Emission of methane from chalk streams has potential implications for agricultural practices

1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane production from a southern English chalk stream, where increased sedimentation, compounded by extensive macrophyte growth, may have altered ecosystem...

Full description

Saved in:
Bibliographic Details
Published inFreshwater biology Vol. 52; no. 6; pp. 1176 - 1186
Main Authors SANDERS, I.A, HEPPELL, C.M, COTTON, J.A, WHARTON, G, HILDREW, A.G, FLOWERS, E.J, TRIMMER, M
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.06.2007
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane production from a southern English chalk stream, where increased sedimentation, compounded by extensive macrophyte growth, may have altered ecosystem function. 2. Cover of the channel by the dominant macrophyte, Ranunculus penicillatus, peaked in August, when plant beds were associated with low water velocity and the accumulation of sediment (<2000 μm) dominated by the sand-sized fraction (63-1000 μm). 3. Over spring and summer there was a marked increase in the silt/clay fraction of the sediment, a concomitant drop in mean particle size and, hence, inferred permeability. At the same time there was an increase in CH₄ transport through Ranunculus stems and an increase in water column CH₄ concentration, while the sediment CH₄ concentration increased 100-fold between February and April. A marked seasonal enrichment in the δ¹⁵N of N₂ dissolved in the pore water correlated with CH₄ flux and, coupled to the shift in particle size, suggested a transient input of organic matter, possibly of terrestrial origin. 4. Potential areal methane production and measured efflux were similar to that from some U.K. peatlands and represent one of the first accounts of significant methanogenesis to be measured in a stream channel. Most (>90%) of the methane flux is transported to the atmosphere through the Ranunculus stems. 5. Although the total flux of methane from U.K. chalk streams is probably relatively modest (estimated at 3.2 x 10⁻⁶ Tg CH₄ year⁻¹), this phenomenon changes our perception of the health of these ecosystems and indicates another deleterious side effect of agriculture.
AbstractList 1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane production from a southern English chalk stream, where increased sedimentation, compounded by extensive macrophyte growth, may have altered ecosystem function. 2. Cover of the channel by the dominant macrophyte, Ranunculus penicillatus, peaked in August, when plant beds were associated with low water velocity and the accumulation of sediment (<2000 μm) dominated by the sand-sized fraction (63-1000 μm). 3. Over spring and summer there was a marked increase in the silt/clay fraction of the sediment, a concomitant drop in mean particle size and, hence, inferred permeability. At the same time there was an increase in CH₄ transport through Ranunculus stems and an increase in water column CH₄ concentration, while the sediment CH₄ concentration increased 100-fold between February and April. A marked seasonal enrichment in the δ¹⁵N of N₂ dissolved in the pore water correlated with CH₄ flux and, coupled to the shift in particle size, suggested a transient input of organic matter, possibly of terrestrial origin. 4. Potential areal methane production and measured efflux were similar to that from some U.K. peatlands and represent one of the first accounts of significant methanogenesis to be measured in a stream channel. Most (>90%) of the methane flux is transported to the atmosphere through the Ranunculus stems. 5. Although the total flux of methane from U.K. chalk streams is probably relatively modest (estimated at 3.2 x 10⁻⁶ Tg CH₄ year⁻¹), this phenomenon changes our perception of the health of these ecosystems and indicates another deleterious side effect of agriculture.
Observation that, emission of methane from chalk streams has potential implications for agricultural practices, is made. Chalk streams are characterized by abundant growth of the dominant aquatic macrophyte Ranunculus spp. Chalk streams represent only a small source of methane to the atmosphere and account for >0.05% of total U.K. emissions, although any repeat of this process in agricultural streams and rivers more generally will increase these estimates. It seems possible that the transfer of soil organic matter from the catchment surface to the river system, and its biogeochemical consequences, has given rise to a hitherto unquantified deleterious side effect of agriculture, beyond well-known fertilizer enrichment, pesticide/herbicide application and losses in biodiversity.
Summary 1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane production from a southern English chalk stream, where increased sedimentation, compounded by extensive macrophyte growth, may have altered ecosystem function. 2. Cover of the channel by the dominant macrophyte, Ranunculus penicillatus, peaked in August, when plant beds were associated with low water velocity and the accumulation of sediment (<2000  μ m) dominated by the sand‐sized fraction (63–1000  μ m). 3. Over spring and summer there was a marked increase in the silt/clay fraction of the sediment, a concomitant drop in mean particle size and, hence, inferred permeability. At the same time there was an increase in CH 4 transport through Ranunculus stems and an increase in water column CH 4 concentration, while the sediment CH 4 concentration increased 100‐fold between February and April. A marked seasonal enrichment in the δ 15 N of N 2 dissolved in the pore water correlated with CH 4 flux and, coupled to the shift in particle size, suggested a transient input of organic matter, possibly of terrestrial origin. 4. Potential areal methane production and measured efflux were similar to that from some U.K. peatlands and represent one of the first accounts of significant methanogenesis to be measured in a stream channel. Most (>90%) of the methane flux is transported to the atmosphere through the Ranunculus stems. 5. Although the total flux of methane from U.K. chalk streams is probably relatively modest (estimated at 3.2 × 10 −6 Tg CH 4  year −1 ), this phenomenon changes our perception of the health of these ecosystems and indicates another deleterious side effect of agriculture.
1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane production from a southern English chalk stream, where increased sedimentation, compounded by extensive macrophyte growth, may have altered ecosystem function. 2. Cover of the channel by the dominant macrophyte, Ranunculus penicillatus, peaked in August, when plant beds were associated with low water velocity and the accumulation of sediment (<2000 mu m) dominated by the sand-sized fraction (63-1000 mu m). 3. Over spring and summer there was a marked increase in the silt/clay fraction of the sediment, a concomitant drop in mean particle size and, hence, inferred permeability. At the same time there was an increase in CH sub(4) transport through Ranunculus stems and an increase in water column CH sub(4) concentration, while the sediment CH sub(4) concentration increased 100-fold between February and April. A marked seasonal enrichment in the delta super(15)N of N sub(2) dissolved in the pore water correlated with CH sub(4) flux and, coupled to the shift in particle size, suggested a transient input of organic matter, possibly of terrestrial origin. 4. Potential areal methane production and measured efflux were similar to that from some U.K. peatlands and represent one of the first accounts of significant methanogenesis to be measured in a stream channel. Most (>90%) of the methane flux is transported to the atmosphere through the Ranunculus stems. 5. Although the total flux of methane from U.K. chalk streams is probably relatively modest (estimated at 3.210 super(-6) Tg CH sub(4)year super(-1)) , this phenomenon changes our perception of the health of these ecosystems and indicates another deleterious side effect of agriculture.
Summary 1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane production from a southern English chalk stream, where increased sedimentation, compounded by extensive macrophyte growth, may have altered ecosystem function. 2. Cover of the channel by the dominant macrophyte, Ranunculus penicillatus, peaked in August, when plant beds were associated with low water velocity and the accumulation of sediment (<2000 μm) dominated by the sand‐sized fraction (63–1000 μm). 3. Over spring and summer there was a marked increase in the silt/clay fraction of the sediment, a concomitant drop in mean particle size and, hence, inferred permeability. At the same time there was an increase in CH4 transport through Ranunculus stems and an increase in water column CH4 concentration, while the sediment CH4 concentration increased 100‐fold between February and April. A marked seasonal enrichment in the δ15N of N2 dissolved in the pore water correlated with CH4 flux and, coupled to the shift in particle size, suggested a transient input of organic matter, possibly of terrestrial origin. 4. Potential areal methane production and measured efflux were similar to that from some U.K. peatlands and represent one of the first accounts of significant methanogenesis to be measured in a stream channel. Most (>90%) of the methane flux is transported to the atmosphere through the Ranunculus stems. 5. Although the total flux of methane from U.K. chalk streams is probably relatively modest (estimated at 3.2 × 10−6 Tg CH4 year−1), this phenomenon changes our perception of the health of these ecosystems and indicates another deleterious side effect of agriculture.
Author FLOWERS, E. J.
HILDREW, A. G.
COTTON, J. A.
WHARTON, G.
TRIMMER, M.
SANDERS, I. A.
HEPPELL, C. M.
Author_xml – sequence: 1
  fullname: SANDERS, I.A
– sequence: 2
  fullname: HEPPELL, C.M
– sequence: 3
  fullname: COTTON, J.A
– sequence: 4
  fullname: WHARTON, G
– sequence: 5
  fullname: HILDREW, A.G
– sequence: 6
  fullname: FLOWERS, E.J
– sequence: 7
  fullname: TRIMMER, M
BookMark eNqNkc1u1DAUhS3USkxbngGvEJsE_8Sxs2BBS3-oqiIEpRsk69Z2GE-TONgZMX17HFJ1WdUbW7rfd6VzfID2hjA4hDAlJc3nw6akvBYFq5gsGSGyJFRWoty9QqunwR5aEVLVhSCSvEYHKW0IIUpItkK_Tnufkg8DDi3u3bSGweE2hh6bNXT3OE3RQZ_wGhIew-SGyUOHfT923sCUvYTbEDH8jt5su2kb83SMYCZvXDpC-y10yb15vA_Rzdnpj5OL4urr-ZeTT1eFqXgjCl5ZeweNFU4pxWvLbaUsBcvvgFJpQRLXSAWUEWgVbRpVNy0Ya600rqE144fo_bJ3jOHP1qVJ51DGdV0OE7ZJU1ETyhljJKPvnkcrxZiSNINqAU0MKUXX6jH6HuKDpkTPzeuNngvWc8F6bl7_b17vsvpxUf_6zj282NNnt8fzK_vF4vs0ud2TD_Fe15JLoW-vz7W4uD7-_K251D8z_3bhWwh6_omkb76znDgvl5UknP8Duq2lLA
CitedBy_id crossref_primary_10_1007_s00284_014_0659_8
crossref_primary_10_1016_j_scitotenv_2024_173228
crossref_primary_10_1371_journal_pone_0080804
crossref_primary_10_1016_j_scitotenv_2011_10_074
crossref_primary_10_1002_lno_11943
crossref_primary_10_1016_j_jhydrol_2022_129053
crossref_primary_10_1371_journal_pone_0111392
crossref_primary_10_1016_j_aquabot_2022_103547
crossref_primary_10_1016_j_watres_2022_119251
crossref_primary_10_1016_j_anaerobe_2014_11_009
crossref_primary_10_1016_j_limno_2019_125716
crossref_primary_10_1021_acs_est_8b04243
crossref_primary_10_1038_ismej_2017_6
crossref_primary_10_1002_rra_1486
crossref_primary_10_1016_j_gecco_2022_e02213
crossref_primary_10_1002_lno_10569
crossref_primary_10_1016_j_scitotenv_2020_144582
crossref_primary_10_1038_s41558_020_0824_y
crossref_primary_10_1002_eco_2498
crossref_primary_10_5194_bg_19_137_2022
crossref_primary_10_5194_essd_15_2879_2023
crossref_primary_10_1111_j_1365_2486_2010_02289_x
crossref_primary_10_1111_gcb_12614
crossref_primary_10_1016_j_orggeochem_2024_104754
crossref_primary_10_1016_j_scitotenv_2017_01_163
crossref_primary_10_1002_lno_10346
crossref_primary_10_1098_rspb_2013_2854
crossref_primary_10_1111_j_1365_2427_2009_02352_x
crossref_primary_10_1002_hyp_7276
crossref_primary_10_1016_j_watres_2022_119043
crossref_primary_10_1002_hyp_7283
crossref_primary_10_1029_2021JG006313
crossref_primary_10_3389_fmicb_2015_00506
crossref_primary_10_1890_15_1330
crossref_primary_10_1038_ismej_2015_98
crossref_primary_10_1002_clen_201300982
crossref_primary_10_1007_s11270_007_9532_8
crossref_primary_10_1016_j_jhydrol_2019_01_008
crossref_primary_10_1016_j_aquabot_2023_103645
crossref_primary_10_1016_j_advwatres_2010_09_014
crossref_primary_10_1016_j_scitotenv_2019_06_317
crossref_primary_10_1016_j_earscirev_2011_01_008
crossref_primary_10_5194_bg_14_2267_2017
crossref_primary_10_3389_fenvs_2021_791305
crossref_primary_10_1007_s11270_016_3131_5
crossref_primary_10_1093_femsec_fiw116
crossref_primary_10_1016_j_tplants_2013_12_005
crossref_primary_10_1016_j_aquabot_2022_103527
crossref_primary_10_1111_jawr_12204
crossref_primary_10_1007_s00027_011_0199_2
crossref_primary_10_1007_s10750_016_3035_9
crossref_primary_10_1016_j_watres_2017_10_059
crossref_primary_10_1111_fwb_12480
crossref_primary_10_1038_nclimate3229
crossref_primary_10_3389_frwa_2023_1332968
crossref_primary_10_1007_s00442_020_04593_0
crossref_primary_10_1029_2021JG006328
crossref_primary_10_1111_j_1574_6941_2011_01266_x
crossref_primary_10_1038_ncomms13451
crossref_primary_10_1111_1462_2920_15637
crossref_primary_10_1016_j_scitotenv_2014_09_083
crossref_primary_10_1890_15_1027
crossref_primary_10_1038_s41558_017_0063_z
crossref_primary_10_1111_j_1365_2427_2007_01828_x
crossref_primary_10_1111_j_1365_2427_2008_02081_x
crossref_primary_10_3389_fmicb_2020_00771
crossref_primary_10_1016_j_marchem_2018_03_008
crossref_primary_10_1007_s10533_017_0401_2
crossref_primary_10_1021_acsestwater_3c00812
crossref_primary_10_1071_EN10042
crossref_primary_10_1021_acs_est_4c00921
crossref_primary_10_1029_2019JG005213
crossref_primary_10_1111_fwb_13614
crossref_primary_10_1016_j_scitotenv_2024_172960
crossref_primary_10_1016_j_scitotenv_2022_155123
crossref_primary_10_3389_fevo_2016_00008
crossref_primary_10_1002_eco_176
crossref_primary_10_1111_fwb_13262
crossref_primary_10_1038_s41467_018_04756_x
crossref_primary_10_1016_j_ecoleng_2011_09_001
crossref_primary_10_1038_s41467_022_31559_y
crossref_primary_10_1080_00222933_2021_1919776
crossref_primary_10_1016_j_scitotenv_2019_01_152
crossref_primary_10_1093_femsec_fiab130
crossref_primary_10_1007_s10533_010_9555_x
crossref_primary_10_1016_j_gecco_2023_e02704
crossref_primary_10_1002_eco_86
Cites_doi 10.1023/A:1005914121280
10.1128/AEM.64.3.864-870.1998
10.1007/s10533-004-8131-7
10.4319/lo.1998.43.6.1243
10.1127/0003-9136/2006/0165-0339
10.1023/A:1005929032764
10.1021/je60068a029
10.1111/j.1365-2486.2004.00888.x
10.1146/annurev.ecolsys.35.120202.110122
10.1046/j.1365-2427.1997.d01-546.x
10.1016/j.scitotenv.2004.07.019
10.1016/S0048-9697(01)00948-2
10.1128/aem.56.9.2902-2911.1990
10.4319/lo.1987.32.3.0716
10.1023/A:1025413721647
10.1016/j.aquabot.2004.10.003
10.1002/hyp.5657
10.1038/nature04038
10.1016/0304-3770(76)90007-3
10.4319/lo.1999.44.6.1530
10.1191/0309133302pp324ra
10.4319/lom.2006.4.142
10.1016/0038-0717(95)00018-A
10.1046/j.1365-2427.1999.444495.x
10.1080/0790062042000248565
10.1016/S0048-9697(01)00937-8
10.1038/364794a0
10.1002/(SICI)1099-1085(19970315)11:3<253::AID-HYP439>3.0.CO;2-J
10.1016/j.jhydrol.2006.04.034
10.1016/j.jhydrol.2006.04.015
10.4319/lo.1995.40.1.0159
10.1023/A:1006427712846
10.4319/lo.1992.37.7.1420
10.1016/j.geomorph.2006.01.010
10.1002/(SICI)1099-1085(19990228)13:3<323::AID-HYP741>3.0.CO;2-K
10.1016/S0045-6535(03)00571-X
10.1023/A:1016067610783
ContentType Journal Article
DBID FBQ
BSCLL
AAYXX
CITATION
7ST
C1K
SOI
7QH
7SN
7UA
F1W
H95
L.G
DOI 10.1111/j.1365-2427.2007.01745.x
DatabaseName AGRIS
Istex
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Aqualine
Ecology Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aqualine
Water Resources Abstracts
DatabaseTitleList
Environment Abstracts
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Oceanography
EISSN 1365-2427
EndPage 1186
ExternalDocumentID 10_1111_j_1365_2427_2007_01745_x
FWB1745
ark_67375_WNG_5HNBDQ9J_V
US201300774703
Genre article
GroupedDBID -~X
..I
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29H
31~
33P
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFMIJ
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QZG
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TWZ
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
YZZ
ZCG
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAYXX
CITATION
7ST
C1K
SOI
7QH
7SN
7UA
F1W
H95
L.G
ID FETCH-LOGICAL-c4395-34ddba9d5e88836d3d48d1ad3ba117da70e978a120af8199869facddd7ce91623
IEDL.DBID DR2
ISSN 0046-5070
IngestDate Fri Aug 16 02:12:05 EDT 2024
Sat Aug 17 02:11:47 EDT 2024
Fri Aug 23 00:58:47 EDT 2024
Sat Aug 24 01:06:04 EDT 2024
Wed Oct 30 09:51:02 EDT 2024
Wed Dec 27 19:18:57 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4395-34ddba9d5e88836d3d48d1ad3ba117da70e978a120af8199869facddd7ce91623
Notes http://dx.doi.org/10.1111/j.1365-2427.2007.01745.x
ArticleID:FWB1745
ark:/67375/WNG-5HNBDQ9J-V
istex:3D659EE3A8566DF85066EFF6B9AFB7696EBA70AA
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 14822871
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_1560132220
proquest_miscellaneous_14822871
crossref_primary_10_1111_j_1365_2427_2007_01745_x
wiley_primary_10_1111_j_1365_2427_2007_01745_x_FWB1745
istex_primary_ark_67375_WNG_5HNBDQ9J_V
fao_agris_US201300774703
PublicationCentury 2000
PublicationDate June 2007
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: June 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle Freshwater biology
PublicationYear 2007
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References Wharton G., Cotton J.A., Wotton R. S., Bass J.A.B., Heppell C.M., Trimmer M., Sanders I.A. & Warren L.L. (2006) Macrophytes and suspension-feeding invertebrates modify flows and fine sediments in the Frome and Piddle catchments, Dorset (UK). Journal of Hydrology, 330, 171-184.
Gooddy D.C. & Darling W.G. (2005) The potential for methane emissions from groundwaters of the UK. Science of the Total Environment, 339, 117-126.
Jones J.B. & Mulholland P.J. (1998a) Influence of drainage topography and elevation on carbon dioxide and methane supersaturation of stream water. Biogeochemistry, 40, 57-72.
Brix H., Sorrel B.K. & Orr P.T. (1992) Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnology & Oceanography, 37, 1420-1433.
Mainstone C.P. & Parr W. (2002) Phosphorus in rivers - ecology and management. Science of the Total Environment, 282, 25-47.
Wheater H.S. & Peach D. (2004) Developing interdisciplinary science for integrated catchment management: the UK LOwland CAtchment Research (LOCAR) Programme. Water Research Development, 20, 369-385.
Cotton J.A., Wharton G., Bass J.A.B., Heppell C.M. & Wotton R.S. (2006) The effects of seasonal changes to in-stream vegetation cover on patterns of flow and accumulation of sediment. Geomorphology, 77, 320-334.
Findlay S. (1995) Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone. Limnology & Oceanography, 40, 159-164.
Allan J.D. (2004) Landscape and riverscapes: the influence of land use on river ecosystems. Annual Reviews of Ecology, Evolution and Systematics, 35, 257-284.
Clarke S.J. (2002) Vegetation growth in rivers: influences upon sediment and nutrient dynamics. Progress in Physical Geography, 26, 159-172.
Yamamoto S., Alcauskas J.B. & Crozier T.E. (1976) Solubility of methane in distilled water and seawater. Journal of Chemical and Engineering Data, 21, 78-80.
Bellamy P.H., Loveland P.J., Bradley R.I., Lark M.R. & Kirk G.J.D. (2005) Carbon losses from soils across England and Wales 1978-2003. Nature, 437, 245-248.
Allan J.D., Ericksen D.L. & Fay J. (1997) The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology, 37, 149-161.
Damgaard L.R., Revsbech N.P. & Reichardt W. (1998) Use of an oxygen-insensitive microscale biosensor for methane to measure methane concentrations profiles in a rice paddy. Applied and Environmental Microbiology, 64, 864-870.
Hlaváčová E., Rulík M., Čáp L. & Mach V. (2006) Greenhouse gas (CO2, CH4, N2O) emissions to the atmosphere from a small lowland stream in Czech Republic. Archive of Hydrobiology, 165, 339-353.
Segers R. (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry, 41, 23-51.
Heilman M.A. & Carlton R.G. (2001) Methane oxidation associated with submersed vascular macrophytes and its impact on plant diffusive methane flux. Biogeochemistry, 52, 207-224.
Nedwell D.B. & Watson A. (1995) CH4 production, oxidation and emission in a UK ombrotrophic peat bog: influence of SO from acid rain. Soil Biology & Biochemistry, 27, 893-903.
Kankaala P., Käki T., Mäkelä S., Ojala A., Pajunen H. & Arvola L. (2005) Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes. Global Change Biology, 11, 145-153.
Sanders I.A. & Trimmer M. (2006) In-situ application of the 15NO isotope pairing technique to measure denitrification in sediments at the surface water-groundwater interface. Limnology and Oceanography: Methods, 4, 142-152.
Whiting G.J. & Chanton J.P. (1993) Primary production control of methane emission from wetlands. Nature, 364, 794-795.
Sand-Jensen K. & Pedersen O. (1999) Velocity gradients and turbulence around macrophyte stands in streams. Freshwater Biology, 42, 315-328.
Walling D.E. & Amos C.M. (1999) Source, storage and mobilisation of fine sediment in a chalk stream system. Hydrological Processes, 13, 323-340.
King G.M., Roslev P. & Skovgaard H. (1990) Distribution and rate of methane oxidation in sediments of the Florida Everglades. Applied and Environment Microbiology, 56, 2902-2911.
Bazhin N.M. (2004) Influence of plants on the methane emission from sediments. Chemosphere, 54, 209-215.
Angelis M.A. de & Lilley M.D. (1987) Methane in surface waters of Oregon estuaries and rivers. Limnology & Oceanography, 32, 716-722.
Walling D.E., Collins A.L. & McMellin G.K. (2003) A reconnaissance survey of the source of interstitial fine sediment recovered from salmonid spawning gravels in England and Wales. Hydrobiologia, 497, 91-108.
Walling D.E., Collins A.L., Jones P.A., Leeks G.J.L. & Old G. (2006) Establishing fine-grained sediment budgets for the Pang and Lambourn LOCAR catchments, UK. Journal of Hydrology, 330, 126-141.
Jones J.B. & Mulholland P.J. (1998b) Methane input and evasion in a hardwood forest stream: effects of subsurface flow from shallow and deep pathways. Limnology & Oceanography, 43, 1243-1250.
Coplen T.B., Hopple J.A., Böhlke J.K. et al. (2002) Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents. US Department of the Interior - US Geological Survey, Reston, Virginia. Water-Resources Investigations Report 01-4222. pp. 98.
Environment Agency (2004) The State of England's Chalk Rivers. Environment Agency, Bristol, UK, 78 pp.
Wright J.F., Gunn R.J.M., Winder J.M., Wiggers R., Vowles K., Clarke R.T. & Harris I. (2002) A comparison of the macrophyte cover and macroinvertebrate fauna at three sites on the River Kennet in the mid 1970s and late 1990s. Science of the Total Environment, 282-283, 121-142.
Garnet K.N., Megonigal P.J., Litchfield C. & Taylor G.E. (2005) Physiological control of leaf methane emission from wetland plants. Aquatic Botany, 81, 141-155.
English Nature and Environment Agency (1999) Chalk Rivers: Nature Conservation and Management. English Nature, Peterborough, UK, 184 pp.
Morrice J.A., Valett M.H., Dahm C.N. & Campana M.E. (1997) Alluvial characteristics, groundwater-surface water exchange and hydrological retention in headwater streams. Hydrological Processes, 11, 253-267.
Worrall F., Harriman R., Evans C. et al. (2004) Trends in dissolved organic carbon in UK rivers and lakes. Biogeochemistry, 70, 369-402.
Hope D., Palmer S.H., Billett M.F. & Dawson J.J.C. (2004) Variations in dissolved CO2 and CH4 in a first order stream and catchment: an investigation of soil-stream linkages. Hydrological Processes, 18, 3255-3275.
Dawson F.H. (1976) The annual production of the aquatic macrophyte Ranunculus penicillatus var. calcareous (R. W. Butcher). Aquatic Botany, 2, 51-73.
Baker M.A., Dahm C.N. & Valett M.H. (1999) Acetate retention and metabolism in the hyporheic zone of a mountain stream. Limnology & Oceanography, 44, 1530-1539.
Chanton J.P., Arkebauer T.J., Harden H.R. & Verma S.B. (2002) Diel variation in lacunal CH4 and CO2 concentrations and δ13C in Phragmites australis. Biogeochemistry, 59, 287-301.
1976; 21
2002; 59
2004; 20
1987; 32
1990; 56
2006; 77
2005; 437
1976; 2
2005; 339
1999; 44
2006; 330
1999; 42
2004
2005; 81
2006; 4
1992; 37
2002
1998; 41
1998; 64
2003; 497
1999
1993; 364
2004; 54
1995; 40
2002; 26
2002; 282
2004; 70
2002; 282–283
2004; 18
1997; 11
1995; 27
1997; 37
2004; 35
1998b; 43
1999; 13
2006; 165
1998a; 40
2005; 11
2001; 52
King G.M. (e_1_2_6_26_1) 1990; 56
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
Damgaard L.R. (e_1_2_6_13_1) 1998; 64
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
English Nature and Environment Agency (e_1_2_6_15_1) 1999
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_38_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
Coplen T.B. (e_1_2_6_11_1) 2002
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
Environment Agency (e_1_2_6_16_1) 2004
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
References_xml – volume: 40
  start-page: 57
  year: 1998a
  end-page: 72
  article-title: Influence of drainage topography and elevation on carbon dioxide and methane supersaturation of stream water
  publication-title: Biogeochemistry
– volume: 282–283
  start-page: 121
  year: 2002
  end-page: 142
  article-title: A comparison of the macrophyte cover and macroinvertebrate fauna at three sites on the River Kennet in the mid 1970s and late 1990s
  publication-title: Science of the Total Environment
– volume: 40
  start-page: 159
  year: 1995
  end-page: 164
  article-title: Importance of surface‐subsurface exchange in stream ecosystems: the hyporheic zone
  publication-title: Limnology & Oceanography
– volume: 282
  start-page: 25
  year: 2002
  end-page: 47
  article-title: Phosphorus in rivers – ecology and management
  publication-title: Science of the Total Environment
– volume: 41
  start-page: 23
  year: 1998
  end-page: 51
  article-title: Methane production and methane consumption: a review of processes underlying wetland methane fluxes
  publication-title: Biogeochemistry
– volume: 54
  start-page: 209
  year: 2004
  end-page: 215
  article-title: Influence of plants on the methane emission from sediments
  publication-title: Chemosphere
– start-page: 78
  year: 2004
– volume: 37
  start-page: 1420
  year: 1992
  end-page: 1433
  article-title: Internal pressurization and convective gas flow in some emergent freshwater macrophytes
  publication-title: Limnology & Oceanography
– volume: 18
  start-page: 3255
  year: 2004
  end-page: 3275
  article-title: Variations in dissolved CO and CH in a first order stream and catchment: an investigation of soil‐stream linkages
  publication-title: Hydrological Processes
– volume: 330
  start-page: 126
  year: 2006
  end-page: 141
  article-title: Establishing fine‐grained sediment budgets for the Pang and Lambourn LOCAR catchments, UK
  publication-title: Journal of Hydrology
– start-page: 184
  year: 1999
– volume: 364
  start-page: 794
  year: 1993
  end-page: 795
  article-title: Primary production control of methane emission from wetlands
  publication-title: Nature
– volume: 13
  start-page: 323
  year: 1999
  end-page: 340
  article-title: Source, storage and mobilisation of fine sediment in a chalk stream system
  publication-title: Hydrological Processes
– volume: 330
  start-page: 171
  year: 2006
  end-page: 184
  article-title: Macrophytes and suspension‐feeding invertebrates modify flows and fine sediments in the Frome and Piddle catchments, Dorset (UK)
  publication-title: Journal of Hydrology
– volume: 77
  start-page: 320
  year: 2006
  end-page: 334
  article-title: The effects of seasonal changes to in‐stream vegetation cover on patterns of flow and accumulation of sediment
  publication-title: Geomorphology
– volume: 165
  start-page: 339
  year: 2006
  end-page: 353
  article-title: Greenhouse gas (CO , CH , N O) emissions to the atmosphere from a small lowland stream in Czech Republic
  publication-title: Archive of Hydrobiology
– start-page: 98
  year: 2002
– volume: 81
  start-page: 141
  year: 2005
  end-page: 155
  article-title: Physiological control of leaf methane emission from wetland plants
  publication-title: Aquatic Botany
– volume: 2
  start-page: 51
  year: 1976
  end-page: 73
  article-title: The annual production of the aquatic macrophyte var. (R. W. Butcher)
  publication-title: Aquatic Botany
– volume: 11
  start-page: 253
  year: 1997
  end-page: 267
  article-title: Alluvial characteristics, groundwater–surface water exchange and hydrological retention in headwater streams
  publication-title: Hydrological Processes
– volume: 59
  start-page: 287
  year: 2002
  end-page: 301
  article-title: Diel variation in lacunal CH and CO concentrations and C in
  publication-title: Biogeochemistry
– volume: 44
  start-page: 1530
  year: 1999
  end-page: 1539
  article-title: Acetate retention and metabolism in the hyporheic zone of a mountain stream
  publication-title: Limnology & Oceanography
– volume: 26
  start-page: 159
  year: 2002
  end-page: 172
  article-title: Vegetation growth in rivers: influences upon sediment and nutrient dynamics
  publication-title: Progress in Physical Geography
– volume: 339
  start-page: 117
  year: 2005
  end-page: 126
  article-title: The potential for methane emissions from groundwaters of the UK
  publication-title: Science of the Total Environment
– volume: 32
  start-page: 716
  year: 1987
  end-page: 722
  article-title: Methane in surface waters of Oregon estuaries and rivers
  publication-title: Limnology & Oceanography
– volume: 27
  start-page: 893
  year: 1995
  end-page: 903
  article-title: CH production, oxidation and emission in a UK ombrotrophic peat bog: influence of SO from acid rain
  publication-title: Soil Biology & Biochemistry
– volume: 43
  start-page: 1243
  year: 1998b
  end-page: 1250
  article-title: Methane input and evasion in a hardwood forest stream: effects of subsurface flow from shallow and deep pathways
  publication-title: Limnology & Oceanography
– volume: 11
  start-page: 145
  year: 2005
  end-page: 153
  article-title: Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes
  publication-title: Global Change Biology
– volume: 37
  start-page: 149
  year: 1997
  end-page: 161
  article-title: The influence of catchment land use on stream integrity across multiple spatial scales
  publication-title: Freshwater Biology
– volume: 21
  start-page: 78
  year: 1976
  end-page: 80
  article-title: Solubility of methane in distilled water and seawater
  publication-title: Journal of Chemical and Engineering Data
– volume: 20
  start-page: 369
  year: 2004
  end-page: 385
  article-title: Developing interdisciplinary science for integrated catchment management: the UK LOwland CAtchment Research (LOCAR) Programme
  publication-title: Water Research Development
– volume: 52
  start-page: 207
  year: 2001
  end-page: 224
  article-title: Methane oxidation associated with submersed vascular macrophytes and its impact on plant diffusive methane flux
  publication-title: Biogeochemistry
– volume: 56
  start-page: 2902
  year: 1990
  end-page: 2911
  article-title: Distribution and rate of methane oxidation in sediments of the Florida Everglades
  publication-title: Applied and Environment Microbiology
– volume: 437
  start-page: 245
  year: 2005
  end-page: 248
  article-title: Carbon losses from soils across England and Wales 1978–2003
  publication-title: Nature
– volume: 64
  start-page: 864
  year: 1998
  end-page: 870
  article-title: Use of an oxygen‐insensitive microscale biosensor for methane to measure methane concentrations profiles in a rice paddy
  publication-title: Applied and Environmental Microbiology
– volume: 497
  start-page: 91
  year: 2003
  end-page: 108
  article-title: A reconnaissance survey of the source of interstitial fine sediment recovered from salmonid spawning gravels in England and Wales
  publication-title: Hydrobiologia
– volume: 4
  start-page: 142
  year: 2006
  end-page: 152
  article-title: In‐situ application of the NO isotope pairing technique to measure denitrification in sediments at the surface water–groundwater interface
  publication-title: Limnology and Oceanography: Methods
– volume: 70
  start-page: 369
  year: 2004
  end-page: 402
  article-title: Trends in dissolved organic carbon in UK rivers and lakes
  publication-title: Biogeochemistry
– volume: 42
  start-page: 315
  year: 1999
  end-page: 328
  article-title: Velocity gradients and turbulence around macrophyte stands in streams
  publication-title: Freshwater Biology
– volume: 35
  start-page: 257
  year: 2004
  end-page: 284
  article-title: Landscape and riverscapes: the influence of land use on river ecosystems
  publication-title: Annual Reviews of Ecology, Evolution and Systematics
– start-page: 184
  volume-title: Chalk Rivers: Nature Conservation and Management
  year: 1999
  ident: e_1_2_6_15_1
  contributor:
    fullname: English Nature and Environment Agency
– ident: e_1_2_6_23_1
  doi: 10.1023/A:1005914121280
– volume: 64
  start-page: 864
  year: 1998
  ident: e_1_2_6_13_1
  article-title: Use of an oxygen‐insensitive microscale biosensor for methane to measure methane concentrations profiles in a rice paddy
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.64.3.864-870.1998
  contributor:
    fullname: Damgaard L.R.
– ident: e_1_2_6_39_1
  doi: 10.1007/s10533-004-8131-7
– ident: e_1_2_6_24_1
  doi: 10.4319/lo.1998.43.6.1243
– ident: e_1_2_6_21_1
  doi: 10.1127/0003-9136/2006/0165-0339
– ident: e_1_2_6_32_1
  doi: 10.1023/A:1005929032764
– ident: e_1_2_6_41_1
  doi: 10.1021/je60068a029
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1365-2486.2004.00888.x
– ident: e_1_2_6_2_1
  doi: 10.1146/annurev.ecolsys.35.120202.110122
– ident: e_1_2_6_3_1
  doi: 10.1046/j.1365-2427.1997.d01-546.x
– ident: e_1_2_6_19_1
  doi: 10.1016/j.scitotenv.2004.07.019
– ident: e_1_2_6_40_1
  doi: 10.1016/S0048-9697(01)00948-2
– volume: 56
  start-page: 2902
  year: 1990
  ident: e_1_2_6_26_1
  article-title: Distribution and rate of methane oxidation in sediments of the Florida Everglades
  publication-title: Applied and Environment Microbiology
  doi: 10.1128/aem.56.9.2902-2911.1990
  contributor:
    fullname: King G.M.
– ident: e_1_2_6_4_1
  doi: 10.4319/lo.1987.32.3.0716
– ident: e_1_2_6_34_1
  doi: 10.1023/A:1025413721647
– ident: e_1_2_6_18_1
  doi: 10.1016/j.aquabot.2004.10.003
– ident: e_1_2_6_22_1
  doi: 10.1002/hyp.5657
– ident: e_1_2_6_7_1
  doi: 10.1038/nature04038
– ident: e_1_2_6_14_1
  doi: 10.1016/0304-3770(76)90007-3
– ident: e_1_2_6_5_1
  doi: 10.4319/lo.1999.44.6.1530
– ident: e_1_2_6_10_1
  doi: 10.1191/0309133302pp324ra
– start-page: 98
  volume-title: Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents
  year: 2002
  ident: e_1_2_6_11_1
  contributor:
    fullname: Coplen T.B.
– start-page: 78
  volume-title: The State of England's Chalk Rivers
  year: 2004
  ident: e_1_2_6_16_1
  contributor:
    fullname: Environment Agency
– ident: e_1_2_6_31_1
  doi: 10.4319/lom.2006.4.142
– ident: e_1_2_6_29_1
  doi: 10.1016/0038-0717(95)00018-A
– ident: e_1_2_6_30_1
  doi: 10.1046/j.1365-2427.1999.444495.x
– ident: e_1_2_6_37_1
  doi: 10.1080/0790062042000248565
– ident: e_1_2_6_27_1
  doi: 10.1016/S0048-9697(01)00937-8
– ident: e_1_2_6_38_1
  doi: 10.1038/364794a0
– ident: e_1_2_6_28_1
  doi: 10.1002/(SICI)1099-1085(19970315)11:3<253::AID-HYP439>3.0.CO;2-J
– ident: e_1_2_6_36_1
  doi: 10.1016/j.jhydrol.2006.04.034
– ident: e_1_2_6_35_1
  doi: 10.1016/j.jhydrol.2006.04.015
– ident: e_1_2_6_17_1
  doi: 10.4319/lo.1995.40.1.0159
– ident: e_1_2_6_20_1
  doi: 10.1023/A:1006427712846
– ident: e_1_2_6_8_1
  doi: 10.4319/lo.1992.37.7.1420
– ident: e_1_2_6_12_1
  doi: 10.1016/j.geomorph.2006.01.010
– ident: e_1_2_6_33_1
  doi: 10.1002/(SICI)1099-1085(19990228)13:3<323::AID-HYP741>3.0.CO;2-K
– ident: e_1_2_6_6_1
  doi: 10.1016/S0045-6535(03)00571-X
– ident: e_1_2_6_9_1
  doi: 10.1023/A:1016067610783
SSID ssj0008572
Score 2.2404692
Snippet 1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane...
Summary 1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane...
Observation that, emission of methane from chalk streams has potential implications for agricultural practices, is made. Chalk streams are characterized by...
SourceID proquest
crossref
wiley
istex
fao
SourceType Aggregation Database
Publisher
StartPage 1176
SubjectTerms ecosystem function
erosion
Freshwater
land use
methane
Ranunculus
Ranunculus penicillatus
sediment
sediments
soil erosion
Title Emission of methane from chalk streams has potential implications for agricultural practices
URI https://api.istex.fr/ark:/67375/WNG-5HNBDQ9J-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2427.2007.01745.x
https://search.proquest.com/docview/14822871
https://search.proquest.com/docview/1560132220
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA66IIjgXbbrLYL41qFt2qZ9dN0Zh30Y8TLuPgjh5ObKuO0ynYHVX-85vYwzoiDiWx7atDk5Sb6TfOcLY89LY0RSmizMI1uGqdc2BG1wMjTG5oXJtfYt22KWT-fp8Wl22vOfKBem04fYbLjRyGjnaxrgoJvdQd4ytNJE9kqECK6zEeHJWEhidx29-6kkVWSyEw5P8xAhULRL6vltRTsr1VUPNeJXMv3lDhjdhrTtmjS5xRZDazoqymK0XumR-f6L0OP_ae5tdrOHrvxl52t32BVX3WXXusssv2FpbPrSjTfGQdVrYd9jn8boS7Qpx2vP6cZqqByntBZuzuDrglO6Cpw3_AwaflGviL6En_myRXXniKw5fF5udEL4kNzV3GfzyfjDq2nYX-oQGsQ-WShSazWUNnMYe4vcCpsWNgYrNMSxtCAjh4EtxEkEvqAEwLz0YKy10jiEsol4wPaqunL7jBfCFz6NhEZMlsYgwJQIL7XxwkmXCRuweOhAddFpd6itmAfNqcicdBOnVK051WXA9rGnFTWpUfP3CR3sRgiRcWIM2Iu2-zd1wXJBtDiZqZPZa5VNZ4dHb8tj9TFgTwf_UGhgOoFBw9brRpHoKoWoAXv2pycoQqbTryhgeesPf_3ranJySKWDf33xIbs-sCGj-BHbWy3X7jFCrpV-0g6mH4J5G_o
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB5BEQIhcaOaq4uEeHNke30-UpoQSgkCGtoHpNWeFKXYVZxIhV_PjI-QIJAQ4m0f7LV3dmb3m92ZbwCeFlrzqNCJnwam8GOnjC-VxsVQa5PmOlXKNdEWk3Q8jfePk-OuHBDlwrT8EKsDN7KMZr0mA6cD6U0rb0K04ijrqAgRXScDBJSX0Po51XHYe_-TSypPspY6PE59BEHBZljPb3va2KsuOlkhgiXhn2_A0XVQ2-xKoxtw2o-nDUaZDZYLNdDff6F6_E8DvgnXO_TKnrfqdgsu2PI2XG7rWX7D1lB3rWtvtZVlR4d9Bz4NUZ3oXI5VjlHRallaRpktTJ_I0xmjjBX5tWYnsmZn1YIimPAzX9ai3RmCayY_z1dUIazP76rvwnQ0PHwx9ru6Dr5G-JP4PDZGycIkFt1vnhpu4tyE0nAlwzAzMgss-rYyjALpcsoBTAsntTEm0xbRbMTvwVZZlXYbWM5d7uKAK4RlcSi51AUiTKUdt5lNuPEg7GdQnLX0HWLN7UFxChInFePMRCNOce7BNk61oCHVYvohorvdAFEyro0ePGvmf9WXnM8oMi5LxNHkpUjGk929d8W--OjBTq8gAgVMlzAo2GpZC-JdJS_Vgyd_eoKcZLoACzxIG4X4618Xo6Ndat3_1xd34Mr48M2BOHg1ef0ArvbBkUH4ELYW86V9hAhsoR43lvUDQM8gEg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwEB7BIhBC4kYbrjUS4i1VEud8ZNmWsqBylt2HlSyfLCokVdNKC7-emRylRSAhxJsfEicej-1v7G8-AzwutOZRoRM_DUzhx04ZXyqNk6HWJs11qpRr2BaTdDyND4-T447_RLkwrT7EesONRkYzX9MAnxu3PcgbhlYcZZ0SIYLrZIB48kKcIhAmgPTup5RUnmStcnic-oiBgm1Wz29r2lqqzjtZIYAl259todFNTNssSqNrMOub03JRZoPVUg3091-UHv9Pe6_D1Q67sqets92Ac7a8CRfb2yy_YWmou9KV19rKshPDvgUnQ3Qm2pVjlWN0ZbUsLaO8FqZP5ZcZo3wV-bVmp7Jm82pJ_CX8zOcNrjtDaM3kp8VaKIT12V31bZiOhh-ejf3uVgdfI_hJfB4bo2RhEovBN08NN3FuQmm4kmGYGZkFFiNbGUaBdDllAKaFk9oYk2mLWDbid2CnrEq7CyznLndxwBWCsjiUXOoC8aXSjtvMJtx4EPYdKOateIfYCHrQnILMSVdxZqIxpzjzYBd7WlCTajF9H9HJboAYGWdGD5403b-uSy5mxIvLEnE0eS6S8WT_4G1xKD56sNf7h0AD0xEMGrZa1YJUVylG9eDRn56gEJmOvwIP0sYf_vrXxehon0p3__XFPbj05mAkXr2YvLwHl3tmZBDeh53lYmUfIPxaqofNuPoBsmIewQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emission+of+methane+from+chalk+streams+has+potential+implications+for+agricultural+practices&rft.jtitle=Freshwater+biology&rft.au=SANDERS%2C+I.A&rft.au=HEPPELL%2C+C.M&rft.au=COTTON%2C+J.A&rft.au=WHARTON%2C+G&rft.date=2007-06-01&rft.pub=Oxford%2C+UK+%3A+Blackwell+Publishing+Ltd&rft.issn=0046-5070&rft.eissn=1365-2427&rft.volume=52&rft.issue=6&rft.spage=1176&rft.epage=1186&rft_id=info:doi/10.1111%2Fj.1365-2427.2007.01745.x&rft.externalDocID=US201300774703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0046-5070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0046-5070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0046-5070&client=summon