An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties, to Functional Applications

Hydrogels, as the most typical elastomer materials with three‐dimensional (3D) network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility, and bio‐compatibility. Because of numerou...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 43; no. 6; pp. e2100785 - n/a
Main Authors Wang, Ben‐Xin, Xu, Wei, Yang, Zhuchuang, Wu, Yangkuan, Pi, Fuwei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogels, as the most typical elastomer materials with three‐dimensional (3D) network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility, and bio‐compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state‐of‐the‐art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross‐linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, this review is done with the promises and challenges for the future evolution of hydrogels and their biological applications. Hydrogels with 3D network structures have attracted wide attention. This review focuses on state‐of‐the‐art advances, systematically reviews recent progress on construction of hydrogels, and explore three main cross‐linking methods to develop diversities of hydrogels. The classification and emerging applications of hydrogels are extensively summarized, and promises and challenges for the future evolution of hydrogels are discussed.
AbstractList Hydrogels, as the most typical elastomer materials with three-dimensional (3D) network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility, and bio-compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state-of-the-art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross-linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, this review is done with the promises and challenges for the future evolution of hydrogels and their biological applications.Hydrogels, as the most typical elastomer materials with three-dimensional (3D) network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility, and bio-compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state-of-the-art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross-linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, this review is done with the promises and challenges for the future evolution of hydrogels and their biological applications.
Hydrogels, as the most typical elastomer materials with three‐dimensional (3D) network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility, and bio‐compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state‐of‐the‐art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross‐linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, this review is done with the promises and challenges for the future evolution of hydrogels and their biological applications.
Hydrogels, as the most typical elastomer materials with three‐dimensional (3D) network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility, and bio‐compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state‐of‐the‐art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross‐linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, this review is done with the promises and challenges for the future evolution of hydrogels and their biological applications. Hydrogels with 3D network structures have attracted wide attention. This review focuses on state‐of‐the‐art advances, systematically reviews recent progress on construction of hydrogels, and explore three main cross‐linking methods to develop diversities of hydrogels. The classification and emerging applications of hydrogels are extensively summarized, and promises and challenges for the future evolution of hydrogels are discussed.
Author Wu, Yangkuan
Wang, Ben‐Xin
Yang, Zhuchuang
Pi, Fuwei
Xu, Wei
Author_xml – sequence: 1
  givenname: Ben‐Xin
  orcidid: 0000-0003-0489-9861
  surname: Wang
  fullname: Wang, Ben‐Xin
  email: wangbenxin@jiangnan.edu.cn
  organization: Jiangnan University
– sequence: 2
  givenname: Wei
  surname: Xu
  fullname: Xu, Wei
  organization: Jiangnan University
– sequence: 3
  givenname: Zhuchuang
  surname: Yang
  fullname: Yang, Zhuchuang
  organization: Jiangnan University
– sequence: 4
  givenname: Yangkuan
  surname: Wu
  fullname: Wu, Yangkuan
  organization: Jiangnan University
– sequence: 5
  givenname: Fuwei
  surname: Pi
  fullname: Pi, Fuwei
  email: pifuwei@jiangnan.edu.cn
  organization: Jiangnan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35075726$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1r3DAQxUVJaT6aa49F0EsO9VYflmT1tizdJpCQEpqz0MrjVsFruZKcsP995W7SQKD0pBnxe8PMe8foYAgDIPSOkgUlhH3a2ugWjLDSqEa8QkdUMFpxzdRBqQljFeVcHqLjlO4IIU1N2Bt0yAVRQjF5hMblgK_vId57eMBhwDfgYMj4Www_IqSEQ4fzT8Dnu7b8QJ8-43UMW3xlM0Rv-8KnMEUH6eOsGSFmP9c54PU0uOzDUKDlOPbe2blLb9HrzvYJTh_fE3S7_vJ9dV5dXn-9WC0vK1dzLapad8LWspVEuI2kVGstLSOUk42VTQvSKrC80zUHRRtlgQm5UUq0jBYrdMtP0Nl-7hjDrwlSNlufHPS9HSBMyTDJmBRSEVnQDy_Qu3JTWXym6uKyaHRTqPeP1LTZQmvG6Iv5O_PkZQHqPeBiSClCZ5zPf47O0freUGLmyMwcmfkbWZEtXsieJv9ToPeCB9_D7j-0uVrerJ61vwGSLKfP
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_127532
crossref_primary_10_1002_pol_20220184
crossref_primary_10_1002_slct_202204270
crossref_primary_10_3390_polym14204377
crossref_primary_10_1007_s11696_024_03785_9
crossref_primary_10_1002_advs_202203587
crossref_primary_10_3390_gels10080498
crossref_primary_10_1016_j_ijpharm_2023_123653
crossref_primary_10_1039_D3SM00841J
crossref_primary_10_1039_D3CS00202K
crossref_primary_10_3390_gels8050275
crossref_primary_10_1039_D4CS00361F
crossref_primary_10_1007_s42250_025_01199_y
crossref_primary_10_1002_mame_202200525
crossref_primary_10_3390_bios13070696
crossref_primary_10_1016_j_polymer_2023_125843
crossref_primary_10_3390_gels9050380
crossref_primary_10_1016_j_jcis_2023_06_134
crossref_primary_10_1021_acs_iecr_2c02779
crossref_primary_10_1016_j_cej_2024_156871
crossref_primary_10_1039_D4TC00089G
crossref_primary_10_1080_25740881_2023_2260885
crossref_primary_10_3390_ijerph191710824
crossref_primary_10_1002_app_54268
crossref_primary_10_1002_sus2_205
crossref_primary_10_1039_D3BM01766D
crossref_primary_10_1089_ten_teb_2023_0218
crossref_primary_10_1002_adhm_202400431
crossref_primary_10_1002_agt2_316
crossref_primary_10_1016_j_polymer_2024_127437
crossref_primary_10_1021_acs_jafc_4c05903
crossref_primary_10_1016_j_carbpol_2023_121537
crossref_primary_10_1016_j_ijbiomac_2023_124878
crossref_primary_10_1002_adem_202400314
crossref_primary_10_1007_s10570_023_05616_8
crossref_primary_10_1016_j_ijbiomac_2023_129109
crossref_primary_10_1021_acsami_3c06658
crossref_primary_10_1021_acs_macromol_4c01677
crossref_primary_10_1039_D2MA00311B
crossref_primary_10_3390_polym14122365
crossref_primary_10_1016_j_ijbiomac_2024_134286
crossref_primary_10_1016_j_reactfunctpolym_2023_105564
crossref_primary_10_12677_ms_2024_145084
crossref_primary_10_1016_j_snb_2023_134707
crossref_primary_10_1002_pat_5862
crossref_primary_10_1002_smll_202305928
crossref_primary_10_1039_D3RA03349J
crossref_primary_10_1016_j_giant_2024_100270
crossref_primary_10_3389_fphar_2023_1235324
Cites_doi 10.1016/j.bioactmat.2021.03.034
10.1021/acsami.0c07753
10.1016/j.ijbiomac.2019.03.011
10.1002/bit.22361
10.1002/mabi.201800248
10.1002/macp.201600038
10.1002/mabi.202100109
10.1088/1748-605X/ac2714
10.3109/10717544.2014.940091
10.1021/acs.iecr.7b04614
10.1126/science.1214804
10.1155/2015/198268
10.1002/smll.202103521
10.1016/j.cej.2017.10.095
10.1021/acs.accounts.6b00581
10.1038/natrevmats.2015.12
10.1002/adma.201300817
10.1080/09205063.2020.1720155
10.1039/D0SM01371D
10.1021/acs.chemrev.7b00627
10.1016/j.tifs.2009.04.003
10.1126/science.1116995
10.1016/j.bioactmat.2021.03.040
10.1038/s41578-018-0006-y
10.1021/acsami.8b09891
10.1016/j.cej.2017.08.041
10.1038/s41578-019-0148-6
10.1021/acsami.8b01082
10.1038/micronano.2017.76
10.1016/j.carbpol.2014.04.085
10.1007/s00466-018-1600-y
10.1093/rb/rbv015
10.1016/j.chempr.2018.07.002
10.1039/C8TC03914C
10.1039/C8NJ03482F
10.1016/j.carbpol.2020.116709
10.1016/S0169-409X(01)00203-4
10.1016/j.eurpolymj.2019.04.032
10.1016/j.jiec.2020.03.035
10.1039/C9BM01882D
10.1021/acsami.7b04017
10.1002/adfm.201905200
10.1021/acs.chemmater.0c03362
10.1016/j.trac.2019.06.014
10.1016/j.ccr.2017.11.019
10.1016/j.actbio.2018.07.015
10.1021/acsaem.1c01854
10.3390/polym12010239
10.1016/j.eurpolymj.2004.02.016
10.1038/nmat2732
10.1016/j.ijbiomac.2017.03.155
10.1016/j.jconrel.2020.04.014
10.1016/j.msec.2015.07.053
10.1002/adma.201405022
10.1021/acs.analchem.8b02459
10.1039/D1BM00936B
10.1002/aic.690491202
10.1021/acsami.0c14059
10.1016/j.cej.2016.04.025
10.1016/j.biomaterials.2021.121169
10.1016/j.biomaterials.2018.10.040
10.1002/smll.201905076
10.1039/D0TB02895A
10.1021/jacs.8b03547
10.1016/j.carbpol.2021.118495
10.1002/adma.202104006
10.1039/C9MH01139K
10.1080/10408398.2020.1870034
10.1007/s10856-018-6158-x
10.1016/j.cocis.2019.04.001
10.1021/acsami.0c14935
10.1016/j.bioelechem.2010.05.001
10.1016/j.biomaterials.2012.06.031
10.1016/j.carbpol.2021.118210
10.1021/acs.biomac.9b00204
10.23939/chcht04.04.297
10.1039/C8TB02556H
10.1021/acsami.9b18646
10.1002/adfm.201808750
10.1016/j.carbpol.2020.116794
10.1039/C5TB00123D
10.1021/acsapm.8b00232
10.1002/anie.201911712
10.1021/acsami.0c01022
10.1016/j.carbpol.2018.08.032
10.1021/acs.chemrev.0c00345
10.1002/adma.201503724
10.1016/j.biomaterials.2011.08.082
10.1002/adfm.202104928
10.1016/j.carbpol.2020.116612
10.1039/D0TC01626H
10.1021/acsami.0c00720
10.1063/1.452740
10.1016/j.eurpolymj.2014.11.024
10.1016/j.bioactmat.2021.04.022
10.1038/nmat1967
10.1016/S0168-583X(99)00118-4
10.1038/s41524-021-00509-5
10.1016/j.cap.2012.03.019
10.1021/acsami.9b04312
10.1080/00222348.2012.657110
10.1016/j.physrep.2014.10.001
10.1016/j.jare.2017.01.005
10.1002/aelm.202000040
10.1016/j.jpowsour.2021.229711
10.1021/acs.macromol.1c00295
10.1039/C7TB01350G
10.1016/j.biomaterials.2015.01.001
10.1016/j.polymer.2020.123072
10.3390/ijms21249656
10.1016/j.addr.2012.09.010
10.1016/j.polymer.2021.123618
10.1016/j.mattod.2014.07.002
10.1039/c4ra03013c
10.1021/acs.chemrev.5b00299
10.1016/j.jmps.2019.06.018
10.1116/1.4866697
10.1016/j.biomaterials.2019.119725
10.1039/D1TC03905A
10.1111/j.1365-2133.2009.09168.x
10.1016/j.addr.2012.09.043
10.1021/acs.analchem.8b05600
10.1016/j.carbpol.2021.118036
10.1038/374240a0
10.1021/acs.accounts.6b00547
10.1002/advs.201400010
10.1016/j.ijbiomac.2020.10.243
10.1021/acs.biomac.0c00566
10.1016/j.ijbiomac.2020.06.110
10.1021/acsnano.5b04343
10.1016/j.carbpol.2021.117753
10.1016/j.mseb.2021.115535
10.1016/j.jconrel.2020.12.045
10.1039/C6TB00825A
10.1016/j.tibtech.2020.06.005
10.1002/jbm.820280710
10.1016/j.carbpol.2021.118269
10.1007/s10971-008-1750-z
10.1016/j.carbpol.2021.117978
10.1021/acssensors.9b01308
10.1016/j.cis.2020.102278
10.1016/j.cej.2021.132685
10.1002/app.1975.070190709
10.1021/acsami.7b13321
10.1038/s41551-018-0318-7
10.1021/am5087209
10.1002/adhm.201200280
10.1016/j.jconrel.2020.06.012
10.1039/C9TA03690C
10.1016/j.mattod.2019.12.026
10.1016/j.colsurfb.2020.111066
10.1021/acs.chemmater.8b00063
10.1016/j.jiec.2020.01.023
10.1021/acsami.6b14471
10.1021/acs.chemrev.0c01088
10.1016/j.cell.2006.06.044
10.1002/advs.201801046
10.1016/j.bios.2021.113138
10.1039/D1TB00624J
10.1021/acsami.0c04359
10.1021/am302355g
10.1021/acsami.9b17627
10.1016/j.bios.2021.113313
10.1021/acs.macromol.6b02264
10.1002/adfm.201703086
10.1016/S1361-3111(05)80001-9
10.1007/s10570-020-03127-4
10.1016/j.eurpolymj.2016.08.006
10.1021/acs.bioconjchem.5b00360
10.1007/s12274-018-2188-4
10.1002/adma.200501612
10.1021/acsami.5b04744
10.1016/j.radphyschem.2008.07.003
10.1021/acsami.8b09656
10.1016/S0142-9612(02)00175-8
10.1016/j.carbpol.2017.07.062
10.3390/pharmaceutics11070356
10.1021/acs.analchem.5b00866
10.1088/1758-5090/8/2/025011
10.3390/polym13030433
10.3390/polym12102204
10.1039/c3tb20758g
10.1021/acs.macromol.0c00238
10.1016/j.copbio.2018.11.001
10.1016/j.apsusc.2017.06.243
10.1016/j.tifs.2021.04.034
10.1021/acsami.8b21259
10.1016/j.seppur.2019.05.070
10.1016/j.bioactmat.2021.04.007
10.1002/pola.11039
10.1016/j.polymer.2020.123021
10.1021/acs.chemmater.6b00115
10.1021/cr000108x
10.1039/b803279c
10.1039/C8BM01246F
10.1002/cjoc.202100370
10.1016/j.ijbiomac.2021.09.169
10.1002/adma.201606900
10.1007/s10965-007-9159-x
10.1007/s10965-021-02682-z
10.1126/science.abg6320
10.1039/c2sm25325a
10.1016/j.carbpol.2016.05.077
10.1016/j.actbio.2021.01.038
10.1016/j.ijbiomac.2006.09.019
10.1039/B713141K
10.1002/mame.202100588
10.1016/j.colsurfb.2017.01.008
10.1038/nmat4294
10.1002/adfm.201970174
10.3390/polym12010111
10.1021/acsami.0c00578
10.1038/185117a0
10.1016/j.carbpol.2021.118278
10.1016/j.eurpolymj.2008.01.032
10.1007/BF03215212
10.1002/adfm.202005941
10.1016/j.ijbiomac.2019.12.082
10.1063/1.1723792
10.1016/j.carbpol.2018.08.070
10.1039/C9BM02029B
10.3390/polym13234182
10.1002/adma.201705912
10.1021/ma100963m
10.1038/s41467-018-03515-2
10.1007/s42242-019-00051-w
10.1016/j.progpolymsci.2017.04.001
10.1016/S0142-9612(03)00340-5
10.1021/acs.chemmater.1c02781
10.1038/natrevmats.2016.71
10.1016/0166-6622(86)80274-8
10.1007/s12094-020-02349-z
10.1016/j.carbpol.2019.01.020
10.1016/j.bios.2017.02.008
10.1039/D0TA07390C
10.1021/acsami.0c17669
10.1016/j.ijbiomac.2020.08.040
10.1021/bm200083n
10.1002/advs.201801076
10.1002/app.51509
10.1126/science.1171643
10.1021/acsbiomaterials.6b00444
10.1021/la101868w
10.1016/j.snb.2020.128765
10.1016/j.enconman.2017.04.056
10.1016/j.bios.2021.113548
10.1002/smll.201802520
10.1002/app.48967
10.1016/j.actbio.2019.07.010
10.1016/j.cis.2019.102060
10.1016/j.carbpol.2020.117331
10.1089/ten.teb.2009.0639
10.3390/antibiotics10040425
10.1016/j.colsurfb.2021.111885
10.1021/acsomega.1c00764
10.1039/D0NJ01269F
10.1002/mabi.202100232
10.1002/adfm.201910282
10.1038/s41467-018-04810-8
10.1016/j.cofs.2015.05.009
10.1021/acssuschemeng.7b04172
10.1016/S1369-7021(05)71087-7
10.1016/j.eurpolymj.2009.04.033
10.1016/j.bios.2021.113459
10.1021/acsbiomaterials.9b01549
10.1016/S0939-6411(00)00090-4
10.1039/C9TB02692D
10.1016/j.snb.2020.128940
10.1016/j.aca.2021.338295
10.1021/acs.analchem.6b02256
10.1016/j.matt.2019.09.015
10.1002/adma.201606471
10.1021/ar400070m
10.1016/j.ijbiomac.2021.04.116
10.1016/j.bioactmat.2021.04.005
10.1021/acsnano.9b05608
10.3390/polym12122835
10.1002/adma.201403339
10.1063/1.4811276
10.1021/nn502704g
10.1016/j.bios.2020.112358
10.1016/j.molliq.2021.115581
10.1002/adfm.202109687
10.1002/pola.23607
10.1002/smll.202103303
10.1016/j.colsurfb.2020.111431
10.1002/jps.21210
10.1039/C8BM01286E
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.202100785
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 35075726
10_1002_marc_202100785
MARC202100785
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2019M651692
– fundername: National Natural Science Foundation of China
  funderid: 62105128; 11647143
– fundername: National Natural Science Foundation of China
  grantid: 62105128
– fundername: National Natural Science Foundation of China
  grantid: 11647143
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M651692
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
ABTAH
AEUQT
AFPWT
NPM
RWB
RWI
WRC
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c4395-49f5a46d605cb6119996a20130ba68de6a7ea3f943e7187ae256b775d211009d3
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Thu Jul 10 19:23:03 EDT 2025
Fri Jul 25 12:27:09 EDT 2025
Wed Feb 19 02:25:45 EST 2025
Tue Jul 01 03:31:45 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Wed Jun 11 08:24:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords functional applications
hydrogels
cross-linking methods
material resources
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4395-49f5a46d605cb6119996a20130ba68de6a7ea3f943e7187ae256b775d211009d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0489-9861
PMID 35075726
PQID 2640025898
PQPubID 1016394
PageCount 22
ParticipantIDs proquest_miscellaneous_2622656706
proquest_journals_2640025898
pubmed_primary_35075726
crossref_citationtrail_10_1002_marc_202100785
crossref_primary_10_1002_marc_202100785
wiley_primary_10_1002_marc_202100785_MARC202100785
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 329
2020; 162
2013; 65
2019; 11
2020; 165
2020; 285
2018; 201
2019; 13
2021; 205
2019; 12
1975; 19
2019; 15
2020; 161
2021; 327
2020; 16
2019; 19
2020; 12
2017; 152
2016; 301
2012; 12
2016; 35
2021; 75
2017; 71
2019; 20
2004; 37
2018; 335
2008; 24
2019; 29
2016; 49
2010; 4
2010; 9
2001; 53
2004; 42
2004; 40
2019; 192
1943; 11
2021; 306
2020; 36
2020; 144
2020; 32
2012; 33
2009; 78
2016; 4
2017; 50
2021; 54
2016; 1
2016; 2
2019; 42
2015; 115
2020; 31
2020; 30
2015; 116
1986; 20
2020; 275
2018; 118
2016; 217
2005; 9
2005; 8
2018; 357
2008; 47
2015; 2015
2020; 27
2018; 90
2008; 44
2020; 22
2020; 21
2017; 144
2016; 28
2016; 8
2016; 23
2001; 101
2013; 25
2021; 124
2020; 120
2020; 247
2020; 59
2008; 8
2020; 245
2021; 121
2020; 8
2020; 7
2020; 6
2020; 5
1987; 86
2019; 60
2014; 4
2020; 53
2021; 112
2019; 63
2020; 9
2020; 137
2020; 44
2014; 9
2006; 126
2014; 8
2018; 77
2012; 336
2009; 324
2015; 2
2021; 9
2022; 430
2021; 8
2021; 7
2021; 6
2021; 4
2015; 3
2010; 79
2020; 85
2021; 222
2017; 27
2006; 18
2018; 429
2017; 29
2008; 97
2017; 330
2015; 9
2015; 7
2002; 23
1999; 151
2020; 232
2007; 40
2021; 330
2017; 101
2018; 57
2021; 1154
2019; 91
2010; 16
2013; 1
2013; 2
2019; 96
2019; 209
2020; 325
2020; 326
2021; 166
2020; 323
1995; 374
2013; 7
2013; 5
2018; 42
2018; 6
2018; 9
2018; 3
2010; 26
2018; 5
2018; 4
2021; 278
2015; 87
2021; 272
2007; 6
2003; 49
2018; 30
2020; 211
2020; 210
2020; 88
2014; 17
2016; 151
2021; 2021
2015; 57
2019; 7
2018; 29
2019; 4
2019; 3
2019; 6
2021; 269
2019; 2
2019; 1
2021; 268
2015; 52
2019; 225
2014; 47
2021; 264
2010; 43
2010; 46
2021; 255
2021; 259
2021; 138
2015; 65
2003; 24
2021; 493
2021; 251
2021; 374
2018; 10
2009; 103
2018; 14
2017; 5
2009; 47
2017; 8
2021; 21
2021; 28
2000; 50
2011; 12
1994; 28
2017; 9
2012; 51
2021; 31
2021; 33
2021; 39
2019; 116
2021; 192
2016; 83
2009; 161
2021; 197
2019; 118
2019; 111
2012; 64
2021; 191
2016; 88
2022; 276
2015; 14
2018; 140
2009; 20
2005; 310
2021; 182
2008; 15
2011; 32
2017; 175
2021; 187
2021; 180
2021; 13
2021; 16
2015; 26
1960; 185
2021; 10
2015; 27
2017; 92
2015; 554
2021; 17
2020; 192
2019; 133
2012; 8
2019; 131
e_1_2_8_241_1
e_1_2_8_287_1
e_1_2_8_264_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_226_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_290_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_230_1
e_1_2_8_276_1
e_1_2_8_253_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_291_1
e_1_2_8_238_1
e_1_2_8_215_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
Lin X. (e_1_2_8_249_1) 2021; 8
e_1_2_8_30_1
e_1_2_8_242_1
e_1_2_8_265_1
e_1_2_8_25_1
e_1_2_8_280_1
e_1_2_8_48_1
e_1_2_8_227_1
e_1_2_8_288_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_254_1
e_1_2_8_14_1
e_1_2_8_292_1
e_1_2_8_37_1
e_1_2_8_239_1
e_1_2_8_216_1
e_1_2_8_277_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_243_1
e_1_2_8_220_1
Meng X. (e_1_2_8_55_1) 2021; 33
e_1_2_8_281_1
e_1_2_8_228_1
e_1_2_8_266_1
e_1_2_8_205_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_293_1
e_1_2_8_270_1
e_1_2_8_217_1
e_1_2_8_255_1
e_1_2_8_278_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_282_1
e_1_2_8_27_1
e_1_2_8_229_1
e_1_2_8_244_1
e_1_2_8_267_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_271_1
e_1_2_8_294_1
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_233_1
e_1_2_8_256_1
e_1_2_8_279_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
Chen M. (e_1_2_8_260_1) 2021; 9
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_283_1
e_1_2_8_68_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_245_1
e_1_2_8_268_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_295_1
e_1_2_8_109_1
e_1_2_8_272_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_257_1
e_1_2_8_95_1
e_1_2_8_219_1
Wang A.‐t. (e_1_2_8_124_1) 2021; 2021
e_1_2_8_162_1
Shi Q. (e_1_2_8_289_1) 2019; 111
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_284_1
e_1_2_8_261_1
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_246_1
e_1_2_8_269_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_273_1
e_1_2_8_296_1
e_1_2_8_250_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_235_1
e_1_2_8_258_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_262_1
e_1_2_8_285_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_201_1
e_1_2_8_247_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_251_1
e_1_2_8_297_1
e_1_2_8_274_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_259_1
e_1_2_8_236_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_240_1
e_1_2_8_263_1
e_1_2_8_286_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_248_1
Kocak G. (e_1_2_8_224_1) 2016; 35
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_252_1
e_1_2_8_275_1
e_1_2_8_298_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 32
  start-page: 9876
  year: 2011
  publication-title: Biomaterials
– volume: 6
  year: 2021
  publication-title: ACS Omega
– volume: 28
  start-page: 1559
  year: 2016
  publication-title: Chem. Mater.
– volume: 3
  start-page: 3654
  year: 2015
  publication-title: J. Mater. Chem. B
– volume: 26
  start-page: 1984
  year: 2015
  publication-title: Bioconjugate Chem.
– volume: 192
  year: 2020
  publication-title: Colloids Surf., B
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 301
  start-page: 92
  year: 2016
  publication-title: Chem. Eng. J.
– volume: 192
  year: 2021
  publication-title: Biosens. Bioelectron.
– volume: 374
  start-page: 240
  year: 1995
  publication-title: Nature
– volume: 329
  year: 2021
  publication-title: J. Mol. Liq.
– volume: 335
  start-page: 409
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 187
  year: 2021
  publication-title: Biosens. Bioelectron.
– volume: 259
  year: 2021
  publication-title: Carbohydr. Polym.
– volume: 9
  start-page: 997
  year: 2021
  publication-title: Front. Bioeng. Biotechnol.
– volume: 21
  start-page: 2574
  year: 2020
  publication-title: Biomacromolecules
– volume: 12
  start-page: 1558
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 6163
  year: 2021
  publication-title: J. Mater. Chem. B
– volume: 11
  start-page: 356
  year: 2019
  publication-title: Pharmaceutics
– volume: 165
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 91
  start-page: 3101
  year: 2019
  publication-title: Anal. Chem.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 8030
  year: 2012
  publication-title: Soft Matter
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 5
  start-page: 5753
  year: 2017
  publication-title: J. Mater. Chem. B
– volume: 27
  start-page: 6899
  year: 2015
  publication-title: Adv. Mater.
– volume: 4
  start-page: 4648
  year: 2016
  publication-title: J. Mater. Chem. B
– volume: 6
  start-page: 3892
  year: 2021
  publication-title: Bioact. Mater.
– volume: 87
  start-page: 7636
  year: 2015
  publication-title: Anal. Chem.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 1154
  year: 2021
  publication-title: Anal. Chim. Acta
– volume: 111
  start-page: 764
  year: 2019
  publication-title: NPG Asia Mater.
– volume: 268
  year: 2021
  publication-title: Carbohydr. Polym.
– volume: 116
  start-page: 117
  year: 2015
  publication-title: Carbohydr. Polym.
– volume: 4
  start-page: 2084
  year: 2018
  publication-title: Chem
– volume: 65
  start-page: 252
  year: 2015
  publication-title: Eur. Polym. J.
– volume: 2015
  year: 2015
  publication-title: Biomed Res. Int.
– volume: 1
  start-page: 4065
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 9
  year: 2014
  publication-title: Biointerphases
– volume: 18
  start-page: 1345
  year: 2006
  publication-title: Adv. Mater.
– volume: 191
  year: 2021
  publication-title: Biosens. Bioelectron.
– volume: 44
  start-page: 1209
  year: 2008
  publication-title: Eur. Polym. J.
– volume: 118
  year: 2018
  publication-title: Chem. Rev.
– volume: 112
  start-page: 753
  year: 2021
  publication-title: Trends Food Sci. Technol.
– volume: 124
  start-page: 139
  year: 2021
  publication-title: Acta Biomater.
– volume: 330
  start-page: 575
  year: 2021
  publication-title: J. Controlled Release
– volume: 51
  start-page: 1606
  year: 2012
  publication-title: J. Macromol. Sci., Part B
– volume: 12
  start-page: 9132
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 287
  year: 2008
  publication-title: Lab Chip
– volume: 97
  start-page: 2892
  year: 2008
  publication-title: J. Pharm. Sci.
– volume: 23
  start-page: 4307
  year: 2002
  publication-title: Biomaterials
– volume: 25
  start-page: 4171
  year: 2013
  publication-title: Adv. Mater.
– volume: 116
  start-page: 415
  year: 2019
  publication-title: Eur. Polym. J.
– volume: 39
  start-page: 2711
  year: 2021
  publication-title: Chin. J. Chem.
– volume: 245
  year: 2020
  publication-title: Carbohydr. Polym.
– volume: 42
  start-page: 894
  year: 2004
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 60
  start-page: 1
  year: 2019
  publication-title: Curr. Opin. Biotechnol.
– volume: 42
  start-page: 73
  year: 2019
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 90
  year: 2018
  publication-title: Anal. Chem.
– volume: 5
  start-page: 20
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 24
  start-page: 4337
  year: 2003
  publication-title: Biomaterials
– volume: 310
  start-page: 1139
  year: 2005
  publication-title: Science
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 2
  start-page: 221
  year: 2015
  publication-title: Regener. Biomater.
– volume: 131
  start-page: 43
  year: 2019
  publication-title: J. Mech. Phys. Solids
– volume: 7
  start-page: 843
  year: 2019
  publication-title: Biomater. Sci.
– volume: 101
  start-page: 1869
  year: 2001
  publication-title: Chem. Rev.
– volume: 10
  start-page: 425
  year: 2021
  publication-title: Antibiotics (Basel)
– volume: 20
  start-page: 247
  year: 1986
  publication-title: Colloids Surf.
– volume: 24
  start-page: 2771
  year: 2008
  publication-title: Chem. Commun.
– volume: 52
  start-page: 463
  year: 2015
  publication-title: Biomaterials
– volume: 83
  start-page: 60
  year: 2016
  publication-title: Eur. Polym. J.
– volume: 88
  start-page: 117
  year: 2020
  publication-title: J. Ind. Eng. Chem.
– volume: 49
  start-page: 8980
  year: 2016
  publication-title: Macromolecules
– volume: 144
  start-page: 219
  year: 2020
  publication-title: Int. J. Biol. Macromol.
– volume: 49
  start-page: 2990
  year: 2003
  publication-title: AIChE J.
– volume: 8
  start-page: 51
  year: 2005
  publication-title: Mater. Today
– volume: 7
  year: 2013
  publication-title: Biomicrofluidics
– volume: 9
  start-page: 2010
  year: 2021
  publication-title: J. Mater. Chem. B
– volume: 36
  start-page: 102
  year: 2020
  publication-title: Mater. Today
– volume: 554
  start-page: 1
  year: 2015
  publication-title: Phys. Rep.
– volume: 20
  start-page: 1989
  year: 2019
  publication-title: Biomacromolecules
– volume: 12
  start-page: 115
  year: 2019
  publication-title: Nano Res.
– volume: 138
  year: 2021
  publication-title: J. Appl. Polym. Sci.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 217
  start-page: 1022
  year: 2016
  publication-title: Macromol. Chem. Phys.
– volume: 6
  start-page: 4821
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 121
  start-page: 4309
  year: 2021
  publication-title: Chem. Rev.
– volume: 40
  start-page: 374
  year: 2007
  publication-title: Int. J. Biol. Macromol.
– volume: 8
  start-page: 3171
  year: 2020
  publication-title: J. Mater. Chem. B
– volume: 126
  start-page: 677
  year: 2006
  publication-title: Cell
– volume: 330
  start-page: 1044
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 101
  start-page: 791
  year: 2017
  publication-title: Int. J. Biol. Macromol.
– volume: 325
  year: 2020
  publication-title: Sens. Actuators, B
– volume: 27
  start-page: 2054
  year: 2015
  publication-title: Adv. Mater.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 161
  start-page: 1371
  year: 2020
  publication-title: Int. J. Biol. Macromol.
– volume: 192
  start-page: 560
  year: 2019
  publication-title: Biomaterials
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 85
  start-page: 81
  year: 2020
  publication-title: J. Ind. Eng. Chem.
– volume: 211
  year: 2020
  publication-title: Polymer
– volume: 278
  year: 2021
  publication-title: Biomaterials
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  year: 2014
  publication-title: RSC Adv.
– volume: 16
  year: 2021
  publication-title: Biomed. Mater.
– volume: 86
  start-page: 2375
  year: 1987
  publication-title: J. Chem. Phys.
– volume: 12
  start-page: 1387
  year: 2011
  publication-title: Biomacromolecules
– volume: 65
  start-page: 457
  year: 2013
  publication-title: Adv. Drug Delivery Rev.
– volume: 1
  start-page: 701
  year: 2019
  publication-title: ACS Appl. Polym. Mater.
– volume: 2
  start-page: 292
  year: 2013
  publication-title: Adv. Healthcare Mater.
– volume: 276
  year: 2022
  publication-title: Mater. Sci. Eng., B
– volume: 306
  year: 2021
  publication-title: Macromol. Mater. Eng.
– volume: 6
  start-page: 3962
  year: 2021
  publication-title: Bioact. Mater.
– volume: 63
  start-page: 409
  year: 2019
  publication-title: Comput. Mech.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 1222
  year: 2020
  publication-title: Nat. Commun.
– volume: 2021
  year: 2021
  publication-title: Stem Cells Int.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 205
  year: 2021
  publication-title: Colloids Surf., B
– volume: 8
  start-page: 960
  year: 2020
  publication-title: Biomater. Sci.
– volume: 210
  year: 2020
  publication-title: Polymer
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 254
  year: 2021
  publication-title: Front. Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 255
  year: 2021
  publication-title: Carbohydr. Polym.
– volume: 21
  start-page: 9656
  year: 2020
  publication-title: Int. J. Mol. Sci.
– volume: 71
  start-page: 1
  year: 2017
  publication-title: Prog. Polym. Sci.
– volume: 96
  start-page: 354
  year: 2019
  publication-title: Acta Biomater.
– volume: 323
  start-page: 24
  year: 2020
  publication-title: J. Controlled Release
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 14
  year: 2018
  publication-title: Small
– volume: 429
  start-page: 258
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 120
  start-page: 7642
  year: 2020
  publication-title: Chem. Rev.
– volume: 50
  start-page: 733
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 201
  start-page: 264
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 151
  start-page: 213
  year: 2016
  publication-title: Carbohydr. Polym.
– volume: 191
  start-page: 918
  year: 2021
  publication-title: Int. J. Biol. Macromol.
– volume: 357
  start-page: 1
  year: 2018
  publication-title: Coord. Chem. Rev.
– volume: 14
  start-page: 737
  year: 2015
  publication-title: Nat. Mater.
– volume: 6
  start-page: 3904
  year: 2021
  publication-title: Bioact. Mater.
– volume: 6
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 28
  start-page: 335
  year: 2021
  publication-title: J. Polym. Res.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 648
  year: 2015
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1387
  year: 2012
  publication-title: Curr. Appl. Phys.
– volume: 285
  year: 2020
  publication-title: Adv. Colloid Interface Sci.
– volume: 152
  start-page: 252
  year: 2017
  publication-title: Colloids Surf., B
– volume: 115
  year: 2015
  publication-title: Chem. Rev.
– volume: 166
  start-page: 869
  year: 2021
  publication-title: Int. J. Biol. Macromol.
– volume: 22
  start-page: 2061
  year: 2020
  publication-title: Clin. Transl. Oncol.
– volume: 327
  year: 2021
  publication-title: Sens. Actuators, B
– volume: 336
  start-page: 1124
  year: 2012
  publication-title: Science
– volume: 59
  start-page: 5965
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 1455
  year: 2020
  publication-title: Biomater. Sci.
– volume: 180
  year: 2021
  publication-title: Biosens. Bioelectron.
– volume: 13
  start-page: 433
  year: 2021
  publication-title: Polymers
– volume: 79
  start-page: 211
  year: 2010
  publication-title: Bioelectrochemistry
– volume: 4
  start-page: 2763
  year: 2019
  publication-title: ACS Sens.
– volume: 42
  year: 2018
  publication-title: New J. Chem.
– volume: 29
  start-page: 150
  year: 2018
  publication-title: J. Mater. Sci.: Mater. Med.
– volume: 12
  start-page: 2204
  year: 2020
  publication-title: Polymers
– volume: 11
  start-page: 521
  year: 1943
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 4182
  year: 2021
  publication-title: Polymers
– volume: 264
  year: 2021
  publication-title: Carbohydr. Polym.
– volume: 26
  year: 2010
  publication-title: Langmuir
– volume: 9
  start-page: 518
  year: 2010
  publication-title: Nat. Mater.
– volume: 5
  start-page: 173
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1179
  year: 2019
  publication-title: Biomater. Sci.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 28
  start-page: 831
  year: 1994
  publication-title: J. Biomed. Mater. Res.
– volume: 53
  start-page: 321
  year: 2001
  publication-title: Adv. Drug Delivery Rev.
– volume: 4
  year: 2018
  publication-title: Microsyst. Nanoeng.
– volume: 47
  start-page: 23
  year: 2008
  publication-title: J. Sol‐Gel Sci. Technol.
– volume: 103
  start-page: 655
  year: 2009
  publication-title: Biotechnol. Bioeng.
– volume: 3
  start-page: 71
  year: 2015
  publication-title: Curr. Opin. Food Sci.
– volume: 53
  start-page: 2769
  year: 2020
  publication-title: Macromolecules
– volume: 9
  start-page: 7194
  year: 2021
  publication-title: Biomater. Sci.
– volume: 19
  year: 2019
  publication-title: Macromol. Biosci.
– volume: 4
  start-page: 297
  year: 2010
  publication-title: Chem. Chem. Technol.
– volume: 6
  start-page: 4286
  year: 2021
  publication-title: Bioact. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 40
  start-page: 1363
  year: 2004
  publication-title: Eur. Polym. J.
– volume: 272
  year: 2021
  publication-title: Carbohydr. Polym.
– volume: 46
  start-page: 92
  year: 2010
  publication-title: Eur. Polym. J.
– volume: 4
  start-page: 9783
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 326
  start-page: 150
  year: 2020
  publication-title: J. Controlled Release
– volume: 35
  start-page: 144
  year: 2016
  publication-title: Polym. Chem.
– volume: 12
  start-page: 2835
  year: 2020
  publication-title: Polymers
– volume: 493
  year: 2021
  publication-title: J. Power Sources
– volume: 6
  start-page: 652
  year: 2007
  publication-title: Nat. Mater.
– volume: 247
  year: 2020
  publication-title: Carbohydr. Polym.
– volume: 11
  start-page: 3781
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 232
  year: 2020
  publication-title: Biomaterials
– volume: 32
  year: 2020
  publication-title: Chem. Mater.
– volume: 57
  start-page: 414
  year: 2015
  publication-title: Mater. Sci. Eng., C
– volume: 3
  start-page: 21
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 37
  start-page: 187
  year: 2004
  publication-title: Gold Bull.
– volume: 162
  start-page: 737
  year: 2020
  publication-title: Int. J. Biol. Macromol.
– volume: 197
  year: 2021
  publication-title: Colloids Surf., B
– volume: 88
  year: 2016
  publication-title: Anal. Chem.
– volume: 17
  start-page: 494
  year: 2014
  publication-title: Mater. Today
– volume: 8
  year: 2016
  publication-title: Biofabrication
– volume: 47
  start-page: 66
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 27
  start-page: 6995
  year: 2020
  publication-title: Cellulose
– volume: 8
  start-page: 8493
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 16
  start-page: 371
  year: 2010
  publication-title: Tissue Eng., Part B
– volume: 30
  start-page: 1743
  year: 2018
  publication-title: Chem. Mater.
– volume: 2
  start-page: 2034
  year: 2016
  publication-title: ACS Biomater. Sci. Eng.
– volume: 33
  start-page: 8418
  year: 2021
  publication-title: Chem. Mater.
– volume: 54
  start-page: 6389
  year: 2021
  publication-title: Macromolecules
– volume: 47
  start-page: 5929
  year: 2009
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 324
  start-page: 1673
  year: 2009
  publication-title: Science
– volume: 12
  start-page: 239
  year: 2020
  publication-title: Polymers
– volume: 9
  start-page: 5477
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 1121
  year: 2018
  publication-title: Ind. Eng. Chem. Res.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 140
  start-page: 9466
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 111
  year: 2020
  publication-title: Polymers
– volume: 269
  year: 2021
  publication-title: Carbohydr. Polym.
– volume: 1
  start-page: 1127
  year: 2019
  publication-title: Matter
– volume: 118
  start-page: 488
  year: 2019
  publication-title: TrAC Trends Anal. Chem.
– volume: 19
  start-page: 1885
  year: 1975
  publication-title: J. Appl. Polym. Sci.
– volume: 39
  start-page: 150
  year: 2021
  publication-title: Trends Biotechnol.
– volume: 2
  start-page: 269
  year: 2019
  publication-title: Bio‐Des. Manuf.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 78
  start-page: 65
  year: 2009
  publication-title: Radiat. Phys. Chem.
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 209
  start-page: 130
  year: 2019
  publication-title: Carbohydr. Polym.
– volume: 50
  start-page: 151
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 151
  start-page: 56
  year: 1999
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
– volume: 64
  start-page: 18
  year: 2012
  publication-title: Adv. Drug Delivery Rev.
– volume: 7
  start-page: 54
  year: 2020
  publication-title: Mater. Horiz.
– volume: 43
  start-page: 6193
  year: 2010
  publication-title: Macromolecules
– volume: 33
  start-page: 7115
  year: 2012
  publication-title: Biomaterials
– volume: 15
  start-page: 195
  year: 2008
  publication-title: J. Polym. Res.
– volume: 92
  start-page: 81
  year: 2017
  publication-title: Biosens. Bioelectron.
– volume: 7
  start-page: 39
  year: 2021
  publication-title: npj Comput. Mater.
– volume: 137
  year: 2020
  publication-title: J. Appl. Polym. Sci.
– volume: 6
  start-page: 946
  year: 2020
  publication-title: ACS Biomater. Sci. Eng.
– volume: 75
  start-page: 1
  year: 2021
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 175
  start-page: 7
  year: 2017
  publication-title: Carbohydr. Polym.
– volume: 222
  year: 2021
  publication-title: Polymer
– volume: 23
  start-page: 748
  year: 2016
  publication-title: Drug Delivery
– volume: 144
  start-page: 303
  year: 2017
  publication-title: Energy Convers. Manage.
– volume: 275
  year: 2020
  publication-title: Adv. Colloid Interface Sci.
– volume: 16
  year: 2020
  publication-title: Soft Matter
– volume: 21
  year: 2021
  publication-title: Macromol. Biosci.
– volume: 161
  start-page: 671
  year: 2009
  publication-title: Br J Dermatol
– volume: 20
  start-page: 316
  year: 2009
  publication-title: Trends Food Sci. Technol.
– volume: 201
  start-page: 105
  year: 2018
  publication-title: Carbohydr. Polym.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 374
  start-page: 212
  year: 2021
  publication-title: Science
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: S1
  year: 2005
  publication-title: J. Orthop. Nurs.
– volume: 77
  start-page: 48
  year: 2018
  publication-title: Acta Biomater.
– volume: 50
  start-page: 27
  year: 2000
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 8
  start-page: 217
  year: 2017
  publication-title: J. Adv. Res.
– volume: 31
  start-page: 816
  year: 2020
  publication-title: J. Biomater. Sci., Polym. Ed.
– volume: 6
  start-page: 8105
  year: 2018
  publication-title: J. Mater. Chem. B
– volume: 3
  start-page: 126
  year: 2019
  publication-title: Nat. Biomed. Eng.
– volume: 182
  start-page: 1091
  year: 2021
  publication-title: Int. J. Biol. Macromol.
– volume: 185
  start-page: 117
  year: 1960
  publication-title: Nature
– volume: 225
  start-page: 129
  year: 2019
  publication-title: Sep. Purif. Technol.
– volume: 251
  year: 2021
  publication-title: Carbohydr. Polym.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  start-page: 8351
  year: 2020
  publication-title: New J. Chem.
– volume: 9
  start-page: 2315
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  start-page: 3976
  year: 2021
  publication-title: Bioact. Mater.
– volume: 133
  start-page: 67
  year: 2019
  publication-title: Int. J. Biol. Macromol.
– ident: e_1_2_8_35_1
  doi: 10.1016/j.bioactmat.2021.03.034
– ident: e_1_2_8_36_1
  doi: 10.1021/acsami.0c07753
– ident: e_1_2_8_170_1
  doi: 10.1016/j.ijbiomac.2019.03.011
– ident: e_1_2_8_70_1
  doi: 10.1002/bit.22361
– ident: e_1_2_8_282_1
  doi: 10.1002/mabi.201800248
– ident: e_1_2_8_201_1
  doi: 10.1002/macp.201600038
– volume: 111
  start-page: 764
  year: 2019
  ident: e_1_2_8_289_1
  publication-title: NPG Asia Mater.
– ident: e_1_2_8_199_1
  doi: 10.1002/mabi.202100109
– ident: e_1_2_8_120_1
  doi: 10.1088/1748-605X/ac2714
– ident: e_1_2_8_223_1
  doi: 10.3109/10717544.2014.940091
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.iecr.7b04614
– ident: e_1_2_8_110_1
  doi: 10.1126/science.1214804
– ident: e_1_2_8_183_1
  doi: 10.1155/2015/198268
– ident: e_1_2_8_57_1
  doi: 10.1002/smll.202103521
– ident: e_1_2_8_185_1
  doi: 10.1016/j.cej.2017.10.095
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.accounts.6b00581
– ident: e_1_2_8_171_1
  doi: 10.1038/natrevmats.2015.12
– ident: e_1_2_8_198_1
  doi: 10.1002/adma.201300817
– ident: e_1_2_8_119_1
  doi: 10.1080/09205063.2020.1720155
– ident: e_1_2_8_3_1
  doi: 10.1039/D0SM01371D
– ident: e_1_2_8_139_1
  doi: 10.1021/acs.chemrev.7b00627
– ident: e_1_2_8_166_1
  doi: 10.1016/j.tifs.2009.04.003
– ident: e_1_2_8_66_1
  doi: 10.1126/science.1116995
– ident: e_1_2_8_29_1
  doi: 10.1016/j.bioactmat.2021.03.040
– ident: e_1_2_8_128_1
  doi: 10.1038/s41578-018-0006-y
– ident: e_1_2_8_100_1
  doi: 10.1021/acsami.8b09891
– ident: e_1_2_8_147_1
  doi: 10.1016/j.cej.2017.08.041
– ident: e_1_2_8_291_1
  doi: 10.1038/s41578-019-0148-6
– ident: e_1_2_8_96_1
  doi: 10.1021/acsami.8b01082
– ident: e_1_2_8_287_1
  doi: 10.1038/micronano.2017.76
– ident: e_1_2_8_151_1
  doi: 10.1016/j.carbpol.2014.04.085
– ident: e_1_2_8_297_1
  doi: 10.1007/s00466-018-1600-y
– ident: e_1_2_8_133_1
  doi: 10.1093/rb/rbv015
– ident: e_1_2_8_8_1
  doi: 10.1016/j.chempr.2018.07.002
– ident: e_1_2_8_252_1
  doi: 10.1039/C8TC03914C
– ident: e_1_2_8_106_1
  doi: 10.1039/C8NJ03482F
– ident: e_1_2_8_64_1
  doi: 10.1016/j.carbpol.2020.116709
– ident: e_1_2_8_75_1
  doi: 10.1016/S0169-409X(01)00203-4
– ident: e_1_2_8_127_1
  doi: 10.1016/j.eurpolymj.2019.04.032
– ident: e_1_2_8_265_1
  doi: 10.1016/j.jiec.2020.03.035
– ident: e_1_2_8_37_1
  doi: 10.1039/C9BM01882D
– ident: e_1_2_8_192_1
  doi: 10.1021/acsami.7b04017
– ident: e_1_2_8_126_1
  doi: 10.1002/adfm.201905200
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.chemmater.0c03362
– ident: e_1_2_8_90_1
  doi: 10.1016/j.trac.2019.06.014
– ident: e_1_2_8_226_1
  doi: 10.1016/j.ccr.2017.11.019
– ident: e_1_2_8_280_1
  doi: 10.1016/j.actbio.2018.07.015
– ident: e_1_2_8_122_1
  doi: 10.1021/acsaem.1c01854
– ident: e_1_2_8_203_1
  doi: 10.3390/polym12010239
– ident: e_1_2_8_24_1
  doi: 10.1016/j.eurpolymj.2004.02.016
– ident: e_1_2_8_69_1
  doi: 10.1038/nmat2732
– ident: e_1_2_8_193_1
  doi: 10.1016/j.ijbiomac.2017.03.155
– ident: e_1_2_8_248_1
  doi: 10.1016/j.jconrel.2020.04.014
– ident: e_1_2_8_182_1
  doi: 10.1016/j.msec.2015.07.053
– ident: e_1_2_8_197_1
  doi: 10.1002/adma.201405022
– ident: e_1_2_8_49_1
  doi: 10.1021/acs.analchem.8b02459
– ident: e_1_2_8_162_1
  doi: 10.1039/D1BM00936B
– ident: e_1_2_8_30_1
  doi: 10.1002/aic.690491202
– ident: e_1_2_8_46_1
  doi: 10.1021/acsami.0c14059
– ident: e_1_2_8_187_1
  doi: 10.1016/j.cej.2016.04.025
– ident: e_1_2_8_59_1
  doi: 10.1016/j.biomaterials.2021.121169
– ident: e_1_2_8_277_1
  doi: 10.1016/j.biomaterials.2018.10.040
– ident: e_1_2_8_47_1
  doi: 10.1002/smll.201905076
– ident: e_1_2_8_208_1
  doi: 10.1039/D0TB02895A
– volume: 35
  start-page: 144
  year: 2016
  ident: e_1_2_8_224_1
  publication-title: Polym. Chem.
– ident: e_1_2_8_99_1
  doi: 10.1021/jacs.8b03547
– ident: e_1_2_8_168_1
  doi: 10.1016/j.carbpol.2021.118495
– ident: e_1_2_8_253_1
  doi: 10.1002/adma.202104006
– ident: e_1_2_8_9_1
  doi: 10.1039/C9MH01139K
– ident: e_1_2_8_87_1
  doi: 10.1080/10408398.2020.1870034
– ident: e_1_2_8_118_1
  doi: 10.1007/s10856-018-6158-x
– ident: e_1_2_8_1_1
  doi: 10.1016/j.cocis.2019.04.001
– ident: e_1_2_8_255_1
  doi: 10.1021/acsami.0c14935
– ident: e_1_2_8_41_1
  doi: 10.1016/j.bioelechem.2010.05.001
– ident: e_1_2_8_268_1
  doi: 10.1016/j.biomaterials.2012.06.031
– ident: e_1_2_8_145_1
  doi: 10.1016/j.carbpol.2021.118210
– ident: e_1_2_8_188_1
  doi: 10.1021/acs.biomac.9b00204
– ident: e_1_2_8_22_1
  doi: 10.23939/chcht04.04.297
– ident: e_1_2_8_173_1
  doi: 10.1039/C8TB02556H
– ident: e_1_2_8_178_1
  doi: 10.1021/acsami.9b18646
– ident: e_1_2_8_125_1
  doi: 10.1002/adfm.201808750
– ident: e_1_2_8_189_1
  doi: 10.1016/j.carbpol.2020.116794
– ident: e_1_2_8_195_1
  doi: 10.1039/C5TB00123D
– ident: e_1_2_8_172_1
  doi: 10.1021/acsapm.8b00232
– ident: e_1_2_8_238_1
  doi: 10.1002/anie.201911712
– ident: e_1_2_8_177_1
  doi: 10.1021/acsami.0c01022
– ident: e_1_2_8_108_1
  doi: 10.1016/j.carbpol.2018.08.032
– ident: e_1_2_8_290_1
  doi: 10.1021/acs.chemrev.0c00345
– ident: e_1_2_8_181_1
  doi: 10.1002/adma.201503724
– ident: e_1_2_8_267_1
  doi: 10.1016/j.biomaterials.2011.08.082
– ident: e_1_2_8_121_1
  doi: 10.1002/adfm.202104928
– ident: e_1_2_8_94_1
  doi: 10.1016/j.carbpol.2020.116612
– ident: e_1_2_8_143_1
  doi: 10.1039/D0TC01626H
– ident: e_1_2_8_243_1
  doi: 10.1021/acsami.0c00720
– ident: e_1_2_8_232_1
  doi: 10.1063/1.452740
– ident: e_1_2_8_80_1
  doi: 10.1016/j.eurpolymj.2014.11.024
– ident: e_1_2_8_142_1
  doi: 10.1016/j.bioactmat.2021.04.022
– ident: e_1_2_8_246_1
  doi: 10.1038/nmat1967
– ident: e_1_2_8_25_1
  doi: 10.1016/S0168-583X(99)00118-4
– ident: e_1_2_8_258_1
  doi: 10.1038/s41524-021-00509-5
– ident: e_1_2_8_14_1
  doi: 10.1016/j.cap.2012.03.019
– ident: e_1_2_8_38_1
  doi: 10.1021/acsami.9b04312
– ident: e_1_2_8_153_1
  doi: 10.1080/00222348.2012.657110
– ident: e_1_2_8_5_1
  doi: 10.1016/j.physrep.2014.10.001
– ident: e_1_2_8_84_1
  doi: 10.1016/j.jare.2017.01.005
– ident: e_1_2_8_104_1
  doi: 10.1002/aelm.202000040
– ident: e_1_2_8_149_1
  doi: 10.1016/j.jpowsour.2021.229711
– ident: e_1_2_8_254_1
  doi: 10.1021/acs.macromol.1c00295
– ident: e_1_2_8_230_1
  doi: 10.1039/C9BM01882D
– ident: e_1_2_8_103_1
  doi: 10.1039/C7TB01350G
– ident: e_1_2_8_137_1
  doi: 10.1016/j.biomaterials.2015.01.001
– ident: e_1_2_8_257_1
  doi: 10.1016/j.polymer.2020.123072
– ident: e_1_2_8_157_1
  doi: 10.3390/ijms21249656
– ident: e_1_2_8_74_1
  doi: 10.1016/j.addr.2012.09.010
– volume: 8
  start-page: 254
  year: 2021
  ident: e_1_2_8_249_1
  publication-title: Front. Mater.
– ident: e_1_2_8_256_1
  doi: 10.1016/j.polymer.2021.123618
– ident: e_1_2_8_288_1
  doi: 10.1016/j.mattod.2014.07.002
– ident: e_1_2_8_229_1
  doi: 10.1039/c4ra03013c
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.chemrev.5b00299
– ident: e_1_2_8_101_1
  doi: 10.1016/j.jmps.2019.06.018
– ident: e_1_2_8_222_1
  doi: 10.1116/1.4866697
– ident: e_1_2_8_281_1
  doi: 10.1016/j.biomaterials.2019.119725
– ident: e_1_2_8_60_1
  doi: 10.1039/D1TC03905A
– ident: e_1_2_8_225_1
  doi: 10.1111/j.1365-2133.2009.09168.x
– ident: e_1_2_8_135_1
  doi: 10.1016/j.addr.2012.09.043
– ident: e_1_2_8_239_1
  doi: 10.1021/acs.analchem.8b05600
– ident: e_1_2_8_86_1
  doi: 10.1016/j.carbpol.2021.118036
– ident: e_1_2_8_275_1
  doi: 10.1038/s41578-019-0148-6
– ident: e_1_2_8_233_1
  doi: 10.1038/374240a0
– ident: e_1_2_8_184_1
  doi: 10.1021/acs.accounts.6b00547
– ident: e_1_2_8_52_1
  doi: 10.1002/advs.201400010
– ident: e_1_2_8_214_1
  doi: 10.1016/j.ijbiomac.2020.10.243
– ident: e_1_2_8_130_1
  doi: 10.1021/acs.biomac.0c00566
– ident: e_1_2_8_89_1
  doi: 10.1016/j.ijbiomac.2020.06.110
– ident: e_1_2_8_245_1
  doi: 10.1021/acsnano.5b04343
– ident: e_1_2_8_140_1
  doi: 10.1016/j.carbpol.2021.117753
– ident: e_1_2_8_112_1
  doi: 10.1016/j.mseb.2021.115535
– ident: e_1_2_8_115_1
  doi: 10.1016/j.jconrel.2020.12.045
– ident: e_1_2_8_39_1
  doi: 10.1039/C6TB00825A
– ident: e_1_2_8_134_1
  doi: 10.1016/j.tibtech.2020.06.005
– ident: e_1_2_8_26_1
  doi: 10.1002/jbm.820280710
– ident: e_1_2_8_247_1
  doi: 10.1016/j.carbpol.2021.118269
– ident: e_1_2_8_32_1
  doi: 10.1007/s10971-008-1750-z
– ident: e_1_2_8_174_1
  doi: 10.1016/j.carbpol.2021.117978
– ident: e_1_2_8_244_1
  doi: 10.1021/acssensors.9b01308
– ident: e_1_2_8_294_1
  doi: 10.1016/j.cis.2020.102278
– ident: e_1_2_8_264_1
  doi: 10.1016/j.cej.2021.132685
– ident: e_1_2_8_19_1
  doi: 10.1002/app.1975.070190709
– ident: e_1_2_8_283_1
  doi: 10.1021/acsami.7b13321
– ident: e_1_2_8_298_1
  doi: 10.1038/s41551-018-0318-7
– ident: e_1_2_8_53_1
  doi: 10.1021/am5087209
– ident: e_1_2_8_111_1
  doi: 10.1002/adhm.201200280
– ident: e_1_2_8_79_1
  doi: 10.1016/j.jconrel.2020.06.012
– ident: e_1_2_8_43_1
  doi: 10.1039/C9TA03690C
– ident: e_1_2_8_236_1
  doi: 10.1016/j.mattod.2019.12.026
– ident: e_1_2_8_113_1
  doi: 10.1016/j.colsurfb.2020.111066
– ident: e_1_2_8_251_1
  doi: 10.1021/acs.chemmater.8b00063
– ident: e_1_2_8_97_1
  doi: 10.1016/j.jiec.2020.01.023
– ident: e_1_2_8_146_1
  doi: 10.1021/acsami.6b14471
– ident: e_1_2_8_165_1
  doi: 10.1021/acs.chemrev.0c01088
– ident: e_1_2_8_67_1
  doi: 10.1016/j.cell.2006.06.044
– ident: e_1_2_8_273_1
  doi: 10.1002/advs.201801046
– ident: e_1_2_8_85_1
  doi: 10.1016/j.bios.2021.113138
– ident: e_1_2_8_164_1
  doi: 10.1039/D1TB00624J
– ident: e_1_2_8_219_1
  doi: 10.1021/acsami.0c04359
– ident: e_1_2_8_228_1
  doi: 10.1021/am302355g
– ident: e_1_2_8_175_1
  doi: 10.1021/acsami.9b17627
– ident: e_1_2_8_102_1
  doi: 10.1016/j.bios.2021.113313
– ident: e_1_2_8_186_1
  doi: 10.1021/acs.macromol.6b02264
– ident: e_1_2_8_58_1
  doi: 10.1002/adfm.201703086
– ident: e_1_2_8_82_1
  doi: 10.1016/S1361-3111(05)80001-9
– ident: e_1_2_8_144_1
  doi: 10.1007/s10570-020-03127-4
– ident: e_1_2_8_211_1
  doi: 10.1016/j.eurpolymj.2016.08.006
– ident: e_1_2_8_132_1
  doi: 10.1021/acs.bioconjchem.5b00360
– ident: e_1_2_8_176_1
  doi: 10.1007/s12274-018-2188-4
– ident: e_1_2_8_77_1
  doi: 10.1002/adma.200501612
– ident: e_1_2_8_266_1
  doi: 10.1021/acsami.5b04744
– ident: e_1_2_8_21_1
  doi: 10.1016/j.radphyschem.2008.07.003
– ident: e_1_2_8_194_1
  doi: 10.1021/acsami.8b09656
– ident: e_1_2_8_72_1
  doi: 10.1016/S0142-9612(02)00175-8
– ident: e_1_2_8_141_1
  doi: 10.1016/j.carbpol.2017.07.062
– ident: e_1_2_8_221_1
  doi: 10.3390/pharmaceutics11070356
– ident: e_1_2_8_235_1
  doi: 10.1021/acs.analchem.5b00866
– ident: e_1_2_8_154_1
  doi: 10.1088/1758-5090/8/2/025011
– ident: e_1_2_8_202_1
  doi: 10.3390/polym13030433
– ident: e_1_2_8_169_1
  doi: 10.3390/polym12102204
– ident: e_1_2_8_227_1
  doi: 10.1039/c3tb20758g
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.macromol.0c00238
– ident: e_1_2_8_278_1
  doi: 10.1016/j.copbio.2018.11.001
– ident: e_1_2_8_152_1
  doi: 10.1016/j.apsusc.2017.06.243
– ident: e_1_2_8_11_1
  doi: 10.1016/j.tifs.2021.04.034
– ident: e_1_2_8_136_1
  doi: 10.1021/acsami.8b21259
– ident: e_1_2_8_148_1
  doi: 10.1016/j.seppur.2019.05.070
– ident: e_1_2_8_34_1
  doi: 10.1016/j.bioactmat.2021.04.007
– ident: e_1_2_8_42_1
  doi: 10.1002/pola.11039
– volume: 2021
  start-page: 8827212
  year: 2021
  ident: e_1_2_8_124_1
  publication-title: Stem Cells Int.
– ident: e_1_2_8_155_1
  doi: 10.1016/j.polymer.2020.123021
– ident: e_1_2_8_44_1
  doi: 10.1021/acs.chemmater.6b00115
– ident: e_1_2_8_71_1
  doi: 10.1021/cr000108x
– ident: e_1_2_8_40_1
  doi: 10.1039/b803279c
– ident: e_1_2_8_167_1
  doi: 10.1039/C8BM01246F
– ident: e_1_2_8_295_1
  doi: 10.1002/cjoc.202100370
– ident: e_1_2_8_261_1
  doi: 10.1016/j.ijbiomac.2021.09.169
– ident: e_1_2_8_250_1
  doi: 10.1002/adma.201606900
– ident: e_1_2_8_33_1
  doi: 10.1007/s10965-007-9159-x
– ident: e_1_2_8_156_1
  doi: 10.1007/s10965-021-02682-z
– ident: e_1_2_8_293_1
  doi: 10.1126/science.abg6320
– ident: e_1_2_8_18_1
  doi: 10.1039/c2sm25325a
– ident: e_1_2_8_65_1
  doi: 10.1016/j.carbpol.2016.05.077
– ident: e_1_2_8_206_1
  doi: 10.1016/j.actbio.2021.01.038
– ident: e_1_2_8_31_1
  doi: 10.1016/j.ijbiomac.2006.09.019
– ident: e_1_2_8_270_1
  doi: 10.1039/B713141K
– ident: e_1_2_8_205_1
  doi: 10.1002/mame.202100588
– ident: e_1_2_8_105_1
  doi: 10.1016/j.colsurfb.2017.01.008
– ident: e_1_2_8_220_1
  doi: 10.1021/acsami.0c04359
– ident: e_1_2_8_91_1
  doi: 10.1038/nmat4294
– ident: e_1_2_8_276_1
  doi: 10.1002/adfm.201970174
– ident: e_1_2_8_114_1
  doi: 10.3390/polym12010111
– ident: e_1_2_8_218_1
  doi: 10.1021/acsami.0c00578
– ident: e_1_2_8_13_1
  doi: 10.1038/185117a0
– ident: e_1_2_8_20_1
  doi: 10.1016/j.carbpol.2021.118278
– ident: e_1_2_8_23_1
  doi: 10.1016/j.eurpolymj.2008.01.032
– ident: e_1_2_8_48_1
  doi: 10.1007/BF03215212
– volume: 9
  start-page: 997
  year: 2021
  ident: e_1_2_8_260_1
  publication-title: Front. Bioeng. Biotechnol.
– ident: e_1_2_8_6_1
  doi: 10.1002/adfm.202005941
– ident: e_1_2_8_61_1
  doi: 10.1016/j.ijbiomac.2019.12.082
– ident: e_1_2_8_12_1
  doi: 10.1063/1.1723792
– ident: e_1_2_8_62_1
  doi: 10.1016/j.carbpol.2018.08.070
– ident: e_1_2_8_179_1
  doi: 10.1039/C9BM02029B
– ident: e_1_2_8_161_1
  doi: 10.3390/polym13234182
– ident: e_1_2_8_109_1
  doi: 10.1002/adma.201705912
– ident: e_1_2_8_196_1
  doi: 10.1021/ma100963m
– ident: e_1_2_8_292_1
  doi: 10.1038/s41467-018-03515-2
– ident: e_1_2_8_158_1
  doi: 10.1007/s42242-019-00051-w
– volume: 33
  start-page: 2108243
  year: 2021
  ident: e_1_2_8_55_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_180_1
  doi: 10.1016/j.progpolymsci.2017.04.001
– ident: e_1_2_8_73_1
  doi: 10.1016/S0142-9612(03)00340-5
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.chemmater.1c02781
– ident: e_1_2_8_78_1
  doi: 10.1038/natrevmats.2016.71
– ident: e_1_2_8_284_1
  doi: 10.1016/0166-6622(86)80274-8
– ident: e_1_2_8_237_1
  doi: 10.1007/s12094-020-02349-z
– ident: e_1_2_8_107_1
  doi: 10.1016/j.carbpol.2019.01.020
– ident: e_1_2_8_269_1
  doi: 10.1016/j.bios.2017.02.008
– ident: e_1_2_8_210_1
  doi: 10.1039/D0TA07390C
– ident: e_1_2_8_216_1
  doi: 10.1021/acsami.0c17669
– ident: e_1_2_8_160_1
  doi: 10.1016/j.ijbiomac.2020.08.040
– ident: e_1_2_8_129_1
  doi: 10.1021/bm200083n
– ident: e_1_2_8_272_1
  doi: 10.1002/advs.201801076
– ident: e_1_2_8_204_1
  doi: 10.1002/app.51509
– ident: e_1_2_8_68_1
  doi: 10.1126/science.1171643
– ident: e_1_2_8_274_1
  doi: 10.1021/acsbiomaterials.6b00444
– ident: e_1_2_8_286_1
  doi: 10.1021/la101868w
– ident: e_1_2_8_241_1
  doi: 10.1016/j.snb.2020.128765
– ident: e_1_2_8_98_1
  doi: 10.1016/j.enconman.2017.04.056
– ident: e_1_2_8_217_1
  doi: 10.1016/j.bios.2021.113548
– ident: e_1_2_8_45_1
  doi: 10.1002/smll.201802520
– ident: e_1_2_8_116_1
  doi: 10.1002/app.48967
– ident: e_1_2_8_63_1
  doi: 10.1016/j.actbio.2019.07.010
– ident: e_1_2_8_88_1
  doi: 10.1016/j.cis.2019.102060
– ident: e_1_2_8_95_1
  doi: 10.1016/j.carbpol.2020.117331
– ident: e_1_2_8_131_1
  doi: 10.1089/ten.teb.2009.0639
– ident: e_1_2_8_212_1
  doi: 10.3390/antibiotics10040425
– ident: e_1_2_8_262_1
  doi: 10.1016/j.colsurfb.2021.111885
– ident: e_1_2_8_159_1
  doi: 10.1021/acsomega.1c00764
– ident: e_1_2_8_191_1
  doi: 10.1039/D0NJ01269F
– ident: e_1_2_8_200_1
  doi: 10.1002/mabi.202100232
– ident: e_1_2_8_92_1
  doi: 10.1002/adfm.201910282
– ident: e_1_2_8_209_1
  doi: 10.1038/s41467-018-04810-8
– ident: e_1_2_8_15_1
  doi: 10.1016/j.cofs.2015.05.009
– ident: e_1_2_8_93_1
  doi: 10.1021/acssuschemeng.7b04172
– ident: e_1_2_8_4_1
  doi: 10.1016/S1369-7021(05)71087-7
– ident: e_1_2_8_27_1
  doi: 10.1016/j.eurpolymj.2009.04.033
– ident: e_1_2_8_190_1
  doi: 10.1016/j.bios.2021.113459
– ident: e_1_2_8_163_1
  doi: 10.1021/acsbiomaterials.9b01549
– ident: e_1_2_8_76_1
  doi: 10.1016/S0939-6411(00)00090-4
– ident: e_1_2_8_207_1
  doi: 10.1039/C9TB02692D
– ident: e_1_2_8_242_1
  doi: 10.1016/j.snb.2020.128940
– ident: e_1_2_8_213_1
  doi: 10.1016/j.aca.2021.338295
– ident: e_1_2_8_50_1
  doi: 10.1021/acs.analchem.6b02256
– ident: e_1_2_8_10_1
  doi: 10.1016/j.matt.2019.09.015
– ident: e_1_2_8_279_1
  doi: 10.1002/adma.201606471
– ident: e_1_2_8_240_1
  doi: 10.1021/ar400070m
– ident: e_1_2_8_2_1
  doi: 10.1016/j.ijbiomac.2021.04.116
– ident: e_1_2_8_138_1
  doi: 10.1016/j.bioactmat.2021.04.005
– ident: e_1_2_8_215_1
  doi: 10.1021/acsnano.9b05608
– ident: e_1_2_8_123_1
  doi: 10.3390/polym12122835
– ident: e_1_2_8_231_1
  doi: 10.1002/adma.201403339
– ident: e_1_2_8_271_1
  doi: 10.1063/1.4811276
– ident: e_1_2_8_150_1
  doi: 10.1021/nn502704g
– ident: e_1_2_8_234_1
  doi: 10.1016/j.bios.2020.112358
– ident: e_1_2_8_296_1
  doi: 10.1016/j.molliq.2021.115581
– ident: e_1_2_8_54_1
  doi: 10.1002/adfm.202109687
– ident: e_1_2_8_285_1
  doi: 10.1021/acsami.0c14059
– ident: e_1_2_8_81_1
  doi: 10.1002/pola.23607
– ident: e_1_2_8_259_1
  doi: 10.1002/smll.202103303
– ident: e_1_2_8_263_1
  doi: 10.1016/j.colsurfb.2020.111431
– ident: e_1_2_8_83_1
  doi: 10.1002/jps.21210
– ident: e_1_2_8_117_1
  doi: 10.1039/C8BM01286E
SSID ssj0008402
Score 2.5599062
SecondaryResourceType review_article
Snippet Hydrogels, as the most typical elastomer materials with three‐dimensional (3D) network structures, have attracted wide attention owing to their outstanding...
Hydrogels, as the most typical elastomer materials with three-dimensional (3D) network structures, have attracted wide attention owing to their outstanding...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2100785
SubjectTerms Coefficient of friction
cross‐linking methods
Elastomers
functional applications
Hydrogels
material resources
Monomers
Polymerization
Polymers
Thermal response
Title An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties, to Functional Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202100785
https://www.ncbi.nlm.nih.gov/pubmed/35075726
https://www.proquest.com/docview/2640025898
https://www.proquest.com/docview/2622656706
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-yF33x-2M6JYLgi91H2qSNb2M4hjCV4WBvJW3SF7UdW6foX-9du3abIoK-tU1C0-Qu97vc9RdCLmytlc29yAoBL1uAb7WlJOOWYS2thAAZMlm2xZ3oDZ3bER8t_cWf80OUG26oGdl6jQqugmljQRqKVA_g3zEM83v4lzkmbCEqGiz4o8B7ycOd4HGBMyYK1sYma6w2X7VK36DmKnLNTE93i6ii03nGyVN9lgb18OMLn-N_vmqbbM5xKW3ngrRD1ky8S9Y7xXFwe2Tcjun9K64s5o0mMQW8CfaKPmB-F6yWNIkoYEnae9fwBAzuNe1OkhfaV2km47SIE0yvsM0Y07nxOk1oF0xrviNJ20vh9H0y7N48dnrW_LgGKwRUwy1HRlw5QoODFAaihfwGQjGMjAZKeNoI5RplR9KxDRhEVxlAW4Hrco0-aFNq-4BU4iQ2R4SKMHSEI4XkWsEUhp6rhZQBoMsWa-rIrRKrmC4_nHOZ45Eaz37Owsx8HEe_HMcquSzrj3MWjx9r1orZ9-faPPUBNCI29KRXJedlMYw_BldUbJIZ1gEgy4XbFFVymEtN-SobQDd3GZSwbO5_6YPfbw865d3xXxqdkA2GQp8ly9VIJZ3MzCmgpzQ4yzTkEwnYDt4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED6x8gAvA7axFQrzpEl7WUrrxE7MW1VRla1lE6ISb5ETOy-DpGrTTfDruUualG5CSOwtiW3F8fl83_kunwE-u8ZoVwSJEyNedhDfGkcrLhzLu0ZLiXPIFtkWF3I48b5diyqbkP6FKfkh6g030oxivSYFpw3pkxVrKHE9oIPHKc4fiFewScd6F17V5YpBCv2XMuCJPhe6Y7Libezwk_X263bpH7C5jl0L4zPYgajqdplz8qu9yKN2fP8Xo-N_fdcuvF5CU9Yr59IebNj0DWz1qxPh3sK0l7Ifv2lxsX9YljKEnGiy2E9K8cIFk2UJQzjJhncGn6DNPWWDWXbLxjovpjmrQgXzr9RmShnddJ1nbIDWtdyUZL1HEfV3MBmcXfWHzvLEBidGYCMcTyVCe9KgjxRHsksUB1JzCo5GWgbGSu1b7SbKcy3aRF9bBFyR7wtDbmhHGXcfGmmW2g_AZBx70lNSCaNRhnHgG6lUhACzyzsm8ZvgVPIK4yWdOZ2qcROWRMw8pHEM63Fswpe6_rQk8niyZqsSf7hU6HmIuJHgYaCCJnyqi3H8Kb6iU5stqA5iWSH9jmzC-3La1K9yEXcLn2MJL4T_TB_Cce-yX98dvKTRR9gaXo1H4ej84vshbHPSgCJ3rgWNfLawRwim8ui4UJcH-vUS-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKhUu0JbXlkeNVIkLgawTOzG31dJoaYEiBBK3yImdS0uygiyI_npmkk1gQQgJbklsK4494_nGM_kM8MMzRnsizJwU8bKD-NY4WnHhWN41WkqUIVtlWxzLwbn_60JcPPqLv-aHaDfcSDOq9ZoUfGiy3QfSUKJ6QP-OU5g_FFPw0ZduSHK9f_pAIIXuSx3vRJcLvTHZ0Da6fHey_aRZeoY1J6FrZXuiedBNr-uUk787ozLZSf8_IXR8z2d9hrkxMGW9WpK-wAebf4WZfnMe3AIMezn7c0NLi71lRc4QcKLBYieU4IXLJSsyhmCSDe4MPkGLu8eiq-KSHemyEnLWBAqut6nNkPK56bosWIS2td6SZL1H8fRFOI9-nvUHzvi8BidFWCMcX2VC-9Kgh5QmsksEB1JzCo0mWobGSh1Y7WXK9yxaxEBbhFtJEAhDTqirjLcE03mR2xVgMk196SuphNE4hWkYGKlUgvCyy12TBR1wmumK0zGZOZ2p8S-uaZh5TOMYt-PYga22_rCm8Xix5loz-_FYna9jRI0EDkMVdmCzLcbxp-iKzm0xojqIZIUMXNmB5Vpq2ld5iLpFwLGEV3P_Sh_io95pv7379pZG3-HTyX4UHx4c_16FWU7yXyXOrcF0eTWy64ikymSjUpZ7w-0RsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Overview+on+Recent+Progress+of+the+Hydrogels%3A+From+Material+Resources%2C+Properties%2C+to+Functional+Applications&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Wang%2C+Ben-Xin&rft.au=Xu%2C+Wei&rft.au=Yang%2C+Zhuchuang&rft.au=Wu%2C+Yangkuan&rft.date=2022-03-01&rft.issn=1521-3927&rft.eissn=1521-3927&rft.volume=43&rft.issue=6&rft.spage=e2100785&rft_id=info:doi/10.1002%2Fmarc.202100785&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon