Recent Advances in Constructing Higher‐Order DNA Structures

Molecular self‐assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its origin...

Full description

Saved in:
Bibliographic Details
Published inChemistry, an Asian journal Vol. 17; no. 5; pp. e202101315 - n/a
Main Authors Wang, Jing, Wang, Dong‐Xia, Liu, Bo, Jing, Xiao, Chen, Dan‐Ye, Tang, An‐Na, Cui, Yun‐Xi, Kong, De‐Ming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molecular self‐assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment by taking advantage of its unique base pairing and inherent biocompatibility to produce structurally‐defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct higher‐order DNA structures. The problems of DNA nanostructures are discussed and the future directions in this field are provided. Recent advances in DNA nanotechnology, focusing on the analysis and highlighting methods of building DNA structures in recent years are summarized in this review.Furthermore, future directions in this field are provided.
AbstractList Molecular self-assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment by taking advantage of its unique base pairing and inherent biocompatibility to produce structurally-defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct higher-order DNA structures. The problems of DNA nanostructures are discussed and the future directions in this field are provided.Molecular self-assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment by taking advantage of its unique base pairing and inherent biocompatibility to produce structurally-defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct higher-order DNA structures. The problems of DNA nanostructures are discussed and the future directions in this field are provided.
Molecular self‐assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment by taking advantage of its unique base pairing and inherent biocompatibility to produce structurally‐defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct higher‐order DNA structures. The problems of DNA nanostructures are discussed and the future directions in this field are provided.
Molecular self‐assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment by taking advantage of its unique base pairing and inherent biocompatibility to produce structurally‐defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct higher‐order DNA structures. The problems of DNA nanostructures are discussed and the future directions in this field are provided. Recent advances in DNA nanotechnology, focusing on the analysis and highlighting methods of building DNA structures in recent years are summarized in this review.Furthermore, future directions in this field are provided.
Author Liu, Bo
Chen, Dan‐Ye
Tang, An‐Na
Wang, Dong‐Xia
Cui, Yun‐Xi
Kong, De‐Ming
Jing, Xiao
Wang, Jing
Author_xml – sequence: 1
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: Tianjin Medical University
– sequence: 2
  givenname: Dong‐Xia
  surname: Wang
  fullname: Wang, Dong‐Xia
  organization: Nankai University
– sequence: 3
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  organization: Nankai University
– sequence: 4
  givenname: Xiao
  surname: Jing
  fullname: Jing, Xiao
  organization: Nankai University
– sequence: 5
  givenname: Dan‐Ye
  surname: Chen
  fullname: Chen, Dan‐Ye
  organization: Nankai University
– sequence: 6
  givenname: An‐Na
  surname: Tang
  fullname: Tang, An‐Na
  organization: Nankai University
– sequence: 7
  givenname: Yun‐Xi
  surname: Cui
  fullname: Cui, Yun‐Xi
  email: 9920200031@nankai.edu.cn
  organization: Nankai University
– sequence: 8
  givenname: De‐Ming
  orcidid: 0000-0002-9216-8040
  surname: Kong
  fullname: Kong, De‐Ming
  email: kongdem@nankai.edu.cn
  organization: Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34989140$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKxDAUhoMojo5uXUrBjZsZT9r0koWLMl5GEAe8gLuQJqdjpJNq0iqz8xF8Rp_E6ugIgrg6B873_Rz-TbJqa4uE7FAYUoDwQHojhyGEFGhE4xWyQbOEDlhKb1eXe5j1yKb39wBxCDxbJ72I8YxTBhvk8BIV2ibI9ZO0Cn1gbDCqrW9cqxpjp8HYTO_Qvb28TpxGFxxd5MHV57F16LfIWikrj9tfs09uTo6vR-PB-eT0bJSfDxSLeDzIEoUYF0wDMB2HZUETWUKCIKlKNM9KlmlOJWIBkUxiXfIiBdAFRZaqVOmoT_YXuQ-ufmzRN2JmvMKqkhbr1oswoWmYxgx4h-79Qu_r1tnuu47qgJRmMXTU7hfVFjPU4sGZmXRz8V1MB7AFoFztvcNSKNPIxtS2cdJUgoL46F989C-W_Xfa8Jf2nfynwBfCs6lw_g8t8quz_Md9Bwlbl64
CitedBy_id crossref_primary_10_1002_cbic_202400229
crossref_primary_10_1093_nar_gkad893
crossref_primary_10_1039_D3QM00395G
crossref_primary_10_1021_acs_jafc_2c07661
crossref_primary_10_1093_nar_gkaf155
crossref_primary_10_3390_polym15081850
Cites_doi 10.1021/ja0760980
10.1021/acs.analchem.9b00007
10.1021/nl502626s
10.1126/science.1089389
10.1021/ja509192n
10.1002/ange.200602113
10.1038/s41563-020-0728-2
10.1021/jacs.8b10355
10.1002/adma.202000294
10.1006/mthe.2001.0495
10.1093/nar/gkw610
10.1038/nnano.2016.150
10.1021/acs.analchem.6b02871
10.1021/ja406115e
10.1093/nar/gkt808
10.1039/b924014d
10.1038/nprot.2006.465
10.1021/jacs.1c05236
10.1002/anie.201810735
10.1021/acsnano.8b09200
10.1038/nature24651
10.1021/acs.analchem.1c04113
10.1021/jacs.0c03129
10.1016/j.ccr.2010.02.026
10.1093/nar/gkaa867
10.1038/s41467-020-16112-z
10.1002/smll.202103877
10.1021/jacs.7b11161
10.1021/acsnano.8b06492
10.1016/j.talanta.2021.122846
10.1039/c2cc32204h
10.1021/acs.analchem.9b03453
10.1093/nar/gkh094
10.1039/C4CS00186A
10.31635/ccschem.019.20190017
10.1021/jacs.8b09867
10.1002/anie.202105696
10.1002/ange.201802890
10.1002/anie.201811117
10.1021/jacs.8b10529
10.1093/nar/gki722
10.1002/anie.202101744
10.1016/j.bios.2018.01.008
10.1002/ange.201400323
10.1126/science.1227268
10.1126/science.aaa5372
10.1002/anie.202108827
10.1021/acsmaterialslett.9b00484
10.1038/s41557-018-0046-3
10.1002/anie.202110404
10.1038/nchem.1745
10.1073/pnas.242729099
10.1038/nmeth.3429
10.1039/D1CS00250C
10.1007/s12274-015-0841-8
10.1039/b903609a
10.1021/acs.chemrev.6b00825
10.1038/nature24648
10.1002/ange.201909870
10.1002/anie.200602113
10.1038/nature24655
10.1021/jacs.9b01510
10.1126/science.2200121
10.1002/ange.201804264
10.1038/nature24650
10.1016/j.cell.2014.07.026
10.1038/nnano.2017.29
10.1002/cphc.200600260
10.1002/ange.201500561
10.1021/nn4030543
10.1021/ar400308f
10.1002/cbic.201600034
10.1021/acsnano.8b04817
10.1038/nchembio.2007.45
10.1093/nar/gkz064
10.1002/ange.201810735
10.1038/s41586-018-0332-7
10.1021/acs.nanolett.1c01821
10.1038/nprot.2015.078
10.1002/ange.201804156
10.1002/ange.202000637
10.1002/anie.201802890
10.1021/ja5101307
10.1002/advs.202000557
10.1002/adma.201906600
10.1038/s41467-017-02203-x
10.1039/D1CC02455H
10.1038/nature01406
10.1016/j.tcb.2009.05.002
10.1039/C9SC02281C
10.1039/C4CS00175C
10.1038/nchem.1548
10.1002/adfm.201706410
10.1021/ar500073a
10.1073/pnas.1420361112
10.1002/anie.201909870
10.1038/nature04586
10.1002/anie.201804264
10.1021/ja5064394
10.1021/ac902421u
10.1002/adma.201703658
10.1038/s43586-020-00009-8
10.1039/D1SC00587A
10.1002/anie.201500561
10.1002/adma.202007738
10.1021/jacs.8b10795
10.1016/j.biomaterials.2020.120591
10.1021/ja106098j
10.1002/ange.201811117
10.1006/jmbi.1999.3234
10.1002/anie.201400323
10.1038/s41570-017-0076
10.1002/anie.202005334
10.1016/0022-5193(82)90002-9
10.1016/j.jconrel.2020.12.048
10.1038/s41557-020-0539-8
10.1021/jacs.7b02865
10.1073/pnas.95.4.1460
10.1016/j.addr.2018.04.007
10.1002/anie.201804156
10.1002/anie.202108393
10.1021/jacs.9b01931
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/asia.202101315
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1861-471X
EndPage n/a
ExternalDocumentID 34989140
10_1002_asia_202101315
ASIA202101315
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22074068; 21874075
– fundername: National Key R&D Program of China
  funderid: 2019YFA0210103
– fundername: National Natural Science Foundation of China
  grantid: 21874075
– fundername: National Key R&D Program of China
  grantid: 2019YFA0210103
– fundername: National Natural Science Foundation of China
  grantid: 22074068
GroupedDBID ---
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
5GY
6J9
8-1
87K
8UM
A00
AAESR
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AHBTC
AHMBA
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBD
EBS
F5P
G-S
HBH
HGLYW
HHY
HHZ
HZ~
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2W
P4E
PQQKQ
QRW
ROL
RWI
SUPJJ
WBKPD
WHG
WOHZO
WXSBR
WYJ
XSW
XV2
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HF~
HVGLF
LH4
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c4395-86cee5b4d004d52fb16af06e0a1c6d98f48d91aeeb03a65df9b700db1e47c7cd3
ISSN 1861-4728
1861-471X
IngestDate Fri Jul 11 15:55:20 EDT 2025
Mon Jun 30 10:07:01 EDT 2025
Wed Feb 19 02:27:35 EST 2025
Thu Apr 24 23:09:43 EDT 2025
Tue Jul 01 00:53:34 EDT 2025
Wed Jan 22 16:26:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords DNA-based materials
self-assembly
DNA nanotechnology
higher-order
DNA nanostructures
Language English
License 2022 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4395-86cee5b4d004d52fb16af06e0a1c6d98f48d91aeeb03a65df9b700db1e47c7cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9216-8040
PMID 34989140
PQID 2640971850
PQPubID 986338
PageCount 15
ParticipantIDs proquest_miscellaneous_2617275409
proquest_journals_2640971850
pubmed_primary_34989140
crossref_citationtrail_10_1002_asia_202101315
crossref_primary_10_1002_asia_202101315
wiley_primary_10_1002_asia_202101315_ASIA202101315
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 1, 2022
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 1, 2022
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemistry, an Asian journal
PublicationTitleAlternate Chem Asian J
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2019; 91
2017; 8
2017; 1
2021; 21
2015; 347
2019; 10
2019; 13
1982; 99
2020 2020; 59 132
2020; 12
2020; 11
2013; 7
2017; 552
2013; 5
2014; 136
2017; 117
2020; 19
2004; 32
2020; 7
2020; 2
2021; 33
2015; 137
2018 2018; 57 130
2018; 134
2015; 44
1999; 294
2006; 440
2014; 14
2015 2015; 54 127
2018; 30
2007; 2
2007; 3
1998; 95
2009; 19
2005; 33
2012; 338
2016; 88
2016; 44
2015; 12
2021; 49
2018; 28
2007; 129
1990; 249
2018; 140
2020; 142
2019; 1
2021; 268
2018; 104
2015; 10
2013; 41
2006; 7
2014; 47
2020; 32
2021; 143
2021; 1
2021; 50
2016; 17
2019; 141
2021; 93
2015; 8
2022; 236
2014; 158
2019 2019; 58 131
2017; 139
2016; 11
2010; 82
2006 2006; 45 118
2021; 57
2021; 12
2018; 559
2021
2001; 4
2015; 112
2021; 17
2010; 135
2019; 47
2017; 12
2010; 132
2010; 254
2013; 135
2009; 7
2012; 48
2021; 330
2018; 12
2021; 60
2003; 301
2018; 10
2003; 421
2003; 100
e_1_2_12_2_2
e_1_2_12_130_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_138_1
e_1_2_12_115_2
e_1_2_12_134_1
e_1_2_12_108_1
e_1_2_12_66_1
e_1_2_12_20_2
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_127_2
e_1_2_12_24_2
e_1_2_12_47_2
e_1_2_12_89_2
Li Y. (e_1_2_12_132_1) 2021
e_1_2_12_62_1
e_1_2_12_81_1
e_1_2_12_100_1
e_1_2_12_28_2
e_1_2_12_104_1
e_1_2_12_142_2
e_1_2_12_123_2
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_96_2
e_1_2_12_54_1
e_1_2_12_139_1
e_1_2_12_35_1
e_1_2_12_58_2
Krissanaprasit A. (e_1_2_12_88_2) 2021
e_1_2_12_58_1
e_1_2_12_12_3
e_1_2_12_12_2
e_1_2_12_6_2
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_2
e_1_2_12_18_1
e_1_2_12_37_2
e_1_2_12_110_1
e_1_2_12_137_2
e_1_2_12_114_3
e_1_2_12_114_2
e_1_2_12_133_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_21_2
e_1_2_12_107_1
e_1_2_12_44_2
e_1_2_12_25_2
e_1_2_12_67_2
e_1_2_12_82_2
e_1_2_12_40_1
e_1_2_12_141_1
e_1_2_12_122_2
e_1_2_12_48_2
e_1_2_12_29_2
e_1_2_12_103_2
e_1_2_12_126_2
e_1_2_12_145_1
e_1_2_12_119_2
e_1_2_12_51_2
e_1_2_12_97_2
e_1_2_12_55_1
e_1_2_12_32_2
e_1_2_12_74_2
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_13_1
e_1_2_12_7_2
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_19_1
e_1_2_12_15_2
e_1_2_12_38_2
e_1_2_12_136_2
e_1_2_12_113_2
e_1_2_12_64_2
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_22_2
e_1_2_12_45_2
e_1_2_12_68_2
e_1_2_12_83_2
e_1_2_12_60_1
e_1_2_12_140_1
e_1_2_12_26_2
e_1_2_12_49_2
e_1_2_12_121_1
e_1_2_12_125_1
e_1_2_12_102_2
e_1_2_12_144_2
e_1_2_12_52_2
e_1_2_12_75_2
e_1_2_12_98_2
e_1_2_12_75_3
e_1_2_12_118_1
e_1_2_12_33_2
e_1_2_12_56_2
e_1_2_12_79_2
e_1_2_12_137_3
e_1_2_12_14_2
e_1_2_12_90_1
e_1_2_12_71_2
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_8_2
e_1_2_12_5_2
e_1_2_12_16_2
e_1_2_12_1_1
e_1_2_12_135_1
e_1_2_12_39_2
e_1_2_12_116_1
e_1_2_12_131_1
e_1_2_12_131_2
e_1_2_12_112_2
e_1_2_12_42_1
e_1_2_12_65_2
e_1_2_12_109_1
e_1_2_12_105_2
e_1_2_12_128_2
e_1_2_12_42_2
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_80_2
e_1_2_12_27_1
e_1_2_12_120_2
e_1_2_12_105_1
e_1_2_12_101_2
e_1_2_12_124_2
e_1_2_12_143_2
e_1_2_12_143_3
e_1_2_12_99_1
e_1_2_12_30_2
e_1_2_12_76_2
e_1_2_12_117_2
e_1_2_12_53_2
e_1_2_12_95_2
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_2
e_1_2_12_91_1
e_1_2_12_11_2
e_1_2_12_72_2
e_1_2_12_9_2
References_xml – volume: 100
  start-page: 409
  year: 2003
  end-page: 413
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 9758
  year: 2019
  end-page: 9767
  publication-title: Chem. Sci.
– volume: 236
  year: 2022
  publication-title: Talanta
– volume: 12
  start-page: 492
  year: 2015
  end-page: 492
  publication-title: Nat. Methods
– volume: 60
  start-page: 17937
  year: 2021
  end-page: 17941
  publication-title: Angew. Chem. Int. Ed.
– volume: 141
  start-page: 7056
  year: 2019
  end-page: 7062
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 16438
  year: 2013
  end-page: 16445
  publication-title: J. Am. Chem. Soc.
– volume: 99
  start-page: 237
  year: 1982
  end-page: 247
  publication-title: J. Theor. Biol.
– volume: 129
  start-page: 14475
  year: 2007
  end-page: 14481
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 10593
  year: 2013
  end-page: 10604
  publication-title: Nucleic Acids Res.
– volume: 141
  start-page: 3456
  year: 2019
  end-page: 3469
  publication-title: J. Am. Chem. Soc.
– volume: 338
  start-page: 1177
  year: 2012
  end-page: 1183
  publication-title: Science
– volume: 2
  start-page: 203
  year: 2007
  end-page: 212
  publication-title: Nat. Protoc.
– volume: 44
  start-page: 6574
  year: 2016
  end-page: 6582
  publication-title: Nucleic Acids Res.
– volume: 140
  start-page: 17808
  year: 2018
  end-page: 17819
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 7795 7905
  year: 2015 2015
  end-page: 7798 7909
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 1526
  year: 2015
  end-page: 1560
  publication-title: Chem. Soc. Rev.
– volume: 104
  start-page: 138
  year: 2018
  end-page: 144
  publication-title: Biosens. Bioelectron.
– volume: 47
  start-page: 2727
  year: 2019
  end-page: 2738
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 631
  year: 2018
  end-page: 637
  publication-title: Nat. Chem.
– volume: 21
  start-page: 5834
  year: 2021
  end-page: 5841
  publication-title: Nano Lett.
– volume: 60
  start-page: 22970
  year: 2021
  end-page: 22976
  publication-title: Angew. Chem. Int. Ed.
– volume: 552
  start-page: 72
  year: 2017
  end-page: 77
  publication-title: Nature
– volume: 7
  start-page: 2506
  year: 2009
  end-page: 2508
  publication-title: Org. Biomol. Chem.
– volume: 58 131
  start-page: 1350 1364
  year: 2019 2019
  end-page: 1354 1368
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 112
  start-page: 5903
  year: 2015
  end-page: 5908
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 60
  start-page: 21226
  year: 2021
  end-page: 21230
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 24823
  year: 2021
  end-page: 24827
  publication-title: Angew. Chem. Int. Ed.
– volume: 58 131
  start-page: 1648 1662
  year: 2019 2019
  end-page: 1653 1667
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 3334
  year: 2019
  end-page: 3340
  publication-title: ACS Nano
– volume: 1
  start-page: 13
  year: 2021
  publication-title: Nat. Rev. Methods Primers.
– volume: 58 131
  start-page: 18207 18375
  year: 2019 2019
  end-page: 18211 18379
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 9470 9614
  year: 2018 2018
  end-page: 9474 9618
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 82
  start-page: 789
  year: 2010
  end-page: 793
  publication-title: Anal. Chem.
– volume: 136
  start-page: 15767
  year: 2014
  end-page: 15774
  publication-title: J. Am. Chem. Soc.
– volume: 254
  start-page: 2403
  year: 2010
  end-page: 2415
  publication-title: Coord. Chem. Rev.
– volume: 136
  start-page: 13967
  year: 2014
  end-page: 13970
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 1853
  year: 2014
  end-page: 1860
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 9724
  year: 2013
  end-page: 9734
  publication-title: ACS Nano
– volume: 141
  start-page: 4282
  year: 2019
  end-page: 4290
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 13655
  year: 2021
  end-page: 13663
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1641
  year: 2006
  end-page: 1647
  publication-title: ChemPhysChem
– volume: 7
  year: 2020
  publication-title: Adv. Sci. (Weinh)
– volume: 17
  year: 2021
  publication-title: Small
– volume: 14
  start-page: 5740
  year: 2014
  end-page: 5747
  publication-title: Nano Lett.
– volume: 13
  start-page: 2888
  year: 2019
  end-page: 2900
  publication-title: ACS Nano
– volume: 32
  start-page: D95
  year: 2004
  end-page: 100
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 1067
  year: 2020
  end-page: 1075
  publication-title: Nat. Chem.
– volume: 53 126
  start-page: 5821 5931
  year: 2014 2014
  end-page: 5826 5936
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 88
  start-page: 10800
  year: 2016
  end-page: 10804
  publication-title: Anal. Chem.
– volume: 95
  start-page: 1460
  year: 1998
  end-page: 1465
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 49
  start-page: D76
  year: 2021
  end-page: D81
  publication-title: Nucleic Acids Res.
– volume: 421
  start-page: 427
  year: 2003
  end-page: 431
  publication-title: Nature
– volume: 134
  start-page: 3
  year: 2018
  end-page: 21
  publication-title: Adv. Drug Delivery Rev.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2185
  year: 2020
  publication-title: Nat. Commun.
– volume: 33
  start-page: 4182
  year: 2005
  end-page: 4190
  publication-title: Nucleic Acids Res.
– volume: 249
  start-page: 505
  year: 1990
  end-page: 510
  publication-title: Science
– volume: 142
  start-page: 10153
  year: 2020
  end-page: 10162
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 12584
  year: 2017
  end-page: 12640
  publication-title: Chem. Rev.
– volume: 3
  start-page: 763
  year: 2007
  end-page: 768
  publication-title: Nat. Chem. Biol.
– volume: 137
  start-page: 1730
  year: 2015
  end-page: 1733
  publication-title: J. Am. Chem. Soc.
– volume: 91
  start-page: 5244
  year: 2019
  end-page: 5251
  publication-title: Anal. Chem.
– volume: 4
  start-page: 567
  year: 2001
  end-page: 573
  publication-title: Mol. Ther.
– volume: 11
  start-page: 1112
  year: 2016
  end-page: 1119
  publication-title: Nat. Nanotechnol.
– volume: 552
  start-page: 67
  year: 2017
  end-page: 71
  publication-title: Nature
– volume: 301
  start-page: 1882
  year: 2003
  end-page: 1884
  publication-title: Science
– volume: 140
  start-page: 17656
  year: 2018
  end-page: 17665
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 1012
  year: 2020
  end-page: 1018
  publication-title: Nat. Mater.
– volume: 47
  start-page: 1663
  year: 2014
  end-page: 1672
  publication-title: Acc. Chem. Res.
– volume: 139
  start-page: 9104
  year: 2017
  end-page: 9107
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 868
  year: 2013
  end-page: 875
  publication-title: Nat. Chem.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 5
  start-page: 182
  year: 2013
  end-page: 186
  publication-title: Nat. Chem.
– volume: 140
  start-page: 578
  year: 2018
  end-page: 581
  publication-title: J. Am. Chem. Soc.
– volume: 347
  start-page: 1446
  year: 2015
  end-page: 1452
  publication-title: Science
– volume: 8
  start-page: 3447
  year: 2015
  end-page: 3460
  publication-title: Nano Res.
– volume: 17
  start-page: 1063
  year: 2016
  end-page: 1080
  publication-title: ChemBioChem
– volume: 2
  start-page: 1322
  year: 2020
  end-page: 1327
  publication-title: ACS Materials Lett.
– volume: 57
  start-page: 6760
  year: 2021
  end-page: 6763
  publication-title: Chem. Commun.
– volume: 12
  start-page: 582
  year: 2017
  end-page: 588
  publication-title: Nat. Nanotechnol.
– volume: 135
  start-page: 545
  year: 2010
  end-page: 549
  publication-title: Analyst
– volume: 57 130
  start-page: 8994 9132
  year: 2018 2018
  end-page: 8997 9135
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 1509
  year: 2015
  end-page: 1525
  publication-title: Chem. Soc. Rev.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 414
  year: 2009
  end-page: 422
  publication-title: Trends Cell Biol.
– volume: 59 132
  start-page: 15176 7265
  year: 2020 2020
  end-page: 15180 7269
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 9484
  year: 2018
  end-page: 9494
  publication-title: ACS Nano
– volume: 10
  start-page: 1508
  year: 2015
  end-page: 1524
  publication-title: Nat. Protoc.
– volume: 440
  start-page: 297
  year: 2006
  end-page: 302
  publication-title: Nature
– year: 2021
  publication-title: J. Am. Chem. Soc.
– year: 2021
  publication-title: Chem. Rev.
– volume: 552
  start-page: 84
  year: 2017
  end-page: 87
  publication-title: Nature
– volume: 132
  start-page: 12668
  year: 2010
  end-page: 12673
  publication-title: J. Am. Chem. Soc.
– volume: 93
  start-page: 16231
  year: 2021
  end-page: 16239
  publication-title: Anal. Chem.
– volume: 158
  start-page: 1148
  year: 2014
  end-page: 1158
  publication-title: Cell
– volume: 91
  start-page: 13165
  year: 2019
  end-page: 13173
  publication-title: Anal. Chem.
– volume: 12
  start-page: 7602
  year: 2021
  end-page: 7622
  publication-title: Chem. Sci.
– volume: 60
  start-page: 14324
  year: 2021
  end-page: 14328
  publication-title: Angew. Chem. Int. Ed.
– volume: 48
  start-page: 6405
  year: 2012
  end-page: 6407
  publication-title: Chem. Commun.
– volume: 1
  start-page: 296
  year: 2019
  end-page: 303
  publication-title: CCS Chemistry
– volume: 57 130
  start-page: 9341 9485
  year: 2018 2018
  end-page: 9345 9489
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 268
  year: 2021
  publication-title: Biomaterials
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 330
  start-page: 483
  year: 2021
  end-page: 492
  publication-title: J. Controlled Release
– volume: 45 118
  start-page: 7537 7699
  year: 2006 2006
  end-page: 7539 7701
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 11966
  year: 2021
  end-page: 11978
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 2006
  year: 2017
  publication-title: Nat. Commun.
– volume: 559
  start-page: 593
  year: 2018
  end-page: 598
  publication-title: Nature
– volume: 552
  start-page: 78
  year: 2017
  end-page: 83
  publication-title: Nature
– volume: 294
  start-page: 477
  year: 1999
  end-page: 485
  publication-title: J. Mol. Biol.
– volume: 141
  start-page: 6797
  year: 2019
  end-page: 6801
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 1
  year: 2017
  end-page: 16
  publication-title: Nat. Chem. Rev.
– ident: e_1_2_12_76_2
  doi: 10.1021/ja0760980
– ident: e_1_2_12_37_2
  doi: 10.1021/acs.analchem.9b00007
– ident: e_1_2_12_72_2
  doi: 10.1021/nl502626s
– ident: e_1_2_12_19_1
– ident: e_1_2_12_64_2
  doi: 10.1126/science.1089389
– ident: e_1_2_12_136_2
  doi: 10.1021/ja509192n
– ident: e_1_2_12_75_3
  doi: 10.1002/ange.200602113
– ident: e_1_2_12_66_1
– ident: e_1_2_12_106_1
  doi: 10.1038/s41563-020-0728-2
– ident: e_1_2_12_129_1
  doi: 10.1021/jacs.8b10355
– ident: e_1_2_12_100_1
– ident: e_1_2_12_145_1
– ident: e_1_2_12_48_2
  doi: 10.1002/adma.202000294
– ident: e_1_2_12_89_2
  doi: 10.1006/mthe.2001.0495
– ident: e_1_2_12_68_2
  doi: 10.1093/nar/gkw610
– ident: e_1_2_12_11_2
  doi: 10.1038/nnano.2016.150
– ident: e_1_2_12_25_2
  doi: 10.1021/acs.analchem.6b02871
– ident: e_1_2_12_51_2
  doi: 10.1021/ja406115e
– ident: e_1_2_12_92_1
  doi: 10.1093/nar/gkt808
– ident: e_1_2_12_22_2
  doi: 10.1039/b924014d
– ident: e_1_2_12_113_2
  doi: 10.1038/nprot.2006.465
– ident: e_1_2_12_115_2
  doi: 10.1021/jacs.1c05236
– ident: e_1_2_12_70_1
– ident: e_1_2_12_42_1
  doi: 10.1002/anie.201810735
– ident: e_1_2_12_109_1
  doi: 10.1021/acsnano.8b09200
– ident: e_1_2_12_23_1
– ident: e_1_2_12_82_2
  doi: 10.1038/nature24651
– ident: e_1_2_12_98_2
  doi: 10.1021/acs.analchem.1c04113
– ident: e_1_2_12_144_2
  doi: 10.1021/jacs.0c03129
– ident: e_1_2_12_24_2
  doi: 10.1016/j.ccr.2010.02.026
– ident: e_1_2_12_50_1
– ident: e_1_2_12_41_1
  doi: 10.1093/nar/gkaa867
– ident: e_1_2_12_85_1
  doi: 10.1038/s41467-020-16112-z
– ident: e_1_2_12_49_2
  doi: 10.1002/smll.202103877
– ident: e_1_2_12_4_1
– ident: e_1_2_12_122_2
  doi: 10.1021/jacs.7b11161
– ident: e_1_2_12_52_2
  doi: 10.1021/acsnano.8b06492
– ident: e_1_2_12_95_2
  doi: 10.1016/j.talanta.2021.122846
– ident: e_1_2_12_71_2
  doi: 10.1039/c2cc32204h
– ident: e_1_2_12_97_2
  doi: 10.1021/acs.analchem.9b03453
– ident: e_1_2_12_101_2
  doi: 10.1093/nar/gkh094
– ident: e_1_2_12_127_2
  doi: 10.1039/C4CS00186A
– ident: e_1_2_12_8_2
  doi: 10.31635/ccschem.019.20190017
– ident: e_1_2_12_78_1
– ident: e_1_2_12_94_1
– ident: e_1_2_12_10_1
– ident: e_1_2_12_119_2
  doi: 10.1021/jacs.8b09867
– ident: e_1_2_12_123_2
  doi: 10.1002/anie.202105696
– ident: e_1_2_12_118_1
– ident: e_1_2_12_63_1
– ident: e_1_2_12_12_3
  doi: 10.1002/ange.201802890
– ident: e_1_2_12_105_1
  doi: 10.1002/anie.201811117
– ident: e_1_2_12_91_1
  doi: 10.1021/jacs.8b10529
– ident: e_1_2_12_29_2
  doi: 10.1093/nar/gki722
– ident: e_1_2_12_44_2
  doi: 10.1002/anie.202101744
– ident: e_1_2_12_135_1
– ident: e_1_2_12_20_2
  doi: 10.1016/j.bios.2018.01.008
– ident: e_1_2_12_58_2
  doi: 10.1002/ange.201400323
– ident: e_1_2_12_54_1
  doi: 10.1021/ja406115e
– ident: e_1_2_12_80_2
  doi: 10.1126/science.1227268
– ident: e_1_2_12_1_1
– ident: e_1_2_12_15_2
  doi: 10.1126/science.aaa5372
– ident: e_1_2_12_61_1
  doi: 10.1002/anie.202108827
– ident: e_1_2_12_74_2
  doi: 10.1021/acsmaterialslett.9b00484
– ident: e_1_2_12_34_1
  doi: 10.1038/s41557-018-0046-3
– ident: e_1_2_12_45_2
  doi: 10.1002/anie.202110404
– ident: e_1_2_12_138_1
  doi: 10.1038/nchem.1745
– ident: e_1_2_12_120_2
  doi: 10.1073/pnas.242729099
– ident: e_1_2_12_86_1
  doi: 10.1038/nmeth.3429
– ident: e_1_2_12_67_2
  doi: 10.1039/D1CS00250C
– ident: e_1_2_12_59_1
  doi: 10.1007/s12274-015-0841-8
– ident: e_1_2_12_73_1
– ident: e_1_2_12_130_1
  doi: 10.1039/b903609a
– ident: e_1_2_12_9_2
  doi: 10.1021/acs.chemrev.6b00825
– ident: e_1_2_12_141_1
– ident: e_1_2_12_79_2
  doi: 10.1038/nature24648
– ident: e_1_2_12_125_1
– ident: e_1_2_12_114_3
  doi: 10.1002/ange.201909870
– ident: e_1_2_12_75_2
  doi: 10.1002/anie.200602113
– ident: e_1_2_12_77_1
  doi: 10.1038/nature24655
– ident: e_1_2_12_133_1
  doi: 10.1021/jacs.9b01510
– ident: e_1_2_12_99_1
  doi: 10.1126/science.2200121
– ident: e_1_2_12_117_2
  doi: 10.1002/ange.201804264
– ident: e_1_2_12_83_2
  doi: 10.1038/nature24650
– ident: e_1_2_12_107_1
  doi: 10.1016/j.cell.2014.07.026
– ident: e_1_2_12_30_2
  doi: 10.1038/nnano.2017.29
– ident: e_1_2_12_3_2
  doi: 10.1002/cphc.200600260
– ident: e_1_2_12_131_2
  doi: 10.1002/ange.201500561
– ident: e_1_2_12_108_1
  doi: 10.1021/nn4030543
– ident: e_1_2_12_13_1
– ident: e_1_2_12_112_2
  doi: 10.1021/ar400308f
– ident: e_1_2_12_2_2
  doi: 10.1002/cbic.201600034
– ident: e_1_2_12_17_1
  doi: 10.1021/acsnano.8b04817
– ident: e_1_2_12_27_1
– ident: e_1_2_12_39_2
  doi: 10.1038/nchembio.2007.45
– ident: e_1_2_12_28_2
  doi: 10.1093/nar/gkz064
– ident: e_1_2_12_42_2
  doi: 10.1002/ange.201810735
– ident: e_1_2_12_47_2
  doi: 10.1038/s41586-018-0332-7
– year: 2021
  ident: e_1_2_12_132_1
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_12_110_1
  doi: 10.1021/acs.nanolett.1c01821
– ident: e_1_2_12_53_2
  doi: 10.1038/nprot.2015.078
– ident: e_1_2_12_43_1
– ident: e_1_2_12_143_3
  doi: 10.1002/ange.201804156
– ident: e_1_2_12_137_3
  doi: 10.1002/ange.202000637
– ident: e_1_2_12_12_2
  doi: 10.1002/anie.201802890
– ident: e_1_2_12_31_1
– ident: e_1_2_12_104_1
  doi: 10.1021/ja5101307
– ident: e_1_2_12_5_2
  doi: 10.1002/advs.202000557
– ident: e_1_2_12_116_1
  doi: 10.1002/adma.201906600
– ident: e_1_2_12_40_1
  doi: 10.1038/s41467-017-02203-x
– ident: e_1_2_12_90_1
  doi: 10.1039/D1CC02455H
– ident: e_1_2_12_121_1
– ident: e_1_2_12_65_2
  doi: 10.1038/nature01406
– ident: e_1_2_12_33_2
  doi: 10.1016/j.tcb.2009.05.002
– ident: e_1_2_12_93_1
  doi: 10.1039/C9SC02281C
– ident: e_1_2_12_128_2
  doi: 10.1039/C4CS00175C
– ident: e_1_2_12_32_2
  doi: 10.1038/nchem.1548
– ident: e_1_2_12_134_1
  doi: 10.1002/adfm.201706410
– ident: e_1_2_12_35_1
  doi: 10.1021/ar500073a
– ident: e_1_2_12_38_2
  doi: 10.1073/pnas.1420361112
– ident: e_1_2_12_55_1
– ident: e_1_2_12_114_2
  doi: 10.1002/anie.201909870
– ident: e_1_2_12_69_1
  doi: 10.1038/nature04586
– ident: e_1_2_12_117_1
  doi: 10.1002/anie.201804264
– ident: e_1_2_12_16_2
  doi: 10.1021/ja5064394
– ident: e_1_2_12_46_1
– ident: e_1_2_12_126_2
  doi: 10.1039/C4CS00175C
– ident: e_1_2_12_26_2
  doi: 10.1021/ac902421u
– ident: e_1_2_12_81_1
– ident: e_1_2_12_6_2
  doi: 10.1002/adma.201703658
– ident: e_1_2_12_7_2
  doi: 10.1038/s43586-020-00009-8
– ident: e_1_2_12_96_2
  doi: 10.1039/D1SC00587A
– ident: e_1_2_12_131_1
  doi: 10.1002/anie.201500561
– ident: e_1_2_12_56_2
  doi: 10.1002/adma.202007738
– ident: e_1_2_12_60_1
  doi: 10.1021/jacs.8b10795
– ident: e_1_2_12_87_1
– ident: e_1_2_12_57_2
  doi: 10.1016/j.biomaterials.2020.120591
– ident: e_1_2_12_21_2
  doi: 10.1021/ja106098j
– ident: e_1_2_12_105_2
  doi: 10.1002/ange.201811117
– ident: e_1_2_12_18_1
  doi: 10.1006/jmbi.1999.3234
– ident: e_1_2_12_58_1
  doi: 10.1002/anie.201400323
– ident: e_1_2_12_111_1
– ident: e_1_2_12_102_2
  doi: 10.1038/s41570-017-0076
– ident: e_1_2_12_137_2
  doi: 10.1002/anie.202005334
– ident: e_1_2_12_62_1
  doi: 10.1016/0022-5193(82)90002-9
– ident: e_1_2_12_140_1
  doi: 10.1016/j.jconrel.2020.12.048
– ident: e_1_2_12_84_1
  doi: 10.1038/s41557-020-0539-8
– ident: e_1_2_12_142_2
  doi: 10.1021/jacs.7b02865
– ident: e_1_2_12_14_2
  doi: 10.1073/pnas.95.4.1460
– ident: e_1_2_12_36_1
– ident: e_1_2_12_103_2
  doi: 10.1016/j.addr.2018.04.007
– ident: e_1_2_12_143_2
  doi: 10.1002/anie.201804156
– year: 2021
  ident: e_1_2_12_88_2
  publication-title: Chem. Rev.
– ident: e_1_2_12_139_1
  doi: 10.1002/anie.202108393
– ident: e_1_2_12_124_2
  doi: 10.1021/jacs.9b01931
SSID ssj0052098
Score 2.413297
SecondaryResourceType review_article
Snippet Molecular self‐assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier...
Molecular self-assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202101315
SubjectTerms Assembly
Base Pairing
Biocompatibility
Biomedical materials
Biosensing Techniques
Biosensors
Chemistry
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA nanostructures
DNA nanotechnology
DNA-based materials
higher-order
Medical materials
Nanostructure
Nanostructures - chemistry
Nanotechnology
self-assembly
Title Recent Advances in Constructing Higher‐Order DNA Structures
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202101315
https://www.ncbi.nlm.nih.gov/pubmed/34989140
https://www.proquest.com/docview/2640971850
https://www.proquest.com/docview/2617275409
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVguoANankOtChISCxQwE78yjLttCoIyoJWml1kxw4aCWWQprNhxSfwjXwJ1_FjMirPbqKRczNOfE7se3MfRug5x1Rg0vHcaIZzqguTK2lwroWxwmJWSOWykd-f8dML-nbO5iOPqcsuudSv2q-_zCu5DqrQBri6LNn_QDb9KTTAb8AXjoAwHP8JY9D5nCu_9n78VcjgCyVh-08hiCPFM3xwZTZfzs5q54teD76D1Vg5PYqbv_mQToBuET7TxzsZvryHGN645o3aZi6-N_Y2X6QZ_91iPfBomeJ1wk4qILMcf3cAkzUFXoWpUnKwPkVI7bbjtmETnM38KkY8YqOVNq1DV6ZxXxbWpZGCBQ9GKSkJ2yxY0UmfJNmfZX15349v6nT-JtopwKwoJminPpwdnsS128UEDcmT8dlimU9cvN7uYVuNuWKbbJs6g65yvovuBCMjqz1j9tAN299FtxK891BgThaZky36bMyczDPnx7fvA2cy4Ey24cx9dHFyfH50moeNNPIW9E2WSw6qENPUwLtjWNFpwlWHucWKtNxUsqPSVERZq3GpODNdpQXGRhNLRStaUz5Ak37Z20coE6bsqCmV0bSiXBHNraFCMsk7RlpWTlEex6VpQ5V5t9nJ58bXxy4aN45NGscpepHkv_j6Kr-V3I_D3ATmrxpQ510RNMnwFD1Lp2EwndtL9Xa5djJOSQfLpJqihx6e1FVJK1kRClcXA15_uYdmi0WPr3PRE3R78zbtowlgZw9Ar73UTwMZfwKH8JaJ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Constructing+Higher%E2%80%90Order+DNA+Structures&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Wang%2C+Jing&rft.au=Wang%2C+Dong%E2%80%90Xia&rft.au=Liu%2C+Bo&rft.au=Jing%2C+Xiao&rft.date=2022-03-01&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=17&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fasia.202101315&rft.externalDBID=10.1002%252Fasia.202101315&rft.externalDocID=ASIA202101315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon