Recent Advances in Multiresponsive Flexible Sensors towards E‐skin: A Delicate Design for Versatile Sensing

Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e‐skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 7; pp. e2103734 - n/a
Main Authors Li, Wu‐Di, Ke, Kai, Jia, Jin, Pu, Jun‐Hong, Zhao, Xing, Bao, Rui‐Ying, Liu, Zheng‐Ying, Bai, Lu, Zhang, Kai, Yang, Ming‐Bo, Yang, Wei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e‐skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e‐skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real‐time and all‐round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next‐generation e‐skin and wearable electronics. Multiresponsive flexible sensors susceptible to various stimuli including strain, temperature, humidity, etc., have been rapidly emerging due to their great potential application in e‐skins. Thus, the recent progress of multiresponsive flexible sensors including the design strategies (the choices of sensing materials and mechanisms, and structure designs and fabrication methods), applications and prospects is reviewed to promote further development of e‐skins.
AbstractList Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e‐skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e‐skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real‐time and all‐round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next‐generation e‐skin and wearable electronics.
Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e-skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e-skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real-time and all-round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next-generation e-skin and wearable electronics.Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e-skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e-skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real-time and all-round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next-generation e-skin and wearable electronics.
Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e‐skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e‐skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real‐time and all‐round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next‐generation e‐skin and wearable electronics. Multiresponsive flexible sensors susceptible to various stimuli including strain, temperature, humidity, etc., have been rapidly emerging due to their great potential application in e‐skins. Thus, the recent progress of multiresponsive flexible sensors including the design strategies (the choices of sensing materials and mechanisms, and structure designs and fabrication methods), applications and prospects is reviewed to promote further development of e‐skins.
Author Li, Wu‐Di
Bao, Rui‐Ying
Liu, Zheng‐Ying
Pu, Jun‐Hong
Bai, Lu
Yang, Ming‐Bo
Zhao, Xing
Ke, Kai
Jia, Jin
Zhang, Kai
Yang, Wei
Author_xml – sequence: 1
  givenname: Wu‐Di
  surname: Li
  fullname: Li, Wu‐Di
  organization: Sichuan University
– sequence: 2
  givenname: Kai
  surname: Ke
  fullname: Ke, Kai
  email: kaike@scu.edu.cn
  organization: Sichuan University
– sequence: 3
  givenname: Jin
  surname: Jia
  fullname: Jia, Jin
  organization: Sichuan University
– sequence: 4
  givenname: Jun‐Hong
  surname: Pu
  fullname: Pu, Jun‐Hong
  organization: Sichuan University
– sequence: 5
  givenname: Xing
  surname: Zhao
  fullname: Zhao, Xing
  organization: Sichuan University
– sequence: 6
  givenname: Rui‐Ying
  surname: Bao
  fullname: Bao, Rui‐Ying
  organization: Sichuan University
– sequence: 7
  givenname: Zheng‐Ying
  surname: Liu
  fullname: Liu, Zheng‐Ying
  organization: Sichuan University
– sequence: 8
  givenname: Lu
  surname: Bai
  fullname: Bai, Lu
  organization: Sichuan University
– sequence: 9
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
  organization: Sichuan University
– sequence: 10
  givenname: Ming‐Bo
  surname: Yang
  fullname: Yang, Ming‐Bo
  organization: Sichuan University
– sequence: 11
  givenname: Wei
  orcidid: 0000-0003-0198-1632
  surname: Yang
  fullname: Yang, Wei
  email: weiyang@scu.edu.cn
  organization: Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34825473$$D View this record in MEDLINE/PubMed
BookMark eNqFkctq3DAUhkVIyGWabZZF0E03M9EtttXdkFsDEwpN262R5eOgVJamOnbS7PoIfcY8SRVmMoVAKVroLL5POvz_AdkOMQAhR5zNOGPiGHvvZ4IJzmQp1RbZ5wWX06ISenszc7ZHDhDvGJNcqHKX7ElViRNVyn3SfwYLYaDz9t4EC0hdoNejH1wCXMaA7h7ohYefrvFAbyBgTEiH-GBSi_T86ddv_O7CBzqnZ-CdNQPkAd1toF1M9BskNINbmy7cviE7nfEIh-t7Qr5enH85_ThdfLq8Op0vplZJraa2lI0AxnTHgQsuKzCdkdqCZm0hwaqK864tuTbGyhPJeNOJRtoyn8Y2UssJeb96d5nijxFwqHuHFrw3AeKItSiYYqKocgQT8u4VehfHFPJ2mRI6kwUXmXq7psamh7ZeJteb9Fi_BJmB2QqwKSIm6DYIZ_VzU_VzU_WmqSyoV4J1Qw4rhiEZ5_-t6ZX2kGN9_M8n9c31YvHX_QPtIalz
CitedBy_id crossref_primary_10_1016_j_snb_2024_136778
crossref_primary_10_1002_sstr_202400423
crossref_primary_10_20517_ss_2024_05
crossref_primary_10_1021_acsami_4c21230
crossref_primary_10_1016_j_compscitech_2025_111083
crossref_primary_10_1080_10667857_2023_2214775
crossref_primary_10_1016_j_cej_2023_143408
crossref_primary_10_1039_D3CC04199A
crossref_primary_10_1002_adem_202400132
crossref_primary_10_3390_mi13081356
crossref_primary_10_1002_aenm_202201454
crossref_primary_10_1021_acsami_2c14642
crossref_primary_10_1002_adfm_202305328
crossref_primary_10_1016_j_pmatsci_2024_101422
crossref_primary_10_1021_acsami_3c03829
crossref_primary_10_1002_pssa_202300901
crossref_primary_10_1039_D4TC03256J
crossref_primary_10_1016_j_cej_2023_147441
crossref_primary_10_1016_j_cej_2023_144175
crossref_primary_10_1016_j_heliyon_2023_e19447
crossref_primary_10_1021_acsami_2c02090
crossref_primary_10_1002_mabi_202300274
crossref_primary_10_1063_5_0217297
crossref_primary_10_1002_adfm_202405687
crossref_primary_10_1021_acssensors_4c00307
crossref_primary_10_3390_micro4020015
crossref_primary_10_1016_j_ijcce_2024_07_002
crossref_primary_10_3390_electronics12071509
crossref_primary_10_1002_admt_202201663
crossref_primary_10_1016_j_snb_2022_132728
crossref_primary_10_1016_j_pmatsci_2023_101156
crossref_primary_10_1039_D3TC01212C
crossref_primary_10_1016_j_compositesb_2024_111573
crossref_primary_10_1016_j_sna_2025_116231
crossref_primary_10_3390_s23104593
crossref_primary_10_3390_mi14071411
crossref_primary_10_1016_j_cej_2023_144276
crossref_primary_10_1002_chem_202304278
crossref_primary_10_1002_admt_202400322
crossref_primary_10_1007_s12274_023_5951_0
crossref_primary_10_1021_acsapm_4c01967
crossref_primary_10_3390_electronics12102304
crossref_primary_10_1039_D3TA02948D
crossref_primary_10_1016_j_cej_2024_152462
crossref_primary_10_3390_polym15092136
crossref_primary_10_1002_advs_202301590
crossref_primary_10_1002_admt_202201352
crossref_primary_10_1039_D3MH00236E
crossref_primary_10_1002_smll_202304004
crossref_primary_10_1021_acsami_3c14672
crossref_primary_10_1016_j_cej_2024_151918
crossref_primary_10_1016_j_matdes_2024_112640
crossref_primary_10_1002_admi_202201528
crossref_primary_10_1007_s40820_024_01345_0
crossref_primary_10_1016_j_cej_2023_145475
crossref_primary_10_1016_j_eurpolymj_2022_111680
crossref_primary_10_1109_JSEN_2024_3404092
crossref_primary_10_1007_s12221_024_00840_w
crossref_primary_10_1002_adhm_202401532
crossref_primary_10_1021_acsaelm_4c00242
crossref_primary_10_3390_polym16131841
crossref_primary_10_1016_j_cej_2024_158799
crossref_primary_10_1186_s40486_023_00170_1
crossref_primary_10_1021_acsami_2c22609
crossref_primary_10_1088_2752_5724_ad305e
crossref_primary_10_1039_D4TC03990D
crossref_primary_10_1016_j_sna_2023_114359
crossref_primary_10_1021_acsnano_4c13106
crossref_primary_10_1007_s10853_024_09979_6
crossref_primary_10_1007_s10443_024_10285_2
crossref_primary_10_1016_j_sna_2024_115519
crossref_primary_10_1002_smtd_202401839
crossref_primary_10_1021_acsami_2c06937
crossref_primary_10_1039_D2TA08263B
crossref_primary_10_1039_D3GC05109A
crossref_primary_10_1016_j_heliyon_2024_e30845
crossref_primary_10_1007_s40820_023_01013_9
crossref_primary_10_1063_5_0201860
crossref_primary_10_3390_bios12080630
crossref_primary_10_1021_acs_nanolett_4c05553
crossref_primary_10_1186_s11671_024_03971_4
crossref_primary_10_1038_s41528_024_00312_4
crossref_primary_10_1145_3596599
crossref_primary_10_1016_j_carbon_2023_02_008
crossref_primary_10_1002_smll_202206868
crossref_primary_10_1002_admi_202201270
crossref_primary_10_1016_j_cej_2024_153485
crossref_primary_10_1002_advs_202410446
crossref_primary_10_1002_aisy_202300730
crossref_primary_10_1021_acsami_3c04290
crossref_primary_10_1021_acsami_4c14990
crossref_primary_10_1007_s40820_022_00911_8
crossref_primary_10_1016_j_sbsr_2024_100730
crossref_primary_10_1039_D3TC02357E
crossref_primary_10_1016_j_cej_2023_148442
crossref_primary_10_1016_j_compag_2024_108758
crossref_primary_10_1002_adma_202304701
crossref_primary_10_1016_j_surfin_2024_104276
crossref_primary_10_1002_agt2_319
crossref_primary_10_1007_s10570_024_06196_x
crossref_primary_10_1016_j_isci_2023_107303
crossref_primary_10_1016_j_sna_2023_114161
crossref_primary_10_3390_ijms25031564
crossref_primary_10_3390_s23177473
crossref_primary_10_1016_j_seta_2024_103952
crossref_primary_10_3390_biomimetics8030293
crossref_primary_10_1016_j_mser_2025_100971
crossref_primary_10_1002_admi_202202093
crossref_primary_10_1039_D2TA06822B
crossref_primary_10_3390_micro4040049
crossref_primary_10_1016_j_nanoen_2025_110805
crossref_primary_10_1007_s12221_025_00865_9
crossref_primary_10_1088_2631_7990_ad9787
crossref_primary_10_1016_j_cej_2023_147586
crossref_primary_10_1002_adsr_202400147
crossref_primary_10_1016_j_compscitech_2025_111138
crossref_primary_10_1021_acsami_2c16929
crossref_primary_10_20517_ss_2023_21
crossref_primary_10_1021_acs_chemmater_2c03105
crossref_primary_10_1007_s40820_023_01054_0
crossref_primary_10_1039_D4NR04761C
crossref_primary_10_1002_adfm_202306793
crossref_primary_10_1021_acsaelm_4c02343
crossref_primary_10_1007_s42765_023_00359_4
crossref_primary_10_1039_D3RA08471J
crossref_primary_10_1039_D2NR06236D
crossref_primary_10_1038_s41378_023_00593_1
crossref_primary_10_1007_s42114_024_00954_y
crossref_primary_10_1016_j_apmt_2025_102610
crossref_primary_10_1021_acsnano_2c04188
crossref_primary_10_3390_s22124653
Cites_doi 10.1038/s41928-019-0235-0
10.1002/adfm.201700728
10.1021/acsnano.0c06607
10.1016/j.nanoen.2017.03.039
10.1002/adfm.201702891
10.1039/C8CS00834E
10.1364/OL.27.001385
10.1016/j.progpolymsci.2020.101289
10.1039/C8TC04079F
10.1002/adhm.201700889
10.1002/adhm.201601371
10.1007/s40820-020-00439-9
10.1002/adma.201606151
10.1021/acsnano.0c01164
10.7567/JJAP.53.09PC02
10.1002/adma.201504150
10.1002/adma.201504441
10.1021/acsami.9b13349
10.1002/adfm.201909383
10.1021/acsami.5b06229
10.1002/adma.201807916
10.1002/adma.201902417
10.1002/adma.201606703
10.1021/acsnano.9b02030
10.1016/j.mattod.2020.10.004
10.1002/smll.201803939
10.1016/j.nanoen.2020.104672
10.1039/C8CS00928G
10.1016/j.bios.2020.112637
10.1039/C3EE42454E
10.1021/acsami.8b19214
10.1002/adhm.202100103
10.1039/C9CS00811J
10.1039/D0TA05651K
10.1002/adma.201302240
10.1021/nn506341u
10.1002/aelm.201901291
10.1021/acsami.0c12868
10.1021/acsami.7b09184
10.1021/acsami.7b11431
10.1126/science.aba5132
10.1021/acsami.1c04457
10.1021/nn500441k
10.1002/adfm.202007661
10.1002/adfm.201906713
10.1063/1.2062916
10.1016/j.nanoen.2017.12.004
10.1002/adma.202008308
10.1002/admt.201700057
10.1016/j.snb.2006.11.015
10.1021/acsami.8b04775
10.1038/s41528-017-0004-y
10.1002/adma.201901924
10.1002/admt.201700183
10.1002/adfm.201904549
10.1002/adma.201505372
10.1021/acsami.7b13356
10.1126/sciadv.aaw1899
10.1063/5.0017769
10.1016/j.mattod.2014.05.006
10.1002/adfm.201806379
10.1021/acsami.9b04060
10.1002/aenm.202001945
10.1002/adfm.201400712
10.1039/D0TC03961F
10.1002/adfm.201903100
10.1002/admt.201800626
10.1002/adfm.201907312
10.1002/admt.202001084
10.1126/science.6177041
10.1002/adma.201904385
10.1063/1.1839633
10.1002/adma.200900860
10.1038/nmat4671
10.1073/pnas.2008422117
10.1016/j.carbon.2020.11.070
10.1002/adfm.201806057
10.1002/adma.201502535
10.1021/acsami.0c10101
10.1016/j.nanoen.2017.05.024
10.1002/admt.202000419
10.1002/advs.201600404
10.1002/adma.201505739
10.1021/acs.chemrev.9b00437
10.1021/acsami.0c05119
10.1039/C7TC01169E
10.1038/nmat2834
10.1002/advs.202000584
10.1021/acsami.9b13383
10.1002/adma.201302869
10.1002/smll.201906352
10.1021/acs.accounts.8b00500
10.1002/smll.201800394
10.1038/s41467-020-16642-6
10.1002/adma.202002211
10.1021/nn305209h
10.1002/aenm.202001424
10.1002/adma.201902062
10.1016/j.nanoen.2019.104105
10.1002/adfm.201808695
10.1016/j.mser.2017.02.001
10.1016/j.nanoen.2020.104671
10.1021/acsami.6b08587
10.1002/adfm.201808424
10.1021/acsnano.9b06899
10.1038/nnano.2014.38
10.1002/adfm.201902898
10.1002/adma.201504244
10.1016/j.nanoen.2020.104676
10.1016/j.nanoen.2019.05.054
10.1002/adfm.202101567
10.1021/acsnano.9b09802
10.1038/s41467-020-16268-8
10.1021/acsami.7b13767
10.1002/adfm.202010439
10.1126/science.1206157
10.1038/s41587-019-0321-x
10.1002/smll.201904224
10.1016/j.nanoen.2021.106058
10.1021/acsami.0c08114
10.1002/advs.201500169
10.1002/admt.201900290
10.1002/adfm.201500453
10.1002/adma.201902743
10.1073/pnas.2100466118
10.1002/adfm.201500628
10.1063/1.5085013
10.1002/aelm.201900582
10.1039/C9TA00682F
10.1002/adma.201504366
10.1021/acsami.9b05214
10.1021/acsami.0c06435
10.1002/adfm.201910020
10.1039/D0MH00483A
10.1021/acsnano.0c03391
10.1126/sciadv.aba1062
10.1021/nn500845a
10.1002/advs.201802128
10.1126/sciadv.abe7432
10.1021/acs.accounts.8b00488
10.1021/acsapm.8b00241
10.1002/adfm.201907449
10.1002/aelm.201500029
10.1038/s41467-020-14485-9
10.1038/s41467-017-02685-9
10.1002/smll.202001993
10.1002/adma.201902831
10.1038/am.2017.194
10.1021/acs.accounts.8b00499
10.1016/j.nanoen.2017.09.024
10.1039/C7NR05575G
10.1002/adma.201802084
10.1002/adma.202005902
10.1002/adfm.201404365
10.1039/C9MH00715F
10.1016/j.compositesa.2019.105614
10.1038/s41565-018-0244-6
10.1002/adma.201907156
10.1002/marc.202000444
10.1002/adfm.201908915
10.1021/acsami.0c09653
10.1002/adfm.201904259
10.1002/admt.201800549
10.1002/adma.202008701
10.1021/nn4037514
10.1039/D0CS00204F
10.1039/C8CS00406D
10.1109/TBCAS.2019.2946875
10.1002/admt.202100616
10.1002/adfm.202005692
10.1002/adma.202004416
10.1038/s41467-019-11364-w
10.1038/nature21004
10.1063/1.1719472
10.1126/sciadv.abd0202
10.1002/aelm.201600517
10.1021/acs.chemrev.0c00451
10.1039/C8MH01157E
10.1021/acsnano.8b01805
10.1002/advs.201600190
10.1039/D0NR03684F
10.1021/acsami.9b00817
10.1063/1.3299003
10.1002/adhm.201400073
10.1021/acs.nanolett.6b01968
10.1002/smll.202002681
10.1002/adfm.201905197
10.1016/j.mser.2019.100523
10.1016/j.bios.2020.112460
10.1016/j.nanoen.2021.105895
10.1002/adfm.201703549
10.3945/ajcn.112.044172
10.1063/1.3191677
10.1002/adfm.202009524
10.1002/adma.202005970
10.1109/JPROC.2019.2908433
10.1002/adma.201704530
10.1039/C8CS00609A
10.1021/acsami.7b04938
10.1002/adfm.201504755
10.1002/adfm.202010824
10.1002/adma.201305182
10.1016/j.actamat.2008.02.030
10.1002/adma.202004190
10.1002/adma.201902549
10.1039/C9NA00176J
10.1038/ncomms4002
10.1126/sciadv.aav9653
10.1002/adma.201802337
10.1038/ncomms6747
10.1039/D1MH00998B
10.1021/acsami.9b20612
10.1007/s12274-017-1567-6
10.1021/acsnano.9b07874
10.1016/j.nanoen.2018.03.056
10.1038/nnano.2016.38
10.1038/nature14543
10.1002/adma.201801072
10.1002/adma.202000246
10.1016/j.nanoen.2020.104814
10.1002/adma.201901408
10.1039/C8CS00706C
10.1002/adfm.201808509
10.1002/adma.201802418
10.1016/j.nanoen.2020.105414
10.1002/advs.202001184
10.1021/acs.nanolett.9b02081
10.1021/nn505953t
10.1039/D0TA09556G
10.1063/1.2830815
10.1002/adfm.201702050
10.1111/j.1753-4887.2010.00304.x
10.1063/1.1702682
10.1038/nmat3380
10.1126/sciadv.1500661
10.1038/s41467-018-05503-y
10.1073/pnas.0502392102
10.1039/C7NR08077H
10.1021/acs.chemmater.8b03914
10.1021/acsami.7b00380
10.1021/acs.chemrev.7b00291
10.1021/acsnano.0c07148
10.1002/adfm.201908411
10.1002/adfm.202007788
10.1002/adma.202004782
10.1002/adma.201403441
10.1016/j.pmatsci.2019.100617
10.1039/D0MH00716A
10.1021/acsami.9b16353
10.1038/s41587-019-0045-y
10.1039/C8NR02080A
10.1038/s41578-019-0167-3
10.1021/acs.accounts.7b00549
10.1002/adfm.202005522
10.1038/s41427-019-0169-z
10.1016/j.snb.2004.12.067
10.1143/JJAP.51.09LD14
10.1021/acsami.9b16336
10.1038/s41467-019-09070-8
10.1063/1.123510
10.1126/science.aba5504
10.1039/c3ee42571a
10.1002/adfm.201505223
10.1002/adma.201904765
10.1002/smll.201602790
10.1002/adma.201906876
10.1039/C4MH00147H
10.1021/acs.accounts.9b00325
10.1021/acsami.8b00250
10.1002/admt.201800574
10.1039/C4TA01073F
10.1016/j.compositesa.2012.08.001
10.1016/j.nanoen.2020.105044
10.1016/j.snb.2009.04.019
10.1016/j.carbon.2018.06.037
10.1021/acs.accounts.8b00489
10.1039/C5TB02483H
10.1038/ncomms4132
10.1021/nn506293y
10.1016/j.sna.2018.02.032
10.1021/acsami.7b05672
10.1002/adma.201903789
10.1002/adma.201803388
10.1021/acs.chemmater.9b02437
10.1039/C8CS00595H
10.1021/acs.nanolett.0c02519
10.1002/batt.201800140
10.1126/science.1182383
10.1021/am400757q
10.1002/adfm.201500856
10.1021/acsami.0c12176
10.1126/science.aau0780
10.1016/j.jmst.2019.11.010
10.1016/j.nanoen.2020.105073
10.1016/j.sna.2006.07.019
10.1021/nn402728g
10.1021/acsami.8b14573
10.1002/adfm.201802343
10.1002/adfm.201904523
10.1002/adma.201902343
10.1039/C9TA13407G
10.1038/s41928-020-00493-6
10.1038/nnano.2017.125
10.1021/acsami.0c08291
10.1021/acssensors.9b01561
10.1002/adma.201902133
10.1002/admt.201700248
10.1039/D0TC01011A
10.1002/adfm.202003491
10.1007/s12274-019-2505-6
10.1557/mrs.2016.247
10.1016/j.sna.2021.112800
10.1002/adma.201805536
10.1557/s43577-021-00079-3
10.1039/C7MH00262A
10.1038/ncomms9356
10.1021/acs.accounts.8b00497
10.1021/acs.accounts.8b00491
10.1039/C9NR03098K
10.1002/adma.201804327
10.1021/acsami.0c06263
10.1002/adfm.201707013
10.1002/adma.201504236
10.1126/scirobotics.aaz9239
10.1039/D0MH01818J
10.1002/advs.202001116
10.1002/adma.202003014
10.1002/admt.201700053
10.1038/s41467-018-04906-1
10.1039/c3nr05496a
10.1002/adfm.201703147
10.1021/acsami.8b15809
10.1126/sciadv.abb9083
10.1126/sciadv.1601473
10.1126/science.1226325
10.1016/j.nantod.2020.101016
10.1002/adfm.201706658
10.1073/pnas.1710874115
10.1073/pnas.2007032117
10.1038/s41551-021-00685-1
10.1002/adma.201802560
10.1039/C9TA04352G
10.1016/j.snb.2016.05.054
10.1002/adma.201902684
10.1002/smtd.202100515
10.1021/acsami.0c19196
10.1002/smll.201303601
10.1126/sciadv.aba9624
10.1002/adfm.202105480
10.1002/adma.202000969
10.1039/C8TA00618K
10.1126/sciadv.aaz6511
10.1126/science.aac5082
10.1002/adma.202005925
10.1109/JSEN.2002.804577
10.1039/D0TA06965E
10.1002/adfm.201808829
10.1002/adma.202003155
10.1126/sciadv.1701114
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202103734
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 34825473
10_1002_smll_202103734
SMLL202103734
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51873126; 51721091
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2021YFH0123
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4394-c73b2e009f1e12138eafa39ce90d63ec4811fd719aac35301bf2b3c7c7cbcb393
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 09:29:21 EDT 2025
Sun Jul 27 05:11:14 EDT 2025
Thu Apr 03 06:56:34 EDT 2025
Tue Jul 01 02:54:05 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
Wed Jan 22 16:27:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords electronic skin (E-skin)
internet of things (IoT)
multiresponsive flexible sensors
healthcare
wearable electronics
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4394-c73b2e009f1e12138eafa39ce90d63ec4811fd719aac35301bf2b3c7c7cbcb393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0198-1632
PMID 34825473
PQID 2629260612
PQPubID 1046358
PageCount 41
ParticipantIDs proquest_miscellaneous_2604026847
proquest_journals_2629260612
pubmed_primary_34825473
crossref_primary_10_1002_smll_202103734
crossref_citationtrail_10_1002_smll_202103734
wiley_primary_10_1002_smll_202103734_SMLL202103734
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018 2019; 30 363
2020; 20
2019 2019 2019; 107 31 52
2019; 11
2019; 10
2019; 13
2021 2019; 33 13
2019; 12
2019; 15
2014; 26
2020; 16
2019; 19
2020; 14
2014; 24
2020; 166
2020; 12
2020; 11
2020; 10
2021 2020; 46 72
2013; 7
2013; 6
2018; 48
2021; 79
2018; 6
2018 2020 2017; 13 12 4
2018; 9
2018; 2
2017 2016; 117 4
2005; 102
2021 2020 2019; 84 16 29
2005; 109
2019; 29
2018; 30
2014; 17
2017 2015 2018 2017; 35 25 44 10
2010; 9
2012 2016; 11 28
2019; 7
2018; 28
2019; 4
2019; 6
2009 2020; 21 32
1965; 36
2019; 5
2010; 327
2019; 31
2020; 140
2019; 30
2015; 521
2019; 2
2019 2017; 1 5
2019; 37
2018 2018; 28 273
2020; 38
2002; 2
2008; 56
2020; 32
2016; 15
2014 2015; 8 25
2020 2014 2020; 12 5 30
2016; 11
2016 2016 2016 2013; 28 41 540 5
2015 2019 2021 2017; 9 52 33 1
2016; 2
2020 2020; 6 11
2020 2016; 30 13
2020; 31
2020; 30
2019; 48
2020 2020; 32 49
2015 2020; 2 32
2019 2020 2021; 62 11 7
2016; 28
2018; 10
2016; 26
2016; 8
2019 2016; 119 28
2018; 14
2009; 106
2017; 6
2017; 41
2013; 25
2018 2020; 3 173
2017; 2
2017; 3
2017; 4
2019; 52
2020; 120
2019 2020; 2 10
2020 2020; 12 7
2017; 9
2017; 115
2020; 8
2021; 36
2019 2020 2007; 29 6 123
2020; 7
2020; 6
2007; 135
2020; 5
2014; 5
2021; 31
2021; 33
1963; 34
2020 2014 2019; 30 6 126
2018 2019 2018; 10 1 139
2010; 68
2019; 66
1982; 216
2017; 38
2020; 370
2013; 97
2021; 118
2020; 49
2016 2020; 16 30
2016; 236
2020; 43
2014; 9
2014; 8
2014; 7
2016; 351
2012 2018; 43 10
2014; 53
2015; 2
2015; 1
2021; 8
2019 2020; 29 16
2011; 333
2021; 6
2015; 6
2021; 5
2018 2019; 6 31
2018 2012; 115 51
2017; 27
2021 2020 2020 2018; 329 32 41 9
2021 2019; 86 12
2014 2017; 2 9
2017; 29
2002
2008; 92
2014 2020 2020; 3 169 3
2015; 7
2020; 109
2013 2014 2014 2014 2018; 7 26 8 10 12
2020 2020 2019; 12 32 6
2021 1999; 74
2021; 13
2015; 25
2002 2019; 27 29
2017 2017 2018 2019 2019 2020 2019 2020 2019 2019 2019 2020 2020 2021; 13 2 7 31 52 32 48 14 48 4 48 8 8 31
2021; 10
2015; 27
2005 2019; 97 31
2020; 75
2020 2020 2021; 41 117
2020; 74
2021
2020; 72
2020
2017; 12
2020; 117
2018 2017; 10 29
2009; 140
2018; 51
2020; 114
2010; 96
2005; 58
2012 2020; 337 32
e_1_2_8_241_1
e_1_2_8_264_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_249_1
e_1_2_8_226_2
e_1_2_8_226_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_117_3
e_1_2_8_117_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_230_1
e_1_2_8_276_1
e_1_2_8_253_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_189_9
e_1_2_8_238_1
Yinji M. (e_1_2_8_176_2) 2016; 13
e_1_2_8_215_1
e_1_2_8_91_2
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_143_2
e_1_2_8_189_2
e_1_2_8_189_3
e_1_2_8_120_2
e_1_2_8_189_4
e_1_2_8_189_5
e_1_2_8_189_6
e_1_2_8_99_1
e_1_2_8_189_7
e_1_2_8_189_8
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_91_4
e_1_2_8_143_3
e_1_2_8_91_3
e_1_2_8_166_2
e_1_2_8_242_1
e_1_2_8_265_1
e_1_2_8_25_1
e_1_2_8_280_1
e_1_2_8_48_1
e_1_2_8_227_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_179_2
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_171_2
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_171_3
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_133_2
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_254_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_239_1
e_1_2_8_277_3
e_1_2_8_216_1
e_1_2_8_277_1
e_1_2_8_277_2
e_1_2_8_189_13
e_1_2_8_144_1
e_1_2_8_189_12
e_1_2_8_90_1
e_1_2_8_189_11
e_1_2_8_121_1
e_1_2_8_189_10
e_1_2_8_98_1
e_1_2_8_189_14
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_129_2
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_243_1
e_1_2_8_220_2
e_1_2_8_281_2
e_1_2_8_119_2
e_1_2_8_220_1
e_1_2_8_281_3
e_1_2_8_281_1
e_1_2_8_228_1
e_1_2_8_266_1
e_1_2_8_205_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_270_2
e_1_2_8_55_3
e_1_2_8_270_1
e_1_2_8_217_1
e_1_2_8_255_1
e_1_2_8_278_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_55_2
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_168_2
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_282_1
e_1_2_8_27_1
e_1_2_8_229_1
e_1_2_8_244_1
e_1_2_8_267_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_2
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_2
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_158_4
e_1_2_8_65_1
e_1_2_8_158_3
e_1_2_8_173_1
e_1_2_8_158_2
e_1_2_8_173_2
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_271_1
e_1_2_8_271_2
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_233_1
e_1_2_8_256_1
e_1_2_8_279_1
e_1_2_8_92_1
e_1_2_8_161_4
e_1_2_8_161_3
e_1_2_8_161_2
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_45_2
e_1_2_8_283_1
e_1_2_8_68_1
e_1_2_8_260_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_245_1
e_1_2_8_268_1
e_1_2_8_5_1
e_1_2_8_207_2
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_60_3
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_60_2
e_1_2_8_19_1
e_1_2_8_272_2
e_1_2_8_109_1
e_1_2_8_272_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_257_1
e_1_2_8_95_1
e_1_2_8_162_2
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_101_2
e_1_2_8_72_1
e_1_2_8_101_3
e_1_2_8_284_3
e_1_2_8_29_1
e_1_2_8_261_2
e_1_2_8_284_1
e_1_2_8_284_2
e_1_2_8_261_1
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_200_2
e_1_2_8_246_1
e_1_2_8_269_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_114_3
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_114_2
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_273_1
e_1_2_8_79_2
e_1_2_8_250_1
e_1_2_8_79_1
Harrison J. S. (e_1_2_8_100_1) 2002
e_1_2_8_212_1
e_1_2_8_235_1
e_1_2_8_258_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_2
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_262_1
e_1_2_8_285_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_2
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_224_5
e_1_2_8_224_4
e_1_2_8_224_3
e_1_2_8_247_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_3_2
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_251_2
e_1_2_8_274_2
e_1_2_8_251_1
e_1_2_8_251_3
e_1_2_8_274_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_259_2
e_1_2_8_213_1
e_1_2_8_259_1
e_1_2_8_236_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_240_1
e_1_2_8_263_1
e_1_2_8_23_2
e_1_2_8_23_3
e_1_2_8_46_1
e_1_2_8_23_4
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_248_1
e_1_2_8_131_2
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_139_2
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_252_1
e_1_2_8_275_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
Jimin G. (e_1_2_8_123_2) 2019; 12
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 144
  year: 2019
  publication-title: Nat. Electron.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 20
  start-page: 6176
  year: 2020
  publication-title: Nano Lett.
– volume: 9
  start-page: 244
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  year: 2017
  publication-title: Adv. Healthcare Mater.
– volume: 29 16
  year: 2019 2020
  publication-title: Adv. Funct. Mater. Small
– volume: 9
  start-page: 9233
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 370
  start-page: 961
  year: 2020
  publication-title: Science
– volume: 62 11 7
  start-page: 410 663
  year: 2019 2020 2021
  publication-title: Nano Energy Nat. Commun. Sci. Adv.
– volume: 56
  start-page: 2929
  year: 2008
  publication-title: Acta Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 86 12
  year: 2021 2019
  publication-title: Nano Energy ACS Appl. Mater. Interfaces
– volume: 68
  start-page: 439
  year: 2010
  publication-title: Nutr. Rev.
– volume: 26
  start-page: 3074
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 24
  start-page: 5427
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 3114
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 33 13
  start-page: 1535
  year: 2021 2019
  publication-title: Adv. Mater. IEEE Trans. Biomed. Circuits Syst.
– volume: 216
  start-page: 1018
  year: 1982
  publication-title: Science
– volume: 31
  start-page: 436
  year: 2019
  publication-title: Chem. Mater.
– volume: 10 1 139
  start-page: 714 52
  year: 2018 2019 2018
  publication-title: ACS Appl. Mater. Interfaces ACS Appl. Polym. Mater. Carbon
– volume: 92
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 26
  start-page: 796
  year: 2014
  publication-title: Adv. Mater.
– year: 2021
  publication-title: Adv. Mater.
– volume: 28
  start-page: 4338
  year: 2016
  publication-title: Adv. Mater.
– volume: 46 72
  start-page: 330
  year: 2021 2020
  publication-title: MRS Bull. Nano Energy
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 72
  year: 2020
  publication-title: Nano Energy
– volume: 48
  start-page: 1787
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 9
  start-page: 2458
  year: 2018
  publication-title: Nat. Commun.
– volume: 38
  start-page: 28
  year: 2017
  publication-title: Nano Energy
– volume: 135
  start-page: 593
  year: 2007
  publication-title: Sens. Actuators, A
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 521
  start-page: 467
  year: 2015
  publication-title: Nature
– volume: 166
  year: 2020
  publication-title: Biosens. Bioelectron.
– year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 27 29
  start-page: 1385
  year: 2002 2019
  publication-title: Opt. Lett. Adv. Funct. Mater.
– volume: 115
  start-page: 1
  year: 2017
  publication-title: Mater. Sci. Eng., R
– year: 2002
– volume: 41 117
  start-page: 219
  year: 2020 2020 2021
  publication-title: Mater. Today Appl. Phys. Lett. Mater. Horiz.
– volume: 34
  start-page: 1793
  year: 1963
  publication-title: J. Appl. Phys.
– volume: 3
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 5
  year: 2020
  publication-title: Sci. Rob.
– volume: 9 52 33 1
  start-page: 1622 82 5
  year: 2015 2019 2021 2017
  publication-title: ACS Nano Acc. Chem. Res. Adv. Mater. npj Flexible Electron.
– volume: 102
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 28 41 540 5
  start-page: 4219 897 379 5531
  year: 2016 2016 2016 2013
  publication-title: Adv. Mater. MRS Bull. Nature ACS Appl. Mater. Interfaces
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 11
  start-page: 566
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 477
  year: 2020
  publication-title: Mater. Horiz.
– volume: 28
  start-page: 502
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1037
  year: 2021
  publication-title: Mater. Horiz.
– volume: 96
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 538
  year: 2019
  publication-title: Mater. Horiz.
– volume: 35 25 44 10
  start-page: 121 3203 248 3557
  year: 2017 2015 2018 2017
  publication-title: Nano Energy Adv. Funct. Mater. Nano Energy Nano Res.
– volume: 13 2 7 31 52 32 48 14 48 4 48 8 8 31
  start-page: 73 1566 1668 1492
  year: 2017 2017 2018 2019 2019 2020 2019 2020 2019 2019 2019 2020 2020 2021
  publication-title: Small Adv. Mater. Technol. Adv. Healthcare Mater. Adv. Mater. Acc. Chem. Res. Adv. Mater. Chem. Soc. Rev. ACS Nano Chem. Soc. Rev. Adv. Mater. Technol. Chem. Soc. Rev. J. Mater. Chem. A J. Mater. Chem. A Adv. Funct. Mater.
– volume: 117 4
  start-page: 2999
  year: 2017 2016
  publication-title: Chem. Rev. J. Mater. Chem. B
– volume: 52
  start-page: 3018
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 75
  year: 2020
  publication-title: Nano Energy
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 2723
  year: 2019
  publication-title: Nano Res.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 10
  year: 2021
  publication-title: Adv. Healthcare Mater.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 329 32 41 9
  start-page: 3080
  year: 2021 2020 2020 2018
  publication-title: Sens. Actuators, A Adv. Mater. Macromol. Rapid Commun. Nat. Commun.
– volume: 3 173
  start-page: 1020
  year: 2018 2020
  publication-title: Adv. Mater. Technol. Carbon
– volume: 8
  start-page: 7688
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 370
  start-page: 848
  year: 2020
  publication-title: Science
– volume: 333
  start-page: 838
  year: 2011
  publication-title: Science
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 5
  start-page: 737
  year: 2021
  publication-title: Nat. Biomed. Eng.
– volume: 15
  start-page: 937
  year: 2016
  publication-title: Nat. Mater.
– volume: 7
  start-page: 25
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 2191
  year: 2018
  publication-title: Nanoscale
– volume: 11
  start-page: 67
  year: 2019
  publication-title: NPG Asia Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1503
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 97
  start-page: 455
  year: 2013
  publication-title: Am. J. Clin. Nutr.
– volume: 14
  start-page: 8793
  year: 2020
  publication-title: ACS Nano
– volume: 6
  start-page: 8356
  year: 2015
  publication-title: Nat. Commun.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 29 6 123
  start-page: 1071
  year: 2019 2020 2007
  publication-title: Adv. Funct. Mater. Sci. Adv. Sens. Actuators, B
– volume: 6
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 107 31 52
  start-page: 2168 534
  year: 2019 2019 2019
  publication-title: Proc. IEEE Adv. Mater. Acc. Chem. Res.
– volume: 4
  start-page: 694
  year: 2017
  publication-title: Mater. Horiz.
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 1678
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 7 26 8 10 12
  start-page: 8266 3451 1466 4045
  year: 2013 2014 2014 2014 2018
  publication-title: ACS Nano Adv. Mater. ACS Nano Small ACS Nano
– volume: 11
  start-page: 2405
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 351
  start-page: 1071
  year: 2016
  publication-title: Science
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 97 31
  year: 2005 2019
  publication-title: J. Appl. Phys. Adv. Mater.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 8366
  year: 2013
  publication-title: ACS Nano
– volume: 109
  year: 2020
  publication-title: Prog. Polym. Sci.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 2
  start-page: 482
  year: 2002
  publication-title: IEEE Sens. J.
– volume: 28
  start-page: 2601
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 30 6 126
  start-page: 2345
  year: 2020 2014 2019
  publication-title: Adv. Funct. Mater. Nanoscale Composites, Part A
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1446
  year: 2013
  publication-title: ACS Nano
– volume: 31
  start-page: 6276
  year: 2019
  publication-title: Chem. Mater.
– volume: 119 28
  start-page: 4373
  year: 2019 2016
  publication-title: Chem. Rev. Adv. Mater.
– volume: 2 9
  year: 2014 2017
  publication-title: J. Mater. Chem. A ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 907
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 14
  start-page: 559
  year: 2020
  publication-title: ACS Nano
– volume: 25
  start-page: 5997
  year: 2013
  publication-title: Adv. Mater.
– volume: 41
  start-page: 301
  year: 2017
  publication-title: Nano Energy
– volume: 1
  year: 2015
  publication-title: Adv. Electron. Mater.
– volume: 236
  start-page: 91
  year: 2016
  publication-title: Sens. Actuators, B
– volume: 8
  start-page: 3921
  year: 2014
  publication-title: ACS Nano
– volume: 84 16 29
  year: 2021 2020 2019
  publication-title: Nano Energy Small Adv. Funct. Mater.
– volume: 8 25
  start-page: 4689 2841
  year: 2014 2015
  publication-title: ACS Nano Adv. Funct. Mater.
– volume: 53
  year: 2014
  publication-title: Jpn. J. Appl. Phys.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 30 13
  year: 2020 2016
  publication-title: Adv. Funct. Mater. Small
– volume: 6
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– year: 2021
  publication-title: Small Methods
– volume: 26
  start-page: 7608
  year: 2014
  publication-title: Adv. Mater.
– volume: 2
  start-page: 140
  year: 2015
  publication-title: Mater. Horiz.
– volume: 2 32
  year: 2015 2020
  publication-title: Adv. Sci. Adv. Mater.
– volume: 7
  start-page: 2450
  year: 2020
  publication-title: Mater. Horiz.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 10
  start-page: 1120
  year: 2019
  publication-title: Nat. Commun.
– volume: 28
  start-page: 4203
  year: 2016
  publication-title: Adv. Mater.
– volume: 327
  start-page: 1603
  year: 2010
  publication-title: Science
– volume: 9
  start-page: 397
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 52
  start-page: 288
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 37
  start-page: 389
  year: 2019
  publication-title: Nat. Biotechnol.
– volume: 36
  year: 2021
  publication-title: Nano Today
– volume: 115 51
  start-page: 909
  year: 2018 2012
  publication-title: Proc. Natl. Acad. Sci. USA Jpn. J. Appl. Phys.
– volume: 12 7
  start-page: 7565
  year: 2020 2020
  publication-title: ACS Appl. Mater. Interfaces Adv. Sci.
– volume: 79
  year: 2021
  publication-title: Nano Energy
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 12 5 30
  start-page: 3002
  year: 2020 2014 2020
  publication-title: ACS Appl. Mater. Interfaces Nat. Commun. Adv. Funct. Mater.
– volume: 5
  start-page: 5747
  year: 2014
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 106
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6 11
  start-page: 2868
  year: 2020 2020
  publication-title: Sci. Adv. Nat. Commun.
– volume: 117
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  year: 2017
  publication-title: NPG Asia Mater.
– volume: 6
  start-page: 3576
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 52
  start-page: 523
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 30 363
  year: 2018 2019
  publication-title: Adv. Mater. Science
– volume: 3 169 3
  start-page: 1597 775
  year: 2014 2020 2020
  publication-title: Adv. Healthcare Mater. Biosens. Bioelectron. Nat. Electron.
– volume: 120
  year: 2020
  publication-title: Chem. Rev.
– volume: 27
  start-page: 6954
  year: 2015
  publication-title: Adv. Mater.
– volume: 74
  start-page: 1236
  year: 2021 1999
  publication-title: Adv. Mater. Appl. Phys. Lett.
– volume: 52
  start-page: 63
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 51
  start-page: 999
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 14
  start-page: 2788
  year: 2020
  publication-title: ACS Nano
– volume: 11 28
  start-page: 795 5830
  year: 2012 2016
  publication-title: Nat. Mater. Adv. Mater.
– volume: 140
  year: 2020
  publication-title: Mater. Sci. Eng., R
– volume: 28 273
  start-page: 140
  year: 2018 2018
  publication-title: Adv. Funct. Mater. Sens. Actuators, A
– volume: 38
  start-page: 217
  year: 2020
  publication-title: Nat. Biotechnol.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 1 5
  start-page: 2337 5845
  year: 2019 2017
  publication-title: Nanoscale Adv. J. Mater. Chem. C
– volume: 6 31
  year: 2018 2019
  publication-title: J. Mater. Chem. C Adv. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 36
  start-page: 1817
  year: 1965
  publication-title: Rev. Sci. Instrum.
– volume: 2
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 337 32
  start-page: 1640
  year: 2012 2020
  publication-title: Science Adv. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 49
  start-page: 3423
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 114
  year: 2020
  publication-title: Prog. Mater. Sci.
– volume: 6
  start-page: 7777
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 21 32
  start-page: 3730
  year: 2009 2020
  publication-title: Adv. Mater. Adv. Mater.
– volume: 13 12 4
  start-page: 1057
  year: 2018 2020 2017
  publication-title: Nat. Nanotechnol. ACS Appl. Mater. Interfaces Adv. Sci.
– volume: 10 29
  year: 2018 2017
  publication-title: ACS Appl. Mater. Interfaces Adv. Mater.
– volume: 16 30
  start-page: 6042
  year: 2016 2020
  publication-title: Nano Lett. Adv. Funct. Mater.
– volume: 2
  year: 2017
  publication-title: Adv. Mater. Technol.
– volume: 109
  start-page: 329
  year: 2005
  publication-title: Sens. Actuators, B
– volume: 58
  start-page: 31
  year: 2005
  publication-title: Phys. Today
– volume: 140
  start-page: 227
  year: 2009
  publication-title: Sens. Actuators, B
– volume: 48
  start-page: 1642
  year: 2019
  publication-title: Chem. Soc. Rev.
– year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 275
  year: 2018
  publication-title: Nano Energy
– volume: 9
  start-page: 859
  year: 2010
  publication-title: Nat. Mater.
– volume: 43 10
  start-page: 1629
  year: 2012 2018
  publication-title: Composites, Part A ACS Appl. Mater. Interfaces
– year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 3429
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2588
  year: 2019
  publication-title: ACS Sens.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 12
  start-page: 106
  year: 2020
  publication-title: Nano‐Micro Lett.
– volume: 48
  start-page: 1741
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 12 32 6
  year: 2020 2020 2019
  publication-title: ACS Appl. Mater. Interfaces Adv. Mater. Appl. Phys. Rev.
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 7
  start-page: 8258
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 32 49
  start-page: 7210
  year: 2020 2020
  publication-title: Adv. Mater. Chem. Soc. Rev.
– volume: 25
  start-page: 2287
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 383
  year: 2021
  publication-title: Mater. Horiz.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3132
  year: 2014
  publication-title: Nat. Commun.
– volume: 17
  start-page: 321
  year: 2014
  publication-title: Mater. Today
– volume: 2 10
  start-page: 181
  year: 2019 2020
  publication-title: Batteries Supercaps Adv. Energy Mater.
– volume: 19
  start-page: 5544
  year: 2019
  publication-title: Nano Lett.
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 149
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 218
  year: 2020
  publication-title: ACS Nano
– volume: 43
  start-page: 175
  year: 2020
  publication-title: J. Mater. Sci. Technol.
– volume: 14
  start-page: 6449
  year: 2020
  publication-title: ACS Nano
– ident: e_1_2_8_278_1
  doi: 10.1038/s41928-019-0235-0
– ident: e_1_2_8_73_1
  doi: 10.1002/adfm.201700728
– ident: e_1_2_8_189_8
  doi: 10.1021/acsnano.0c06607
– ident: e_1_2_8_161_1
  doi: 10.1016/j.nanoen.2017.03.039
– ident: e_1_2_8_167_1
  doi: 10.1002/adfm.201702891
– ident: e_1_2_8_178_1
  doi: 10.1039/C8CS00834E
– ident: e_1_2_8_129_1
  doi: 10.1364/OL.27.001385
– ident: e_1_2_8_134_1
  doi: 10.1016/j.progpolymsci.2020.101289
– ident: e_1_2_8_173_1
  doi: 10.1039/C8TC04079F
– ident: e_1_2_8_189_3
  doi: 10.1002/adhm.201700889
– ident: e_1_2_8_135_1
  doi: 10.1002/adhm.201601371
– ident: e_1_2_8_87_1
  doi: 10.1007/s40820-020-00439-9
– ident: e_1_2_8_211_1
  doi: 10.1002/adma.201606151
– ident: e_1_2_8_56_1
  doi: 10.1021/acsnano.0c01164
– ident: e_1_2_8_163_1
  doi: 10.7567/JJAP.53.09PC02
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.201504150
– ident: e_1_2_8_190_1
  doi: 10.1002/adma.201504441
– ident: e_1_2_8_255_1
  doi: 10.1021/acsami.9b13349
– ident: e_1_2_8_95_1
  doi: 10.1002/adfm.201909383
– ident: e_1_2_8_156_1
  doi: 10.1021/acsami.5b06229
– ident: e_1_2_8_173_2
  doi: 10.1002/adma.201807916
– ident: e_1_2_8_179_1
  doi: 10.1002/adma.201902417
– ident: e_1_2_8_200_2
  doi: 10.1002/adma.201606703
– ident: e_1_2_8_223_1
  doi: 10.1021/acsnano.9b02030
– ident: e_1_2_8_284_1
  doi: 10.1016/j.mattod.2020.10.004
– ident: e_1_2_8_216_1
  doi: 10.1002/smll.201803939
– ident: e_1_2_8_37_1
  doi: 10.1016/j.nanoen.2020.104672
– ident: e_1_2_8_159_1
  doi: 10.1039/C8CS00928G
– ident: e_1_2_8_281_2
  doi: 10.1016/j.bios.2020.112637
– ident: e_1_2_8_107_1
  doi: 10.1039/C3EE42454E
– ident: e_1_2_8_8_1
  doi: 10.1021/acsami.8b19214
– ident: e_1_2_8_253_1
  doi: 10.1002/adhm.202100103
– ident: e_1_2_8_76_1
  doi: 10.1039/C9CS00811J
– ident: e_1_2_8_217_1
  doi: 10.1039/D0TA05651K
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201302240
– ident: e_1_2_8_91_1
  doi: 10.1021/nn506341u
– ident: e_1_2_8_267_1
  doi: 10.1002/aelm.201901291
– ident: e_1_2_8_54_1
  doi: 10.1021/acsami.0c12868
– ident: e_1_2_8_69_1
  doi: 10.1021/acsami.7b09184
– ident: e_1_2_8_150_2
  doi: 10.1021/acsami.7b11431
– ident: e_1_2_8_30_1
  doi: 10.1126/science.aba5132
– ident: e_1_2_8_132_1
  doi: 10.1021/acsami.1c04457
– ident: e_1_2_8_71_1
  doi: 10.1021/nn500441k
– ident: e_1_2_8_209_1
  doi: 10.1002/adfm.202007661
– ident: e_1_2_8_266_1
  doi: 10.1002/adfm.201906713
– ident: e_1_2_8_105_1
  doi: 10.1063/1.2062916
– ident: e_1_2_8_161_3
  doi: 10.1016/j.nanoen.2017.12.004
– ident: e_1_2_8_104_1
  doi: 10.1002/adma.201807916
– ident: e_1_2_8_282_1
  doi: 10.1002/adma.202008308
– ident: e_1_2_8_197_1
  doi: 10.1002/admt.201700057
– ident: e_1_2_8_55_3
  doi: 10.1016/j.snb.2006.11.015
– ident: e_1_2_8_200_1
  doi: 10.1021/acsami.8b04775
– ident: e_1_2_8_91_4
  doi: 10.1038/s41528-017-0004-y
– ident: e_1_2_8_61_1
  doi: 10.1002/adma.201901924
– ident: e_1_2_8_210_1
  doi: 10.1002/admt.201700183
– ident: e_1_2_8_55_1
  doi: 10.1002/adfm.201904549
– ident: e_1_2_8_139_2
  doi: 10.1002/adma.201505372
– ident: e_1_2_8_12_1
  doi: 10.1021/acsami.7b13356
– ident: e_1_2_8_125_1
  doi: 10.1126/sciadv.aaw1899
– ident: e_1_2_8_284_2
  doi: 10.1063/5.0017769
– ident: e_1_2_8_93_1
  doi: 10.1016/j.mattod.2014.05.006
– ident: e_1_2_8_101_3
  doi: 10.1002/adfm.201806379
– ident: e_1_2_8_81_1
  doi: 10.1021/acsami.9b04060
– ident: e_1_2_8_192_1
  doi: 10.1002/aenm.202001945
– ident: e_1_2_8_112_1
  doi: 10.1002/adfm.201400712
– ident: e_1_2_8_41_1
  doi: 10.1039/D0TC03961F
– ident: e_1_2_8_117_3
  doi: 10.1002/adfm.201903100
– ident: e_1_2_8_43_1
  doi: 10.1002/admt.201800626
– ident: e_1_2_8_72_1
  doi: 10.1002/adfm.201907312
– ident: e_1_2_8_149_1
  doi: 10.1002/admt.202001084
– ident: e_1_2_8_110_1
  doi: 10.1126/science.6177041
– ident: e_1_2_8_131_2
  doi: 10.1002/adma.201904385
– ident: e_1_2_8_131_1
  doi: 10.1063/1.1839633
– ident: e_1_2_8_168_1
  doi: 10.1002/adma.200900860
– ident: e_1_2_8_63_1
  doi: 10.1038/nmat4671
– ident: e_1_2_8_32_1
  doi: 10.1073/pnas.2008422117
– ident: e_1_2_8_166_2
  doi: 10.1016/j.carbon.2020.11.070
– ident: e_1_2_8_230_1
  doi: 10.1002/adfm.201806057
– ident: e_1_2_8_48_1
  doi: 10.1002/adma.201502535
– ident: e_1_2_8_268_1
  doi: 10.1021/acsami.0c10101
– ident: e_1_2_8_191_1
  doi: 10.1016/j.nanoen.2017.05.024
– ident: e_1_2_8_238_1
  doi: 10.1002/admt.202000419
– ident: e_1_2_8_175_1
  doi: 10.1002/advs.201600404
– ident: e_1_2_8_182_1
  doi: 10.1002/adma.201505739
– ident: e_1_2_8_261_1
  doi: 10.1021/acs.chemrev.9b00437
– ident: e_1_2_8_219_1
  doi: 10.1021/acsami.0c05119
– ident: e_1_2_8_42_2
  doi: 10.1039/C7TC01169E
– ident: e_1_2_8_46_1
  doi: 10.1038/nmat2834
– ident: e_1_2_8_215_1
  doi: 10.1002/advs.202000584
– ident: e_1_2_8_27_1
  doi: 10.1021/acsami.9b13383
– ident: e_1_2_8_232_1
  doi: 10.1002/adma.201302869
– ident: e_1_2_8_101_2
  doi: 10.1002/smll.201906352
– ident: e_1_2_8_165_1
  doi: 10.1021/acs.accounts.8b00500
– ident: e_1_2_8_201_1
  doi: 10.1002/smll.201800394
– ident: e_1_2_8_272_2
  doi: 10.1038/s41467-020-16642-6
– ident: e_1_2_8_270_2
  doi: 10.1002/adma.202002211
– ident: e_1_2_8_233_1
  doi: 10.1021/nn305209h
– ident: e_1_2_8_274_2
  doi: 10.1002/aenm.202001424
– ident: e_1_2_8_68_1
  doi: 10.1002/adma.201902062
– ident: e_1_2_8_83_1
  doi: 10.1016/j.nanoen.2019.104105
– ident: e_1_2_8_254_1
  doi: 10.1002/adfm.201808695
– ident: e_1_2_8_15_1
  doi: 10.1016/j.mser.2017.02.001
– ident: e_1_2_8_160_1
  doi: 10.1016/j.nanoen.2020.104671
– ident: e_1_2_8_141_1
  doi: 10.1021/acsami.6b08587
– ident: e_1_2_8_94_1
  doi: 10.1002/adfm.201808424
– ident: e_1_2_8_206_1
  doi: 10.1021/acsnano.9b06899
– ident: e_1_2_8_208_1
  doi: 10.1038/nnano.2014.38
– ident: e_1_2_8_129_2
  doi: 10.1002/adfm.201902898
– ident: e_1_2_8_62_1
  doi: 10.1002/adma.201504244
– ident: e_1_2_8_226_2
  doi: 10.1016/j.nanoen.2020.104676
– ident: e_1_2_8_251_1
  doi: 10.1016/j.nanoen.2019.05.054
– ident: e_1_2_8_118_1
  doi: 10.1002/adfm.202101567
– ident: e_1_2_8_142_1
  doi: 10.1021/acsnano.9b09802
– ident: e_1_2_8_240_1
  doi: 10.1038/s41467-020-16268-8
– ident: e_1_2_8_25_1
  doi: 10.1021/acsami.7b13767
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.202010439
– ident: e_1_2_8_35_1
  doi: 10.1126/science.1206157
– ident: e_1_2_8_36_1
  doi: 10.1038/s41587-019-0321-x
– ident: e_1_2_8_205_1
  doi: 10.1002/smll.201904224
– ident: e_1_2_8_123_1
  doi: 10.1016/j.nanoen.2021.106058
– ident: e_1_2_8_202_1
  doi: 10.1021/acsami.0c08114
– ident: e_1_2_8_271_1
  doi: 10.1002/advs.201500169
– ident: e_1_2_8_249_1
  doi: 10.1002/admt.201900290
– ident: e_1_2_8_71_2
  doi: 10.1002/adfm.201500453
– ident: e_1_2_8_189_6
  doi: 10.1002/adma.201902743
– ident: e_1_2_8_260_1
  doi: 10.1073/pnas.2100466118
– ident: e_1_2_8_145_1
  doi: 10.1002/adfm.201500628
– ident: e_1_2_8_60_3
  doi: 10.1063/1.5085013
– ident: e_1_2_8_234_1
  doi: 10.1002/aelm.201900582
– ident: e_1_2_8_231_1
  doi: 10.1039/C9TA00682F
– ident: e_1_2_8_261_2
  doi: 10.1002/adma.201504366
– ident: e_1_2_8_86_1
  doi: 10.1021/acsami.9b05214
– ident: e_1_2_8_60_1
  doi: 10.1021/acsami.0c06435
– ident: e_1_2_8_114_1
  doi: 10.1002/adfm.201910020
– ident: e_1_2_8_265_1
  doi: 10.1039/D0MH00483A
– ident: e_1_2_8_80_1
  doi: 10.1021/acsnano.0c03391
– ident: e_1_2_8_108_1
  doi: 10.1126/sciadv.aba1062
– ident: e_1_2_8_18_1
  doi: 10.1021/nn500845a
– ident: e_1_2_8_28_1
  doi: 10.1002/advs.201802128
– ident: e_1_2_8_251_3
  doi: 10.1126/sciadv.abe7432
– ident: e_1_2_8_147_1
  doi: 10.1021/acs.accounts.8b00488
– ident: e_1_2_8_143_2
  doi: 10.1021/acsapm.8b00241
– ident: e_1_2_8_98_1
  doi: 10.1002/adfm.201907449
– ident: e_1_2_8_187_1
  doi: 10.1002/aelm.201500029
– ident: e_1_2_8_251_2
  doi: 10.1038/s41467-020-14485-9
– ident: e_1_2_8_14_1
  doi: 10.1038/s41467-017-02685-9
– ident: e_1_2_8_79_2
  doi: 10.1002/smll.202001993
– ident: e_1_2_8_84_1
  doi: 10.1002/adma.201902831
– ident: e_1_2_8_13_1
  doi: 10.1038/am.2017.194
– ident: e_1_2_8_91_2
  doi: 10.1021/acs.accounts.8b00499
– ident: e_1_2_8_221_1
  doi: 10.1016/j.nanoen.2017.09.024
– ident: e_1_2_8_218_1
  doi: 10.1039/C7NR05575G
– ident: e_1_2_8_70_1
  doi: 10.1002/adma.201802084
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.202005902
– ident: e_1_2_8_49_1
  doi: 10.1002/adfm.201404365
– ident: e_1_2_8_152_1
  doi: 10.1039/C9MH00715F
– volume: 13
  year: 2016
  ident: e_1_2_8_176_2
  publication-title: Small
– ident: e_1_2_8_114_3
  doi: 10.1016/j.compositesa.2019.105614
– ident: e_1_2_8_277_1
  doi: 10.1038/s41565-018-0244-6
– ident: e_1_2_8_51_1
  doi: 10.1002/adma.201907156
– ident: e_1_2_8_158_3
  doi: 10.1002/marc.202000444
– ident: e_1_2_8_65_1
  doi: 10.1002/adfm.201908915
– ident: e_1_2_8_140_1
  doi: 10.1021/acsami.0c09653
– ident: e_1_2_8_164_1
  doi: 10.1002/adfm.201904259
– ident: e_1_2_8_172_1
  doi: 10.1002/admt.201800549
– ident: e_1_2_8_57_1
  doi: 10.1002/adma.202008701
– ident: e_1_2_8_224_1
  doi: 10.1021/nn4037514
– ident: e_1_2_8_179_2
  doi: 10.1039/D0CS00204F
– ident: e_1_2_8_189_11
  doi: 10.1039/C8CS00406D
– ident: e_1_2_8_3_2
  doi: 10.1109/TBCAS.2019.2946875
– ident: e_1_2_8_257_1
  doi: 10.1002/admt.202100616
– ident: e_1_2_8_276_1
  doi: 10.1002/adfm.202005692
– ident: e_1_2_8_128_1
  doi: 10.1002/adma.202004416
– ident: e_1_2_8_264_1
  doi: 10.1038/s41467-019-11364-w
– ident: e_1_2_8_23_3
  doi: 10.1038/nature21004
– ident: e_1_2_8_53_1
  doi: 10.1063/1.1719472
– ident: e_1_2_8_151_1
  doi: 10.1126/sciadv.abd0202
– ident: e_1_2_8_186_1
  doi: 10.1002/aelm.201600517
– ident: e_1_2_8_122_1
  doi: 10.1021/acs.chemrev.0c00451
– ident: e_1_2_8_24_1
  doi: 10.1039/C8MH01157E
– ident: e_1_2_8_224_5
  doi: 10.1021/acsnano.8b01805
– ident: e_1_2_8_277_3
  doi: 10.1002/advs.201600190
– ident: e_1_2_8_204_1
  doi: 10.1039/D0NR03684F
– ident: e_1_2_8_248_1
  doi: 10.1021/acsami.9b00817
– ident: e_1_2_8_26_1
  doi: 10.1063/1.3299003
– ident: e_1_2_8_281_1
  doi: 10.1002/adhm.201400073
– ident: e_1_2_8_45_1
  doi: 10.1021/acs.nanolett.6b01968
– ident: e_1_2_8_188_1
  doi: 10.1002/smll.202002681
– ident: e_1_2_8_79_1
  doi: 10.1002/adfm.201905197
– ident: e_1_2_8_258_1
  doi: 10.1016/j.mser.2019.100523
– ident: e_1_2_8_6_1
  doi: 10.1016/j.bios.2020.112460
– ident: e_1_2_8_101_1
  doi: 10.1016/j.nanoen.2021.105895
– ident: e_1_2_8_103_1
  doi: 10.1002/adfm.201703549
– ident: e_1_2_8_246_1
  doi: 10.3945/ajcn.112.044172
– ident: e_1_2_8_44_1
  doi: 10.1063/1.3191677
– ident: e_1_2_8_189_14
  doi: 10.1002/adfm.202009524
– ident: e_1_2_8_77_1
  doi: 10.1002/adma.202005970
– ident: e_1_2_8_171_1
  doi: 10.1109/JPROC.2019.2908433
– ident: e_1_2_8_283_1
  doi: 10.1002/adma.201704530
– ident: e_1_2_8_189_9
  doi: 10.1039/C8CS00609A
– ident: e_1_2_8_196_1
  doi: 10.1021/acsami.7b04938
– ident: e_1_2_8_99_1
  doi: 10.1002/adfm.201504755
– ident: e_1_2_8_50_1
  doi: 10.1002/adfm.202010824
– ident: e_1_2_8_224_2
  doi: 10.1002/adma.201305182
– ident: e_1_2_8_90_1
  doi: 10.1016/j.actamat.2008.02.030
– ident: e_1_2_8_279_1
  doi: 10.1002/adma.202004190
– ident: e_1_2_8_271_2
  doi: 10.1002/adma.201902549
– ident: e_1_2_8_42_1
  doi: 10.1039/C9NA00176J
– ident: e_1_2_8_117_2
  doi: 10.1038/ncomms4002
– ident: e_1_2_8_183_1
  doi: 10.1126/sciadv.aav9653
– ident: e_1_2_8_259_1
  doi: 10.1002/adma.201802337
– ident: e_1_2_8_22_1
  doi: 10.1038/ncomms6747
– ident: e_1_2_8_284_3
  doi: 10.1039/D1MH00998B
– ident: e_1_2_8_120_1
  doi: 10.1021/acsami.9b20612
– ident: e_1_2_8_161_4
  doi: 10.1007/s12274-017-1567-6
– ident: e_1_2_8_227_1
  doi: 10.1021/acsnano.9b07874
– ident: e_1_2_8_250_1
  doi: 10.1016/j.nanoen.2018.03.056
– ident: e_1_2_8_136_1
  doi: 10.1038/nnano.2016.38
– ident: e_1_2_8_262_1
  doi: 10.1038/nature14543
– ident: e_1_2_8_189_4
  doi: 10.1002/adma.201801072
– ident: e_1_2_8_242_1
  doi: 10.1002/adma.202000246
– ident: e_1_2_8_144_1
  doi: 10.1016/j.nanoen.2020.104814
– ident: e_1_2_8_138_1
  doi: 10.1002/adma.201901408
– ident: e_1_2_8_189_7
  doi: 10.1039/C8CS00706C
– ident: e_1_2_8_38_1
  doi: 10.1002/adfm.201808509
– ident: e_1_2_8_58_1
  doi: 10.1002/adma.201802418
– ident: e_1_2_8_39_1
  doi: 10.1016/j.nanoen.2020.105414
– ident: e_1_2_8_120_2
  doi: 10.1002/advs.202001184
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.nanolett.9b02081
– ident: e_1_2_8_224_3
  doi: 10.1021/nn505953t
– ident: e_1_2_8_189_13
  doi: 10.1039/D0TA09556G
– ident: e_1_2_8_78_1
  doi: 10.1063/1.2830815
– ident: e_1_2_8_4_1
  doi: 10.1002/adfm.201702050
– ident: e_1_2_8_245_1
  doi: 10.1111/j.1753-4887.2010.00304.x
– ident: e_1_2_8_89_1
  doi: 10.1063/1.1702682
– ident: e_1_2_8_139_1
  doi: 10.1038/nmat3380
– ident: e_1_2_8_82_1
  doi: 10.1126/sciadv.1500661
– ident: e_1_2_8_158_4
  doi: 10.1038/s41467-018-05503-y
– ident: e_1_2_8_17_1
  doi: 10.1073/pnas.0502392102
– ident: e_1_2_8_148_1
  doi: 10.1039/C7NR08077H
– ident: e_1_2_8_181_1
  doi: 10.1021/acs.chemmater.8b03914
– ident: e_1_2_8_74_1
  doi: 10.1021/acsami.7b00380
– ident: e_1_2_8_207_1
  doi: 10.1021/acs.chemrev.7b00291
– ident: e_1_2_8_280_1
  doi: 10.1021/acsnano.0c07148
– ident: e_1_2_8_45_2
  doi: 10.1002/adfm.201908411
– ident: e_1_2_8_237_1
  doi: 10.1002/adfm.202007788
– ident: e_1_2_8_214_1
  doi: 10.1002/adma.202004782
– ident: e_1_2_8_47_1
  doi: 10.1002/adma.201403441
– ident: e_1_2_8_40_1
  doi: 10.1016/j.pmatsci.2019.100617
– ident: e_1_2_8_169_1
  doi: 10.1039/D0MH00716A
– ident: e_1_2_8_97_1
  doi: 10.1021/acsami.9b16353
– ident: e_1_2_8_137_1
  doi: 10.1038/s41587-019-0045-y
– ident: e_1_2_8_66_1
  doi: 10.1039/C8NR02080A
– ident: e_1_2_8_127_1
  doi: 10.1038/s41578-019-0167-3
– ident: e_1_2_8_243_1
  doi: 10.1021/acs.accounts.7b00549
– ident: e_1_2_8_176_1
  doi: 10.1002/adfm.202005522
– ident: e_1_2_8_92_1
  doi: 10.1038/s41427-019-0169-z
– ident: e_1_2_8_203_1
  doi: 10.1016/j.snb.2004.12.067
– ident: e_1_2_8_162_2
  doi: 10.1143/JJAP.51.09LD14
– ident: e_1_2_8_285_1
  doi: 10.1021/acsami.9b16336
– ident: e_1_2_8_236_1
  doi: 10.1038/s41467-019-09070-8
– ident: e_1_2_8_119_2
  doi: 10.1063/1.123510
– ident: e_1_2_8_124_1
  doi: 10.1126/science.aba5504
– ident: e_1_2_8_109_1
  doi: 10.1039/c3ee42571a
– ident: e_1_2_8_177_1
  doi: 10.1002/adfm.201505223
– ident: e_1_2_8_59_1
  doi: 10.1002/adma.201904765
– ident: e_1_2_8_189_1
  doi: 10.1002/smll.201602790
– ident: e_1_2_8_158_2
  doi: 10.1002/adma.201906876
– ident: e_1_2_8_88_1
  doi: 10.1039/C4MH00147H
– ident: e_1_2_8_130_1
  doi: 10.1021/acs.accounts.9b00325
– ident: e_1_2_8_133_2
  doi: 10.1021/acsami.8b00250
– ident: e_1_2_8_189_10
  doi: 10.1002/admt.201800574
– ident: e_1_2_8_150_1
  doi: 10.1039/C4TA01073F
– ident: e_1_2_8_133_1
  doi: 10.1016/j.compositesa.2012.08.001
– ident: e_1_2_8_11_1
  doi: 10.1016/j.nanoen.2020.105044
– ident: e_1_2_8_96_1
  doi: 10.1016/j.snb.2009.04.019
– ident: e_1_2_8_143_3
  doi: 10.1016/j.carbon.2018.06.037
– ident: e_1_2_8_171_3
  doi: 10.1021/acs.accounts.8b00489
– ident: e_1_2_8_207_2
  doi: 10.1039/C5TB02483H
– ident: e_1_2_8_115_1
  doi: 10.1038/ncomms4132
– ident: e_1_2_8_193_1
  doi: 10.1021/nn506293y
– ident: e_1_2_8_220_2
  doi: 10.1016/j.sna.2018.02.032
– ident: e_1_2_8_64_1
  doi: 10.1021/acsami.7b05672
– ident: e_1_2_8_185_1
  doi: 10.1002/adma.201903789
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201803388
– ident: e_1_2_8_180_1
  doi: 10.1021/acs.chemmater.9b02437
– volume: 12
  year: 2019
  ident: e_1_2_8_123_2
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_155_1
  doi: 10.1039/C8CS00595H
– ident: e_1_2_8_106_1
  doi: 10.1021/acs.nanolett.0c02519
– ident: e_1_2_8_157_1
  doi: 10.1002/adfm.201909383
– ident: e_1_2_8_274_1
  doi: 10.1002/batt.201800140
– ident: e_1_2_8_20_1
  doi: 10.1126/science.1182383
– ident: e_1_2_8_23_4
  doi: 10.1021/am400757q
– ident: e_1_2_8_161_2
  doi: 10.1002/adfm.201500856
– ident: e_1_2_8_228_1
  doi: 10.1021/acsami.0c12176
– ident: e_1_2_8_259_2
  doi: 10.1126/science.aau0780
– ident: e_1_2_8_75_1
  doi: 10.1016/j.jmst.2019.11.010
– ident: e_1_2_8_33_1
  doi: 10.1016/j.nanoen.2020.105073
– ident: e_1_2_8_21_1
  doi: 10.1016/j.sna.2006.07.019
– ident: e_1_2_8_7_1
  doi: 10.1021/nn402728g
– ident: e_1_2_8_85_1
  doi: 10.1039/C9MH00715F
– ident: e_1_2_8_143_1
  doi: 10.1021/acsami.8b14573
– ident: e_1_2_8_113_1
  doi: 10.1002/adfm.201802343
– ident: e_1_2_8_225_1
  doi: 10.1002/adfm.201904523
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201902343
– ident: e_1_2_8_198_1
  doi: 10.1039/C9TA13407G
– ident: e_1_2_8_281_3
  doi: 10.1038/s41928-020-00493-6
– volume-title: Encyclopedia of Polymer Science and Technology
  year: 2002
  ident: e_1_2_8_100_1
– ident: e_1_2_8_222_1
  doi: 10.1038/nnano.2017.125
– ident: e_1_2_8_277_2
  doi: 10.1021/acsami.0c08291
– ident: e_1_2_8_235_1
  doi: 10.1021/acssensors.9b01561
– ident: e_1_2_8_60_2
  doi: 10.1002/adma.201902133
– ident: e_1_2_8_166_1
  doi: 10.1002/admt.201700248
– ident: e_1_2_8_153_1
  doi: 10.1039/D0TC01011A
– ident: e_1_2_8_111_1
  doi: 10.1002/adfm.202003491
– ident: e_1_2_8_184_1
  doi: 10.1007/s12274-019-2505-6
– ident: e_1_2_8_23_2
  doi: 10.1557/mrs.2016.247
– ident: e_1_2_8_158_1
  doi: 10.1016/j.sna.2021.112800
– ident: e_1_2_8_171_2
  doi: 10.1002/adma.201805536
– ident: e_1_2_8_226_1
  doi: 10.1557/s43577-021-00079-3
– ident: e_1_2_8_52_1
  doi: 10.1039/C7MH00262A
– ident: e_1_2_8_102_1
  doi: 10.1038/ncomms9356
– ident: e_1_2_8_9_1
  doi: 10.1021/acs.accounts.8b00497
– ident: e_1_2_8_189_5
  doi: 10.1021/acs.accounts.8b00491
– ident: e_1_2_8_213_1
  doi: 10.1039/C9NR03098K
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.201804327
– ident: e_1_2_8_154_1
  doi: 10.1021/acsami.0c06263
– ident: e_1_2_8_67_1
  doi: 10.1002/adfm.201707013
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.201504236
– ident: e_1_2_8_263_1
  doi: 10.1126/scirobotics.aaz9239
– ident: e_1_2_8_194_1
  doi: 10.1039/D0MH01818J
– ident: e_1_2_8_275_1
  doi: 10.1002/advs.202001116
– ident: e_1_2_8_3_1
  doi: 10.1002/adma.202003014
– ident: e_1_2_8_189_2
  doi: 10.1002/admt.201700053
– ident: e_1_2_8_212_1
  doi: 10.1038/s41467-018-04906-1
– ident: e_1_2_8_114_2
  doi: 10.1039/c3nr05496a
– ident: e_1_2_8_239_1
  doi: 10.1002/adfm.201703147
– ident: e_1_2_8_116_1
  doi: 10.1021/acsami.8b15809
– ident: e_1_2_8_272_1
  doi: 10.1126/sciadv.abb9083
– ident: e_1_2_8_199_1
  doi: 10.1126/sciadv.1601473
– ident: e_1_2_8_270_1
  doi: 10.1126/science.1226325
– ident: e_1_2_8_273_1
  doi: 10.1016/j.nantod.2020.101016
– ident: e_1_2_8_220_1
  doi: 10.1002/adfm.201706658
– ident: e_1_2_8_162_1
  doi: 10.1073/pnas.1710874115
– ident: e_1_2_8_244_1
  doi: 10.1073/pnas.2007032117
– ident: e_1_2_8_146_1
  doi: 10.1038/s41551-021-00685-1
– ident: e_1_2_8_174_1
  doi: 10.1002/adma.201802560
– ident: e_1_2_8_170_1
  doi: 10.1039/C9TA04352G
– ident: e_1_2_8_247_1
  doi: 10.1016/j.snb.2016.05.054
– ident: e_1_2_8_168_2
  doi: 10.1002/adma.201902684
– ident: e_1_2_8_241_1
  doi: 10.1002/smtd.202100515
– ident: e_1_2_8_117_1
  doi: 10.1021/acsami.0c19196
– ident: e_1_2_8_224_4
  doi: 10.1002/smll.201303601
– ident: e_1_2_8_269_1
  doi: 10.1126/sciadv.aba9624
– ident: e_1_2_8_256_1
  doi: 10.1002/adfm.202105480
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.202000969
– ident: e_1_2_8_252_1
  doi: 10.1039/C8TA00618K
– ident: e_1_2_8_55_2
  doi: 10.1126/sciadv.aaz6511
– ident: e_1_2_8_121_1
  doi: 10.1126/science.aac5082
– ident: e_1_2_8_119_1
  doi: 10.1002/adma.202005925
– ident: e_1_2_8_126_1
  doi: 10.1109/JSEN.2002.804577
– ident: e_1_2_8_189_12
  doi: 10.1039/D0TA06965E
– ident: e_1_2_8_195_1
  doi: 10.1002/adfm.201808829
– ident: e_1_2_8_91_3
  doi: 10.1002/adma.202003155
– ident: e_1_2_8_229_1
  doi: 10.1126/sciadv.1701114
SSID ssj0031247
Score 2.6781752
SecondaryResourceType review_article
Snippet Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e‐skin) have manifested great...
Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e-skin) have manifested great...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2103734
SubjectTerms Artificial Intelligence
Blood pressure
Electrocardiography
electronic skin (E‐skin)
Electronics
Flexible components
healthcare
Humans
Humidity
Internet of Things
internet of things (IoT)
multiresponsive flexible sensors
Nanotechnology
Sensors
Skin
Skin temperature
Sweat
VOCs
Volatile organic compounds
Wearable Electronic Devices
wearable electronics
Title Recent Advances in Multiresponsive Flexible Sensors towards E‐skin: A Delicate Design for Versatile Sensing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202103734
https://www.ncbi.nlm.nih.gov/pubmed/34825473
https://www.proquest.com/docview/2629260612
https://www.proquest.com/docview/2604026847
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKn6jbpw3hbdBcR9eADvJUkTUHc7cp214Mnf4K_0V_iTNutu4oISi8tTZo0k8l8SWa-AOzxVBoudOKayOOun4rAlYmIXJ1EMjW8EWhN65CXV-HZnX9-H9yPRfGX_BD1ghtpRjFek4IrnR9-kobm3Q5tHXAKdBNECEoOW4SKrmv-KIHGqzhdBW2WS8RbI9bGBj-czD5plb5BzUnkWpie9jyoUaVLj5PHg-FAH5iXL3yO__mrBZircClrlh1pEaZstgSzY2yFy9BFiIkmijVLt4GcPWSsiN_tV362z5a1iV9Tdyy7welxr5-zQeGWm7PW--tb_viQHbMmO7Vl5B3ekPsIQ9zMaN0OO0mVE8tbgbt26_bkzK1Oa3ANRdeisIXmFiFb6lniiTuyKlVCGisbSSis8Y88L00iTyplRIDjik65FibCSxstpFiF6ayX2XVgqbCJSqLQyJD7OlAqUb4ntQotftZEoQPuSFqxqajM6USNTlySMPOYmjGum9GB_Tr9U0ni8WPKrZHw40qZ85iHXOK0D7GgA7v1a1RD2ltRme0NKQ2OhsScEzmwVnaauijiD6Ijnh3gheh_qUN8c3lxUT9t_CXTJsxwCtMovMu3YHrQH9ptBE8DvVMoyAes5hLs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROFAOPPoiPIorIfUU2Nh5YG4rYLUtuxx4SL1FtuNIiCWLNrscOPET-I38EmbyggWhSq1ySRQ7djwez3g88w3ANk-l4UInrok87vqpCFyZiMjVSSRTw1uB1mSH7J-E3Qv_95-g9iakWJgSH6IxuBFnFOs1MTgZpHefUUPz6wGdHXCKdBP-B5ijtN4En3942iBICRRfRX4VlFouQW_VuI0tvjtdf1ouvVE2p3XXQvh0lkDX3S59Tq52JmO9Y-5eITr-138tw2KlmrJ2OZdWYMZmn2DhBWDhZ7hGLROlFGuXngM5u8xYEcI7qlxtby3rEMSmHlh2hjvk4Shn48IzN2dHj_cP-dVlts_a7NCWwXd4Qx4kDFVnRqY7nCdVTWzvC1x0js4Pum6VsME1FGCL9BaaW9TaUs8SVNyeVakS0ljZSkJhjb_neWkSeVIpIwJcWnTKtTARXtpoIcVXmM2GmV0FlgqbqCQKjQy5rwOlEuV7UqvQ4mdNFDrg1uSKTYVmTkk1BnGJw8xjGsa4GUYHfjblb0ocj3dLbtTUjyt-zmMecok7P1QHHfjRvEZOpOMVldnhhMrggkjgOZED38pZ0zRFEEKU5dkBXtD-L32Iz_q9XvO09i-VtmC-e97vxb1fJ8fr8JFT1EbhbL4Bs-PRxG6iLjXW3wtueQLSMRcI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5RkFB7aGmBNi1QV6rUU2Bj5wf3tuqygnZBCIrELfKvhFiyaLPbQ088As_YJ-lMkk1ZUIXUKpdEsWPH9ng-2zPfAHzkXhoutA1NFvEw9iIJpRVZqG0mveGdRGvahzw8SvfP4q_nyfkdL_6aH6LdcCPJqOZrEvBr63f-kIaWV0M6OuDk6CbiJ7AUpx1JwRt6Jy2BlEDtVYVXQaUVEvPWjLaxw3fm88-rpQdYcx66Vrqn_wLUrNa1ycnl9nSit83Pe4SO__NbK_C8AaasW4-kl7Dgilfw7A5d4SpcIcZEHcW6td1AyS4KVjnwjhtD2x-O9YlgUw8dO8X18Whcsklll1uyvV83t-XlRfGZdVnP1a53eEP2IwyBM6ONOxwlTU4sbw3O-nvfv-yHTbiG0JB7Lfa20NwhZvORI6K4Xae8EtI42bGpcCbejSJvs0gqZUSCE4v2XAuT4aWNFlKsw2IxKtwbYF44q2yWGpnyWCdKWRVHUqvU4WdNlgYQznorNw2XOYXUGOY1CzPPqRnzthkD-NSmv65ZPP6acmPW-XkjzWXOUy5x3YdgMIAP7WuUQzpcUYUbTSkNTodEnZMF8LoeNG1RRCBEMZ4D4FXXP1KH_PRwMGif3v5LpvewfNzr54ODo2_v4Cknl43K0nwDFifjqdtEIDXRW5Ws_AZ6RxW3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Multiresponsive+Flexible+Sensors+towards+E%E2%80%90skin%3A+A+Delicate+Design+for+Versatile+Sensing&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Wu%E2%80%90Di&rft.au=Ke%2C+Kai&rft.au=Jia%2C+Jin&rft.au=Pu%2C+Jun%E2%80%90Hong&rft.date=2022-02-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202103734&rft.externalDBID=10.1002%252Fsmll.202103734&rft.externalDocID=SMLL202103734
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon