An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties, to Functional Applications
Hydrogels, as the most typical elastomer materials with three‐dimensional (3D) network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility, and bio‐compatibility. Because of numerou...
Saved in:
Published in | Macromolecular rapid communications. Vol. 43; no. 6; pp. e2100785 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogels, as the most typical elastomer materials with three‐dimensional (3D) network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility, and bio‐compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state‐of‐the‐art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross‐linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, this review is done with the promises and challenges for the future evolution of hydrogels and their biological applications.
Hydrogels with 3D network structures have attracted wide attention. This review focuses on state‐of‐the‐art advances, systematically reviews recent progress on construction of hydrogels, and explore three main cross‐linking methods to develop diversities of hydrogels. The classification and emerging applications of hydrogels are extensively summarized, and promises and challenges for the future evolution of hydrogels are discussed. |
---|---|
AbstractList | Hydrogels, as the most typical elastomer materials with three-dimensional (3D) network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility, and bio-compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state-of-the-art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross-linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, this review is done with the promises and challenges for the future evolution of hydrogels and their biological applications.Hydrogels, as the most typical elastomer materials with three-dimensional (3D) network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility, and bio-compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state-of-the-art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross-linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, this review is done with the promises and challenges for the future evolution of hydrogels and their biological applications. Hydrogels, as the most typical elastomer materials with three‐dimensional (3D) network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility, and bio‐compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state‐of‐the‐art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross‐linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, this review is done with the promises and challenges for the future evolution of hydrogels and their biological applications. Hydrogels, as the most typical elastomer materials with three‐dimensional (3D) network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility, and bio‐compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state‐of‐the‐art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross‐linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, this review is done with the promises and challenges for the future evolution of hydrogels and their biological applications. Hydrogels with 3D network structures have attracted wide attention. This review focuses on state‐of‐the‐art advances, systematically reviews recent progress on construction of hydrogels, and explore three main cross‐linking methods to develop diversities of hydrogels. The classification and emerging applications of hydrogels are extensively summarized, and promises and challenges for the future evolution of hydrogels are discussed. |
Author | Wu, Yangkuan Wang, Ben‐Xin Yang, Zhuchuang Pi, Fuwei Xu, Wei |
Author_xml | – sequence: 1 givenname: Ben‐Xin orcidid: 0000-0003-0489-9861 surname: Wang fullname: Wang, Ben‐Xin email: wangbenxin@jiangnan.edu.cn organization: Jiangnan University – sequence: 2 givenname: Wei surname: Xu fullname: Xu, Wei organization: Jiangnan University – sequence: 3 givenname: Zhuchuang surname: Yang fullname: Yang, Zhuchuang organization: Jiangnan University – sequence: 4 givenname: Yangkuan surname: Wu fullname: Wu, Yangkuan organization: Jiangnan University – sequence: 5 givenname: Fuwei surname: Pi fullname: Pi, Fuwei email: pifuwei@jiangnan.edu.cn organization: Jiangnan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35075726$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1r3DAQxUVJaT6aa49F0EsO9VYflmT1tizdJpCQEpqz0MrjVsFruZKcsP995W7SQKD0pBnxe8PMe8foYAgDIPSOkgUlhH3a2ugWjLDSqEa8QkdUMFpxzdRBqQljFeVcHqLjlO4IIU1N2Bt0yAVRQjF5hMblgK_vId57eMBhwDfgYMj4Www_IqSEQ4fzT8Dnu7b8QJ8-43UMW3xlM0Rv-8KnMEUH6eOsGSFmP9c54PU0uOzDUKDlOPbe2blLb9HrzvYJTh_fE3S7_vJ9dV5dXn-9WC0vK1dzLapad8LWspVEuI2kVGstLSOUk42VTQvSKrC80zUHRRtlgQm5UUq0jBYrdMtP0Nl-7hjDrwlSNlufHPS9HSBMyTDJmBRSEVnQDy_Qu3JTWXym6uKyaHRTqPeP1LTZQmvG6Iv5O_PkZQHqPeBiSClCZ5zPf47O0freUGLmyMwcmfkbWZEtXsieJv9ToPeCB9_D7j-0uVrerJ61vwGSLKfP |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_127532 crossref_primary_10_1002_pol_20220184 crossref_primary_10_1002_slct_202204270 crossref_primary_10_3390_polym14204377 crossref_primary_10_1007_s11696_024_03785_9 crossref_primary_10_1002_advs_202203587 crossref_primary_10_3390_gels10080498 crossref_primary_10_1016_j_ijpharm_2023_123653 crossref_primary_10_1039_D3SM00841J crossref_primary_10_1039_D3CS00202K crossref_primary_10_3390_gels8050275 crossref_primary_10_1039_D4CS00361F crossref_primary_10_1007_s42250_025_01199_y crossref_primary_10_1002_mame_202200525 crossref_primary_10_3390_bios13070696 crossref_primary_10_1016_j_polymer_2023_125843 crossref_primary_10_3390_gels9050380 crossref_primary_10_1016_j_jcis_2023_06_134 crossref_primary_10_1021_acs_iecr_2c02779 crossref_primary_10_1016_j_cej_2024_156871 crossref_primary_10_1039_D4TC00089G crossref_primary_10_1080_25740881_2023_2260885 crossref_primary_10_3390_ijerph191710824 crossref_primary_10_1002_app_54268 crossref_primary_10_1002_sus2_205 crossref_primary_10_1039_D3BM01766D crossref_primary_10_1089_ten_teb_2023_0218 crossref_primary_10_1002_adhm_202400431 crossref_primary_10_1002_agt2_316 crossref_primary_10_1016_j_polymer_2024_127437 crossref_primary_10_1021_acs_jafc_4c05903 crossref_primary_10_1016_j_carbpol_2023_121537 crossref_primary_10_1016_j_ijbiomac_2023_124878 crossref_primary_10_1002_adem_202400314 crossref_primary_10_1007_s10570_023_05616_8 crossref_primary_10_1016_j_ijbiomac_2023_129109 crossref_primary_10_1021_acsami_3c06658 crossref_primary_10_1021_acs_macromol_4c01677 crossref_primary_10_1039_D2MA00311B crossref_primary_10_3390_polym14122365 crossref_primary_10_1016_j_ijbiomac_2024_134286 crossref_primary_10_1016_j_reactfunctpolym_2023_105564 crossref_primary_10_12677_ms_2024_145084 crossref_primary_10_1016_j_snb_2023_134707 crossref_primary_10_1002_pat_5862 crossref_primary_10_1002_smll_202305928 crossref_primary_10_1039_D3RA03349J crossref_primary_10_1016_j_giant_2024_100270 crossref_primary_10_3389_fphar_2023_1235324 |
Cites_doi | 10.1016/j.bioactmat.2021.03.034 10.1021/acsami.0c07753 10.1016/j.ijbiomac.2019.03.011 10.1002/bit.22361 10.1002/mabi.201800248 10.1002/macp.201600038 10.1002/mabi.202100109 10.1088/1748-605X/ac2714 10.3109/10717544.2014.940091 10.1021/acs.iecr.7b04614 10.1126/science.1214804 10.1155/2015/198268 10.1002/smll.202103521 10.1016/j.cej.2017.10.095 10.1021/acs.accounts.6b00581 10.1038/natrevmats.2015.12 10.1002/adma.201300817 10.1080/09205063.2020.1720155 10.1039/D0SM01371D 10.1021/acs.chemrev.7b00627 10.1016/j.tifs.2009.04.003 10.1126/science.1116995 10.1016/j.bioactmat.2021.03.040 10.1038/s41578-018-0006-y 10.1021/acsami.8b09891 10.1016/j.cej.2017.08.041 10.1038/s41578-019-0148-6 10.1021/acsami.8b01082 10.1038/micronano.2017.76 10.1016/j.carbpol.2014.04.085 10.1007/s00466-018-1600-y 10.1093/rb/rbv015 10.1016/j.chempr.2018.07.002 10.1039/C8TC03914C 10.1039/C8NJ03482F 10.1016/j.carbpol.2020.116709 10.1016/S0169-409X(01)00203-4 10.1016/j.eurpolymj.2019.04.032 10.1016/j.jiec.2020.03.035 10.1039/C9BM01882D 10.1021/acsami.7b04017 10.1002/adfm.201905200 10.1021/acs.chemmater.0c03362 10.1016/j.trac.2019.06.014 10.1016/j.ccr.2017.11.019 10.1016/j.actbio.2018.07.015 10.1021/acsaem.1c01854 10.3390/polym12010239 10.1016/j.eurpolymj.2004.02.016 10.1038/nmat2732 10.1016/j.ijbiomac.2017.03.155 10.1016/j.jconrel.2020.04.014 10.1016/j.msec.2015.07.053 10.1002/adma.201405022 10.1021/acs.analchem.8b02459 10.1039/D1BM00936B 10.1002/aic.690491202 10.1021/acsami.0c14059 10.1016/j.cej.2016.04.025 10.1016/j.biomaterials.2021.121169 10.1016/j.biomaterials.2018.10.040 10.1002/smll.201905076 10.1039/D0TB02895A 10.1021/jacs.8b03547 10.1016/j.carbpol.2021.118495 10.1002/adma.202104006 10.1039/C9MH01139K 10.1080/10408398.2020.1870034 10.1007/s10856-018-6158-x 10.1016/j.cocis.2019.04.001 10.1021/acsami.0c14935 10.1016/j.bioelechem.2010.05.001 10.1016/j.biomaterials.2012.06.031 10.1016/j.carbpol.2021.118210 10.1021/acs.biomac.9b00204 10.23939/chcht04.04.297 10.1039/C8TB02556H 10.1021/acsami.9b18646 10.1002/adfm.201808750 10.1016/j.carbpol.2020.116794 10.1039/C5TB00123D 10.1021/acsapm.8b00232 10.1002/anie.201911712 10.1021/acsami.0c01022 10.1016/j.carbpol.2018.08.032 10.1021/acs.chemrev.0c00345 10.1002/adma.201503724 10.1016/j.biomaterials.2011.08.082 10.1002/adfm.202104928 10.1016/j.carbpol.2020.116612 10.1039/D0TC01626H 10.1021/acsami.0c00720 10.1063/1.452740 10.1016/j.eurpolymj.2014.11.024 10.1016/j.bioactmat.2021.04.022 10.1038/nmat1967 10.1016/S0168-583X(99)00118-4 10.1038/s41524-021-00509-5 10.1016/j.cap.2012.03.019 10.1021/acsami.9b04312 10.1080/00222348.2012.657110 10.1016/j.physrep.2014.10.001 10.1016/j.jare.2017.01.005 10.1002/aelm.202000040 10.1016/j.jpowsour.2021.229711 10.1021/acs.macromol.1c00295 10.1039/C7TB01350G 10.1016/j.biomaterials.2015.01.001 10.1016/j.polymer.2020.123072 10.3390/ijms21249656 10.1016/j.addr.2012.09.010 10.1016/j.polymer.2021.123618 10.1016/j.mattod.2014.07.002 10.1039/c4ra03013c 10.1021/acs.chemrev.5b00299 10.1016/j.jmps.2019.06.018 10.1116/1.4866697 10.1016/j.biomaterials.2019.119725 10.1039/D1TC03905A 10.1111/j.1365-2133.2009.09168.x 10.1016/j.addr.2012.09.043 10.1021/acs.analchem.8b05600 10.1016/j.carbpol.2021.118036 10.1038/374240a0 10.1021/acs.accounts.6b00547 10.1002/advs.201400010 10.1016/j.ijbiomac.2020.10.243 10.1021/acs.biomac.0c00566 10.1016/j.ijbiomac.2020.06.110 10.1021/acsnano.5b04343 10.1016/j.carbpol.2021.117753 10.1016/j.mseb.2021.115535 10.1016/j.jconrel.2020.12.045 10.1039/C6TB00825A 10.1016/j.tibtech.2020.06.005 10.1002/jbm.820280710 10.1016/j.carbpol.2021.118269 10.1007/s10971-008-1750-z 10.1016/j.carbpol.2021.117978 10.1021/acssensors.9b01308 10.1016/j.cis.2020.102278 10.1016/j.cej.2021.132685 10.1002/app.1975.070190709 10.1021/acsami.7b13321 10.1038/s41551-018-0318-7 10.1021/am5087209 10.1002/adhm.201200280 10.1016/j.jconrel.2020.06.012 10.1039/C9TA03690C 10.1016/j.mattod.2019.12.026 10.1016/j.colsurfb.2020.111066 10.1021/acs.chemmater.8b00063 10.1016/j.jiec.2020.01.023 10.1021/acsami.6b14471 10.1021/acs.chemrev.0c01088 10.1016/j.cell.2006.06.044 10.1002/advs.201801046 10.1016/j.bios.2021.113138 10.1039/D1TB00624J 10.1021/acsami.0c04359 10.1021/am302355g 10.1021/acsami.9b17627 10.1016/j.bios.2021.113313 10.1021/acs.macromol.6b02264 10.1002/adfm.201703086 10.1016/S1361-3111(05)80001-9 10.1007/s10570-020-03127-4 10.1016/j.eurpolymj.2016.08.006 10.1021/acs.bioconjchem.5b00360 10.1007/s12274-018-2188-4 10.1002/adma.200501612 10.1021/acsami.5b04744 10.1016/j.radphyschem.2008.07.003 10.1021/acsami.8b09656 10.1016/S0142-9612(02)00175-8 10.1016/j.carbpol.2017.07.062 10.3390/pharmaceutics11070356 10.1021/acs.analchem.5b00866 10.1088/1758-5090/8/2/025011 10.3390/polym13030433 10.3390/polym12102204 10.1039/c3tb20758g 10.1021/acs.macromol.0c00238 10.1016/j.copbio.2018.11.001 10.1016/j.apsusc.2017.06.243 10.1016/j.tifs.2021.04.034 10.1021/acsami.8b21259 10.1016/j.seppur.2019.05.070 10.1016/j.bioactmat.2021.04.007 10.1002/pola.11039 10.1016/j.polymer.2020.123021 10.1021/acs.chemmater.6b00115 10.1021/cr000108x 10.1039/b803279c 10.1039/C8BM01246F 10.1002/cjoc.202100370 10.1016/j.ijbiomac.2021.09.169 10.1002/adma.201606900 10.1007/s10965-007-9159-x 10.1007/s10965-021-02682-z 10.1126/science.abg6320 10.1039/c2sm25325a 10.1016/j.carbpol.2016.05.077 10.1016/j.actbio.2021.01.038 10.1016/j.ijbiomac.2006.09.019 10.1039/B713141K 10.1002/mame.202100588 10.1016/j.colsurfb.2017.01.008 10.1038/nmat4294 10.1002/adfm.201970174 10.3390/polym12010111 10.1021/acsami.0c00578 10.1038/185117a0 10.1016/j.carbpol.2021.118278 10.1016/j.eurpolymj.2008.01.032 10.1007/BF03215212 10.1002/adfm.202005941 10.1016/j.ijbiomac.2019.12.082 10.1063/1.1723792 10.1016/j.carbpol.2018.08.070 10.1039/C9BM02029B 10.3390/polym13234182 10.1002/adma.201705912 10.1021/ma100963m 10.1038/s41467-018-03515-2 10.1007/s42242-019-00051-w 10.1016/j.progpolymsci.2017.04.001 10.1016/S0142-9612(03)00340-5 10.1021/acs.chemmater.1c02781 10.1038/natrevmats.2016.71 10.1016/0166-6622(86)80274-8 10.1007/s12094-020-02349-z 10.1016/j.carbpol.2019.01.020 10.1016/j.bios.2017.02.008 10.1039/D0TA07390C 10.1021/acsami.0c17669 10.1016/j.ijbiomac.2020.08.040 10.1021/bm200083n 10.1002/advs.201801076 10.1002/app.51509 10.1126/science.1171643 10.1021/acsbiomaterials.6b00444 10.1021/la101868w 10.1016/j.snb.2020.128765 10.1016/j.enconman.2017.04.056 10.1016/j.bios.2021.113548 10.1002/smll.201802520 10.1002/app.48967 10.1016/j.actbio.2019.07.010 10.1016/j.cis.2019.102060 10.1016/j.carbpol.2020.117331 10.1089/ten.teb.2009.0639 10.3390/antibiotics10040425 10.1016/j.colsurfb.2021.111885 10.1021/acsomega.1c00764 10.1039/D0NJ01269F 10.1002/mabi.202100232 10.1002/adfm.201910282 10.1038/s41467-018-04810-8 10.1016/j.cofs.2015.05.009 10.1021/acssuschemeng.7b04172 10.1016/S1369-7021(05)71087-7 10.1016/j.eurpolymj.2009.04.033 10.1016/j.bios.2021.113459 10.1021/acsbiomaterials.9b01549 10.1016/S0939-6411(00)00090-4 10.1039/C9TB02692D 10.1016/j.snb.2020.128940 10.1016/j.aca.2021.338295 10.1021/acs.analchem.6b02256 10.1016/j.matt.2019.09.015 10.1002/adma.201606471 10.1021/ar400070m 10.1016/j.ijbiomac.2021.04.116 10.1016/j.bioactmat.2021.04.005 10.1021/acsnano.9b05608 10.3390/polym12122835 10.1002/adma.201403339 10.1063/1.4811276 10.1021/nn502704g 10.1016/j.bios.2020.112358 10.1016/j.molliq.2021.115581 10.1002/adfm.202109687 10.1002/pola.23607 10.1002/smll.202103303 10.1016/j.colsurfb.2020.111431 10.1002/jps.21210 10.1039/C8BM01286E |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.202100785 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 35075726 10_1002_marc_202100785 MARC202100785 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2019M651692 – fundername: National Natural Science Foundation of China funderid: 62105128; 11647143 – fundername: National Natural Science Foundation of China grantid: 62105128 – fundername: National Natural Science Foundation of China grantid: 11647143 – fundername: China Postdoctoral Science Foundation grantid: 2019M651692 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX CITATION ABTAH AEUQT AFPWT NPM RWB RWI WRC 7SR 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c4395-49f5a46d605cb6119996a20130ba68de6a7ea3f943e7187ae256b775d211009d3 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Thu Jul 10 19:23:03 EDT 2025 Fri Jul 25 12:27:09 EDT 2025 Wed Feb 19 02:25:45 EST 2025 Tue Jul 01 03:31:45 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Wed Jun 11 08:24:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | functional applications hydrogels cross-linking methods material resources |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4395-49f5a46d605cb6119996a20130ba68de6a7ea3f943e7187ae256b775d211009d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0489-9861 |
PMID | 35075726 |
PQID | 2640025898 |
PQPubID | 1016394 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2622656706 proquest_journals_2640025898 pubmed_primary_35075726 crossref_citationtrail_10_1002_marc_202100785 crossref_primary_10_1002_marc_202100785 wiley_primary_10_1002_marc_202100785_MARC202100785 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol Rapid Commun |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 329 2020; 162 2013; 65 2019; 11 2020; 165 2020; 285 2018; 201 2019; 13 2021; 205 2019; 12 1975; 19 2019; 15 2020; 161 2021; 327 2020; 16 2019; 19 2020; 12 2017; 152 2016; 301 2012; 12 2016; 35 2021; 75 2017; 71 2019; 20 2004; 37 2018; 335 2008; 24 2019; 29 2016; 49 2010; 4 2010; 9 2001; 53 2004; 42 2004; 40 2019; 192 1943; 11 2021; 306 2020; 36 2020; 144 2020; 32 2012; 33 2009; 78 2016; 4 2017; 50 2021; 54 2016; 1 2016; 2 2019; 42 2015; 115 2020; 31 2020; 30 2015; 116 1986; 20 2020; 275 2018; 118 2016; 217 2005; 9 2005; 8 2018; 357 2008; 47 2015; 2015 2020; 27 2018; 90 2008; 44 2020; 22 2020; 21 2017; 144 2016; 28 2016; 8 2016; 23 2001; 101 2013; 25 2021; 124 2020; 120 2020; 247 2020; 59 2008; 8 2020; 245 2021; 121 2020; 8 2020; 7 2020; 6 2020; 5 1987; 86 2019; 60 2014; 4 2020; 53 2021; 112 2019; 63 2020; 9 2020; 137 2020; 44 2014; 9 2006; 126 2014; 8 2018; 77 2012; 336 2009; 324 2015; 2 2021; 9 2022; 430 2021; 8 2021; 7 2021; 6 2021; 4 2015; 3 2010; 79 2020; 85 2021; 222 2017; 27 2006; 18 2018; 429 2017; 29 2008; 97 2017; 330 2015; 9 2015; 7 2002; 23 1999; 151 2020; 232 2007; 40 2021; 330 2017; 101 2018; 57 2021; 1154 2019; 91 2010; 16 2013; 1 2013; 2 2019; 96 2019; 209 2020; 325 2020; 326 2021; 166 2020; 323 1995; 374 2013; 7 2013; 5 2018; 42 2018; 6 2018; 9 2018; 3 2010; 26 2018; 5 2018; 4 2021; 278 2015; 87 2021; 272 2007; 6 2003; 49 2018; 30 2020; 211 2020; 210 2020; 88 2014; 17 2016; 151 2021; 2021 2015; 57 2019; 7 2018; 29 2019; 4 2019; 3 2019; 6 2021; 269 2019; 2 2019; 1 2021; 268 2015; 52 2019; 225 2014; 47 2021; 264 2010; 43 2010; 46 2021; 255 2021; 259 2021; 138 2015; 65 2003; 24 2021; 493 2021; 251 2021; 374 2018; 10 2009; 103 2018; 14 2017; 5 2009; 47 2017; 8 2021; 21 2021; 28 2000; 50 2011; 12 1994; 28 2017; 9 2012; 51 2021; 31 2021; 33 2021; 39 2019; 116 2021; 192 2016; 83 2009; 161 2021; 197 2019; 118 2019; 111 2012; 64 2021; 191 2016; 88 2022; 276 2015; 14 2018; 140 2009; 20 2005; 310 2021; 182 2008; 15 2011; 32 2017; 175 2021; 187 2021; 180 2021; 13 2021; 16 2015; 26 1960; 185 2021; 10 2015; 27 2017; 92 2015; 554 2021; 17 2020; 192 2019; 133 2012; 8 2019; 131 e_1_2_8_241_1 e_1_2_8_287_1 e_1_2_8_264_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_290_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_230_1 e_1_2_8_276_1 e_1_2_8_253_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_291_1 e_1_2_8_238_1 e_1_2_8_215_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 Lin X. (e_1_2_8_249_1) 2021; 8 e_1_2_8_30_1 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_25_1 e_1_2_8_280_1 e_1_2_8_48_1 e_1_2_8_227_1 e_1_2_8_288_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_254_1 e_1_2_8_14_1 e_1_2_8_292_1 e_1_2_8_37_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_277_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_243_1 e_1_2_8_220_1 Meng X. (e_1_2_8_55_1) 2021; 33 e_1_2_8_281_1 e_1_2_8_228_1 e_1_2_8_266_1 e_1_2_8_205_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_293_1 e_1_2_8_270_1 e_1_2_8_217_1 e_1_2_8_255_1 e_1_2_8_278_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_282_1 e_1_2_8_27_1 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_267_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_271_1 e_1_2_8_294_1 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_233_1 e_1_2_8_256_1 e_1_2_8_279_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 Chen M. (e_1_2_8_260_1) 2021; 9 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_283_1 e_1_2_8_68_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_245_1 e_1_2_8_268_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_295_1 e_1_2_8_109_1 e_1_2_8_272_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_257_1 e_1_2_8_95_1 e_1_2_8_219_1 Wang A.‐t. (e_1_2_8_124_1) 2021; 2021 e_1_2_8_162_1 Shi Q. (e_1_2_8_289_1) 2019; 111 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_284_1 e_1_2_8_261_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_246_1 e_1_2_8_269_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_273_1 e_1_2_8_296_1 e_1_2_8_250_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_235_1 e_1_2_8_258_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_262_1 e_1_2_8_285_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_201_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_251_1 e_1_2_8_297_1 e_1_2_8_274_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_259_1 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_263_1 e_1_2_8_286_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 Kocak G. (e_1_2_8_224_1) 2016; 35 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_252_1 e_1_2_8_275_1 e_1_2_8_298_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 32 start-page: 9876 year: 2011 publication-title: Biomaterials – volume: 6 year: 2021 publication-title: ACS Omega – volume: 28 start-page: 1559 year: 2016 publication-title: Chem. Mater. – volume: 3 start-page: 3654 year: 2015 publication-title: J. Mater. Chem. B – volume: 26 start-page: 1984 year: 2015 publication-title: Bioconjugate Chem. – volume: 192 year: 2020 publication-title: Colloids Surf., B – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 301 start-page: 92 year: 2016 publication-title: Chem. Eng. J. – volume: 192 year: 2021 publication-title: Biosens. Bioelectron. – volume: 374 start-page: 240 year: 1995 publication-title: Nature – volume: 329 year: 2021 publication-title: J. Mol. Liq. – volume: 335 start-page: 409 year: 2018 publication-title: Chem. Eng. J. – volume: 187 year: 2021 publication-title: Biosens. Bioelectron. – volume: 259 year: 2021 publication-title: Carbohydr. Polym. – volume: 9 start-page: 997 year: 2021 publication-title: Front. Bioeng. Biotechnol. – volume: 21 start-page: 2574 year: 2020 publication-title: Biomacromolecules – volume: 12 start-page: 1558 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 6163 year: 2021 publication-title: J. Mater. Chem. B – volume: 11 start-page: 356 year: 2019 publication-title: Pharmaceutics – volume: 165 year: 2020 publication-title: Biosens. Bioelectron. – volume: 91 start-page: 3101 year: 2019 publication-title: Anal. Chem. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 8030 year: 2012 publication-title: Soft Matter – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 5 start-page: 5753 year: 2017 publication-title: J. Mater. Chem. B – volume: 27 start-page: 6899 year: 2015 publication-title: Adv. Mater. – volume: 4 start-page: 4648 year: 2016 publication-title: J. Mater. Chem. B – volume: 6 start-page: 3892 year: 2021 publication-title: Bioact. Mater. – volume: 87 start-page: 7636 year: 2015 publication-title: Anal. Chem. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 1154 year: 2021 publication-title: Anal. Chim. Acta – volume: 111 start-page: 764 year: 2019 publication-title: NPG Asia Mater. – volume: 268 year: 2021 publication-title: Carbohydr. Polym. – volume: 116 start-page: 117 year: 2015 publication-title: Carbohydr. Polym. – volume: 4 start-page: 2084 year: 2018 publication-title: Chem – volume: 65 start-page: 252 year: 2015 publication-title: Eur. Polym. J. – volume: 2015 year: 2015 publication-title: Biomed Res. Int. – volume: 1 start-page: 4065 year: 2013 publication-title: J. Mater. Chem. B – volume: 9 year: 2014 publication-title: Biointerphases – volume: 18 start-page: 1345 year: 2006 publication-title: Adv. Mater. – volume: 191 year: 2021 publication-title: Biosens. Bioelectron. – volume: 44 start-page: 1209 year: 2008 publication-title: Eur. Polym. J. – volume: 118 year: 2018 publication-title: Chem. Rev. – volume: 112 start-page: 753 year: 2021 publication-title: Trends Food Sci. Technol. – volume: 124 start-page: 139 year: 2021 publication-title: Acta Biomater. – volume: 330 start-page: 575 year: 2021 publication-title: J. Controlled Release – volume: 51 start-page: 1606 year: 2012 publication-title: J. Macromol. Sci., Part B – volume: 12 start-page: 9132 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 287 year: 2008 publication-title: Lab Chip – volume: 97 start-page: 2892 year: 2008 publication-title: J. Pharm. Sci. – volume: 23 start-page: 4307 year: 2002 publication-title: Biomaterials – volume: 25 start-page: 4171 year: 2013 publication-title: Adv. Mater. – volume: 116 start-page: 415 year: 2019 publication-title: Eur. Polym. J. – volume: 39 start-page: 2711 year: 2021 publication-title: Chin. J. Chem. – volume: 245 year: 2020 publication-title: Carbohydr. Polym. – volume: 42 start-page: 894 year: 2004 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 60 start-page: 1 year: 2019 publication-title: Curr. Opin. Biotechnol. – volume: 42 start-page: 73 year: 2019 publication-title: Curr. Opin. Colloid Interface Sci. – volume: 90 year: 2018 publication-title: Anal. Chem. – volume: 5 start-page: 20 year: 2020 publication-title: Nat. Rev. Mater. – volume: 24 start-page: 4337 year: 2003 publication-title: Biomaterials – volume: 310 start-page: 1139 year: 2005 publication-title: Science – volume: 9 year: 2015 publication-title: ACS Nano – volume: 2 start-page: 221 year: 2015 publication-title: Regener. Biomater. – volume: 131 start-page: 43 year: 2019 publication-title: J. Mech. Phys. Solids – volume: 7 start-page: 843 year: 2019 publication-title: Biomater. Sci. – volume: 101 start-page: 1869 year: 2001 publication-title: Chem. Rev. – volume: 10 start-page: 425 year: 2021 publication-title: Antibiotics (Basel) – volume: 20 start-page: 247 year: 1986 publication-title: Colloids Surf. – volume: 24 start-page: 2771 year: 2008 publication-title: Chem. Commun. – volume: 52 start-page: 463 year: 2015 publication-title: Biomaterials – volume: 83 start-page: 60 year: 2016 publication-title: Eur. Polym. J. – volume: 88 start-page: 117 year: 2020 publication-title: J. Ind. Eng. Chem. – volume: 49 start-page: 8980 year: 2016 publication-title: Macromolecules – volume: 144 start-page: 219 year: 2020 publication-title: Int. J. Biol. Macromol. – volume: 49 start-page: 2990 year: 2003 publication-title: AIChE J. – volume: 8 start-page: 51 year: 2005 publication-title: Mater. Today – volume: 7 year: 2013 publication-title: Biomicrofluidics – volume: 9 start-page: 2010 year: 2021 publication-title: J. Mater. Chem. B – volume: 36 start-page: 102 year: 2020 publication-title: Mater. Today – volume: 554 start-page: 1 year: 2015 publication-title: Phys. Rep. – volume: 20 start-page: 1989 year: 2019 publication-title: Biomacromolecules – volume: 12 start-page: 115 year: 2019 publication-title: Nano Res. – volume: 138 year: 2021 publication-title: J. Appl. Polym. Sci. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 217 start-page: 1022 year: 2016 publication-title: Macromol. Chem. Phys. – volume: 6 start-page: 4821 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 121 start-page: 4309 year: 2021 publication-title: Chem. Rev. – volume: 40 start-page: 374 year: 2007 publication-title: Int. J. Biol. Macromol. – volume: 8 start-page: 3171 year: 2020 publication-title: J. Mater. Chem. B – volume: 126 start-page: 677 year: 2006 publication-title: Cell – volume: 330 start-page: 1044 year: 2017 publication-title: Chem. Eng. J. – volume: 101 start-page: 791 year: 2017 publication-title: Int. J. Biol. Macromol. – volume: 325 year: 2020 publication-title: Sens. Actuators, B – volume: 27 start-page: 2054 year: 2015 publication-title: Adv. Mater. – volume: 15 year: 2019 publication-title: Small – volume: 161 start-page: 1371 year: 2020 publication-title: Int. J. Biol. Macromol. – volume: 192 start-page: 560 year: 2019 publication-title: Biomaterials – volume: 8 year: 2014 publication-title: ACS Nano – volume: 85 start-page: 81 year: 2020 publication-title: J. Ind. Eng. Chem. – volume: 211 year: 2020 publication-title: Polymer – volume: 278 year: 2021 publication-title: Biomaterials – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 4 year: 2014 publication-title: RSC Adv. – volume: 16 year: 2021 publication-title: Biomed. Mater. – volume: 86 start-page: 2375 year: 1987 publication-title: J. Chem. Phys. – volume: 12 start-page: 1387 year: 2011 publication-title: Biomacromolecules – volume: 65 start-page: 457 year: 2013 publication-title: Adv. Drug Delivery Rev. – volume: 1 start-page: 701 year: 2019 publication-title: ACS Appl. Polym. Mater. – volume: 2 start-page: 292 year: 2013 publication-title: Adv. Healthcare Mater. – volume: 276 year: 2022 publication-title: Mater. Sci. Eng., B – volume: 306 year: 2021 publication-title: Macromol. Mater. Eng. – volume: 6 start-page: 3962 year: 2021 publication-title: Bioact. Mater. – volume: 63 start-page: 409 year: 2019 publication-title: Comput. Mech. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 1222 year: 2020 publication-title: Nat. Commun. – volume: 2021 year: 2021 publication-title: Stem Cells Int. – volume: 9 year: 2021 publication-title: J. Mater. Chem. C – volume: 205 year: 2021 publication-title: Colloids Surf., B – volume: 8 start-page: 960 year: 2020 publication-title: Biomater. Sci. – volume: 210 year: 2020 publication-title: Polymer – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 8 start-page: 254 year: 2021 publication-title: Front. Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 255 year: 2021 publication-title: Carbohydr. Polym. – volume: 21 start-page: 9656 year: 2020 publication-title: Int. J. Mol. Sci. – volume: 71 start-page: 1 year: 2017 publication-title: Prog. Polym. Sci. – volume: 96 start-page: 354 year: 2019 publication-title: Acta Biomater. – volume: 323 start-page: 24 year: 2020 publication-title: J. Controlled Release – volume: 6 year: 2018 publication-title: J. Mater. Chem. C – volume: 14 year: 2018 publication-title: Small – volume: 429 start-page: 258 year: 2018 publication-title: Appl. Surf. Sci. – volume: 120 start-page: 7642 year: 2020 publication-title: Chem. Rev. – volume: 50 start-page: 733 year: 2017 publication-title: Acc. Chem. Res. – volume: 201 start-page: 264 year: 2018 publication-title: Carbohydr. Polym. – volume: 151 start-page: 213 year: 2016 publication-title: Carbohydr. Polym. – volume: 191 start-page: 918 year: 2021 publication-title: Int. J. Biol. Macromol. – volume: 357 start-page: 1 year: 2018 publication-title: Coord. Chem. Rev. – volume: 14 start-page: 737 year: 2015 publication-title: Nat. Mater. – volume: 6 start-page: 3904 year: 2021 publication-title: Bioact. Mater. – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 28 start-page: 335 year: 2021 publication-title: J. Polym. Res. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 648 year: 2015 publication-title: Adv. Mater. – volume: 12 start-page: 1387 year: 2012 publication-title: Curr. Appl. Phys. – volume: 285 year: 2020 publication-title: Adv. Colloid Interface Sci. – volume: 152 start-page: 252 year: 2017 publication-title: Colloids Surf., B – volume: 115 year: 2015 publication-title: Chem. Rev. – volume: 166 start-page: 869 year: 2021 publication-title: Int. J. Biol. Macromol. – volume: 22 start-page: 2061 year: 2020 publication-title: Clin. Transl. Oncol. – volume: 327 year: 2021 publication-title: Sens. Actuators, B – volume: 336 start-page: 1124 year: 2012 publication-title: Science – volume: 59 start-page: 5965 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 1455 year: 2020 publication-title: Biomater. Sci. – volume: 180 year: 2021 publication-title: Biosens. Bioelectron. – volume: 13 start-page: 433 year: 2021 publication-title: Polymers – volume: 79 start-page: 211 year: 2010 publication-title: Bioelectrochemistry – volume: 4 start-page: 2763 year: 2019 publication-title: ACS Sens. – volume: 42 year: 2018 publication-title: New J. Chem. – volume: 29 start-page: 150 year: 2018 publication-title: J. Mater. Sci.: Mater. Med. – volume: 12 start-page: 2204 year: 2020 publication-title: Polymers – volume: 11 start-page: 521 year: 1943 publication-title: J. Chem. Phys. – volume: 13 start-page: 4182 year: 2021 publication-title: Polymers – volume: 264 year: 2021 publication-title: Carbohydr. Polym. – volume: 26 year: 2010 publication-title: Langmuir – volume: 9 start-page: 518 year: 2010 publication-title: Nat. Mater. – volume: 5 start-page: 173 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1179 year: 2019 publication-title: Biomater. Sci. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 17 year: 2021 publication-title: Small – volume: 28 start-page: 831 year: 1994 publication-title: J. Biomed. Mater. Res. – volume: 53 start-page: 321 year: 2001 publication-title: Adv. Drug Delivery Rev. – volume: 4 year: 2018 publication-title: Microsyst. Nanoeng. – volume: 47 start-page: 23 year: 2008 publication-title: J. Sol‐Gel Sci. Technol. – volume: 103 start-page: 655 year: 2009 publication-title: Biotechnol. Bioeng. – volume: 3 start-page: 71 year: 2015 publication-title: Curr. Opin. Food Sci. – volume: 53 start-page: 2769 year: 2020 publication-title: Macromolecules – volume: 9 start-page: 7194 year: 2021 publication-title: Biomater. Sci. – volume: 19 year: 2019 publication-title: Macromol. Biosci. – volume: 4 start-page: 297 year: 2010 publication-title: Chem. Chem. Technol. – volume: 6 start-page: 4286 year: 2021 publication-title: Bioact. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 40 start-page: 1363 year: 2004 publication-title: Eur. Polym. J. – volume: 272 year: 2021 publication-title: Carbohydr. Polym. – volume: 46 start-page: 92 year: 2010 publication-title: Eur. Polym. J. – volume: 4 start-page: 9783 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 326 start-page: 150 year: 2020 publication-title: J. Controlled Release – volume: 35 start-page: 144 year: 2016 publication-title: Polym. Chem. – volume: 12 start-page: 2835 year: 2020 publication-title: Polymers – volume: 493 year: 2021 publication-title: J. Power Sources – volume: 6 start-page: 652 year: 2007 publication-title: Nat. Mater. – volume: 247 year: 2020 publication-title: Carbohydr. Polym. – volume: 11 start-page: 3781 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 232 year: 2020 publication-title: Biomaterials – volume: 32 year: 2020 publication-title: Chem. Mater. – volume: 57 start-page: 414 year: 2015 publication-title: Mater. Sci. Eng., C – volume: 3 start-page: 21 year: 2018 publication-title: Nat. Rev. Mater. – volume: 37 start-page: 187 year: 2004 publication-title: Gold Bull. – volume: 162 start-page: 737 year: 2020 publication-title: Int. J. Biol. Macromol. – volume: 197 year: 2021 publication-title: Colloids Surf., B – volume: 88 year: 2016 publication-title: Anal. Chem. – volume: 17 start-page: 494 year: 2014 publication-title: Mater. Today – volume: 8 year: 2016 publication-title: Biofabrication – volume: 47 start-page: 66 year: 2014 publication-title: Acc. Chem. Res. – volume: 27 start-page: 6995 year: 2020 publication-title: Cellulose – volume: 8 start-page: 8493 year: 2020 publication-title: J. Mater. Chem. C – volume: 16 start-page: 371 year: 2010 publication-title: Tissue Eng., Part B – volume: 30 start-page: 1743 year: 2018 publication-title: Chem. Mater. – volume: 2 start-page: 2034 year: 2016 publication-title: ACS Biomater. Sci. Eng. – volume: 33 start-page: 8418 year: 2021 publication-title: Chem. Mater. – volume: 54 start-page: 6389 year: 2021 publication-title: Macromolecules – volume: 47 start-page: 5929 year: 2009 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 324 start-page: 1673 year: 2009 publication-title: Science – volume: 12 start-page: 239 year: 2020 publication-title: Polymers – volume: 9 start-page: 5477 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 1121 year: 2018 publication-title: Ind. Eng. Chem. Res. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 140 start-page: 9466 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 111 year: 2020 publication-title: Polymers – volume: 269 year: 2021 publication-title: Carbohydr. Polym. – volume: 1 start-page: 1127 year: 2019 publication-title: Matter – volume: 118 start-page: 488 year: 2019 publication-title: TrAC Trends Anal. Chem. – volume: 19 start-page: 1885 year: 1975 publication-title: J. Appl. Polym. Sci. – volume: 39 start-page: 150 year: 2021 publication-title: Trends Biotechnol. – volume: 2 start-page: 269 year: 2019 publication-title: Bio‐Des. Manuf. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 78 start-page: 65 year: 2009 publication-title: Radiat. Phys. Chem. – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 209 start-page: 130 year: 2019 publication-title: Carbohydr. Polym. – volume: 50 start-page: 151 year: 2017 publication-title: Acc. Chem. Res. – volume: 151 start-page: 56 year: 1999 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B – volume: 64 start-page: 18 year: 2012 publication-title: Adv. Drug Delivery Rev. – volume: 7 start-page: 54 year: 2020 publication-title: Mater. Horiz. – volume: 43 start-page: 6193 year: 2010 publication-title: Macromolecules – volume: 33 start-page: 7115 year: 2012 publication-title: Biomaterials – volume: 15 start-page: 195 year: 2008 publication-title: J. Polym. Res. – volume: 92 start-page: 81 year: 2017 publication-title: Biosens. Bioelectron. – volume: 7 start-page: 39 year: 2021 publication-title: npj Comput. Mater. – volume: 137 year: 2020 publication-title: J. Appl. Polym. Sci. – volume: 6 start-page: 946 year: 2020 publication-title: ACS Biomater. Sci. Eng. – volume: 75 start-page: 1 year: 2021 publication-title: Crit. Rev. Food Sci. Nutr. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 175 start-page: 7 year: 2017 publication-title: Carbohydr. Polym. – volume: 222 year: 2021 publication-title: Polymer – volume: 23 start-page: 748 year: 2016 publication-title: Drug Delivery – volume: 144 start-page: 303 year: 2017 publication-title: Energy Convers. Manage. – volume: 275 year: 2020 publication-title: Adv. Colloid Interface Sci. – volume: 16 year: 2020 publication-title: Soft Matter – volume: 21 year: 2021 publication-title: Macromol. Biosci. – volume: 161 start-page: 671 year: 2009 publication-title: Br J Dermatol – volume: 20 start-page: 316 year: 2009 publication-title: Trends Food Sci. Technol. – volume: 201 start-page: 105 year: 2018 publication-title: Carbohydr. Polym. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 374 start-page: 212 year: 2021 publication-title: Science – volume: 430 year: 2022 publication-title: Chem. Eng. J. – volume: 9 start-page: S1 year: 2005 publication-title: J. Orthop. Nurs. – volume: 77 start-page: 48 year: 2018 publication-title: Acta Biomater. – volume: 50 start-page: 27 year: 2000 publication-title: Eur. J. Pharm. Biopharm. – volume: 8 start-page: 217 year: 2017 publication-title: J. Adv. Res. – volume: 31 start-page: 816 year: 2020 publication-title: J. Biomater. Sci., Polym. Ed. – volume: 6 start-page: 8105 year: 2018 publication-title: J. Mater. Chem. B – volume: 3 start-page: 126 year: 2019 publication-title: Nat. Biomed. Eng. – volume: 182 start-page: 1091 year: 2021 publication-title: Int. J. Biol. Macromol. – volume: 185 start-page: 117 year: 1960 publication-title: Nature – volume: 225 start-page: 129 year: 2019 publication-title: Sep. Purif. Technol. – volume: 251 year: 2021 publication-title: Carbohydr. Polym. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 8351 year: 2020 publication-title: New J. Chem. – volume: 9 start-page: 2315 year: 2018 publication-title: Nat. Commun. – volume: 6 start-page: 3976 year: 2021 publication-title: Bioact. Mater. – volume: 133 start-page: 67 year: 2019 publication-title: Int. J. Biol. Macromol. – ident: e_1_2_8_35_1 doi: 10.1016/j.bioactmat.2021.03.034 – ident: e_1_2_8_36_1 doi: 10.1021/acsami.0c07753 – ident: e_1_2_8_170_1 doi: 10.1016/j.ijbiomac.2019.03.011 – ident: e_1_2_8_70_1 doi: 10.1002/bit.22361 – ident: e_1_2_8_282_1 doi: 10.1002/mabi.201800248 – ident: e_1_2_8_201_1 doi: 10.1002/macp.201600038 – volume: 111 start-page: 764 year: 2019 ident: e_1_2_8_289_1 publication-title: NPG Asia Mater. – ident: e_1_2_8_199_1 doi: 10.1002/mabi.202100109 – ident: e_1_2_8_120_1 doi: 10.1088/1748-605X/ac2714 – ident: e_1_2_8_223_1 doi: 10.3109/10717544.2014.940091 – ident: e_1_2_8_17_1 doi: 10.1021/acs.iecr.7b04614 – ident: e_1_2_8_110_1 doi: 10.1126/science.1214804 – ident: e_1_2_8_183_1 doi: 10.1155/2015/198268 – ident: e_1_2_8_57_1 doi: 10.1002/smll.202103521 – ident: e_1_2_8_185_1 doi: 10.1016/j.cej.2017.10.095 – ident: e_1_2_8_7_1 doi: 10.1021/acs.accounts.6b00581 – ident: e_1_2_8_171_1 doi: 10.1038/natrevmats.2015.12 – ident: e_1_2_8_198_1 doi: 10.1002/adma.201300817 – ident: e_1_2_8_119_1 doi: 10.1080/09205063.2020.1720155 – ident: e_1_2_8_3_1 doi: 10.1039/D0SM01371D – ident: e_1_2_8_139_1 doi: 10.1021/acs.chemrev.7b00627 – ident: e_1_2_8_166_1 doi: 10.1016/j.tifs.2009.04.003 – ident: e_1_2_8_66_1 doi: 10.1126/science.1116995 – ident: e_1_2_8_29_1 doi: 10.1016/j.bioactmat.2021.03.040 – ident: e_1_2_8_128_1 doi: 10.1038/s41578-018-0006-y – ident: e_1_2_8_100_1 doi: 10.1021/acsami.8b09891 – ident: e_1_2_8_147_1 doi: 10.1016/j.cej.2017.08.041 – ident: e_1_2_8_291_1 doi: 10.1038/s41578-019-0148-6 – ident: e_1_2_8_96_1 doi: 10.1021/acsami.8b01082 – ident: e_1_2_8_287_1 doi: 10.1038/micronano.2017.76 – ident: e_1_2_8_151_1 doi: 10.1016/j.carbpol.2014.04.085 – ident: e_1_2_8_297_1 doi: 10.1007/s00466-018-1600-y – ident: e_1_2_8_133_1 doi: 10.1093/rb/rbv015 – ident: e_1_2_8_8_1 doi: 10.1016/j.chempr.2018.07.002 – ident: e_1_2_8_252_1 doi: 10.1039/C8TC03914C – ident: e_1_2_8_106_1 doi: 10.1039/C8NJ03482F – ident: e_1_2_8_64_1 doi: 10.1016/j.carbpol.2020.116709 – ident: e_1_2_8_75_1 doi: 10.1016/S0169-409X(01)00203-4 – ident: e_1_2_8_127_1 doi: 10.1016/j.eurpolymj.2019.04.032 – ident: e_1_2_8_265_1 doi: 10.1016/j.jiec.2020.03.035 – ident: e_1_2_8_37_1 doi: 10.1039/C9BM01882D – ident: e_1_2_8_192_1 doi: 10.1021/acsami.7b04017 – ident: e_1_2_8_126_1 doi: 10.1002/adfm.201905200 – ident: e_1_2_8_51_1 doi: 10.1021/acs.chemmater.0c03362 – ident: e_1_2_8_90_1 doi: 10.1016/j.trac.2019.06.014 – ident: e_1_2_8_226_1 doi: 10.1016/j.ccr.2017.11.019 – ident: e_1_2_8_280_1 doi: 10.1016/j.actbio.2018.07.015 – ident: e_1_2_8_122_1 doi: 10.1021/acsaem.1c01854 – ident: e_1_2_8_203_1 doi: 10.3390/polym12010239 – ident: e_1_2_8_24_1 doi: 10.1016/j.eurpolymj.2004.02.016 – ident: e_1_2_8_69_1 doi: 10.1038/nmat2732 – ident: e_1_2_8_193_1 doi: 10.1016/j.ijbiomac.2017.03.155 – ident: e_1_2_8_248_1 doi: 10.1016/j.jconrel.2020.04.014 – ident: e_1_2_8_182_1 doi: 10.1016/j.msec.2015.07.053 – ident: e_1_2_8_197_1 doi: 10.1002/adma.201405022 – ident: e_1_2_8_49_1 doi: 10.1021/acs.analchem.8b02459 – ident: e_1_2_8_162_1 doi: 10.1039/D1BM00936B – ident: e_1_2_8_30_1 doi: 10.1002/aic.690491202 – ident: e_1_2_8_46_1 doi: 10.1021/acsami.0c14059 – ident: e_1_2_8_187_1 doi: 10.1016/j.cej.2016.04.025 – ident: e_1_2_8_59_1 doi: 10.1016/j.biomaterials.2021.121169 – ident: e_1_2_8_277_1 doi: 10.1016/j.biomaterials.2018.10.040 – ident: e_1_2_8_47_1 doi: 10.1002/smll.201905076 – ident: e_1_2_8_208_1 doi: 10.1039/D0TB02895A – volume: 35 start-page: 144 year: 2016 ident: e_1_2_8_224_1 publication-title: Polym. Chem. – ident: e_1_2_8_99_1 doi: 10.1021/jacs.8b03547 – ident: e_1_2_8_168_1 doi: 10.1016/j.carbpol.2021.118495 – ident: e_1_2_8_253_1 doi: 10.1002/adma.202104006 – ident: e_1_2_8_9_1 doi: 10.1039/C9MH01139K – ident: e_1_2_8_87_1 doi: 10.1080/10408398.2020.1870034 – ident: e_1_2_8_118_1 doi: 10.1007/s10856-018-6158-x – ident: e_1_2_8_1_1 doi: 10.1016/j.cocis.2019.04.001 – ident: e_1_2_8_255_1 doi: 10.1021/acsami.0c14935 – ident: e_1_2_8_41_1 doi: 10.1016/j.bioelechem.2010.05.001 – ident: e_1_2_8_268_1 doi: 10.1016/j.biomaterials.2012.06.031 – ident: e_1_2_8_145_1 doi: 10.1016/j.carbpol.2021.118210 – ident: e_1_2_8_188_1 doi: 10.1021/acs.biomac.9b00204 – ident: e_1_2_8_22_1 doi: 10.23939/chcht04.04.297 – ident: e_1_2_8_173_1 doi: 10.1039/C8TB02556H – ident: e_1_2_8_178_1 doi: 10.1021/acsami.9b18646 – ident: e_1_2_8_125_1 doi: 10.1002/adfm.201808750 – ident: e_1_2_8_189_1 doi: 10.1016/j.carbpol.2020.116794 – ident: e_1_2_8_195_1 doi: 10.1039/C5TB00123D – ident: e_1_2_8_172_1 doi: 10.1021/acsapm.8b00232 – ident: e_1_2_8_238_1 doi: 10.1002/anie.201911712 – ident: e_1_2_8_177_1 doi: 10.1021/acsami.0c01022 – ident: e_1_2_8_108_1 doi: 10.1016/j.carbpol.2018.08.032 – ident: e_1_2_8_290_1 doi: 10.1021/acs.chemrev.0c00345 – ident: e_1_2_8_181_1 doi: 10.1002/adma.201503724 – ident: e_1_2_8_267_1 doi: 10.1016/j.biomaterials.2011.08.082 – ident: e_1_2_8_121_1 doi: 10.1002/adfm.202104928 – ident: e_1_2_8_94_1 doi: 10.1016/j.carbpol.2020.116612 – ident: e_1_2_8_143_1 doi: 10.1039/D0TC01626H – ident: e_1_2_8_243_1 doi: 10.1021/acsami.0c00720 – ident: e_1_2_8_232_1 doi: 10.1063/1.452740 – ident: e_1_2_8_80_1 doi: 10.1016/j.eurpolymj.2014.11.024 – ident: e_1_2_8_142_1 doi: 10.1016/j.bioactmat.2021.04.022 – ident: e_1_2_8_246_1 doi: 10.1038/nmat1967 – ident: e_1_2_8_25_1 doi: 10.1016/S0168-583X(99)00118-4 – ident: e_1_2_8_258_1 doi: 10.1038/s41524-021-00509-5 – ident: e_1_2_8_14_1 doi: 10.1016/j.cap.2012.03.019 – ident: e_1_2_8_38_1 doi: 10.1021/acsami.9b04312 – ident: e_1_2_8_153_1 doi: 10.1080/00222348.2012.657110 – ident: e_1_2_8_5_1 doi: 10.1016/j.physrep.2014.10.001 – ident: e_1_2_8_84_1 doi: 10.1016/j.jare.2017.01.005 – ident: e_1_2_8_104_1 doi: 10.1002/aelm.202000040 – ident: e_1_2_8_149_1 doi: 10.1016/j.jpowsour.2021.229711 – ident: e_1_2_8_254_1 doi: 10.1021/acs.macromol.1c00295 – ident: e_1_2_8_230_1 doi: 10.1039/C9BM01882D – ident: e_1_2_8_103_1 doi: 10.1039/C7TB01350G – ident: e_1_2_8_137_1 doi: 10.1016/j.biomaterials.2015.01.001 – ident: e_1_2_8_257_1 doi: 10.1016/j.polymer.2020.123072 – ident: e_1_2_8_157_1 doi: 10.3390/ijms21249656 – ident: e_1_2_8_74_1 doi: 10.1016/j.addr.2012.09.010 – volume: 8 start-page: 254 year: 2021 ident: e_1_2_8_249_1 publication-title: Front. Mater. – ident: e_1_2_8_256_1 doi: 10.1016/j.polymer.2021.123618 – ident: e_1_2_8_288_1 doi: 10.1016/j.mattod.2014.07.002 – ident: e_1_2_8_229_1 doi: 10.1039/c4ra03013c – ident: e_1_2_8_16_1 doi: 10.1021/acs.chemrev.5b00299 – ident: e_1_2_8_101_1 doi: 10.1016/j.jmps.2019.06.018 – ident: e_1_2_8_222_1 doi: 10.1116/1.4866697 – ident: e_1_2_8_281_1 doi: 10.1016/j.biomaterials.2019.119725 – ident: e_1_2_8_60_1 doi: 10.1039/D1TC03905A – ident: e_1_2_8_225_1 doi: 10.1111/j.1365-2133.2009.09168.x – ident: e_1_2_8_135_1 doi: 10.1016/j.addr.2012.09.043 – ident: e_1_2_8_239_1 doi: 10.1021/acs.analchem.8b05600 – ident: e_1_2_8_86_1 doi: 10.1016/j.carbpol.2021.118036 – ident: e_1_2_8_275_1 doi: 10.1038/s41578-019-0148-6 – ident: e_1_2_8_233_1 doi: 10.1038/374240a0 – ident: e_1_2_8_184_1 doi: 10.1021/acs.accounts.6b00547 – ident: e_1_2_8_52_1 doi: 10.1002/advs.201400010 – ident: e_1_2_8_214_1 doi: 10.1016/j.ijbiomac.2020.10.243 – ident: e_1_2_8_130_1 doi: 10.1021/acs.biomac.0c00566 – ident: e_1_2_8_89_1 doi: 10.1016/j.ijbiomac.2020.06.110 – ident: e_1_2_8_245_1 doi: 10.1021/acsnano.5b04343 – ident: e_1_2_8_140_1 doi: 10.1016/j.carbpol.2021.117753 – ident: e_1_2_8_112_1 doi: 10.1016/j.mseb.2021.115535 – ident: e_1_2_8_115_1 doi: 10.1016/j.jconrel.2020.12.045 – ident: e_1_2_8_39_1 doi: 10.1039/C6TB00825A – ident: e_1_2_8_134_1 doi: 10.1016/j.tibtech.2020.06.005 – ident: e_1_2_8_26_1 doi: 10.1002/jbm.820280710 – ident: e_1_2_8_247_1 doi: 10.1016/j.carbpol.2021.118269 – ident: e_1_2_8_32_1 doi: 10.1007/s10971-008-1750-z – ident: e_1_2_8_174_1 doi: 10.1016/j.carbpol.2021.117978 – ident: e_1_2_8_244_1 doi: 10.1021/acssensors.9b01308 – ident: e_1_2_8_294_1 doi: 10.1016/j.cis.2020.102278 – ident: e_1_2_8_264_1 doi: 10.1016/j.cej.2021.132685 – ident: e_1_2_8_19_1 doi: 10.1002/app.1975.070190709 – ident: e_1_2_8_283_1 doi: 10.1021/acsami.7b13321 – ident: e_1_2_8_298_1 doi: 10.1038/s41551-018-0318-7 – ident: e_1_2_8_53_1 doi: 10.1021/am5087209 – ident: e_1_2_8_111_1 doi: 10.1002/adhm.201200280 – ident: e_1_2_8_79_1 doi: 10.1016/j.jconrel.2020.06.012 – ident: e_1_2_8_43_1 doi: 10.1039/C9TA03690C – ident: e_1_2_8_236_1 doi: 10.1016/j.mattod.2019.12.026 – ident: e_1_2_8_113_1 doi: 10.1016/j.colsurfb.2020.111066 – ident: e_1_2_8_251_1 doi: 10.1021/acs.chemmater.8b00063 – ident: e_1_2_8_97_1 doi: 10.1016/j.jiec.2020.01.023 – ident: e_1_2_8_146_1 doi: 10.1021/acsami.6b14471 – ident: e_1_2_8_165_1 doi: 10.1021/acs.chemrev.0c01088 – ident: e_1_2_8_67_1 doi: 10.1016/j.cell.2006.06.044 – ident: e_1_2_8_273_1 doi: 10.1002/advs.201801046 – ident: e_1_2_8_85_1 doi: 10.1016/j.bios.2021.113138 – ident: e_1_2_8_164_1 doi: 10.1039/D1TB00624J – ident: e_1_2_8_219_1 doi: 10.1021/acsami.0c04359 – ident: e_1_2_8_228_1 doi: 10.1021/am302355g – ident: e_1_2_8_175_1 doi: 10.1021/acsami.9b17627 – ident: e_1_2_8_102_1 doi: 10.1016/j.bios.2021.113313 – ident: e_1_2_8_186_1 doi: 10.1021/acs.macromol.6b02264 – ident: e_1_2_8_58_1 doi: 10.1002/adfm.201703086 – ident: e_1_2_8_82_1 doi: 10.1016/S1361-3111(05)80001-9 – ident: e_1_2_8_144_1 doi: 10.1007/s10570-020-03127-4 – ident: e_1_2_8_211_1 doi: 10.1016/j.eurpolymj.2016.08.006 – ident: e_1_2_8_132_1 doi: 10.1021/acs.bioconjchem.5b00360 – ident: e_1_2_8_176_1 doi: 10.1007/s12274-018-2188-4 – ident: e_1_2_8_77_1 doi: 10.1002/adma.200501612 – ident: e_1_2_8_266_1 doi: 10.1021/acsami.5b04744 – ident: e_1_2_8_21_1 doi: 10.1016/j.radphyschem.2008.07.003 – ident: e_1_2_8_194_1 doi: 10.1021/acsami.8b09656 – ident: e_1_2_8_72_1 doi: 10.1016/S0142-9612(02)00175-8 – ident: e_1_2_8_141_1 doi: 10.1016/j.carbpol.2017.07.062 – ident: e_1_2_8_221_1 doi: 10.3390/pharmaceutics11070356 – ident: e_1_2_8_235_1 doi: 10.1021/acs.analchem.5b00866 – ident: e_1_2_8_154_1 doi: 10.1088/1758-5090/8/2/025011 – ident: e_1_2_8_202_1 doi: 10.3390/polym13030433 – ident: e_1_2_8_169_1 doi: 10.3390/polym12102204 – ident: e_1_2_8_227_1 doi: 10.1039/c3tb20758g – ident: e_1_2_8_28_1 doi: 10.1021/acs.macromol.0c00238 – ident: e_1_2_8_278_1 doi: 10.1016/j.copbio.2018.11.001 – ident: e_1_2_8_152_1 doi: 10.1016/j.apsusc.2017.06.243 – ident: e_1_2_8_11_1 doi: 10.1016/j.tifs.2021.04.034 – ident: e_1_2_8_136_1 doi: 10.1021/acsami.8b21259 – ident: e_1_2_8_148_1 doi: 10.1016/j.seppur.2019.05.070 – ident: e_1_2_8_34_1 doi: 10.1016/j.bioactmat.2021.04.007 – ident: e_1_2_8_42_1 doi: 10.1002/pola.11039 – volume: 2021 start-page: 8827212 year: 2021 ident: e_1_2_8_124_1 publication-title: Stem Cells Int. – ident: e_1_2_8_155_1 doi: 10.1016/j.polymer.2020.123021 – ident: e_1_2_8_44_1 doi: 10.1021/acs.chemmater.6b00115 – ident: e_1_2_8_71_1 doi: 10.1021/cr000108x – ident: e_1_2_8_40_1 doi: 10.1039/b803279c – ident: e_1_2_8_167_1 doi: 10.1039/C8BM01246F – ident: e_1_2_8_295_1 doi: 10.1002/cjoc.202100370 – ident: e_1_2_8_261_1 doi: 10.1016/j.ijbiomac.2021.09.169 – ident: e_1_2_8_250_1 doi: 10.1002/adma.201606900 – ident: e_1_2_8_33_1 doi: 10.1007/s10965-007-9159-x – ident: e_1_2_8_156_1 doi: 10.1007/s10965-021-02682-z – ident: e_1_2_8_293_1 doi: 10.1126/science.abg6320 – ident: e_1_2_8_18_1 doi: 10.1039/c2sm25325a – ident: e_1_2_8_65_1 doi: 10.1016/j.carbpol.2016.05.077 – ident: e_1_2_8_206_1 doi: 10.1016/j.actbio.2021.01.038 – ident: e_1_2_8_31_1 doi: 10.1016/j.ijbiomac.2006.09.019 – ident: e_1_2_8_270_1 doi: 10.1039/B713141K – ident: e_1_2_8_205_1 doi: 10.1002/mame.202100588 – ident: e_1_2_8_105_1 doi: 10.1016/j.colsurfb.2017.01.008 – ident: e_1_2_8_220_1 doi: 10.1021/acsami.0c04359 – ident: e_1_2_8_91_1 doi: 10.1038/nmat4294 – ident: e_1_2_8_276_1 doi: 10.1002/adfm.201970174 – ident: e_1_2_8_114_1 doi: 10.3390/polym12010111 – ident: e_1_2_8_218_1 doi: 10.1021/acsami.0c00578 – ident: e_1_2_8_13_1 doi: 10.1038/185117a0 – ident: e_1_2_8_20_1 doi: 10.1016/j.carbpol.2021.118278 – ident: e_1_2_8_23_1 doi: 10.1016/j.eurpolymj.2008.01.032 – ident: e_1_2_8_48_1 doi: 10.1007/BF03215212 – volume: 9 start-page: 997 year: 2021 ident: e_1_2_8_260_1 publication-title: Front. Bioeng. Biotechnol. – ident: e_1_2_8_6_1 doi: 10.1002/adfm.202005941 – ident: e_1_2_8_61_1 doi: 10.1016/j.ijbiomac.2019.12.082 – ident: e_1_2_8_12_1 doi: 10.1063/1.1723792 – ident: e_1_2_8_62_1 doi: 10.1016/j.carbpol.2018.08.070 – ident: e_1_2_8_179_1 doi: 10.1039/C9BM02029B – ident: e_1_2_8_161_1 doi: 10.3390/polym13234182 – ident: e_1_2_8_109_1 doi: 10.1002/adma.201705912 – ident: e_1_2_8_196_1 doi: 10.1021/ma100963m – ident: e_1_2_8_292_1 doi: 10.1038/s41467-018-03515-2 – ident: e_1_2_8_158_1 doi: 10.1007/s42242-019-00051-w – volume: 33 start-page: 2108243 year: 2021 ident: e_1_2_8_55_1 publication-title: Adv. Mater. – ident: e_1_2_8_180_1 doi: 10.1016/j.progpolymsci.2017.04.001 – ident: e_1_2_8_73_1 doi: 10.1016/S0142-9612(03)00340-5 – ident: e_1_2_8_56_1 doi: 10.1021/acs.chemmater.1c02781 – ident: e_1_2_8_78_1 doi: 10.1038/natrevmats.2016.71 – ident: e_1_2_8_284_1 doi: 10.1016/0166-6622(86)80274-8 – ident: e_1_2_8_237_1 doi: 10.1007/s12094-020-02349-z – ident: e_1_2_8_107_1 doi: 10.1016/j.carbpol.2019.01.020 – ident: e_1_2_8_269_1 doi: 10.1016/j.bios.2017.02.008 – ident: e_1_2_8_210_1 doi: 10.1039/D0TA07390C – ident: e_1_2_8_216_1 doi: 10.1021/acsami.0c17669 – ident: e_1_2_8_160_1 doi: 10.1016/j.ijbiomac.2020.08.040 – ident: e_1_2_8_129_1 doi: 10.1021/bm200083n – ident: e_1_2_8_272_1 doi: 10.1002/advs.201801076 – ident: e_1_2_8_204_1 doi: 10.1002/app.51509 – ident: e_1_2_8_68_1 doi: 10.1126/science.1171643 – ident: e_1_2_8_274_1 doi: 10.1021/acsbiomaterials.6b00444 – ident: e_1_2_8_286_1 doi: 10.1021/la101868w – ident: e_1_2_8_241_1 doi: 10.1016/j.snb.2020.128765 – ident: e_1_2_8_98_1 doi: 10.1016/j.enconman.2017.04.056 – ident: e_1_2_8_217_1 doi: 10.1016/j.bios.2021.113548 – ident: e_1_2_8_45_1 doi: 10.1002/smll.201802520 – ident: e_1_2_8_116_1 doi: 10.1002/app.48967 – ident: e_1_2_8_63_1 doi: 10.1016/j.actbio.2019.07.010 – ident: e_1_2_8_88_1 doi: 10.1016/j.cis.2019.102060 – ident: e_1_2_8_95_1 doi: 10.1016/j.carbpol.2020.117331 – ident: e_1_2_8_131_1 doi: 10.1089/ten.teb.2009.0639 – ident: e_1_2_8_212_1 doi: 10.3390/antibiotics10040425 – ident: e_1_2_8_262_1 doi: 10.1016/j.colsurfb.2021.111885 – ident: e_1_2_8_159_1 doi: 10.1021/acsomega.1c00764 – ident: e_1_2_8_191_1 doi: 10.1039/D0NJ01269F – ident: e_1_2_8_200_1 doi: 10.1002/mabi.202100232 – ident: e_1_2_8_92_1 doi: 10.1002/adfm.201910282 – ident: e_1_2_8_209_1 doi: 10.1038/s41467-018-04810-8 – ident: e_1_2_8_15_1 doi: 10.1016/j.cofs.2015.05.009 – ident: e_1_2_8_93_1 doi: 10.1021/acssuschemeng.7b04172 – ident: e_1_2_8_4_1 doi: 10.1016/S1369-7021(05)71087-7 – ident: e_1_2_8_27_1 doi: 10.1016/j.eurpolymj.2009.04.033 – ident: e_1_2_8_190_1 doi: 10.1016/j.bios.2021.113459 – ident: e_1_2_8_163_1 doi: 10.1021/acsbiomaterials.9b01549 – ident: e_1_2_8_76_1 doi: 10.1016/S0939-6411(00)00090-4 – ident: e_1_2_8_207_1 doi: 10.1039/C9TB02692D – ident: e_1_2_8_242_1 doi: 10.1016/j.snb.2020.128940 – ident: e_1_2_8_213_1 doi: 10.1016/j.aca.2021.338295 – ident: e_1_2_8_50_1 doi: 10.1021/acs.analchem.6b02256 – ident: e_1_2_8_10_1 doi: 10.1016/j.matt.2019.09.015 – ident: e_1_2_8_279_1 doi: 10.1002/adma.201606471 – ident: e_1_2_8_240_1 doi: 10.1021/ar400070m – ident: e_1_2_8_2_1 doi: 10.1016/j.ijbiomac.2021.04.116 – ident: e_1_2_8_138_1 doi: 10.1016/j.bioactmat.2021.04.005 – ident: e_1_2_8_215_1 doi: 10.1021/acsnano.9b05608 – ident: e_1_2_8_123_1 doi: 10.3390/polym12122835 – ident: e_1_2_8_231_1 doi: 10.1002/adma.201403339 – ident: e_1_2_8_271_1 doi: 10.1063/1.4811276 – ident: e_1_2_8_150_1 doi: 10.1021/nn502704g – ident: e_1_2_8_234_1 doi: 10.1016/j.bios.2020.112358 – ident: e_1_2_8_296_1 doi: 10.1016/j.molliq.2021.115581 – ident: e_1_2_8_54_1 doi: 10.1002/adfm.202109687 – ident: e_1_2_8_285_1 doi: 10.1021/acsami.0c14059 – ident: e_1_2_8_81_1 doi: 10.1002/pola.23607 – ident: e_1_2_8_259_1 doi: 10.1002/smll.202103303 – ident: e_1_2_8_263_1 doi: 10.1016/j.colsurfb.2020.111431 – ident: e_1_2_8_83_1 doi: 10.1002/jps.21210 – ident: e_1_2_8_117_1 doi: 10.1039/C8BM01286E |
SSID | ssj0008402 |
Score | 2.5599062 |
SecondaryResourceType | review_article |
Snippet | Hydrogels, as the most typical elastomer materials with three‐dimensional (3D) network structures, have attracted wide attention owing to their outstanding... Hydrogels, as the most typical elastomer materials with three-dimensional (3D) network structures, have attracted wide attention owing to their outstanding... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2100785 |
SubjectTerms | Coefficient of friction cross‐linking methods Elastomers functional applications Hydrogels material resources Monomers Polymerization Polymers Thermal response |
Title | An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties, to Functional Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202100785 https://www.ncbi.nlm.nih.gov/pubmed/35075726 https://www.proquest.com/docview/2640025898 https://www.proquest.com/docview/2622656706 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-yF33x-2M6JYLgi91H2qSNb2M4hjCV4WBvJW3SF7UdW6foX-9du3abIoK-tU1C0-Qu97vc9RdCLmytlc29yAoBL1uAb7WlJOOWYS2thAAZMlm2xZ3oDZ3bER8t_cWf80OUG26oGdl6jQqugmljQRqKVA_g3zEM83v4lzkmbCEqGiz4o8B7ycOd4HGBMyYK1sYma6w2X7VK36DmKnLNTE93i6ii03nGyVN9lgb18OMLn-N_vmqbbM5xKW3ngrRD1ky8S9Y7xXFwe2Tcjun9K64s5o0mMQW8CfaKPmB-F6yWNIkoYEnae9fwBAzuNe1OkhfaV2km47SIE0yvsM0Y07nxOk1oF0xrviNJ20vh9H0y7N48dnrW_LgGKwRUwy1HRlw5QoODFAaihfwGQjGMjAZKeNoI5RplR9KxDRhEVxlAW4Hrco0-aFNq-4BU4iQ2R4SKMHSEI4XkWsEUhp6rhZQBoMsWa-rIrRKrmC4_nHOZ45Eaz37Owsx8HEe_HMcquSzrj3MWjx9r1orZ9-faPPUBNCI29KRXJedlMYw_BldUbJIZ1gEgy4XbFFVymEtN-SobQDd3GZSwbO5_6YPfbw865d3xXxqdkA2GQp8ly9VIJZ3MzCmgpzQ4yzTkEwnYDt4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED6x8gAvA7axFQrzpEl7WUrrxE7MW1VRla1lE6ISb5ETOy-DpGrTTfDruUualG5CSOwtiW3F8fl83_kunwE-u8ZoVwSJEyNedhDfGkcrLhzLu0ZLiXPIFtkWF3I48b5diyqbkP6FKfkh6g030oxivSYFpw3pkxVrKHE9oIPHKc4fiFewScd6F17V5YpBCv2XMuCJPhe6Y7Libezwk_X263bpH7C5jl0L4zPYgajqdplz8qu9yKN2fP8Xo-N_fdcuvF5CU9Yr59IebNj0DWz1qxPh3sK0l7Ifv2lxsX9YljKEnGiy2E9K8cIFk2UJQzjJhncGn6DNPWWDWXbLxjovpjmrQgXzr9RmShnddJ1nbIDWtdyUZL1HEfV3MBmcXfWHzvLEBidGYCMcTyVCe9KgjxRHsksUB1JzCo5GWgbGSu1b7SbKcy3aRF9bBFyR7wtDbmhHGXcfGmmW2g_AZBx70lNSCaNRhnHgG6lUhACzyzsm8ZvgVPIK4yWdOZ2qcROWRMw8pHEM63Fswpe6_rQk8niyZqsSf7hU6HmIuJHgYaCCJnyqi3H8Kb6iU5stqA5iWSH9jmzC-3La1K9yEXcLn2MJL4T_TB_Cce-yX98dvKTRR9gaXo1H4ej84vshbHPSgCJ3rgWNfLawRwim8ui4UJcH-vUS-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKhUu0JbXlkeNVIkLgawTOzG31dJoaYEiBBK3yImdS0uygiyI_npmkk1gQQgJbklsK4494_nGM_kM8MMzRnsizJwU8bKD-NY4WnHhWN41WkqUIVtlWxzLwbn_60JcPPqLv-aHaDfcSDOq9ZoUfGiy3QfSUKJ6QP-OU5g_FFPw0ZduSHK9f_pAIIXuSx3vRJcLvTHZ0Da6fHey_aRZeoY1J6FrZXuiedBNr-uUk787ozLZSf8_IXR8z2d9hrkxMGW9WpK-wAebf4WZfnMe3AIMezn7c0NLi71lRc4QcKLBYieU4IXLJSsyhmCSDe4MPkGLu8eiq-KSHemyEnLWBAqut6nNkPK56bosWIS2td6SZL1H8fRFOI9-nvUHzvi8BidFWCMcX2VC-9Kgh5QmsksEB1JzCo0mWobGSh1Y7WXK9yxaxEBbhFtJEAhDTqirjLcE03mR2xVgMk196SuphNE4hWkYGKlUgvCyy12TBR1wmumK0zGZOZ2p8S-uaZh5TOMYt-PYga22_rCm8Xix5loz-_FYna9jRI0EDkMVdmCzLcbxp-iKzm0xojqIZIUMXNmB5Vpq2ld5iLpFwLGEV3P_Sh_io95pv7379pZG3-HTyX4UHx4c_16FWU7yXyXOrcF0eTWy64ikymSjUpZ7w-0RsQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Overview+on+Recent+Progress+of+the+Hydrogels%3A+From+Material+Resources%2C+Properties%2C+to+Functional+Applications&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Wang%2C+Ben-Xin&rft.au=Xu%2C+Wei&rft.au=Yang%2C+Zhuchuang&rft.au=Wu%2C+Yangkuan&rft.date=2022-03-01&rft.issn=1521-3927&rft.eissn=1521-3927&rft.volume=43&rft.issue=6&rft.spage=e2100785&rft_id=info:doi/10.1002%2Fmarc.202100785&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |