Heteroatom‐Driven Coordination Fields Altering Single Cerium Atom Sites for Efficient Oxygen Reduction Reaction
For current single‐atom catalysts (SACs), modulating the coordination environments of rare‐earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co‐doped hollow carbon substrate (Ce SAs/PSNC) for the...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 28; pp. e2302485 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For current single‐atom catalysts (SACs), modulating the coordination environments of rare‐earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co‐doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as‐prepared Ce SAs/PSNC possesses a half‐wave potential of 0.90 V, a turnover frequency value of 52.2 s−1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC‐based liquid zinc–air batteries (ZABs) exhibit a high and stable open‐circuit voltage of 1.49 V and a maximum power density of 212 mW cm−2. As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site‐to‐site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE‐based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices.
Through ubtle modulation of the coordination environments by introducing P and S heteroatoms, the Ce electroactive sites are modulated to achieve effective enhancement of the oxygen reduction reaction's intrinsic catalytic activity. This work supplies significant references for optimizing the electroactivity of atomic catalysts by a coordination regulation strategy. |
---|---|
AbstractList | For current single‐atom catalysts (SACs), modulating the coordination environments of rare‐earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co‐doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as‐prepared Ce SAs/PSNC possesses a half‐wave potential of 0.90 V, a turnover frequency value of 52.2 s−1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC‐based liquid zinc–air batteries (ZABs) exhibit a high and stable open‐circuit voltage of 1.49 V and a maximum power density of 212 mW cm−2. As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site‐to‐site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE‐based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices. For current single‐atom catalysts (SACs), modulating the coordination environments of rare‐earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co‐doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as‐prepared Ce SAs/PSNC possesses a half‐wave potential of 0.90 V, a turnover frequency value of 52.2 s−1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC‐based liquid zinc–air batteries (ZABs) exhibit a high and stable open‐circuit voltage of 1.49 V and a maximum power density of 212 mW cm−2. As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site‐to‐site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE‐based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices. Through ubtle modulation of the coordination environments by introducing P and S heteroatoms, the Ce electroactive sites are modulated to achieve effective enhancement of the oxygen reduction reaction's intrinsic catalytic activity. This work supplies significant references for optimizing the electroactivity of atomic catalysts by a coordination regulation strategy. For current single-atom catalysts (SACs), modulating the coordination environments of rare-earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co-doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as-prepared Ce SAs/PSNC possesses a half-wave potential of 0.90 V, a turnover frequency value of 52.2 s at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC-based liquid zinc-air batteries (ZABs) exhibit a high and stable open-circuit voltage of 1.49 V and a maximum power density of 212 mW cm . As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site-to-site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE-based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices. For current single‐atom catalysts (SACs), modulating the coordination environments of rare‐earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co‐doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as‐prepared Ce SAs/PSNC possesses a half‐wave potential of 0.90 V, a turnover frequency value of 52.2 s −1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC‐based liquid zinc–air batteries (ZABs) exhibit a high and stable open‐circuit voltage of 1.49 V and a maximum power density of 212 mW cm −2 . As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site‐to‐site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE‐based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices. For current single-atom catalysts (SACs), modulating the coordination environments of rare-earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co-doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as-prepared Ce SAs/PSNC possesses a half-wave potential of 0.90 V, a turnover frequency value of 52.2 s-1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC-based liquid zinc-air batteries (ZABs) exhibit a high and stable open-circuit voltage of 1.49 V and a maximum power density of 212 mW cm-2 . As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site-to-site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE-based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices.For current single-atom catalysts (SACs), modulating the coordination environments of rare-earth (RE) single atoms with complex electronic orbital and flexible chemical states is still limited. Herein, cerium (Ce) SAs supported on a P, S, and N co-doped hollow carbon substrate (Ce SAs/PSNC) for the oxygen reduction reaction (ORR) are reported. The as-prepared Ce SAs/PSNC possesses a half-wave potential of 0.90 V, a turnover frequency value of 52.2 s-1 at 0.85 V, and excellent stability for the ORR, which exceeds the commercial Pt/C and most recent SACs. Ce SAs/PSNC-based liquid zinc-air batteries (ZABs) exhibit a high and stable open-circuit voltage of 1.49 V and a maximum power density of 212 mW cm-2 . As the catalyst of the air cathode, it also displays remarkable performance in flexible electronic devices. Theoretical calculations reveal that the introduction of S and P sites induces significant electronic modulations to the Ce SA active sites. The P and S dopings promote the electroactivity of Ce SAs and improve the overall site-to-site electron transfer within the Ce SAs/PSNC. This work offers a unique perspective for modulating RE-based SACs in a complex coordination environment toward superior electrocatalysis and broad applications in energy conversion and storage devices. |
Author | Du, Yaping Zhang, Shuai Huang, Bolong Sun, Mingzi Wang, Siyuan Yin, Leilei |
Author_xml | – sequence: 1 givenname: Leilei surname: Yin fullname: Yin, Leilei organization: Nankai University – sequence: 2 givenname: Shuai surname: Zhang fullname: Zhang, Shuai organization: Nankai University – sequence: 3 givenname: Mingzi surname: Sun fullname: Sun, Mingzi organization: The Hong Kong Polytechnic University – sequence: 4 givenname: Siyuan surname: Wang fullname: Wang, Siyuan organization: Nankai University – sequence: 5 givenname: Bolong orcidid: 0000-0002-2526-2002 surname: Huang fullname: Huang, Bolong email: bhuang@polyu.edu.hk organization: The Hong Kong Polytechnic University – sequence: 6 givenname: Yaping surname: Du fullname: Du, Yaping email: ypdu@nankai.edu.cn organization: Nankai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37015027$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFDEYx4O02G316lEGvHiZNe-THIdta4VKoeo5ZPNSUmaSNpmp7s2P4Gf0k5ju1hYK4iVv_H7_JzzPIdiLKToA3iC4RBDiD9qOeokhJhBTwV6ABWIYtRRKtgcWUBLWSk7FATgs5RpCKDnkL8EB6SBiEHcLcHvmJpeTntL4--ev4xzuXGxWKWUbop5Cis1pcIMtTT9ULsSr5ktdBtes6m0em76K9WlypfEpNyfeBxNcnJqLH5urGnXp7Gy2OZdObw-vwL7XQ3GvH_Yj8O305OvqrD2_-Php1Z-3hhLJWs4El1RIwzA3a-sZtR5bzYkQHcHIOkE15tJgxKFHaN0ZjUmlPSLIe74mR-D9Lvcmp9vZlUmNoRg3DDq6NBeFO8mr22FS0XfP0Os051h_p7AgnCOBGK3U2wdqXo_OqpscRp036m8zK7DcASanUrLzjwiC6n5a6n5a6nFaVaDPBBOmbdenrMPwb03utO9hcJv_FFH98ef-yf0DWMipug |
CitedBy_id | crossref_primary_10_1002_ange_202308344 crossref_primary_10_1016_j_jcis_2025_137425 crossref_primary_10_1002_adfm_202405972 crossref_primary_10_1016_j_ccr_2024_216111 crossref_primary_10_1016_j_cej_2024_151147 crossref_primary_10_1007_s12274_024_6923_8 crossref_primary_10_1039_D3MA00536D crossref_primary_10_1002_adhm_202301733 crossref_primary_10_1002_ange_202413933 crossref_primary_10_1016_j_jcis_2025_01_024 crossref_primary_10_1016_j_pmatsci_2024_101389 crossref_primary_10_1002_adma_202312117 crossref_primary_10_1002_ange_202501290 crossref_primary_10_1016_j_jcis_2024_07_176 crossref_primary_10_1016_j_cej_2025_160020 crossref_primary_10_1002_ange_202422920 crossref_primary_10_1021_acs_jpclett_4c00921 crossref_primary_10_1002_anie_202413369 crossref_primary_10_1039_D4SC07775J crossref_primary_10_1002_aenm_202404689 crossref_primary_10_1016_j_jcis_2023_12_124 crossref_primary_10_1016_j_ijhydene_2024_11_396 crossref_primary_10_1002_adsu_202400881 crossref_primary_10_1039_D4TA01738B crossref_primary_10_1021_acscatal_4c03068 crossref_primary_10_1016_j_nanoen_2024_110579 crossref_primary_10_1002_ange_202404374 crossref_primary_10_1002_adfm_202413134 crossref_primary_10_1002_smll_202305615 crossref_primary_10_1007_s12598_023_02580_x crossref_primary_10_1039_D4CS01031K crossref_primary_10_1002_adfm_202305268 crossref_primary_10_1002_anie_202400577 crossref_primary_10_1016_j_jpowsour_2024_234115 crossref_primary_10_1002_cnma_202400089 crossref_primary_10_1002_anie_202308344 crossref_primary_10_1007_s12274_023_6287_5 crossref_primary_10_1021_acsami_4c00148 crossref_primary_10_1016_j_ccr_2024_215952 crossref_primary_10_1002_adfm_202423158 crossref_primary_10_1002_adfm_202422588 crossref_primary_10_1002_ange_202400577 crossref_primary_10_1002_smll_202401900 crossref_primary_10_1016_j_nantod_2024_102236 crossref_primary_10_1002_anie_202404374 crossref_primary_10_1002_adma_202416387 crossref_primary_10_1002_smll_202302738 crossref_primary_10_1021_acsanm_3c02803 crossref_primary_10_1002_ange_202413369 crossref_primary_10_1038_s41467_025_58109_6 crossref_primary_10_26599_NRE_2024_9120144 crossref_primary_10_1016_j_mtchem_2024_102119 crossref_primary_10_1002_cssc_202401223 crossref_primary_10_1002_smll_202311034 crossref_primary_10_1016_j_ensm_2025_104101 crossref_primary_10_1021_acs_nanolett_5c00465 crossref_primary_10_1039_D4SC02853H crossref_primary_10_1002_advs_202403197 crossref_primary_10_1002_ange_202313298 crossref_primary_10_1016_j_nanoen_2024_110030 crossref_primary_10_1021_acs_chemrev_4c00276 crossref_primary_10_1039_D4TA09167A crossref_primary_10_1016_j_apcatb_2024_124889 crossref_primary_10_1016_j_apcatb_2023_123438 crossref_primary_10_1039_D3CC06156F crossref_primary_10_1016_j_cej_2024_150427 crossref_primary_10_1002_smll_202305782 crossref_primary_10_1002_adfm_202405884 crossref_primary_10_1002_adfm_202403508 crossref_primary_10_1039_D4CC05747C crossref_primary_10_1039_D4NR02845G crossref_primary_10_1016_j_jechem_2023_10_024 crossref_primary_10_1038_s41467_023_43040_5 crossref_primary_10_1039_D3TA08073K crossref_primary_10_1016_j_jechem_2023_11_018 crossref_primary_10_1002_smll_202410982 crossref_primary_10_1002_anie_202501290 crossref_primary_10_1016_j_nanoen_2025_110776 crossref_primary_10_1002_adfm_202425640 crossref_primary_10_1016_j_aca_2024_342322 crossref_primary_10_1002_anie_202422920 crossref_primary_10_1039_D3EE03183G crossref_primary_10_1002_anie_202413933 crossref_primary_10_1039_D4QI02430C crossref_primary_10_26599_NR_2025_94907244 crossref_primary_10_1007_s11426_024_2067_0 crossref_primary_10_1021_jacs_3c14354 crossref_primary_10_1016_j_jallcom_2023_172136 crossref_primary_10_1007_s12274_024_6416_9 crossref_primary_10_1002_aenm_202301162 crossref_primary_10_1021_acsanm_4c02703 crossref_primary_10_1021_acsami_4c11172 crossref_primary_10_1002_adfm_202313483 crossref_primary_10_1002_smtd_202500005 crossref_primary_10_1016_j_cej_2023_147611 crossref_primary_10_1007_s12274_024_6954_1 crossref_primary_10_1002_adfm_202422025 crossref_primary_10_1002_adfm_202423476 crossref_primary_10_1002_adma_202407070 crossref_primary_10_1016_j_jechem_2023_10_046 crossref_primary_10_1002_anie_202313298 crossref_primary_10_1002_adma_202406380 crossref_primary_10_1039_D3QM00516J crossref_primary_10_1016_j_cej_2024_157940 crossref_primary_10_1016_j_ccr_2024_216281 crossref_primary_10_1016_j_est_2024_113197 crossref_primary_10_1016_j_apcatb_2024_124254 crossref_primary_10_1002_aenm_202303233 crossref_primary_10_1016_j_cej_2023_147052 crossref_primary_10_1002_aic_18567 crossref_primary_10_1002_smll_202305009 crossref_primary_10_1016_j_carbon_2024_119083 |
Cites_doi | 10.1126/sciadv.abl4915 10.1524/zkri.220.5.567.65075 10.1016/j.checat.2022.02.007 10.1002/anie.202117347 10.1021/acsnano.9b08835 10.1002/sstr.202100058 10.1002/adfm.202103857 10.1039/D1EE01602D 10.1002/adma.202003075 10.1021/acs.nanolett.2c00042 10.1016/0009-2614(85)80574-1 10.1016/j.cej.2022.135271 10.1002/adfm.201705048 10.1021/jacs.2c07655 10.1002/smll.202005371 10.1038/s41929-021-00637-7 10.1002/smll.201906782 10.1002/adma.202107421 10.1021/jacs.7b05130 10.1002/anie.202012798 10.1002/smll.202102425 10.1021/jacs.1c11331 10.1038/s41578-021-00360-6 10.1021/acs.nanolett.1c01493 10.1021/acscatal.0c05503 10.1002/anie.202006175 10.1103/PhysRevLett.77.3865 10.1016/j.apcatb.2022.121190 10.1002/smtd.202000988 10.1038/s41467-019-11796-4 10.1016/j.cpc.2005.07.011 10.1002/ange.202213412 10.1002/sstr.202000081 10.1016/j.apcata.2008.12.019 10.1038/s41467-018-07850-2 10.1021/jacs.1c08581 10.1073/pnas.2119492119 10.1038/s41929-020-00546-1 10.1002/adma.202102801 10.1103/PhysRevB.46.6671 10.1002/anie.202016977 10.1002/adma.202105204 10.1002/smtd.202200413 10.1002/anie.201600455 10.1002/anie.202003623 10.1002/adma.202202544 10.1126/sciadv.abo0762 10.1021/acs.chemrev.1c00644 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202302485 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 37015027 10_1002_adma_202302485 ADMA202302485 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Research Grant Council of Hong Kong funderid: N_PolyU502/21 – fundername: Tianjin Natural Science Foundation funderid: 20JCJQJC00130 – fundername: Projects of Strategic Importance of The Hong Kong Polytechnic University funderid: 1‐ZE2V – fundername: Open Foundation of State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite Structures funderid: 2022GXYSOF07 – fundername: National Key R&D Program of China funderid: 2021YFA1501101 – fundername: Key Project of Tianjin Natural Science Foundation funderid: 20JCZDJC00650 – fundername: National Natural Science Foundation of China funderid: 21971117 – fundername: Shenzhen Fundamental Research Scheme‐General Program funderid: JCYJ20220531090807017 – fundername: Tianjin Key Lab for Rare Earth Materials and Applications funderid: ZB19500202 – fundername: National Postdoctoral Program for Innovative Talents funderid: BX20220157 – fundername: Key Project of Tianjin Natural Science Foundation grantid: 20JCZDJC00650 – fundername: Functional Research Funds for the Central Universities, Nankai University grantid: 63186005 – fundername: Shenzhen Fundamental Research Scheme-General Program grantid: JCYJ20220531090807017 – fundername: Natural Science Foundation of Guangdong Province grantid: 2023A1515012219 – fundername: Tianjin Natural Science Foundation grantid: 20JCJQJC00130 – fundername: National Key R&D Program of China grantid: 2021YFA1501101 – fundername: Open Foundation of State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures grantid: 2022GXYSOF07 – fundername: Tianjin Key Lab for Rare Earth Materials and Applications grantid: ZB19500202 – fundername: Projects of Strategic Importance of The Hong Kong Polytechnic University grantid: 1-ZE2V – fundername: Departmental General Research Fund of The Hong Kong Polytechnic University grantid: ZVUL |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4395-65869489c526cbdf54df2da63887321de84a269c2160f11b7ca239c5f131ff6b3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 18:40:30 EDT 2025 Fri Jul 25 04:16:55 EDT 2025 Wed Feb 19 02:06:57 EST 2025 Tue Jul 01 02:33:32 EDT 2025 Thu Apr 24 23:09:03 EDT 2025 Wed Jan 22 16:19:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | rare-earth elements single-atom catalyst heteroatom doping oxygen reduction reaction coordination modulation |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4395-65869489c526cbdf54df2da63887321de84a269c2160f11b7ca239c5f131ff6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2526-2002 |
PMID | 37015027 |
PQID | 2836618154 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2796160723 proquest_journals_2836618154 pubmed_primary_37015027 crossref_primary_10_1002_adma_202302485 crossref_citationtrail_10_1002_adma_202302485 wiley_primary_10_1002_adma_202302485_ADMA202302485 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021 2022; 5 119 2017 2021; 139 33 2021; 7 2018; 28 2021; 21 2021; 4 2006 1996 1992; 174 77 46 2022 2020 2021; 60 59 17 2019; 10 2020; 16 2020; 59 2021 2009 2020 2021 2021; 17 356 14 2 2 2022; 22 2021; 143 2022 2022; 134 8 2022; 436 2021 2021; 33 6 2016; 55 1985; 122 2022; 144 2021; 14 2018; 9 2021 2021; 31 60 2020; 3 2021; 11 2005; 220 2022; 61 2022; 6 2022; 34 2022; 307 2022 2022; 2 122 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_8_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_10_4 e_1_2_8_13_1 e_1_2_8_10_5 e_1_2_8_14_1 e_1_2_8_33_3 e_1_2_8_15_1 e_1_2_8_15_2 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_11_1 e_1_2_8_33_2 e_1_2_8_34_1 e_1_2_8_10_3 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 144 start-page: 2197 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 523 year: 2021 publication-title: Nat. Catal. – volume: 14 start-page: 6455 year: 2021 publication-title: Energy Environ. Sci. – volume: 60 59 17 start-page: 3212 year: 2022 2020 2021 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Small – volume: 134 8 year: 2022 2022 publication-title: Angew. Chem., Int. Ed. Sci. Adv. – volume: 307 year: 2022 publication-title: Appl. Catal., B – volume: 139 33 year: 2017 2021 publication-title: J. Am. Chem. Soc. Adv. Mater. – volume: 6 year: 2022 publication-title: Small Methods – volume: 220 start-page: 567 year: 2005 publication-title: Z. Kristallogr. – volume: 3 start-page: 1044 year: 2020 publication-title: Nat. Catal. – volume: 11 start-page: 3923 year: 2021 publication-title: ACS Catal. – volume: 10 start-page: 3734 year: 2019 publication-title: Nat. Commun. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 5 119 year: 2021 2022 publication-title: Small Methods Proc. Natl. Acad. Sci. USA – volume: 31 60 year: 2021 2021 publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. – volume: 16 year: 2020 publication-title: Small – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 4508 year: 2021 publication-title: Nano Lett. – volume: 33 6 start-page: 969 year: 2021 2021 publication-title: Adv. Mater. Nat. Rev. Mater. – volume: 22 start-page: 2889 year: 2022 publication-title: Nano Lett. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 9 start-page: 5422 year: 2018 publication-title: Nat. Commun. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 436 year: 2022 publication-title: Chem. Eng. J. – volume: 2 122 start-page: 967 5519 year: 2022 2022 publication-title: Chem Catal. Chem. Rev. – volume: 122 start-page: 264 year: 1985 publication-title: Chem. Phys. Lett. – volume: 17 356 14 2 2 start-page: 57 1093 year: 2021 2009 2020 2021 2021 publication-title: Small Appl. Catal., A ACS Nano Small Struct. Small Struct. – volume: 174 77 46 start-page: 24 3865 6671 year: 2006 1996 1992 publication-title: Comput. Phys. Commun. Phys. Rev. Lett. Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 55 start-page: 4016 year: 2016 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_8_13_1 doi: 10.1126/sciadv.abl4915 – ident: e_1_2_8_32_1 doi: 10.1524/zkri.220.5.567.65075 – ident: e_1_2_8_15_1 doi: 10.1016/j.checat.2022.02.007 – ident: e_1_2_8_21_1 doi: 10.1002/anie.202117347 – ident: e_1_2_8_10_3 doi: 10.1021/acsnano.9b08835 – ident: e_1_2_8_10_5 doi: 10.1002/sstr.202100058 – ident: e_1_2_8_1_1 doi: 10.1002/adfm.202103857 – ident: e_1_2_8_27_1 doi: 10.1039/D1EE01602D – ident: e_1_2_8_4_1 doi: 10.1002/adma.202003075 – ident: e_1_2_8_19_1 doi: 10.1021/acs.nanolett.2c00042 – ident: e_1_2_8_34_1 doi: 10.1016/0009-2614(85)80574-1 – ident: e_1_2_8_14_1 doi: 10.1016/j.cej.2022.135271 – ident: e_1_2_8_30_1 doi: 10.1002/adfm.201705048 – ident: e_1_2_8_11_1 doi: 10.1021/jacs.2c07655 – ident: e_1_2_8_10_1 doi: 10.1002/smll.202005371 – ident: e_1_2_8_23_1 doi: 10.1038/s41929-021-00637-7 – ident: e_1_2_8_6_1 doi: 10.1002/smll.201906782 – ident: e_1_2_8_20_1 doi: 10.1002/adma.202107421 – ident: e_1_2_8_5_1 doi: 10.1021/jacs.7b05130 – ident: e_1_2_8_8_1 doi: 10.1002/anie.202012798 – ident: e_1_2_8_8_3 doi: 10.1002/smll.202102425 – ident: e_1_2_8_28_1 doi: 10.1021/jacs.1c11331 – ident: e_1_2_8_4_2 doi: 10.1038/s41578-021-00360-6 – ident: e_1_2_8_16_1 doi: 10.1021/acs.nanolett.1c01493 – ident: e_1_2_8_17_1 doi: 10.1021/acscatal.0c05503 – ident: e_1_2_8_8_2 doi: 10.1002/anie.202006175 – ident: e_1_2_8_33_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_22_1 doi: 10.1016/j.apcatb.2022.121190 – ident: e_1_2_8_7_1 doi: 10.1002/smtd.202000988 – ident: e_1_2_8_24_1 doi: 10.1038/s41467-019-11796-4 – ident: e_1_2_8_33_1 doi: 10.1016/j.cpc.2005.07.011 – ident: e_1_2_8_3_1 doi: 10.1002/ange.202213412 – ident: e_1_2_8_10_4 doi: 10.1002/sstr.202000081 – ident: e_1_2_8_10_2 doi: 10.1016/j.apcata.2008.12.019 – ident: e_1_2_8_9_1 doi: 10.1038/s41467-018-07850-2 – ident: e_1_2_8_31_1 doi: 10.1021/jacs.1c08581 – ident: e_1_2_8_7_2 doi: 10.1073/pnas.2119492119 – ident: e_1_2_8_2_1 doi: 10.1038/s41929-020-00546-1 – ident: e_1_2_8_5_2 doi: 10.1002/adma.202102801 – ident: e_1_2_8_33_3 doi: 10.1103/PhysRevB.46.6671 – ident: e_1_2_8_1_2 doi: 10.1002/anie.202016977 – ident: e_1_2_8_29_1 doi: 10.1002/adma.202105204 – ident: e_1_2_8_12_1 doi: 10.1002/smtd.202200413 – ident: e_1_2_8_18_1 doi: 10.1002/anie.201600455 – ident: e_1_2_8_25_1 doi: 10.1002/anie.202003623 – ident: e_1_2_8_26_1 doi: 10.1002/adma.202202544 – ident: e_1_2_8_3_2 doi: 10.1126/sciadv.abo0762 – ident: e_1_2_8_15_2 doi: 10.1021/acs.chemrev.1c00644 |
SSID | ssj0009606 |
Score | 2.6838083 |
Snippet | For current single‐atom catalysts (SACs), modulating the coordination environments of rare‐earth (RE) single atoms with complex electronic orbital and flexible... For current single-atom catalysts (SACs), modulating the coordination environments of rare-earth (RE) single atoms with complex electronic orbital and flexible... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2302485 |
SubjectTerms | Catalysts Cerium Chemical reduction Circuits Coordination coordination modulation Electroactivity Electron transfer Energy conversion Energy storage heteroatom doping Maximum power density Metal air batteries oxygen reduction reaction Oxygen reduction reactions rare‐earth elements single‐atom catalyst Substrates Zinc-oxygen batteries |
Title | Heteroatom‐Driven Coordination Fields Altering Single Cerium Atom Sites for Efficient Oxygen Reduction Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202302485 https://www.ncbi.nlm.nih.gov/pubmed/37015027 https://www.proquest.com/docview/2836618154 https://www.proquest.com/docview/2796160723 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlp_bQR5q2bh6oUOhJyephWT6aTZalkBa2DeRmJFmC0mS3ze5CklN-Qn5jfklmrF0nm1AK7cVYtiTL0ozmkzT6RMhHJyLa3cCE54GpYAKztjQsOsV70QYrDe5GPvyih0fq83F-fG8Xf-KH6CbcUDPa_hoV3Lrp3h1pqG1a3iCA0MjKBZ0wOmwhKhrd8UchPG_J9mTOSq3MkrWxJ_ZWk69apUdQcxW5tqZn8ILYZaGTx8nP3fnM7frLB3yO__NXL8nzBS6lVRKkV-RJGK-TZ_fYCl-T30N0nZnAKP305up6_wz7SdqfwOj1R5pSpAN0h5vSClfgIQn9BpeTQPsQmp_SChLCI8C2FJAyPWjJK8Dm0a_nFyDGdIQssm0-o5C2W2yQo8HB9_6QLU5sYB6ATc4AzuhSmdLnQnvXxFw1UTQWdNwUUvAmGGWFLr3guhc5d4W3QkLsyCWPUTv5hqyNJ-PwjtAe91oE9M4ojBIKxKY0QXvAE1JCxi4jbNlitV_QmeOpGid1ImIWNVZl3VVlRj518X8lIo8_xtxaCkC9UOhpDSgMkIwBwJmRD91rUEVcX7HjMJlDnKLUyNcnZEbeJsHpPiULnFoSRUZE2_x_KUNd7R9WXej9vyTaJE_xPrkWb5G12dk8bAOAmrmdVkluAWynEmc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_P8EChgJxCntxk4c58Ah2u1qS7tFWlqpt9RxHAnRbqC7KygnHoFX4VV4BJ6EmThJWRBCQuqBSyQnY8exZzyfnfFngKc5L8nvWp-bwPqhVdbXOlF-mYdBr9RWC0W7kce7crQfvjyIDlbga7sXxvFDdAtuZBn1eE0GTgvSG2esobqoiYMQQxMtVxNXuW1PP-CsbfZia4Bd_Izz4eZef-Q3Bwv4Bv1v5KPXlUmoEhNxafKijMKi5IVGVVSx4EFhVai5TAwPZK8Mgjw2mguULgMRlKXMBZZ7AS7SMeJE1z-YnDFW0YSgpvcTkZ_IULU8kT2-sVzfZT_4G7hdxsq1sxteg29tM7kYl7fri3m-bj79wiD5X7XjdbjaQG-WOlu5ASt2ehOu_ETIeAvejyg6qNLz6vj75y-DE3IFrF9hFd-4VVM2pIi_GUspyACzsNd4ObKsj6nFMUsxI95C-M5wMsA2a34OdOvs1cdTtFQ2IaLcupyJdTtKbsP-uXzzHVidVlN7D1gvMJJbCkCJVchDtIxEWWkQMgmBBece-K2KZKZhbKeDQ44yxzXNM-q6rOs6D5538u8cV8kfJddajcuaMWuWIdBEsKYQU3vwpHuMow39QtJTWy1QJk4kURJy4cFdp6ndq0RMq2c89oDX-vaXOmTpYJx2qfv_kukxXBrtjXeyna3d7Qdwme67SOo1WJ2fLOxDxIvz_FFtoQwOz1uVfwDyBW69 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48A8NFDASiFPaxHYc58Ah2nS1pbSghUq9pY5jS6jtpnR3BeXEI_AovAqvwJMwzl9ZEEJC6oFLJCdjx7FnPJ-d8WeAJwW1zu8an-rQ-NxI4yuVSN8WPAysMopJtxt5e0eMdvmLvWhvCb52e2Eafoh-wc1ZRj1eOwM_Lu36GWmoKmveIITQjpWrDavcMqcfcNI2fb6ZYQ8_pXS48XYw8ttzBXyN7jfy0emKhMtER1ToorQRLy0tFWqijBkNSyO5oiLRNBSBDcMi1ooylLYhC60VBcNyL8BFLoLEHRaRjc8Iq9x8oGb3Y5GfCC47msiAri_Wd9EN_oZtF6Fy7euG1-Bb10pNiMvB2nxWrOlPvxBI_k_NeB2utsCbpI2l3IAlM7kJV36iY7wF70cuNqhSs-ro--cv2YlzBGRQYRXfNWumZOji_aYkdSEGmIW8wcuhIQNMzY9IihnxFoJ3glMBslGzc6BTJ68-nqKdkrGjya3LGZtmP8lt2D2Xb74Dy5NqYlaABKEW1Ljwk1hyytEuEmmERsDEGBZceOB3GpLrlq_dHRtymDdM0zR3XZf3XefBs17-uGEq-aPkaqdweTtiTXOEmQjVJCJqDx73j3GscT-Q1MRUc5SJE-EICSnz4G6jqP2rWOzWzmjsAa3V7S91yNNsO-1T9_4l0yO49Dob5i83d7buw2V3uwmjXoXl2cncPECwOCse1vZJYP-8NfkHE6BtbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heteroatom-Driven+Coordination+Fields+Altering+Single+Cerium+Atom+Sites+for+Efficient+Oxygen+Reduction+Reaction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yin%2C+Leilei&rft.au=Zhang%2C+Shuai&rft.au=Sun%2C+Mingzi&rft.au=Wang%2C+Siyuan&rft.date=2023-07-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=28&rft.spage=e2302485&rft_id=info:doi/10.1002%2Fadma.202302485&rft_id=info%3Apmid%2F37015027&rft.externalDocID=37015027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |