Recent Advances in Multiresponsive Flexible Sensors towards E‐skin: A Delicate Design for Versatile Sensing
Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e‐skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 7; pp. e2103734 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e‐skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e‐skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real‐time and all‐round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next‐generation e‐skin and wearable electronics.
Multiresponsive flexible sensors susceptible to various stimuli including strain, temperature, humidity, etc., have been rapidly emerging due to their great potential application in e‐skins. Thus, the recent progress of multiresponsive flexible sensors including the design strategies (the choices of sensing materials and mechanisms, and structure designs and fabrication methods), applications and prospects is reviewed to promote further development of e‐skins. |
---|---|
AbstractList | Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e‐skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e‐skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real‐time and all‐round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next‐generation e‐skin and wearable electronics. Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e-skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e-skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real-time and all-round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next-generation e-skin and wearable electronics.Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e-skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e-skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real-time and all-round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next-generation e-skin and wearable electronics. Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e‐skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e‐skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real‐time and all‐round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next‐generation e‐skin and wearable electronics. Multiresponsive flexible sensors susceptible to various stimuli including strain, temperature, humidity, etc., have been rapidly emerging due to their great potential application in e‐skins. Thus, the recent progress of multiresponsive flexible sensors including the design strategies (the choices of sensing materials and mechanisms, and structure designs and fabrication methods), applications and prospects is reviewed to promote further development of e‐skins. |
Author | Li, Wu‐Di Bao, Rui‐Ying Liu, Zheng‐Ying Pu, Jun‐Hong Bai, Lu Yang, Ming‐Bo Zhao, Xing Ke, Kai Jia, Jin Zhang, Kai Yang, Wei |
Author_xml | – sequence: 1 givenname: Wu‐Di surname: Li fullname: Li, Wu‐Di organization: Sichuan University – sequence: 2 givenname: Kai surname: Ke fullname: Ke, Kai email: kaike@scu.edu.cn organization: Sichuan University – sequence: 3 givenname: Jin surname: Jia fullname: Jia, Jin organization: Sichuan University – sequence: 4 givenname: Jun‐Hong surname: Pu fullname: Pu, Jun‐Hong organization: Sichuan University – sequence: 5 givenname: Xing surname: Zhao fullname: Zhao, Xing organization: Sichuan University – sequence: 6 givenname: Rui‐Ying surname: Bao fullname: Bao, Rui‐Ying organization: Sichuan University – sequence: 7 givenname: Zheng‐Ying surname: Liu fullname: Liu, Zheng‐Ying organization: Sichuan University – sequence: 8 givenname: Lu surname: Bai fullname: Bai, Lu organization: Sichuan University – sequence: 9 givenname: Kai surname: Zhang fullname: Zhang, Kai organization: Sichuan University – sequence: 10 givenname: Ming‐Bo surname: Yang fullname: Yang, Ming‐Bo organization: Sichuan University – sequence: 11 givenname: Wei orcidid: 0000-0003-0198-1632 surname: Yang fullname: Yang, Wei email: weiyang@scu.edu.cn organization: Sichuan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34825473$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctq3DAUhkVIyGWabZZF0E03M9EtttXdkFsDEwpN262R5eOgVJamOnbS7PoIfcY8SRVmMoVAKVroLL5POvz_AdkOMQAhR5zNOGPiGHvvZ4IJzmQp1RbZ5wWX06ISenszc7ZHDhDvGJNcqHKX7ElViRNVyn3SfwYLYaDz9t4EC0hdoNejH1wCXMaA7h7ohYefrvFAbyBgTEiH-GBSi_T86ddv_O7CBzqnZ-CdNQPkAd1toF1M9BskNINbmy7cviE7nfEIh-t7Qr5enH85_ThdfLq8Op0vplZJraa2lI0AxnTHgQsuKzCdkdqCZm0hwaqK864tuTbGyhPJeNOJRtoyn8Y2UssJeb96d5nijxFwqHuHFrw3AeKItSiYYqKocgQT8u4VehfHFPJ2mRI6kwUXmXq7psamh7ZeJteb9Fi_BJmB2QqwKSIm6DYIZ_VzU_VzU_WmqSyoV4J1Qw4rhiEZ5_-t6ZX2kGN9_M8n9c31YvHX_QPtIalz |
CitedBy_id | crossref_primary_10_1016_j_snb_2024_136778 crossref_primary_10_1002_sstr_202400423 crossref_primary_10_20517_ss_2024_05 crossref_primary_10_1021_acsami_4c21230 crossref_primary_10_1016_j_compscitech_2025_111083 crossref_primary_10_1080_10667857_2023_2214775 crossref_primary_10_1016_j_cej_2023_143408 crossref_primary_10_1039_D3CC04199A crossref_primary_10_1002_adem_202400132 crossref_primary_10_3390_mi13081356 crossref_primary_10_1002_aenm_202201454 crossref_primary_10_1021_acsami_2c14642 crossref_primary_10_1002_adfm_202305328 crossref_primary_10_1016_j_pmatsci_2024_101422 crossref_primary_10_1021_acsami_3c03829 crossref_primary_10_1002_pssa_202300901 crossref_primary_10_1039_D4TC03256J crossref_primary_10_1016_j_cej_2023_147441 crossref_primary_10_1016_j_cej_2023_144175 crossref_primary_10_1016_j_heliyon_2023_e19447 crossref_primary_10_1021_acsami_2c02090 crossref_primary_10_1002_mabi_202300274 crossref_primary_10_1063_5_0217297 crossref_primary_10_1002_adfm_202405687 crossref_primary_10_1021_acssensors_4c00307 crossref_primary_10_3390_micro4020015 crossref_primary_10_1016_j_ijcce_2024_07_002 crossref_primary_10_3390_electronics12071509 crossref_primary_10_1002_admt_202201663 crossref_primary_10_1016_j_snb_2022_132728 crossref_primary_10_1016_j_pmatsci_2023_101156 crossref_primary_10_1039_D3TC01212C crossref_primary_10_1016_j_compositesb_2024_111573 crossref_primary_10_1016_j_sna_2025_116231 crossref_primary_10_3390_s23104593 crossref_primary_10_3390_mi14071411 crossref_primary_10_1016_j_cej_2023_144276 crossref_primary_10_1002_chem_202304278 crossref_primary_10_1002_admt_202400322 crossref_primary_10_1007_s12274_023_5951_0 crossref_primary_10_1021_acsapm_4c01967 crossref_primary_10_3390_electronics12102304 crossref_primary_10_1039_D3TA02948D crossref_primary_10_1016_j_cej_2024_152462 crossref_primary_10_3390_polym15092136 crossref_primary_10_1002_advs_202301590 crossref_primary_10_1002_admt_202201352 crossref_primary_10_1039_D3MH00236E crossref_primary_10_1002_smll_202304004 crossref_primary_10_1021_acsami_3c14672 crossref_primary_10_1016_j_cej_2024_151918 crossref_primary_10_1016_j_matdes_2024_112640 crossref_primary_10_1002_admi_202201528 crossref_primary_10_1007_s40820_024_01345_0 crossref_primary_10_1016_j_cej_2023_145475 crossref_primary_10_1016_j_eurpolymj_2022_111680 crossref_primary_10_1109_JSEN_2024_3404092 crossref_primary_10_1007_s12221_024_00840_w crossref_primary_10_1002_adhm_202401532 crossref_primary_10_1021_acsaelm_4c00242 crossref_primary_10_3390_polym16131841 crossref_primary_10_1016_j_cej_2024_158799 crossref_primary_10_1186_s40486_023_00170_1 crossref_primary_10_1021_acsami_2c22609 crossref_primary_10_1088_2752_5724_ad305e crossref_primary_10_1039_D4TC03990D crossref_primary_10_1016_j_sna_2023_114359 crossref_primary_10_1021_acsnano_4c13106 crossref_primary_10_1007_s10853_024_09979_6 crossref_primary_10_1007_s10443_024_10285_2 crossref_primary_10_1016_j_sna_2024_115519 crossref_primary_10_1002_smtd_202401839 crossref_primary_10_1021_acsami_2c06937 crossref_primary_10_1039_D2TA08263B crossref_primary_10_1039_D3GC05109A crossref_primary_10_1016_j_heliyon_2024_e30845 crossref_primary_10_1007_s40820_023_01013_9 crossref_primary_10_1063_5_0201860 crossref_primary_10_3390_bios12080630 crossref_primary_10_1021_acs_nanolett_4c05553 crossref_primary_10_1186_s11671_024_03971_4 crossref_primary_10_1038_s41528_024_00312_4 crossref_primary_10_1145_3596599 crossref_primary_10_1016_j_carbon_2023_02_008 crossref_primary_10_1002_smll_202206868 crossref_primary_10_1002_admi_202201270 crossref_primary_10_1016_j_cej_2024_153485 crossref_primary_10_1002_advs_202410446 crossref_primary_10_1002_aisy_202300730 crossref_primary_10_1021_acsami_3c04290 crossref_primary_10_1021_acsami_4c14990 crossref_primary_10_1007_s40820_022_00911_8 crossref_primary_10_1016_j_sbsr_2024_100730 crossref_primary_10_1039_D3TC02357E crossref_primary_10_1016_j_cej_2023_148442 crossref_primary_10_1016_j_compag_2024_108758 crossref_primary_10_1002_adma_202304701 crossref_primary_10_1016_j_surfin_2024_104276 crossref_primary_10_1002_agt2_319 crossref_primary_10_1007_s10570_024_06196_x crossref_primary_10_1016_j_isci_2023_107303 crossref_primary_10_1016_j_sna_2023_114161 crossref_primary_10_3390_ijms25031564 crossref_primary_10_3390_s23177473 crossref_primary_10_1016_j_seta_2024_103952 crossref_primary_10_3390_biomimetics8030293 crossref_primary_10_1016_j_mser_2025_100971 crossref_primary_10_1002_admi_202202093 crossref_primary_10_1039_D2TA06822B crossref_primary_10_3390_micro4040049 crossref_primary_10_1016_j_nanoen_2025_110805 crossref_primary_10_1007_s12221_025_00865_9 crossref_primary_10_1088_2631_7990_ad9787 crossref_primary_10_1016_j_cej_2023_147586 crossref_primary_10_1002_adsr_202400147 crossref_primary_10_1016_j_compscitech_2025_111138 crossref_primary_10_1021_acsami_2c16929 crossref_primary_10_20517_ss_2023_21 crossref_primary_10_1021_acs_chemmater_2c03105 crossref_primary_10_1007_s40820_023_01054_0 crossref_primary_10_1039_D4NR04761C crossref_primary_10_1002_adfm_202306793 crossref_primary_10_1021_acsaelm_4c02343 crossref_primary_10_1007_s42765_023_00359_4 crossref_primary_10_1039_D3RA08471J crossref_primary_10_1039_D2NR06236D crossref_primary_10_1038_s41378_023_00593_1 crossref_primary_10_1007_s42114_024_00954_y crossref_primary_10_1016_j_apmt_2025_102610 crossref_primary_10_1021_acsnano_2c04188 crossref_primary_10_3390_s22124653 |
Cites_doi | 10.1038/s41928-019-0235-0 10.1002/adfm.201700728 10.1021/acsnano.0c06607 10.1016/j.nanoen.2017.03.039 10.1002/adfm.201702891 10.1039/C8CS00834E 10.1364/OL.27.001385 10.1016/j.progpolymsci.2020.101289 10.1039/C8TC04079F 10.1002/adhm.201700889 10.1002/adhm.201601371 10.1007/s40820-020-00439-9 10.1002/adma.201606151 10.1021/acsnano.0c01164 10.7567/JJAP.53.09PC02 10.1002/adma.201504150 10.1002/adma.201504441 10.1021/acsami.9b13349 10.1002/adfm.201909383 10.1021/acsami.5b06229 10.1002/adma.201807916 10.1002/adma.201902417 10.1002/adma.201606703 10.1021/acsnano.9b02030 10.1016/j.mattod.2020.10.004 10.1002/smll.201803939 10.1016/j.nanoen.2020.104672 10.1039/C8CS00928G 10.1016/j.bios.2020.112637 10.1039/C3EE42454E 10.1021/acsami.8b19214 10.1002/adhm.202100103 10.1039/C9CS00811J 10.1039/D0TA05651K 10.1002/adma.201302240 10.1021/nn506341u 10.1002/aelm.201901291 10.1021/acsami.0c12868 10.1021/acsami.7b09184 10.1021/acsami.7b11431 10.1126/science.aba5132 10.1021/acsami.1c04457 10.1021/nn500441k 10.1002/adfm.202007661 10.1002/adfm.201906713 10.1063/1.2062916 10.1016/j.nanoen.2017.12.004 10.1002/adma.202008308 10.1002/admt.201700057 10.1016/j.snb.2006.11.015 10.1021/acsami.8b04775 10.1038/s41528-017-0004-y 10.1002/adma.201901924 10.1002/admt.201700183 10.1002/adfm.201904549 10.1002/adma.201505372 10.1021/acsami.7b13356 10.1126/sciadv.aaw1899 10.1063/5.0017769 10.1016/j.mattod.2014.05.006 10.1002/adfm.201806379 10.1021/acsami.9b04060 10.1002/aenm.202001945 10.1002/adfm.201400712 10.1039/D0TC03961F 10.1002/adfm.201903100 10.1002/admt.201800626 10.1002/adfm.201907312 10.1002/admt.202001084 10.1126/science.6177041 10.1002/adma.201904385 10.1063/1.1839633 10.1002/adma.200900860 10.1038/nmat4671 10.1073/pnas.2008422117 10.1016/j.carbon.2020.11.070 10.1002/adfm.201806057 10.1002/adma.201502535 10.1021/acsami.0c10101 10.1016/j.nanoen.2017.05.024 10.1002/admt.202000419 10.1002/advs.201600404 10.1002/adma.201505739 10.1021/acs.chemrev.9b00437 10.1021/acsami.0c05119 10.1039/C7TC01169E 10.1038/nmat2834 10.1002/advs.202000584 10.1021/acsami.9b13383 10.1002/adma.201302869 10.1002/smll.201906352 10.1021/acs.accounts.8b00500 10.1002/smll.201800394 10.1038/s41467-020-16642-6 10.1002/adma.202002211 10.1021/nn305209h 10.1002/aenm.202001424 10.1002/adma.201902062 10.1016/j.nanoen.2019.104105 10.1002/adfm.201808695 10.1016/j.mser.2017.02.001 10.1016/j.nanoen.2020.104671 10.1021/acsami.6b08587 10.1002/adfm.201808424 10.1021/acsnano.9b06899 10.1038/nnano.2014.38 10.1002/adfm.201902898 10.1002/adma.201504244 10.1016/j.nanoen.2020.104676 10.1016/j.nanoen.2019.05.054 10.1002/adfm.202101567 10.1021/acsnano.9b09802 10.1038/s41467-020-16268-8 10.1021/acsami.7b13767 10.1002/adfm.202010439 10.1126/science.1206157 10.1038/s41587-019-0321-x 10.1002/smll.201904224 10.1016/j.nanoen.2021.106058 10.1021/acsami.0c08114 10.1002/advs.201500169 10.1002/admt.201900290 10.1002/adfm.201500453 10.1002/adma.201902743 10.1073/pnas.2100466118 10.1002/adfm.201500628 10.1063/1.5085013 10.1002/aelm.201900582 10.1039/C9TA00682F 10.1002/adma.201504366 10.1021/acsami.9b05214 10.1021/acsami.0c06435 10.1002/adfm.201910020 10.1039/D0MH00483A 10.1021/acsnano.0c03391 10.1126/sciadv.aba1062 10.1021/nn500845a 10.1002/advs.201802128 10.1126/sciadv.abe7432 10.1021/acs.accounts.8b00488 10.1021/acsapm.8b00241 10.1002/adfm.201907449 10.1002/aelm.201500029 10.1038/s41467-020-14485-9 10.1038/s41467-017-02685-9 10.1002/smll.202001993 10.1002/adma.201902831 10.1038/am.2017.194 10.1021/acs.accounts.8b00499 10.1016/j.nanoen.2017.09.024 10.1039/C7NR05575G 10.1002/adma.201802084 10.1002/adma.202005902 10.1002/adfm.201404365 10.1039/C9MH00715F 10.1016/j.compositesa.2019.105614 10.1038/s41565-018-0244-6 10.1002/adma.201907156 10.1002/marc.202000444 10.1002/adfm.201908915 10.1021/acsami.0c09653 10.1002/adfm.201904259 10.1002/admt.201800549 10.1002/adma.202008701 10.1021/nn4037514 10.1039/D0CS00204F 10.1039/C8CS00406D 10.1109/TBCAS.2019.2946875 10.1002/admt.202100616 10.1002/adfm.202005692 10.1002/adma.202004416 10.1038/s41467-019-11364-w 10.1038/nature21004 10.1063/1.1719472 10.1126/sciadv.abd0202 10.1002/aelm.201600517 10.1021/acs.chemrev.0c00451 10.1039/C8MH01157E 10.1021/acsnano.8b01805 10.1002/advs.201600190 10.1039/D0NR03684F 10.1021/acsami.9b00817 10.1063/1.3299003 10.1002/adhm.201400073 10.1021/acs.nanolett.6b01968 10.1002/smll.202002681 10.1002/adfm.201905197 10.1016/j.mser.2019.100523 10.1016/j.bios.2020.112460 10.1016/j.nanoen.2021.105895 10.1002/adfm.201703549 10.3945/ajcn.112.044172 10.1063/1.3191677 10.1002/adfm.202009524 10.1002/adma.202005970 10.1109/JPROC.2019.2908433 10.1002/adma.201704530 10.1039/C8CS00609A 10.1021/acsami.7b04938 10.1002/adfm.201504755 10.1002/adfm.202010824 10.1002/adma.201305182 10.1016/j.actamat.2008.02.030 10.1002/adma.202004190 10.1002/adma.201902549 10.1039/C9NA00176J 10.1038/ncomms4002 10.1126/sciadv.aav9653 10.1002/adma.201802337 10.1038/ncomms6747 10.1039/D1MH00998B 10.1021/acsami.9b20612 10.1007/s12274-017-1567-6 10.1021/acsnano.9b07874 10.1016/j.nanoen.2018.03.056 10.1038/nnano.2016.38 10.1038/nature14543 10.1002/adma.201801072 10.1002/adma.202000246 10.1016/j.nanoen.2020.104814 10.1002/adma.201901408 10.1039/C8CS00706C 10.1002/adfm.201808509 10.1002/adma.201802418 10.1016/j.nanoen.2020.105414 10.1002/advs.202001184 10.1021/acs.nanolett.9b02081 10.1021/nn505953t 10.1039/D0TA09556G 10.1063/1.2830815 10.1002/adfm.201702050 10.1111/j.1753-4887.2010.00304.x 10.1063/1.1702682 10.1038/nmat3380 10.1126/sciadv.1500661 10.1038/s41467-018-05503-y 10.1073/pnas.0502392102 10.1039/C7NR08077H 10.1021/acs.chemmater.8b03914 10.1021/acsami.7b00380 10.1021/acs.chemrev.7b00291 10.1021/acsnano.0c07148 10.1002/adfm.201908411 10.1002/adfm.202007788 10.1002/adma.202004782 10.1002/adma.201403441 10.1016/j.pmatsci.2019.100617 10.1039/D0MH00716A 10.1021/acsami.9b16353 10.1038/s41587-019-0045-y 10.1039/C8NR02080A 10.1038/s41578-019-0167-3 10.1021/acs.accounts.7b00549 10.1002/adfm.202005522 10.1038/s41427-019-0169-z 10.1016/j.snb.2004.12.067 10.1143/JJAP.51.09LD14 10.1021/acsami.9b16336 10.1038/s41467-019-09070-8 10.1063/1.123510 10.1126/science.aba5504 10.1039/c3ee42571a 10.1002/adfm.201505223 10.1002/adma.201904765 10.1002/smll.201602790 10.1002/adma.201906876 10.1039/C4MH00147H 10.1021/acs.accounts.9b00325 10.1021/acsami.8b00250 10.1002/admt.201800574 10.1039/C4TA01073F 10.1016/j.compositesa.2012.08.001 10.1016/j.nanoen.2020.105044 10.1016/j.snb.2009.04.019 10.1016/j.carbon.2018.06.037 10.1021/acs.accounts.8b00489 10.1039/C5TB02483H 10.1038/ncomms4132 10.1021/nn506293y 10.1016/j.sna.2018.02.032 10.1021/acsami.7b05672 10.1002/adma.201903789 10.1002/adma.201803388 10.1021/acs.chemmater.9b02437 10.1039/C8CS00595H 10.1021/acs.nanolett.0c02519 10.1002/batt.201800140 10.1126/science.1182383 10.1021/am400757q 10.1002/adfm.201500856 10.1021/acsami.0c12176 10.1126/science.aau0780 10.1016/j.jmst.2019.11.010 10.1016/j.nanoen.2020.105073 10.1016/j.sna.2006.07.019 10.1021/nn402728g 10.1021/acsami.8b14573 10.1002/adfm.201802343 10.1002/adfm.201904523 10.1002/adma.201902343 10.1039/C9TA13407G 10.1038/s41928-020-00493-6 10.1038/nnano.2017.125 10.1021/acsami.0c08291 10.1021/acssensors.9b01561 10.1002/adma.201902133 10.1002/admt.201700248 10.1039/D0TC01011A 10.1002/adfm.202003491 10.1007/s12274-019-2505-6 10.1557/mrs.2016.247 10.1016/j.sna.2021.112800 10.1002/adma.201805536 10.1557/s43577-021-00079-3 10.1039/C7MH00262A 10.1038/ncomms9356 10.1021/acs.accounts.8b00497 10.1021/acs.accounts.8b00491 10.1039/C9NR03098K 10.1002/adma.201804327 10.1021/acsami.0c06263 10.1002/adfm.201707013 10.1002/adma.201504236 10.1126/scirobotics.aaz9239 10.1039/D0MH01818J 10.1002/advs.202001116 10.1002/adma.202003014 10.1002/admt.201700053 10.1038/s41467-018-04906-1 10.1039/c3nr05496a 10.1002/adfm.201703147 10.1021/acsami.8b15809 10.1126/sciadv.abb9083 10.1126/sciadv.1601473 10.1126/science.1226325 10.1016/j.nantod.2020.101016 10.1002/adfm.201706658 10.1073/pnas.1710874115 10.1073/pnas.2007032117 10.1038/s41551-021-00685-1 10.1002/adma.201802560 10.1039/C9TA04352G 10.1016/j.snb.2016.05.054 10.1002/adma.201902684 10.1002/smtd.202100515 10.1021/acsami.0c19196 10.1002/smll.201303601 10.1126/sciadv.aba9624 10.1002/adfm.202105480 10.1002/adma.202000969 10.1039/C8TA00618K 10.1126/sciadv.aaz6511 10.1126/science.aac5082 10.1002/adma.202005925 10.1109/JSEN.2002.804577 10.1039/D0TA06965E 10.1002/adfm.201808829 10.1002/adma.202003155 10.1126/sciadv.1701114 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202103734 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 34825473 10_1002_smll_202103734 SMLL202103734 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51873126; 51721091 – fundername: Fundamental Research Funds for the Central Universities funderid: 2021YFH0123 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4394-c73b2e009f1e12138eafa39ce90d63ec4811fd719aac35301bf2b3c7c7cbcb393 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 09:29:21 EDT 2025 Sun Jul 27 05:11:14 EDT 2025 Thu Apr 03 06:56:34 EDT 2025 Tue Jul 01 02:54:05 EDT 2025 Thu Apr 24 23:07:08 EDT 2025 Wed Jan 22 16:27:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | electronic skin (E-skin) internet of things (IoT) multiresponsive flexible sensors healthcare wearable electronics |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4394-c73b2e009f1e12138eafa39ce90d63ec4811fd719aac35301bf2b3c7c7cbcb393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0198-1632 |
PMID | 34825473 |
PQID | 2629260612 |
PQPubID | 1046358 |
PageCount | 41 |
ParticipantIDs | proquest_miscellaneous_2604026847 proquest_journals_2629260612 pubmed_primary_34825473 crossref_primary_10_1002_smll_202103734 crossref_citationtrail_10_1002_smll_202103734 wiley_primary_10_1002_smll_202103734_SMLL202103734 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018 2019; 30 363 2020; 20 2019 2019 2019; 107 31 52 2019; 11 2019; 10 2019; 13 2021 2019; 33 13 2019; 12 2019; 15 2014; 26 2020; 16 2019; 19 2020; 14 2014; 24 2020; 166 2020; 12 2020; 11 2020; 10 2021 2020; 46 72 2013; 7 2013; 6 2018; 48 2021; 79 2018; 6 2018 2020 2017; 13 12 4 2018; 9 2018; 2 2017 2016; 117 4 2005; 102 2021 2020 2019; 84 16 29 2005; 109 2019; 29 2018; 30 2014; 17 2017 2015 2018 2017; 35 25 44 10 2010; 9 2012 2016; 11 28 2019; 7 2018; 28 2019; 4 2019; 6 2009 2020; 21 32 1965; 36 2019; 5 2010; 327 2019; 31 2020; 140 2019; 30 2015; 521 2019; 2 2019 2017; 1 5 2019; 37 2018 2018; 28 273 2020; 38 2002; 2 2008; 56 2020; 32 2016; 15 2014 2015; 8 25 2020 2014 2020; 12 5 30 2016; 11 2016 2016 2016 2013; 28 41 540 5 2015 2019 2021 2017; 9 52 33 1 2016; 2 2020 2020; 6 11 2020 2016; 30 13 2020; 31 2020; 30 2019; 48 2020 2020; 32 49 2015 2020; 2 32 2019 2020 2021; 62 11 7 2016; 28 2018; 10 2016; 26 2016; 8 2019 2016; 119 28 2018; 14 2009; 106 2017; 6 2017; 41 2013; 25 2018 2020; 3 173 2017; 2 2017; 3 2017; 4 2019; 52 2020; 120 2019 2020; 2 10 2020 2020; 12 7 2017; 9 2017; 115 2020; 8 2021; 36 2019 2020 2007; 29 6 123 2020; 7 2020; 6 2007; 135 2020; 5 2014; 5 2021; 31 2021; 33 1963; 34 2020 2014 2019; 30 6 126 2018 2019 2018; 10 1 139 2010; 68 2019; 66 1982; 216 2017; 38 2020; 370 2013; 97 2021; 118 2020; 49 2016 2020; 16 30 2016; 236 2020; 43 2014; 9 2014; 8 2014; 7 2016; 351 2012 2018; 43 10 2014; 53 2015; 2 2015; 1 2021; 8 2019 2020; 29 16 2011; 333 2021; 6 2015; 6 2021; 5 2018 2019; 6 31 2018 2012; 115 51 2017; 27 2021 2020 2020 2018; 329 32 41 9 2021 2019; 86 12 2014 2017; 2 9 2017; 29 2002 2008; 92 2014 2020 2020; 3 169 3 2015; 7 2020; 109 2013 2014 2014 2014 2018; 7 26 8 10 12 2020 2020 2019; 12 32 6 2021 1999; 74 2021; 13 2015; 25 2002 2019; 27 29 2017 2017 2018 2019 2019 2020 2019 2020 2019 2019 2019 2020 2020 2021; 13 2 7 31 52 32 48 14 48 4 48 8 8 31 2021; 10 2015; 27 2005 2019; 97 31 2020; 75 2020 2020 2021; 41 117 2020; 74 2021 2020; 72 2020 2017; 12 2020; 117 2018 2017; 10 29 2009; 140 2018; 51 2020; 114 2010; 96 2005; 58 2012 2020; 337 32 e_1_2_8_241_1 e_1_2_8_264_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_249_1 e_1_2_8_226_2 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_117_3 e_1_2_8_117_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_230_1 e_1_2_8_276_1 e_1_2_8_253_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_189_9 e_1_2_8_238_1 Yinji M. (e_1_2_8_176_2) 2016; 13 e_1_2_8_215_1 e_1_2_8_91_2 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_143_2 e_1_2_8_189_2 e_1_2_8_189_3 e_1_2_8_120_2 e_1_2_8_189_4 e_1_2_8_189_5 e_1_2_8_189_6 e_1_2_8_99_1 e_1_2_8_189_7 e_1_2_8_189_8 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_91_4 e_1_2_8_143_3 e_1_2_8_91_3 e_1_2_8_166_2 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_25_1 e_1_2_8_280_1 e_1_2_8_48_1 e_1_2_8_227_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_179_2 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_171_2 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_171_3 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_133_2 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_254_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_239_1 e_1_2_8_277_3 e_1_2_8_216_1 e_1_2_8_277_1 e_1_2_8_277_2 e_1_2_8_189_13 e_1_2_8_144_1 e_1_2_8_189_12 e_1_2_8_90_1 e_1_2_8_189_11 e_1_2_8_121_1 e_1_2_8_189_10 e_1_2_8_98_1 e_1_2_8_189_14 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_129_2 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_243_1 e_1_2_8_220_2 e_1_2_8_281_2 e_1_2_8_119_2 e_1_2_8_220_1 e_1_2_8_281_3 e_1_2_8_281_1 e_1_2_8_228_1 e_1_2_8_266_1 e_1_2_8_205_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_270_2 e_1_2_8_55_3 e_1_2_8_270_1 e_1_2_8_217_1 e_1_2_8_255_1 e_1_2_8_278_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_55_2 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_168_2 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_282_1 e_1_2_8_27_1 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_267_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_2 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_2 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_158_4 e_1_2_8_65_1 e_1_2_8_158_3 e_1_2_8_173_1 e_1_2_8_158_2 e_1_2_8_173_2 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_271_1 e_1_2_8_271_2 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_233_1 e_1_2_8_256_1 e_1_2_8_279_1 e_1_2_8_92_1 e_1_2_8_161_4 e_1_2_8_161_3 e_1_2_8_161_2 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_45_2 e_1_2_8_283_1 e_1_2_8_68_1 e_1_2_8_260_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_245_1 e_1_2_8_268_1 e_1_2_8_5_1 e_1_2_8_207_2 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_60_3 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_60_2 e_1_2_8_19_1 e_1_2_8_272_2 e_1_2_8_109_1 e_1_2_8_272_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_257_1 e_1_2_8_95_1 e_1_2_8_162_2 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_101_2 e_1_2_8_72_1 e_1_2_8_101_3 e_1_2_8_284_3 e_1_2_8_29_1 e_1_2_8_261_2 e_1_2_8_284_1 e_1_2_8_284_2 e_1_2_8_261_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_200_2 e_1_2_8_246_1 e_1_2_8_269_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_114_3 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_114_2 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_273_1 e_1_2_8_79_2 e_1_2_8_250_1 e_1_2_8_79_1 Harrison J. S. (e_1_2_8_100_1) 2002 e_1_2_8_212_1 e_1_2_8_235_1 e_1_2_8_258_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_2 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_262_1 e_1_2_8_285_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_2 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_224_5 e_1_2_8_224_4 e_1_2_8_224_3 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_3_2 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_251_2 e_1_2_8_274_2 e_1_2_8_251_1 e_1_2_8_251_3 e_1_2_8_274_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_259_2 e_1_2_8_213_1 e_1_2_8_259_1 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_263_1 e_1_2_8_23_2 e_1_2_8_23_3 e_1_2_8_46_1 e_1_2_8_23_4 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 e_1_2_8_131_2 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_139_2 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_252_1 e_1_2_8_275_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 Jimin G. (e_1_2_8_123_2) 2019; 12 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 144 year: 2019 publication-title: Nat. Electron. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 20 start-page: 6176 year: 2020 publication-title: Nano Lett. – volume: 9 start-page: 244 year: 2018 publication-title: Nat. Commun. – volume: 6 year: 2017 publication-title: Adv. Healthcare Mater. – volume: 29 16 year: 2019 2020 publication-title: Adv. Funct. Mater. Small – volume: 9 start-page: 9233 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 370 start-page: 961 year: 2020 publication-title: Science – volume: 62 11 7 start-page: 410 663 year: 2019 2020 2021 publication-title: Nano Energy Nat. Commun. Sci. Adv. – volume: 56 start-page: 2929 year: 2008 publication-title: Acta Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 86 12 year: 2021 2019 publication-title: Nano Energy ACS Appl. Mater. Interfaces – volume: 68 start-page: 439 year: 2010 publication-title: Nutr. Rev. – volume: 26 start-page: 3074 year: 2016 publication-title: Adv. Funct. Mater. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 24 start-page: 5427 year: 2014 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 3114 year: 2015 publication-title: Adv. Funct. Mater. – volume: 33 13 start-page: 1535 year: 2021 2019 publication-title: Adv. Mater. IEEE Trans. Biomed. Circuits Syst. – volume: 216 start-page: 1018 year: 1982 publication-title: Science – volume: 31 start-page: 436 year: 2019 publication-title: Chem. Mater. – volume: 10 1 139 start-page: 714 52 year: 2018 2019 2018 publication-title: ACS Appl. Mater. Interfaces ACS Appl. Polym. Mater. Carbon – volume: 92 year: 2008 publication-title: Appl. Phys. Lett. – volume: 26 start-page: 796 year: 2014 publication-title: Adv. Mater. – year: 2021 publication-title: Adv. Mater. – volume: 28 start-page: 4338 year: 2016 publication-title: Adv. Mater. – volume: 46 72 start-page: 330 year: 2021 2020 publication-title: MRS Bull. Nano Energy – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 72 year: 2020 publication-title: Nano Energy – volume: 48 start-page: 1787 year: 2019 publication-title: Chem. Soc. Rev. – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 9 start-page: 2458 year: 2018 publication-title: Nat. Commun. – volume: 38 start-page: 28 year: 2017 publication-title: Nano Energy – volume: 135 start-page: 593 year: 2007 publication-title: Sens. Actuators, A – volume: 5 year: 2020 publication-title: Adv. Mater. Technol. – volume: 521 start-page: 467 year: 2015 publication-title: Nature – volume: 166 year: 2020 publication-title: Biosens. Bioelectron. – year: 2021 publication-title: Adv. Mater. Technol. – volume: 27 29 start-page: 1385 year: 2002 2019 publication-title: Opt. Lett. Adv. Funct. Mater. – volume: 115 start-page: 1 year: 2017 publication-title: Mater. Sci. Eng., R – year: 2002 – volume: 41 117 start-page: 219 year: 2020 2020 2021 publication-title: Mater. Today Appl. Phys. Lett. Mater. Horiz. – volume: 34 start-page: 1793 year: 1963 publication-title: J. Appl. Phys. – volume: 3 year: 2017 publication-title: Adv. Electron. Mater. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 5 year: 2020 publication-title: Sci. Rob. – volume: 9 52 33 1 start-page: 1622 82 5 year: 2015 2019 2021 2017 publication-title: ACS Nano Acc. Chem. Res. Adv. Mater. npj Flexible Electron. – volume: 102 year: 2005 publication-title: Proc. Natl. Acad. Sci. USA – volume: 28 41 540 5 start-page: 4219 897 379 5531 year: 2016 2016 2016 2013 publication-title: Adv. Mater. MRS Bull. Nature ACS Appl. Mater. Interfaces – volume: 74 year: 2020 publication-title: Nano Energy – volume: 11 start-page: 566 year: 2016 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 477 year: 2020 publication-title: Mater. Horiz. – volume: 28 start-page: 502 year: 2016 publication-title: Adv. Mater. – volume: 8 start-page: 1037 year: 2021 publication-title: Mater. Horiz. – volume: 96 year: 2010 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 538 year: 2019 publication-title: Mater. Horiz. – volume: 35 25 44 10 start-page: 121 3203 248 3557 year: 2017 2015 2018 2017 publication-title: Nano Energy Adv. Funct. Mater. Nano Energy Nano Res. – volume: 13 2 7 31 52 32 48 14 48 4 48 8 8 31 start-page: 73 1566 1668 1492 year: 2017 2017 2018 2019 2019 2020 2019 2020 2019 2019 2019 2020 2020 2021 publication-title: Small Adv. Mater. Technol. Adv. Healthcare Mater. Adv. Mater. Acc. Chem. Res. Adv. Mater. Chem. Soc. Rev. ACS Nano Chem. Soc. Rev. Adv. Mater. Technol. Chem. Soc. Rev. J. Mater. Chem. A J. Mater. Chem. A Adv. Funct. Mater. – volume: 117 4 start-page: 2999 year: 2017 2016 publication-title: Chem. Rev. J. Mater. Chem. B – volume: 52 start-page: 3018 year: 2019 publication-title: Acc. Chem. Res. – volume: 75 year: 2020 publication-title: Nano Energy – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 2723 year: 2019 publication-title: Nano Res. – volume: 16 year: 2020 publication-title: Small – volume: 10 year: 2021 publication-title: Adv. Healthcare Mater. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 329 32 41 9 start-page: 3080 year: 2021 2020 2020 2018 publication-title: Sens. Actuators, A Adv. Mater. Macromol. Rapid Commun. Nat. Commun. – volume: 3 173 start-page: 1020 year: 2018 2020 publication-title: Adv. Mater. Technol. Carbon – volume: 8 start-page: 7688 year: 2020 publication-title: J. Mater. Chem. C – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 370 start-page: 848 year: 2020 publication-title: Science – volume: 333 start-page: 838 year: 2011 publication-title: Science – volume: 9 year: 2017 publication-title: Nanoscale – volume: 5 start-page: 737 year: 2021 publication-title: Nat. Biomed. Eng. – volume: 15 start-page: 937 year: 2016 publication-title: Nat. Mater. – volume: 7 start-page: 25 year: 2014 publication-title: Energy Environ. Sci. – volume: 10 start-page: 2191 year: 2018 publication-title: Nanoscale – volume: 11 start-page: 67 year: 2019 publication-title: NPG Asia Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 1503 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 97 start-page: 455 year: 2013 publication-title: Am. J. Clin. Nutr. – volume: 14 start-page: 8793 year: 2020 publication-title: ACS Nano – volume: 6 start-page: 8356 year: 2015 publication-title: Nat. Commun. – volume: 15 year: 2019 publication-title: Small – volume: 29 6 123 start-page: 1071 year: 2019 2020 2007 publication-title: Adv. Funct. Mater. Sci. Adv. Sens. Actuators, B – volume: 6 year: 2021 publication-title: Adv. Mater. Technol. – volume: 107 31 52 start-page: 2168 534 year: 2019 2019 2019 publication-title: Proc. IEEE Adv. Mater. Acc. Chem. Res. – volume: 4 start-page: 694 year: 2017 publication-title: Mater. Horiz. – volume: 8 year: 2014 publication-title: ACS Nano – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 1678 year: 2016 publication-title: Adv. Funct. Mater. – volume: 7 26 8 10 12 start-page: 8266 3451 1466 4045 year: 2013 2014 2014 2014 2018 publication-title: ACS Nano Adv. Mater. ACS Nano Small ACS Nano – volume: 11 start-page: 2405 year: 2020 publication-title: Nat. Commun. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 351 start-page: 1071 year: 2016 publication-title: Science – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. USA – volume: 97 31 year: 2005 2019 publication-title: J. Appl. Phys. Adv. Mater. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 8366 year: 2013 publication-title: ACS Nano – volume: 109 year: 2020 publication-title: Prog. Polym. Sci. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 2 start-page: 482 year: 2002 publication-title: IEEE Sens. J. – volume: 28 start-page: 2601 year: 2016 publication-title: Adv. Mater. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 30 6 126 start-page: 2345 year: 2020 2014 2019 publication-title: Adv. Funct. Mater. Nanoscale Composites, Part A – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1446 year: 2013 publication-title: ACS Nano – volume: 31 start-page: 6276 year: 2019 publication-title: Chem. Mater. – volume: 119 28 start-page: 4373 year: 2019 2016 publication-title: Chem. Rev. Adv. Mater. – volume: 2 9 year: 2014 2017 publication-title: J. Mater. Chem. A ACS Appl. Mater. Interfaces – volume: 12 start-page: 907 year: 2017 publication-title: Nat. Nanotechnol. – volume: 14 year: 2018 publication-title: Small – volume: 14 start-page: 559 year: 2020 publication-title: ACS Nano – volume: 25 start-page: 5997 year: 2013 publication-title: Adv. Mater. – volume: 41 start-page: 301 year: 2017 publication-title: Nano Energy – volume: 1 year: 2015 publication-title: Adv. Electron. Mater. – volume: 236 start-page: 91 year: 2016 publication-title: Sens. Actuators, B – volume: 8 start-page: 3921 year: 2014 publication-title: ACS Nano – volume: 84 16 29 year: 2021 2020 2019 publication-title: Nano Energy Small Adv. Funct. Mater. – volume: 8 25 start-page: 4689 2841 year: 2014 2015 publication-title: ACS Nano Adv. Funct. Mater. – volume: 53 year: 2014 publication-title: Jpn. J. Appl. Phys. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 30 13 year: 2020 2016 publication-title: Adv. Funct. Mater. Small – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – year: 2021 publication-title: Small Methods – volume: 26 start-page: 7608 year: 2014 publication-title: Adv. Mater. – volume: 2 start-page: 140 year: 2015 publication-title: Mater. Horiz. – volume: 2 32 year: 2015 2020 publication-title: Adv. Sci. Adv. Mater. – volume: 7 start-page: 2450 year: 2020 publication-title: Mater. Horiz. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 8 year: 2020 publication-title: J. Mater. Chem. C – volume: 10 start-page: 1120 year: 2019 publication-title: Nat. Commun. – volume: 28 start-page: 4203 year: 2016 publication-title: Adv. Mater. – volume: 327 start-page: 1603 year: 2010 publication-title: Science – volume: 9 start-page: 397 year: 2014 publication-title: Nat. Nanotechnol. – volume: 52 start-page: 288 year: 2019 publication-title: Acc. Chem. Res. – volume: 37 start-page: 389 year: 2019 publication-title: Nat. Biotechnol. – volume: 36 year: 2021 publication-title: Nano Today – volume: 115 51 start-page: 909 year: 2018 2012 publication-title: Proc. Natl. Acad. Sci. USA Jpn. J. Appl. Phys. – volume: 12 7 start-page: 7565 year: 2020 2020 publication-title: ACS Appl. Mater. Interfaces Adv. Sci. – volume: 79 year: 2021 publication-title: Nano Energy – volume: 12 year: 2020 publication-title: Nanoscale – volume: 12 5 30 start-page: 3002 year: 2020 2014 2020 publication-title: ACS Appl. Mater. Interfaces Nat. Commun. Adv. Funct. Mater. – volume: 5 start-page: 5747 year: 2014 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 106 year: 2009 publication-title: J. Appl. Phys. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 6 11 start-page: 2868 year: 2020 2020 publication-title: Sci. Adv. Nat. Commun. – volume: 117 year: 2020 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 year: 2017 publication-title: NPG Asia Mater. – volume: 6 start-page: 3576 year: 2013 publication-title: Energy Environ. Sci. – volume: 52 start-page: 523 year: 2019 publication-title: Acc. Chem. Res. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 30 363 year: 2018 2019 publication-title: Adv. Mater. Science – volume: 3 169 3 start-page: 1597 775 year: 2014 2020 2020 publication-title: Adv. Healthcare Mater. Biosens. Bioelectron. Nat. Electron. – volume: 120 year: 2020 publication-title: Chem. Rev. – volume: 27 start-page: 6954 year: 2015 publication-title: Adv. Mater. – volume: 74 start-page: 1236 year: 2021 1999 publication-title: Adv. Mater. Appl. Phys. Lett. – volume: 52 start-page: 63 year: 2019 publication-title: Acc. Chem. Res. – volume: 51 start-page: 999 year: 2018 publication-title: Acc. Chem. Res. – volume: 14 start-page: 2788 year: 2020 publication-title: ACS Nano – volume: 11 28 start-page: 795 5830 year: 2012 2016 publication-title: Nat. Mater. Adv. Mater. – volume: 140 year: 2020 publication-title: Mater. Sci. Eng., R – volume: 28 273 start-page: 140 year: 2018 2018 publication-title: Adv. Funct. Mater. Sens. Actuators, A – volume: 38 start-page: 217 year: 2020 publication-title: Nat. Biotechnol. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 1 5 start-page: 2337 5845 year: 2019 2017 publication-title: Nanoscale Adv. J. Mater. Chem. C – volume: 6 31 year: 2018 2019 publication-title: J. Mater. Chem. C Adv. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 36 start-page: 1817 year: 1965 publication-title: Rev. Sci. Instrum. – volume: 2 year: 2018 publication-title: Adv. Funct. Mater. – volume: 337 32 start-page: 1640 year: 2012 2020 publication-title: Science Adv. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 49 start-page: 3423 year: 2020 publication-title: Chem. Soc. Rev. – volume: 114 year: 2020 publication-title: Prog. Mater. Sci. – volume: 6 start-page: 7777 year: 2018 publication-title: J. Mater. Chem. A – volume: 21 32 start-page: 3730 year: 2009 2020 publication-title: Adv. Mater. Adv. Mater. – volume: 13 12 4 start-page: 1057 year: 2018 2020 2017 publication-title: Nat. Nanotechnol. ACS Appl. Mater. Interfaces Adv. Sci. – volume: 10 29 year: 2018 2017 publication-title: ACS Appl. Mater. Interfaces Adv. Mater. – volume: 16 30 start-page: 6042 year: 2016 2020 publication-title: Nano Lett. Adv. Funct. Mater. – volume: 2 year: 2017 publication-title: Adv. Mater. Technol. – volume: 109 start-page: 329 year: 2005 publication-title: Sens. Actuators, B – volume: 58 start-page: 31 year: 2005 publication-title: Phys. Today – volume: 140 start-page: 227 year: 2009 publication-title: Sens. Actuators, B – volume: 48 start-page: 1642 year: 2019 publication-title: Chem. Soc. Rev. – year: 2021 publication-title: Adv. Funct. Mater. – volume: 48 start-page: 275 year: 2018 publication-title: Nano Energy – volume: 9 start-page: 859 year: 2010 publication-title: Nat. Mater. – volume: 43 10 start-page: 1629 year: 2012 2018 publication-title: Composites, Part A ACS Appl. Mater. Interfaces – year: 2020 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 3429 year: 2019 publication-title: Nat. Commun. – volume: 4 start-page: 2588 year: 2019 publication-title: ACS Sens. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 12 start-page: 106 year: 2020 publication-title: Nano‐Micro Lett. – volume: 48 start-page: 1741 year: 2019 publication-title: Chem. Soc. Rev. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 12 32 6 year: 2020 2020 2019 publication-title: ACS Appl. Mater. Interfaces Adv. Mater. Appl. Phys. Rev. – volume: 66 year: 2019 publication-title: Nano Energy – volume: 7 start-page: 8258 year: 2019 publication-title: J. Mater. Chem. A – volume: 32 49 start-page: 7210 year: 2020 2020 publication-title: Adv. Mater. Chem. Soc. Rev. – volume: 25 start-page: 2287 year: 2015 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 383 year: 2021 publication-title: Mater. Horiz. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 5 start-page: 3132 year: 2014 publication-title: Nat. Commun. – volume: 17 start-page: 321 year: 2014 publication-title: Mater. Today – volume: 2 10 start-page: 181 year: 2019 2020 publication-title: Batteries Supercaps Adv. Energy Mater. – volume: 19 start-page: 5544 year: 2019 publication-title: Nano Lett. – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 149 year: 2020 publication-title: Nat. Rev. Mater. – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 218 year: 2020 publication-title: ACS Nano – volume: 43 start-page: 175 year: 2020 publication-title: J. Mater. Sci. Technol. – volume: 14 start-page: 6449 year: 2020 publication-title: ACS Nano – ident: e_1_2_8_278_1 doi: 10.1038/s41928-019-0235-0 – ident: e_1_2_8_73_1 doi: 10.1002/adfm.201700728 – ident: e_1_2_8_189_8 doi: 10.1021/acsnano.0c06607 – ident: e_1_2_8_161_1 doi: 10.1016/j.nanoen.2017.03.039 – ident: e_1_2_8_167_1 doi: 10.1002/adfm.201702891 – ident: e_1_2_8_178_1 doi: 10.1039/C8CS00834E – ident: e_1_2_8_129_1 doi: 10.1364/OL.27.001385 – ident: e_1_2_8_134_1 doi: 10.1016/j.progpolymsci.2020.101289 – ident: e_1_2_8_173_1 doi: 10.1039/C8TC04079F – ident: e_1_2_8_189_3 doi: 10.1002/adhm.201700889 – ident: e_1_2_8_135_1 doi: 10.1002/adhm.201601371 – ident: e_1_2_8_87_1 doi: 10.1007/s40820-020-00439-9 – ident: e_1_2_8_211_1 doi: 10.1002/adma.201606151 – ident: e_1_2_8_56_1 doi: 10.1021/acsnano.0c01164 – ident: e_1_2_8_163_1 doi: 10.7567/JJAP.53.09PC02 – ident: e_1_2_8_1_1 doi: 10.1002/adma.201504150 – ident: e_1_2_8_190_1 doi: 10.1002/adma.201504441 – ident: e_1_2_8_255_1 doi: 10.1021/acsami.9b13349 – ident: e_1_2_8_95_1 doi: 10.1002/adfm.201909383 – ident: e_1_2_8_156_1 doi: 10.1021/acsami.5b06229 – ident: e_1_2_8_173_2 doi: 10.1002/adma.201807916 – ident: e_1_2_8_179_1 doi: 10.1002/adma.201902417 – ident: e_1_2_8_200_2 doi: 10.1002/adma.201606703 – ident: e_1_2_8_223_1 doi: 10.1021/acsnano.9b02030 – ident: e_1_2_8_284_1 doi: 10.1016/j.mattod.2020.10.004 – ident: e_1_2_8_216_1 doi: 10.1002/smll.201803939 – ident: e_1_2_8_37_1 doi: 10.1016/j.nanoen.2020.104672 – ident: e_1_2_8_159_1 doi: 10.1039/C8CS00928G – ident: e_1_2_8_281_2 doi: 10.1016/j.bios.2020.112637 – ident: e_1_2_8_107_1 doi: 10.1039/C3EE42454E – ident: e_1_2_8_8_1 doi: 10.1021/acsami.8b19214 – ident: e_1_2_8_253_1 doi: 10.1002/adhm.202100103 – ident: e_1_2_8_76_1 doi: 10.1039/C9CS00811J – ident: e_1_2_8_217_1 doi: 10.1039/D0TA05651K – ident: e_1_2_8_2_1 doi: 10.1002/adma.201302240 – ident: e_1_2_8_91_1 doi: 10.1021/nn506341u – ident: e_1_2_8_267_1 doi: 10.1002/aelm.201901291 – ident: e_1_2_8_54_1 doi: 10.1021/acsami.0c12868 – ident: e_1_2_8_69_1 doi: 10.1021/acsami.7b09184 – ident: e_1_2_8_150_2 doi: 10.1021/acsami.7b11431 – ident: e_1_2_8_30_1 doi: 10.1126/science.aba5132 – ident: e_1_2_8_132_1 doi: 10.1021/acsami.1c04457 – ident: e_1_2_8_71_1 doi: 10.1021/nn500441k – ident: e_1_2_8_209_1 doi: 10.1002/adfm.202007661 – ident: e_1_2_8_266_1 doi: 10.1002/adfm.201906713 – ident: e_1_2_8_105_1 doi: 10.1063/1.2062916 – ident: e_1_2_8_161_3 doi: 10.1016/j.nanoen.2017.12.004 – ident: e_1_2_8_104_1 doi: 10.1002/adma.201807916 – ident: e_1_2_8_282_1 doi: 10.1002/adma.202008308 – ident: e_1_2_8_197_1 doi: 10.1002/admt.201700057 – ident: e_1_2_8_55_3 doi: 10.1016/j.snb.2006.11.015 – ident: e_1_2_8_200_1 doi: 10.1021/acsami.8b04775 – ident: e_1_2_8_91_4 doi: 10.1038/s41528-017-0004-y – ident: e_1_2_8_61_1 doi: 10.1002/adma.201901924 – ident: e_1_2_8_210_1 doi: 10.1002/admt.201700183 – ident: e_1_2_8_55_1 doi: 10.1002/adfm.201904549 – ident: e_1_2_8_139_2 doi: 10.1002/adma.201505372 – ident: e_1_2_8_12_1 doi: 10.1021/acsami.7b13356 – ident: e_1_2_8_125_1 doi: 10.1126/sciadv.aaw1899 – ident: e_1_2_8_284_2 doi: 10.1063/5.0017769 – ident: e_1_2_8_93_1 doi: 10.1016/j.mattod.2014.05.006 – ident: e_1_2_8_101_3 doi: 10.1002/adfm.201806379 – ident: e_1_2_8_81_1 doi: 10.1021/acsami.9b04060 – ident: e_1_2_8_192_1 doi: 10.1002/aenm.202001945 – ident: e_1_2_8_112_1 doi: 10.1002/adfm.201400712 – ident: e_1_2_8_41_1 doi: 10.1039/D0TC03961F – ident: e_1_2_8_117_3 doi: 10.1002/adfm.201903100 – ident: e_1_2_8_43_1 doi: 10.1002/admt.201800626 – ident: e_1_2_8_72_1 doi: 10.1002/adfm.201907312 – ident: e_1_2_8_149_1 doi: 10.1002/admt.202001084 – ident: e_1_2_8_110_1 doi: 10.1126/science.6177041 – ident: e_1_2_8_131_2 doi: 10.1002/adma.201904385 – ident: e_1_2_8_131_1 doi: 10.1063/1.1839633 – ident: e_1_2_8_168_1 doi: 10.1002/adma.200900860 – ident: e_1_2_8_63_1 doi: 10.1038/nmat4671 – ident: e_1_2_8_32_1 doi: 10.1073/pnas.2008422117 – ident: e_1_2_8_166_2 doi: 10.1016/j.carbon.2020.11.070 – ident: e_1_2_8_230_1 doi: 10.1002/adfm.201806057 – ident: e_1_2_8_48_1 doi: 10.1002/adma.201502535 – ident: e_1_2_8_268_1 doi: 10.1021/acsami.0c10101 – ident: e_1_2_8_191_1 doi: 10.1016/j.nanoen.2017.05.024 – ident: e_1_2_8_238_1 doi: 10.1002/admt.202000419 – ident: e_1_2_8_175_1 doi: 10.1002/advs.201600404 – ident: e_1_2_8_182_1 doi: 10.1002/adma.201505739 – ident: e_1_2_8_261_1 doi: 10.1021/acs.chemrev.9b00437 – ident: e_1_2_8_219_1 doi: 10.1021/acsami.0c05119 – ident: e_1_2_8_42_2 doi: 10.1039/C7TC01169E – ident: e_1_2_8_46_1 doi: 10.1038/nmat2834 – ident: e_1_2_8_215_1 doi: 10.1002/advs.202000584 – ident: e_1_2_8_27_1 doi: 10.1021/acsami.9b13383 – ident: e_1_2_8_232_1 doi: 10.1002/adma.201302869 – ident: e_1_2_8_101_2 doi: 10.1002/smll.201906352 – ident: e_1_2_8_165_1 doi: 10.1021/acs.accounts.8b00500 – ident: e_1_2_8_201_1 doi: 10.1002/smll.201800394 – ident: e_1_2_8_272_2 doi: 10.1038/s41467-020-16642-6 – ident: e_1_2_8_270_2 doi: 10.1002/adma.202002211 – ident: e_1_2_8_233_1 doi: 10.1021/nn305209h – ident: e_1_2_8_274_2 doi: 10.1002/aenm.202001424 – ident: e_1_2_8_68_1 doi: 10.1002/adma.201902062 – ident: e_1_2_8_83_1 doi: 10.1016/j.nanoen.2019.104105 – ident: e_1_2_8_254_1 doi: 10.1002/adfm.201808695 – ident: e_1_2_8_15_1 doi: 10.1016/j.mser.2017.02.001 – ident: e_1_2_8_160_1 doi: 10.1016/j.nanoen.2020.104671 – ident: e_1_2_8_141_1 doi: 10.1021/acsami.6b08587 – ident: e_1_2_8_94_1 doi: 10.1002/adfm.201808424 – ident: e_1_2_8_206_1 doi: 10.1021/acsnano.9b06899 – ident: e_1_2_8_208_1 doi: 10.1038/nnano.2014.38 – ident: e_1_2_8_129_2 doi: 10.1002/adfm.201902898 – ident: e_1_2_8_62_1 doi: 10.1002/adma.201504244 – ident: e_1_2_8_226_2 doi: 10.1016/j.nanoen.2020.104676 – ident: e_1_2_8_251_1 doi: 10.1016/j.nanoen.2019.05.054 – ident: e_1_2_8_118_1 doi: 10.1002/adfm.202101567 – ident: e_1_2_8_142_1 doi: 10.1021/acsnano.9b09802 – ident: e_1_2_8_240_1 doi: 10.1038/s41467-020-16268-8 – ident: e_1_2_8_25_1 doi: 10.1021/acsami.7b13767 – ident: e_1_2_8_19_1 doi: 10.1002/adfm.202010439 – ident: e_1_2_8_35_1 doi: 10.1126/science.1206157 – ident: e_1_2_8_36_1 doi: 10.1038/s41587-019-0321-x – ident: e_1_2_8_205_1 doi: 10.1002/smll.201904224 – ident: e_1_2_8_123_1 doi: 10.1016/j.nanoen.2021.106058 – ident: e_1_2_8_202_1 doi: 10.1021/acsami.0c08114 – ident: e_1_2_8_271_1 doi: 10.1002/advs.201500169 – ident: e_1_2_8_249_1 doi: 10.1002/admt.201900290 – ident: e_1_2_8_71_2 doi: 10.1002/adfm.201500453 – ident: e_1_2_8_189_6 doi: 10.1002/adma.201902743 – ident: e_1_2_8_260_1 doi: 10.1073/pnas.2100466118 – ident: e_1_2_8_145_1 doi: 10.1002/adfm.201500628 – ident: e_1_2_8_60_3 doi: 10.1063/1.5085013 – ident: e_1_2_8_234_1 doi: 10.1002/aelm.201900582 – ident: e_1_2_8_231_1 doi: 10.1039/C9TA00682F – ident: e_1_2_8_261_2 doi: 10.1002/adma.201504366 – ident: e_1_2_8_86_1 doi: 10.1021/acsami.9b05214 – ident: e_1_2_8_60_1 doi: 10.1021/acsami.0c06435 – ident: e_1_2_8_114_1 doi: 10.1002/adfm.201910020 – ident: e_1_2_8_265_1 doi: 10.1039/D0MH00483A – ident: e_1_2_8_80_1 doi: 10.1021/acsnano.0c03391 – ident: e_1_2_8_108_1 doi: 10.1126/sciadv.aba1062 – ident: e_1_2_8_18_1 doi: 10.1021/nn500845a – ident: e_1_2_8_28_1 doi: 10.1002/advs.201802128 – ident: e_1_2_8_251_3 doi: 10.1126/sciadv.abe7432 – ident: e_1_2_8_147_1 doi: 10.1021/acs.accounts.8b00488 – ident: e_1_2_8_143_2 doi: 10.1021/acsapm.8b00241 – ident: e_1_2_8_98_1 doi: 10.1002/adfm.201907449 – ident: e_1_2_8_187_1 doi: 10.1002/aelm.201500029 – ident: e_1_2_8_251_2 doi: 10.1038/s41467-020-14485-9 – ident: e_1_2_8_14_1 doi: 10.1038/s41467-017-02685-9 – ident: e_1_2_8_79_2 doi: 10.1002/smll.202001993 – ident: e_1_2_8_84_1 doi: 10.1002/adma.201902831 – ident: e_1_2_8_13_1 doi: 10.1038/am.2017.194 – ident: e_1_2_8_91_2 doi: 10.1021/acs.accounts.8b00499 – ident: e_1_2_8_221_1 doi: 10.1016/j.nanoen.2017.09.024 – ident: e_1_2_8_218_1 doi: 10.1039/C7NR05575G – ident: e_1_2_8_70_1 doi: 10.1002/adma.201802084 – ident: e_1_2_8_29_1 doi: 10.1002/adma.202005902 – ident: e_1_2_8_49_1 doi: 10.1002/adfm.201404365 – ident: e_1_2_8_152_1 doi: 10.1039/C9MH00715F – volume: 13 year: 2016 ident: e_1_2_8_176_2 publication-title: Small – ident: e_1_2_8_114_3 doi: 10.1016/j.compositesa.2019.105614 – ident: e_1_2_8_277_1 doi: 10.1038/s41565-018-0244-6 – ident: e_1_2_8_51_1 doi: 10.1002/adma.201907156 – ident: e_1_2_8_158_3 doi: 10.1002/marc.202000444 – ident: e_1_2_8_65_1 doi: 10.1002/adfm.201908915 – ident: e_1_2_8_140_1 doi: 10.1021/acsami.0c09653 – ident: e_1_2_8_164_1 doi: 10.1002/adfm.201904259 – ident: e_1_2_8_172_1 doi: 10.1002/admt.201800549 – ident: e_1_2_8_57_1 doi: 10.1002/adma.202008701 – ident: e_1_2_8_224_1 doi: 10.1021/nn4037514 – ident: e_1_2_8_179_2 doi: 10.1039/D0CS00204F – ident: e_1_2_8_189_11 doi: 10.1039/C8CS00406D – ident: e_1_2_8_3_2 doi: 10.1109/TBCAS.2019.2946875 – ident: e_1_2_8_257_1 doi: 10.1002/admt.202100616 – ident: e_1_2_8_276_1 doi: 10.1002/adfm.202005692 – ident: e_1_2_8_128_1 doi: 10.1002/adma.202004416 – ident: e_1_2_8_264_1 doi: 10.1038/s41467-019-11364-w – ident: e_1_2_8_23_3 doi: 10.1038/nature21004 – ident: e_1_2_8_53_1 doi: 10.1063/1.1719472 – ident: e_1_2_8_151_1 doi: 10.1126/sciadv.abd0202 – ident: e_1_2_8_186_1 doi: 10.1002/aelm.201600517 – ident: e_1_2_8_122_1 doi: 10.1021/acs.chemrev.0c00451 – ident: e_1_2_8_24_1 doi: 10.1039/C8MH01157E – ident: e_1_2_8_224_5 doi: 10.1021/acsnano.8b01805 – ident: e_1_2_8_277_3 doi: 10.1002/advs.201600190 – ident: e_1_2_8_204_1 doi: 10.1039/D0NR03684F – ident: e_1_2_8_248_1 doi: 10.1021/acsami.9b00817 – ident: e_1_2_8_26_1 doi: 10.1063/1.3299003 – ident: e_1_2_8_281_1 doi: 10.1002/adhm.201400073 – ident: e_1_2_8_45_1 doi: 10.1021/acs.nanolett.6b01968 – ident: e_1_2_8_188_1 doi: 10.1002/smll.202002681 – ident: e_1_2_8_79_1 doi: 10.1002/adfm.201905197 – ident: e_1_2_8_258_1 doi: 10.1016/j.mser.2019.100523 – ident: e_1_2_8_6_1 doi: 10.1016/j.bios.2020.112460 – ident: e_1_2_8_101_1 doi: 10.1016/j.nanoen.2021.105895 – ident: e_1_2_8_103_1 doi: 10.1002/adfm.201703549 – ident: e_1_2_8_246_1 doi: 10.3945/ajcn.112.044172 – ident: e_1_2_8_44_1 doi: 10.1063/1.3191677 – ident: e_1_2_8_189_14 doi: 10.1002/adfm.202009524 – ident: e_1_2_8_77_1 doi: 10.1002/adma.202005970 – ident: e_1_2_8_171_1 doi: 10.1109/JPROC.2019.2908433 – ident: e_1_2_8_283_1 doi: 10.1002/adma.201704530 – ident: e_1_2_8_189_9 doi: 10.1039/C8CS00609A – ident: e_1_2_8_196_1 doi: 10.1021/acsami.7b04938 – ident: e_1_2_8_99_1 doi: 10.1002/adfm.201504755 – ident: e_1_2_8_50_1 doi: 10.1002/adfm.202010824 – ident: e_1_2_8_224_2 doi: 10.1002/adma.201305182 – ident: e_1_2_8_90_1 doi: 10.1016/j.actamat.2008.02.030 – ident: e_1_2_8_279_1 doi: 10.1002/adma.202004190 – ident: e_1_2_8_271_2 doi: 10.1002/adma.201902549 – ident: e_1_2_8_42_1 doi: 10.1039/C9NA00176J – ident: e_1_2_8_117_2 doi: 10.1038/ncomms4002 – ident: e_1_2_8_183_1 doi: 10.1126/sciadv.aav9653 – ident: e_1_2_8_259_1 doi: 10.1002/adma.201802337 – ident: e_1_2_8_22_1 doi: 10.1038/ncomms6747 – ident: e_1_2_8_284_3 doi: 10.1039/D1MH00998B – ident: e_1_2_8_120_1 doi: 10.1021/acsami.9b20612 – ident: e_1_2_8_161_4 doi: 10.1007/s12274-017-1567-6 – ident: e_1_2_8_227_1 doi: 10.1021/acsnano.9b07874 – ident: e_1_2_8_250_1 doi: 10.1016/j.nanoen.2018.03.056 – ident: e_1_2_8_136_1 doi: 10.1038/nnano.2016.38 – ident: e_1_2_8_262_1 doi: 10.1038/nature14543 – ident: e_1_2_8_189_4 doi: 10.1002/adma.201801072 – ident: e_1_2_8_242_1 doi: 10.1002/adma.202000246 – ident: e_1_2_8_144_1 doi: 10.1016/j.nanoen.2020.104814 – ident: e_1_2_8_138_1 doi: 10.1002/adma.201901408 – ident: e_1_2_8_189_7 doi: 10.1039/C8CS00706C – ident: e_1_2_8_38_1 doi: 10.1002/adfm.201808509 – ident: e_1_2_8_58_1 doi: 10.1002/adma.201802418 – ident: e_1_2_8_39_1 doi: 10.1016/j.nanoen.2020.105414 – ident: e_1_2_8_120_2 doi: 10.1002/advs.202001184 – ident: e_1_2_8_31_1 doi: 10.1021/acs.nanolett.9b02081 – ident: e_1_2_8_224_3 doi: 10.1021/nn505953t – ident: e_1_2_8_189_13 doi: 10.1039/D0TA09556G – ident: e_1_2_8_78_1 doi: 10.1063/1.2830815 – ident: e_1_2_8_4_1 doi: 10.1002/adfm.201702050 – ident: e_1_2_8_245_1 doi: 10.1111/j.1753-4887.2010.00304.x – ident: e_1_2_8_89_1 doi: 10.1063/1.1702682 – ident: e_1_2_8_139_1 doi: 10.1038/nmat3380 – ident: e_1_2_8_82_1 doi: 10.1126/sciadv.1500661 – ident: e_1_2_8_158_4 doi: 10.1038/s41467-018-05503-y – ident: e_1_2_8_17_1 doi: 10.1073/pnas.0502392102 – ident: e_1_2_8_148_1 doi: 10.1039/C7NR08077H – ident: e_1_2_8_181_1 doi: 10.1021/acs.chemmater.8b03914 – ident: e_1_2_8_74_1 doi: 10.1021/acsami.7b00380 – ident: e_1_2_8_207_1 doi: 10.1021/acs.chemrev.7b00291 – ident: e_1_2_8_280_1 doi: 10.1021/acsnano.0c07148 – ident: e_1_2_8_45_2 doi: 10.1002/adfm.201908411 – ident: e_1_2_8_237_1 doi: 10.1002/adfm.202007788 – ident: e_1_2_8_214_1 doi: 10.1002/adma.202004782 – ident: e_1_2_8_47_1 doi: 10.1002/adma.201403441 – ident: e_1_2_8_40_1 doi: 10.1016/j.pmatsci.2019.100617 – ident: e_1_2_8_169_1 doi: 10.1039/D0MH00716A – ident: e_1_2_8_97_1 doi: 10.1021/acsami.9b16353 – ident: e_1_2_8_137_1 doi: 10.1038/s41587-019-0045-y – ident: e_1_2_8_66_1 doi: 10.1039/C8NR02080A – ident: e_1_2_8_127_1 doi: 10.1038/s41578-019-0167-3 – ident: e_1_2_8_243_1 doi: 10.1021/acs.accounts.7b00549 – ident: e_1_2_8_176_1 doi: 10.1002/adfm.202005522 – ident: e_1_2_8_92_1 doi: 10.1038/s41427-019-0169-z – ident: e_1_2_8_203_1 doi: 10.1016/j.snb.2004.12.067 – ident: e_1_2_8_162_2 doi: 10.1143/JJAP.51.09LD14 – ident: e_1_2_8_285_1 doi: 10.1021/acsami.9b16336 – ident: e_1_2_8_236_1 doi: 10.1038/s41467-019-09070-8 – ident: e_1_2_8_119_2 doi: 10.1063/1.123510 – ident: e_1_2_8_124_1 doi: 10.1126/science.aba5504 – ident: e_1_2_8_109_1 doi: 10.1039/c3ee42571a – ident: e_1_2_8_177_1 doi: 10.1002/adfm.201505223 – ident: e_1_2_8_59_1 doi: 10.1002/adma.201904765 – ident: e_1_2_8_189_1 doi: 10.1002/smll.201602790 – ident: e_1_2_8_158_2 doi: 10.1002/adma.201906876 – ident: e_1_2_8_88_1 doi: 10.1039/C4MH00147H – ident: e_1_2_8_130_1 doi: 10.1021/acs.accounts.9b00325 – ident: e_1_2_8_133_2 doi: 10.1021/acsami.8b00250 – ident: e_1_2_8_189_10 doi: 10.1002/admt.201800574 – ident: e_1_2_8_150_1 doi: 10.1039/C4TA01073F – ident: e_1_2_8_133_1 doi: 10.1016/j.compositesa.2012.08.001 – ident: e_1_2_8_11_1 doi: 10.1016/j.nanoen.2020.105044 – ident: e_1_2_8_96_1 doi: 10.1016/j.snb.2009.04.019 – ident: e_1_2_8_143_3 doi: 10.1016/j.carbon.2018.06.037 – ident: e_1_2_8_171_3 doi: 10.1021/acs.accounts.8b00489 – ident: e_1_2_8_207_2 doi: 10.1039/C5TB02483H – ident: e_1_2_8_115_1 doi: 10.1038/ncomms4132 – ident: e_1_2_8_193_1 doi: 10.1021/nn506293y – ident: e_1_2_8_220_2 doi: 10.1016/j.sna.2018.02.032 – ident: e_1_2_8_64_1 doi: 10.1021/acsami.7b05672 – ident: e_1_2_8_185_1 doi: 10.1002/adma.201903789 – ident: e_1_2_8_16_1 doi: 10.1002/adma.201803388 – ident: e_1_2_8_180_1 doi: 10.1021/acs.chemmater.9b02437 – volume: 12 year: 2019 ident: e_1_2_8_123_2 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_155_1 doi: 10.1039/C8CS00595H – ident: e_1_2_8_106_1 doi: 10.1021/acs.nanolett.0c02519 – ident: e_1_2_8_157_1 doi: 10.1002/adfm.201909383 – ident: e_1_2_8_274_1 doi: 10.1002/batt.201800140 – ident: e_1_2_8_20_1 doi: 10.1126/science.1182383 – ident: e_1_2_8_23_4 doi: 10.1021/am400757q – ident: e_1_2_8_161_2 doi: 10.1002/adfm.201500856 – ident: e_1_2_8_228_1 doi: 10.1021/acsami.0c12176 – ident: e_1_2_8_259_2 doi: 10.1126/science.aau0780 – ident: e_1_2_8_75_1 doi: 10.1016/j.jmst.2019.11.010 – ident: e_1_2_8_33_1 doi: 10.1016/j.nanoen.2020.105073 – ident: e_1_2_8_21_1 doi: 10.1016/j.sna.2006.07.019 – ident: e_1_2_8_7_1 doi: 10.1021/nn402728g – ident: e_1_2_8_85_1 doi: 10.1039/C9MH00715F – ident: e_1_2_8_143_1 doi: 10.1021/acsami.8b14573 – ident: e_1_2_8_113_1 doi: 10.1002/adfm.201802343 – ident: e_1_2_8_225_1 doi: 10.1002/adfm.201904523 – ident: e_1_2_8_5_1 doi: 10.1002/adma.201902343 – ident: e_1_2_8_198_1 doi: 10.1039/C9TA13407G – ident: e_1_2_8_281_3 doi: 10.1038/s41928-020-00493-6 – volume-title: Encyclopedia of Polymer Science and Technology year: 2002 ident: e_1_2_8_100_1 – ident: e_1_2_8_222_1 doi: 10.1038/nnano.2017.125 – ident: e_1_2_8_277_2 doi: 10.1021/acsami.0c08291 – ident: e_1_2_8_235_1 doi: 10.1021/acssensors.9b01561 – ident: e_1_2_8_60_2 doi: 10.1002/adma.201902133 – ident: e_1_2_8_166_1 doi: 10.1002/admt.201700248 – ident: e_1_2_8_153_1 doi: 10.1039/D0TC01011A – ident: e_1_2_8_111_1 doi: 10.1002/adfm.202003491 – ident: e_1_2_8_184_1 doi: 10.1007/s12274-019-2505-6 – ident: e_1_2_8_23_2 doi: 10.1557/mrs.2016.247 – ident: e_1_2_8_158_1 doi: 10.1016/j.sna.2021.112800 – ident: e_1_2_8_171_2 doi: 10.1002/adma.201805536 – ident: e_1_2_8_226_1 doi: 10.1557/s43577-021-00079-3 – ident: e_1_2_8_52_1 doi: 10.1039/C7MH00262A – ident: e_1_2_8_102_1 doi: 10.1038/ncomms9356 – ident: e_1_2_8_9_1 doi: 10.1021/acs.accounts.8b00497 – ident: e_1_2_8_189_5 doi: 10.1021/acs.accounts.8b00491 – ident: e_1_2_8_213_1 doi: 10.1039/C9NR03098K – ident: e_1_2_8_34_1 doi: 10.1002/adma.201804327 – ident: e_1_2_8_154_1 doi: 10.1021/acsami.0c06263 – ident: e_1_2_8_67_1 doi: 10.1002/adfm.201707013 – ident: e_1_2_8_23_1 doi: 10.1002/adma.201504236 – ident: e_1_2_8_263_1 doi: 10.1126/scirobotics.aaz9239 – ident: e_1_2_8_194_1 doi: 10.1039/D0MH01818J – ident: e_1_2_8_275_1 doi: 10.1002/advs.202001116 – ident: e_1_2_8_3_1 doi: 10.1002/adma.202003014 – ident: e_1_2_8_189_2 doi: 10.1002/admt.201700053 – ident: e_1_2_8_212_1 doi: 10.1038/s41467-018-04906-1 – ident: e_1_2_8_114_2 doi: 10.1039/c3nr05496a – ident: e_1_2_8_239_1 doi: 10.1002/adfm.201703147 – ident: e_1_2_8_116_1 doi: 10.1021/acsami.8b15809 – ident: e_1_2_8_272_1 doi: 10.1126/sciadv.abb9083 – ident: e_1_2_8_199_1 doi: 10.1126/sciadv.1601473 – ident: e_1_2_8_270_1 doi: 10.1126/science.1226325 – ident: e_1_2_8_273_1 doi: 10.1016/j.nantod.2020.101016 – ident: e_1_2_8_220_1 doi: 10.1002/adfm.201706658 – ident: e_1_2_8_162_1 doi: 10.1073/pnas.1710874115 – ident: e_1_2_8_244_1 doi: 10.1073/pnas.2007032117 – ident: e_1_2_8_146_1 doi: 10.1038/s41551-021-00685-1 – ident: e_1_2_8_174_1 doi: 10.1002/adma.201802560 – ident: e_1_2_8_170_1 doi: 10.1039/C9TA04352G – ident: e_1_2_8_247_1 doi: 10.1016/j.snb.2016.05.054 – ident: e_1_2_8_168_2 doi: 10.1002/adma.201902684 – ident: e_1_2_8_241_1 doi: 10.1002/smtd.202100515 – ident: e_1_2_8_117_1 doi: 10.1021/acsami.0c19196 – ident: e_1_2_8_224_4 doi: 10.1002/smll.201303601 – ident: e_1_2_8_269_1 doi: 10.1126/sciadv.aba9624 – ident: e_1_2_8_256_1 doi: 10.1002/adfm.202105480 – ident: e_1_2_8_10_1 doi: 10.1002/adma.202000969 – ident: e_1_2_8_252_1 doi: 10.1039/C8TA00618K – ident: e_1_2_8_55_2 doi: 10.1126/sciadv.aaz6511 – ident: e_1_2_8_121_1 doi: 10.1126/science.aac5082 – ident: e_1_2_8_119_1 doi: 10.1002/adma.202005925 – ident: e_1_2_8_126_1 doi: 10.1109/JSEN.2002.804577 – ident: e_1_2_8_189_12 doi: 10.1039/D0TA06965E – ident: e_1_2_8_195_1 doi: 10.1002/adfm.201808829 – ident: e_1_2_8_91_3 doi: 10.1002/adma.202003155 – ident: e_1_2_8_229_1 doi: 10.1126/sciadv.1701114 |
SSID | ssj0031247 |
Score | 2.6781752 |
SecondaryResourceType | review_article |
Snippet | Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e‐skin) have manifested great... Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e-skin) have manifested great... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2103734 |
SubjectTerms | Artificial Intelligence Blood pressure Electrocardiography electronic skin (E‐skin) Electronics Flexible components healthcare Humans Humidity Internet of Things internet of things (IoT) multiresponsive flexible sensors Nanotechnology Sensors Skin Skin temperature Sweat VOCs Volatile organic compounds Wearable Electronic Devices wearable electronics |
Title | Recent Advances in Multiresponsive Flexible Sensors towards E‐skin: A Delicate Design for Versatile Sensing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202103734 https://www.ncbi.nlm.nih.gov/pubmed/34825473 https://www.proquest.com/docview/2629260612 https://www.proquest.com/docview/2604026847 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ekx58P-qLCIKn6jbpw3hbdBcR9eADvJUkTUHc7cp214Mnf4K_0V_iTNutu4oISi8tTZo0k8l8SWa-AOzxVBoudOKayOOun4rAlYmIXJ1EMjW8EWhN65CXV-HZnX9-H9yPRfGX_BD1ghtpRjFek4IrnR9-kobm3Q5tHXAKdBNECEoOW4SKrmv-KIHGqzhdBW2WS8RbI9bGBj-czD5plb5BzUnkWpie9jyoUaVLj5PHg-FAH5iXL3yO__mrBZircClrlh1pEaZstgSzY2yFy9BFiIkmijVLt4GcPWSsiN_tV362z5a1iV9Tdyy7welxr5-zQeGWm7PW--tb_viQHbMmO7Vl5B3ekPsIQ9zMaN0OO0mVE8tbgbt26_bkzK1Oa3ANRdeisIXmFiFb6lniiTuyKlVCGisbSSis8Y88L00iTyplRIDjik65FibCSxstpFiF6ayX2XVgqbCJSqLQyJD7OlAqUb4ntQotftZEoQPuSFqxqajM6USNTlySMPOYmjGum9GB_Tr9U0ni8WPKrZHw40qZ85iHXOK0D7GgA7v1a1RD2ltRme0NKQ2OhsScEzmwVnaauijiD6Ijnh3gheh_qUN8c3lxUT9t_CXTJsxwCtMovMu3YHrQH9ptBE8DvVMoyAes5hLs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROFAOPPoiPIorIfUU2Nh5YG4rYLUtuxx4SL1FtuNIiCWLNrscOPET-I38EmbyggWhSq1ySRQ7djwez3g88w3ANk-l4UInrok87vqpCFyZiMjVSSRTw1uB1mSH7J-E3Qv_95-g9iakWJgSH6IxuBFnFOs1MTgZpHefUUPz6wGdHXCKdBP-B5ijtN4En3942iBICRRfRX4VlFouQW_VuI0tvjtdf1ouvVE2p3XXQvh0lkDX3S59Tq52JmO9Y-5eITr-138tw2KlmrJ2OZdWYMZmn2DhBWDhZ7hGLROlFGuXngM5u8xYEcI7qlxtby3rEMSmHlh2hjvk4Shn48IzN2dHj_cP-dVlts_a7NCWwXd4Qx4kDFVnRqY7nCdVTWzvC1x0js4Pum6VsME1FGCL9BaaW9TaUs8SVNyeVakS0ljZSkJhjb_neWkSeVIpIwJcWnTKtTARXtpoIcVXmM2GmV0FlgqbqCQKjQy5rwOlEuV7UqvQ4mdNFDrg1uSKTYVmTkk1BnGJw8xjGsa4GUYHfjblb0ocj3dLbtTUjyt-zmMecok7P1QHHfjRvEZOpOMVldnhhMrggkjgOZED38pZ0zRFEEKU5dkBXtD-L32Iz_q9XvO09i-VtmC-e97vxb1fJ8fr8JFT1EbhbL4Bs-PRxG6iLjXW3wtueQLSMRcI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5RkFB7aGmBNi1QV6rUU2Bj5wf3tuqygnZBCIrELfKvhFiyaLPbQ088As_YJ-lMkk1ZUIXUKpdEsWPH9ng-2zPfAHzkXhoutA1NFvEw9iIJpRVZqG0mveGdRGvahzw8SvfP4q_nyfkdL_6aH6LdcCPJqOZrEvBr63f-kIaWV0M6OuDk6CbiJ7AUpx1JwRt6Jy2BlEDtVYVXQaUVEvPWjLaxw3fm88-rpQdYcx66Vrqn_wLUrNa1ycnl9nSit83Pe4SO__NbK_C8AaasW4-kl7Dgilfw7A5d4SpcIcZEHcW6td1AyS4KVjnwjhtD2x-O9YlgUw8dO8X18Whcsklll1uyvV83t-XlRfGZdVnP1a53eEP2IwyBM6ONOxwlTU4sbw3O-nvfv-yHTbiG0JB7Lfa20NwhZvORI6K4Xae8EtI42bGpcCbejSJvs0gqZUSCE4v2XAuT4aWNFlKsw2IxKtwbYF44q2yWGpnyWCdKWRVHUqvU4WdNlgYQznorNw2XOYXUGOY1CzPPqRnzthkD-NSmv65ZPP6acmPW-XkjzWXOUy5x3YdgMIAP7WuUQzpcUYUbTSkNTodEnZMF8LoeNG1RRCBEMZ4D4FXXP1KH_PRwMGif3v5LpvewfNzr54ODo2_v4Cknl43K0nwDFifjqdtEIDXRW5Ws_AZ6RxW3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Multiresponsive+Flexible+Sensors+towards+E%E2%80%90skin%3A+A+Delicate+Design+for+Versatile+Sensing&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Wu%E2%80%90Di&rft.au=Ke%2C+Kai&rft.au=Jia%2C+Jin&rft.au=Pu%2C+Jun%E2%80%90Hong&rft.date=2022-02-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202103734&rft.externalDBID=10.1002%252Fsmll.202103734&rft.externalDocID=SMLL202103734 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |