Recent Advances in Constructing Higher‐Order DNA Structures
Molecular self‐assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its origin...
Saved in:
Published in | Chemistry, an Asian journal Vol. 17; no. 5; pp. e202101315 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molecular self‐assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment by taking advantage of its unique base pairing and inherent biocompatibility to produce structurally‐defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct higher‐order DNA structures. The problems of DNA nanostructures are discussed and the future directions in this field are provided.
Recent advances in DNA nanotechnology, focusing on the analysis and highlighting methods of building DNA structures in recent years are summarized in this review.Furthermore, future directions in this field are provided. |
---|---|
AbstractList | Molecular self-assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment by taking advantage of its unique base pairing and inherent biocompatibility to produce structurally-defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct higher-order DNA structures. The problems of DNA nanostructures are discussed and the future directions in this field are provided.Molecular self-assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment by taking advantage of its unique base pairing and inherent biocompatibility to produce structurally-defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct higher-order DNA structures. The problems of DNA nanostructures are discussed and the future directions in this field are provided. Molecular self‐assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment by taking advantage of its unique base pairing and inherent biocompatibility to produce structurally‐defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct higher‐order DNA structures. The problems of DNA nanostructures are discussed and the future directions in this field are provided. Molecular self‐assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment by taking advantage of its unique base pairing and inherent biocompatibility to produce structurally‐defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct higher‐order DNA structures. The problems of DNA nanostructures are discussed and the future directions in this field are provided. Recent advances in DNA nanotechnology, focusing on the analysis and highlighting methods of building DNA structures in recent years are summarized in this review.Furthermore, future directions in this field are provided. |
Author | Liu, Bo Chen, Dan‐Ye Tang, An‐Na Wang, Dong‐Xia Cui, Yun‐Xi Kong, De‐Ming Jing, Xiao Wang, Jing |
Author_xml | – sequence: 1 givenname: Jing surname: Wang fullname: Wang, Jing organization: Tianjin Medical University – sequence: 2 givenname: Dong‐Xia surname: Wang fullname: Wang, Dong‐Xia organization: Nankai University – sequence: 3 givenname: Bo surname: Liu fullname: Liu, Bo organization: Nankai University – sequence: 4 givenname: Xiao surname: Jing fullname: Jing, Xiao organization: Nankai University – sequence: 5 givenname: Dan‐Ye surname: Chen fullname: Chen, Dan‐Ye organization: Nankai University – sequence: 6 givenname: An‐Na surname: Tang fullname: Tang, An‐Na organization: Nankai University – sequence: 7 givenname: Yun‐Xi surname: Cui fullname: Cui, Yun‐Xi email: 9920200031@nankai.edu.cn organization: Nankai University – sequence: 8 givenname: De‐Ming orcidid: 0000-0002-9216-8040 surname: Kong fullname: Kong, De‐Ming email: kongdem@nankai.edu.cn organization: Nankai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34989140$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtKxDAUhoMojo5uXUrBjZsZT9r0koWLMl5GEAe8gLuQJqdjpJNq0iqz8xF8Rp_E6ugIgrg6B873_Rz-TbJqa4uE7FAYUoDwQHojhyGEFGhE4xWyQbOEDlhKb1eXe5j1yKb39wBxCDxbJ72I8YxTBhvk8BIV2ibI9ZO0Cn1gbDCqrW9cqxpjp8HYTO_Qvb28TpxGFxxd5MHV57F16LfIWikrj9tfs09uTo6vR-PB-eT0bJSfDxSLeDzIEoUYF0wDMB2HZUETWUKCIKlKNM9KlmlOJWIBkUxiXfIiBdAFRZaqVOmoT_YXuQ-ufmzRN2JmvMKqkhbr1oswoWmYxgx4h-79Qu_r1tnuu47qgJRmMXTU7hfVFjPU4sGZmXRz8V1MB7AFoFztvcNSKNPIxtS2cdJUgoL46F989C-W_Xfa8Jf2nfynwBfCs6lw_g8t8quz_Md9Bwlbl64 |
CitedBy_id | crossref_primary_10_1002_cbic_202400229 crossref_primary_10_1093_nar_gkad893 crossref_primary_10_1039_D3QM00395G crossref_primary_10_1021_acs_jafc_2c07661 crossref_primary_10_1093_nar_gkaf155 crossref_primary_10_3390_polym15081850 |
Cites_doi | 10.1021/ja0760980 10.1021/acs.analchem.9b00007 10.1021/nl502626s 10.1126/science.1089389 10.1021/ja509192n 10.1002/ange.200602113 10.1038/s41563-020-0728-2 10.1021/jacs.8b10355 10.1002/adma.202000294 10.1006/mthe.2001.0495 10.1093/nar/gkw610 10.1038/nnano.2016.150 10.1021/acs.analchem.6b02871 10.1021/ja406115e 10.1093/nar/gkt808 10.1039/b924014d 10.1038/nprot.2006.465 10.1021/jacs.1c05236 10.1002/anie.201810735 10.1021/acsnano.8b09200 10.1038/nature24651 10.1021/acs.analchem.1c04113 10.1021/jacs.0c03129 10.1016/j.ccr.2010.02.026 10.1093/nar/gkaa867 10.1038/s41467-020-16112-z 10.1002/smll.202103877 10.1021/jacs.7b11161 10.1021/acsnano.8b06492 10.1016/j.talanta.2021.122846 10.1039/c2cc32204h 10.1021/acs.analchem.9b03453 10.1093/nar/gkh094 10.1039/C4CS00186A 10.31635/ccschem.019.20190017 10.1021/jacs.8b09867 10.1002/anie.202105696 10.1002/ange.201802890 10.1002/anie.201811117 10.1021/jacs.8b10529 10.1093/nar/gki722 10.1002/anie.202101744 10.1016/j.bios.2018.01.008 10.1002/ange.201400323 10.1126/science.1227268 10.1126/science.aaa5372 10.1002/anie.202108827 10.1021/acsmaterialslett.9b00484 10.1038/s41557-018-0046-3 10.1002/anie.202110404 10.1038/nchem.1745 10.1073/pnas.242729099 10.1038/nmeth.3429 10.1039/D1CS00250C 10.1007/s12274-015-0841-8 10.1039/b903609a 10.1021/acs.chemrev.6b00825 10.1038/nature24648 10.1002/ange.201909870 10.1002/anie.200602113 10.1038/nature24655 10.1021/jacs.9b01510 10.1126/science.2200121 10.1002/ange.201804264 10.1038/nature24650 10.1016/j.cell.2014.07.026 10.1038/nnano.2017.29 10.1002/cphc.200600260 10.1002/ange.201500561 10.1021/nn4030543 10.1021/ar400308f 10.1002/cbic.201600034 10.1021/acsnano.8b04817 10.1038/nchembio.2007.45 10.1093/nar/gkz064 10.1002/ange.201810735 10.1038/s41586-018-0332-7 10.1021/acs.nanolett.1c01821 10.1038/nprot.2015.078 10.1002/ange.201804156 10.1002/ange.202000637 10.1002/anie.201802890 10.1021/ja5101307 10.1002/advs.202000557 10.1002/adma.201906600 10.1038/s41467-017-02203-x 10.1039/D1CC02455H 10.1038/nature01406 10.1016/j.tcb.2009.05.002 10.1039/C9SC02281C 10.1039/C4CS00175C 10.1038/nchem.1548 10.1002/adfm.201706410 10.1021/ar500073a 10.1073/pnas.1420361112 10.1002/anie.201909870 10.1038/nature04586 10.1002/anie.201804264 10.1021/ja5064394 10.1021/ac902421u 10.1002/adma.201703658 10.1038/s43586-020-00009-8 10.1039/D1SC00587A 10.1002/anie.201500561 10.1002/adma.202007738 10.1021/jacs.8b10795 10.1016/j.biomaterials.2020.120591 10.1021/ja106098j 10.1002/ange.201811117 10.1006/jmbi.1999.3234 10.1002/anie.201400323 10.1038/s41570-017-0076 10.1002/anie.202005334 10.1016/0022-5193(82)90002-9 10.1016/j.jconrel.2020.12.048 10.1038/s41557-020-0539-8 10.1021/jacs.7b02865 10.1073/pnas.95.4.1460 10.1016/j.addr.2018.04.007 10.1002/anie.201804156 10.1002/anie.202108393 10.1021/jacs.9b01931 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/asia.202101315 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1861-471X |
EndPage | n/a |
ExternalDocumentID | 34989140 10_1002_asia_202101315 ASIA202101315 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22074068; 21874075 – fundername: National Key R&D Program of China funderid: 2019YFA0210103 – fundername: National Natural Science Foundation of China grantid: 21874075 – fundername: National Key R&D Program of China grantid: 2019YFA0210103 – fundername: National Natural Science Foundation of China grantid: 22074068 |
GroupedDBID | --- 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 5GY 6J9 8-1 87K 8UM A00 AAESR AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABDBF ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEUQT AEUYR AFBPY AFFPM AFGKR AFWVQ AHBTC AHMBA AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DRFUL DRSTM EBD EBS F5P G-S HBH HGLYW HHY HHZ HZ~ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ O66 O9- OIG P2W P4E PQQKQ QRW ROL RWI SUPJJ WBKPD WHG WOHZO WXSBR WYJ XSW XV2 ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HF~ HVGLF LH4 CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c4395-86cee5b4d004d52fb16af06e0a1c6d98f48d91aeeb03a65df9b700db1e47c7cd3 |
ISSN | 1861-4728 1861-471X |
IngestDate | Fri Jul 11 15:55:20 EDT 2025 Mon Jun 30 10:07:01 EDT 2025 Wed Feb 19 02:27:35 EST 2025 Thu Apr 24 23:09:43 EDT 2025 Tue Jul 01 00:53:34 EDT 2025 Wed Jan 22 16:26:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | DNA-based materials self-assembly DNA nanotechnology higher-order DNA nanostructures |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4395-86cee5b4d004d52fb16af06e0a1c6d98f48d91aeeb03a65df9b700db1e47c7cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9216-8040 |
PMID | 34989140 |
PQID | 2640971850 |
PQPubID | 986338 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2617275409 proquest_journals_2640971850 pubmed_primary_34989140 crossref_citationtrail_10_1002_asia_202101315 crossref_primary_10_1002_asia_202101315 wiley_primary_10_1002_asia_202101315_ASIA202101315 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 1, 2022 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 1, 2022 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chemistry, an Asian journal |
PublicationTitleAlternate | Chem Asian J |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2019; 91 2017; 8 2017; 1 2021; 21 2015; 347 2019; 10 2019; 13 1982; 99 2020 2020; 59 132 2020; 12 2020; 11 2013; 7 2017; 552 2013; 5 2014; 136 2017; 117 2020; 19 2004; 32 2020; 7 2020; 2 2021; 33 2015; 137 2018 2018; 57 130 2018; 134 2015; 44 1999; 294 2006; 440 2014; 14 2015 2015; 54 127 2018; 30 2007; 2 2007; 3 1998; 95 2009; 19 2005; 33 2012; 338 2016; 88 2016; 44 2015; 12 2021; 49 2018; 28 2007; 129 1990; 249 2018; 140 2020; 142 2019; 1 2021; 268 2018; 104 2015; 10 2013; 41 2006; 7 2014; 47 2020; 32 2021; 143 2021; 1 2021; 50 2016; 17 2019; 141 2021; 93 2015; 8 2022; 236 2014; 158 2019 2019; 58 131 2017; 139 2016; 11 2010; 82 2006 2006; 45 118 2021; 57 2021; 12 2018; 559 2021 2001; 4 2015; 112 2021; 17 2010; 135 2019; 47 2017; 12 2010; 132 2010; 254 2013; 135 2009; 7 2012; 48 2021; 330 2018; 12 2021; 60 2003; 301 2018; 10 2003; 421 2003; 100 e_1_2_12_2_2 e_1_2_12_130_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_138_1 e_1_2_12_115_2 e_1_2_12_134_1 e_1_2_12_108_1 e_1_2_12_66_1 e_1_2_12_20_2 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_127_2 e_1_2_12_24_2 e_1_2_12_47_2 e_1_2_12_89_2 Li Y. (e_1_2_12_132_1) 2021 e_1_2_12_62_1 e_1_2_12_81_1 e_1_2_12_100_1 e_1_2_12_28_2 e_1_2_12_104_1 e_1_2_12_142_2 e_1_2_12_123_2 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_96_2 e_1_2_12_54_1 e_1_2_12_139_1 e_1_2_12_35_1 e_1_2_12_58_2 Krissanaprasit A. (e_1_2_12_88_2) 2021 e_1_2_12_58_1 e_1_2_12_12_3 e_1_2_12_12_2 e_1_2_12_6_2 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_2 e_1_2_12_18_1 e_1_2_12_37_2 e_1_2_12_110_1 e_1_2_12_137_2 e_1_2_12_114_3 e_1_2_12_114_2 e_1_2_12_133_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_21_2 e_1_2_12_107_1 e_1_2_12_44_2 e_1_2_12_25_2 e_1_2_12_67_2 e_1_2_12_82_2 e_1_2_12_40_1 e_1_2_12_141_1 e_1_2_12_122_2 e_1_2_12_48_2 e_1_2_12_29_2 e_1_2_12_103_2 e_1_2_12_126_2 e_1_2_12_145_1 e_1_2_12_119_2 e_1_2_12_51_2 e_1_2_12_97_2 e_1_2_12_55_1 e_1_2_12_32_2 e_1_2_12_74_2 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 e_1_2_12_13_1 e_1_2_12_7_2 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_19_1 e_1_2_12_15_2 e_1_2_12_38_2 e_1_2_12_136_2 e_1_2_12_113_2 e_1_2_12_64_2 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_129_1 e_1_2_12_22_2 e_1_2_12_45_2 e_1_2_12_68_2 e_1_2_12_83_2 e_1_2_12_60_1 e_1_2_12_140_1 e_1_2_12_26_2 e_1_2_12_49_2 e_1_2_12_121_1 e_1_2_12_125_1 e_1_2_12_102_2 e_1_2_12_144_2 e_1_2_12_52_2 e_1_2_12_75_2 e_1_2_12_98_2 e_1_2_12_75_3 e_1_2_12_118_1 e_1_2_12_33_2 e_1_2_12_56_2 e_1_2_12_79_2 e_1_2_12_137_3 e_1_2_12_14_2 e_1_2_12_90_1 e_1_2_12_71_2 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_8_2 e_1_2_12_5_2 e_1_2_12_16_2 e_1_2_12_1_1 e_1_2_12_135_1 e_1_2_12_39_2 e_1_2_12_116_1 e_1_2_12_131_1 e_1_2_12_131_2 e_1_2_12_112_2 e_1_2_12_42_1 e_1_2_12_65_2 e_1_2_12_109_1 e_1_2_12_105_2 e_1_2_12_128_2 e_1_2_12_42_2 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_80_2 e_1_2_12_27_1 e_1_2_12_120_2 e_1_2_12_105_1 e_1_2_12_101_2 e_1_2_12_124_2 e_1_2_12_143_2 e_1_2_12_143_3 e_1_2_12_99_1 e_1_2_12_30_2 e_1_2_12_76_2 e_1_2_12_117_2 e_1_2_12_53_2 e_1_2_12_95_2 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_2 e_1_2_12_91_1 e_1_2_12_11_2 e_1_2_12_72_2 e_1_2_12_9_2 |
References_xml | – volume: 100 start-page: 409 year: 2003 end-page: 413 publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 9758 year: 2019 end-page: 9767 publication-title: Chem. Sci. – volume: 236 year: 2022 publication-title: Talanta – volume: 12 start-page: 492 year: 2015 end-page: 492 publication-title: Nat. Methods – volume: 60 start-page: 17937 year: 2021 end-page: 17941 publication-title: Angew. Chem. Int. Ed. – volume: 141 start-page: 7056 year: 2019 end-page: 7062 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 16438 year: 2013 end-page: 16445 publication-title: J. Am. Chem. Soc. – volume: 99 start-page: 237 year: 1982 end-page: 247 publication-title: J. Theor. Biol. – volume: 129 start-page: 14475 year: 2007 end-page: 14481 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 10593 year: 2013 end-page: 10604 publication-title: Nucleic Acids Res. – volume: 141 start-page: 3456 year: 2019 end-page: 3469 publication-title: J. Am. Chem. Soc. – volume: 338 start-page: 1177 year: 2012 end-page: 1183 publication-title: Science – volume: 2 start-page: 203 year: 2007 end-page: 212 publication-title: Nat. Protoc. – volume: 44 start-page: 6574 year: 2016 end-page: 6582 publication-title: Nucleic Acids Res. – volume: 140 start-page: 17808 year: 2018 end-page: 17819 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 7795 7905 year: 2015 2015 end-page: 7798 7909 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 1526 year: 2015 end-page: 1560 publication-title: Chem. Soc. Rev. – volume: 104 start-page: 138 year: 2018 end-page: 144 publication-title: Biosens. Bioelectron. – volume: 47 start-page: 2727 year: 2019 end-page: 2738 publication-title: Nucleic Acids Res. – volume: 10 start-page: 631 year: 2018 end-page: 637 publication-title: Nat. Chem. – volume: 21 start-page: 5834 year: 2021 end-page: 5841 publication-title: Nano Lett. – volume: 60 start-page: 22970 year: 2021 end-page: 22976 publication-title: Angew. Chem. Int. Ed. – volume: 552 start-page: 72 year: 2017 end-page: 77 publication-title: Nature – volume: 7 start-page: 2506 year: 2009 end-page: 2508 publication-title: Org. Biomol. Chem. – volume: 58 131 start-page: 1350 1364 year: 2019 2019 end-page: 1354 1368 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 112 start-page: 5903 year: 2015 end-page: 5908 publication-title: Proc. Natl. Acad. Sci. USA – volume: 60 start-page: 21226 year: 2021 end-page: 21230 publication-title: Angew. Chem. Int. Ed. – volume: 60 start-page: 24823 year: 2021 end-page: 24827 publication-title: Angew. Chem. Int. Ed. – volume: 58 131 start-page: 1648 1662 year: 2019 2019 end-page: 1653 1667 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 3334 year: 2019 end-page: 3340 publication-title: ACS Nano – volume: 1 start-page: 13 year: 2021 publication-title: Nat. Rev. Methods Primers. – volume: 58 131 start-page: 18207 18375 year: 2019 2019 end-page: 18211 18379 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 9470 9614 year: 2018 2018 end-page: 9474 9618 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 82 start-page: 789 year: 2010 end-page: 793 publication-title: Anal. Chem. – volume: 136 start-page: 15767 year: 2014 end-page: 15774 publication-title: J. Am. Chem. Soc. – volume: 254 start-page: 2403 year: 2010 end-page: 2415 publication-title: Coord. Chem. Rev. – volume: 136 start-page: 13967 year: 2014 end-page: 13970 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 1853 year: 2014 end-page: 1860 publication-title: Acc. Chem. Res. – volume: 7 start-page: 9724 year: 2013 end-page: 9734 publication-title: ACS Nano – volume: 141 start-page: 4282 year: 2019 end-page: 4290 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 13655 year: 2021 end-page: 13663 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1641 year: 2006 end-page: 1647 publication-title: ChemPhysChem – volume: 7 year: 2020 publication-title: Adv. Sci. (Weinh) – volume: 17 year: 2021 publication-title: Small – volume: 14 start-page: 5740 year: 2014 end-page: 5747 publication-title: Nano Lett. – volume: 13 start-page: 2888 year: 2019 end-page: 2900 publication-title: ACS Nano – volume: 32 start-page: D95 year: 2004 end-page: 100 publication-title: Nucleic Acids Res. – volume: 12 start-page: 1067 year: 2020 end-page: 1075 publication-title: Nat. Chem. – volume: 53 126 start-page: 5821 5931 year: 2014 2014 end-page: 5826 5936 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 88 start-page: 10800 year: 2016 end-page: 10804 publication-title: Anal. Chem. – volume: 95 start-page: 1460 year: 1998 end-page: 1465 publication-title: Proc. Natl. Acad. Sci. USA – volume: 49 start-page: D76 year: 2021 end-page: D81 publication-title: Nucleic Acids Res. – volume: 421 start-page: 427 year: 2003 end-page: 431 publication-title: Nature – volume: 134 start-page: 3 year: 2018 end-page: 21 publication-title: Adv. Drug Delivery Rev. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 11 start-page: 2185 year: 2020 publication-title: Nat. Commun. – volume: 33 start-page: 4182 year: 2005 end-page: 4190 publication-title: Nucleic Acids Res. – volume: 249 start-page: 505 year: 1990 end-page: 510 publication-title: Science – volume: 142 start-page: 10153 year: 2020 end-page: 10162 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 12584 year: 2017 end-page: 12640 publication-title: Chem. Rev. – volume: 3 start-page: 763 year: 2007 end-page: 768 publication-title: Nat. Chem. Biol. – volume: 137 start-page: 1730 year: 2015 end-page: 1733 publication-title: J. Am. Chem. Soc. – volume: 91 start-page: 5244 year: 2019 end-page: 5251 publication-title: Anal. Chem. – volume: 4 start-page: 567 year: 2001 end-page: 573 publication-title: Mol. Ther. – volume: 11 start-page: 1112 year: 2016 end-page: 1119 publication-title: Nat. Nanotechnol. – volume: 552 start-page: 67 year: 2017 end-page: 71 publication-title: Nature – volume: 301 start-page: 1882 year: 2003 end-page: 1884 publication-title: Science – volume: 140 start-page: 17656 year: 2018 end-page: 17665 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 1012 year: 2020 end-page: 1018 publication-title: Nat. Mater. – volume: 47 start-page: 1663 year: 2014 end-page: 1672 publication-title: Acc. Chem. Res. – volume: 139 start-page: 9104 year: 2017 end-page: 9107 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 868 year: 2013 end-page: 875 publication-title: Nat. Chem. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 5 start-page: 182 year: 2013 end-page: 186 publication-title: Nat. Chem. – volume: 140 start-page: 578 year: 2018 end-page: 581 publication-title: J. Am. Chem. Soc. – volume: 347 start-page: 1446 year: 2015 end-page: 1452 publication-title: Science – volume: 8 start-page: 3447 year: 2015 end-page: 3460 publication-title: Nano Res. – volume: 17 start-page: 1063 year: 2016 end-page: 1080 publication-title: ChemBioChem – volume: 2 start-page: 1322 year: 2020 end-page: 1327 publication-title: ACS Materials Lett. – volume: 57 start-page: 6760 year: 2021 end-page: 6763 publication-title: Chem. Commun. – volume: 12 start-page: 582 year: 2017 end-page: 588 publication-title: Nat. Nanotechnol. – volume: 135 start-page: 545 year: 2010 end-page: 549 publication-title: Analyst – volume: 57 130 start-page: 8994 9132 year: 2018 2018 end-page: 8997 9135 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 1509 year: 2015 end-page: 1525 publication-title: Chem. Soc. Rev. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 414 year: 2009 end-page: 422 publication-title: Trends Cell Biol. – volume: 59 132 start-page: 15176 7265 year: 2020 2020 end-page: 15180 7269 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 9484 year: 2018 end-page: 9494 publication-title: ACS Nano – volume: 10 start-page: 1508 year: 2015 end-page: 1524 publication-title: Nat. Protoc. – volume: 440 start-page: 297 year: 2006 end-page: 302 publication-title: Nature – year: 2021 publication-title: J. Am. Chem. Soc. – year: 2021 publication-title: Chem. Rev. – volume: 552 start-page: 84 year: 2017 end-page: 87 publication-title: Nature – volume: 132 start-page: 12668 year: 2010 end-page: 12673 publication-title: J. Am. Chem. Soc. – volume: 93 start-page: 16231 year: 2021 end-page: 16239 publication-title: Anal. Chem. – volume: 158 start-page: 1148 year: 2014 end-page: 1158 publication-title: Cell – volume: 91 start-page: 13165 year: 2019 end-page: 13173 publication-title: Anal. Chem. – volume: 12 start-page: 7602 year: 2021 end-page: 7622 publication-title: Chem. Sci. – volume: 60 start-page: 14324 year: 2021 end-page: 14328 publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 6405 year: 2012 end-page: 6407 publication-title: Chem. Commun. – volume: 1 start-page: 296 year: 2019 end-page: 303 publication-title: CCS Chemistry – volume: 57 130 start-page: 9341 9485 year: 2018 2018 end-page: 9345 9489 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 268 year: 2021 publication-title: Biomaterials – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 330 start-page: 483 year: 2021 end-page: 492 publication-title: J. Controlled Release – volume: 45 118 start-page: 7537 7699 year: 2006 2006 end-page: 7539 7701 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 11966 year: 2021 end-page: 11978 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 2006 year: 2017 publication-title: Nat. Commun. – volume: 559 start-page: 593 year: 2018 end-page: 598 publication-title: Nature – volume: 552 start-page: 78 year: 2017 end-page: 83 publication-title: Nature – volume: 294 start-page: 477 year: 1999 end-page: 485 publication-title: J. Mol. Biol. – volume: 141 start-page: 6797 year: 2019 end-page: 6801 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 1 year: 2017 end-page: 16 publication-title: Nat. Chem. Rev. – ident: e_1_2_12_76_2 doi: 10.1021/ja0760980 – ident: e_1_2_12_37_2 doi: 10.1021/acs.analchem.9b00007 – ident: e_1_2_12_72_2 doi: 10.1021/nl502626s – ident: e_1_2_12_19_1 – ident: e_1_2_12_64_2 doi: 10.1126/science.1089389 – ident: e_1_2_12_136_2 doi: 10.1021/ja509192n – ident: e_1_2_12_75_3 doi: 10.1002/ange.200602113 – ident: e_1_2_12_66_1 – ident: e_1_2_12_106_1 doi: 10.1038/s41563-020-0728-2 – ident: e_1_2_12_129_1 doi: 10.1021/jacs.8b10355 – ident: e_1_2_12_100_1 – ident: e_1_2_12_145_1 – ident: e_1_2_12_48_2 doi: 10.1002/adma.202000294 – ident: e_1_2_12_89_2 doi: 10.1006/mthe.2001.0495 – ident: e_1_2_12_68_2 doi: 10.1093/nar/gkw610 – ident: e_1_2_12_11_2 doi: 10.1038/nnano.2016.150 – ident: e_1_2_12_25_2 doi: 10.1021/acs.analchem.6b02871 – ident: e_1_2_12_51_2 doi: 10.1021/ja406115e – ident: e_1_2_12_92_1 doi: 10.1093/nar/gkt808 – ident: e_1_2_12_22_2 doi: 10.1039/b924014d – ident: e_1_2_12_113_2 doi: 10.1038/nprot.2006.465 – ident: e_1_2_12_115_2 doi: 10.1021/jacs.1c05236 – ident: e_1_2_12_70_1 – ident: e_1_2_12_42_1 doi: 10.1002/anie.201810735 – ident: e_1_2_12_109_1 doi: 10.1021/acsnano.8b09200 – ident: e_1_2_12_23_1 – ident: e_1_2_12_82_2 doi: 10.1038/nature24651 – ident: e_1_2_12_98_2 doi: 10.1021/acs.analchem.1c04113 – ident: e_1_2_12_144_2 doi: 10.1021/jacs.0c03129 – ident: e_1_2_12_24_2 doi: 10.1016/j.ccr.2010.02.026 – ident: e_1_2_12_50_1 – ident: e_1_2_12_41_1 doi: 10.1093/nar/gkaa867 – ident: e_1_2_12_85_1 doi: 10.1038/s41467-020-16112-z – ident: e_1_2_12_49_2 doi: 10.1002/smll.202103877 – ident: e_1_2_12_4_1 – ident: e_1_2_12_122_2 doi: 10.1021/jacs.7b11161 – ident: e_1_2_12_52_2 doi: 10.1021/acsnano.8b06492 – ident: e_1_2_12_95_2 doi: 10.1016/j.talanta.2021.122846 – ident: e_1_2_12_71_2 doi: 10.1039/c2cc32204h – ident: e_1_2_12_97_2 doi: 10.1021/acs.analchem.9b03453 – ident: e_1_2_12_101_2 doi: 10.1093/nar/gkh094 – ident: e_1_2_12_127_2 doi: 10.1039/C4CS00186A – ident: e_1_2_12_8_2 doi: 10.31635/ccschem.019.20190017 – ident: e_1_2_12_78_1 – ident: e_1_2_12_94_1 – ident: e_1_2_12_10_1 – ident: e_1_2_12_119_2 doi: 10.1021/jacs.8b09867 – ident: e_1_2_12_123_2 doi: 10.1002/anie.202105696 – ident: e_1_2_12_118_1 – ident: e_1_2_12_63_1 – ident: e_1_2_12_12_3 doi: 10.1002/ange.201802890 – ident: e_1_2_12_105_1 doi: 10.1002/anie.201811117 – ident: e_1_2_12_91_1 doi: 10.1021/jacs.8b10529 – ident: e_1_2_12_29_2 doi: 10.1093/nar/gki722 – ident: e_1_2_12_44_2 doi: 10.1002/anie.202101744 – ident: e_1_2_12_135_1 – ident: e_1_2_12_20_2 doi: 10.1016/j.bios.2018.01.008 – ident: e_1_2_12_58_2 doi: 10.1002/ange.201400323 – ident: e_1_2_12_54_1 doi: 10.1021/ja406115e – ident: e_1_2_12_80_2 doi: 10.1126/science.1227268 – ident: e_1_2_12_1_1 – ident: e_1_2_12_15_2 doi: 10.1126/science.aaa5372 – ident: e_1_2_12_61_1 doi: 10.1002/anie.202108827 – ident: e_1_2_12_74_2 doi: 10.1021/acsmaterialslett.9b00484 – ident: e_1_2_12_34_1 doi: 10.1038/s41557-018-0046-3 – ident: e_1_2_12_45_2 doi: 10.1002/anie.202110404 – ident: e_1_2_12_138_1 doi: 10.1038/nchem.1745 – ident: e_1_2_12_120_2 doi: 10.1073/pnas.242729099 – ident: e_1_2_12_86_1 doi: 10.1038/nmeth.3429 – ident: e_1_2_12_67_2 doi: 10.1039/D1CS00250C – ident: e_1_2_12_59_1 doi: 10.1007/s12274-015-0841-8 – ident: e_1_2_12_73_1 – ident: e_1_2_12_130_1 doi: 10.1039/b903609a – ident: e_1_2_12_9_2 doi: 10.1021/acs.chemrev.6b00825 – ident: e_1_2_12_141_1 – ident: e_1_2_12_79_2 doi: 10.1038/nature24648 – ident: e_1_2_12_125_1 – ident: e_1_2_12_114_3 doi: 10.1002/ange.201909870 – ident: e_1_2_12_75_2 doi: 10.1002/anie.200602113 – ident: e_1_2_12_77_1 doi: 10.1038/nature24655 – ident: e_1_2_12_133_1 doi: 10.1021/jacs.9b01510 – ident: e_1_2_12_99_1 doi: 10.1126/science.2200121 – ident: e_1_2_12_117_2 doi: 10.1002/ange.201804264 – ident: e_1_2_12_83_2 doi: 10.1038/nature24650 – ident: e_1_2_12_107_1 doi: 10.1016/j.cell.2014.07.026 – ident: e_1_2_12_30_2 doi: 10.1038/nnano.2017.29 – ident: e_1_2_12_3_2 doi: 10.1002/cphc.200600260 – ident: e_1_2_12_131_2 doi: 10.1002/ange.201500561 – ident: e_1_2_12_108_1 doi: 10.1021/nn4030543 – ident: e_1_2_12_13_1 – ident: e_1_2_12_112_2 doi: 10.1021/ar400308f – ident: e_1_2_12_2_2 doi: 10.1002/cbic.201600034 – ident: e_1_2_12_17_1 doi: 10.1021/acsnano.8b04817 – ident: e_1_2_12_27_1 – ident: e_1_2_12_39_2 doi: 10.1038/nchembio.2007.45 – ident: e_1_2_12_28_2 doi: 10.1093/nar/gkz064 – ident: e_1_2_12_42_2 doi: 10.1002/ange.201810735 – ident: e_1_2_12_47_2 doi: 10.1038/s41586-018-0332-7 – year: 2021 ident: e_1_2_12_132_1 publication-title: J. Am. Chem. Soc. – ident: e_1_2_12_110_1 doi: 10.1021/acs.nanolett.1c01821 – ident: e_1_2_12_53_2 doi: 10.1038/nprot.2015.078 – ident: e_1_2_12_43_1 – ident: e_1_2_12_143_3 doi: 10.1002/ange.201804156 – ident: e_1_2_12_137_3 doi: 10.1002/ange.202000637 – ident: e_1_2_12_12_2 doi: 10.1002/anie.201802890 – ident: e_1_2_12_31_1 – ident: e_1_2_12_104_1 doi: 10.1021/ja5101307 – ident: e_1_2_12_5_2 doi: 10.1002/advs.202000557 – ident: e_1_2_12_116_1 doi: 10.1002/adma.201906600 – ident: e_1_2_12_40_1 doi: 10.1038/s41467-017-02203-x – ident: e_1_2_12_90_1 doi: 10.1039/D1CC02455H – ident: e_1_2_12_121_1 – ident: e_1_2_12_65_2 doi: 10.1038/nature01406 – ident: e_1_2_12_33_2 doi: 10.1016/j.tcb.2009.05.002 – ident: e_1_2_12_93_1 doi: 10.1039/C9SC02281C – ident: e_1_2_12_128_2 doi: 10.1039/C4CS00175C – ident: e_1_2_12_32_2 doi: 10.1038/nchem.1548 – ident: e_1_2_12_134_1 doi: 10.1002/adfm.201706410 – ident: e_1_2_12_35_1 doi: 10.1021/ar500073a – ident: e_1_2_12_38_2 doi: 10.1073/pnas.1420361112 – ident: e_1_2_12_55_1 – ident: e_1_2_12_114_2 doi: 10.1002/anie.201909870 – ident: e_1_2_12_69_1 doi: 10.1038/nature04586 – ident: e_1_2_12_117_1 doi: 10.1002/anie.201804264 – ident: e_1_2_12_16_2 doi: 10.1021/ja5064394 – ident: e_1_2_12_46_1 – ident: e_1_2_12_126_2 doi: 10.1039/C4CS00175C – ident: e_1_2_12_26_2 doi: 10.1021/ac902421u – ident: e_1_2_12_81_1 – ident: e_1_2_12_6_2 doi: 10.1002/adma.201703658 – ident: e_1_2_12_7_2 doi: 10.1038/s43586-020-00009-8 – ident: e_1_2_12_96_2 doi: 10.1039/D1SC00587A – ident: e_1_2_12_131_1 doi: 10.1002/anie.201500561 – ident: e_1_2_12_56_2 doi: 10.1002/adma.202007738 – ident: e_1_2_12_60_1 doi: 10.1021/jacs.8b10795 – ident: e_1_2_12_87_1 – ident: e_1_2_12_57_2 doi: 10.1016/j.biomaterials.2020.120591 – ident: e_1_2_12_21_2 doi: 10.1021/ja106098j – ident: e_1_2_12_105_2 doi: 10.1002/ange.201811117 – ident: e_1_2_12_18_1 doi: 10.1006/jmbi.1999.3234 – ident: e_1_2_12_58_1 doi: 10.1002/anie.201400323 – ident: e_1_2_12_111_1 – ident: e_1_2_12_102_2 doi: 10.1038/s41570-017-0076 – ident: e_1_2_12_137_2 doi: 10.1002/anie.202005334 – ident: e_1_2_12_62_1 doi: 10.1016/0022-5193(82)90002-9 – ident: e_1_2_12_140_1 doi: 10.1016/j.jconrel.2020.12.048 – ident: e_1_2_12_84_1 doi: 10.1038/s41557-020-0539-8 – ident: e_1_2_12_142_2 doi: 10.1021/jacs.7b02865 – ident: e_1_2_12_14_2 doi: 10.1073/pnas.95.4.1460 – ident: e_1_2_12_36_1 – ident: e_1_2_12_103_2 doi: 10.1016/j.addr.2018.04.007 – ident: e_1_2_12_143_2 doi: 10.1002/anie.201804156 – year: 2021 ident: e_1_2_12_88_2 publication-title: Chem. Rev. – ident: e_1_2_12_139_1 doi: 10.1002/anie.202108393 – ident: e_1_2_12_124_2 doi: 10.1021/jacs.9b01931 |
SSID | ssj0052098 |
Score | 2.413297 |
SecondaryResourceType | review_article |
Snippet | Molecular self‐assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier... Molecular self-assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202101315 |
SubjectTerms | Assembly Base Pairing Biocompatibility Biomedical materials Biosensing Techniques Biosensors Chemistry Deoxyribonucleic acid DNA DNA - chemistry DNA nanostructures DNA nanotechnology DNA-based materials higher-order Medical materials Nanostructure Nanostructures - chemistry Nanotechnology self-assembly |
Title | Recent Advances in Constructing Higher‐Order DNA Structures |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202101315 https://www.ncbi.nlm.nih.gov/pubmed/34989140 https://www.proquest.com/docview/2640971850 https://www.proquest.com/docview/2617275409 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVguoANankOtChISCxQwE78yjLttCoIyoJWml1kxw4aCWWQprNhxSfwjXwJ1_FjMirPbqKRczNOfE7se3MfRug5x1Rg0vHcaIZzqguTK2lwroWxwmJWSOWykd-f8dML-nbO5iOPqcsuudSv2q-_zCu5DqrQBri6LNn_QDb9KTTAb8AXjoAwHP8JY9D5nCu_9n78VcjgCyVh-08hiCPFM3xwZTZfzs5q54teD76D1Vg5PYqbv_mQToBuET7TxzsZvryHGN645o3aZi6-N_Y2X6QZ_91iPfBomeJ1wk4qILMcf3cAkzUFXoWpUnKwPkVI7bbjtmETnM38KkY8YqOVNq1DV6ZxXxbWpZGCBQ9GKSkJ2yxY0UmfJNmfZX15349v6nT-JtopwKwoJminPpwdnsS128UEDcmT8dlimU9cvN7uYVuNuWKbbJs6g65yvovuBCMjqz1j9tAN299FtxK891BgThaZky36bMyczDPnx7fvA2cy4Ey24cx9dHFyfH50moeNNPIW9E2WSw6qENPUwLtjWNFpwlWHucWKtNxUsqPSVERZq3GpODNdpQXGRhNLRStaUz5Ak37Z20coE6bsqCmV0bSiXBHNraFCMsk7RlpWTlEex6VpQ5V5t9nJ58bXxy4aN45NGscpepHkv_j6Kr-V3I_D3ATmrxpQ510RNMnwFD1Lp2EwndtL9Xa5djJOSQfLpJqihx6e1FVJK1kRClcXA15_uYdmi0WPr3PRE3R78zbtowlgZw9Ar73UTwMZfwKH8JaJ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Constructing+Higher%E2%80%90Order+DNA+Structures&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Wang%2C+Jing&rft.au=Wang%2C+Dong%E2%80%90Xia&rft.au=Liu%2C+Bo&rft.au=Jing%2C+Xiao&rft.date=2022-03-01&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=17&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fasia.202101315&rft.externalDBID=10.1002%252Fasia.202101315&rft.externalDocID=ASIA202101315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon |