An Ultrastrong and Highly Stretchable Polyurethane Elastomer Enabled by a Zipper‐Like Ring‐Sliding Effect
Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical strength and stretchability. For example, partially replacing strong covalent crosslinking by weak sacrificial bonds can enhance the stretchabil...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 23; pp. e2000345 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202000345 |
Cover
Loading…
Abstract | Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical strength and stretchability. For example, partially replacing strong covalent crosslinking by weak sacrificial bonds can enhance the stretchability but also usually decreases the mechanical strength. To surmount this inherent tradeoff, a supramolecular strategy of introducing a zipper‐like sliding‐ring mechanism in a hydrogen‐bond‐crosslinked polyurethane network is proposed. A very small amount (0.5 mol%) of an external additive (pseudo[2]rotaxane crosslinker) can dramatically increase both the mechanical strength and elongation of this polyurethane network by nearly one order of magnitude. Based on the investigation of the relationship between molecular structure and mechanical properties, this enhancement is attributable to a unique molecular‐level zipper‐like ring‐sliding motion, which efficiently dissipates mechanical work in the solvent‐free network. This research not only provides a distinct and general strategy for the construction of high‐performance elastomers but also paves the way for the practical application of artificial molecular machines toward solvent‐free polyurethane networks.
A molecular zipper elastomer—the combination of ring‐sliding effects and dense hydrogen‐bonding crystal domains in a dry polymer network—results in unexpectedly substantial improvements to the elastomer mechanical performance, including stretchability and strength. The mechanism is found to be the ring‐sliding motion against hydrogen‐bonding domains upon stretching, which effectively dissipates the input mechanical energy. |
---|---|
AbstractList | Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical strength and stretchability. For example, partially replacing strong covalent crosslinking by weak sacrificial bonds can enhance the stretchability but also usually decreases the mechanical strength. To surmount this inherent tradeoff, a supramolecular strategy of introducing a zipper‐like sliding‐ring mechanism in a hydrogen‐bond‐crosslinked polyurethane network is proposed. A very small amount (0.5 mol%) of an external additive (pseudo[2]rotaxane crosslinker) can dramatically increase both the mechanical strength and elongation of this polyurethane network by nearly one order of magnitude. Based on the investigation of the relationship between molecular structure and mechanical properties, this enhancement is attributable to a unique molecular‐level zipper‐like ring‐sliding motion, which efficiently dissipates mechanical work in the solvent‐free network. This research not only provides a distinct and general strategy for the construction of high‐performance elastomers but also paves the way for the practical application of artificial molecular machines toward solvent‐free polyurethane networks. Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical strength and stretchability. For example, partially replacing strong covalent crosslinking by weak sacrificial bonds can enhance the stretchability but also usually decreases the mechanical strength. To surmount this inherent tradeoff, a supramolecular strategy of introducing a zipper‐like sliding‐ring mechanism in a hydrogen‐bond‐crosslinked polyurethane network is proposed. A very small amount (0.5 mol%) of an external additive (pseudo[2]rotaxane crosslinker) can dramatically increase both the mechanical strength and elongation of this polyurethane network by nearly one order of magnitude. Based on the investigation of the relationship between molecular structure and mechanical properties, this enhancement is attributable to a unique molecular‐level zipper‐like ring‐sliding motion, which efficiently dissipates mechanical work in the solvent‐free network. This research not only provides a distinct and general strategy for the construction of high‐performance elastomers but also paves the way for the practical application of artificial molecular machines toward solvent‐free polyurethane networks. A molecular zipper elastomer—the combination of ring‐sliding effects and dense hydrogen‐bonding crystal domains in a dry polymer network—results in unexpectedly substantial improvements to the elastomer mechanical performance, including stretchability and strength. The mechanism is found to be the ring‐sliding motion against hydrogen‐bonding domains upon stretching, which effectively dissipates the input mechanical energy. Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical strength and stretchability. For example, partially replacing strong covalent crosslinking by weak sacrificial bonds can enhance the stretchability but also usually decreases the mechanical strength. To surmount this inherent tradeoff, a supramolecular strategy of introducing a zipper-like sliding-ring mechanism in a hydrogen-bond-crosslinked polyurethane network is proposed. A very small amount (0.5 mol%) of an external additive (pseudo[2]rotaxane crosslinker) can dramatically increase both the mechanical strength and elongation of this polyurethane network by nearly one order of magnitude. Based on the investigation of the relationship between molecular structure and mechanical properties, this enhancement is attributable to a unique molecular-level zipper-like ring-sliding motion, which efficiently dissipates mechanical work in the solvent-free network. This research not only provides a distinct and general strategy for the construction of high-performance elastomers but also paves the way for the practical application of artificial molecular machines toward solvent-free polyurethane networks.Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical strength and stretchability. For example, partially replacing strong covalent crosslinking by weak sacrificial bonds can enhance the stretchability but also usually decreases the mechanical strength. To surmount this inherent tradeoff, a supramolecular strategy of introducing a zipper-like sliding-ring mechanism in a hydrogen-bond-crosslinked polyurethane network is proposed. A very small amount (0.5 mol%) of an external additive (pseudo[2]rotaxane crosslinker) can dramatically increase both the mechanical strength and elongation of this polyurethane network by nearly one order of magnitude. Based on the investigation of the relationship between molecular structure and mechanical properties, this enhancement is attributable to a unique molecular-level zipper-like ring-sliding motion, which efficiently dissipates mechanical work in the solvent-free network. This research not only provides a distinct and general strategy for the construction of high-performance elastomers but also paves the way for the practical application of artificial molecular machines toward solvent-free polyurethane networks. |
Author | Zhang, Qi Qu, Da‐Hui Yu, Cheng‐Yuan Rao, Si‐Jia Shi, Chen‐Yu Tian, He Yang, Shun |
Author_xml | – sequence: 1 givenname: Chen‐Yu surname: Shi fullname: Shi, Chen‐Yu organization: East China University of Science and Technology – sequence: 2 givenname: Qi surname: Zhang fullname: Zhang, Qi organization: East China University of Science and Technology – sequence: 3 givenname: Cheng‐Yuan surname: Yu fullname: Yu, Cheng‐Yuan organization: East China University of Science and Technology – sequence: 4 givenname: Si‐Jia surname: Rao fullname: Rao, Si‐Jia organization: East China University of Science and Technology – sequence: 5 givenname: Shun surname: Yang fullname: Yang, Shun organization: East China University of Science and Technology – sequence: 6 givenname: He surname: Tian fullname: Tian, He organization: East China University of Science and Technology – sequence: 7 givenname: Da‐Hui orcidid: 0000-0002-2039-3564 surname: Qu fullname: Qu, Da‐Hui email: dahui_qu@ecust.edu.cn organization: East China University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32350950$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQxi1URLeFK0dkiQuXbMd_Nz6uypYibQWi9MLFchJn18VxtnaiKjcegWfkSfBqW5AqIU4zo_l9o9H3naCj0AeL0GsCcwJAz0zTmTkFCgCMi2doRgQlBQcljtAMFBOFkrw8Ricp3WZGSZAv0DGjTGQEZqhbBnzjh2jSEPuwwSY0-NJttn7C10O0Q701lbf4c--nMY9bEyxe-Uz3nY14FfbbBlcTNvib2-1s_PXj59p9t_iLC5vcX3vX5A6v2tbWw0v0vDU-2VcP9RTdXKy-nl8W608fPp4v10XNmRIFsQoM8NISJZuWM7ZgrQTV5plBY6ySzFTMlNwoDqwkoKwoaU3IoqairRbsFL073N3F_m60adCdS7X1Pr_fj0lTpmQphBIyo2-foLf9GEP-TlNOCEiWHc3UmwdqrDrb6F10nYmTfjQyA_wA1LFPKdpW124wg-tD9tZ5TUDv89L7vPSfvLJs_kT2ePmfAnUQ3Dtvp__Qevn-avlX-xs3L6ga |
CitedBy_id | crossref_primary_10_1021_jacs_5c00108 crossref_primary_10_1002_agt2_457 crossref_primary_10_1021_acsami_1c09239 crossref_primary_10_1002_anie_202305282 crossref_primary_10_1016_j_progpolymsci_2024_101890 crossref_primary_10_1038_s41467_024_45980_y crossref_primary_10_1002_anie_202410127 crossref_primary_10_1021_acsapm_4c00738 crossref_primary_10_1002_smll_202207409 crossref_primary_10_1021_acsapm_4c01426 crossref_primary_10_1021_acs_macromol_4c00150 crossref_primary_10_1002_adma_202005759 crossref_primary_10_1134_S156009042370121X crossref_primary_10_1021_jacs_2c04717 crossref_primary_10_1002_anie_202214386 crossref_primary_10_1039_D1PY01625C crossref_primary_10_1007_s11426_024_2049_0 crossref_primary_10_1021_acs_macromol_0c02139 crossref_primary_10_1002_anie_202306489 crossref_primary_10_1021_acs_iecr_0c04190 crossref_primary_10_1016_j_eurpolymj_2024_113566 crossref_primary_10_1002_ange_202302370 crossref_primary_10_1002_ange_202423578 crossref_primary_10_1002_macp_202000457 crossref_primary_10_1039_D0QO01441A crossref_primary_10_1016_j_cej_2024_148668 crossref_primary_10_1002_agt2_109 crossref_primary_10_1021_acs_accounts_4c00006 crossref_primary_10_1021_acs_macromol_1c01914 crossref_primary_10_1039_D2CS00202G crossref_primary_10_3390_s24103007 crossref_primary_10_1039_D1TA00902H crossref_primary_10_1021_acs_langmuir_0c02356 crossref_primary_10_1021_acs_macromol_4c02463 crossref_primary_10_1021_acsmaterialslett_2c00847 crossref_primary_10_1021_acs_macromol_3c00178 crossref_primary_10_1002_anie_202318368 crossref_primary_10_1002_cjoc_202200287 crossref_primary_10_1039_D1TB02710G crossref_primary_10_1002_ange_202410834 crossref_primary_10_1002_anie_202210078 crossref_primary_10_1021_acsapm_4c00451 crossref_primary_10_1039_D3MH01280H crossref_primary_10_3390_ma15051664 crossref_primary_10_1039_D1MH00548K crossref_primary_10_1002_adom_202202828 crossref_primary_10_1002_agt2_110 crossref_primary_10_1021_acsnano_3c06175 crossref_primary_10_1039_D0QM00360C crossref_primary_10_1002_cplu_202400597 crossref_primary_10_1021_acs_chemmater_4c01235 crossref_primary_10_1002_ange_202309058 crossref_primary_10_1016_j_cej_2023_147823 crossref_primary_10_1021_acs_macromol_4c01269 crossref_primary_10_1002_marc_202300092 crossref_primary_10_1021_acsami_4c19537 crossref_primary_10_1002_smll_202402265 crossref_primary_10_1007_s40843_024_3025_1 crossref_primary_10_1002_macp_202400493 crossref_primary_10_1021_acs_langmuir_4c00576 crossref_primary_10_1039_D2RA05389F crossref_primary_10_1002_ange_202210078 crossref_primary_10_1002_ange_202410127 crossref_primary_10_1039_D0PY01536A crossref_primary_10_1002_app_54911 crossref_primary_10_1002_smm2_1012 crossref_primary_10_1021_acsmaterialslett_2c00865 crossref_primary_10_1007_s10118_024_3204_7 crossref_primary_10_1039_D2SM01215D crossref_primary_10_1360_SSC_2023_0252 crossref_primary_10_1016_j_porgcoat_2025_109110 crossref_primary_10_1002_anie_202423029 crossref_primary_10_1021_acs_macromol_3c01688 crossref_primary_10_1002_ange_202318434 crossref_primary_10_1021_acsapm_1c00271 crossref_primary_10_1016_j_molliq_2022_120513 crossref_primary_10_1039_D2TC03822F crossref_primary_10_1002_cjoc_202300239 crossref_primary_10_1016_j_reactfunctpolym_2025_106216 crossref_primary_10_1021_jacs_1c05923 crossref_primary_10_3389_fchem_2020_00560 crossref_primary_10_1002_ange_202105620 crossref_primary_10_1002_ange_202214386 crossref_primary_10_1002_adem_202301103 crossref_primary_10_1002_app_53279 crossref_primary_10_1002_app_55613 crossref_primary_10_1016_j_mtchem_2022_100893 crossref_primary_10_1002_anie_202411172 crossref_primary_10_1016_j_cej_2024_149694 crossref_primary_10_1002_adma_202300286 crossref_primary_10_1002_anie_202302370 crossref_primary_10_1038_s41578_021_00278_z crossref_primary_10_1007_s11998_021_00476_y crossref_primary_10_1002_ange_202423029 crossref_primary_10_1016_j_polymer_2024_126842 crossref_primary_10_1021_acs_macromol_3c01875 crossref_primary_10_1021_jacs_1c10427 crossref_primary_10_1039_D2PY00061J crossref_primary_10_1088_2631_7990_ad9fbb crossref_primary_10_1039_D4SC02089H crossref_primary_10_1002_anie_202318434 crossref_primary_10_1002_app_55509 crossref_primary_10_1021_acs_nanolett_2c04667 crossref_primary_10_1039_D4MH00648H crossref_primary_10_1002_anie_202105620 crossref_primary_10_1016_j_apmate_2022_100036 crossref_primary_10_1016_j_cej_2023_146393 crossref_primary_10_1039_D1PY01536B crossref_primary_10_1002_adfm_202103061 crossref_primary_10_1016_j_cej_2025_160222 crossref_primary_10_1038_s41467_022_34286_6 crossref_primary_10_1016_j_indcrop_2024_119355 crossref_primary_10_1002_anie_202309058 crossref_primary_10_1016_j_progpolymsci_2024_101854 crossref_primary_10_1016_j_mtchem_2023_101583 crossref_primary_10_1021_acsmaterialslett_1c00277 crossref_primary_10_1038_s41563_021_01124_x crossref_primary_10_1002_adma_202212130 crossref_primary_10_1002_ange_202411172 crossref_primary_10_1016_j_polymer_2022_124896 crossref_primary_10_1002_ange_202305282 crossref_primary_10_1002_app_50582 crossref_primary_10_1039_D1PY00327E crossref_primary_10_1007_s42114_024_01089_w crossref_primary_10_1002_pen_26535 crossref_primary_10_1021_acsapm_3c01431 crossref_primary_10_1002_pol_20240634 crossref_primary_10_1002_adma_202311332 crossref_primary_10_1039_D4CE00771A crossref_primary_10_1016_j_reactfunctpolym_2022_105443 crossref_primary_10_1039_D0TA11497A crossref_primary_10_1021_acsami_3c17111 crossref_primary_10_1002_marc_202200486 crossref_primary_10_1002_adma_202401711 crossref_primary_10_1016_j_indcrop_2024_118315 crossref_primary_10_1002_ange_202306489 crossref_primary_10_1002_marc_202200082 crossref_primary_10_3390_polym12061393 crossref_primary_10_1002_marc_202100510 crossref_primary_10_1021_acsabm_3c00243 crossref_primary_10_1021_acsami_2c07202 crossref_primary_10_1021_acs_macromol_4c02437 crossref_primary_10_1002_ange_202318368 crossref_primary_10_1002_anie_202423578 crossref_primary_10_1016_j_cej_2022_138673 crossref_primary_10_1039_D2QM00259K crossref_primary_10_1016_j_ccr_2021_214039 crossref_primary_10_1016_j_polymer_2024_127279 crossref_primary_10_1016_j_cej_2021_133260 crossref_primary_10_1021_acsami_4c11724 crossref_primary_10_1002_ange_202402394 crossref_primary_10_1016_j_compscitech_2023_109937 crossref_primary_10_2324_gomu_97_287 crossref_primary_10_1039_D0PY01556C crossref_primary_10_1016_j_fmre_2022_04_007 crossref_primary_10_1002_adfm_202501171 crossref_primary_10_1142_S1758825124410023 crossref_primary_10_1021_acsami_5c03828 crossref_primary_10_1016_j_progpolymsci_2021_101486 crossref_primary_10_1021_acs_chemrev_3c00498 crossref_primary_10_1039_D3TC03496H crossref_primary_10_1016_j_porgcoat_2022_107398 crossref_primary_10_1002_anie_202410834 crossref_primary_10_1021_acsami_4c10805 crossref_primary_10_1021_acsapm_1c00199 crossref_primary_10_1002_anie_202402394 crossref_primary_10_1039_D2QM00343K crossref_primary_10_1016_j_foodhyd_2024_110595 crossref_primary_10_1016_j_cej_2022_140889 crossref_primary_10_3389_felec_2024_1240603 crossref_primary_10_1038_s41467_022_29141_7 crossref_primary_10_1039_D3ME00068K crossref_primary_10_1016_j_tet_2021_132284 crossref_primary_10_1002_adma_202101498 crossref_primary_10_1002_adma_202212112 crossref_primary_10_1021_acs_inorgchem_0c02558 |
Cites_doi | 10.1002/adfm.201805924 10.1038/nature18013 10.1021/acsami.9b13349 10.1016/j.polymer.2017.02.090 10.1039/C7CC05008A 10.1126/science.aal4373 10.1039/C7SC03232C 10.1021/acscentsci.9b00173 10.1295/polymj.PJ2006239 10.1021/acs.biomac.6b01298 10.1016/j.chempr.2018.08.030 10.1021/acs.macromol.7b00797 10.1039/C9CC01660K 10.1021/ma400407a 10.1002/adma.201605325 10.1126/scitranslmed.aau8581 10.1126/science.aao0350 10.1016/j.polymer.2017.01.024 10.1021/jacs.7b12405 10.1038/nature07970 10.1002/anie.201805206 10.1021/acsmacrolett.5b00242 10.1063/1.5020325 10.1002/chem.201204402 10.1038/nchem.2513 10.1021/acs.macromol.6b01955 10.1039/C9CS90019E 10.1002/adfm.201401886 10.1016/j.polymer.2018.05.072 10.1021/acs.accounts.8b00516 10.1126/sciadv.aat7629 10.1002/adma.201100639 10.1002/ange.201813439 10.1016/j.polymer.2014.06.045 10.1021/jacs.8b01682 10.1021/jo070030l 10.1126/sciadv.aat8192 10.1002/adma.201604951 10.1038/ncomms6124 10.1021/jacs.7b08826 10.1002/adma.201704407 10.1038/s41586-018-0185-0 10.1002/adma.201904765 10.1126/science.1248494 10.1021/jacs.7b06710 10.1002/adfm.201907139 10.1021/jacs.8b03257 10.1021/acs.macromol.7b00319 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T 10.1021/acs.accounts.8b00500 10.1021/jacs.9b05740 10.1002/adma.201807328 10.1021/mz400197d 10.1021/ma3021135 10.1021/acs.iecr.8b03871 10.1002/adma.200304907 10.1038/s41467-019-09218-6 10.1021/jacs.9b09756 10.1002/anie.201913893 10.1002/marc.201800909 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202000345 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 32350950 10_1002_adma_202000345 ADMA202000345 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Program of Shanghai Academic/Technology Research Leader funderid: 19XD1421100 – fundername: Shanghai Science and Technology Committee funderid: 17520750100 – fundername: National Natural Science Foundation of China funderid: 21790361; 21871084; 21672060 – fundername: Programme of Introducing Talents of Discipline to Universities funderid: B16017 – fundername: Fundamental Research Funds for the Central Universities – fundername: Shanghai Municipal Science and Technology Major Project funderid: 2018SHZDZX03 – fundername: National Natural Science Foundation of China grantid: 21871084 – fundername: National Natural Science Foundation of China grantid: 21672060 – fundername: Programme of Introducing Talents of Discipline to Universities grantid: B16017 – fundername: National Natural Science Foundation of China grantid: 21790361 – fundername: Shanghai Municipal Science and Technology Major Project grantid: 2018SHZDZX03 – fundername: Shanghai Science and Technology Committee grantid: 17520750100 – fundername: Program of Shanghai Academic/Technology Research Leader grantid: 19XD1421100 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4395-1e90a048e196df43373f609fe1930dae963ab3a84a94038109e582c117c25fb73 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 08:16:30 EDT 2025 Fri Jul 25 04:37:05 EDT 2025 Wed Feb 19 02:30:53 EST 2025 Tue Jul 01 02:32:47 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Wed Jan 22 16:35:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | dry networks supramolecular polymers elastomers ring-sliding effects |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4395-1e90a048e196df43373f609fe1930dae963ab3a84a94038109e582c117c25fb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2039-3564 |
PMID | 32350950 |
PQID | 2411063152 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2396855956 proquest_journals_2411063152 pubmed_primary_32350950 crossref_citationtrail_10_1002_adma_202000345 crossref_primary_10_1002_adma_202000345 wiley_primary_10_1002_adma_202000345_ADMA202000345 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 39 2017; 8 2018; 140 2015; 4 2013; 2 2019; 5 2019; 31 2019; 52 2019; 11 2013; 46 2019; 55 2019; 10 2018; 147 2003; 15 2020; 59 2014; 24 2017; 29 2007; 72 2009; 459 2019; 141 2016; 17 2017; 357 2017; 358 2017; 139 2013; 19 2017; 50 2017; 53 2014; 5 2019; 40 2018; 4 2020; 30 2018; 558 2018; 112 2019; 48 2019; 29 2018; 30 2011; 23 2016; 534 2001; 13 2016; 8 2014; 55 2017; 128 2019; 131 2014; 344 2018; 57 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_60_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 19 start-page: 5917 year: 2013 publication-title: Chem. ‐ Eur. J. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 2946 year: 2011 publication-title: Adv. Mater. – volume: 112 year: 2018 publication-title: Appl. Phys. Lett. – volume: 459 start-page: 68 year: 2009 publication-title: Nature – volume: 4 start-page: 598 year: 2015 publication-title: ACS Macro Lett. – volume: 558 start-page: 274 year: 2018 publication-title: Nature – volume: 24 start-page: 7548 year: 2014 publication-title: Adv. Funct. Mater. – volume: 50 start-page: 5695 year: 2017 publication-title: Macromolecules – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 4313 year: 2014 publication-title: Polymer – volume: 10 start-page: 1315 year: 2019 publication-title: Nat. Commun. – volume: 15 start-page: 1155 year: 2003 publication-title: Adv. Mater. – volume: 72 start-page: 3381 year: 2007 publication-title: J. Org. Chem. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 11 year: 2019 publication-title: Sci. Transl. Med. – volume: 534 start-page: 235 year: 2016 publication-title: Nature – volume: 59 start-page: 5278 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 140 start-page: 1584 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 874 year: 2019 publication-title: ACS Cent. Sci. – volume: 358 start-page: 502 year: 2017 publication-title: Science – volume: 140 start-page: 6217 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 1431 year: 2019 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 485 year: 2001 publication-title: Adv. Mater. – volume: 128 start-page: 386 year: 2017 publication-title: Polymer – volume: 55 start-page: 5231 year: 2019 publication-title: Chem. Commun. – volume: 52 start-page: 316 year: 2019 publication-title: Acc. Chem. Res. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 53 start-page: 8683 year: 2017 publication-title: Chem. Commun. – volume: 128 start-page: 392 year: 2017 publication-title: Polymer – volume: 4 start-page: 2670 year: 2018 publication-title: Chem – volume: 131 start-page: 2791 year: 2019 publication-title: Angew. Chem. – volume: 357 start-page: 279 year: 2017 publication-title: Science – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 46 start-page: 4617 year: 2013 publication-title: Macromolecules – volume: 39 start-page: 489 year: 2007 publication-title: Polym. J. – volume: 147 start-page: 67 year: 2018 publication-title: Polymer – volume: 57 year: 2018 publication-title: Ind. Eng. Chem. Res. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 8 start-page: 6777 year: 2017 publication-title: Chem. Sci. – volume: 344 start-page: 186 year: 2014 publication-title: Science – volume: 50 start-page: 364 year: 2017 publication-title: Macromolecules – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 3782 year: 2016 publication-title: Biomacromolecules – volume: 46 start-page: 310 year: 2013 publication-title: Macromolecules – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 140 start-page: 5280 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 40 year: 2019 publication-title: Macromol. Rapid Commun. – volume: 2 start-page: 461 year: 2013 publication-title: ACS Macro Lett. – volume: 52 start-page: 523 year: 2019 publication-title: Acc. Chem. Res. – volume: 5 start-page: 5124 year: 2014 publication-title: Nat. Commun. – volume: 50 start-page: 3333 year: 2017 publication-title: Macromolecules – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 625 year: 2016 publication-title: Nat. Chem. – ident: e_1_2_5_3_1 doi: 10.1002/adfm.201805924 – ident: e_1_2_5_27_1 doi: 10.1038/nature18013 – ident: e_1_2_5_7_1 doi: 10.1021/acsami.9b13349 – ident: e_1_2_5_53_1 doi: 10.1016/j.polymer.2017.02.090 – ident: e_1_2_5_28_1 doi: 10.1039/C7CC05008A – ident: e_1_2_5_42_1 doi: 10.1126/science.aal4373 – ident: e_1_2_5_31_1 doi: 10.1039/C7SC03232C – ident: e_1_2_5_48_1 doi: 10.1021/acscentsci.9b00173 – ident: e_1_2_5_55_1 doi: 10.1295/polymj.PJ2006239 – ident: e_1_2_5_58_1 doi: 10.1021/acs.biomac.6b01298 – ident: e_1_2_5_26_1 doi: 10.1016/j.chempr.2018.08.030 – ident: e_1_2_5_51_1 doi: 10.1021/acs.macromol.7b00797 – ident: e_1_2_5_41_1 doi: 10.1039/C9CC01660K – ident: e_1_2_5_45_1 doi: 10.1021/ma400407a – ident: e_1_2_5_23_1 doi: 10.1002/adma.201605325 – ident: e_1_2_5_9_1 doi: 10.1126/scitranslmed.aau8581 – ident: e_1_2_5_20_1 doi: 10.1126/science.aao0350 – ident: e_1_2_5_38_1 doi: 10.1016/j.polymer.2017.01.024 – ident: e_1_2_5_47_1 doi: 10.1021/jacs.7b12405 – ident: e_1_2_5_16_1 doi: 10.1038/nature07970 – ident: e_1_2_5_18_1 doi: 10.1002/anie.201805206 – ident: e_1_2_5_39_1 doi: 10.1021/acsmacrolett.5b00242 – ident: e_1_2_5_49_1 doi: 10.1063/1.5020325 – ident: e_1_2_5_37_1 doi: 10.1002/chem.201204402 – ident: e_1_2_5_30_1 doi: 10.1038/nchem.2513 – ident: e_1_2_5_35_1 doi: 10.1021/acs.macromol.6b01955 – ident: e_1_2_5_1_1 doi: 10.1039/C9CS90019E – ident: e_1_2_5_10_1 doi: 10.1002/adfm.201401886 – ident: e_1_2_5_54_1 doi: 10.1016/j.polymer.2018.05.072 – ident: e_1_2_5_6_1 doi: 10.1021/acs.accounts.8b00516 – ident: e_1_2_5_36_1 doi: 10.1126/sciadv.aat7629 – ident: e_1_2_5_11_1 doi: 10.1002/adma.201100639 – ident: e_1_2_5_40_1 doi: 10.1002/ange.201813439 – ident: e_1_2_5_52_1 doi: 10.1016/j.polymer.2014.06.045 – ident: e_1_2_5_19_1 doi: 10.1021/jacs.8b01682 – ident: e_1_2_5_44_1 doi: 10.1021/jo070030l – ident: e_1_2_5_17_1 doi: 10.1126/sciadv.aat8192 – ident: e_1_2_5_25_1 doi: 10.1002/adma.201604951 – ident: e_1_2_5_34_1 doi: 10.1038/ncomms6124 – ident: e_1_2_5_14_1 doi: 10.1021/jacs.7b08826 – ident: e_1_2_5_8_1 doi: 10.1002/adma.201704407 – ident: e_1_2_5_5_1 doi: 10.1038/s41586-018-0185-0 – ident: e_1_2_5_4_1 doi: 10.1002/adma.201904765 – ident: e_1_2_5_12_1 doi: 10.1126/science.1248494 – ident: e_1_2_5_29_1 doi: 10.1021/jacs.7b06710 – ident: e_1_2_5_56_1 doi: 10.1002/adfm.201907139 – ident: e_1_2_5_15_1 doi: 10.1021/jacs.8b03257 – ident: e_1_2_5_22_1 doi: 10.1021/acs.macromol.7b00319 – ident: e_1_2_5_32_1 doi: 10.1002/1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T – ident: e_1_2_5_2_1 doi: 10.1021/acs.accounts.8b00500 – ident: e_1_2_5_59_1 doi: 10.1021/jacs.9b05740 – ident: e_1_2_5_24_1 doi: 10.1002/adma.201807328 – ident: e_1_2_5_46_1 doi: 10.1021/mz400197d – ident: e_1_2_5_33_1 doi: 10.1021/ma3021135 – ident: e_1_2_5_50_1 doi: 10.1021/acs.iecr.8b03871 – ident: e_1_2_5_13_1 doi: 10.1002/adma.200304907 – ident: e_1_2_5_57_1 doi: 10.1038/s41467-019-09218-6 – ident: e_1_2_5_43_1 doi: 10.1021/jacs.9b09756 – ident: e_1_2_5_60_1 doi: 10.1002/anie.201913893 – ident: e_1_2_5_21_1 doi: 10.1002/marc.201800909 |
SSID | ssj0009606 |
Score | 2.6503966 |
Snippet | Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2000345 |
SubjectTerms | Bond strength Bonding strength Crosslinking dry networks Elastomers Elongation Materials science Mechanical properties Molecular machines Molecular structure Polyurethane resins ring‐sliding effects Rotaxanes Sliding Solvents Stretchability supramolecular polymers Tradeoffs |
Title | An Ultrastrong and Highly Stretchable Polyurethane Elastomer Enabled by a Zipper‐Like Ring‐Sliding Effect |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000345 https://www.ncbi.nlm.nih.gov/pubmed/32350950 https://www.proquest.com/docview/2411063152 https://www.proquest.com/docview/2396855956 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYQJzi0vEpTHjJSJU6Gje117GMEQQgBqoBIqJeV1-ulEcsmSjaHcOIn8Bv5JczsJgtpVSG1N1t-rNfjsT_bM58J-Q6rXqqNEwywhmZSqYBprxVzOlBJLNNESXQUvrhUp115dhvevvPir_gh6gM31IxyvkYFt_Ho8I001CYlbxAvKVbQyxwNthAVXb3xRyE8L8n2RMiMknrG2hjww_ni86vSH1BzHrmWS8_JZ2Jnja4sTu4PxkV84B5_43P8n79aIZ-muJS2q4G0ShZ8vkaW37EVrpOHdk67WTG0Izw-v6M2TyiaiWQTinfbIH50w6I_-tlkDNFfNve0A-C86D_4Ie2UTloJjSfU0p-9wcAPX56ez3v3nl5B9RC-znq4kNKKUHmDdE86N0enbPpaA3MAakLW9CawMB940OkklUK0RKoCk0JcBIn1oOk2FlZLayReTwbGh5q7ZrPleJjGLfGFLOb93H8lNIydhkSveQrbI6k0DCdunIR6DVShGoTNpBW5KZU5vqiRRRUJM4-wG6O6Gxtkv84_qEg8_ppzeyb8aKrMowhADmycBSCdBtmrk0EN8W4F-rI_hjzCKA27sxAat1kNmvpTgguAZWHQILwU_QdtiNrHF-069u1fCm2RJQxXJm3bZLEYjv0OgKci3i0V5BUeUg-0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6C8QA8MO6UDTASEk_eUt9qP1ZbpwLthMYqIV4ix3GgWpZWXfpQnvgJ_EZ-yY6TJqMghARvcXyJY5_j8_lyPgO8QquXaeM4RayhqVAqotprRZ2OVJqILFUiOAqPj9VwIt5-lM1pwuALU_NDtAtuQTOq8TooeFiQ3r9iDbVpRRzEKo4VeR1uhGu9wyUGhydXDFIBoFd0e1xSo4RueBsjtr-Zf9Mu_QY2N7FrZXyOtiFpql2fOTnbW5bJnvv6C6Pjf_3XXbizhqakX8vSPbjmi_tw-yfCwgdw3i_IJC8X9iKsoH8mtkhJOCmSr0jY3kYJCJ5Y5P0sXy0x-MUWngwQn5ezc78gg8pPKyXJiljyaTqf-8WPb99H0zNPTrB4fP6QT4MtJTWn8kOYHA1OD4Z0fWEDdYhrJO16E1kcEjyqdZoJzns8U5HJMMyj1HpUdptwq4U1IuxQRsZLzVy323NMZkmPP4KtYlb4J0Bk4jRGes0ynCEJpVGimHECyzVYhOoAbbordms283CpRh7XPMwsDs0Yt83Ygddt-nnN4_HHlLtN78drfb6IEefg3Jkj2OnAyzYaNTFsr2BbzpaYhhulcYImsXKPa6lpP8UZR2Qmow6wqu__Uoe4fzjut6Gn_5LpBdwcno5H8ejN8bsduBXe1yfcdmGrXCz9M8RSZfK80pZLFBITzg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4am4TYAzAGrDCYkZB48pb6VvuxYq0GbNM0qDTtJXIcB6pladWlD-WJn8Bv5JdwnLTZyjQhwVscX-L4-Ph8vpzPAG_R6mXaOE4Ra2gqlIqo9lpRpyOVJiJLlQiOwkfH6mAgPp7Jsxte_DU_RLPgFjSjGq-Dgo_TbO-aNNSmFW8QqyhW5D1YEwo1JsCi02sCqYDPK7Y9LqlRQi9oGyO2t5x_2SzdwprL0LWyPf1HYBe1ro-cXOxOy2TXff-D0PF_fusxPJwDU9Kte9IGrPjiCazfoCvchMtuQQZ5ObFXYf38K7FFSsI5kXxGwuY2yj_4YZGTUT6bYvCbLTzpITovR5d-QnqVl1ZKkhmx5Hw4HvvJrx8_D4cXnpxi8fj8OR8GS0pqRuWnMOj3vrw_oPPrGqhDVCNp25vI4oDgUanTTHDe4ZmKTIZhHqXWo6rbhFstrBFhfzIyXmrm2u2OYzJLOvwZrBajwm8BkYnTGOk1y3B-JJTG_sSME1iuwSJUC-hCWrGbc5mHKzXyuGZhZnFoxrhpxha8a9KPaxaPO1NuL4Qfz7X5KkaUgzNnjlCnBW-aaNTDsLmCbTmaYhpulMbpmcTKPa87TfMpzjjiMhm1gFWi_0sd4u7-UbcJvfiXTDtw_2S_Hx9-OP70Eh6E1_Xxtm1YLSdT_wqBVJm8rnTlN921EoY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Ultrastrong+and+Highly+Stretchable+Polyurethane+Elastomer+Enabled+by+a+Zipper%E2%80%90Like+Ring%E2%80%90Sliding+Effect&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Chen%E2%80%90Yu&rft.au=Zhang%2C+Qi&rft.au=Yu%2C+Cheng%E2%80%90Yuan&rft.au=Rao%2C+Si%E2%80%90Jia&rft.date=2020-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202000345&rft.externalDBID=10.1002%252Fadma.202000345&rft.externalDocID=ADMA202000345 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |