Heteroatom‐Driven Coordination Fields Altering Single Cerium Atom Sites for Efficient Oxygen Reduction Reaction

For current single‐atom catalysts (SACs), modulating the coordination environments of rare‐earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co‐doped hollow carbon substrate (Ce SAs/PSNC) for the...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 28; pp. e2302485 - n/a
Main Authors Yin, Leilei, Zhang, Shuai, Sun, Mingzi, Wang, Siyuan, Huang, Bolong, Du, Yaping
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For current single‐atom catalysts (SACs), modulating the coordination environments of rare‐earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co‐doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as‐prepared Ce SAs/PSNC possesses a half‐wave potential of 0.90 V, a turnover frequency value of 52.2 s−1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC‐based liquid zinc–air batteries (ZABs) exhibit a high and stable open‐circuit voltage of 1.49 V and a maximum power density of 212 mW cm−2. As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site‐to‐site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE‐based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices. Through ubtle modulation of the coordination environments by introducing P and S heteroatoms, the Ce electroactive sites are modulated to achieve effective enhancement of the oxygen reduction reaction's intrinsic catalytic activity. This work supplies significant references for optimizing the electroactivity of atomic catalysts by a coordination regulation strategy.
AbstractList For current single‐atom catalysts (SACs), modulating the coordination environments of rare‐earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co‐doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as‐prepared Ce SAs/PSNC possesses a half‐wave potential of 0.90 V, a turnover frequency value of 52.2 s−1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC‐based liquid zinc–air batteries (ZABs) exhibit a high and stable open‐circuit voltage of 1.49 V and a maximum power density of 212 mW cm−2. As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site‐to‐site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE‐based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices.
For current single‐atom catalysts (SACs), modulating the coordination environments of rare‐earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co‐doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as‐prepared Ce SAs/PSNC possesses a half‐wave potential of 0.90 V, a turnover frequency value of 52.2 s−1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC‐based liquid zinc–air batteries (ZABs) exhibit a high and stable open‐circuit voltage of 1.49 V and a maximum power density of 212 mW cm−2. As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site‐to‐site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE‐based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices. Through ubtle modulation of the coordination environments by introducing P and S heteroatoms, the Ce electroactive sites are modulated to achieve effective enhancement of the oxygen reduction reaction's intrinsic catalytic activity. This work supplies significant references for optimizing the electroactivity of atomic catalysts by a coordination regulation strategy.
For current single-atom catalysts (SACs), modulating the coordination environments of rare-earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co-doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as-prepared Ce SAs/PSNC possesses a half-wave potential of 0.90 V, a turnover frequency value of 52.2 s at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC-based liquid zinc-air batteries (ZABs) exhibit a high and stable open-circuit voltage of 1.49 V and a maximum power density of 212 mW cm . As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site-to-site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE-based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices.
For current single‐atom catalysts (SACs), modulating the coordination environments of rare‐earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co‐doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as‐prepared Ce SAs/PSNC possesses a half‐wave potential of 0.90 V, a turnover frequency value of 52.2 s −1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC‐based liquid zinc–air batteries (ZABs) exhibit a high and stable open‐circuit voltage of 1.49 V and a maximum power density of 212 mW cm −2 . As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site‐to‐site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE‐based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices.
For current single-atom catalysts (SACs), modulating the coordination environments of rare-earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co-doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as-prepared Ce SAs/PSNC possesses a half-wave potential of 0.90 V, a turnover frequency value of 52.2 s-1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC-based liquid zinc-air batteries (ZABs) exhibit a high and stable open-circuit voltage of 1.49 V and a maximum power density of 212 mW cm-2 . As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site-to-site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE-based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices.For current single-atom catalysts (SACs), modulating the coordination environments of rare-earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co-doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as-prepared Ce SAs/PSNC possesses a half-wave potential of 0.90 V, a turnover frequency value of 52.2 s-1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC-based liquid zinc-air batteries (ZABs) exhibit a high and stable open-circuit voltage of 1.49 V and a maximum power density of 212 mW cm-2 . As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site-to-site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE-based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices.
Author Du, Yaping
Zhang, Shuai
Huang, Bolong
Sun, Mingzi
Wang, Siyuan
Yin, Leilei
Author_xml – sequence: 1
  givenname: Leilei
  surname: Yin
  fullname: Yin, Leilei
  organization: Nankai University
– sequence: 2
  givenname: Shuai
  surname: Zhang
  fullname: Zhang, Shuai
  organization: Nankai University
– sequence: 3
  givenname: Mingzi
  surname: Sun
  fullname: Sun, Mingzi
  organization: The Hong Kong Polytechnic University
– sequence: 4
  givenname: Siyuan
  surname: Wang
  fullname: Wang, Siyuan
  organization: Nankai University
– sequence: 5
  givenname: Bolong
  orcidid: 0000-0002-2526-2002
  surname: Huang
  fullname: Huang, Bolong
  email: bhuang@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
– sequence: 6
  givenname: Yaping
  surname: Du
  fullname: Du, Yaping
  email: ypdu@nankai.edu.cn
  organization: Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37015027$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFDEYx4O02G316lEGvHiZNe-THIdta4VKoeo5ZPNSUmaSNpmp7s2P4Gf0k5ju1hYK4iVv_H7_JzzPIdiLKToA3iC4RBDiD9qOeokhJhBTwV6ABWIYtRRKtgcWUBLWSk7FATgs5RpCKDnkL8EB6SBiEHcLcHvmJpeTntL4--ev4xzuXGxWKWUbop5Cis1pcIMtTT9ULsSr5ktdBtes6m0em76K9WlypfEpNyfeBxNcnJqLH5urGnXp7Gy2OZdObw-vwL7XQ3GvH_Yj8O305OvqrD2_-Php1Z-3hhLJWs4El1RIwzA3a-sZtR5bzYkQHcHIOkE15tJgxKFHaN0ZjUmlPSLIe74mR-D9Lvcmp9vZlUmNoRg3DDq6NBeFO8mr22FS0XfP0Os051h_p7AgnCOBGK3U2wdqXo_OqpscRp036m8zK7DcASanUrLzjwiC6n5a6n5a6nFaVaDPBBOmbdenrMPwb03utO9hcJv_FFH98ef-yf0DWMipug
CitedBy_id crossref_primary_10_1002_ange_202308344
crossref_primary_10_1016_j_jcis_2025_137425
crossref_primary_10_1002_adfm_202405972
crossref_primary_10_1016_j_ccr_2024_216111
crossref_primary_10_1016_j_cej_2024_151147
crossref_primary_10_1007_s12274_024_6923_8
crossref_primary_10_1039_D3MA00536D
crossref_primary_10_1002_adhm_202301733
crossref_primary_10_1002_ange_202413933
crossref_primary_10_1016_j_jcis_2025_01_024
crossref_primary_10_1016_j_pmatsci_2024_101389
crossref_primary_10_1002_adma_202312117
crossref_primary_10_1002_ange_202501290
crossref_primary_10_1016_j_jcis_2024_07_176
crossref_primary_10_1016_j_cej_2025_160020
crossref_primary_10_1002_ange_202422920
crossref_primary_10_1021_acs_jpclett_4c00921
crossref_primary_10_1002_anie_202413369
crossref_primary_10_1039_D4SC07775J
crossref_primary_10_1002_aenm_202404689
crossref_primary_10_1016_j_jcis_2023_12_124
crossref_primary_10_1016_j_ijhydene_2024_11_396
crossref_primary_10_1002_adsu_202400881
crossref_primary_10_1039_D4TA01738B
crossref_primary_10_1021_acscatal_4c03068
crossref_primary_10_1016_j_nanoen_2024_110579
crossref_primary_10_1002_ange_202404374
crossref_primary_10_1002_adfm_202413134
crossref_primary_10_1002_smll_202305615
crossref_primary_10_1007_s12598_023_02580_x
crossref_primary_10_1039_D4CS01031K
crossref_primary_10_1002_adfm_202305268
crossref_primary_10_1002_anie_202400577
crossref_primary_10_1016_j_jpowsour_2024_234115
crossref_primary_10_1002_cnma_202400089
crossref_primary_10_1002_anie_202308344
crossref_primary_10_1007_s12274_023_6287_5
crossref_primary_10_1021_acsami_4c00148
crossref_primary_10_1016_j_ccr_2024_215952
crossref_primary_10_1002_adfm_202423158
crossref_primary_10_1002_adfm_202422588
crossref_primary_10_1002_ange_202400577
crossref_primary_10_1002_smll_202401900
crossref_primary_10_1016_j_nantod_2024_102236
crossref_primary_10_1002_anie_202404374
crossref_primary_10_1002_adma_202416387
crossref_primary_10_1002_smll_202302738
crossref_primary_10_1021_acsanm_3c02803
crossref_primary_10_1002_ange_202413369
crossref_primary_10_1038_s41467_025_58109_6
crossref_primary_10_26599_NRE_2024_9120144
crossref_primary_10_1016_j_mtchem_2024_102119
crossref_primary_10_1002_cssc_202401223
crossref_primary_10_1002_smll_202311034
crossref_primary_10_1016_j_ensm_2025_104101
crossref_primary_10_1021_acs_nanolett_5c00465
crossref_primary_10_1039_D4SC02853H
crossref_primary_10_1002_advs_202403197
crossref_primary_10_1002_ange_202313298
crossref_primary_10_1016_j_nanoen_2024_110030
crossref_primary_10_1021_acs_chemrev_4c00276
crossref_primary_10_1039_D4TA09167A
crossref_primary_10_1016_j_apcatb_2024_124889
crossref_primary_10_1016_j_apcatb_2023_123438
crossref_primary_10_1039_D3CC06156F
crossref_primary_10_1016_j_cej_2024_150427
crossref_primary_10_1002_smll_202305782
crossref_primary_10_1002_adfm_202405884
crossref_primary_10_1002_adfm_202403508
crossref_primary_10_1039_D4CC05747C
crossref_primary_10_1039_D4NR02845G
crossref_primary_10_1016_j_jechem_2023_10_024
crossref_primary_10_1038_s41467_023_43040_5
crossref_primary_10_1039_D3TA08073K
crossref_primary_10_1016_j_jechem_2023_11_018
crossref_primary_10_1002_smll_202410982
crossref_primary_10_1002_anie_202501290
crossref_primary_10_1016_j_nanoen_2025_110776
crossref_primary_10_1002_adfm_202425640
crossref_primary_10_1016_j_aca_2024_342322
crossref_primary_10_1002_anie_202422920
crossref_primary_10_1039_D3EE03183G
crossref_primary_10_1002_anie_202413933
crossref_primary_10_1039_D4QI02430C
crossref_primary_10_26599_NR_2025_94907244
crossref_primary_10_1007_s11426_024_2067_0
crossref_primary_10_1021_jacs_3c14354
crossref_primary_10_1016_j_jallcom_2023_172136
crossref_primary_10_1007_s12274_024_6416_9
crossref_primary_10_1002_aenm_202301162
crossref_primary_10_1021_acsanm_4c02703
crossref_primary_10_1021_acsami_4c11172
crossref_primary_10_1002_adfm_202313483
crossref_primary_10_1002_smtd_202500005
crossref_primary_10_1016_j_cej_2023_147611
crossref_primary_10_1007_s12274_024_6954_1
crossref_primary_10_1002_adfm_202422025
crossref_primary_10_1002_adfm_202423476
crossref_primary_10_1002_adma_202407070
crossref_primary_10_1016_j_jechem_2023_10_046
crossref_primary_10_1002_anie_202313298
crossref_primary_10_1002_adma_202406380
crossref_primary_10_1039_D3QM00516J
crossref_primary_10_1016_j_cej_2024_157940
crossref_primary_10_1016_j_ccr_2024_216281
crossref_primary_10_1016_j_est_2024_113197
crossref_primary_10_1016_j_apcatb_2024_124254
crossref_primary_10_1002_aenm_202303233
crossref_primary_10_1016_j_cej_2023_147052
crossref_primary_10_1002_aic_18567
crossref_primary_10_1002_smll_202305009
crossref_primary_10_1016_j_carbon_2024_119083
Cites_doi 10.1126/sciadv.abl4915
10.1524/zkri.220.5.567.65075
10.1016/j.checat.2022.02.007
10.1002/anie.202117347
10.1021/acsnano.9b08835
10.1002/sstr.202100058
10.1002/adfm.202103857
10.1039/D1EE01602D
10.1002/adma.202003075
10.1021/acs.nanolett.2c00042
10.1016/0009-2614(85)80574-1
10.1016/j.cej.2022.135271
10.1002/adfm.201705048
10.1021/jacs.2c07655
10.1002/smll.202005371
10.1038/s41929-021-00637-7
10.1002/smll.201906782
10.1002/adma.202107421
10.1021/jacs.7b05130
10.1002/anie.202012798
10.1002/smll.202102425
10.1021/jacs.1c11331
10.1038/s41578-021-00360-6
10.1021/acs.nanolett.1c01493
10.1021/acscatal.0c05503
10.1002/anie.202006175
10.1103/PhysRevLett.77.3865
10.1016/j.apcatb.2022.121190
10.1002/smtd.202000988
10.1038/s41467-019-11796-4
10.1016/j.cpc.2005.07.011
10.1002/ange.202213412
10.1002/sstr.202000081
10.1016/j.apcata.2008.12.019
10.1038/s41467-018-07850-2
10.1021/jacs.1c08581
10.1073/pnas.2119492119
10.1038/s41929-020-00546-1
10.1002/adma.202102801
10.1103/PhysRevB.46.6671
10.1002/anie.202016977
10.1002/adma.202105204
10.1002/smtd.202200413
10.1002/anie.201600455
10.1002/anie.202003623
10.1002/adma.202202544
10.1126/sciadv.abo0762
10.1021/acs.chemrev.1c00644
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202302485
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 37015027
10_1002_adma_202302485
ADMA202302485
Genre article
Journal Article
GrantInformation_xml – fundername: Research Grant Council of Hong Kong
  funderid: N_PolyU502/21
– fundername: Tianjin Natural Science Foundation
  funderid: 20JCJQJC00130
– fundername: Projects of Strategic Importance of The Hong Kong Polytechnic University
  funderid: 1‐ZE2V
– fundername: Open Foundation of State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite Structures
  funderid: 2022GXYSOF07
– fundername: National Key R&D Program of China
  funderid: 2021YFA1501101
– fundername: Key Project of Tianjin Natural Science Foundation
  funderid: 20JCZDJC00650
– fundername: National Natural Science Foundation of China
  funderid: 21971117
– fundername: Shenzhen Fundamental Research Scheme‐General Program
  funderid: JCYJ20220531090807017
– fundername: Tianjin Key Lab for Rare Earth Materials and Applications
  funderid: ZB19500202
– fundername: National Postdoctoral Program for Innovative Talents
  funderid: BX20220157
– fundername: Key Project of Tianjin Natural Science Foundation
  grantid: 20JCZDJC00650
– fundername: Functional Research Funds for the Central Universities, Nankai University
  grantid: 63186005
– fundername: Shenzhen Fundamental Research Scheme-General Program
  grantid: JCYJ20220531090807017
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2023A1515012219
– fundername: Tianjin Natural Science Foundation
  grantid: 20JCJQJC00130
– fundername: National Key R&D Program of China
  grantid: 2021YFA1501101
– fundername: Open Foundation of State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures
  grantid: 2022GXYSOF07
– fundername: Tianjin Key Lab for Rare Earth Materials and Applications
  grantid: ZB19500202
– fundername: Projects of Strategic Importance of The Hong Kong Polytechnic University
  grantid: 1-ZE2V
– fundername: Departmental General Research Fund of The Hong Kong Polytechnic University
  grantid: ZVUL
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4395-65869489c526cbdf54df2da63887321de84a269c2160f11b7ca239c5f131ff6b3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 18:40:30 EDT 2025
Fri Jul 25 04:16:55 EDT 2025
Wed Feb 19 02:06:57 EST 2025
Tue Jul 01 02:33:32 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
Wed Jan 22 16:19:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords rare-earth elements
single-atom catalyst
heteroatom doping
oxygen reduction reaction
coordination modulation
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4395-65869489c526cbdf54df2da63887321de84a269c2160f11b7ca239c5f131ff6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2526-2002
PMID 37015027
PQID 2836618154
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2796160723
proquest_journals_2836618154
pubmed_primary_37015027
crossref_primary_10_1002_adma_202302485
crossref_citationtrail_10_1002_adma_202302485
wiley_primary_10_1002_adma_202302485_ADMA202302485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021 2022; 5 119
2017 2021; 139 33
2021; 7
2018; 28
2021; 21
2021; 4
2006 1996 1992; 174 77 46
2022 2020 2021; 60 59 17
2019; 10
2020; 16
2020; 59
2021 2009 2020 2021 2021; 17 356 14 2 2
2022; 22
2021; 143
2022 2022; 134 8
2022; 436
2021 2021; 33 6
2016; 55
1985; 122
2022; 144
2021; 14
2018; 9
2021 2021; 31 60
2020; 3
2021; 11
2005; 220
2022; 61
2022; 6
2022; 34
2022; 307
2022 2022; 2 122
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_8_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_10_4
e_1_2_8_13_1
e_1_2_8_10_5
e_1_2_8_14_1
e_1_2_8_33_3
e_1_2_8_15_1
e_1_2_8_15_2
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_11_1
e_1_2_8_33_2
e_1_2_8_34_1
e_1_2_8_10_3
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 144
  start-page: 2197
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 523
  year: 2021
  publication-title: Nat. Catal.
– volume: 14
  start-page: 6455
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 60 59 17
  start-page: 3212
  year: 2022 2020 2021
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Small
– volume: 134 8
  year: 2022 2022
  publication-title: Angew. Chem., Int. Ed. Sci. Adv.
– volume: 307
  year: 2022
  publication-title: Appl. Catal., B
– volume: 139 33
  year: 2017 2021
  publication-title: J. Am. Chem. Soc. Adv. Mater.
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 220
  start-page: 567
  year: 2005
  publication-title: Z. Kristallogr.
– volume: 3
  start-page: 1044
  year: 2020
  publication-title: Nat. Catal.
– volume: 11
  start-page: 3923
  year: 2021
  publication-title: ACS Catal.
– volume: 10
  start-page: 3734
  year: 2019
  publication-title: Nat. Commun.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 5 119
  year: 2021 2022
  publication-title: Small Methods Proc. Natl. Acad. Sci. USA
– volume: 31 60
  year: 2021 2021
  publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 4508
  year: 2021
  publication-title: Nano Lett.
– volume: 33 6
  start-page: 969
  year: 2021 2021
  publication-title: Adv. Mater. Nat. Rev. Mater.
– volume: 22
  start-page: 2889
  year: 2022
  publication-title: Nano Lett.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 9
  start-page: 5422
  year: 2018
  publication-title: Nat. Commun.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 436
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 2 122
  start-page: 967 5519
  year: 2022 2022
  publication-title: Chem Catal. Chem. Rev.
– volume: 122
  start-page: 264
  year: 1985
  publication-title: Chem. Phys. Lett.
– volume: 17 356 14 2 2
  start-page: 57 1093
  year: 2021 2009 2020 2021 2021
  publication-title: Small Appl. Catal., A ACS Nano Small Struct. Small Struct.
– volume: 174 77 46
  start-page: 24 3865 6671
  year: 2006 1996 1992
  publication-title: Comput. Phys. Commun. Phys. Rev. Lett. Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 55
  start-page: 4016
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_8_13_1
  doi: 10.1126/sciadv.abl4915
– ident: e_1_2_8_32_1
  doi: 10.1524/zkri.220.5.567.65075
– ident: e_1_2_8_15_1
  doi: 10.1016/j.checat.2022.02.007
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.202117347
– ident: e_1_2_8_10_3
  doi: 10.1021/acsnano.9b08835
– ident: e_1_2_8_10_5
  doi: 10.1002/sstr.202100058
– ident: e_1_2_8_1_1
  doi: 10.1002/adfm.202103857
– ident: e_1_2_8_27_1
  doi: 10.1039/D1EE01602D
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.202003075
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.nanolett.2c00042
– ident: e_1_2_8_34_1
  doi: 10.1016/0009-2614(85)80574-1
– ident: e_1_2_8_14_1
  doi: 10.1016/j.cej.2022.135271
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.201705048
– ident: e_1_2_8_11_1
  doi: 10.1021/jacs.2c07655
– ident: e_1_2_8_10_1
  doi: 10.1002/smll.202005371
– ident: e_1_2_8_23_1
  doi: 10.1038/s41929-021-00637-7
– ident: e_1_2_8_6_1
  doi: 10.1002/smll.201906782
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.202107421
– ident: e_1_2_8_5_1
  doi: 10.1021/jacs.7b05130
– ident: e_1_2_8_8_1
  doi: 10.1002/anie.202012798
– ident: e_1_2_8_8_3
  doi: 10.1002/smll.202102425
– ident: e_1_2_8_28_1
  doi: 10.1021/jacs.1c11331
– ident: e_1_2_8_4_2
  doi: 10.1038/s41578-021-00360-6
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.nanolett.1c01493
– ident: e_1_2_8_17_1
  doi: 10.1021/acscatal.0c05503
– ident: e_1_2_8_8_2
  doi: 10.1002/anie.202006175
– ident: e_1_2_8_33_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_22_1
  doi: 10.1016/j.apcatb.2022.121190
– ident: e_1_2_8_7_1
  doi: 10.1002/smtd.202000988
– ident: e_1_2_8_24_1
  doi: 10.1038/s41467-019-11796-4
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cpc.2005.07.011
– ident: e_1_2_8_3_1
  doi: 10.1002/ange.202213412
– ident: e_1_2_8_10_4
  doi: 10.1002/sstr.202000081
– ident: e_1_2_8_10_2
  doi: 10.1016/j.apcata.2008.12.019
– ident: e_1_2_8_9_1
  doi: 10.1038/s41467-018-07850-2
– ident: e_1_2_8_31_1
  doi: 10.1021/jacs.1c08581
– ident: e_1_2_8_7_2
  doi: 10.1073/pnas.2119492119
– ident: e_1_2_8_2_1
  doi: 10.1038/s41929-020-00546-1
– ident: e_1_2_8_5_2
  doi: 10.1002/adma.202102801
– ident: e_1_2_8_33_3
  doi: 10.1103/PhysRevB.46.6671
– ident: e_1_2_8_1_2
  doi: 10.1002/anie.202016977
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.202105204
– ident: e_1_2_8_12_1
  doi: 10.1002/smtd.202200413
– ident: e_1_2_8_18_1
  doi: 10.1002/anie.201600455
– ident: e_1_2_8_25_1
  doi: 10.1002/anie.202003623
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.202202544
– ident: e_1_2_8_3_2
  doi: 10.1126/sciadv.abo0762
– ident: e_1_2_8_15_2
  doi: 10.1021/acs.chemrev.1c00644
SSID ssj0009606
Score 2.6838083
Snippet For current single‐atom catalysts (SACs), modulating the coordination environments of rare‐earth (RE) single atoms with complex electronic orbital and flexible...
For current single-atom catalysts (SACs), modulating the coordination environments of rare-earth (RE) single atoms with complex electronic orbital and flexible...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2302485
SubjectTerms Catalysts
Cerium
Chemical reduction
Circuits
Coordination
coordination modulation
Electroactivity
Electron transfer
Energy conversion
Energy storage
heteroatom doping
Maximum power density
Metal air batteries
oxygen reduction reaction
Oxygen reduction reactions
rare‐earth elements
single‐atom catalyst
Substrates
Zinc-oxygen batteries
Title Heteroatom‐Driven Coordination Fields Altering Single Cerium Atom Sites for Efficient Oxygen Reduction Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202302485
https://www.ncbi.nlm.nih.gov/pubmed/37015027
https://www.proquest.com/docview/2836618154
https://www.proquest.com/docview/2796160723
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlp_bQR5q2bh6oUOhJyephWT6aTZalkBa2DeRmJFmC0mS3ze5CklN-Qn5jfklmrF0nm1AK7cVYtiTL0ozmkzT6RMhHJyLa3cCE54GpYAKztjQsOsV70QYrDe5GPvyih0fq83F-fG8Xf-KH6CbcUDPa_hoV3Lrp3h1pqG1a3iCA0MjKBZ0wOmwhKhrd8UchPG_J9mTOSq3MkrWxJ_ZWk69apUdQcxW5tqZn8ILYZaGTx8nP3fnM7frLB3yO__NXL8nzBS6lVRKkV-RJGK-TZ_fYCl-T30N0nZnAKP305up6_wz7SdqfwOj1R5pSpAN0h5vSClfgIQn9BpeTQPsQmp_SChLCI8C2FJAyPWjJK8Dm0a_nFyDGdIQssm0-o5C2W2yQo8HB9_6QLU5sYB6ATc4AzuhSmdLnQnvXxFw1UTQWdNwUUvAmGGWFLr3guhc5d4W3QkLsyCWPUTv5hqyNJ-PwjtAe91oE9M4ojBIKxKY0QXvAE1JCxi4jbNlitV_QmeOpGid1ImIWNVZl3VVlRj518X8lIo8_xtxaCkC9UOhpDSgMkIwBwJmRD91rUEVcX7HjMJlDnKLUyNcnZEbeJsHpPiULnFoSRUZE2_x_KUNd7R9WXej9vyTaJE_xPrkWb5G12dk8bAOAmrmdVkluAWynEmc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_P8EChgJxCntxk4c58Ah2u1qS7tFWlqpt9RxHAnRbqC7KygnHoFX4VV4BJ6EmThJWRBCQuqBSyQnY8exZzyfnfFngKc5L8nvWp-bwPqhVdbXOlF-mYdBr9RWC0W7kce7crQfvjyIDlbga7sXxvFDdAtuZBn1eE0GTgvSG2esobqoiYMQQxMtVxNXuW1PP-CsbfZia4Bd_Izz4eZef-Q3Bwv4Bv1v5KPXlUmoEhNxafKijMKi5IVGVVSx4EFhVai5TAwPZK8Mgjw2mguULgMRlKXMBZZ7AS7SMeJE1z-YnDFW0YSgpvcTkZ_IULU8kT2-sVzfZT_4G7hdxsq1sxteg29tM7kYl7fri3m-bj79wiD5X7XjdbjaQG-WOlu5ASt2ehOu_ETIeAvejyg6qNLz6vj75y-DE3IFrF9hFd-4VVM2pIi_GUspyACzsNd4ObKsj6nFMUsxI95C-M5wMsA2a34OdOvs1cdTtFQ2IaLcupyJdTtKbsP-uXzzHVidVlN7D1gvMJJbCkCJVchDtIxEWWkQMgmBBece-K2KZKZhbKeDQ44yxzXNM-q6rOs6D5538u8cV8kfJddajcuaMWuWIdBEsKYQU3vwpHuMow39QtJTWy1QJk4kURJy4cFdp6ndq0RMq2c89oDX-vaXOmTpYJx2qfv_kukxXBrtjXeyna3d7Qdwme67SOo1WJ2fLOxDxIvz_FFtoQwOz1uVfwDyBW69
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48A8NFDASiFPaxHYc58Ah2nS1pbSghUq9pY5jS6jtpnR3BeXEI_AovAqvwJMwzl9ZEEJC6oFLJCdjx7FnPJ-d8WeAJwW1zu8an-rQ-NxI4yuVSN8WPAysMopJtxt5e0eMdvmLvWhvCb52e2Eafoh-wc1ZRj1eOwM_Lu36GWmoKmveIITQjpWrDavcMqcfcNI2fb6ZYQ8_pXS48XYw8ttzBXyN7jfy0emKhMtER1ToorQRLy0tFWqijBkNSyO5oiLRNBSBDcMi1ooylLYhC60VBcNyL8BFLoLEHRaRjc8Iq9x8oGb3Y5GfCC47msiAri_Wd9EN_oZtF6Fy7euG1-Bb10pNiMvB2nxWrOlPvxBI_k_NeB2utsCbpI2l3IAlM7kJV36iY7wF70cuNqhSs-ro--cv2YlzBGRQYRXfNWumZOji_aYkdSEGmIW8wcuhIQNMzY9IihnxFoJ3glMBslGzc6BTJ68-nqKdkrGjya3LGZtmP8lt2D2Xb74Dy5NqYlaABKEW1Ljwk1hyytEuEmmERsDEGBZceOB3GpLrlq_dHRtymDdM0zR3XZf3XefBs17-uGEq-aPkaqdweTtiTXOEmQjVJCJqDx73j3GscT-Q1MRUc5SJE-EICSnz4G6jqP2rWOzWzmjsAa3V7S91yNNsO-1T9_4l0yO49Dob5i83d7buw2V3uwmjXoXl2cncPECwOCse1vZJYP-8NfkHE6BtbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heteroatom-Driven+Coordination+Fields+Altering+Single+Cerium+Atom+Sites+for+Efficient+Oxygen+Reduction+Reaction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yin%2C+Leilei&rft.au=Zhang%2C+Shuai&rft.au=Sun%2C+Mingzi&rft.au=Wang%2C+Siyuan&rft.date=2023-07-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=28&rft.spage=e2302485&rft_id=info:doi/10.1002%2Fadma.202302485&rft_id=info%3Apmid%2F37015027&rft.externalDocID=37015027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon