An Ultrastrong and Highly Stretchable Polyurethane Elastomer Enabled by a Zipper‐Like Ring‐Sliding Effect

Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical strength and stretchability. For example, partially replacing strong covalent crosslinking by weak sacrificial bonds can enhance the stretchabil...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 23; pp. e2000345 - n/a
Main Authors Shi, Chen‐Yu, Zhang, Qi, Yu, Cheng‐Yuan, Rao, Si‐Jia, Yang, Shun, Tian, He, Qu, Da‐Hui
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2020
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202000345

Cover

Loading…
Abstract Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical strength and stretchability. For example, partially replacing strong covalent crosslinking by weak sacrificial bonds can enhance the stretchability but also usually decreases the mechanical strength. To surmount this inherent tradeoff, a supramolecular strategy of introducing a zipper‐like sliding‐ring mechanism in a hydrogen‐bond‐crosslinked polyurethane network is proposed. A very small amount (0.5 mol%) of an external additive (pseudo[2]rotaxane crosslinker) can dramatically increase both the mechanical strength and elongation of this polyurethane network by nearly one order of magnitude. Based on the investigation of the relationship between molecular structure and mechanical properties, this enhancement is attributable to a unique molecular‐level zipper‐like ring‐sliding motion, which efficiently dissipates mechanical work in the solvent‐free network. This research not only provides a distinct and general strategy for the construction of high‐performance elastomers but also paves the way for the practical application of artificial molecular machines toward solvent‐free polyurethane networks. A molecular zipper elastomer—the combination of ring‐sliding effects and dense hydrogen‐bonding crystal domains in a dry polymer network—results in unexpectedly substantial improvements to the elastomer mechanical performance, including stretchability and strength. The mechanism is found to be the ring‐sliding motion against hydrogen‐bonding domains upon stretching, which effectively dissipates the input mechanical energy.
AbstractList Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical strength and stretchability. For example, partially replacing strong covalent crosslinking by weak sacrificial bonds can enhance the stretchability but also usually decreases the mechanical strength. To surmount this inherent tradeoff, a supramolecular strategy of introducing a zipper‐like sliding‐ring mechanism in a hydrogen‐bond‐crosslinked polyurethane network is proposed. A very small amount (0.5 mol%) of an external additive (pseudo[2]rotaxane crosslinker) can dramatically increase both the mechanical strength and elongation of this polyurethane network by nearly one order of magnitude. Based on the investigation of the relationship between molecular structure and mechanical properties, this enhancement is attributable to a unique molecular‐level zipper‐like ring‐sliding motion, which efficiently dissipates mechanical work in the solvent‐free network. This research not only provides a distinct and general strategy for the construction of high‐performance elastomers but also paves the way for the practical application of artificial molecular machines toward solvent‐free polyurethane networks.
Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical strength and stretchability. For example, partially replacing strong covalent crosslinking by weak sacrificial bonds can enhance the stretchability but also usually decreases the mechanical strength. To surmount this inherent tradeoff, a supramolecular strategy of introducing a zipper‐like sliding‐ring mechanism in a hydrogen‐bond‐crosslinked polyurethane network is proposed. A very small amount (0.5 mol%) of an external additive (pseudo[2]rotaxane crosslinker) can dramatically increase both the mechanical strength and elongation of this polyurethane network by nearly one order of magnitude. Based on the investigation of the relationship between molecular structure and mechanical properties, this enhancement is attributable to a unique molecular‐level zipper‐like ring‐sliding motion, which efficiently dissipates mechanical work in the solvent‐free network. This research not only provides a distinct and general strategy for the construction of high‐performance elastomers but also paves the way for the practical application of artificial molecular machines toward solvent‐free polyurethane networks. A molecular zipper elastomer—the combination of ring‐sliding effects and dense hydrogen‐bonding crystal domains in a dry polymer network—results in unexpectedly substantial improvements to the elastomer mechanical performance, including stretchability and strength. The mechanism is found to be the ring‐sliding motion against hydrogen‐bonding domains upon stretching, which effectively dissipates the input mechanical energy.
Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical strength and stretchability. For example, partially replacing strong covalent crosslinking by weak sacrificial bonds can enhance the stretchability but also usually decreases the mechanical strength. To surmount this inherent tradeoff, a supramolecular strategy of introducing a zipper-like sliding-ring mechanism in a hydrogen-bond-crosslinked polyurethane network is proposed. A very small amount (0.5 mol%) of an external additive (pseudo[2]rotaxane crosslinker) can dramatically increase both the mechanical strength and elongation of this polyurethane network by nearly one order of magnitude. Based on the investigation of the relationship between molecular structure and mechanical properties, this enhancement is attributable to a unique molecular-level zipper-like ring-sliding motion, which efficiently dissipates mechanical work in the solvent-free network. This research not only provides a distinct and general strategy for the construction of high-performance elastomers but also paves the way for the practical application of artificial molecular machines toward solvent-free polyurethane networks.Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical strength and stretchability. For example, partially replacing strong covalent crosslinking by weak sacrificial bonds can enhance the stretchability but also usually decreases the mechanical strength. To surmount this inherent tradeoff, a supramolecular strategy of introducing a zipper-like sliding-ring mechanism in a hydrogen-bond-crosslinked polyurethane network is proposed. A very small amount (0.5 mol%) of an external additive (pseudo[2]rotaxane crosslinker) can dramatically increase both the mechanical strength and elongation of this polyurethane network by nearly one order of magnitude. Based on the investigation of the relationship between molecular structure and mechanical properties, this enhancement is attributable to a unique molecular-level zipper-like ring-sliding motion, which efficiently dissipates mechanical work in the solvent-free network. This research not only provides a distinct and general strategy for the construction of high-performance elastomers but also paves the way for the practical application of artificial molecular machines toward solvent-free polyurethane networks.
Author Zhang, Qi
Qu, Da‐Hui
Yu, Cheng‐Yuan
Rao, Si‐Jia
Shi, Chen‐Yu
Tian, He
Yang, Shun
Author_xml – sequence: 1
  givenname: Chen‐Yu
  surname: Shi
  fullname: Shi, Chen‐Yu
  organization: East China University of Science and Technology
– sequence: 2
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
  organization: East China University of Science and Technology
– sequence: 3
  givenname: Cheng‐Yuan
  surname: Yu
  fullname: Yu, Cheng‐Yuan
  organization: East China University of Science and Technology
– sequence: 4
  givenname: Si‐Jia
  surname: Rao
  fullname: Rao, Si‐Jia
  organization: East China University of Science and Technology
– sequence: 5
  givenname: Shun
  surname: Yang
  fullname: Yang, Shun
  organization: East China University of Science and Technology
– sequence: 6
  givenname: He
  surname: Tian
  fullname: Tian, He
  organization: East China University of Science and Technology
– sequence: 7
  givenname: Da‐Hui
  orcidid: 0000-0002-2039-3564
  surname: Qu
  fullname: Qu, Da‐Hui
  email: dahui_qu@ecust.edu.cn
  organization: East China University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32350950$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQxi1URLeFK0dkiQuXbMd_Nz6uypYibQWi9MLFchJn18VxtnaiKjcegWfkSfBqW5AqIU4zo_l9o9H3naCj0AeL0GsCcwJAz0zTmTkFCgCMi2doRgQlBQcljtAMFBOFkrw8Ricp3WZGSZAv0DGjTGQEZqhbBnzjh2jSEPuwwSY0-NJttn7C10O0Q701lbf4c--nMY9bEyxe-Uz3nY14FfbbBlcTNvib2-1s_PXj59p9t_iLC5vcX3vX5A6v2tbWw0v0vDU-2VcP9RTdXKy-nl8W608fPp4v10XNmRIFsQoM8NISJZuWM7ZgrQTV5plBY6ySzFTMlNwoDqwkoKwoaU3IoqairRbsFL073N3F_m60adCdS7X1Pr_fj0lTpmQphBIyo2-foLf9GEP-TlNOCEiWHc3UmwdqrDrb6F10nYmTfjQyA_wA1LFPKdpW124wg-tD9tZ5TUDv89L7vPSfvLJs_kT2ePmfAnUQ3Dtvp__Qevn-avlX-xs3L6ga
CitedBy_id crossref_primary_10_1021_jacs_5c00108
crossref_primary_10_1002_agt2_457
crossref_primary_10_1021_acsami_1c09239
crossref_primary_10_1002_anie_202305282
crossref_primary_10_1016_j_progpolymsci_2024_101890
crossref_primary_10_1038_s41467_024_45980_y
crossref_primary_10_1002_anie_202410127
crossref_primary_10_1021_acsapm_4c00738
crossref_primary_10_1002_smll_202207409
crossref_primary_10_1021_acsapm_4c01426
crossref_primary_10_1021_acs_macromol_4c00150
crossref_primary_10_1002_adma_202005759
crossref_primary_10_1134_S156009042370121X
crossref_primary_10_1021_jacs_2c04717
crossref_primary_10_1002_anie_202214386
crossref_primary_10_1039_D1PY01625C
crossref_primary_10_1007_s11426_024_2049_0
crossref_primary_10_1021_acs_macromol_0c02139
crossref_primary_10_1002_anie_202306489
crossref_primary_10_1021_acs_iecr_0c04190
crossref_primary_10_1016_j_eurpolymj_2024_113566
crossref_primary_10_1002_ange_202302370
crossref_primary_10_1002_ange_202423578
crossref_primary_10_1002_macp_202000457
crossref_primary_10_1039_D0QO01441A
crossref_primary_10_1016_j_cej_2024_148668
crossref_primary_10_1002_agt2_109
crossref_primary_10_1021_acs_accounts_4c00006
crossref_primary_10_1021_acs_macromol_1c01914
crossref_primary_10_1039_D2CS00202G
crossref_primary_10_3390_s24103007
crossref_primary_10_1039_D1TA00902H
crossref_primary_10_1021_acs_langmuir_0c02356
crossref_primary_10_1021_acs_macromol_4c02463
crossref_primary_10_1021_acsmaterialslett_2c00847
crossref_primary_10_1021_acs_macromol_3c00178
crossref_primary_10_1002_anie_202318368
crossref_primary_10_1002_cjoc_202200287
crossref_primary_10_1039_D1TB02710G
crossref_primary_10_1002_ange_202410834
crossref_primary_10_1002_anie_202210078
crossref_primary_10_1021_acsapm_4c00451
crossref_primary_10_1039_D3MH01280H
crossref_primary_10_3390_ma15051664
crossref_primary_10_1039_D1MH00548K
crossref_primary_10_1002_adom_202202828
crossref_primary_10_1002_agt2_110
crossref_primary_10_1021_acsnano_3c06175
crossref_primary_10_1039_D0QM00360C
crossref_primary_10_1002_cplu_202400597
crossref_primary_10_1021_acs_chemmater_4c01235
crossref_primary_10_1002_ange_202309058
crossref_primary_10_1016_j_cej_2023_147823
crossref_primary_10_1021_acs_macromol_4c01269
crossref_primary_10_1002_marc_202300092
crossref_primary_10_1021_acsami_4c19537
crossref_primary_10_1002_smll_202402265
crossref_primary_10_1007_s40843_024_3025_1
crossref_primary_10_1002_macp_202400493
crossref_primary_10_1021_acs_langmuir_4c00576
crossref_primary_10_1039_D2RA05389F
crossref_primary_10_1002_ange_202210078
crossref_primary_10_1002_ange_202410127
crossref_primary_10_1039_D0PY01536A
crossref_primary_10_1002_app_54911
crossref_primary_10_1002_smm2_1012
crossref_primary_10_1021_acsmaterialslett_2c00865
crossref_primary_10_1007_s10118_024_3204_7
crossref_primary_10_1039_D2SM01215D
crossref_primary_10_1360_SSC_2023_0252
crossref_primary_10_1016_j_porgcoat_2025_109110
crossref_primary_10_1002_anie_202423029
crossref_primary_10_1021_acs_macromol_3c01688
crossref_primary_10_1002_ange_202318434
crossref_primary_10_1021_acsapm_1c00271
crossref_primary_10_1016_j_molliq_2022_120513
crossref_primary_10_1039_D2TC03822F
crossref_primary_10_1002_cjoc_202300239
crossref_primary_10_1016_j_reactfunctpolym_2025_106216
crossref_primary_10_1021_jacs_1c05923
crossref_primary_10_3389_fchem_2020_00560
crossref_primary_10_1002_ange_202105620
crossref_primary_10_1002_ange_202214386
crossref_primary_10_1002_adem_202301103
crossref_primary_10_1002_app_53279
crossref_primary_10_1002_app_55613
crossref_primary_10_1016_j_mtchem_2022_100893
crossref_primary_10_1002_anie_202411172
crossref_primary_10_1016_j_cej_2024_149694
crossref_primary_10_1002_adma_202300286
crossref_primary_10_1002_anie_202302370
crossref_primary_10_1038_s41578_021_00278_z
crossref_primary_10_1007_s11998_021_00476_y
crossref_primary_10_1002_ange_202423029
crossref_primary_10_1016_j_polymer_2024_126842
crossref_primary_10_1021_acs_macromol_3c01875
crossref_primary_10_1021_jacs_1c10427
crossref_primary_10_1039_D2PY00061J
crossref_primary_10_1088_2631_7990_ad9fbb
crossref_primary_10_1039_D4SC02089H
crossref_primary_10_1002_anie_202318434
crossref_primary_10_1002_app_55509
crossref_primary_10_1021_acs_nanolett_2c04667
crossref_primary_10_1039_D4MH00648H
crossref_primary_10_1002_anie_202105620
crossref_primary_10_1016_j_apmate_2022_100036
crossref_primary_10_1016_j_cej_2023_146393
crossref_primary_10_1039_D1PY01536B
crossref_primary_10_1002_adfm_202103061
crossref_primary_10_1016_j_cej_2025_160222
crossref_primary_10_1038_s41467_022_34286_6
crossref_primary_10_1016_j_indcrop_2024_119355
crossref_primary_10_1002_anie_202309058
crossref_primary_10_1016_j_progpolymsci_2024_101854
crossref_primary_10_1016_j_mtchem_2023_101583
crossref_primary_10_1021_acsmaterialslett_1c00277
crossref_primary_10_1038_s41563_021_01124_x
crossref_primary_10_1002_adma_202212130
crossref_primary_10_1002_ange_202411172
crossref_primary_10_1016_j_polymer_2022_124896
crossref_primary_10_1002_ange_202305282
crossref_primary_10_1002_app_50582
crossref_primary_10_1039_D1PY00327E
crossref_primary_10_1007_s42114_024_01089_w
crossref_primary_10_1002_pen_26535
crossref_primary_10_1021_acsapm_3c01431
crossref_primary_10_1002_pol_20240634
crossref_primary_10_1002_adma_202311332
crossref_primary_10_1039_D4CE00771A
crossref_primary_10_1016_j_reactfunctpolym_2022_105443
crossref_primary_10_1039_D0TA11497A
crossref_primary_10_1021_acsami_3c17111
crossref_primary_10_1002_marc_202200486
crossref_primary_10_1002_adma_202401711
crossref_primary_10_1016_j_indcrop_2024_118315
crossref_primary_10_1002_ange_202306489
crossref_primary_10_1002_marc_202200082
crossref_primary_10_3390_polym12061393
crossref_primary_10_1002_marc_202100510
crossref_primary_10_1021_acsabm_3c00243
crossref_primary_10_1021_acsami_2c07202
crossref_primary_10_1021_acs_macromol_4c02437
crossref_primary_10_1002_ange_202318368
crossref_primary_10_1002_anie_202423578
crossref_primary_10_1016_j_cej_2022_138673
crossref_primary_10_1039_D2QM00259K
crossref_primary_10_1016_j_ccr_2021_214039
crossref_primary_10_1016_j_polymer_2024_127279
crossref_primary_10_1016_j_cej_2021_133260
crossref_primary_10_1021_acsami_4c11724
crossref_primary_10_1002_ange_202402394
crossref_primary_10_1016_j_compscitech_2023_109937
crossref_primary_10_2324_gomu_97_287
crossref_primary_10_1039_D0PY01556C
crossref_primary_10_1016_j_fmre_2022_04_007
crossref_primary_10_1002_adfm_202501171
crossref_primary_10_1142_S1758825124410023
crossref_primary_10_1021_acsami_5c03828
crossref_primary_10_1016_j_progpolymsci_2021_101486
crossref_primary_10_1021_acs_chemrev_3c00498
crossref_primary_10_1039_D3TC03496H
crossref_primary_10_1016_j_porgcoat_2022_107398
crossref_primary_10_1002_anie_202410834
crossref_primary_10_1021_acsami_4c10805
crossref_primary_10_1021_acsapm_1c00199
crossref_primary_10_1002_anie_202402394
crossref_primary_10_1039_D2QM00343K
crossref_primary_10_1016_j_foodhyd_2024_110595
crossref_primary_10_1016_j_cej_2022_140889
crossref_primary_10_3389_felec_2024_1240603
crossref_primary_10_1038_s41467_022_29141_7
crossref_primary_10_1039_D3ME00068K
crossref_primary_10_1016_j_tet_2021_132284
crossref_primary_10_1002_adma_202101498
crossref_primary_10_1002_adma_202212112
crossref_primary_10_1021_acs_inorgchem_0c02558
Cites_doi 10.1002/adfm.201805924
10.1038/nature18013
10.1021/acsami.9b13349
10.1016/j.polymer.2017.02.090
10.1039/C7CC05008A
10.1126/science.aal4373
10.1039/C7SC03232C
10.1021/acscentsci.9b00173
10.1295/polymj.PJ2006239
10.1021/acs.biomac.6b01298
10.1016/j.chempr.2018.08.030
10.1021/acs.macromol.7b00797
10.1039/C9CC01660K
10.1021/ma400407a
10.1002/adma.201605325
10.1126/scitranslmed.aau8581
10.1126/science.aao0350
10.1016/j.polymer.2017.01.024
10.1021/jacs.7b12405
10.1038/nature07970
10.1002/anie.201805206
10.1021/acsmacrolett.5b00242
10.1063/1.5020325
10.1002/chem.201204402
10.1038/nchem.2513
10.1021/acs.macromol.6b01955
10.1039/C9CS90019E
10.1002/adfm.201401886
10.1016/j.polymer.2018.05.072
10.1021/acs.accounts.8b00516
10.1126/sciadv.aat7629
10.1002/adma.201100639
10.1002/ange.201813439
10.1016/j.polymer.2014.06.045
10.1021/jacs.8b01682
10.1021/jo070030l
10.1126/sciadv.aat8192
10.1002/adma.201604951
10.1038/ncomms6124
10.1021/jacs.7b08826
10.1002/adma.201704407
10.1038/s41586-018-0185-0
10.1002/adma.201904765
10.1126/science.1248494
10.1021/jacs.7b06710
10.1002/adfm.201907139
10.1021/jacs.8b03257
10.1021/acs.macromol.7b00319
10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T
10.1021/acs.accounts.8b00500
10.1021/jacs.9b05740
10.1002/adma.201807328
10.1021/mz400197d
10.1021/ma3021135
10.1021/acs.iecr.8b03871
10.1002/adma.200304907
10.1038/s41467-019-09218-6
10.1021/jacs.9b09756
10.1002/anie.201913893
10.1002/marc.201800909
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202000345
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32350950
10_1002_adma_202000345
ADMA202000345
Genre article
Journal Article
GrantInformation_xml – fundername: Program of Shanghai Academic/Technology Research Leader
  funderid: 19XD1421100
– fundername: Shanghai Science and Technology Committee
  funderid: 17520750100
– fundername: National Natural Science Foundation of China
  funderid: 21790361; 21871084; 21672060
– fundername: Programme of Introducing Talents of Discipline to Universities
  funderid: B16017
– fundername: Fundamental Research Funds for the Central Universities
– fundername: Shanghai Municipal Science and Technology Major Project
  funderid: 2018SHZDZX03
– fundername: National Natural Science Foundation of China
  grantid: 21871084
– fundername: National Natural Science Foundation of China
  grantid: 21672060
– fundername: Programme of Introducing Talents of Discipline to Universities
  grantid: B16017
– fundername: National Natural Science Foundation of China
  grantid: 21790361
– fundername: Shanghai Municipal Science and Technology Major Project
  grantid: 2018SHZDZX03
– fundername: Shanghai Science and Technology Committee
  grantid: 17520750100
– fundername: Program of Shanghai Academic/Technology Research Leader
  grantid: 19XD1421100
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4395-1e90a048e196df43373f609fe1930dae963ab3a84a94038109e582c117c25fb73
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:16:30 EDT 2025
Fri Jul 25 04:37:05 EDT 2025
Wed Feb 19 02:30:53 EST 2025
Tue Jul 01 02:32:47 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Wed Jan 22 16:35:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords dry networks
supramolecular polymers
elastomers
ring-sliding effects
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4395-1e90a048e196df43373f609fe1930dae963ab3a84a94038109e582c117c25fb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2039-3564
PMID 32350950
PQID 2411063152
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2396855956
proquest_journals_2411063152
pubmed_primary_32350950
crossref_citationtrail_10_1002_adma_202000345
crossref_primary_10_1002_adma_202000345
wiley_primary_10_1002_adma_202000345_ADMA202000345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 39
2017; 8
2018; 140
2015; 4
2013; 2
2019; 5
2019; 31
2019; 52
2019; 11
2013; 46
2019; 55
2019; 10
2018; 147
2003; 15
2020; 59
2014; 24
2017; 29
2007; 72
2009; 459
2019; 141
2016; 17
2017; 357
2017; 358
2017; 139
2013; 19
2017; 50
2017; 53
2014; 5
2019; 40
2018; 4
2020; 30
2018; 558
2018; 112
2019; 48
2019; 29
2018; 30
2011; 23
2016; 534
2001; 13
2016; 8
2014; 55
2017; 128
2019; 131
2014; 344
2018; 57
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_60_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 19
  start-page: 5917
  year: 2013
  publication-title: Chem. ‐ Eur. J.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 2946
  year: 2011
  publication-title: Adv. Mater.
– volume: 112
  year: 2018
  publication-title: Appl. Phys. Lett.
– volume: 459
  start-page: 68
  year: 2009
  publication-title: Nature
– volume: 4
  start-page: 598
  year: 2015
  publication-title: ACS Macro Lett.
– volume: 558
  start-page: 274
  year: 2018
  publication-title: Nature
– volume: 24
  start-page: 7548
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 50
  start-page: 5695
  year: 2017
  publication-title: Macromolecules
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 4313
  year: 2014
  publication-title: Polymer
– volume: 10
  start-page: 1315
  year: 2019
  publication-title: Nat. Commun.
– volume: 15
  start-page: 1155
  year: 2003
  publication-title: Adv. Mater.
– volume: 72
  start-page: 3381
  year: 2007
  publication-title: J. Org. Chem.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 11
  year: 2019
  publication-title: Sci. Transl. Med.
– volume: 534
  start-page: 235
  year: 2016
  publication-title: Nature
– volume: 59
  start-page: 5278
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 140
  start-page: 1584
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 874
  year: 2019
  publication-title: ACS Cent. Sci.
– volume: 358
  start-page: 502
  year: 2017
  publication-title: Science
– volume: 140
  start-page: 6217
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 1431
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 485
  year: 2001
  publication-title: Adv. Mater.
– volume: 128
  start-page: 386
  year: 2017
  publication-title: Polymer
– volume: 55
  start-page: 5231
  year: 2019
  publication-title: Chem. Commun.
– volume: 52
  start-page: 316
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 53
  start-page: 8683
  year: 2017
  publication-title: Chem. Commun.
– volume: 128
  start-page: 392
  year: 2017
  publication-title: Polymer
– volume: 4
  start-page: 2670
  year: 2018
  publication-title: Chem
– volume: 131
  start-page: 2791
  year: 2019
  publication-title: Angew. Chem.
– volume: 357
  start-page: 279
  year: 2017
  publication-title: Science
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 46
  start-page: 4617
  year: 2013
  publication-title: Macromolecules
– volume: 39
  start-page: 489
  year: 2007
  publication-title: Polym. J.
– volume: 147
  start-page: 67
  year: 2018
  publication-title: Polymer
– volume: 57
  year: 2018
  publication-title: Ind. Eng. Chem. Res.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 8
  start-page: 6777
  year: 2017
  publication-title: Chem. Sci.
– volume: 344
  start-page: 186
  year: 2014
  publication-title: Science
– volume: 50
  start-page: 364
  year: 2017
  publication-title: Macromolecules
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 3782
  year: 2016
  publication-title: Biomacromolecules
– volume: 46
  start-page: 310
  year: 2013
  publication-title: Macromolecules
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 140
  start-page: 5280
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 40
  year: 2019
  publication-title: Macromol. Rapid Commun.
– volume: 2
  start-page: 461
  year: 2013
  publication-title: ACS Macro Lett.
– volume: 52
  start-page: 523
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 5124
  year: 2014
  publication-title: Nat. Commun.
– volume: 50
  start-page: 3333
  year: 2017
  publication-title: Macromolecules
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 625
  year: 2016
  publication-title: Nat. Chem.
– ident: e_1_2_5_3_1
  doi: 10.1002/adfm.201805924
– ident: e_1_2_5_27_1
  doi: 10.1038/nature18013
– ident: e_1_2_5_7_1
  doi: 10.1021/acsami.9b13349
– ident: e_1_2_5_53_1
  doi: 10.1016/j.polymer.2017.02.090
– ident: e_1_2_5_28_1
  doi: 10.1039/C7CC05008A
– ident: e_1_2_5_42_1
  doi: 10.1126/science.aal4373
– ident: e_1_2_5_31_1
  doi: 10.1039/C7SC03232C
– ident: e_1_2_5_48_1
  doi: 10.1021/acscentsci.9b00173
– ident: e_1_2_5_55_1
  doi: 10.1295/polymj.PJ2006239
– ident: e_1_2_5_58_1
  doi: 10.1021/acs.biomac.6b01298
– ident: e_1_2_5_26_1
  doi: 10.1016/j.chempr.2018.08.030
– ident: e_1_2_5_51_1
  doi: 10.1021/acs.macromol.7b00797
– ident: e_1_2_5_41_1
  doi: 10.1039/C9CC01660K
– ident: e_1_2_5_45_1
  doi: 10.1021/ma400407a
– ident: e_1_2_5_23_1
  doi: 10.1002/adma.201605325
– ident: e_1_2_5_9_1
  doi: 10.1126/scitranslmed.aau8581
– ident: e_1_2_5_20_1
  doi: 10.1126/science.aao0350
– ident: e_1_2_5_38_1
  doi: 10.1016/j.polymer.2017.01.024
– ident: e_1_2_5_47_1
  doi: 10.1021/jacs.7b12405
– ident: e_1_2_5_16_1
  doi: 10.1038/nature07970
– ident: e_1_2_5_18_1
  doi: 10.1002/anie.201805206
– ident: e_1_2_5_39_1
  doi: 10.1021/acsmacrolett.5b00242
– ident: e_1_2_5_49_1
  doi: 10.1063/1.5020325
– ident: e_1_2_5_37_1
  doi: 10.1002/chem.201204402
– ident: e_1_2_5_30_1
  doi: 10.1038/nchem.2513
– ident: e_1_2_5_35_1
  doi: 10.1021/acs.macromol.6b01955
– ident: e_1_2_5_1_1
  doi: 10.1039/C9CS90019E
– ident: e_1_2_5_10_1
  doi: 10.1002/adfm.201401886
– ident: e_1_2_5_54_1
  doi: 10.1016/j.polymer.2018.05.072
– ident: e_1_2_5_6_1
  doi: 10.1021/acs.accounts.8b00516
– ident: e_1_2_5_36_1
  doi: 10.1126/sciadv.aat7629
– ident: e_1_2_5_11_1
  doi: 10.1002/adma.201100639
– ident: e_1_2_5_40_1
  doi: 10.1002/ange.201813439
– ident: e_1_2_5_52_1
  doi: 10.1016/j.polymer.2014.06.045
– ident: e_1_2_5_19_1
  doi: 10.1021/jacs.8b01682
– ident: e_1_2_5_44_1
  doi: 10.1021/jo070030l
– ident: e_1_2_5_17_1
  doi: 10.1126/sciadv.aat8192
– ident: e_1_2_5_25_1
  doi: 10.1002/adma.201604951
– ident: e_1_2_5_34_1
  doi: 10.1038/ncomms6124
– ident: e_1_2_5_14_1
  doi: 10.1021/jacs.7b08826
– ident: e_1_2_5_8_1
  doi: 10.1002/adma.201704407
– ident: e_1_2_5_5_1
  doi: 10.1038/s41586-018-0185-0
– ident: e_1_2_5_4_1
  doi: 10.1002/adma.201904765
– ident: e_1_2_5_12_1
  doi: 10.1126/science.1248494
– ident: e_1_2_5_29_1
  doi: 10.1021/jacs.7b06710
– ident: e_1_2_5_56_1
  doi: 10.1002/adfm.201907139
– ident: e_1_2_5_15_1
  doi: 10.1021/jacs.8b03257
– ident: e_1_2_5_22_1
  doi: 10.1021/acs.macromol.7b00319
– ident: e_1_2_5_32_1
  doi: 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T
– ident: e_1_2_5_2_1
  doi: 10.1021/acs.accounts.8b00500
– ident: e_1_2_5_59_1
  doi: 10.1021/jacs.9b05740
– ident: e_1_2_5_24_1
  doi: 10.1002/adma.201807328
– ident: e_1_2_5_46_1
  doi: 10.1021/mz400197d
– ident: e_1_2_5_33_1
  doi: 10.1021/ma3021135
– ident: e_1_2_5_50_1
  doi: 10.1021/acs.iecr.8b03871
– ident: e_1_2_5_13_1
  doi: 10.1002/adma.200304907
– ident: e_1_2_5_57_1
  doi: 10.1038/s41467-019-09218-6
– ident: e_1_2_5_43_1
  doi: 10.1021/jacs.9b09756
– ident: e_1_2_5_60_1
  doi: 10.1002/anie.201913893
– ident: e_1_2_5_21_1
  doi: 10.1002/marc.201800909
SSID ssj0009606
Score 2.6503966
Snippet Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2000345
SubjectTerms Bond strength
Bonding strength
Crosslinking
dry networks
Elastomers
Elongation
Materials science
Mechanical properties
Molecular machines
Molecular structure
Polyurethane resins
ring‐sliding effects
Rotaxanes
Sliding
Solvents
Stretchability
supramolecular polymers
Tradeoffs
Title An Ultrastrong and Highly Stretchable Polyurethane Elastomer Enabled by a Zipper‐Like Ring‐Sliding Effect
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000345
https://www.ncbi.nlm.nih.gov/pubmed/32350950
https://www.proquest.com/docview/2411063152
https://www.proquest.com/docview/2396855956
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYQJzi0vEpTHjJSJU6Gje117GMEQQgBqoBIqJeV1-ulEcsmSjaHcOIn8Bv5JczsJgtpVSG1N1t-rNfjsT_bM58J-Q6rXqqNEwywhmZSqYBprxVzOlBJLNNESXQUvrhUp115dhvevvPir_gh6gM31IxyvkYFt_Ho8I001CYlbxAvKVbQyxwNthAVXb3xRyE8L8n2RMiMknrG2hjww_ni86vSH1BzHrmWS8_JZ2Jnja4sTu4PxkV84B5_43P8n79aIZ-muJS2q4G0ShZ8vkaW37EVrpOHdk67WTG0Izw-v6M2TyiaiWQTinfbIH50w6I_-tlkDNFfNve0A-C86D_4Ie2UTloJjSfU0p-9wcAPX56ez3v3nl5B9RC-znq4kNKKUHmDdE86N0enbPpaA3MAakLW9CawMB940OkklUK0RKoCk0JcBIn1oOk2FlZLayReTwbGh5q7ZrPleJjGLfGFLOb93H8lNIydhkSveQrbI6k0DCdunIR6DVShGoTNpBW5KZU5vqiRRRUJM4-wG6O6Gxtkv84_qEg8_ppzeyb8aKrMowhADmycBSCdBtmrk0EN8W4F-rI_hjzCKA27sxAat1kNmvpTgguAZWHQILwU_QdtiNrHF-069u1fCm2RJQxXJm3bZLEYjv0OgKci3i0V5BUeUg-0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6C8QA8MO6UDTASEk_eUt9qP1ZbpwLthMYqIV4ix3GgWpZWXfpQnvgJ_EZ-yY6TJqMghARvcXyJY5_j8_lyPgO8QquXaeM4RayhqVAqotprRZ2OVJqILFUiOAqPj9VwIt5-lM1pwuALU_NDtAtuQTOq8TooeFiQ3r9iDbVpRRzEKo4VeR1uhGu9wyUGhydXDFIBoFd0e1xSo4RueBsjtr-Zf9Mu_QY2N7FrZXyOtiFpql2fOTnbW5bJnvv6C6Pjf_3XXbizhqakX8vSPbjmi_tw-yfCwgdw3i_IJC8X9iKsoH8mtkhJOCmSr0jY3kYJCJ5Y5P0sXy0x-MUWngwQn5ezc78gg8pPKyXJiljyaTqf-8WPb99H0zNPTrB4fP6QT4MtJTWn8kOYHA1OD4Z0fWEDdYhrJO16E1kcEjyqdZoJzns8U5HJMMyj1HpUdptwq4U1IuxQRsZLzVy323NMZkmPP4KtYlb4J0Bk4jRGes0ynCEJpVGimHECyzVYhOoAbbordms283CpRh7XPMwsDs0Yt83Ygddt-nnN4_HHlLtN78drfb6IEefg3Jkj2OnAyzYaNTFsr2BbzpaYhhulcYImsXKPa6lpP8UZR2Qmow6wqu__Uoe4fzjut6Gn_5LpBdwcno5H8ejN8bsduBXe1yfcdmGrXCz9M8RSZfK80pZLFBITzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4am4TYAzAGrDCYkZB48pb6VvuxYq0GbNM0qDTtJXIcB6pladWlD-WJn8Bv5JdwnLTZyjQhwVscX-L4-Ph8vpzPAG_R6mXaOE4Ra2gqlIqo9lpRpyOVJiJLlQiOwkfH6mAgPp7Jsxte_DU_RLPgFjSjGq-Dgo_TbO-aNNSmFW8QqyhW5D1YEwo1JsCi02sCqYDPK7Y9LqlRQi9oGyO2t5x_2SzdwprL0LWyPf1HYBe1ro-cXOxOy2TXff-D0PF_fusxPJwDU9Kte9IGrPjiCazfoCvchMtuQQZ5ObFXYf38K7FFSsI5kXxGwuY2yj_4YZGTUT6bYvCbLTzpITovR5d-QnqVl1ZKkhmx5Hw4HvvJrx8_D4cXnpxi8fj8OR8GS0pqRuWnMOj3vrw_oPPrGqhDVCNp25vI4oDgUanTTHDe4ZmKTIZhHqXWo6rbhFstrBFhfzIyXmrm2u2OYzJLOvwZrBajwm8BkYnTGOk1y3B-JJTG_sSME1iuwSJUC-hCWrGbc5mHKzXyuGZhZnFoxrhpxha8a9KPaxaPO1NuL4Qfz7X5KkaUgzNnjlCnBW-aaNTDsLmCbTmaYhpulMbpmcTKPa87TfMpzjjiMhm1gFWi_0sd4u7-UbcJvfiXTDtw_2S_Hx9-OP70Eh6E1_Xxtm1YLSdT_wqBVJm8rnTlN921EoY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ultrastrong+and+Highly+Stretchable+Polyurethane+Elastomer+Enabled+by+a+Zipper%E2%80%90Like+Ring%E2%80%90Sliding+Effect&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Chen%E2%80%90Yu&rft.au=Zhang%2C+Qi&rft.au=Yu%2C+Cheng%E2%80%90Yuan&rft.au=Rao%2C+Si%E2%80%90Jia&rft.date=2020-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202000345&rft.externalDBID=10.1002%252Fadma.202000345&rft.externalDocID=ADMA202000345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon