A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency

Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic‐perovskite/organic four‐terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr3 perovskite solar cell (pero‐SC) a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 21; pp. e1800855 - n/a
Main Authors Chen, Weijie, Zhang, Jingwen, Xu, Guiying, Xue, Rongming, Li, Yaowen, Zhou, Yinhua, Hou, Jianhui, Li, Yongfang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic‐perovskite/organic four‐terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr3 perovskite solar cell (pero‐SC) as the top cell and an OSC as bottom cell is constructed. The high‐quality CsPbBr3 photoactive layer of the planar pero‐SC is prepared with a dual‐source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr2 with a low evaporation rate. The resultant opaque planar pero‐SC exhibits an ultrahigh open‐circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr3‐based planar pero‐SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero‐SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero‐SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV‐light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic‐perovskite/organic TSC. A wide‐bandgap and low‐defect‐concentration CsPbBr3 film is fabricated using the vacuum‐evaporation method, and the related solar cell shows a high efficiency and robust photostability. When constructing inorganic‐perovskite/organic tandem solar cells, the top CsPbBr3‐based semitransparent perovskite solar cells can be used to filter ultraviolet (UV) light and overcome the UV‐light stability problem of the organic solar cells; they also show a record efficiency of 14.03%.
AbstractList Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic‐perovskite/organic four‐terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr3 perovskite solar cell (pero‐SC) as the top cell and an OSC as bottom cell is constructed. The high‐quality CsPbBr3 photoactive layer of the planar pero‐SC is prepared with a dual‐source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr2 with a low evaporation rate. The resultant opaque planar pero‐SC exhibits an ultrahigh open‐circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr3‐based planar pero‐SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero‐SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero‐SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV‐light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic‐perovskite/organic TSC.
Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic-perovskite/organic four-terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr3 perovskite solar cell (pero-SC) as the top cell and an OSC as bottom cell is constructed. The high-quality CsPbBr3 photoactive layer of the planar pero-SC is prepared with a dual-source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr2 with a low evaporation rate. The resultant opaque planar pero-SC exhibits an ultrahigh open-circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr3 -based planar pero-SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero-SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero-SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV-light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic-perovskite/organic TSC.Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic-perovskite/organic four-terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr3 perovskite solar cell (pero-SC) as the top cell and an OSC as bottom cell is constructed. The high-quality CsPbBr3 photoactive layer of the planar pero-SC is prepared with a dual-source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr2 with a low evaporation rate. The resultant opaque planar pero-SC exhibits an ultrahigh open-circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr3 -based planar pero-SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero-SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero-SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV-light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic-perovskite/organic TSC.
Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic-perovskite/organic four-terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr perovskite solar cell (pero-SC) as the top cell and an OSC as bottom cell is constructed. The high-quality CsPbBr photoactive layer of the planar pero-SC is prepared with a dual-source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr with a low evaporation rate. The resultant opaque planar pero-SC exhibits an ultrahigh open-circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr -based planar pero-SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero-SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero-SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV-light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic-perovskite/organic TSC.
Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic‐perovskite/organic four‐terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr 3 perovskite solar cell (pero‐SC) as the top cell and an OSC as bottom cell is constructed. The high‐quality CsPbBr 3 photoactive layer of the planar pero‐SC is prepared with a dual‐source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr 2 with a low evaporation rate. The resultant opaque planar pero‐SC exhibits an ultrahigh open‐circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr 3 ‐based planar pero‐SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero‐SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero‐SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV‐light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic‐perovskite/organic TSC.
Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic‐perovskite/organic four‐terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr3 perovskite solar cell (pero‐SC) as the top cell and an OSC as bottom cell is constructed. The high‐quality CsPbBr3 photoactive layer of the planar pero‐SC is prepared with a dual‐source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr2 with a low evaporation rate. The resultant opaque planar pero‐SC exhibits an ultrahigh open‐circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr3‐based planar pero‐SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero‐SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero‐SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV‐light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic‐perovskite/organic TSC. A wide‐bandgap and low‐defect‐concentration CsPbBr3 film is fabricated using the vacuum‐evaporation method, and the related solar cell shows a high efficiency and robust photostability. When constructing inorganic‐perovskite/organic tandem solar cells, the top CsPbBr3‐based semitransparent perovskite solar cells can be used to filter ultraviolet (UV) light and overcome the UV‐light stability problem of the organic solar cells; they also show a record efficiency of 14.03%.
Author Li, Yongfang
Hou, Jianhui
Chen, Weijie
Xu, Guiying
Zhang, Jingwen
Xue, Rongming
Li, Yaowen
Zhou, Yinhua
Author_xml – sequence: 1
  givenname: Weijie
  surname: Chen
  fullname: Chen, Weijie
  organization: Soochow University
– sequence: 2
  givenname: Jingwen
  surname: Zhang
  fullname: Zhang, Jingwen
  organization: Soochow University
– sequence: 3
  givenname: Guiying
  surname: Xu
  fullname: Xu, Guiying
  organization: Soochow University
– sequence: 4
  givenname: Rongming
  surname: Xue
  fullname: Xue, Rongming
  organization: Soochow University
– sequence: 5
  givenname: Yaowen
  orcidid: 0000-0001-7229-582X
  surname: Li
  fullname: Li, Yaowen
  email: ywli@suda.edu.cn
  organization: Soochow University
– sequence: 6
  givenname: Yinhua
  surname: Zhou
  fullname: Zhou, Yinhua
  organization: Huazhong University of Science and Technology
– sequence: 7
  givenname: Jianhui
  surname: Hou
  fullname: Hou, Jianhui
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Yongfang
  orcidid: 0000-0002-2565-2748
  surname: Li
  fullname: Li, Yongfang
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29633397$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rFDEYhoNU7LZ69SgBEbzMmsmPmclxWFstrKxQew6ZzDfb1EyyJrMr-1f4L5tltwoF8fRdnufl5Xsv0JkPHhB6XZJ5SQj9oPtRzykpG0IaIZ6hWSloWXAixRmaEclEISvenKOLlB4IIbIi1Qt0TmXFGJP1DP1q8S2Mdorap42O4Cd840Nca28N_gox7NJ3OwG-tm7EQ4h4tYNowmj9Gt-5rO1scDDhpV3fH9Q06c46O-1xGPDqlHMbnI54Ac4lrH2PW3NvYXeIKPmcsHf4ahisseDN_iV6PmiX4NXpXqK766tvi8_FcvXpZtEuC8OZFEUHHS2pHvq67yvR9BIEACGdETUVNeeGsarnRlSGltUAVcflAJ2UHPqm5j1hl-j9MXcTw48tpEmNNpncUHsI26QooSxHCSIy-vYJ-hC20ed2meI140JImak3J2rbjdCrTbSjjnv1-OoM8CNgYkgpwqCMnfRkg89ftE6VRB0WVYdF1Z9FszZ_oj0m_1OQR-GndbD_D63aj1_av-5vUEqzyA
CitedBy_id crossref_primary_10_1039_D0TA04366D
crossref_primary_10_3390_en17081833
crossref_primary_10_1016_j_joule_2019_07_015
crossref_primary_10_1002_cjoc_202200437
crossref_primary_10_1002_adfm_202307471
crossref_primary_10_1002_solr_202400172
crossref_primary_10_1021_acs_macromol_4c01082
crossref_primary_10_1039_D2TA00248E
crossref_primary_10_1088_2752_5724_acd56c
crossref_primary_10_1021_acsami_4c02043
crossref_primary_10_1021_acsami_8b13928
crossref_primary_10_1021_acsami_1c00387
crossref_primary_10_1186_s11671_022_03708_1
crossref_primary_10_1039_D0NR04365F
crossref_primary_10_1002_adma_202104661
crossref_primary_10_1002_anie_201901081
crossref_primary_10_1016_j_solener_2020_02_025
crossref_primary_10_3390_coatings13050863
crossref_primary_10_1016_j_cej_2021_128816
crossref_primary_10_1039_C8TA11293B
crossref_primary_10_1016_j_nanoen_2024_109513
crossref_primary_10_1038_s41467_019_12613_8
crossref_primary_10_1088_1361_6528_abde03
crossref_primary_10_1016_j_joule_2020_06_006
crossref_primary_10_1039_D1TA04362E
crossref_primary_10_1002_adma_202006545
crossref_primary_10_1016_j_solener_2021_08_023
crossref_primary_10_1016_j_solener_2021_04_042
crossref_primary_10_1039_D1TC02413B
crossref_primary_10_1021_acsami_9b17164
crossref_primary_10_1039_D3EE02822D
crossref_primary_10_1021_acsami_4c05092
crossref_primary_10_1002_aenm_202201306
crossref_primary_10_1002_aenm_202101973
crossref_primary_10_1039_D1CS00841B
crossref_primary_10_1002_adfm_201906756
crossref_primary_10_1186_s11671_018_2714_z
crossref_primary_10_1002_aenm_201802832
crossref_primary_10_1021_acsaem_2c01554
crossref_primary_10_1002_smll_202101902
crossref_primary_10_1016_j_joule_2022_11_004
crossref_primary_10_1021_acsami_1c10657
crossref_primary_10_1039_C9TA08465G
crossref_primary_10_1002_aenm_202202643
crossref_primary_10_1021_acsami_0c11994
crossref_primary_10_1039_C8TA03811B
crossref_primary_10_1021_acsenergylett_0c00417
crossref_primary_10_1021_acs_jpclett_0c01920
crossref_primary_10_1016_j_mssp_2021_105847
crossref_primary_10_1002_slct_202202793
crossref_primary_10_1016_j_physe_2022_115243
crossref_primary_10_23919_IEN_2024_0025
crossref_primary_10_1002_solr_202200623
crossref_primary_10_1002_nano_202100050
crossref_primary_10_1002_aenm_202300046
crossref_primary_10_1016_j_nanoen_2019_104015
crossref_primary_10_1039_C9EE01479A
crossref_primary_10_1002_adfm_201808986
crossref_primary_10_1002_solr_202000223
crossref_primary_10_1088_2040_8986_ac881b
crossref_primary_10_1002_solr_201900083
crossref_primary_10_1038_s43246_022_00325_4
crossref_primary_10_1088_1402_4896_ad5ff9
crossref_primary_10_1002_smtd_202000395
crossref_primary_10_1002_andp_201800440
crossref_primary_10_1002_inf2_12010
crossref_primary_10_1002_admi_201901136
crossref_primary_10_1021_acsami_4c02402
crossref_primary_10_1039_C9TC05090F
crossref_primary_10_1002_smll_202202144
crossref_primary_10_1016_j_mattod_2022_11_002
crossref_primary_10_3390_nano13202800
crossref_primary_10_1063_1_5139553
crossref_primary_10_1002_adma_201806474
crossref_primary_10_1021_acsenergylett_9b02338
crossref_primary_10_1016_j_mssp_2021_105869
crossref_primary_10_1063_1_5117306
crossref_primary_10_1109_JPHOTOV_2022_3223235
crossref_primary_10_1021_acsaem_2c02099
crossref_primary_10_1007_s10854_020_04627_6
crossref_primary_10_1021_acsaem_2c02534
crossref_primary_10_34133_2021_9671892
crossref_primary_10_1002_smtd_202000149
crossref_primary_10_1039_D4TA09019E
crossref_primary_10_1016_j_cclet_2020_08_051
crossref_primary_10_1021_acs_jpcc_2c02379
crossref_primary_10_1016_j_joule_2018_10_011
crossref_primary_10_1021_acsami_9b20376
crossref_primary_10_1088_2515_7639_acc893
crossref_primary_10_1016_j_mssp_2021_105666
crossref_primary_10_1039_D0QM01085E
crossref_primary_10_1021_acsaelm_1c00072
crossref_primary_10_1021_acs_jpclett_0c02794
crossref_primary_10_1063_1674_0068_cjcp2303026
crossref_primary_10_1039_D2CP04422F
crossref_primary_10_1016_j_scib_2021_09_003
crossref_primary_10_1039_D2QM00632D
crossref_primary_10_1039_D4SE00845F
crossref_primary_10_1002_pssa_202300128
crossref_primary_10_1007_s11426_019_9448_3
crossref_primary_10_1016_j_solmat_2019_110064
crossref_primary_10_1016_j_sna_2019_07_005
crossref_primary_10_1039_C8NR09467E
crossref_primary_10_1002_eom2_12440
crossref_primary_10_1063_5_0056102
crossref_primary_10_1016_j_nanoen_2019_104286
crossref_primary_10_1016_j_device_2024_100369
crossref_primary_10_1002_adfm_202106233
crossref_primary_10_1007_s40843_024_3076_3
crossref_primary_10_1016_j_mssp_2019_03_021
crossref_primary_10_1021_acsami_2c20752
crossref_primary_10_1021_acsnano_4c03079
crossref_primary_10_1002_aenm_201802346
crossref_primary_10_1021_acsenergylett_3c02602
crossref_primary_10_1039_D0RA00446D
crossref_primary_10_1002_smll_202007543
crossref_primary_10_1021_acs_analchem_9b05174
crossref_primary_10_1007_s40843_022_2450_8
crossref_primary_10_1021_acs_nanolett_9b01553
crossref_primary_10_1021_acsaem_3c01478
crossref_primary_10_1038_s41560_024_01491_0
crossref_primary_10_1016_j_jechem_2020_12_001
crossref_primary_10_1021_jacs_8b13653
crossref_primary_10_1002_aenm_202003581
crossref_primary_10_1364_OE_431124
crossref_primary_10_1016_j_jpowsour_2019_227151
crossref_primary_10_1016_j_cej_2021_129730
crossref_primary_10_1021_acsanm_0c01204
crossref_primary_10_1002_aenm_202000851
crossref_primary_10_1039_D0TA01645D
crossref_primary_10_1016_j_ces_2019_01_003
crossref_primary_10_3390_nano13192716
crossref_primary_10_1016_j_mtcomm_2022_104546
crossref_primary_10_1002_adfm_201803269
crossref_primary_10_1002_admt_202100956
crossref_primary_10_1039_C8TA07904H
crossref_primary_10_1007_s10854_023_10590_9
crossref_primary_10_1016_j_solmat_2019_110317
crossref_primary_10_3390_coatings8080256
crossref_primary_10_1002_aesr_202300263
crossref_primary_10_1002_smtd_202301633
crossref_primary_10_1088_1674_4926_41_5_052204
crossref_primary_10_1016_j_scib_2020_08_041
crossref_primary_10_1002_aenm_202000183
crossref_primary_10_1039_D0TA12286F
crossref_primary_10_1021_acsami_9b14957
crossref_primary_10_1039_D0MA00866D
crossref_primary_10_1088_1674_4926_41_5_052205
crossref_primary_10_1002_admt_202000534
crossref_primary_10_1039_D0TC01313G
crossref_primary_10_1002_ange_201901081
crossref_primary_10_1039_D0NR03408H
crossref_primary_10_1002_smll_201801793
crossref_primary_10_1002_smll_202406986
crossref_primary_10_1021_acs_chemrev_9b00780
crossref_primary_10_1021_acsaem_0c01184
crossref_primary_10_1002_ente_202200054
crossref_primary_10_1002_solr_202000452
crossref_primary_10_1021_acsaem_2c00506
crossref_primary_10_1002_adfm_202006213
crossref_primary_10_1021_acsaem_2c01155
crossref_primary_10_1002_ente_201900961
crossref_primary_10_1002_solr_202100264
crossref_primary_10_1002_smtd_201900150
crossref_primary_10_1002_adma_202002333
crossref_primary_10_1002_aenm_201902124
crossref_primary_10_1021_acs_jpclett_2c00386
crossref_primary_10_1038_s41598_022_11729_0
crossref_primary_10_1021_acs_chemmater_3c00421
crossref_primary_10_1002_adma_202402143
crossref_primary_10_1021_acsami_8b15962
crossref_primary_10_1002_advs_202105085
crossref_primary_10_1002_adsu_202100055
crossref_primary_10_1039_C8TA09164A
crossref_primary_10_1002_lpor_202200641
crossref_primary_10_1016_j_cej_2024_152579
crossref_primary_10_1039_C9TC06630F
crossref_primary_10_1039_D0DT00407C
crossref_primary_10_3390_en14041043
crossref_primary_10_1007_s10853_019_03974_y
crossref_primary_10_1002_solr_202100375
crossref_primary_10_3390_nano13060991
crossref_primary_10_1002_solr_202000749
crossref_primary_10_1088_1674_4926_42_7_071901
crossref_primary_10_1039_D0EE00215A
crossref_primary_10_3390_solar2040033
crossref_primary_10_1021_acsami_0c14816
crossref_primary_10_1002_solr_202200242
crossref_primary_10_1016_j_scib_2020_11_006
crossref_primary_10_1039_C8TC02933D
crossref_primary_10_1002_cssc_202002796
crossref_primary_10_1039_D1TA04922D
crossref_primary_10_1002_adfm_202109321
crossref_primary_10_1021_acsaem_1c00311
crossref_primary_10_1088_1361_6463_abd712
crossref_primary_10_1002_solr_201900249
crossref_primary_10_1088_1674_4926_41_5_051201
crossref_primary_10_1002_adfm_201900991
crossref_primary_10_1039_D2NR06710B
crossref_primary_10_1039_D3TC03486K
crossref_primary_10_1002_smll_202306471
crossref_primary_10_1016_j_jechem_2023_04_036
crossref_primary_10_1039_D2TA03559F
crossref_primary_10_1039_D4NR02005G
crossref_primary_10_1016_j_jcis_2023_03_188
crossref_primary_10_1007_s42247_022_00364_0
crossref_primary_10_1016_j_joule_2021_07_004
crossref_primary_10_1016_j_cej_2019_02_062
crossref_primary_10_1039_C9TA00468H
crossref_primary_10_1002_adfm_201804427
crossref_primary_10_1016_j_nanoen_2020_105634
crossref_primary_10_1016_j_jcis_2021_04_055
crossref_primary_10_1021_acsenergylett_0c01609
crossref_primary_10_1039_D1TC02595C
crossref_primary_10_1039_C8TA12519H
crossref_primary_10_1016_j_solmat_2018_07_009
crossref_primary_10_1002_marc_201900437
crossref_primary_10_1007_s40242_020_0105_3
crossref_primary_10_1039_D2CE01040B
crossref_primary_10_1002_adma_202211324
crossref_primary_10_1007_s40820_022_00995_2
crossref_primary_10_1016_j_apsusc_2023_156916
crossref_primary_10_1002_agt2_19
crossref_primary_10_3389_felec_2021_758603
crossref_primary_10_1039_D1TA10313J
crossref_primary_10_1021_acsami_8b21853
crossref_primary_10_1016_j_nanoen_2020_105181
crossref_primary_10_1149_2162_8777_ac53f5
crossref_primary_10_1016_j_jallcom_2023_170629
crossref_primary_10_1039_D0TA05118G
crossref_primary_10_1002_ente_202300611
crossref_primary_10_1039_D1EE01562A
crossref_primary_10_1038_s41578_024_00651_8
crossref_primary_10_1016_j_jechem_2021_11_026
crossref_primary_10_1002_adem_202000162
crossref_primary_10_1002_adom_202101770
crossref_primary_10_1016_j_joule_2021_06_001
crossref_primary_10_1039_D0SE00214C
crossref_primary_10_1002_admt_202000960
crossref_primary_10_1002_adfm_201900730
crossref_primary_10_1016_j_solener_2022_01_009
crossref_primary_10_1002_adom_202203140
crossref_primary_10_1002_aesr_202000035
crossref_primary_10_1021_acsaem_2c01749
crossref_primary_10_1016_j_mattod_2020_09_002
crossref_primary_10_1007_s40820_024_01547_6
crossref_primary_10_1002_eem2_12543
crossref_primary_10_3390_nano13061084
crossref_primary_10_1002_solr_202100172
crossref_primary_10_1039_D0TA02437F
crossref_primary_10_1002_aenm_202000361
crossref_primary_10_1007_s11426_018_9430_8
crossref_primary_10_1039_C9TA03351C
crossref_primary_10_1039_D1TC05924F
Cites_doi 10.1002/advs.201500269
10.1002/adma.201402461
10.1002/anie.201710397
10.1021/nn401267s
10.1021/acs.jpclett.5b02011
10.1002/aenm.201502202
10.1002/adma.201700579
10.1002/adma.201700775
10.1016/j.scib.2017.11.003
10.1021/jacs.5b12124
10.1021/jacs.5b10614
10.1103/PhysRevB.78.113201
10.1038/srep38150
10.1021/acs.jpclett.5b00968
10.1002/aenm.201300402
10.1021/acs.jpclett.6b02800
10.1021/jacs.5b01994
10.1021/acsami.7b06001
10.1002/aenm.201701201
10.1002/advs.201500194
10.1039/C6EE01137C
10.1002/adma.201603885
10.1002/anie.201603694
10.1126/science.aaa9272
10.1021/jacs.5b05602
10.3390/ma9030181
10.1038/nphoton.2011.317
10.1038/s41560-017-0060-5
10.1038/nenergy.2016.177
10.1002/adma.201600281
10.1021/jacs.6b10227
10.1039/C6CC05877A
10.1039/C5EE03522H
10.1002/adma.201301476
10.1002/adma.201104187
10.1364/OE.23.000A83
10.1002/smtd.201700258
10.1038/nnano.2015.230
10.1002/adma.201700192
10.1021/acs.jpclett.5b02597
10.1002/adma.201502567
10.1021/jacs.7b02677
10.1038/nenergy.2017.102
10.1002/aenm.201200377
10.1002/adma.201701156
10.1088/0034-4885/47/4/002
10.1126/science.aag2700
10.1021/acsenergylett.7b00888
10.1021/acs.jpclett.6b00002
10.1021/acs.chemrev.6b00176
10.1126/sciadv.1501170
10.1126/science.aan2301
10.1002/aenm.201401298
10.1021/ja809598r
10.1002/adfm.201600958
10.1039/C4MH00237G
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201800855
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29633397
10_1002_adma_201800855
ADMA201800855
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions of China
  funderid: 16KJB430027
– fundername: China Postdoctoral Science Foundation
  funderid: 2017M610347
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20160059
– fundername: National Natural Science Foundation of China
  funderid: 51673138; 91633301
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4395-beb212afd7dd658d9e5ee00bc5725744c336d4c56c216fe6b49feb994ed874d03
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 16:20:30 EDT 2025
Fri Jul 25 08:05:01 EDT 2025
Thu Apr 03 07:02:52 EDT 2025
Tue Jul 01 00:44:41 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Jan 22 16:37:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords organic solar cells
semitransparent inorganic perovskite solar cells
dual-source vacuum coevaporation methods
ultraviolet light stability
tandem solar cells
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4395-beb212afd7dd658d9e5ee00bc5725744c336d4c56c216fe6b49feb994ed874d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7229-582X
0000-0002-2565-2748
PMID 29633397
PQID 2047345599
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2023725505
proquest_journals_2047345599
pubmed_primary_29633397
crossref_citationtrail_10_1002_adma_201800855
crossref_primary_10_1002_adma_201800855
wiley_primary_10_1002_adma_201800855_ADMA201800855
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-May
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-May
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 62
2015; 2
2017; 7
2017; 8
2017; 1
2015; 6
2013; 3
2015; 5
2017; 2
2013; 25
1984; 47
2014; 26
2016; 52
2008; 78
2017; 29
2009; 131
2015; 348
2013; 7
2011; 6
2017; 356
2017; 9
2017; 139
2016; 11
2015; 23
2016; 6
2016; 7
2018; 3
2015; 27
2016; 2
2016; 3
2015; 137
2017; 56
2016; 354
2017
2016; 138
2016; 116
2012; 24
2016; 28
2016; 26
2016; 9
2018; 57
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_52_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_56_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_54_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_55_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_53_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 3
  start-page: 61
  year: 2018
  publication-title: Nat. Energy
– volume: 356
  start-page: 1376
  year: 2017
  publication-title: Science
– volume: 62
  start-page: 1562
  year: 2017
  publication-title: Sci. Bull.
– volume: 7
  start-page: 4569
  year: 2013
  publication-title: ACS Nano
– volume: 137
  start-page: 15540
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 78
  start-page: 113201
  year: 2008
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 1701201
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 4734
  year: 2016
  publication-title: Adv. Mater.
– volume: 26
  start-page: 4595
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 56
  start-page: 1190
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 47
  start-page: 399
  year: 1984
  publication-title: Rep. Prog. Phys.
– volume: 2
  start-page: 16177
  year: 2016
  publication-title: Nat. Energy
– start-page: 2667
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 489
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 17102
  year: 2017
  publication-title: Nat. Energy
– volume: 138
  start-page: 1010
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 7162
  year: 2015
  publication-title: Adv. Mater.
– volume: 25
  start-page: 4766
  year: 2013
  publication-title: Adv. Mater.
– volume: 116
  start-page: 7397
  year: 2016
  publication-title: Chem. Rev.
– volume: 354
  start-page: 92
  year: 2016
  publication-title: Science
– volume: 24
  start-page: 580
  year: 2012
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1502202
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 1700258
  year: 2017
  publication-title: Small Methods
– volume: 6
  start-page: 2452
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 4360
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 139
  start-page: 7148
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1603885
  year: 2017
  publication-title: Adv. Mater.
– volume: 57
  start-page: 3787
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 490
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 23
  start-page: A83
  year: 2015
  publication-title: Opt. Express
– volume: 3
  start-page: 1437
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 52
  start-page: 11296
  year: 2016
  publication-title: Chem. Commun.
– volume: 29
  start-page: 1700579
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1500194
  year: 2015
  publication-title: Adv. Sci.
– volume: 2
  start-page: e1501170
  year: 2016
  publication-title: Sci. Adv.
– volume: 9
  start-page: 181
  year: 2016
  publication-title: Materials
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 138
  start-page: 15829
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 3007
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 167
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 29
  start-page: 1701156
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1401298
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 6730
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 65
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 115
  year: 2011
  publication-title: Nat. Photonics
– volume: 7
  start-page: 746
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 29
  start-page: 1700775
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 30197
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1700192
  year: 2017
  publication-title: Adv. Mater.
– volume: 26
  start-page: 6647
  year: 2014
  publication-title: Adv. Mater.
– volume: 11
  start-page: 75
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 203
  year: 2015
  publication-title: Mater. Horiz.
– volume: 137
  start-page: 10276
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1500269
  year: 2016
  publication-title: Adv. Sci.
– volume: 6
  start-page: 38150
  year: 2016
  publication-title: Sci. Rep.
– ident: e_1_2_4_25_1
  doi: 10.1002/advs.201500269
– ident: e_1_2_4_27_1
  doi: 10.1002/adma.201402461
– ident: e_1_2_4_17_1
  doi: 10.1002/anie.201710397
– ident: e_1_2_4_55_1
  doi: 10.1021/nn401267s
– ident: e_1_2_4_31_1
  doi: 10.1021/acs.jpclett.5b02011
– ident: e_1_2_4_26_1
  doi: 10.1002/aenm.201502202
– ident: e_1_2_4_37_1
  doi: 10.1002/adma.201700579
– ident: e_1_2_4_13_1
  doi: 10.1002/adma.201700775
– ident: e_1_2_4_21_1
  doi: 10.1016/j.scib.2017.11.003
– ident: e_1_2_4_29_1
  doi: 10.1021/jacs.5b12124
– ident: e_1_2_4_41_1
  doi: 10.1021/jacs.5b10614
– ident: e_1_2_4_56_1
  doi: 10.1103/PhysRevB.78.113201
– ident: e_1_2_4_40_1
  doi: 10.1038/srep38150
– ident: e_1_2_4_18_1
  doi: 10.1021/acs.jpclett.5b00968
– ident: e_1_2_4_23_1
  doi: 10.1002/aenm.201300402
– ident: e_1_2_4_19_1
  doi: 10.1021/acs.jpclett.6b02800
– ident: e_1_2_4_38_1
  doi: 10.1021/jacs.5b01994
– ident: e_1_2_4_43_1
  doi: 10.1021/acsami.7b06001
– ident: e_1_2_4_52_1
  doi: 10.1002/aenm.201701201
– ident: e_1_2_4_34_1
  doi: 10.1002/advs.201500194
– ident: e_1_2_4_5_1
  doi: 10.1039/C6EE01137C
– ident: e_1_2_4_11_1
  doi: 10.1002/adma.201603885
– ident: e_1_2_4_8_1
  doi: 10.1002/anie.201603694
– ident: e_1_2_4_2_1
  doi: 10.1126/science.aaa9272
– ident: e_1_2_4_30_1
  doi: 10.1021/jacs.5b05602
– ident: e_1_2_4_53_1
  doi: 10.3390/ma9030181
– ident: e_1_2_4_22_1
  doi: 10.1038/nphoton.2011.317
– ident: e_1_2_4_47_1
  doi: 10.1038/s41560-017-0060-5
– ident: e_1_2_4_36_1
  doi: 10.1038/nenergy.2016.177
– ident: e_1_2_4_51_1
  doi: 10.1002/adma.201600281
– ident: e_1_2_4_14_1
  doi: 10.1021/jacs.6b10227
– ident: e_1_2_4_32_1
  doi: 10.1039/C6CC05877A
– ident: e_1_2_4_46_1
  doi: 10.1039/C5EE03522H
– ident: e_1_2_4_49_1
  doi: 10.1002/adma.201301476
– ident: e_1_2_4_9_1
  doi: 10.1002/adma.201104187
– ident: e_1_2_4_45_1
  doi: 10.1364/OE.23.000A83
– ident: e_1_2_4_3_1
  doi: 10.1002/smtd.201700258
– ident: e_1_2_4_39_1
  doi: 10.1038/nnano.2015.230
– ident: e_1_2_4_4_1
  doi: 10.1002/adma.201700192
– ident: e_1_2_4_15_1
  doi: 10.1021/acs.jpclett.5b02597
– ident: e_1_2_4_10_1
  doi: 10.1002/adma.201502567
– ident: e_1_2_4_7_1
  doi: 10.1021/jacs.7b02677
– ident: e_1_2_4_44_1
  doi: 10.1038/nenergy.2017.102
– ident: e_1_2_4_50_1
  doi: 10.1002/aenm.201200377
– ident: e_1_2_4_54_1
  doi: 10.1002/adma.201701156
– ident: e_1_2_4_33_1
  doi: 10.1088/0034-4885/47/4/002
– ident: e_1_2_4_12_1
  doi: 10.1126/science.aag2700
– ident: e_1_2_4_42_1
  doi: 10.1021/acsenergylett.7b00888
– ident: e_1_2_4_16_1
  doi: 10.1021/acs.jpclett.6b00002
– ident: e_1_2_4_20_1
  doi: 10.1021/acs.chemrev.6b00176
– ident: e_1_2_4_35_1
  doi: 10.1126/sciadv.1501170
– ident: e_1_2_4_6_1
  doi: 10.1126/science.aan2301
– ident: e_1_2_4_24_1
  doi: 10.1002/aenm.201401298
– ident: e_1_2_4_1_1
  doi: 10.1021/ja809598r
– ident: e_1_2_4_28_1
  doi: 10.1002/adfm.201600958
– ident: e_1_2_4_48_1
  doi: 10.1039/C4MH00237G
SSID ssj0009606
Score 2.6502826
Snippet Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800855
SubjectTerms Cesium bromides
dual‐source vacuum coevaporation methods
Energy conversion efficiency
Evaporation rate
Light
Materials science
organic solar cells
Perovskites
Photoelectricity
Photovoltaic cells
semitransparent inorganic perovskite solar cells
Solar cells
Stability
tandem solar cells
Ultraviolet filters
ultraviolet light stability
Ultraviolet radiation
Title A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800855
https://www.ncbi.nlm.nih.gov/pubmed/29633397
https://www.proquest.com/docview/2047345599
https://www.proquest.com/docview/2023725505
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_QgUZCQQJ28TPxL7GJWu2opSRFmpt8ixHXVFmkXdLFL7J_jLjO1s2gUhJLglsiexnZnx58n4M0JvbG6FAhhArFSScNdIorUWxIEflNoITQOZztHHfH_GD0_F6Y1d_JEfYgy4ecsI_tobuK6XO9ekodoG3qBMhlQrcMI-Ycujos_X_FEengeyPSaIyrlcszamdGdTfHNW-g1qbiLXMPVM7yG9bnTMOPk6WfX1xFz9wuf4P726j-4OuBSXUZEeoFuue4ju3GArfIR-lPjEnc_7QIfu95D1-KCLp0IZ_MldLL4vfSgYT-ftOQYsjI_BTOD9IIxnLYiFJIAef_DxAOyzFCJH-CVeNPh4eM6JX2rjXde2S6w7i0tzNnc-6IEzPknZW7wXOC_8htHHaDbd-7K7T4bzHIgB2CNIDav4jOrGFtYC8LHKCefStDaiAMfBuWEst9yI3NAsb1xec9W4WinurCy4TdkTtNUtOvcM4bpoaNbkLDUp504IqXJpqbJFoYRmOk0QWX_Pygxk5_7MjbaKNM208gNdjQOdoHdj_W-R5uOPNbfX6lEN5r6EUl4w7snbEvR6LAZD9X9fdOcWK1-HMugnIM4EPY1qNb6KghtkgAwTRINy_KUNVfn-qBzvnv-L0At021_H1M1ttNVfrNxLgFd9_SqY0E_AiBuq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lb9QwEIBHpRyAA-9HoICRQJyyTRw7jwOHqNvVLt1tEe1KvQXHdsSKbRZ1s6DyJ_gt_BV-EWPnURaEkJB64JjETvwYj8eT8WeA5ypUPEEzwFVxErtMF7ErhOCuRj0YC8kFtTCdyX44nLLXx_x4A761e2FqPkTncDMjw-prM8CNQ3r7nBoqlAUH-bGNtWriKvf02WdctS1fjfrYxS8oHewe7Qzd5mABV-L8y90cl5M-FYWKlMIZWCWaa-15ueQRSjBjMghCxSQPJfXDQoc5SwqdJwnTKo6Y8gJ87yW4bI4RN7j-_ttzYpVZEFi8X8DdJGRxy4n06PZ6edfnwd-M23Vb2U52gxvwvW2mOsblQ29V5T355ReC5H_VjjfhemN6k7QeK7dgQ5e34dpPQMY78DUlh_pkVlniu9kmV5FRWR98Jckbfbr4tDTebjKYzU8ImvvkADUBVhgzk-kcs9k4h4qMjcuDmECMGoN-RhYFOWjec2i8CWRHz-dLIkpFUvl-po1fh_ish6UluxbrYfbE3oXphbTIPdgsF6V-ACSPCuoXYeBJjzHNeZyEsaKJiqKEi0B4DritAGWy4bmbY0XmWU2ippnp2KzrWAdeduk_1iSTP6bcauUxazTaEp-yKGCGT-fAs-4x6iLzg0mUerEyaWiA9USj2oH7tRx3n6Ko6QM0fh2gVhr_UoYs7U_S7urhv2R6CleGR5NxNh7t7z2Cq-Z-Ham6BZvV6Uo_Rmuyyp_Y8Uvg3UUL-g-xR3rc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qRUJwYF8CBYwE4pRp4thJfOAw6nTUoasoI_WWOrYjRqSZqpMBlT_BX-Gv8I94djIpA0JISD1wTLzEy9v88vw9gJc61lygGeDrVKQ-M0XqSym5b1AOplJxSR2Yzu5evDVmb4_40Qp8W9yFafAhOoeb5Qwnry2Dn-pi_QI0VGqHGxSmLtSqDavcNuef8dA2ezMa4A6_onS4-X5jy2_zCvgK1S_3czxNhlQWOtEaFbAWhhsTBLniCRIwYyqKYs0UjxUN48LEOROFyYVgRqcJ00GE_V6BqywOhE0WMXh3AVhlzwMO3S_ivohZuoCJDOj68niX1eBvtu2yqex03fAWfF-sUhPi8rE3r_Oe-vILgOT_tIy34WZreJN-wyl3YMVUd-HGT3CM9-Brnxyak0nt8N7tJbmajKom7ZUiB-Zs-mlmfd1kOClPCBr7ZB_lAM4XG5Nxic1clENNdqzDg9gwjAYE_ZxMC7Lf9nNofQlkw5TljMhKk776MDHWq0NC1sPRkk0H6mFvxN6H8aWsyANYraaVeQQkTwoaFnEUqIAxw3kq4lRToZNEcBnJwAN_QT-ZatHcbVKRMmtwqGlmNzbrNtaD11390wbH5I811xbkmLXybIalLImYRafz4EVXjJLI_l6SlZnObR0a4TzRpPbgYUPG3acoyvkITV8PqCPGv4wh6w92-93T439p9ByuHQyG2c5ob_sJXLevmzDVNVitz-bmKZqSdf7McS-B48um8x-rPnmL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Semitransparent+Inorganic+Perovskite+Film+for+Overcoming+Ultraviolet+Light+Instability+of+Organic+Solar+Cells+and+Achieving+14.03%25+Efficiency&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Weijie&rft.au=Zhang%2C+Jingwen&rft.au=Xu%2C+Guiying&rft.au=Xue%2C+Rongming&rft.date=2018-05-01&rft.eissn=1521-4095&rft.volume=30&rft.issue=21&rft.spage=e1800855&rft_id=info:doi/10.1002%2Fadma.201800855&rft_id=info%3Apmid%2F29633397&rft.externalDocID=29633397
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon