Emission of methane from chalk streams has potential implications for agricultural practices
1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane production from a southern English chalk stream, where increased sedimentation, compounded by extensive macrophyte growth, may have altered ecosystem...
Saved in:
Published in | Freshwater biology Vol. 52; no. 6; pp. 1176 - 1186 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.06.2007
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane production from a southern English chalk stream, where increased sedimentation, compounded by extensive macrophyte growth, may have altered ecosystem function. 2. Cover of the channel by the dominant macrophyte, Ranunculus penicillatus, peaked in August, when plant beds were associated with low water velocity and the accumulation of sediment (<2000 μm) dominated by the sand-sized fraction (63-1000 μm). 3. Over spring and summer there was a marked increase in the silt/clay fraction of the sediment, a concomitant drop in mean particle size and, hence, inferred permeability. At the same time there was an increase in CH₄ transport through Ranunculus stems and an increase in water column CH₄ concentration, while the sediment CH₄ concentration increased 100-fold between February and April. A marked seasonal enrichment in the δ¹⁵N of N₂ dissolved in the pore water correlated with CH₄ flux and, coupled to the shift in particle size, suggested a transient input of organic matter, possibly of terrestrial origin. 4. Potential areal methane production and measured efflux were similar to that from some U.K. peatlands and represent one of the first accounts of significant methanogenesis to be measured in a stream channel. Most (>90%) of the methane flux is transported to the atmosphere through the Ranunculus stems. 5. Although the total flux of methane from U.K. chalk streams is probably relatively modest (estimated at 3.2 x 10⁻⁶ Tg CH₄ year⁻¹), this phenomenon changes our perception of the health of these ecosystems and indicates another deleterious side effect of agriculture. |
---|---|
AbstractList | 1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane production from a southern English chalk stream, where increased sedimentation, compounded by extensive macrophyte growth, may have altered ecosystem function. 2. Cover of the channel by the dominant macrophyte, Ranunculus penicillatus, peaked in August, when plant beds were associated with low water velocity and the accumulation of sediment (<2000 μm) dominated by the sand-sized fraction (63-1000 μm). 3. Over spring and summer there was a marked increase in the silt/clay fraction of the sediment, a concomitant drop in mean particle size and, hence, inferred permeability. At the same time there was an increase in CH₄ transport through Ranunculus stems and an increase in water column CH₄ concentration, while the sediment CH₄ concentration increased 100-fold between February and April. A marked seasonal enrichment in the δ¹⁵N of N₂ dissolved in the pore water correlated with CH₄ flux and, coupled to the shift in particle size, suggested a transient input of organic matter, possibly of terrestrial origin. 4. Potential areal methane production and measured efflux were similar to that from some U.K. peatlands and represent one of the first accounts of significant methanogenesis to be measured in a stream channel. Most (>90%) of the methane flux is transported to the atmosphere through the Ranunculus stems. 5. Although the total flux of methane from U.K. chalk streams is probably relatively modest (estimated at 3.2 x 10⁻⁶ Tg CH₄ year⁻¹), this phenomenon changes our perception of the health of these ecosystems and indicates another deleterious side effect of agriculture. Observation that, emission of methane from chalk streams has potential implications for agricultural practices, is made. Chalk streams are characterized by abundant growth of the dominant aquatic macrophyte Ranunculus spp. Chalk streams represent only a small source of methane to the atmosphere and account for >0.05% of total U.K. emissions, although any repeat of this process in agricultural streams and rivers more generally will increase these estimates. It seems possible that the transfer of soil organic matter from the catchment surface to the river system, and its biogeochemical consequences, has given rise to a hitherto unquantified deleterious side effect of agriculture, beyond well-known fertilizer enrichment, pesticide/herbicide application and losses in biodiversity. Summary 1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane production from a southern English chalk stream, where increased sedimentation, compounded by extensive macrophyte growth, may have altered ecosystem function. 2. Cover of the channel by the dominant macrophyte, Ranunculus penicillatus, peaked in August, when plant beds were associated with low water velocity and the accumulation of sediment (<2000 μ m) dominated by the sand‐sized fraction (63–1000 μ m). 3. Over spring and summer there was a marked increase in the silt/clay fraction of the sediment, a concomitant drop in mean particle size and, hence, inferred permeability. At the same time there was an increase in CH 4 transport through Ranunculus stems and an increase in water column CH 4 concentration, while the sediment CH 4 concentration increased 100‐fold between February and April. A marked seasonal enrichment in the δ 15 N of N 2 dissolved in the pore water correlated with CH 4 flux and, coupled to the shift in particle size, suggested a transient input of organic matter, possibly of terrestrial origin. 4. Potential areal methane production and measured efflux were similar to that from some U.K. peatlands and represent one of the first accounts of significant methanogenesis to be measured in a stream channel. Most (>90%) of the methane flux is transported to the atmosphere through the Ranunculus stems. 5. Although the total flux of methane from U.K. chalk streams is probably relatively modest (estimated at 3.2 × 10 −6 Tg CH 4 year −1 ), this phenomenon changes our perception of the health of these ecosystems and indicates another deleterious side effect of agriculture. 1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane production from a southern English chalk stream, where increased sedimentation, compounded by extensive macrophyte growth, may have altered ecosystem function. 2. Cover of the channel by the dominant macrophyte, Ranunculus penicillatus, peaked in August, when plant beds were associated with low water velocity and the accumulation of sediment (<2000 mu m) dominated by the sand-sized fraction (63-1000 mu m). 3. Over spring and summer there was a marked increase in the silt/clay fraction of the sediment, a concomitant drop in mean particle size and, hence, inferred permeability. At the same time there was an increase in CH sub(4) transport through Ranunculus stems and an increase in water column CH sub(4) concentration, while the sediment CH sub(4) concentration increased 100-fold between February and April. A marked seasonal enrichment in the delta super(15)N of N sub(2) dissolved in the pore water correlated with CH sub(4) flux and, coupled to the shift in particle size, suggested a transient input of organic matter, possibly of terrestrial origin. 4. Potential areal methane production and measured efflux were similar to that from some U.K. peatlands and represent one of the first accounts of significant methanogenesis to be measured in a stream channel. Most (>90%) of the methane flux is transported to the atmosphere through the Ranunculus stems. 5. Although the total flux of methane from U.K. chalk streams is probably relatively modest (estimated at 3.210 super(-6) Tg CH sub(4)year super(-1)) , this phenomenon changes our perception of the health of these ecosystems and indicates another deleterious side effect of agriculture. Summary 1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane production from a southern English chalk stream, where increased sedimentation, compounded by extensive macrophyte growth, may have altered ecosystem function. 2. Cover of the channel by the dominant macrophyte, Ranunculus penicillatus, peaked in August, when plant beds were associated with low water velocity and the accumulation of sediment (<2000 μm) dominated by the sand‐sized fraction (63–1000 μm). 3. Over spring and summer there was a marked increase in the silt/clay fraction of the sediment, a concomitant drop in mean particle size and, hence, inferred permeability. At the same time there was an increase in CH4 transport through Ranunculus stems and an increase in water column CH4 concentration, while the sediment CH4 concentration increased 100‐fold between February and April. A marked seasonal enrichment in the δ15N of N2 dissolved in the pore water correlated with CH4 flux and, coupled to the shift in particle size, suggested a transient input of organic matter, possibly of terrestrial origin. 4. Potential areal methane production and measured efflux were similar to that from some U.K. peatlands and represent one of the first accounts of significant methanogenesis to be measured in a stream channel. Most (>90%) of the methane flux is transported to the atmosphere through the Ranunculus stems. 5. Although the total flux of methane from U.K. chalk streams is probably relatively modest (estimated at 3.2 × 10−6 Tg CH4 year−1), this phenomenon changes our perception of the health of these ecosystems and indicates another deleterious side effect of agriculture. |
Author | FLOWERS, E. J. HILDREW, A. G. COTTON, J. A. WHARTON, G. TRIMMER, M. SANDERS, I. A. HEPPELL, C. M. |
Author_xml | – sequence: 1 fullname: SANDERS, I.A – sequence: 2 fullname: HEPPELL, C.M – sequence: 3 fullname: COTTON, J.A – sequence: 4 fullname: WHARTON, G – sequence: 5 fullname: HILDREW, A.G – sequence: 6 fullname: FLOWERS, E.J – sequence: 7 fullname: TRIMMER, M |
BookMark | eNqNkc1u1DAUhS3USkxbngGvEJsE_8Sxs2BBS3-oqiIEpRsk69Z2GE-TONgZMX17HFJ1WdUbW7rfd6VzfID2hjA4hDAlJc3nw6akvBYFq5gsGSGyJFRWoty9QqunwR5aEVLVhSCSvEYHKW0IIUpItkK_Tnufkg8DDi3u3bSGweE2hh6bNXT3OE3RQZ_wGhIew-SGyUOHfT923sCUvYTbEDH8jt5su2kb83SMYCZvXDpC-y10yb15vA_Rzdnpj5OL4urr-ZeTT1eFqXgjCl5ZeweNFU4pxWvLbaUsBcvvgFJpQRLXSAWUEWgVbRpVNy0Ya600rqE144fo_bJ3jOHP1qVJ51DGdV0OE7ZJU1ETyhljJKPvnkcrxZiSNINqAU0MKUXX6jH6HuKDpkTPzeuNngvWc8F6bl7_b17vsvpxUf_6zj282NNnt8fzK_vF4vs0ud2TD_Fe15JLoW-vz7W4uD7-_K251D8z_3bhWwh6_omkb76znDgvl5UknP8Duq2lLA |
CitedBy_id | crossref_primary_10_1007_s00284_014_0659_8 crossref_primary_10_1016_j_scitotenv_2024_173228 crossref_primary_10_1371_journal_pone_0080804 crossref_primary_10_1016_j_scitotenv_2011_10_074 crossref_primary_10_1002_lno_11943 crossref_primary_10_1016_j_jhydrol_2022_129053 crossref_primary_10_1371_journal_pone_0111392 crossref_primary_10_1016_j_aquabot_2022_103547 crossref_primary_10_1016_j_watres_2022_119251 crossref_primary_10_1016_j_anaerobe_2014_11_009 crossref_primary_10_1016_j_limno_2019_125716 crossref_primary_10_1021_acs_est_8b04243 crossref_primary_10_1038_ismej_2017_6 crossref_primary_10_1002_rra_1486 crossref_primary_10_1016_j_gecco_2022_e02213 crossref_primary_10_1002_lno_10569 crossref_primary_10_1016_j_scitotenv_2020_144582 crossref_primary_10_1038_s41558_020_0824_y crossref_primary_10_1002_eco_2498 crossref_primary_10_5194_bg_19_137_2022 crossref_primary_10_5194_essd_15_2879_2023 crossref_primary_10_1111_j_1365_2486_2010_02289_x crossref_primary_10_1111_gcb_12614 crossref_primary_10_1016_j_orggeochem_2024_104754 crossref_primary_10_1016_j_scitotenv_2017_01_163 crossref_primary_10_1002_lno_10346 crossref_primary_10_1098_rspb_2013_2854 crossref_primary_10_1111_j_1365_2427_2009_02352_x crossref_primary_10_1002_hyp_7276 crossref_primary_10_1016_j_watres_2022_119043 crossref_primary_10_1002_hyp_7283 crossref_primary_10_1029_2021JG006313 crossref_primary_10_3389_fmicb_2015_00506 crossref_primary_10_1890_15_1330 crossref_primary_10_1038_ismej_2015_98 crossref_primary_10_1002_clen_201300982 crossref_primary_10_1007_s11270_007_9532_8 crossref_primary_10_1016_j_jhydrol_2019_01_008 crossref_primary_10_1016_j_aquabot_2023_103645 crossref_primary_10_1016_j_advwatres_2010_09_014 crossref_primary_10_1016_j_scitotenv_2019_06_317 crossref_primary_10_1016_j_earscirev_2011_01_008 crossref_primary_10_5194_bg_14_2267_2017 crossref_primary_10_3389_fenvs_2021_791305 crossref_primary_10_1007_s11270_016_3131_5 crossref_primary_10_1093_femsec_fiw116 crossref_primary_10_1016_j_tplants_2013_12_005 crossref_primary_10_1016_j_aquabot_2022_103527 crossref_primary_10_1111_jawr_12204 crossref_primary_10_1007_s00027_011_0199_2 crossref_primary_10_1007_s10750_016_3035_9 crossref_primary_10_1016_j_watres_2017_10_059 crossref_primary_10_1111_fwb_12480 crossref_primary_10_1038_nclimate3229 crossref_primary_10_3389_frwa_2023_1332968 crossref_primary_10_1007_s00442_020_04593_0 crossref_primary_10_1029_2021JG006328 crossref_primary_10_1111_j_1574_6941_2011_01266_x crossref_primary_10_1038_ncomms13451 crossref_primary_10_1111_1462_2920_15637 crossref_primary_10_1016_j_scitotenv_2014_09_083 crossref_primary_10_1890_15_1027 crossref_primary_10_1038_s41558_017_0063_z crossref_primary_10_1111_j_1365_2427_2007_01828_x crossref_primary_10_1111_j_1365_2427_2008_02081_x crossref_primary_10_3389_fmicb_2020_00771 crossref_primary_10_1016_j_marchem_2018_03_008 crossref_primary_10_1007_s10533_017_0401_2 crossref_primary_10_1021_acsestwater_3c00812 crossref_primary_10_1071_EN10042 crossref_primary_10_1021_acs_est_4c00921 crossref_primary_10_1029_2019JG005213 crossref_primary_10_1111_fwb_13614 crossref_primary_10_1016_j_scitotenv_2024_172960 crossref_primary_10_1016_j_scitotenv_2022_155123 crossref_primary_10_3389_fevo_2016_00008 crossref_primary_10_1002_eco_176 crossref_primary_10_1111_fwb_13262 crossref_primary_10_1038_s41467_018_04756_x crossref_primary_10_1016_j_ecoleng_2011_09_001 crossref_primary_10_1038_s41467_022_31559_y crossref_primary_10_1080_00222933_2021_1919776 crossref_primary_10_1016_j_scitotenv_2019_01_152 crossref_primary_10_1093_femsec_fiab130 crossref_primary_10_1007_s10533_010_9555_x crossref_primary_10_1016_j_gecco_2023_e02704 crossref_primary_10_1002_eco_86 |
Cites_doi | 10.1023/A:1005914121280 10.1128/AEM.64.3.864-870.1998 10.1007/s10533-004-8131-7 10.4319/lo.1998.43.6.1243 10.1127/0003-9136/2006/0165-0339 10.1023/A:1005929032764 10.1021/je60068a029 10.1111/j.1365-2486.2004.00888.x 10.1146/annurev.ecolsys.35.120202.110122 10.1046/j.1365-2427.1997.d01-546.x 10.1016/j.scitotenv.2004.07.019 10.1016/S0048-9697(01)00948-2 10.1128/aem.56.9.2902-2911.1990 10.4319/lo.1987.32.3.0716 10.1023/A:1025413721647 10.1016/j.aquabot.2004.10.003 10.1002/hyp.5657 10.1038/nature04038 10.1016/0304-3770(76)90007-3 10.4319/lo.1999.44.6.1530 10.1191/0309133302pp324ra 10.4319/lom.2006.4.142 10.1016/0038-0717(95)00018-A 10.1046/j.1365-2427.1999.444495.x 10.1080/0790062042000248565 10.1016/S0048-9697(01)00937-8 10.1038/364794a0 10.1002/(SICI)1099-1085(19970315)11:3<253::AID-HYP439>3.0.CO;2-J 10.1016/j.jhydrol.2006.04.034 10.1016/j.jhydrol.2006.04.015 10.4319/lo.1995.40.1.0159 10.1023/A:1006427712846 10.4319/lo.1992.37.7.1420 10.1016/j.geomorph.2006.01.010 10.1002/(SICI)1099-1085(19990228)13:3<323::AID-HYP741>3.0.CO;2-K 10.1016/S0045-6535(03)00571-X 10.1023/A:1016067610783 |
ContentType | Journal Article |
DBID | FBQ BSCLL AAYXX CITATION 7ST C1K SOI 7QH 7SN 7UA F1W H95 L.G |
DOI | 10.1111/j.1365-2427.2007.01745.x |
DatabaseName | AGRIS Istex CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Aqualine Ecology Abstracts Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aqualine Water Resources Abstracts |
DatabaseTitleList | Environment Abstracts CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Oceanography |
EISSN | 1365-2427 |
EndPage | 1186 |
ExternalDocumentID | 10_1111_j_1365_2427_2007_01745_x FWB1745 ark_67375_WNG_5HNBDQ9J_V US201300774703 |
Genre | article |
GroupedDBID | -~X ..I .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29H 31~ 33P 3SF 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPTK ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFMIJ AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QZG R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TWZ UB1 VH1 W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT YZZ ZCG ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAYXX CITATION 7ST C1K SOI 7QH 7SN 7UA F1W H95 L.G |
ID | FETCH-LOGICAL-c4395-34ddba9d5e88836d3d48d1ad3ba117da70e978a120af8199869facddd7ce91623 |
IEDL.DBID | DR2 |
ISSN | 0046-5070 |
IngestDate | Fri Aug 16 02:12:05 EDT 2024 Sat Aug 17 02:11:47 EDT 2024 Fri Aug 23 00:58:47 EDT 2024 Sat Aug 24 01:06:04 EDT 2024 Wed Oct 30 09:51:02 EDT 2024 Wed Dec 27 19:18:57 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4395-34ddba9d5e88836d3d48d1ad3ba117da70e978a120af8199869facddd7ce91623 |
Notes | http://dx.doi.org/10.1111/j.1365-2427.2007.01745.x ArticleID:FWB1745 ark:/67375/WNG-5HNBDQ9J-V istex:3D659EE3A8566DF85066EFF6B9AFB7696EBA70AA ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 14822871 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1560132220 proquest_miscellaneous_14822871 crossref_primary_10_1111_j_1365_2427_2007_01745_x wiley_primary_10_1111_j_1365_2427_2007_01745_x_FWB1745 istex_primary_ark_67375_WNG_5HNBDQ9J_V fao_agris_US201300774703 |
PublicationCentury | 2000 |
PublicationDate | June 2007 |
PublicationDateYYYYMMDD | 2007-06-01 |
PublicationDate_xml | – month: 06 year: 2007 text: June 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK |
PublicationTitle | Freshwater biology |
PublicationYear | 2007 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
References | Wharton G., Cotton J.A., Wotton R. S., Bass J.A.B., Heppell C.M., Trimmer M., Sanders I.A. & Warren L.L. (2006) Macrophytes and suspension-feeding invertebrates modify flows and fine sediments in the Frome and Piddle catchments, Dorset (UK). Journal of Hydrology, 330, 171-184. Gooddy D.C. & Darling W.G. (2005) The potential for methane emissions from groundwaters of the UK. Science of the Total Environment, 339, 117-126. Jones J.B. & Mulholland P.J. (1998a) Influence of drainage topography and elevation on carbon dioxide and methane supersaturation of stream water. Biogeochemistry, 40, 57-72. Brix H., Sorrel B.K. & Orr P.T. (1992) Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnology & Oceanography, 37, 1420-1433. Mainstone C.P. & Parr W. (2002) Phosphorus in rivers - ecology and management. Science of the Total Environment, 282, 25-47. Wheater H.S. & Peach D. (2004) Developing interdisciplinary science for integrated catchment management: the UK LOwland CAtchment Research (LOCAR) Programme. Water Research Development, 20, 369-385. Cotton J.A., Wharton G., Bass J.A.B., Heppell C.M. & Wotton R.S. (2006) The effects of seasonal changes to in-stream vegetation cover on patterns of flow and accumulation of sediment. Geomorphology, 77, 320-334. Findlay S. (1995) Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone. Limnology & Oceanography, 40, 159-164. Allan J.D. (2004) Landscape and riverscapes: the influence of land use on river ecosystems. Annual Reviews of Ecology, Evolution and Systematics, 35, 257-284. Clarke S.J. (2002) Vegetation growth in rivers: influences upon sediment and nutrient dynamics. Progress in Physical Geography, 26, 159-172. Yamamoto S., Alcauskas J.B. & Crozier T.E. (1976) Solubility of methane in distilled water and seawater. Journal of Chemical and Engineering Data, 21, 78-80. Bellamy P.H., Loveland P.J., Bradley R.I., Lark M.R. & Kirk G.J.D. (2005) Carbon losses from soils across England and Wales 1978-2003. Nature, 437, 245-248. Allan J.D., Ericksen D.L. & Fay J. (1997) The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology, 37, 149-161. Damgaard L.R., Revsbech N.P. & Reichardt W. (1998) Use of an oxygen-insensitive microscale biosensor for methane to measure methane concentrations profiles in a rice paddy. Applied and Environmental Microbiology, 64, 864-870. Hlaváčová E., Rulík M., Čáp L. & Mach V. (2006) Greenhouse gas (CO2, CH4, N2O) emissions to the atmosphere from a small lowland stream in Czech Republic. Archive of Hydrobiology, 165, 339-353. Segers R. (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry, 41, 23-51. Heilman M.A. & Carlton R.G. (2001) Methane oxidation associated with submersed vascular macrophytes and its impact on plant diffusive methane flux. Biogeochemistry, 52, 207-224. Nedwell D.B. & Watson A. (1995) CH4 production, oxidation and emission in a UK ombrotrophic peat bog: influence of SO from acid rain. Soil Biology & Biochemistry, 27, 893-903. Kankaala P., Käki T., Mäkelä S., Ojala A., Pajunen H. & Arvola L. (2005) Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes. Global Change Biology, 11, 145-153. Sanders I.A. & Trimmer M. (2006) In-situ application of the 15NO isotope pairing technique to measure denitrification in sediments at the surface water-groundwater interface. Limnology and Oceanography: Methods, 4, 142-152. Whiting G.J. & Chanton J.P. (1993) Primary production control of methane emission from wetlands. Nature, 364, 794-795. Sand-Jensen K. & Pedersen O. (1999) Velocity gradients and turbulence around macrophyte stands in streams. Freshwater Biology, 42, 315-328. Walling D.E. & Amos C.M. (1999) Source, storage and mobilisation of fine sediment in a chalk stream system. Hydrological Processes, 13, 323-340. King G.M., Roslev P. & Skovgaard H. (1990) Distribution and rate of methane oxidation in sediments of the Florida Everglades. Applied and Environment Microbiology, 56, 2902-2911. Bazhin N.M. (2004) Influence of plants on the methane emission from sediments. Chemosphere, 54, 209-215. Angelis M.A. de & Lilley M.D. (1987) Methane in surface waters of Oregon estuaries and rivers. Limnology & Oceanography, 32, 716-722. Walling D.E., Collins A.L. & McMellin G.K. (2003) A reconnaissance survey of the source of interstitial fine sediment recovered from salmonid spawning gravels in England and Wales. Hydrobiologia, 497, 91-108. Walling D.E., Collins A.L., Jones P.A., Leeks G.J.L. & Old G. (2006) Establishing fine-grained sediment budgets for the Pang and Lambourn LOCAR catchments, UK. Journal of Hydrology, 330, 126-141. Jones J.B. & Mulholland P.J. (1998b) Methane input and evasion in a hardwood forest stream: effects of subsurface flow from shallow and deep pathways. Limnology & Oceanography, 43, 1243-1250. Coplen T.B., Hopple J.A., Böhlke J.K. et al. (2002) Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents. US Department of the Interior - US Geological Survey, Reston, Virginia. Water-Resources Investigations Report 01-4222. pp. 98. Environment Agency (2004) The State of England's Chalk Rivers. Environment Agency, Bristol, UK, 78 pp. Wright J.F., Gunn R.J.M., Winder J.M., Wiggers R., Vowles K., Clarke R.T. & Harris I. (2002) A comparison of the macrophyte cover and macroinvertebrate fauna at three sites on the River Kennet in the mid 1970s and late 1990s. Science of the Total Environment, 282-283, 121-142. Garnet K.N., Megonigal P.J., Litchfield C. & Taylor G.E. (2005) Physiological control of leaf methane emission from wetland plants. Aquatic Botany, 81, 141-155. English Nature and Environment Agency (1999) Chalk Rivers: Nature Conservation and Management. English Nature, Peterborough, UK, 184 pp. Morrice J.A., Valett M.H., Dahm C.N. & Campana M.E. (1997) Alluvial characteristics, groundwater-surface water exchange and hydrological retention in headwater streams. Hydrological Processes, 11, 253-267. Worrall F., Harriman R., Evans C. et al. (2004) Trends in dissolved organic carbon in UK rivers and lakes. Biogeochemistry, 70, 369-402. Hope D., Palmer S.H., Billett M.F. & Dawson J.J.C. (2004) Variations in dissolved CO2 and CH4 in a first order stream and catchment: an investigation of soil-stream linkages. Hydrological Processes, 18, 3255-3275. Dawson F.H. (1976) The annual production of the aquatic macrophyte Ranunculus penicillatus var. calcareous (R. W. Butcher). Aquatic Botany, 2, 51-73. Baker M.A., Dahm C.N. & Valett M.H. (1999) Acetate retention and metabolism in the hyporheic zone of a mountain stream. Limnology & Oceanography, 44, 1530-1539. Chanton J.P., Arkebauer T.J., Harden H.R. & Verma S.B. (2002) Diel variation in lacunal CH4 and CO2 concentrations and δ13C in Phragmites australis. Biogeochemistry, 59, 287-301. 1976; 21 2002; 59 2004; 20 1987; 32 1990; 56 2006; 77 2005; 437 1976; 2 2005; 339 1999; 44 2006; 330 1999; 42 2004 2005; 81 2006; 4 1992; 37 2002 1998; 41 1998; 64 2003; 497 1999 1993; 364 2004; 54 1995; 40 2002; 26 2002; 282 2004; 70 2002; 282–283 2004; 18 1997; 11 1995; 27 1997; 37 2004; 35 1998b; 43 1999; 13 2006; 165 1998a; 40 2005; 11 2001; 52 King G.M. (e_1_2_6_26_1) 1990; 56 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 Damgaard L.R. (e_1_2_6_13_1) 1998; 64 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 English Nature and Environment Agency (e_1_2_6_15_1) 1999 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_38_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 Coplen T.B. (e_1_2_6_11_1) 2002 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 Environment Agency (e_1_2_6_16_1) 2004 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 |
References_xml | – volume: 40 start-page: 57 year: 1998a end-page: 72 article-title: Influence of drainage topography and elevation on carbon dioxide and methane supersaturation of stream water publication-title: Biogeochemistry – volume: 282–283 start-page: 121 year: 2002 end-page: 142 article-title: A comparison of the macrophyte cover and macroinvertebrate fauna at three sites on the River Kennet in the mid 1970s and late 1990s publication-title: Science of the Total Environment – volume: 40 start-page: 159 year: 1995 end-page: 164 article-title: Importance of surface‐subsurface exchange in stream ecosystems: the hyporheic zone publication-title: Limnology & Oceanography – volume: 282 start-page: 25 year: 2002 end-page: 47 article-title: Phosphorus in rivers – ecology and management publication-title: Science of the Total Environment – volume: 41 start-page: 23 year: 1998 end-page: 51 article-title: Methane production and methane consumption: a review of processes underlying wetland methane fluxes publication-title: Biogeochemistry – volume: 54 start-page: 209 year: 2004 end-page: 215 article-title: Influence of plants on the methane emission from sediments publication-title: Chemosphere – start-page: 78 year: 2004 – volume: 37 start-page: 1420 year: 1992 end-page: 1433 article-title: Internal pressurization and convective gas flow in some emergent freshwater macrophytes publication-title: Limnology & Oceanography – volume: 18 start-page: 3255 year: 2004 end-page: 3275 article-title: Variations in dissolved CO and CH in a first order stream and catchment: an investigation of soil‐stream linkages publication-title: Hydrological Processes – volume: 330 start-page: 126 year: 2006 end-page: 141 article-title: Establishing fine‐grained sediment budgets for the Pang and Lambourn LOCAR catchments, UK publication-title: Journal of Hydrology – start-page: 184 year: 1999 – volume: 364 start-page: 794 year: 1993 end-page: 795 article-title: Primary production control of methane emission from wetlands publication-title: Nature – volume: 13 start-page: 323 year: 1999 end-page: 340 article-title: Source, storage and mobilisation of fine sediment in a chalk stream system publication-title: Hydrological Processes – volume: 330 start-page: 171 year: 2006 end-page: 184 article-title: Macrophytes and suspension‐feeding invertebrates modify flows and fine sediments in the Frome and Piddle catchments, Dorset (UK) publication-title: Journal of Hydrology – volume: 77 start-page: 320 year: 2006 end-page: 334 article-title: The effects of seasonal changes to in‐stream vegetation cover on patterns of flow and accumulation of sediment publication-title: Geomorphology – volume: 165 start-page: 339 year: 2006 end-page: 353 article-title: Greenhouse gas (CO , CH , N O) emissions to the atmosphere from a small lowland stream in Czech Republic publication-title: Archive of Hydrobiology – start-page: 98 year: 2002 – volume: 81 start-page: 141 year: 2005 end-page: 155 article-title: Physiological control of leaf methane emission from wetland plants publication-title: Aquatic Botany – volume: 2 start-page: 51 year: 1976 end-page: 73 article-title: The annual production of the aquatic macrophyte var. (R. W. Butcher) publication-title: Aquatic Botany – volume: 11 start-page: 253 year: 1997 end-page: 267 article-title: Alluvial characteristics, groundwater–surface water exchange and hydrological retention in headwater streams publication-title: Hydrological Processes – volume: 59 start-page: 287 year: 2002 end-page: 301 article-title: Diel variation in lacunal CH and CO concentrations and C in publication-title: Biogeochemistry – volume: 44 start-page: 1530 year: 1999 end-page: 1539 article-title: Acetate retention and metabolism in the hyporheic zone of a mountain stream publication-title: Limnology & Oceanography – volume: 26 start-page: 159 year: 2002 end-page: 172 article-title: Vegetation growth in rivers: influences upon sediment and nutrient dynamics publication-title: Progress in Physical Geography – volume: 339 start-page: 117 year: 2005 end-page: 126 article-title: The potential for methane emissions from groundwaters of the UK publication-title: Science of the Total Environment – volume: 32 start-page: 716 year: 1987 end-page: 722 article-title: Methane in surface waters of Oregon estuaries and rivers publication-title: Limnology & Oceanography – volume: 27 start-page: 893 year: 1995 end-page: 903 article-title: CH production, oxidation and emission in a UK ombrotrophic peat bog: influence of SO from acid rain publication-title: Soil Biology & Biochemistry – volume: 43 start-page: 1243 year: 1998b end-page: 1250 article-title: Methane input and evasion in a hardwood forest stream: effects of subsurface flow from shallow and deep pathways publication-title: Limnology & Oceanography – volume: 11 start-page: 145 year: 2005 end-page: 153 article-title: Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes publication-title: Global Change Biology – volume: 37 start-page: 149 year: 1997 end-page: 161 article-title: The influence of catchment land use on stream integrity across multiple spatial scales publication-title: Freshwater Biology – volume: 21 start-page: 78 year: 1976 end-page: 80 article-title: Solubility of methane in distilled water and seawater publication-title: Journal of Chemical and Engineering Data – volume: 20 start-page: 369 year: 2004 end-page: 385 article-title: Developing interdisciplinary science for integrated catchment management: the UK LOwland CAtchment Research (LOCAR) Programme publication-title: Water Research Development – volume: 52 start-page: 207 year: 2001 end-page: 224 article-title: Methane oxidation associated with submersed vascular macrophytes and its impact on plant diffusive methane flux publication-title: Biogeochemistry – volume: 56 start-page: 2902 year: 1990 end-page: 2911 article-title: Distribution and rate of methane oxidation in sediments of the Florida Everglades publication-title: Applied and Environment Microbiology – volume: 437 start-page: 245 year: 2005 end-page: 248 article-title: Carbon losses from soils across England and Wales 1978–2003 publication-title: Nature – volume: 64 start-page: 864 year: 1998 end-page: 870 article-title: Use of an oxygen‐insensitive microscale biosensor for methane to measure methane concentrations profiles in a rice paddy publication-title: Applied and Environmental Microbiology – volume: 497 start-page: 91 year: 2003 end-page: 108 article-title: A reconnaissance survey of the source of interstitial fine sediment recovered from salmonid spawning gravels in England and Wales publication-title: Hydrobiologia – volume: 4 start-page: 142 year: 2006 end-page: 152 article-title: In‐situ application of the NO isotope pairing technique to measure denitrification in sediments at the surface water–groundwater interface publication-title: Limnology and Oceanography: Methods – volume: 70 start-page: 369 year: 2004 end-page: 402 article-title: Trends in dissolved organic carbon in UK rivers and lakes publication-title: Biogeochemistry – volume: 42 start-page: 315 year: 1999 end-page: 328 article-title: Velocity gradients and turbulence around macrophyte stands in streams publication-title: Freshwater Biology – volume: 35 start-page: 257 year: 2004 end-page: 284 article-title: Landscape and riverscapes: the influence of land use on river ecosystems publication-title: Annual Reviews of Ecology, Evolution and Systematics – start-page: 184 volume-title: Chalk Rivers: Nature Conservation and Management year: 1999 ident: e_1_2_6_15_1 contributor: fullname: English Nature and Environment Agency – ident: e_1_2_6_23_1 doi: 10.1023/A:1005914121280 – volume: 64 start-page: 864 year: 1998 ident: e_1_2_6_13_1 article-title: Use of an oxygen‐insensitive microscale biosensor for methane to measure methane concentrations profiles in a rice paddy publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.64.3.864-870.1998 contributor: fullname: Damgaard L.R. – ident: e_1_2_6_39_1 doi: 10.1007/s10533-004-8131-7 – ident: e_1_2_6_24_1 doi: 10.4319/lo.1998.43.6.1243 – ident: e_1_2_6_21_1 doi: 10.1127/0003-9136/2006/0165-0339 – ident: e_1_2_6_32_1 doi: 10.1023/A:1005929032764 – ident: e_1_2_6_41_1 doi: 10.1021/je60068a029 – ident: e_1_2_6_25_1 doi: 10.1111/j.1365-2486.2004.00888.x – ident: e_1_2_6_2_1 doi: 10.1146/annurev.ecolsys.35.120202.110122 – ident: e_1_2_6_3_1 doi: 10.1046/j.1365-2427.1997.d01-546.x – ident: e_1_2_6_19_1 doi: 10.1016/j.scitotenv.2004.07.019 – ident: e_1_2_6_40_1 doi: 10.1016/S0048-9697(01)00948-2 – volume: 56 start-page: 2902 year: 1990 ident: e_1_2_6_26_1 article-title: Distribution and rate of methane oxidation in sediments of the Florida Everglades publication-title: Applied and Environment Microbiology doi: 10.1128/aem.56.9.2902-2911.1990 contributor: fullname: King G.M. – ident: e_1_2_6_4_1 doi: 10.4319/lo.1987.32.3.0716 – ident: e_1_2_6_34_1 doi: 10.1023/A:1025413721647 – ident: e_1_2_6_18_1 doi: 10.1016/j.aquabot.2004.10.003 – ident: e_1_2_6_22_1 doi: 10.1002/hyp.5657 – ident: e_1_2_6_7_1 doi: 10.1038/nature04038 – ident: e_1_2_6_14_1 doi: 10.1016/0304-3770(76)90007-3 – ident: e_1_2_6_5_1 doi: 10.4319/lo.1999.44.6.1530 – ident: e_1_2_6_10_1 doi: 10.1191/0309133302pp324ra – start-page: 98 volume-title: Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents year: 2002 ident: e_1_2_6_11_1 contributor: fullname: Coplen T.B. – start-page: 78 volume-title: The State of England's Chalk Rivers year: 2004 ident: e_1_2_6_16_1 contributor: fullname: Environment Agency – ident: e_1_2_6_31_1 doi: 10.4319/lom.2006.4.142 – ident: e_1_2_6_29_1 doi: 10.1016/0038-0717(95)00018-A – ident: e_1_2_6_30_1 doi: 10.1046/j.1365-2427.1999.444495.x – ident: e_1_2_6_37_1 doi: 10.1080/0790062042000248565 – ident: e_1_2_6_27_1 doi: 10.1016/S0048-9697(01)00937-8 – ident: e_1_2_6_38_1 doi: 10.1038/364794a0 – ident: e_1_2_6_28_1 doi: 10.1002/(SICI)1099-1085(19970315)11:3<253::AID-HYP439>3.0.CO;2-J – ident: e_1_2_6_36_1 doi: 10.1016/j.jhydrol.2006.04.034 – ident: e_1_2_6_35_1 doi: 10.1016/j.jhydrol.2006.04.015 – ident: e_1_2_6_17_1 doi: 10.4319/lo.1995.40.1.0159 – ident: e_1_2_6_20_1 doi: 10.1023/A:1006427712846 – ident: e_1_2_6_8_1 doi: 10.4319/lo.1992.37.7.1420 – ident: e_1_2_6_12_1 doi: 10.1016/j.geomorph.2006.01.010 – ident: e_1_2_6_33_1 doi: 10.1002/(SICI)1099-1085(19990228)13:3<323::AID-HYP741>3.0.CO;2-K – ident: e_1_2_6_6_1 doi: 10.1016/S0045-6535(03)00571-X – ident: e_1_2_6_9_1 doi: 10.1023/A:1016067610783 |
SSID | ssj0008572 |
Score | 2.2404692 |
Snippet | 1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane... Summary 1. The emission of biogenic gases, particularly methane, is usually associated with wetlands rather than clean streams. Here, we investigated methane... Observation that, emission of methane from chalk streams has potential implications for agricultural practices, is made. Chalk streams are characterized by... |
SourceID | proquest crossref wiley istex fao |
SourceType | Aggregation Database Publisher |
StartPage | 1176 |
SubjectTerms | ecosystem function erosion Freshwater land use methane Ranunculus Ranunculus penicillatus sediment sediments soil erosion |
Title | Emission of methane from chalk streams has potential implications for agricultural practices |
URI | https://api.istex.fr/ark:/67375/WNG-5HNBDQ9J-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2427.2007.01745.x https://search.proquest.com/docview/14822871 https://search.proquest.com/docview/1560132220 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA66IIjgXbbrLYL41qFt2qZ9dN0Zh30Y8TLuPgjh5ObKuO0ynYHVX-85vYwzoiDiWx7atDk5Sb6TfOcLY89LY0RSmizMI1uGqdc2BG1wMjTG5oXJtfYt22KWT-fp8Wl22vOfKBem04fYbLjRyGjnaxrgoJvdQd4ytNJE9kqECK6zEeHJWEhidx29-6kkVWSyEw5P8xAhULRL6vltRTsr1VUPNeJXMv3lDhjdhrTtmjS5xRZDazoqymK0XumR-f6L0OP_ae5tdrOHrvxl52t32BVX3WXXusssv2FpbPrSjTfGQdVrYd9jn8boS7Qpx2vP6cZqqByntBZuzuDrglO6Cpw3_AwaflGviL6En_myRXXniKw5fF5udEL4kNzV3GfzyfjDq2nYX-oQGsQ-WShSazWUNnMYe4vcCpsWNgYrNMSxtCAjh4EtxEkEvqAEwLz0YKy10jiEsol4wPaqunL7jBfCFz6NhEZMlsYgwJQIL7XxwkmXCRuweOhAddFpd6itmAfNqcicdBOnVK051WXA9rGnFTWpUfP3CR3sRgiRcWIM2Iu2-zd1wXJBtDiZqZPZa5VNZ4dHb8tj9TFgTwf_UGhgOoFBw9brRpHoKoWoAXv2pycoQqbTryhgeesPf_3ranJySKWDf33xIbs-sCGj-BHbWy3X7jFCrpV-0g6mH4J5G_o |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB5BEQIhcaOaq4uEeHNke30-UpoQSgkCGtoHpNWeFKXYVZxIhV_PjI-QIJAQ4m0f7LV3dmb3m92ZbwCeFlrzqNCJnwam8GOnjC-VxsVQa5PmOlXKNdEWk3Q8jfePk-OuHBDlwrT8EKsDN7KMZr0mA6cD6U0rb0K04ijrqAgRXScDBJSX0Po51XHYe_-TSypPspY6PE59BEHBZljPb3va2KsuOlkhgiXhn2_A0XVQ2-xKoxtw2o-nDUaZDZYLNdDff6F6_E8DvgnXO_TKnrfqdgsu2PI2XG7rWX7D1lB3rWtvtZVlR4d9Bz4NUZ3oXI5VjlHRallaRpktTJ_I0xmjjBX5tWYnsmZn1YIimPAzX9ai3RmCayY_z1dUIazP76rvwnQ0PHwx9ru6Dr5G-JP4PDZGycIkFt1vnhpu4tyE0nAlwzAzMgss-rYyjALpcsoBTAsntTEm0xbRbMTvwVZZlXYbWM5d7uKAK4RlcSi51AUiTKUdt5lNuPEg7GdQnLX0HWLN7UFxChInFePMRCNOce7BNk61oCHVYvohorvdAFEyro0ePGvmf9WXnM8oMi5LxNHkpUjGk929d8W--OjBTq8gAgVMlzAo2GpZC-JdJS_Vgyd_eoKcZLoACzxIG4X4618Xo6Ndat3_1xd34Mr48M2BOHg1ef0ArvbBkUH4ELYW86V9hAhsoR43lvUDQM8gEg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwEB7BIhBC4kYbrjUS4i1VEud8ZNmWsqBylt2HlSyfLCokVdNKC7-emRylRSAhxJsfEicej-1v7G8-AzwutOZRoRM_DUzhx04ZXyqNk6HWJs11qpRr2BaTdDyND4-T447_RLkwrT7EesONRkYzX9MAnxu3PcgbhlYcZZ0SIYLrZIB48kKcIhAmgPTup5RUnmStcnic-oiBgm1Wz29r2lqqzjtZIYAl259todFNTNssSqNrMOub03JRZoPVUg3091-UHv9Pe6_D1Q67sqets92Ac7a8CRfb2yy_YWmou9KV19rKshPDvgUnQ3Qm2pVjlWN0ZbUsLaO8FqZP5ZcZo3wV-bVmp7Jm82pJ_CX8zOcNrjtDaM3kp8VaKIT12V31bZiOhh-ejf3uVgdfI_hJfB4bo2RhEovBN08NN3FuQmm4kmGYGZkFFiNbGUaBdDllAKaFk9oYk2mLWDbid2CnrEq7CyznLndxwBWCsjiUXOoC8aXSjtvMJtx4EPYdKOateIfYCHrQnILMSVdxZqIxpzjzYBd7WlCTajF9H9HJboAYGWdGD5403b-uSy5mxIvLEnE0eS6S8WT_4G1xKD56sNf7h0AD0xEMGrZa1YJUVylG9eDRn56gEJmOvwIP0sYf_vrXxehon0p3__XFPbj05mAkXr2YvLwHl3tmZBDeh53lYmUfIPxaqofNuPoBsmIewQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emission+of+methane+from+chalk+streams+has+potential+implications+for+agricultural+practices&rft.jtitle=Freshwater+biology&rft.au=SANDERS%2C+I.A&rft.au=HEPPELL%2C+C.M&rft.au=COTTON%2C+J.A&rft.au=WHARTON%2C+G&rft.date=2007-06-01&rft.pub=Oxford%2C+UK+%3A+Blackwell+Publishing+Ltd&rft.issn=0046-5070&rft.eissn=1365-2427&rft.volume=52&rft.issue=6&rft.spage=1176&rft.epage=1186&rft_id=info:doi/10.1111%2Fj.1365-2427.2007.01745.x&rft.externalDocID=US201300774703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0046-5070&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0046-5070&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0046-5070&client=summon |