2
  doi: 10.1021/acs.jpcc.8b00998
– ident: e_1_2_8_299_1
  doi: 10.1021/jz5005285
– ident: e_1_2_8_73_3
  doi: 10.1021/acsenergylett.8b00035
– ident: e_1_2_8_29_1
  doi: 10.1039/C5EE03874J
– ident: e_1_2_8_146_1
  doi: 10.1021/acs.jpclett.6b02682
– ident: e_1_2_8_243_1
  doi: 10.1038/nenergy.2016.142
– ident: e_1_2_8_119_1
  doi: 10.1126/science.aag2700
– ident: e_1_2_8_297_1
  doi: 10.1002/adma.201403965
– ident: e_1_2_8_65_1
  doi: 10.1021/acsnano.8b06441
– ident: e_1_2_8_85_1
  doi: 10.1039/C6RA08699C
– ident: e_1_2_8_22_1
  doi: 10.1002/adfm.201601690
– ident: e_1_2_8_197_2
  doi: 10.1039/b403482a
– ident: e_1_2_8_274_1
  doi: 10.1021/acs.jpclett.6b01942
– ident: e_1_2_8_172_2
  doi: 10.1021/acsnano.7b08357
– ident: e_1_2_8_174_1
  doi: 10.1039/C7NR06116A
– ident: e_1_2_8_208_1
  doi: 10.1002/aenm.201700162
– ident: e_1_2_8_248_1
  doi: 10.1002/adma.201602513
– ident: e_1_2_8_250_1
  doi: 10.1039/C7NR09126E
– ident: e_1_2_8_282_1
  doi: 10.1021/acsphotonics.8b00348
– ident: e_1_2_8_224_1
  doi: 10.1002/adma.201705393
– ident: e_1_2_8_55_1
  doi: 10.1038/s41467-018-06425-5
– ident: e_1_2_8_113_1
  doi: 10.1002/aenm.201802060
– ident: e_1_2_8_5_2
  doi: 10.1021/jz4020162
– ident: e_1_2_8_32_1
  doi: 10.1038/nphys3357
– ident: e_1_2_8_200_1
  doi: 10.1021/acs.chemmater.6b00847
– ident: e_1_2_8_73_2
  doi: 10.1021/acsnano.7b05442
– ident: e_1_2_8_79_1
  doi: 10.1039/C7TC02137B
– ident: e_1_2_8_131_1
  doi: 10.1039/C5TA05741H
– ident: e_1_2_8_128_1
  doi: 10.1002/adma.201401991
– ident: e_1_2_8_157_1
  doi: 10.1039/C8TC01214H
– ident: e_1_2_8_62_1
  doi: 10.1021/acsenergylett.8b00835
– ident: e_1_2_8_181_2
  doi: 10.1039/C6NR01828A
– ident: e_1_2_8_10_1
  doi: 10.1039/c2ee23073a
– ident: e_1_2_8_139_1
  doi: 10.1002/adma.201501978
– ident: e_1_2_8_118_1
  doi: 10.1002/aenm.201800525
– ident: e_1_2_8_150_3
  doi: 10.1021/jacs.7b02120
– ident: e_1_2_8_225_1
  doi: 10.1021/jacs.6b10227
– ident: e_1_2_8_153_1
  doi: 10.1039/C8TC00289D
– ident: e_1_2_8_135_1
  doi: 10.1039/C7SE00100B
– ident: e_1_2_8_15_1
  doi: 10.1038/natrevmats.2016.100
– ident: e_1_2_8_229_2
  doi: 10.1021/ic401215x
– ident: e_1_2_8_69_4
  doi: 10.1021/acs.nanolett.7b01544
– ident: e_1_2_8_100_1
  doi: 10.1021/acsenergylett.6b00499
– ident: e_1_2_8_84_1
  doi: 10.1002/adfm.201601571
– ident: e_1_2_8_211_1
  doi: 10.1038/nmat4795
– ident: e_1_2_8_68_1
  doi: 10.1021/acsenergylett.8b02239
– ident: e_1_2_8_293_1
  doi: 10.1038/natrevmats.2016.28
– ident: e_1_2_8_258_1
  doi: 10.1038/nphoton.2015.36
– ident: e_1_2_8_271_1
  doi: 10.1002/adma.201707093
– ident: e_1_2_8_51_1
  doi: 10.1038/s41566-018-0260-y
– ident: e_1_2_8_126_1
  doi: 10.1021/jacs.7b08628
– ident: e_1_2_8_176_1
  doi: 10.1002/adma.201603885
– ident: e_1_2_8_175_1
  doi: 10.1002/adfm.201603734
– ident: e_1_2_8_207_1
  doi: 10.1038/s41467-018-03757-0
– ident: e_1_2_8_244_1
  doi: 10.1039/C6CP08177K
– ident: e_1_2_8_6_1
  doi: 10.1126/science.1243982
– ident: e_1_2_8_228_1
  doi: 10.1002/adma.201605005
– ident: e_1_2_8_45_1
  doi: 10.1038/ncomms15684
– ident: e_1_2_8_23_1
  doi: 10.1021/nl401011x
– ident: e_1_2_8_77_1
  doi: 10.1021/acsnano.7b08201
– ident: e_1_2_8_147_2
  doi: 10.1021/acs.jpclett.7b01042
– ident: e_1_2_8_272_1
  doi: 10.1021/jacs.7b10647
– ident: e_1_2_8_34_1
  doi: 10.1021/acsenergylett.7b00926
– ident: e_1_2_8_27_1
  doi: 10.1021/jz500113x
– ident: e_1_2_8_276_1
  doi: 10.1002/adma.201606859
– ident: e_1_2_8_151_1
  doi: 10.1039/C7TA04690A
– ident: e_1_2_8_277_2
  doi: 10.1002/smll.201702107
– ident: e_1_2_8_304_1
  doi: 10.1038/nature01939
– ident: e_1_2_8_214_1
  doi: 10.1126/science.aaf9717
– ident: e_1_2_8_73_1
  doi: 10.1021/jacs.7b02817
– ident: e_1_2_8_173_1
  doi: 10.1021/acsnano.6b03863
– ident: e_1_2_8_241_1
  doi: 10.1002/advs.201500201
– ident: e_1_2_8_115_1
  doi: 10.1021/acsenergylett.6b00341
– ident: e_1_2_8_189_1
  doi: 10.1016/j.jechem.2017.10.013
– ident: e_1_2_8_11_1
  doi: 10.1038/nphoton.2016.62
– ident: e_1_2_8_288_1
  doi: 10.1038/nphoton.2015.82
– ident: e_1_2_8_112_1
  doi: 10.1021/acs.jpclett.6b00002
– ident: e_1_2_8_143_1
  doi: 10.1021/acs.nanolett.7b04659
– ident: e_1_2_8_259_1
  doi: 10.1039/C8NR09885A
– ident: e_1_2_8_188_1
  doi: 10.1039/C8TA02288G
– ident: e_1_2_8_284_1
  doi: 10.1039/C6DT04758K
– ident: e_1_2_8_71_1
  doi: 10.1002/adma.201706226
– ident: e_1_2_8_39_1
  doi: 10.1038/nenergy.2016.178
– ident: e_1_2_8_110_1
  doi: 10.1021/acsenergylett.7b00707
– ident: e_1_2_8_308_1
  doi: 10.1021/acs.chemmater.7b00260
– ident: e_1_2_8_235_4
  doi: 10.1007/978-981-10-5924-7_5
– ident: e_1_2_8_262_1
  doi: 10.1002/adma.200702846
– ident: e_1_2_8_139_2
  doi: 10.1021/acs.chemmater.5b01989
– ident: e_1_2_8_255_1
  doi: 10.1364/OE.18.005912
– ident: e_1_2_8_145_1
  doi: 10.1039/C6MH00519E
– ident: e_1_2_8_198_1
  doi: 10.1038/nnano.2016.110
– ident: e_1_2_8_133_1
  doi: 10.1039/C6TA08332C
– ident: e_1_2_8_4_1
  doi: 10.1557/mrc.2015.6
– ident: e_1_2_8_127_1
  doi: 10.1002/aenm.201701136
– ident: e_1_2_8_167_1
  doi: 10.1021/jacs.6b13079
– ident: e_1_2_8_181_1
  doi: 10.1021/acsnano.5b08193
– ident: e_1_2_8_262_2
  doi: 10.1021/am503889z
– ident: e_1_2_8_182_2
  doi: 10.1021/acs.nanolett.6b04381
– ident: e_1_2_8_204_1
  doi: 10.1002/aenm.201700979
– ident: e_1_2_8_182_1
  doi: 10.1021/jacs.5b05404
– ident: e_1_2_8_291_1
  doi: 10.1002/adom.201700157
– ident: e_1_2_8_9_1
  doi: 10.1002/aenm.201700623
– ident: e_1_2_8_61_1
  doi: 10.1038/nphoton.2016.185
– ident: e_1_2_8_28_2
  doi: 10.1016/j.solener.2018.05.092
– ident: e_1_2_8_206_1
  doi: 10.1021/acs.jpclett.7b03294
– ident: e_1_2_8_147_1
  doi: 10.1021/acsphotonics.7b00837
– ident: e_1_2_8_263_1
  doi: 10.1021/ja507086b
– ident: e_1_2_8_50_1
  doi: 10.1039/C8EE00995C
– ident: e_1_2_8_149_1
  doi: 10.1021/acs.jpcc.7b10370
– ident: e_1_2_8_70_1
  doi: 10.1063/1.5023797
– ident: e_1_2_8_74_1
  doi: 10.1021/acsnano.7b04683
– ident: e_1_2_8_17_1
  doi: 10.1002/smtd.201700163
– ident: e_1_2_8_185_2
  doi: 10.1021/jacs.6b08178
– ident: e_1_2_8_35_1
  doi: 10.1126/sciadv.aao4204
– ident: e_1_2_8_129_1
  doi: 10.1016/0584-8539(75)80016-X
– ident: e_1_2_8_183_2
  doi: 10.1021/jacs.5b11199
– ident: e_1_2_8_215_1
  doi: 10.1039/C5EE03255E
– ident: e_1_2_8_3_1
  doi: 10.1038/nphoton.2014.134
– ident: e_1_2_8_148_1
  doi: 10.1021/jacs.7b02227
– ident: e_1_2_8_136_1
  doi: 10.1021/ja508464w
– ident: e_1_2_8_233_1
  doi: 10.1021/acs.chemmater.6b00433
– ident: e_1_2_8_105_1
  doi: 10.1021/nl5048779
– ident: e_1_2_8_306_1
  doi: 10.1021/acs.nanolett.5b02595
– ident: e_1_2_8_40_1
  doi: 10.1021/jacs.7b07949
– ident: e_1_2_8_218_1
  doi: 10.1021/acs.jpcc.6b06853
– ident: e_1_2_8_88_1
  doi: 10.1021/jacs.7b08818
– ident: e_1_2_8_94_1
  doi: 10.1038/ncomms9056
– ident: e_1_2_8_266_1
  doi: 10.1021/acsami.8b00048
– ident: e_1_2_8_99_1
  doi: 10.1021/jacs.7b09379
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.201706186
– ident: e_1_2_8_117_1
  doi: 10.1021/acsenergylett.7b00258
– ident: e_1_2_8_132_1
  doi: 10.1021/jp5126624
– ident: e_1_2_8_1_1
  doi: 10.1126/science.1228604
– ident: e_1_2_8_254_1
  doi: 10.1038/ncomms15640
– ident: e_1_2_8_159_1
  doi: 10.1021/jacs.5b12124
– ident: e_1_2_8_177_1
  doi: 10.1021/acs.chemmater.6b02939
– ident: e_1_2_8_303_1
  doi: 10.1021/nl304362u
– ident: e_1_2_8_56_1
  doi: 10.1038/s41467-018-02978-7
– ident: e_1_2_8_260_2
  doi: 10.1126/science.1108712
– ident: e_1_2_8_163_1
  doi: 10.1002/adma.201700775
– ident: e_1_2_8_230_1
  doi: 10.1039/C5CP03102H
– ident: e_1_2_8_289_1
  doi: 10.1038/s41566-017-0012-4
– ident: e_1_2_8_109_1
  doi: 10.1021/acsenergylett.7b00751
– ident: e_1_2_8_136_2
  doi: 10.1016/j.solmat.2016.09.022
– ident: e_1_2_8_180_2
  doi: 10.1021/acsnano.5b06295
– ident: e_1_2_8_195_1
  doi: 10.1021/acs.chemmater.6b02151
– ident: e_1_2_8_1_2
  doi: 10.1038/srep00591
– ident: e_1_2_8_232_1
  doi: 10.1002/pssr.201600166
– ident: e_1_2_8_93_1
  doi: 10.1002/adma.201503573
– ident: e_1_2_8_16_1
  doi: 10.1038/nphoton.2016.41
– ident: e_1_2_8_78_1
  doi: 10.1039/C8TC01837E
– ident: e_1_2_8_257_1
  doi: 10.1038/nature08003
– ident: e_1_2_8_106_1
  doi: 10.1039/C5TA06398A
– ident: e_1_2_8_44_1
  doi: 10.1039/C7EE01145H
– ident: e_1_2_8_102_1
  doi: 10.1016/j.jallcom.2017.02.147
– ident: e_1_2_8_49_1
  doi: 10.1002/adfm.201706923
– ident: e_1_2_8_111_1
  doi: 10.1002/aenm.201502458
– ident: e_1_2_8_212_1
  doi: 10.1016/j.nanoen.2014.04.017
– ident: e_1_2_8_101_3
  doi: 10.1039/C7NR07776A
– ident: e_1_2_8_277_1
  doi: 10.1039/C6CS00896H
– ident: e_1_2_8_87_1
  doi: 10.1002/anie.201700600
– ident: e_1_2_8_130_1
  doi: 10.1143/JJAP.48.112402
– ident: e_1_2_8_140_1
  doi: 10.1021/acs.chemmater.6b03310
– ident: e_1_2_8_26_1
  doi: 10.1021/acsenergylett.7b00442
– ident: e_1_2_8_30_1
  doi: 10.1039/C6EE03014A
– ident: e_1_2_8_98_1
  doi: 10.1107/S0108768108032734
– ident: e_1_2_8_235_5
  doi: 10.1021/acsami.8b18200
– ident: e_1_2_8_20_1
  doi: 10.1038/nmat4271
– ident: e_1_2_8_120_1
  doi: 10.1103/PhysRevB.51.6135
– ident: e_1_2_8_210_1
  doi: 10.1002/aenm.201702498
– ident: e_1_2_8_235_3
  doi: 10.1021/acsnano.5b03265
– ident: e_1_2_8_255_2
  doi: 10.1002/adma.201601369
– ident: e_1_2_8_264_1
  doi: 10.1021/acs.jpcc.5b06211
– ident: e_1_2_8_219_1
  doi: 10.1021/acs.jpclett.6b01576
– ident: e_1_2_8_108_1
  doi: 10.1039/C7TA11154A
– ident: e_1_2_8_307_1
  doi: 10.1021/acsenergylett.7b00547
– ident: e_1_2_8_155_2
  doi: 10.1021/acs.jchemed.7b00144
– ident: e_1_2_8_154_1
  doi: 10.1039/C7CS00886D
– ident: e_1_2_8_53_1
  doi: 10.1038/s41586-018-0575-3
– ident: e_1_2_8_220_1
  doi: 10.1002/adma.201605290
– ident: e_1_2_8_270_1
  doi: 10.1021/acs.jpclett.7b01992
– ident: e_1_2_8_231_1
  doi: 10.1063/1.4748888
– ident: e_1_2_8_205_1
  doi: 10.1002/adma.201704217
– ident: e_1_2_8_300_1
  doi: 10.1038/nnano.2014.149
– ident: e_1_2_8_238_1
  doi: 10.1002/anie.201405334
– ident: e_1_2_8_245_1
  doi: 10.1002/aenm.201602358
– ident: e_1_2_8_38_2
  doi: 10.1016/j.nanoen.2018.08.012
– ident: e_1_2_8_229_1
  doi: 10.1021/cm503122j
– ident: e_1_2_8_58_1
  doi: 10.1021/acs.nanolett.8b00789
– ident: e_1_2_8_242_1
  doi: 10.1038/nature12340
– ident: e_1_2_8_256_1
  doi: 10.1038/nphoton.2009.32
– ident: e_1_2_8_25_1
  doi: 10.1039/C5EE01265A
– ident: e_1_2_8_57_1
  doi: 10.1039/C8EE00293B
– ident: e_1_2_8_101_1
  doi: 10.1021/acs.jpcc.7b12464
– ident: e_1_2_8_239_1
  doi: 10.1002/adfm.201302090
– ident: e_1_2_8_268_1
  doi: 10.1038/nature13829
– ident: e_1_2_8_82_1
  doi: 10.1002/smll.201700364
– ident: e_1_2_8_186_1
  doi: 10.1002/adma.201606666
– ident: e_1_2_8_252_1
  doi: 10.1038/nphoton.2016.269
– ident: e_1_2_8_213_1
  doi: 10.1021/acs.nanolett.7b00050
– ident: e_1_2_8_152_1
  doi: 10.1002/adfm.201600109
– ident: e_1_2_8_203_1
  doi: 10.1021/jacs.7b12551
– ident: e_1_2_8_298_1
  doi: 10.1021/nn504856g
– volume: 5
  start-page: 201501310
  year: 2015
  ident: e_1_2_8_31_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_8_192_1
  doi: 10.1021/jacs.8b00542
– ident: e_1_2_8_89_1
  doi: 10.1039/C7TC01998J
– ident: e_1_2_8_158_1
  doi: 10.1021/acs.chemmater.7b00478
– ident: e_1_2_8_134_1
  doi: 10.1021/jacs.6b10734
– ident: e_1_2_8_33_1
  doi: 10.1016/j.mser.2018.12.001
– ident: e_1_2_8_123_1
  doi: 10.1002/adfm.201706401
– ident: e_1_2_8_66_1
  doi: 10.1002/adma.201600784
– ident: e_1_2_8_187_2
  doi: 10.1021/acs.jpcc.8b02699
– start-page: SM4N.1
  volume-title: Lasers and Electro‐Optics
  year: 2017
  ident: e_1_2_8_295_1
– ident: e_1_2_8_261_1
  doi: 10.1016/j.mser.2010.07.001
– ident: e_1_2_8_249_1
  doi: 10.1002/adma.201605317
– ident: e_1_2_8_201_1
  doi: 10.1126/science.aal4211
– ident: e_1_2_8_80_1
  doi: 10.1002/adma.201703758
– ident: e_1_2_8_121_1
  doi: 10.1016/j.joule.2017.07.017
– ident: e_1_2_8_265_1
  doi: 10.1021/acs.chemmater.5b03769
– ident: e_1_2_8_59_1
  doi: 10.1038/s41467-018-03049-7
– ident: e_1_2_8_137_1
  doi: 10.1016/j.joule.2018.01.009
– ident: e_1_2_8_42_1
  doi: 10.1021/jacs.7b13229
– ident: e_1_2_8_294_3
  doi: 10.1007/978-3-642-36705-2
– ident: e_1_2_8_165_1
  doi: 10.1021/jacs.5b05602
– ident: e_1_2_8_286_1
  doi: 10.1038/ncomms6404
– ident: e_1_2_8_91_1
  doi: 10.1002/adma.201707235
– ident: e_1_2_8_301_1
  doi: 10.1002/adma.200800123
– ident: e_1_2_8_114_1
  doi: 10.1002/aenm.201502202
– ident: e_1_2_8_84_2
  doi: 10.1016/j.solmat.2018.07.023
– ident: e_1_2_8_76_1
  doi: 10.1021/acsphotonics.7b01567
– ident: e_1_2_8_36_1
  doi: 10.1002/aenm.201703246
– ident: e_1_2_8_63_1
  doi: 10.1021/acs.jpclett.8b00600
– ident: e_1_2_8_13_1
  doi: 10.1002/smll.201701770
– ident: e_1_2_8_90_1
  doi: 10.1021/acsnano.8b02793
– ident: e_1_2_8_122_1
  doi: 10.1126/sciadv.1700841
– ident: e_1_2_8_162_1
  doi: 10.1002/cplu.201800014
– volume-title: Physics of Semiconductor Devices
  year: 1981
  ident: e_1_2_8_280_1
– ident: e_1_2_8_171_1
  doi: 10.1002/smll.201703762
– ident: e_1_2_8_96_1
  doi: 10.1021/acsphotonics.7b00520
– ident: e_1_2_8_221_1
  doi: 10.1021/acs.jpclett.6b02594
– ident: e_1_2_8_222_1
  doi: 10.1021/acsami.6b11393
– ident: e_1_2_8_191_2
  doi: 10.1039/C8CP06418K
– ident: e_1_2_8_64_1
  doi: 10.1038/s41467-018-05909-8
– ident: e_1_2_8_142_1
  doi: 10.1021/jacs.5b13294
– ident: e_1_2_8_197_1
  doi: 10.1103/PhysRevB.45.6961
– ident: e_1_2_8_138_1
  doi: 10.1007/s00706-017-1933-9
– ident: e_1_2_8_153_2
  doi: 10.1002/adma.201602940
– ident: e_1_2_8_216_1
  doi: 10.1021/acs.jpclett.5b02597
– ident: e_1_2_8_235_2
  doi: 10.1016/j.jpowsour.2015.02.084
– ident: e_1_2_8_37_1
  doi: 10.1016/j.joule.2018.04.012
– ident: e_1_2_8_161_1
  doi: 10.1021/acsnano.5b01154
– ident: e_1_2_8_234_1
  doi: 10.1002/adfm.201604818
– ident: e_1_2_8_107_1
  doi: 10.1021/acs.jpclett.7b00134
– ident: e_1_2_8_179_1
  doi: 10.1021/acs.chemmater.7b03751
– ident: e_1_2_8_160_1
  doi: 10.1021/acs.nanolett.6b02688
– ident: e_1_2_8_164_1
  doi: 10.1021/acs.nanolett.5b02404
– ident: e_1_2_8_180_1
  doi: 10.1002/adfm.201604580
– ident: e_1_2_8_23_2
  doi: 10.1002/adma.201100423
– ident: e_1_2_8_191_1
  doi: 10.1021/acsenergylett.7b00654
– ident: e_1_2_8_247_1
  doi: 10.1002/adma.201004324
– ident: e_1_2_8_116_1
  doi: 10.1002/aenm.201700946
– ident: e_1_2_8_183_1
  doi: 10.1021/acsnano.7b05191
– ident: e_1_2_8_281_1
  doi: 10.1002/adma.201600225
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.1600789113
– ident: e_1_2_8_5_1
  doi: 10.1021/jz400892a
– ident: e_1_2_8_184_3
  doi: 10.1021/acs.chemmater.8b01283
– ident: e_1_2_8_43_1
  doi: 10.1038/nature18306
– ident: e_1_2_8_236_1
  doi: 10.1063/1.4962143
– ident: e_1_2_8_81_1
  doi: 10.1002/smll.201702523
– ident: e_1_2_8_156_1
  doi: 10.1002/smll.201702433
– ident: e_1_2_8_185_1
  doi: 10.1002/adma.201502567
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201703487
– ident: e_1_2_8_240_1
  doi: 10.1021/jp502696w
– ident: e_1_2_8_194_1
  doi: 10.1039/C7QM00472A
– ident: e_1_2_8_196_1
  doi: 10.1002/anie.201406466
– volume-title: Fundamentals of Photonics
  year: 2007
  ident: e_1_2_8_294_2
– ident: e_1_2_8_75_1
  doi: 10.1002/adma.201605993
– ident: e_1_2_8_83_1
  doi: 10.1021/acs.jpclett.8b00700
– ident: e_1_2_8_130_2
  doi: 10.1021/ic970659e
– ident: e_1_2_8_169_1
  doi: 10.1021/acsami.7b03445
– ident: e_1_2_8_267_1
  doi: 10.1002/adma.201301603
– ident: e_1_2_8_41_1
  doi: 10.1021/acsenergylett.7b00508
– ident: e_1_2_8_150_2
  doi: 10.1021/jacs.6b09645
– ident: e_1_2_8_237_1
  doi: 10.1021/jacs.5b03796
– ident: e_1_2_8_290_1
  doi: 10.1002/adom.201600704
– ident: e_1_2_8_72_1
  doi: 10.1126/sciadv.aaq0208
– ident: e_1_2_8_60_1
  doi: 10.1021/acsnano.7b09148
– ident: e_1_2_8_172_1
  doi: 10.1002/smll.201603996
– ident: e_1_2_8_283_1
  doi: 10.1021/acsnano.6b08194
– ident: e_1_2_8_54_1
  doi: 10.1038/s41566-018-0283-4
– ident: e_1_2_8_8_1
– ident: e_1_2_8_223_1
  doi: 10.1021/acs.jpclett.5b00968
– ident: e_1_2_8_95_1
  doi: 10.1021/acs.jpclett.5b02460
– ident: e_1_2_8_38_1
  doi: 10.1002/adfm.201803269
– ident: e_1_2_8_269_1
  doi: 10.1038/s41467-018-07383-8
– ident: e_1_2_8_184_2
  doi: 10.1039/C6NR03428D
– ident: e_1_2_8_193_1
  doi: 10.1002/aenm.201601307
– volume-title: Lasers
  year: 1988
  ident: e_1_2_8_294_1
– ident: e_1_2_8_296_1
  doi: 10.1021/jz500279b
– ident: e_1_2_8_46_1
  doi: 10.1021/jacs.5b11740
– ident: e_1_2_8_69_3
  doi: 10.1002/adfm.201801193
– ident: e_1_2_8_129_2
  doi: 10.1103/PhysRevB.88.165203
SSID ssj0009606
Score 2.5898302
SecondaryResourceType review_article
Snippet Organic–inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in...
Organic-inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1807095
SubjectTerms all‐inorganic perovskites
Cations
Cesium
Current voltage characteristics
Devices
Diodes
Energy conversion efficiency
Excitons
Ion migration
Lasing
layered perovskites
light emission from perovskites
Market entry
Materials science
Morphology
Optoelectronic devices
Organic light emitting diodes
perovskite photonic devices
Perovskites
Photovoltaic cells
Quantum efficiency
stability of inorganic perovskites
Toxicity
Title Inorganic and Layered Perovskites for Optoelectronic Devices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201807095
https://www.ncbi.nlm.nih.gov/pubmed/31012172
https://www.proquest.com/docview/2315585655
https://www.proquest.com/docview/2213151394
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ikz54v1SnVBB8ytamSS_gy3COKU5FHOytpEn6orRj7QT99Z70tk0RQd9ackJzOSf5TprzHYTOfU0CJhXHVPMMUcEkDiRT2IsYLI3gvVmejkYe3ruDEb0ds_FCFH_JD9EcuGnLKNZrbeA8yjpz0lAuC94g2welDXSUub6wpVHR05w_SsPzgmzPYThwqV-zNlqks1x9eVf6BjWXkWux9fQ3Ea8bXd44eWnP8qgtPr7wOf6nV1too8KlZrdUpG20opIdtL7AVriLLm-SMgeUMHkizTv-rvN8mo9qmr5l-hA4MwEBmw-TPJ0n1zF7qliL9tCof_18NcBV8gUsAKMwLMFvI8oDeBILi8ZExRymlfi2oraUgR87jNue4j64JFxGjEvqOtSPOJcktpTr7KPVJE3UITIltYWQ4Mcwpal0nCDmXiw8m0TSBm2IDYTrwQ9FxUyuE2S8hiWnMgn1qITNqBjoopGflJwcP0q26rkMK9vMQkC0DJwkl0HxWVMMVqV_lfBEpTOQITZIATqmBjoodaD5lKMp0QD3GYgUM_lLG8Jub9ht3o7-UukYrcFzUIZAttBqPp2pE8BCeXRa6PsnnwT-xA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB6l4dByoA8opKR0K7XiZBKvd_2QyiEiREnzoEKJlJu73l1fQA4iCSj9V_0r_UXM2rFDWqFKlXLo0d6xPdp5r3e_AfjkGxAwpYXFDM4Qk1xZgeLa8iKOrhGrt7pnTiP3B257xL6O-bgEP_OzMBk-RLHgZiwj9dfGwM2CdG2FGipUChxk-6i1Qb6vsqsX91i1TU87TRTxZ0pb58OztrVsLGBJjL_cUliTUO1h6I1lncVUxwJZpr6tma1U4McOF7anhY_ptlARF4q5DvMjIRSN69p18L3PYMu0ETdw_c3LFWKVKQhSeD-HW4HL_Bwnsk5r6_yux8E_ktv1XDkNdq2X8CufpmyPy9XJfBadyB-_IUj-V_P4CnaWqTdpZLbyGko6eQPbjwAZd-FLJ8naXEkiEkV6YmFamZJv-nZyNzXr3FOCST65uJlNVv2DSFOn7nYPRhth_y2Uk0miD4AoZkupsFTj2qAFOUEsvFh6No2UjQofV8DKpR3KJfi66QFyHWaw0TQ0UggLKVTguKC_yWBHnqSs5soTLt3PNMSknWMd6HIc_lgMo-Mwf4NEoidzpKE2UmEBwCqwnyld8SnHoL5halsBmqrOX3gIG81-o7h69y8PfYDn7WG_F_Y6g-4hvMD7QXbiswrl2e1cv8fUbxYdpcZG4PumtfIB0iZdaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BlRAcaMtzC6VGKuIUSBw7D6k9rBpWLG8hkLgFx48LKLtid0H0V_FX-EeMk022S4UqVeLAMbGTjOx5fOPY3wB8jywJmNLCYZZniEmunFhx7YQZR9eI2Zsb2tPIR8fB3gXbv-SXE_BYnYUp-SHqBTdrGYW_tgbeVWZnRBoqVMEb5EWotHG1rfJAP9xj0tb72U5whjcpbe2e_9pzhnUFHInhlzsKUxKqQ4y8RrrMUG0ESkwjTzNPqTgyPhdeqEWEaFuojAvFAp9FmRCKGlcHPr53Ej6wwI1tsYjkbERYZfOBgt3P504csKiiiXTpzri842HwL2w7DpWLWNf6CE_VKJVbXK63B_1sW_5-QSD5nobxE8wNgTdplpbyGSZ0Pg-zf9AxLsCPdl4WuZJE5IocigdbyJSc6tvOXc-ucvcIQnxy0u13RtWDSKILZ7sIF28i_hJM5Z1crwBRzJNSYaLGteUK8mMjQiNDj2bKQ3U3DXCqyU7lkHrdVgC5SUvSaJraWUjrWWjAVt2_W5KOvNpzrdKddOh8eilCdo5ZYMCxeaNuRrdh_wWJXHcG2Id62AvhP2vAcqlz9ad8y_mGwLYBtNCcf8iQNpOjZn315X8e-gbTp0krPWwfH6zCDN6Oy-OeazDVvx3or4j7-tl6YWoErt5aKZ8BOV5cGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inorganic+and+Layered+Perovskites+for+Optoelectronic+Devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Fakharuddin%2C+Azhar&rft.au=Shabbir%2C+Umair&rft.au=Qiu%2C+Weiming&rft.au=Iqbal%2C+Tahir&rft.date=2019-11-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=31&rft.issue=47&rft.spage=e1807095&rft_id=info:doi/10.1002%2Fadma.201807095&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon