A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency
Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic‐perovskite/organic four‐terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr3 perovskite solar cell (pero‐SC) a...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 21; pp. e1800855 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic‐perovskite/organic four‐terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr3 perovskite solar cell (pero‐SC) as the top cell and an OSC as bottom cell is constructed. The high‐quality CsPbBr3 photoactive layer of the planar pero‐SC is prepared with a dual‐source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr2 with a low evaporation rate. The resultant opaque planar pero‐SC exhibits an ultrahigh open‐circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr3‐based planar pero‐SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero‐SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero‐SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV‐light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic‐perovskite/organic TSC.
A wide‐bandgap and low‐defect‐concentration CsPbBr3 film is fabricated using the vacuum‐evaporation method, and the related solar cell shows a high efficiency and robust photostability. When constructing inorganic‐perovskite/organic tandem solar cells, the top CsPbBr3‐based semitransparent perovskite solar cells can be used to filter ultraviolet (UV) light and overcome the UV‐light stability problem of the organic solar cells; they also show a record efficiency of 14.03%. |
---|---|
AbstractList | Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic‐perovskite/organic four‐terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr3 perovskite solar cell (pero‐SC) as the top cell and an OSC as bottom cell is constructed. The high‐quality CsPbBr3 photoactive layer of the planar pero‐SC is prepared with a dual‐source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr2 with a low evaporation rate. The resultant opaque planar pero‐SC exhibits an ultrahigh open‐circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr3‐based planar pero‐SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero‐SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero‐SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV‐light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic‐perovskite/organic TSC. Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic-perovskite/organic four-terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr3 perovskite solar cell (pero-SC) as the top cell and an OSC as bottom cell is constructed. The high-quality CsPbBr3 photoactive layer of the planar pero-SC is prepared with a dual-source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr2 with a low evaporation rate. The resultant opaque planar pero-SC exhibits an ultrahigh open-circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr3 -based planar pero-SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero-SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero-SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV-light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic-perovskite/organic TSC.Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic-perovskite/organic four-terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr3 perovskite solar cell (pero-SC) as the top cell and an OSC as bottom cell is constructed. The high-quality CsPbBr3 photoactive layer of the planar pero-SC is prepared with a dual-source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr2 with a low evaporation rate. The resultant opaque planar pero-SC exhibits an ultrahigh open-circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr3 -based planar pero-SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero-SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero-SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV-light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic-perovskite/organic TSC. Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic-perovskite/organic four-terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr perovskite solar cell (pero-SC) as the top cell and an OSC as bottom cell is constructed. The high-quality CsPbBr photoactive layer of the planar pero-SC is prepared with a dual-source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr with a low evaporation rate. The resultant opaque planar pero-SC exhibits an ultrahigh open-circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr -based planar pero-SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero-SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero-SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV-light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic-perovskite/organic TSC. Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic‐perovskite/organic four‐terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr 3 perovskite solar cell (pero‐SC) as the top cell and an OSC as bottom cell is constructed. The high‐quality CsPbBr 3 photoactive layer of the planar pero‐SC is prepared with a dual‐source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr 2 with a low evaporation rate. The resultant opaque planar pero‐SC exhibits an ultrahigh open‐circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr 3 ‐based planar pero‐SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero‐SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero‐SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV‐light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic‐perovskite/organic TSC. Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic‐perovskite/organic four‐terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr3 perovskite solar cell (pero‐SC) as the top cell and an OSC as bottom cell is constructed. The high‐quality CsPbBr3 photoactive layer of the planar pero‐SC is prepared with a dual‐source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr2 with a low evaporation rate. The resultant opaque planar pero‐SC exhibits an ultrahigh open‐circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr3‐based planar pero‐SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero‐SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero‐SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV‐light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic‐perovskite/organic TSC. A wide‐bandgap and low‐defect‐concentration CsPbBr3 film is fabricated using the vacuum‐evaporation method, and the related solar cell shows a high efficiency and robust photostability. When constructing inorganic‐perovskite/organic tandem solar cells, the top CsPbBr3‐based semitransparent perovskite solar cells can be used to filter ultraviolet (UV) light and overcome the UV‐light stability problem of the organic solar cells; they also show a record efficiency of 14.03%. |
Author | Li, Yongfang Hou, Jianhui Chen, Weijie Xu, Guiying Zhang, Jingwen Xue, Rongming Li, Yaowen Zhou, Yinhua |
Author_xml | – sequence: 1 givenname: Weijie surname: Chen fullname: Chen, Weijie organization: Soochow University – sequence: 2 givenname: Jingwen surname: Zhang fullname: Zhang, Jingwen organization: Soochow University – sequence: 3 givenname: Guiying surname: Xu fullname: Xu, Guiying organization: Soochow University – sequence: 4 givenname: Rongming surname: Xue fullname: Xue, Rongming organization: Soochow University – sequence: 5 givenname: Yaowen orcidid: 0000-0001-7229-582X surname: Li fullname: Li, Yaowen email: ywli@suda.edu.cn organization: Soochow University – sequence: 6 givenname: Yinhua surname: Zhou fullname: Zhou, Yinhua organization: Huazhong University of Science and Technology – sequence: 7 givenname: Jianhui surname: Hou fullname: Hou, Jianhui organization: Chinese Academy of Sciences – sequence: 8 givenname: Yongfang orcidid: 0000-0002-2565-2748 surname: Li fullname: Li, Yongfang organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29633397$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9rFDEYhoNU7LZ69SgBEbzMmsmPmclxWFstrKxQew6ZzDfb1EyyJrMr-1f4L5tltwoF8fRdnufl5Xsv0JkPHhB6XZJ5SQj9oPtRzykpG0IaIZ6hWSloWXAixRmaEclEISvenKOLlB4IIbIi1Qt0TmXFGJP1DP1q8S2Mdorap42O4Cd840Nca28N_gox7NJ3OwG-tm7EQ4h4tYNowmj9Gt-5rO1scDDhpV3fH9Q06c46O-1xGPDqlHMbnI54Ac4lrH2PW3NvYXeIKPmcsHf4ahisseDN_iV6PmiX4NXpXqK766tvi8_FcvXpZtEuC8OZFEUHHS2pHvq67yvR9BIEACGdETUVNeeGsarnRlSGltUAVcflAJ2UHPqm5j1hl-j9MXcTw48tpEmNNpncUHsI26QooSxHCSIy-vYJ-hC20ed2meI140JImak3J2rbjdCrTbSjjnv1-OoM8CNgYkgpwqCMnfRkg89ftE6VRB0WVYdF1Z9FszZ_oj0m_1OQR-GndbD_D63aj1_av-5vUEqzyA |
CitedBy_id | crossref_primary_10_1039_D0TA04366D crossref_primary_10_3390_en17081833 crossref_primary_10_1016_j_joule_2019_07_015 crossref_primary_10_1002_cjoc_202200437 crossref_primary_10_1002_adfm_202307471 crossref_primary_10_1002_solr_202400172 crossref_primary_10_1021_acs_macromol_4c01082 crossref_primary_10_1039_D2TA00248E crossref_primary_10_1088_2752_5724_acd56c crossref_primary_10_1021_acsami_4c02043 crossref_primary_10_1021_acsami_8b13928 crossref_primary_10_1021_acsami_1c00387 crossref_primary_10_1186_s11671_022_03708_1 crossref_primary_10_1039_D0NR04365F crossref_primary_10_1002_adma_202104661 crossref_primary_10_1002_anie_201901081 crossref_primary_10_1016_j_solener_2020_02_025 crossref_primary_10_3390_coatings13050863 crossref_primary_10_1016_j_cej_2021_128816 crossref_primary_10_1039_C8TA11293B crossref_primary_10_1016_j_nanoen_2024_109513 crossref_primary_10_1038_s41467_019_12613_8 crossref_primary_10_1088_1361_6528_abde03 crossref_primary_10_1016_j_joule_2020_06_006 crossref_primary_10_1039_D1TA04362E crossref_primary_10_1002_adma_202006545 crossref_primary_10_1016_j_solener_2021_08_023 crossref_primary_10_1016_j_solener_2021_04_042 crossref_primary_10_1039_D1TC02413B crossref_primary_10_1021_acsami_9b17164 crossref_primary_10_1039_D3EE02822D crossref_primary_10_1021_acsami_4c05092 crossref_primary_10_1002_aenm_202201306 crossref_primary_10_1002_aenm_202101973 crossref_primary_10_1039_D1CS00841B crossref_primary_10_1002_adfm_201906756 crossref_primary_10_1186_s11671_018_2714_z crossref_primary_10_1002_aenm_201802832 crossref_primary_10_1021_acsaem_2c01554 crossref_primary_10_1002_smll_202101902 crossref_primary_10_1016_j_joule_2022_11_004 crossref_primary_10_1021_acsami_1c10657 crossref_primary_10_1039_C9TA08465G crossref_primary_10_1002_aenm_202202643 crossref_primary_10_1021_acsami_0c11994 crossref_primary_10_1039_C8TA03811B crossref_primary_10_1021_acsenergylett_0c00417 crossref_primary_10_1021_acs_jpclett_0c01920 crossref_primary_10_1016_j_mssp_2021_105847 crossref_primary_10_1002_slct_202202793 crossref_primary_10_1016_j_physe_2022_115243 crossref_primary_10_23919_IEN_2024_0025 crossref_primary_10_1002_solr_202200623 crossref_primary_10_1002_nano_202100050 crossref_primary_10_1002_aenm_202300046 crossref_primary_10_1016_j_nanoen_2019_104015 crossref_primary_10_1039_C9EE01479A crossref_primary_10_1002_adfm_201808986 crossref_primary_10_1002_solr_202000223 crossref_primary_10_1088_2040_8986_ac881b crossref_primary_10_1002_solr_201900083 crossref_primary_10_1038_s43246_022_00325_4 crossref_primary_10_1088_1402_4896_ad5ff9 crossref_primary_10_1002_smtd_202000395 crossref_primary_10_1002_andp_201800440 crossref_primary_10_1002_inf2_12010 crossref_primary_10_1002_admi_201901136 crossref_primary_10_1021_acsami_4c02402 crossref_primary_10_1039_C9TC05090F crossref_primary_10_1002_smll_202202144 crossref_primary_10_1016_j_mattod_2022_11_002 crossref_primary_10_3390_nano13202800 crossref_primary_10_1063_1_5139553 crossref_primary_10_1002_adma_201806474 crossref_primary_10_1021_acsenergylett_9b02338 crossref_primary_10_1016_j_mssp_2021_105869 crossref_primary_10_1063_1_5117306 crossref_primary_10_1109_JPHOTOV_2022_3223235 crossref_primary_10_1021_acsaem_2c02099 crossref_primary_10_1007_s10854_020_04627_6 crossref_primary_10_1021_acsaem_2c02534 crossref_primary_10_34133_2021_9671892 crossref_primary_10_1002_smtd_202000149 crossref_primary_10_1039_D4TA09019E crossref_primary_10_1016_j_cclet_2020_08_051 crossref_primary_10_1021_acs_jpcc_2c02379 crossref_primary_10_1016_j_joule_2018_10_011 crossref_primary_10_1021_acsami_9b20376 crossref_primary_10_1088_2515_7639_acc893 crossref_primary_10_1016_j_mssp_2021_105666 crossref_primary_10_1039_D0QM01085E crossref_primary_10_1021_acsaelm_1c00072 crossref_primary_10_1021_acs_jpclett_0c02794 crossref_primary_10_1063_1674_0068_cjcp2303026 crossref_primary_10_1039_D2CP04422F crossref_primary_10_1016_j_scib_2021_09_003 crossref_primary_10_1039_D2QM00632D crossref_primary_10_1039_D4SE00845F crossref_primary_10_1002_pssa_202300128 crossref_primary_10_1007_s11426_019_9448_3 crossref_primary_10_1016_j_solmat_2019_110064 crossref_primary_10_1016_j_sna_2019_07_005 crossref_primary_10_1039_C8NR09467E crossref_primary_10_1002_eom2_12440 crossref_primary_10_1063_5_0056102 crossref_primary_10_1016_j_nanoen_2019_104286 crossref_primary_10_1016_j_device_2024_100369 crossref_primary_10_1002_adfm_202106233 crossref_primary_10_1007_s40843_024_3076_3 crossref_primary_10_1016_j_mssp_2019_03_021 crossref_primary_10_1021_acsami_2c20752 crossref_primary_10_1021_acsnano_4c03079 crossref_primary_10_1002_aenm_201802346 crossref_primary_10_1021_acsenergylett_3c02602 crossref_primary_10_1039_D0RA00446D crossref_primary_10_1002_smll_202007543 crossref_primary_10_1021_acs_analchem_9b05174 crossref_primary_10_1007_s40843_022_2450_8 crossref_primary_10_1021_acs_nanolett_9b01553 crossref_primary_10_1021_acsaem_3c01478 crossref_primary_10_1038_s41560_024_01491_0 crossref_primary_10_1016_j_jechem_2020_12_001 crossref_primary_10_1021_jacs_8b13653 crossref_primary_10_1002_aenm_202003581 crossref_primary_10_1364_OE_431124 crossref_primary_10_1016_j_jpowsour_2019_227151 crossref_primary_10_1016_j_cej_2021_129730 crossref_primary_10_1021_acsanm_0c01204 crossref_primary_10_1002_aenm_202000851 crossref_primary_10_1039_D0TA01645D crossref_primary_10_1016_j_ces_2019_01_003 crossref_primary_10_3390_nano13192716 crossref_primary_10_1016_j_mtcomm_2022_104546 crossref_primary_10_1002_adfm_201803269 crossref_primary_10_1002_admt_202100956 crossref_primary_10_1039_C8TA07904H crossref_primary_10_1007_s10854_023_10590_9 crossref_primary_10_1016_j_solmat_2019_110317 crossref_primary_10_3390_coatings8080256 crossref_primary_10_1002_aesr_202300263 crossref_primary_10_1002_smtd_202301633 crossref_primary_10_1088_1674_4926_41_5_052204 crossref_primary_10_1016_j_scib_2020_08_041 crossref_primary_10_1002_aenm_202000183 crossref_primary_10_1039_D0TA12286F crossref_primary_10_1021_acsami_9b14957 crossref_primary_10_1039_D0MA00866D crossref_primary_10_1088_1674_4926_41_5_052205 crossref_primary_10_1002_admt_202000534 crossref_primary_10_1039_D0TC01313G crossref_primary_10_1002_ange_201901081 crossref_primary_10_1039_D0NR03408H crossref_primary_10_1002_smll_201801793 crossref_primary_10_1002_smll_202406986 crossref_primary_10_1021_acs_chemrev_9b00780 crossref_primary_10_1021_acsaem_0c01184 crossref_primary_10_1002_ente_202200054 crossref_primary_10_1002_solr_202000452 crossref_primary_10_1021_acsaem_2c00506 crossref_primary_10_1002_adfm_202006213 crossref_primary_10_1021_acsaem_2c01155 crossref_primary_10_1002_ente_201900961 crossref_primary_10_1002_solr_202100264 crossref_primary_10_1002_smtd_201900150 crossref_primary_10_1002_adma_202002333 crossref_primary_10_1002_aenm_201902124 crossref_primary_10_1021_acs_jpclett_2c00386 crossref_primary_10_1038_s41598_022_11729_0 crossref_primary_10_1021_acs_chemmater_3c00421 crossref_primary_10_1002_adma_202402143 crossref_primary_10_1021_acsami_8b15962 crossref_primary_10_1002_advs_202105085 crossref_primary_10_1002_adsu_202100055 crossref_primary_10_1039_C8TA09164A crossref_primary_10_1002_lpor_202200641 crossref_primary_10_1016_j_cej_2024_152579 crossref_primary_10_1039_C9TC06630F crossref_primary_10_1039_D0DT00407C crossref_primary_10_3390_en14041043 crossref_primary_10_1007_s10853_019_03974_y crossref_primary_10_1002_solr_202100375 crossref_primary_10_3390_nano13060991 crossref_primary_10_1002_solr_202000749 crossref_primary_10_1088_1674_4926_42_7_071901 crossref_primary_10_1039_D0EE00215A crossref_primary_10_3390_solar2040033 crossref_primary_10_1021_acsami_0c14816 crossref_primary_10_1002_solr_202200242 crossref_primary_10_1016_j_scib_2020_11_006 crossref_primary_10_1039_C8TC02933D crossref_primary_10_1002_cssc_202002796 crossref_primary_10_1039_D1TA04922D crossref_primary_10_1002_adfm_202109321 crossref_primary_10_1021_acsaem_1c00311 crossref_primary_10_1088_1361_6463_abd712 crossref_primary_10_1002_solr_201900249 crossref_primary_10_1088_1674_4926_41_5_051201 crossref_primary_10_1002_adfm_201900991 crossref_primary_10_1039_D2NR06710B crossref_primary_10_1039_D3TC03486K crossref_primary_10_1002_smll_202306471 crossref_primary_10_1016_j_jechem_2023_04_036 crossref_primary_10_1039_D2TA03559F crossref_primary_10_1039_D4NR02005G crossref_primary_10_1016_j_jcis_2023_03_188 crossref_primary_10_1007_s42247_022_00364_0 crossref_primary_10_1016_j_joule_2021_07_004 crossref_primary_10_1016_j_cej_2019_02_062 crossref_primary_10_1039_C9TA00468H crossref_primary_10_1002_adfm_201804427 crossref_primary_10_1016_j_nanoen_2020_105634 crossref_primary_10_1016_j_jcis_2021_04_055 crossref_primary_10_1021_acsenergylett_0c01609 crossref_primary_10_1039_D1TC02595C crossref_primary_10_1039_C8TA12519H crossref_primary_10_1016_j_solmat_2018_07_009 crossref_primary_10_1002_marc_201900437 crossref_primary_10_1007_s40242_020_0105_3 crossref_primary_10_1039_D2CE01040B crossref_primary_10_1002_adma_202211324 crossref_primary_10_1007_s40820_022_00995_2 crossref_primary_10_1016_j_apsusc_2023_156916 crossref_primary_10_1002_agt2_19 crossref_primary_10_3389_felec_2021_758603 crossref_primary_10_1039_D1TA10313J crossref_primary_10_1021_acsami_8b21853 crossref_primary_10_1016_j_nanoen_2020_105181 crossref_primary_10_1149_2162_8777_ac53f5 crossref_primary_10_1016_j_jallcom_2023_170629 crossref_primary_10_1039_D0TA05118G crossref_primary_10_1002_ente_202300611 crossref_primary_10_1039_D1EE01562A crossref_primary_10_1038_s41578_024_00651_8 crossref_primary_10_1016_j_jechem_2021_11_026 crossref_primary_10_1002_adem_202000162 crossref_primary_10_1002_adom_202101770 crossref_primary_10_1016_j_joule_2021_06_001 crossref_primary_10_1039_D0SE00214C crossref_primary_10_1002_admt_202000960 crossref_primary_10_1002_adfm_201900730 crossref_primary_10_1016_j_solener_2022_01_009 crossref_primary_10_1002_adom_202203140 crossref_primary_10_1002_aesr_202000035 crossref_primary_10_1021_acsaem_2c01749 crossref_primary_10_1016_j_mattod_2020_09_002 crossref_primary_10_1007_s40820_024_01547_6 crossref_primary_10_1002_eem2_12543 crossref_primary_10_3390_nano13061084 crossref_primary_10_1002_solr_202100172 crossref_primary_10_1039_D0TA02437F crossref_primary_10_1002_aenm_202000361 crossref_primary_10_1007_s11426_018_9430_8 crossref_primary_10_1039_C9TA03351C crossref_primary_10_1039_D1TC05924F |
Cites_doi | 10.1002/advs.201500269 10.1002/adma.201402461 10.1002/anie.201710397 10.1021/nn401267s 10.1021/acs.jpclett.5b02011 10.1002/aenm.201502202 10.1002/adma.201700579 10.1002/adma.201700775 10.1016/j.scib.2017.11.003 10.1021/jacs.5b12124 10.1021/jacs.5b10614 10.1103/PhysRevB.78.113201 10.1038/srep38150 10.1021/acs.jpclett.5b00968 10.1002/aenm.201300402 10.1021/acs.jpclett.6b02800 10.1021/jacs.5b01994 10.1021/acsami.7b06001 10.1002/aenm.201701201 10.1002/advs.201500194 10.1039/C6EE01137C 10.1002/adma.201603885 10.1002/anie.201603694 10.1126/science.aaa9272 10.1021/jacs.5b05602 10.3390/ma9030181 10.1038/nphoton.2011.317 10.1038/s41560-017-0060-5 10.1038/nenergy.2016.177 10.1002/adma.201600281 10.1021/jacs.6b10227 10.1039/C6CC05877A 10.1039/C5EE03522H 10.1002/adma.201301476 10.1002/adma.201104187 10.1364/OE.23.000A83 10.1002/smtd.201700258 10.1038/nnano.2015.230 10.1002/adma.201700192 10.1021/acs.jpclett.5b02597 10.1002/adma.201502567 10.1021/jacs.7b02677 10.1038/nenergy.2017.102 10.1002/aenm.201200377 10.1002/adma.201701156 10.1088/0034-4885/47/4/002 10.1126/science.aag2700 10.1021/acsenergylett.7b00888 10.1021/acs.jpclett.6b00002 10.1021/acs.chemrev.6b00176 10.1126/sciadv.1501170 10.1126/science.aan2301 10.1002/aenm.201401298 10.1021/ja809598r 10.1002/adfm.201600958 10.1039/C4MH00237G |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201800855 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29633397 10_1002_adma_201800855 ADMA201800855 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions of China funderid: 16KJB430027 – fundername: China Postdoctoral Science Foundation funderid: 2017M610347 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20160059 – fundername: National Natural Science Foundation of China funderid: 51673138; 91633301 – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4395-beb212afd7dd658d9e5ee00bc5725744c336d4c56c216fe6b49feb994ed874d03 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 16:20:30 EDT 2025 Fri Jul 25 08:05:01 EDT 2025 Thu Apr 03 07:02:52 EDT 2025 Tue Jul 01 00:44:41 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Jan 22 16:37:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | organic solar cells semitransparent inorganic perovskite solar cells dual-source vacuum coevaporation methods ultraviolet light stability tandem solar cells |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4395-beb212afd7dd658d9e5ee00bc5725744c336d4c56c216fe6b49feb994ed874d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7229-582X 0000-0002-2565-2748 |
PMID | 29633397 |
PQID | 2047345599 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2023725505 proquest_journals_2047345599 pubmed_primary_29633397 crossref_citationtrail_10_1002_adma_201800855 crossref_primary_10_1002_adma_201800855 wiley_primary_10_1002_adma_201800855_ADMA201800855 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-May |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-May |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 62 2015; 2 2017; 7 2017; 8 2017; 1 2015; 6 2013; 3 2015; 5 2017; 2 2013; 25 1984; 47 2014; 26 2016; 52 2008; 78 2017; 29 2009; 131 2015; 348 2013; 7 2011; 6 2017; 356 2017; 9 2017; 139 2016; 11 2015; 23 2016; 6 2016; 7 2018; 3 2015; 27 2016; 2 2016; 3 2015; 137 2017; 56 2016; 354 2017 2016; 138 2016; 116 2012; 24 2016; 28 2016; 26 2016; 9 2018; 57 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_52_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_56_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_54_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_55_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 3 start-page: 61 year: 2018 publication-title: Nat. Energy – volume: 356 start-page: 1376 year: 2017 publication-title: Science – volume: 62 start-page: 1562 year: 2017 publication-title: Sci. Bull. – volume: 7 start-page: 4569 year: 2013 publication-title: ACS Nano – volume: 137 start-page: 15540 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 78 start-page: 113201 year: 2008 publication-title: Phys. Rev. B – volume: 7 start-page: 1701201 year: 2017 publication-title: Adv. Energy Mater. – volume: 28 start-page: 4734 year: 2016 publication-title: Adv. Mater. – volume: 26 start-page: 4595 year: 2016 publication-title: Adv. Funct. Mater. – volume: 56 start-page: 1190 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 47 start-page: 399 year: 1984 publication-title: Rep. Prog. Phys. – volume: 2 start-page: 16177 year: 2016 publication-title: Nat. Energy – start-page: 2667 year: 2017 publication-title: ACS Energy Lett. – volume: 8 start-page: 489 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 17102 year: 2017 publication-title: Nat. Energy – volume: 138 start-page: 1010 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 7162 year: 2015 publication-title: Adv. Mater. – volume: 25 start-page: 4766 year: 2013 publication-title: Adv. Mater. – volume: 116 start-page: 7397 year: 2016 publication-title: Chem. Rev. – volume: 354 start-page: 92 year: 2016 publication-title: Science – volume: 24 start-page: 580 year: 2012 publication-title: Adv. Mater. – volume: 6 start-page: 1502202 year: 2016 publication-title: Adv. Energy Mater. – volume: 1 start-page: 1700258 year: 2017 publication-title: Small Methods – volume: 6 start-page: 2452 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 4360 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 139 start-page: 7148 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1603885 year: 2017 publication-title: Adv. Mater. – volume: 57 start-page: 3787 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 490 year: 2016 publication-title: Energy Environ. Sci. – volume: 23 start-page: A83 year: 2015 publication-title: Opt. Express – volume: 3 start-page: 1437 year: 2013 publication-title: Adv. Energy Mater. – volume: 52 start-page: 11296 year: 2016 publication-title: Chem. Commun. – volume: 29 start-page: 1700579 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 1500194 year: 2015 publication-title: Adv. Sci. – volume: 2 start-page: e1501170 year: 2016 publication-title: Sci. Adv. – volume: 9 start-page: 181 year: 2016 publication-title: Materials – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 138 start-page: 15829 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3007 year: 2016 publication-title: Energy Environ. Sci. – volume: 7 start-page: 167 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 29 start-page: 1701156 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 1401298 year: 2015 publication-title: Adv. Energy Mater. – volume: 137 start-page: 6730 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 65 year: 2013 publication-title: Adv. Energy Mater. – volume: 6 start-page: 115 year: 2011 publication-title: Nat. Photonics – volume: 7 start-page: 746 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 29 start-page: 1700775 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 30197 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1700192 year: 2017 publication-title: Adv. Mater. – volume: 26 start-page: 6647 year: 2014 publication-title: Adv. Mater. – volume: 11 start-page: 75 year: 2016 publication-title: Nat. Nanotechnol. – volume: 2 start-page: 203 year: 2015 publication-title: Mater. Horiz. – volume: 137 start-page: 10276 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1500269 year: 2016 publication-title: Adv. Sci. – volume: 6 start-page: 38150 year: 2016 publication-title: Sci. Rep. – ident: e_1_2_4_25_1 doi: 10.1002/advs.201500269 – ident: e_1_2_4_27_1 doi: 10.1002/adma.201402461 – ident: e_1_2_4_17_1 doi: 10.1002/anie.201710397 – ident: e_1_2_4_55_1 doi: 10.1021/nn401267s – ident: e_1_2_4_31_1 doi: 10.1021/acs.jpclett.5b02011 – ident: e_1_2_4_26_1 doi: 10.1002/aenm.201502202 – ident: e_1_2_4_37_1 doi: 10.1002/adma.201700579 – ident: e_1_2_4_13_1 doi: 10.1002/adma.201700775 – ident: e_1_2_4_21_1 doi: 10.1016/j.scib.2017.11.003 – ident: e_1_2_4_29_1 doi: 10.1021/jacs.5b12124 – ident: e_1_2_4_41_1 doi: 10.1021/jacs.5b10614 – ident: e_1_2_4_56_1 doi: 10.1103/PhysRevB.78.113201 – ident: e_1_2_4_40_1 doi: 10.1038/srep38150 – ident: e_1_2_4_18_1 doi: 10.1021/acs.jpclett.5b00968 – ident: e_1_2_4_23_1 doi: 10.1002/aenm.201300402 – ident: e_1_2_4_19_1 doi: 10.1021/acs.jpclett.6b02800 – ident: e_1_2_4_38_1 doi: 10.1021/jacs.5b01994 – ident: e_1_2_4_43_1 doi: 10.1021/acsami.7b06001 – ident: e_1_2_4_52_1 doi: 10.1002/aenm.201701201 – ident: e_1_2_4_34_1 doi: 10.1002/advs.201500194 – ident: e_1_2_4_5_1 doi: 10.1039/C6EE01137C – ident: e_1_2_4_11_1 doi: 10.1002/adma.201603885 – ident: e_1_2_4_8_1 doi: 10.1002/anie.201603694 – ident: e_1_2_4_2_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_4_30_1 doi: 10.1021/jacs.5b05602 – ident: e_1_2_4_53_1 doi: 10.3390/ma9030181 – ident: e_1_2_4_22_1 doi: 10.1038/nphoton.2011.317 – ident: e_1_2_4_47_1 doi: 10.1038/s41560-017-0060-5 – ident: e_1_2_4_36_1 doi: 10.1038/nenergy.2016.177 – ident: e_1_2_4_51_1 doi: 10.1002/adma.201600281 – ident: e_1_2_4_14_1 doi: 10.1021/jacs.6b10227 – ident: e_1_2_4_32_1 doi: 10.1039/C6CC05877A – ident: e_1_2_4_46_1 doi: 10.1039/C5EE03522H – ident: e_1_2_4_49_1 doi: 10.1002/adma.201301476 – ident: e_1_2_4_9_1 doi: 10.1002/adma.201104187 – ident: e_1_2_4_45_1 doi: 10.1364/OE.23.000A83 – ident: e_1_2_4_3_1 doi: 10.1002/smtd.201700258 – ident: e_1_2_4_39_1 doi: 10.1038/nnano.2015.230 – ident: e_1_2_4_4_1 doi: 10.1002/adma.201700192 – ident: e_1_2_4_15_1 doi: 10.1021/acs.jpclett.5b02597 – ident: e_1_2_4_10_1 doi: 10.1002/adma.201502567 – ident: e_1_2_4_7_1 doi: 10.1021/jacs.7b02677 – ident: e_1_2_4_44_1 doi: 10.1038/nenergy.2017.102 – ident: e_1_2_4_50_1 doi: 10.1002/aenm.201200377 – ident: e_1_2_4_54_1 doi: 10.1002/adma.201701156 – ident: e_1_2_4_33_1 doi: 10.1088/0034-4885/47/4/002 – ident: e_1_2_4_12_1 doi: 10.1126/science.aag2700 – ident: e_1_2_4_42_1 doi: 10.1021/acsenergylett.7b00888 – ident: e_1_2_4_16_1 doi: 10.1021/acs.jpclett.6b00002 – ident: e_1_2_4_20_1 doi: 10.1021/acs.chemrev.6b00176 – ident: e_1_2_4_35_1 doi: 10.1126/sciadv.1501170 – ident: e_1_2_4_6_1 doi: 10.1126/science.aan2301 – ident: e_1_2_4_24_1 doi: 10.1002/aenm.201401298 – ident: e_1_2_4_1_1 doi: 10.1021/ja809598r – ident: e_1_2_4_28_1 doi: 10.1002/adfm.201600958 – ident: e_1_2_4_48_1 doi: 10.1039/C4MH00237G |
SSID | ssj0009606 |
Score | 2.6502826 |
Snippet | Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1800855 |
SubjectTerms | Cesium bromides dual‐source vacuum coevaporation methods Energy conversion efficiency Evaporation rate Light Materials science organic solar cells Perovskites Photoelectricity Photovoltaic cells semitransparent inorganic perovskite solar cells Solar cells Stability tandem solar cells Ultraviolet filters ultraviolet light stability Ultraviolet radiation |
Title | A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800855 https://www.ncbi.nlm.nih.gov/pubmed/29633397 https://www.proquest.com/docview/2047345599 https://www.proquest.com/docview/2023725505 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_QgUZCQQJ28TPxL7GJWu2opSRFmpt8ixHXVFmkXdLFL7J_jLjO1s2gUhJLglsiexnZnx58n4M0JvbG6FAhhArFSScNdIorUWxIEflNoITQOZztHHfH_GD0_F6Y1d_JEfYgy4ecsI_tobuK6XO9ekodoG3qBMhlQrcMI-Ycujos_X_FEengeyPSaIyrlcszamdGdTfHNW-g1qbiLXMPVM7yG9bnTMOPk6WfX1xFz9wuf4P726j-4OuBSXUZEeoFuue4ju3GArfIR-lPjEnc_7QIfu95D1-KCLp0IZ_MldLL4vfSgYT-ftOQYsjI_BTOD9IIxnLYiFJIAef_DxAOyzFCJH-CVeNPh4eM6JX2rjXde2S6w7i0tzNnc-6IEzPknZW7wXOC_8htHHaDbd-7K7T4bzHIgB2CNIDav4jOrGFtYC8LHKCefStDaiAMfBuWEst9yI3NAsb1xec9W4WinurCy4TdkTtNUtOvcM4bpoaNbkLDUp504IqXJpqbJFoYRmOk0QWX_Pygxk5_7MjbaKNM208gNdjQOdoHdj_W-R5uOPNbfX6lEN5r6EUl4w7snbEvR6LAZD9X9fdOcWK1-HMugnIM4EPY1qNb6KghtkgAwTRINy_KUNVfn-qBzvnv-L0At021_H1M1ttNVfrNxLgFd9_SqY0E_AiBuq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lb9QwEIBHpRyAA-9HoICRQJyyTRw7jwOHqNvVLt1tEe1KvQXHdsSKbRZ1s6DyJ_gt_BV-EWPnURaEkJB64JjETvwYj8eT8WeA5ypUPEEzwFVxErtMF7ErhOCuRj0YC8kFtTCdyX44nLLXx_x4A761e2FqPkTncDMjw-prM8CNQ3r7nBoqlAUH-bGNtWriKvf02WdctS1fjfrYxS8oHewe7Qzd5mABV-L8y90cl5M-FYWKlMIZWCWaa-15ueQRSjBjMghCxSQPJfXDQoc5SwqdJwnTKo6Y8gJ87yW4bI4RN7j-_ttzYpVZEFi8X8DdJGRxy4n06PZ6edfnwd-M23Vb2U52gxvwvW2mOsblQ29V5T355ReC5H_VjjfhemN6k7QeK7dgQ5e34dpPQMY78DUlh_pkVlniu9kmV5FRWR98Jckbfbr4tDTebjKYzU8ImvvkADUBVhgzk-kcs9k4h4qMjcuDmECMGoN-RhYFOWjec2i8CWRHz-dLIkpFUvl-po1fh_ish6UluxbrYfbE3oXphbTIPdgsF6V-ACSPCuoXYeBJjzHNeZyEsaKJiqKEi0B4DritAGWy4bmbY0XmWU2ippnp2KzrWAdeduk_1iSTP6bcauUxazTaEp-yKGCGT-fAs-4x6iLzg0mUerEyaWiA9USj2oH7tRx3n6Ko6QM0fh2gVhr_UoYs7U_S7urhv2R6CleGR5NxNh7t7z2Cq-Z-Ham6BZvV6Uo_Rmuyyp_Y8Uvg3UUL-g-xR3rc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qRUJwYF8CBYwE4pRp4thJfOAw6nTUoasoI_WWOrYjRqSZqpMBlT_BX-Gv8I94djIpA0JISD1wTLzEy9v88vw9gJc61lygGeDrVKQ-M0XqSym5b1AOplJxSR2Yzu5evDVmb4_40Qp8W9yFafAhOoeb5Qwnry2Dn-pi_QI0VGqHGxSmLtSqDavcNuef8dA2ezMa4A6_onS4-X5jy2_zCvgK1S_3czxNhlQWOtEaFbAWhhsTBLniCRIwYyqKYs0UjxUN48LEOROFyYVgRqcJ00GE_V6BqywOhE0WMXh3AVhlzwMO3S_ivohZuoCJDOj68niX1eBvtu2yqex03fAWfF-sUhPi8rE3r_Oe-vILgOT_tIy34WZreJN-wyl3YMVUd-HGT3CM9-Brnxyak0nt8N7tJbmajKom7ZUiB-Zs-mlmfd1kOClPCBr7ZB_lAM4XG5Nxic1clENNdqzDg9gwjAYE_ZxMC7Lf9nNofQlkw5TljMhKk776MDHWq0NC1sPRkk0H6mFvxN6H8aWsyANYraaVeQQkTwoaFnEUqIAxw3kq4lRToZNEcBnJwAN_QT-ZatHcbVKRMmtwqGlmNzbrNtaD11390wbH5I811xbkmLXybIalLImYRafz4EVXjJLI_l6SlZnObR0a4TzRpPbgYUPG3acoyvkITV8PqCPGv4wh6w92-93T439p9ByuHQyG2c5ob_sJXLevmzDVNVitz-bmKZqSdf7McS-B48um8x-rPnmL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Semitransparent+Inorganic+Perovskite+Film+for+Overcoming+Ultraviolet+Light+Instability+of+Organic+Solar+Cells+and+Achieving+14.03%25+Efficiency&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Weijie&rft.au=Zhang%2C+Jingwen&rft.au=Xu%2C+Guiying&rft.au=Xue%2C+Rongming&rft.date=2018-05-01&rft.eissn=1521-4095&rft.volume=30&rft.issue=21&rft.spage=e1800855&rft_id=info:doi/10.1002%2Fadma.201800855&rft_id=info%3Apmid%2F29633397&rft.externalDocID=29633397 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |