Recent Advances on the Selection Methods of DNA‐Encoded Libraries

DNA‐encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL‐compatible chemistries have greatly improved the ch...

Full description

Saved in:
Bibliographic Details
Published inChembiochem : a European journal of chemical biology Vol. 22; no. 14; pp. 2384 - 2397
Main Authors Huang, Yiran, Li, Xiaoyu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 15.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA‐encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL‐compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less‐covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non‐binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the “classic” DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets. DNA‐encoded chemical libraries (DEL) have become a major technology platform in drug discovery. Besides encoding method, DEL‐compatible chemistry, and analysis of large datasets, another important but less‐covered technological component of DELs is selection method. Although presently DEL selection is predominantly conducted with immobilized proteins on a matrix, the recent development of novel DEL selection methods has expanded the target scope and led to novel utilities of DELs. In this Review, we provide a comprehensive overview of DEL selection methods with a particular focus on the emerging approaches for DELs to interrogate complex biological targets.
AbstractList DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL-compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less-covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non-binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the "classic" DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets.
DNA‐encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL‐compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less‐covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non‐binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the “classic” DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets. DNA‐encoded chemical libraries (DEL) have become a major technology platform in drug discovery. Besides encoding method, DEL‐compatible chemistry, and analysis of large datasets, another important but less‐covered technological component of DELs is selection method. Although presently DEL selection is predominantly conducted with immobilized proteins on a matrix, the recent development of novel DEL selection methods has expanded the target scope and led to novel utilities of DELs. In this Review, we provide a comprehensive overview of DEL selection methods with a particular focus on the emerging approaches for DELs to interrogate complex biological targets.
DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL-compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less-covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non-binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the "classic" DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets.DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL-compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less-covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non-binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the "classic" DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets.
Author Li, Xiaoyu
Huang, Yiran
Author_xml – sequence: 1
  givenname: Yiran
  surname: Huang
  fullname: Huang, Yiran
  organization: The University of Hong Kong
– sequence: 2
  givenname: Xiaoyu
  orcidid: 0000-0002-8907-6727
  surname: Li
  fullname: Li, Xiaoyu
  email: xiaoyuli@hku.hk
  organization: Laboratory for Synthetic Chemistry and Chemical Biology Limited
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33891355$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLAzEQx4MoPqpXj7LgxUtrJsk-5ljXJ1QFH-clzc5iZLuryVbx5kfwM_pJTGmtIIinmSG__2T4bbHVpm2IsV3gA-BcHJqxNQPBRRhAqRW2CUpiP02kXF30Soh0g215_8g5x0TCOtuQMkOQcbzJ8hsy1HTRsHzRjSEftU3UPVB0SzWZzobpkrqHtgwPVXR8Nfx8_zhpTFtSGY3s2GlnyW-ztUrXnnYWtcfuT0_u8vP-6PrsIh-O-ibcofoa40RzHKsUCakkUZFEBMXLClNdpjLJKo2kEUkmMSaqUgnEJgEFFRjIZI8dzPc-ufZ5Sr4rJtYbqmvdUDv1hYghE4BZxgO6_wt9bKeuCdcFKhYAWYyzhXsLajqeUFk8OTvR7q341hOAwRwwrvXeUbVEgBcz_8XMf7H0HwLqV8DYTs88dk7b-u8YzmOvtqa3fz4p8qOL_Cf7BSTal4w
CitedBy_id crossref_primary_10_1021_acsmedchemlett_2c00477
crossref_primary_10_1038_s41573_023_00713_6
crossref_primary_10_1038_s41557_024_01442_y
crossref_primary_10_1248_cpb_c23_00295
crossref_primary_10_1021_acs_accounts_1c00375
crossref_primary_10_1021_acs_jmedchem_2c01541
crossref_primary_10_1016_j_bmc_2021_116328
crossref_primary_10_1021_acsomega_2c01152
crossref_primary_10_1039_D1CB00240F
crossref_primary_10_1021_acs_bioconjchem_1c00427
crossref_primary_10_1021_acsomega_3c03160
crossref_primary_10_1021_acs_jmedchem_1c02106
crossref_primary_10_1039_D2CB00007E
crossref_primary_10_1002_cmdc_202400093
crossref_primary_10_1080_17460441_2024_2354287
crossref_primary_10_1016_j_sbi_2023_102578
crossref_primary_10_1002_ijch_202300073
crossref_primary_10_1021_jacs_1c11270
crossref_primary_10_1016_j_bmc_2024_117596
crossref_primary_10_1021_acs_orglett_4c00187
Cites_doi 10.2533/chimia.2021.105
10.1021/acscombsci.9b00207
10.1177/2472555217752091
10.1515/hsz-2018-0119
10.1021/acschembio.5b00378
10.1016/j.isci.2020.101197
10.1039/C9CC01429B
10.1021/acschembio.6b00855
10.1021/acscombsci.8b00116
10.1002/ange.201404830
10.1021/acscombsci.5b00124
10.1073/pnas.1620645114
10.1016/j.trechm.2020.11.010
10.1002/anie.201700813
10.1073/pnas.0805130105
10.1038/nbt0697-553
10.1093/nar/gkp889
10.1002/cbic.201900603
10.1021/acs.analchem.9b01988
10.1021/ja808558a
10.1002/ange.202005070
10.1021/ac8023813
10.1021/acscombsci.9b00037
10.1186/s13045-018-0578-4
10.1039/D0MD00310G
10.1021/bc100198x
10.1038/nrd.2016.213
10.1039/C6MD00241B
10.1021/acs.analchem.6b00980
10.1038/nprot.2016.039
10.1002/chem.201200952
10.1021/ja412934t
10.1002/ange.201302161
10.1038/s42004-020-00374-1
10.1021/acs.chemrev.0c00088
10.1016/j.bbrc.2020.04.024
10.1002/cbic.201800766
10.1038/nature13297
10.1002/anie.201612143
10.1021/ja00074a063
10.1039/C5SC02467F
10.1016/j.bbrc.2020.04.033
10.1002/9781118832738
10.1177/2472555217753840
10.1002/anie.201302161
10.1021/jacs.7b07241
10.1021/acscombsci.0c00007
10.1002/ange.201700813
10.1021/acs.jmedchem.9b01782
10.1016/j.cbpa.2015.02.003
10.1039/D0CC02588G
10.1002/anie.202005070
10.1002/cbic.201600626
10.1073/pnas.061028198
10.1007/s00232-015-9802-0
10.1016/j.chembiol.2011.07.017
10.1021/acs.bioconjchem.9b00363
10.1038/s41557-020-00605-x
10.1002/ijch.201900133
10.1177/2472555217749847
10.1002/chem.201803365
10.1021/acschembio.5b00981
10.1021/acs.analchem.5b04139
10.1177/2472555220908240
10.1002/anie.201501775
10.1002/cbic.201700014
10.1021/ja711193x
10.1002/anie.201811650
10.1016/j.bbrc.2020.04.029
10.1021/acs.jmedchem.5b01874
10.1016/j.tibtech.2017.04.007
10.1021/acsmedchemlett.8b00128
10.1177/2472555218766250
10.1039/C9OB00581A
10.1002/ange.201612143
10.1038/s41557-018-0033-8
10.1021/cb1003477
10.1038/nchem.2158
10.1002/ange.201501775
10.1021/acscombsci.9b00153
10.1021/ja104903x
10.1073/pnas.89.12.5381
10.1073/pnas.90.22.10700
10.1126/science.1102629
10.1016/j.bmcl.2005.05.094
10.1021/jacs.8b09277
10.1038/nbt961
10.1038/348552a0
10.1016/j.tetlet.2020.151889
10.1002/1873-3468.13068
10.1016/j.chembiol.2004.08.008
10.1146/annurev-biochem-060614-034142
10.1002/anie.202001205
10.1021/acschembio.8b00866
10.1021/acs.bioconjchem.9b00628
10.1021/bc7004347
10.1002/ange.201204174
10.1039/C7SC02779F
10.1002/cmdc.202000869
10.1002/bies.201800057
10.1016/j.bbrc.2020.04.080
10.1039/c1cc11668a
10.1039/D0RA09889B
10.1016/j.bmcl.2016.12.025
10.1021/jacs.0c09213
10.1002/anie.201412276
10.1016/bs.pmch.2020.03.001
10.1042/BST20160025
10.1146/annurev-biochem-062917-012550
10.1021/jacs.9b08085
10.1021/acs.jmedchem.0c00688
10.1002/anie.200604467
10.1016/j.bmcl.2021.127851
10.1021/acs.bioconjchem.7b00343
10.1177/2472555218757718
10.1021/jacs.5b04279
10.1021/acsmedchemlett.0c00615
10.1038/nchembio.211
10.1038/ncomms16081
10.1021/acscombsci.0c00023
10.1021/ja107677q
10.1002/cmdc.200900520
10.1021/ar400284t
10.1002/cbic.201600567
10.1021/ac504504c
10.1002/ange.201811650
10.1002/anie.200704936
10.1039/C6MD00288A
10.1002/chem.201702033
10.1146/annurev-bioeng-092115-025322
10.4155/fmc-2020-0285
10.1038/352624a0
10.1039/C5CC01230A
10.1039/C6MD00341A
10.1016/j.chembiol.2009.09.011
10.3390/molecules24081629
10.1177/2472555220979589
10.1039/C6MD00242K
10.1039/C9CC06256D
10.1016/j.bmc.2014.01.050
10.1038/nrd3368
10.1016/j.jpba.2015.03.033
10.1002/ange.200604467
10.1021/jacs.9b07191
10.1073/pnas.88.10.4363
10.1016/j.cbpa.2015.01.004
10.1073/pnas.172286899
10.1021/acscombsci.7b00023
10.1002/anie.201204174
10.1002/ange.200700654
10.1371/journal.pbio.0020173
10.1021/acs.jmedchem.0c00452
10.1039/D1CC00961C
10.1002/elps.201800270
10.1016/j.cbpa.2015.01.005
10.1124/mol.118.111948
10.1021/acscombsci.6b00192
10.1177/2472555219893949
10.1002/ange.201412276
10.1002/anie.200700654
10.1002/chem.201701644
10.1038/s41557-018-0008-9
10.1016/j.bmcl.2018.01.033
10.1073/pnas.94.10.4937
10.1021/acscombsci.5b00106
10.1021/jacs.7b04880
10.1002/anie.201404830
10.1021/acs.jmedchem.6b01751
10.1002/ange.200704936
10.1002/ange.202001205
10.1021/jacs.9b01203
10.1002/advs.202001970
10.1021/ja073993a
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
DOI 10.1002/cbic.202100144
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1439-7633
EndPage 2397
ExternalDocumentID 33891355
10_1002_cbic_202100144
CBIC202100144
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21572014; 21877093; 91953119
– fundername: Research Grants Council
  funderid: AoE/P-705/16; 17321916; 17302817; 17301118; 17111319; 17303220
– fundername: Research Grants Council
  grantid: 17321916
– fundername: Research Grants Council
  grantid: 17302817
– fundername: Research Grants Council
  grantid: 17111319
– fundername: National Natural Science Foundation of China
  grantid: 91953119
– fundername: National Natural Science Foundation of China
  grantid: 21572014
– fundername: National Natural Science Foundation of China
  grantid: 21877093
– fundername: Research Grants Council
  grantid: AoE/P-705/16
– fundername: Research Grants Council
  grantid: 17301118
– fundername: Research Grants Council
  grantid: 17303220
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
6P2
77Q
8-0
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
P4E
PQQKQ
R.K
ROL
RWI
RX1
SUPJJ
SV3
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
WYJ
XPP
XV2
Y6R
YZZ
ZZTAW
~KM
~S-
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7TM
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
7X8
ID FETCH-LOGICAL-c4394-a956a09b479e9ede2fe399140df97ad7368fa9ea99e365964f4615c6141f1c183
IEDL.DBID DR2
ISSN 1439-4227
1439-7633
IngestDate Fri Jul 11 08:32:30 EDT 2025
Sun Jul 13 04:31:46 EDT 2025
Wed Feb 19 02:09:09 EST 2025
Thu Apr 24 23:11:52 EDT 2025
Tue Jul 01 04:34:59 EDT 2025
Wed Jan 22 16:28:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords High throughput screening
Ligand discovery
DNA-encoded library
Drug discovery
Combinatorial library
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4394-a956a09b479e9ede2fe399140df97ad7368fa9ea99e365964f4615c6141f1c183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8907-6727
PMID 33891355
PQID 2552118598
PQPubID 986344
PageCount 14
ParticipantIDs proquest_miscellaneous_2518219880
proquest_journals_2552118598
pubmed_primary_33891355
crossref_primary_10_1002_cbic_202100144
crossref_citationtrail_10_1002_cbic_202100144
wiley_primary_10_1002_cbic_202100144_CBIC202100144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 15, 2021
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: July 15, 2021
  day: 15
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chembiochem : a European journal of chemical biology
PublicationTitleAlternate Chembiochem
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1991; 352
2004; 22
2019; 91
1990; 348
2009; 81
2002; 99
2019; 14
2019; 17
2008; 105
2012; 18
2018; 40
2004; 2
2008 2008; 47 120
2014; 136
2014; 22
2018; 9
2010; 21
2018; 39
2021; 75
2019; 20
2015; 137
2015; 84
2019; 21
1991; 88
2019; 24
2015; 87
2019; 25
2010; 5
2009; 16
2016; 44
2018; 28
2010; 38
2017; 60
2015; 248
2019; 30
2015; 51
2014; 47
2017 2017; 56 129
2021; 143
2018; 23
2016; 18
2004; 305
2011; 6
2017; 139
2016; 11
2018; 592
2017; 50
2021; 57
2016; 7
2015; 111
2007 2007; 46 119
2020; 25
2020; 23
2020; 22
2018; 94
2020; 21
2005; 15
2018; 11
2018; 10
1993; 115
2008; 130
2014 2014; 53 126
2021; 26
2017; 8
2020; 63
2019; 52
2020; 120
2019; 55
2020; 61
2020; 60
2020 2020; 59 132
2020; 59
2011; 10
2020; 56
2018; 87
2011; 18
2017; 114
2020; 527
2013 2013; 52 125
2020; 7
2020; 3
1997; 94
1997; 15
2018 2018; 57 130
2012 2012; 51 124
2021; 39
2017; 35
2020; 533
2015 2015; 54 127
1992; 89
2001; 98
2016; 88
2015; 6
2015; 17
2007; 129
2021; 3
2018; 140
2017; 28
2017; 27
2008; 19
2015; 10
2017; 23
1993; 90
2009; 131
2019; 141
2016; 59
2015; 7
2014; 511
2004; 11
2021; 13
2015; 26
2021; 16
2021; 12
2021; 11
2021
2017; 16
2018; 399
2017; 12
2010; 132
2019
2018
2017
2017; 19
2017; 18
2015
2009; 5
2011; 47
e_1_2_10_109_2
e_1_2_10_40_2
Zhu Z. (e_1_2_10_127_1) 2018
e_1_2_10_210_1
e_1_2_10_158_1
e_1_2_10_97_1
e_1_2_10_74_2
e_1_2_10_6_1
e_1_2_10_112_2
e_1_2_10_150_2
e_1_2_10_173_2
e_1_2_10_37_2
e_1_2_10_173_1
e_1_2_10_14_2
e_1_2_10_196_1
Denton K. E. (e_1_2_10_111_2) 2018
e_1_2_10_51_1
e_1_2_10_147_2
e_1_2_10_86_1
e_1_2_10_63_2
e_1_2_10_25_3
e_1_2_10_101_2
e_1_2_10_162_2
e_1_2_10_185_2
e_1_2_10_48_2
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_2
e_1_2_10_41_2
e_1_2_10_211_1
e_1_2_10_197_3
e_1_2_10_90_2
e_1_2_10_159_1
e_1_2_10_208_2
e_1_2_10_52_1
e_1_2_10_15_2
e_1_2_10_75_2
e_1_2_10_98_2
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_174_1
e_1_2_10_38_1
e_1_2_10_151_2
e_1_2_10_197_2
e_1_2_10_7_1
e_1_2_10_200_2
Goodnow R. A. (e_1_2_10_81_2) 2017; 50
e_1_2_10_148_1
e_1_2_10_49_2
e_1_2_10_64_2
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_87_1
e_1_2_10_102_2
e_1_2_10_140_2
e_1_2_10_26_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_212_1
e_1_2_10_198_2
e_1_2_10_209_1
e_1_2_10_91_2
Cuozzo J. W. (e_1_2_10_122_1) 2017
e_1_2_10_4_1
e_1_2_10_39_2
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_2
e_1_2_10_76_2
e_1_2_10_114_1
e_1_2_10_152_2
e_1_2_10_99_2
e_1_2_10_175_1
e_1_2_10_30_1
e_1_2_10_201_1
e_1_2_10_149_2
e_1_2_10_80_2
e_1_2_10_103_2
e_1_2_10_126_1
e_1_2_10_27_2
Reddavide F. V. (e_1_2_10_84_2) 2019; 52
e_1_2_10_187_1
e_1_2_10_141_2
e_1_2_10_164_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_213_2
e_1_2_10_130_1
e_1_2_10_199_2
e_1_2_10_92_2
Cochrane W. G. (e_1_2_10_203_1) 2019
e_1_2_10_17_2
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_77_2
e_1_2_10_176_1
e_1_2_10_153_2
e_1_2_10_31_2
Wang S. (e_1_2_10_88_2) 2019
e_1_2_10_202_1
e_1_2_10_188_1
e_1_2_10_104_3
Scheuermann J. (e_1_2_10_165_1) 2021
e_1_2_10_28_2
e_1_2_10_104_2
e_1_2_10_180_2
e_1_2_10_66_2
e_1_2_10_89_2
e_1_2_10_142_1
e_1_2_10_21_3
e_1_2_10_44_1
e_1_2_10_21_2
e_1_2_10_214_2
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_93_1
e_1_2_10_70_2
e_1_2_10_2_1
e_1_2_10_116_2
e_1_2_10_192_2
e_1_2_10_139_1
e_1_2_10_192_3
e_1_2_10_18_2
Dalton S. E. (e_1_2_10_125_1) 2019
e_1_2_10_55_1
e_1_2_10_78_2
e_1_2_10_154_1
e_1_2_10_79_2
e_1_2_10_32_2
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_128_2
e_1_2_10_181_2
e_1_2_10_82_2
e_1_2_10_128_1
e_1_2_10_29_2
e_1_2_10_105_1
e_1_2_10_67_2
e_1_2_10_143_1
e_1_2_10_22_2
e_1_2_10_68_2
e_1_2_10_45_1
Kolmel D. K. (e_1_2_10_72_2) 2021
e_1_2_10_132_1
e_1_2_10_178_1
e_1_2_10_155_2
e_1_2_10_71_2
e_1_2_10_117_2
e_1_2_10_193_2
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_170_2
e_1_2_10_56_1
Reddavide F. V. (e_1_2_10_160_2) 2015
e_1_2_10_57_2
e_1_2_10_57_3
e_1_2_10_10_1
e_1_2_10_33_1
Neri D. (e_1_2_10_65_2) 2018
e_1_2_10_204_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_144_2
e_1_2_10_167_3
e_1_2_10_167_2
e_1_2_10_60_2
e_1_2_10_83_2
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_46_1
e_1_2_10_23_2
e_1_2_10_69_2
e_1_2_10_107_2
e_1_2_10_156_2
e_1_2_10_179_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_2
e_1_2_10_95_2
e_1_2_10_8_1
e_1_2_10_110_2
e_1_2_10_194_2
e_1_2_10_35_2
e_1_2_10_133_1
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_58_2
e_1_2_10_119_1
e_1_2_10_205_1
Kim D. (e_1_2_10_94_2) 2019; 24
e_1_2_10_145_1
e_1_2_10_168_2
Shi B. (e_1_2_10_146_2) 2019
Kuai L. (e_1_2_10_135_1) 2018
e_1_2_10_61_2
e_1_2_10_183_2
e_1_2_10_108_2
Roy A. (e_1_2_10_207_2) 2021
e_1_2_10_157_2
e_1_2_10_157_3
e_1_2_10_206_2
e_1_2_10_1_1
e_1_2_10_73_2
e_1_2_10_96_2
e_1_2_10_172_1
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_134_1
e_1_2_10_195_1
e_1_2_10_9_1
e_1_2_10_12_2
e_1_2_10_59_2
e_1_2_10_50_2
e_1_2_10_169_1
e_1_2_10_62_2
e_1_2_10_85_2
e_1_2_10_161_2
e_1_2_10_24_2
e_1_2_10_123_1
e_1_2_10_47_1
e_1_2_10_100_2
e_1_2_10_184_2
References_xml – volume: 27
  start-page: 361
  year: 2017
  end-page: 369
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 98
  start-page: 3750
  year: 2001
  end-page: 3755
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 553
  year: 1997
  publication-title: Nat. Biotechnol.
– volume: 511
  start-page: 94
  year: 2014
  end-page: 98
  publication-title: Nature
– volume: 18
  start-page: 848
  year: 2017
  end-page: 852
  publication-title: ChemBioChem
– volume: 17
  start-page: 722
  year: 2015
  end-page: 731
  publication-title: ACS Comb. Sci.
– volume: 46 119
  start-page: 4671 4755
  year: 2007 2007
  end-page: 4674 4758
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 23
  start-page: 429
  year: 2018
  end-page: 436
  publication-title: SLAS Discov.
– volume: 21
  start-page: 75
  year: 2019
  end-page: 82
  publication-title: ACS Comb. Sci.
– volume: 13
  start-page: 77
  year: 2021
  end-page: 88
  publication-title: Nat. Chem.
– volume: 141
  start-page: 17174
  year: 2019
  end-page: 17179
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 10192
  year: 2017
  end-page: 10195
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 420
  year: 2018
  end-page: 427
  publication-title: Nat. Chem.
– year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 47 120
  start-page: 3196 3240
  year: 2008 2008
  end-page: 3201 3245
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 790
  year: 2016
  end-page: 795
  publication-title: Biochem. Soc. Trans.
– volume: 26
  start-page: 263
  year: 2021
  end-page: 280
  publication-title: SLAS Discov.
– volume: 11
  start-page: 2359
  year: 2021
  end-page: 2376
  publication-title: RSC Adv.
– volume: 9
  start-page: 408
  year: 2018
  end-page: 410
  publication-title: ACS Med. Chem. Lett.
– volume: 527
  start-page: 250
  year: 2020
  end-page: 256
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 7
  start-page: 241
  year: 2015
  end-page: 249
  publication-title: Nat. Chem.
– volume: 19
  start-page: 778
  year: 2008
  end-page: 785
  publication-title: Bioconjugate Chem.
– volume: 305
  start-page: 1601
  year: 2004
  end-page: 1605
  publication-title: Science
– volume: 22
  start-page: 101
  year: 2020
  end-page: 108
  publication-title: ACS Comb. Sci.
– volume: 22
  start-page: 25
  year: 2020
  end-page: 34
  publication-title: ACS Comb. Sci.
– volume: 59 132
  start-page: 17525 17678
  year: 2020 2020
  end-page: 17532 17685
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 23
  start-page: 397
  year: 2018
  end-page: 404
  publication-title: SLAS Discov.
– volume: 60
  start-page: 1247
  year: 2017
  end-page: 1261
  publication-title: J. Med. Chem.
– volume: 19
  start-page: 234
  year: 2017
  end-page: 238
  publication-title: ACS Comb. Sci.
– volume: 3
  start-page: 127
  year: 2020
  publication-title: Commun. Chem.
– volume: 81
  start-page: 490
  year: 2009
  end-page: 494
  publication-title: Anal. Chem.
– volume: 16
  start-page: 1075
  year: 2009
  end-page: 1086
  publication-title: Chem. Biol.
– volume: 57
  start-page: 3769
  year: 2021
  end-page: 3772
  publication-title: Chem. Commun.
– year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 23
  start-page: 10906
  year: 2017
  end-page: 10914
  publication-title: Chem. Eur. J.
– year: 2018
  publication-title: Ann. Rev. Biochem.
– volume: 10
  start-page: 704
  year: 2018
  end-page: 714
  publication-title: Nat. Chem.
– volume: 54 127
  start-page: 6057 6155
  year: 2015 2015
  end-page: 6061 6159
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 19
  start-page: 181
  year: 2017
  end-page: 192
  publication-title: ACS Comb. Sci.
– volume: 88
  start-page: 4363
  year: 1991
  end-page: 4366
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 2020
  year: 2016
  end-page: 2027
  publication-title: MedChemComm
– volume: 11
  start-page: 31
  year: 2018
  publication-title: J. Hematol. Oncol.
– volume: 12
  start-page: 343
  year: 2021
  end-page: 350
  publication-title: ACS Med. Chem. Lett.
– volume: 23
  start-page: 405
  year: 2018
  end-page: 416
  publication-title: SLAS Discov.
– volume: 114
  start-page: 1708
  year: 2017
  end-page: 1713
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 131
  year: 2017
  end-page: 147
  publication-title: Nat. Rev. Drug Discovery
– volume: 8
  start-page: 16081
  year: 2017
  publication-title: Nat. Commun.
– volume: 26
  start-page: 62
  year: 2015
  end-page: 71
  publication-title: Curr. Opin. Chem. Biol.
– volume: 28
  start-page: 2773
  year: 2018
  end-page: 2778
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 6
  start-page: 7097
  year: 2015
  end-page: 7104
  publication-title: Chem. Sci.
– volume: 132
  start-page: 11779
  year: 2010
  end-page: 11791
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 1836
  year: 2010
  end-page: 1841
  publication-title: Bioconjugate Chem.
– volume: 15
  start-page: 3908
  year: 2005
  end-page: 3911
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 16
  start-page: 1048
  year: 2021
  end-page: 1062
  publication-title: ChemMedChem
– volume: 533
  start-page: 249
  year: 2020
  end-page: 255
  publication-title: Biochem. Biophys. Res. Commun.
– year: 2019
  publication-title: ACS Chem. Biol.
– year: 2021
  publication-title: Chem. Rec.
– volume: 111
  start-page: 126
  year: 2015
  end-page: 130
  publication-title: J. Pharm. Biomed. Anal.
– volume: 14
  start-page: 37
  year: 2019
  end-page: 49
  publication-title: ACS Chem. Biol.
– volume: 90
  start-page: 10700
  year: 1993
  end-page: 10704
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 204
  year: 2020
  end-page: 212
  publication-title: ACS Comb. Sci.
– volume: 115
  start-page: 9812
  year: 1993
  end-page: 9813
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1898
  year: 2016
  end-page: 1909
  publication-title: MedChemComm
– volume: 30
  start-page: 2127
  year: 2019
  end-page: 2135
  publication-title: Bioconjugate Chem.
– volume: 12
  start-page: 234
  year: 2017
  end-page: 243
  publication-title: ACS Chem. Biol.
– volume: 28
  start-page: 2293
  year: 2017
  end-page: 2301
  publication-title: Bioconjugate Chem.
– volume: 120
  start-page: 10454
  year: 2020
  end-page: 10515
  publication-title: Chem. Rev.
– volume: 592
  start-page: 2168
  year: 2018
  end-page: 2180
  publication-title: FEBS Lett.
– volume: 51
  start-page: 8014
  year: 2015
  end-page: 8016
  publication-title: Chem. Commun.
– volume: 23
  start-page: 8152
  year: 2017
  end-page: 8155
  publication-title: Chem. Eur. J.
– volume: 35
  start-page: 691
  year: 2017
  end-page: 712
  publication-title: Trends Biotechnol.
– volume: 51 124
  start-page: 9176 9311
  year: 2012 2012
  end-page: 9180 9315
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 23
  start-page: 387
  year: 2018
  end-page: 396
  publication-title: SLAS Discov.
– volume: 18
  start-page: 51
  year: 2016
  end-page: 76
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 136
  start-page: 3264
  year: 2014
  end-page: 3270
  publication-title: J. Am. Chem. Soc.
– volume: 63
  start-page: 8857
  year: 2020
  end-page: 8866
  publication-title: J. Med. Chem.
– volume: 22
  start-page: 2353
  year: 2014
  end-page: 2365
  publication-title: Bioorg. Med. Chem.
– volume: 30
  start-page: 2931
  year: 2019
  end-page: 2938
  publication-title: Bioconjugate Chem.
– volume: 6
  start-page: 336
  year: 2011
  end-page: 344
  publication-title: ACS Chem. Biol.
– volume: 52
  start-page: 63
  year: 2019
  end-page: 74
  publication-title: Aldrichimica Acta
– volume: 75
  start-page: 105
  year: 2021
  end-page: 107
  publication-title: Chimia
– year: 2019
  publication-title: ACS Comb. Sci.
– volume: 10
  start-page: 2237
  year: 2015
  end-page: 2245
  publication-title: ACS Chem. Biol.
– volume: 88
  start-page: 339
  year: 2016
  end-page: 353
  publication-title: Anal. Chem.
– volume: 94
  start-page: 4937
  year: 1997
  end-page: 4942
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 647
  year: 2009
  end-page: 654
  publication-title: Nat. Chem. Biol.
– volume: 26
  start-page: 25
  year: 2015
  end-page: 33
  publication-title: Curr. Opin. Chem. Biol.
– volume: 11
  start-page: 764
  year: 2016
  end-page: 780
  publication-title: Nat. Protoc.
– volume: 87
  start-page: 2474
  year: 2015
  end-page: 2479
  publication-title: Anal. Chem.
– volume: 23
  start-page: 385
  year: 2018
  end-page: 386
  publication-title: SLAS Discov.
– year: 2017
  publication-title: ChemBioChem
– year: 2021
  publication-title: Chem. Eur. J.
– volume: 3
  start-page: 161
  year: 2021
  end-page: 175
  publication-title: Trends Chem.
– volume: 21
  start-page: 1144
  year: 2020
  end-page: 1149
  publication-title: ChemBioChem
– volume: 399
  start-page: 691
  year: 2018
  end-page: 710
  publication-title: Biol. Chem.
– volume: 47
  start-page: 7638
  year: 2011
  end-page: 7640
  publication-title: Chem. Commun.
– volume: 25
  start-page: 523
  year: 2020
  end-page: 529
  publication-title: SLAS Discov.
– volume: 27
  start-page: 361
  year: 2017
  end-page: 369
  publication-title: Bio. Med. Chem. Lett.
– volume: 11
  start-page: 1361
  year: 2004
  end-page: 1372
  publication-title: Chem. Biol.
– volume: 63
  start-page: 6578
  year: 2020
  end-page: 6599
  publication-title: J. Med. Chem.
– volume: 348
  start-page: 552
  year: 1990
  publication-title: Nature
– volume: 99
  start-page: 11139
  year: 2002
  end-page: 11144
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 105
  start-page: 17670
  year: 2008
  end-page: 17675
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 584
  year: 2010
  end-page: 590
  publication-title: ChemMedChem
– volume: 55
  start-page: 3753
  year: 2019
  end-page: 3756
  publication-title: Chem. Commun.
– volume: 50
  start-page: 1
  year: 2017
  end-page: 15
  publication-title: Ann. Rep. Med. Chem.
– volume: 141
  start-page: 10225
  year: 2019
  end-page: 10235
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 25
  start-page: 60
  year: 2019
  end-page: 73
  publication-title: Chem. Eur. J.
– volume: 10
  start-page: 188
  year: 2011
  end-page: 195
  publication-title: Nat. Rev. Drug Discovery
– volume: 22
  start-page: 410
  year: 2020
  end-page: 421
  publication-title: ACS Comb. Sci.
– volume: 88
  start-page: 5498
  year: 2016
  end-page: 5506
  publication-title: Anal. Chem.
– volume: 11
  start-page: 296
  year: 2016
  end-page: 307
  publication-title: ACS Chem. Biol.
– volume: 140
  start-page: 15859
  year: 2018
  end-page: 15867
  publication-title: J. Am. Chem. Soc.
– volume: 24
  year: 2019
  publication-title: Molecules
– volume: 25
  start-page: 515
  year: 2020
  end-page: 522
  publication-title: SLAS Discov.
– volume: 248
  start-page: 611
  year: 2015
  end-page: 640
  publication-title: J. Membr. Biol.
– volume: 91
  start-page: 9221
  year: 2019
  end-page: 9228
  publication-title: Anal. Chem.
– volume: 143
  start-page: 2751
  year: 2021
  end-page: 2756
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 568
  year: 2004
  end-page: 574
  publication-title: Nat. Biotechnol.
– volume: 89
  start-page: 5381
  year: 1992
  end-page: 5383
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 63
  start-page: 7840
  year: 2020
  end-page: 7856
  publication-title: J. Med. Chem.
– volume: 87
  start-page: 479
  year: 2018
  end-page: 502
  publication-title: Annu. Rev. Biochem.
– volume: 132
  start-page: 15522
  year: 2010
  end-page: 15524
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 13330
  year: 2019
  end-page: 13341
  publication-title: Chem. Commun.
– volume: 23
  year: 2020
  publication-title: iScience
– volume: 21
  start-page: 425
  year: 2019
  end-page: 435
  publication-title: ACS Comb. Sci.
– volume: 7
  start-page: 1340
  year: 2016
  end-page: 1351
  publication-title: MedChemComm
– volume: 39
  year: 2021
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 18
  start-page: 837
  year: 2017
  end-page: 842
  publication-title: ChemBioChem
– volume: 139
  start-page: 13977
  year: 2017
  end-page: 13980
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 1247
  year: 2014
  end-page: 1255
  publication-title: Acc. Chem. Res.
– volume: 59
  start-page: 181
  year: 2020
  end-page: 249
  publication-title: Prog. Med. Chem.
– volume: 84
  start-page: 551
  year: 2015
  end-page: 575
  publication-title: Ann. Rev. Biochem.
– volume: 39
  start-page: 2991
  year: 2018
  end-page: 2996
  publication-title: Electrophoresis
– volume: 40
  year: 2018
  publication-title: BioEssays
– volume: 527
  start-page: 757
  year: 2020
  end-page: 759
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 2
  year: 2004
  publication-title: PLoS Biol.
– volume: 52 125
  start-page: 9544 9723
  year: 2013 2013
  end-page: 9549 9728
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 129
  start-page: 13137
  year: 2007
  end-page: 13143
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 1284
  year: 2011
  end-page: 1289
  publication-title: Chem. Biol.
– volume: 56 129
  start-page: 1164 1184
  year: 2017 2017
  end-page: 1165 1185
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 38
  start-page: D750
  year: 2010
  end-page: D753
  publication-title: Nucleic Acids Res.
– volume: 46 119
  start-page: 4180 4258
  year: 2007 2007
  end-page: 4183 4261
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 130
  start-page: 5744
  year: 2008
  end-page: 5752
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 10452
  year: 2015
  end-page: 10455
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 14965 15075
  year: 2020 2020
  end-page: 14972 15082
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 352
  start-page: 624
  year: 1991
  end-page: 628
  publication-title: Nature
– volume: 16
  start-page: 131
  year: 2017
  publication-title: Nat. Rev. Drug Discovery
– volume: 56 129
  start-page: 6762 6866
  year: 2017 2017
  end-page: 6766 6870
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 10056 10220
  year: 2014 2014
  end-page: 10059 10223
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 533
  start-page: 215
  year: 2020
  end-page: 222
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 141
  start-page: 17057
  year: 2019
  end-page: 17061
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 7924 8035
  year: 2015 2015
  end-page: 7928 8039
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2019
  publication-title: ChemBioChem
– volume: 12
  start-page: 363
  year: 2021
  end-page: 369
  publication-title: RSC Med. Chem.
– volume: 59
  start-page: 6629
  year: 2016
  end-page: 6644
  publication-title: J. Med. Chem.
– volume: 18
  start-page: 7729
  year: 2012
  end-page: 7737
  publication-title: Chem. Eur. J.
– volume: 56
  start-page: 10560
  year: 2020
  end-page: 10563
  publication-title: Chem. Commun.
– volume: 17
  start-page: 4676
  year: 2019
  end-page: 4688
  publication-title: Org. Biomol. Chem.
– volume: 60
  start-page: 1
  year: 2020
  end-page: 14
  publication-title: Isr. J. Chem.
– volume: 26
  start-page: 8
  year: 2015
  end-page: 15
  publication-title: Curr. Opin. Chem. Biol.
– volume: 61
  year: 2020
  publication-title: Tetrahedron Lett.
– volume: 8
  start-page: 7072
  year: 2017
  end-page: 7076
  publication-title: Chem. Sci.
– volume: 17
  start-page: 518
  year: 2015
  end-page: 534
  publication-title: ACS Comb. Sci.
– volume: 131
  start-page: 1322
  year: 2009
  end-page: 1327
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 955
  year: 2019
  end-page: 962
  publication-title: ChemBioChem
– volume: 94
  start-page: 850
  year: 2018
  end-page: 861
  publication-title: Mol. Pharmacol.
– volume: 18
  start-page: 829
  year: 2017
  end-page: 836
  publication-title: ChemBioChem
– year: 2018
  publication-title: SLAS Discov.
– volume: 57 130
  start-page: 17178 17424
  year: 2018 2018
  end-page: 17182 17428
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 1332
  year: 2016
  end-page: 1339
  publication-title: MedChemComm
– ident: e_1_2_10_27_2
  doi: 10.2533/chimia.2021.105
– ident: e_1_2_10_31_2
  doi: 10.1021/acscombsci.9b00207
– ident: e_1_2_10_32_2
  doi: 10.1177/2472555217752091
– ident: e_1_2_10_63_2
  doi: 10.1515/hsz-2018-0119
– ident: e_1_2_10_114_1
  doi: 10.1021/acschembio.5b00378
– ident: e_1_2_10_185_2
  doi: 10.1016/j.isci.2020.101197
– ident: e_1_2_10_22_2
  doi: 10.1039/C9CC01429B
– ident: e_1_2_10_41_2
  doi: 10.1021/acschembio.6b00855
– ident: e_1_2_10_134_1
  doi: 10.1021/acscombsci.8b00116
– ident: e_1_2_10_144_2
  doi: 10.1002/ange.201404830
– ident: e_1_2_10_182_1
– ident: e_1_2_10_188_1
  doi: 10.1021/acscombsci.5b00124
– ident: e_1_2_10_161_2
  doi: 10.1039/C9CC01429B
– ident: e_1_2_10_186_1
  doi: 10.1073/pnas.1620645114
– ident: e_1_2_10_11_2
  doi: 10.1016/j.trechm.2020.11.010
– ident: e_1_2_10_196_1
– ident: e_1_2_10_26_1
– ident: e_1_2_10_162_1
  doi: 10.1002/anie.201700813
– ident: e_1_2_10_78_2
  doi: 10.1515/hsz-2018-0119
– ident: e_1_2_10_9_1
  doi: 10.1073/pnas.0805130105
– ident: e_1_2_10_52_1
  doi: 10.1038/nbt0697-553
– ident: e_1_2_10_179_1
– year: 2019
  ident: e_1_2_10_125_1
  publication-title: ChemBioChem
– ident: e_1_2_10_189_1
  doi: 10.1093/nar/gkp889
– ident: e_1_2_10_113_1
  doi: 10.1002/cbic.201900603
– ident: e_1_2_10_202_1
  doi: 10.1021/acs.analchem.9b01988
– ident: e_1_2_10_96_2
  doi: 10.1021/ja808558a
– ident: e_1_2_10_25_3
  doi: 10.1002/ange.202005070
– ident: e_1_2_10_149_2
  doi: 10.1021/ac8023813
– ident: e_1_2_10_36_2
  doi: 10.1021/acscombsci.9b00037
– ident: e_1_2_10_169_1
– year: 2021
  ident: e_1_2_10_72_2
  publication-title: Chem. Rec.
– ident: e_1_2_10_33_1
– ident: e_1_2_10_8_1
  doi: 10.1073/pnas.0805130105
– start-page: 247255521875771
  year: 2018
  ident: e_1_2_10_135_1
  publication-title: SLAS Discov.
– year: 2021
  ident: e_1_2_10_165_1
  publication-title: Chem. Eur. J.
– ident: e_1_2_10_176_1
  doi: 10.1186/s13045-018-0578-4
– ident: e_1_2_10_168_2
  doi: 10.1039/D0MD00310G
– ident: e_1_2_10_100_2
  doi: 10.1021/bc100198x
– volume: 24
  year: 2019
  ident: e_1_2_10_94_2
  publication-title: Molecules
– ident: e_1_2_10_66_2
  doi: 10.1038/nrd.2016.213
– ident: e_1_2_10_142_1
  doi: 10.1039/C6MD00241B
– ident: e_1_2_10_152_2
  doi: 10.1021/acs.analchem.6b00980
– ident: e_1_2_10_105_1
  doi: 10.1038/nprot.2016.039
– ident: e_1_2_10_93_1
– ident: e_1_2_10_98_2
  doi: 10.1002/chem.201200952
– ident: e_1_2_10_130_1
  doi: 10.1021/ja412934t
– ident: e_1_2_10_192_3
  doi: 10.1002/ange.201302161
– ident: e_1_2_10_28_2
  doi: 10.1038/s42004-020-00374-1
– ident: e_1_2_10_14_2
  doi: 10.1021/acs.chemrev.0c00088
– ident: e_1_2_10_133_1
  doi: 10.1016/j.bbrc.2020.04.024
– ident: e_1_2_10_109_2
  doi: 10.1002/cbic.201800766
– ident: e_1_2_10_90_2
  doi: 10.1038/nature13297
– ident: e_1_2_10_115_1
– ident: e_1_2_10_57_2
  doi: 10.1002/anie.201612143
– ident: e_1_2_10_3_1
  doi: 10.1021/ja00074a063
– ident: e_1_2_10_23_2
  doi: 10.1039/C5SC02467F
– ident: e_1_2_10_163_1
  doi: 10.1016/j.bbrc.2020.04.033
– ident: e_1_2_10_59_2
  doi: 10.1002/9781118832738
– ident: e_1_2_10_137_1
  doi: 10.1177/2472555217753840
– ident: e_1_2_10_192_2
  doi: 10.1002/anie.201302161
– ident: e_1_2_10_214_2
  doi: 10.1021/jacs.7b07241
– ident: e_1_2_10_136_1
  doi: 10.1021/acscombsci.0c00007
– ident: e_1_2_10_162_2
  doi: 10.1002/ange.201700813
– ident: e_1_2_10_12_2
  doi: 10.1021/acs.jmedchem.9b01782
– ident: e_1_2_10_141_2
  doi: 10.1016/j.cbpa.2015.02.003
– ident: e_1_2_10_208_2
  doi: 10.1039/D0CC02588G
– ident: e_1_2_10_25_2
  doi: 10.1002/anie.202005070
– ident: e_1_2_10_108_2
  doi: 10.1002/cbic.201600626
– start-page: 247255521880845
  year: 2018
  ident: e_1_2_10_127_1
  publication-title: SLAS Discov.
– ident: e_1_2_10_51_1
  doi: 10.1073/pnas.061028198
– ident: e_1_2_10_174_1
  doi: 10.1007/s00232-015-9802-0
– ident: e_1_2_10_180_2
  doi: 10.1016/j.chembiol.2011.07.017
– year: 2019
  ident: e_1_2_10_88_2
  publication-title: ACS Chem. Biol.
– ident: e_1_2_10_18_2
  doi: 10.1038/nrd.2016.213
– ident: e_1_2_10_200_2
  doi: 10.1021/acs.bioconjchem.9b00363
– ident: e_1_2_10_178_1
  doi: 10.1038/s41557-020-00605-x
– ident: e_1_2_10_76_2
  doi: 10.1002/ijch.201900133
– ident: e_1_2_10_83_2
  doi: 10.1177/2472555217752091
– ident: e_1_2_10_123_1
  doi: 10.1177/2472555217749847
– ident: e_1_2_10_164_1
  doi: 10.1002/chem.201803365
– ident: e_1_2_10_62_2
  doi: 10.1021/acschembio.5b00981
– ident: e_1_2_10_204_1
  doi: 10.1021/acs.analchem.5b04139
– ident: e_1_2_10_118_1
  doi: 10.1177/2472555220908240
– ident: e_1_2_10_21_2
  doi: 10.1002/anie.201501775
– ident: e_1_2_10_107_2
  doi: 10.1002/cbic.201700014
– ident: e_1_2_10_209_1
  doi: 10.1021/ja711193x
– ident: e_1_2_10_167_2
  doi: 10.1002/anie.201811650
– ident: e_1_2_10_47_1
– ident: e_1_2_10_187_1
  doi: 10.1177/2472555217749847
– ident: e_1_2_10_132_1
  doi: 10.1016/j.bbrc.2020.04.029
– year: 2015
  ident: e_1_2_10_160_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_10_17_2
  doi: 10.1021/acs.jmedchem.5b01874
– ident: e_1_2_10_195_1
  doi: 10.1016/j.tibtech.2017.04.007
– ident: e_1_2_10_86_1
  doi: 10.1021/acsmedchemlett.8b00128
– ident: e_1_2_10_69_2
  doi: 10.1177/2472555218766250
– ident: e_1_2_10_154_1
– ident: e_1_2_10_38_1
– ident: e_1_2_10_15_2
  doi: 10.1039/C9OB00581A
– ident: e_1_2_10_57_3
  doi: 10.1002/ange.201612143
– ident: e_1_2_10_92_2
  doi: 10.1038/s41557-018-0033-8
– ident: e_1_2_10_101_2
  doi: 10.1021/cb1003477
– ident: e_1_2_10_19_1
  doi: 10.1038/nchem.2158
– ident: e_1_2_10_21_3
  doi: 10.1002/ange.201501775
– ident: e_1_2_10_37_2
  doi: 10.1021/acscombsci.9b00153
– ident: e_1_2_10_145_1
– ident: e_1_2_10_89_2
  doi: 10.1021/ja104903x
– ident: e_1_2_10_2_1
  doi: 10.1073/pnas.89.12.5381
– ident: e_1_2_10_4_1
  doi: 10.1073/pnas.90.22.10700
– ident: e_1_2_10_6_1
  doi: 10.1126/science.1102629
– start-page: 247255521775087
  year: 2018
  ident: e_1_2_10_111_2
  publication-title: SLAS Discov.
– ident: e_1_2_10_158_1
  doi: 10.1016/j.bmcl.2005.05.094
– ident: e_1_2_10_24_2
  doi: 10.1021/jacs.8b09277
– ident: e_1_2_10_155_2
  doi: 10.1038/nbt961
– ident: e_1_2_10_48_2
  doi: 10.1038/348552a0
– ident: e_1_2_10_80_2
  doi: 10.1016/j.tetlet.2020.151889
– ident: e_1_2_10_64_2
  doi: 10.1002/1873-3468.13068
– ident: e_1_2_10_170_2
  doi: 10.1016/j.chembiol.2004.08.008
– ident: e_1_2_10_30_1
– ident: e_1_2_10_172_1
  doi: 10.1146/annurev-biochem-060614-034142
– ident: e_1_2_10_173_1
  doi: 10.1002/anie.202001205
– ident: e_1_2_10_166_1
– ident: e_1_2_10_184_2
  doi: 10.1021/acschembio.8b00866
– ident: e_1_2_10_39_2
  doi: 10.1021/acs.bioconjchem.9b00628
– ident: e_1_2_10_99_2
  doi: 10.1021/bc7004347
– ident: e_1_2_10_197_3
  doi: 10.1002/ange.201204174
– ident: e_1_2_10_211_1
  doi: 10.1039/C7SC02779F
– ident: e_1_2_10_205_1
– ident: e_1_2_10_79_2
  doi: 10.1002/cmdc.202000869
– ident: e_1_2_10_210_1
  doi: 10.1002/bies.201800057
– ident: e_1_2_10_75_2
  doi: 10.1016/j.bbrc.2020.04.080
– ident: e_1_2_10_181_2
  doi: 10.1039/c1cc11668a
– ident: e_1_2_10_74_2
  doi: 10.1039/D0RA09889B
– year: 2018
  ident: e_1_2_10_65_2
  publication-title: Ann. Rev. Biochem.
– ident: e_1_2_10_106_1
– ident: e_1_2_10_206_2
  doi: 10.1039/D0CC02588G
– ident: e_1_2_10_67_2
  doi: 10.1016/j.bmcl.2016.12.025
– ident: e_1_2_10_143_1
  doi: 10.1021/jacs.0c09213
– ident: e_1_2_10_128_1
  doi: 10.1002/anie.201412276
– ident: e_1_2_10_85_2
  doi: 10.1016/bs.pmch.2020.03.001
– ident: e_1_2_10_177_1
  doi: 10.1042/BST20160025
– ident: e_1_2_10_54_1
  doi: 10.1146/annurev-biochem-062917-012550
– ident: e_1_2_10_140_2
– ident: e_1_2_10_190_1
  doi: 10.1021/jacs.9b08085
– ident: e_1_2_10_46_1
  doi: 10.1021/acs.jmedchem.0c00688
– ident: e_1_2_10_194_1
  doi: 10.1002/anie.200604467
– ident: e_1_2_10_56_1
– ident: e_1_2_10_71_2
  doi: 10.1016/j.bmcl.2021.127851
– ident: e_1_2_10_147_2
  doi: 10.1021/acs.bioconjchem.7b00343
– ident: e_1_2_10_117_2
  doi: 10.1177/2472555218757718
– ident: e_1_2_10_198_2
  doi: 10.1021/jacs.5b04279
– ident: e_1_2_10_73_2
  doi: 10.1021/acsmedchemlett.0c00615
– ident: e_1_2_10_42_1
  doi: 10.1038/nchembio.211
– ident: e_1_2_10_121_1
  doi: 10.1038/ncomms16081
– ident: e_1_2_10_112_2
  doi: 10.1021/acscombsci.0c00023
– ident: e_1_2_10_138_1
  doi: 10.1021/ja107677q
– ident: e_1_2_10_102_2
  doi: 10.1002/cmdc.200900520
– year: 2019
  ident: e_1_2_10_146_2
  publication-title: ACS Comb. Sci.
– ident: e_1_2_10_58_2
  doi: 10.1021/ar400284t
– ident: e_1_2_10_68_2
  doi: 10.1002/cbic.201600567
– ident: e_1_2_10_151_2
  doi: 10.1021/ac504504c
– volume: 52
  start-page: 63
  year: 2019
  ident: e_1_2_10_84_2
  publication-title: Aldrichimica Acta
– ident: e_1_2_10_167_3
  doi: 10.1002/ange.201811650
– ident: e_1_2_10_104_2
  doi: 10.1002/anie.200704936
– ident: e_1_2_10_110_2
  doi: 10.1039/C6MD00288A
– ident: e_1_2_10_193_2
  doi: 10.1002/chem.201702033
– ident: e_1_2_10_87_1
– ident: e_1_2_10_175_1
  doi: 10.1146/annurev-bioeng-092115-025322
– ident: e_1_2_10_13_2
  doi: 10.4155/fmc-2020-0285
– ident: e_1_2_10_159_1
– ident: e_1_2_10_50_2
  doi: 10.1038/352624a0
– ident: e_1_2_10_120_1
  doi: 10.1039/C5CC01230A
– ident: e_1_2_10_43_1
  doi: 10.1039/C6MD00341A
– ident: e_1_2_10_191_1
– ident: e_1_2_10_103_2
  doi: 10.1016/j.chembiol.2009.09.011
– ident: e_1_2_10_16_2
  doi: 10.3390/molecules24081629
– ident: e_1_2_10_70_2
  doi: 10.1177/2472555220979589
– ident: e_1_2_10_129_1
  doi: 10.1039/C6MD00242K
– ident: e_1_2_10_82_2
  doi: 10.1039/C9CC06256D
– ident: e_1_2_10_97_1
– volume: 50
  start-page: 1
  year: 2017
  ident: e_1_2_10_81_2
  publication-title: Ann. Rep. Med. Chem.
– ident: e_1_2_10_212_1
– ident: e_1_2_10_183_2
  doi: 10.1016/j.bmc.2014.01.050
– ident: e_1_2_10_5_1
  doi: 10.1038/nbt961
– ident: e_1_2_10_1_1
  doi: 10.1038/nrd3368
– ident: e_1_2_10_153_2
  doi: 10.1016/j.jpba.2015.03.033
– ident: e_1_2_10_194_2
  doi: 10.1002/ange.200604467
– ident: e_1_2_10_44_1
  doi: 10.1002/cbic.201700014
– ident: e_1_2_10_199_2
  doi: 10.1021/jacs.9b07191
– ident: e_1_2_10_20_1
– ident: e_1_2_10_49_2
  doi: 10.1073/pnas.88.10.4363
– ident: e_1_2_10_61_2
  doi: 10.1016/j.cbpa.2015.01.004
– ident: e_1_2_10_171_2
  doi: 10.1073/pnas.172286899
– ident: e_1_2_10_116_2
  doi: 10.1021/acscombsci.7b00023
– ident: e_1_2_10_197_2
  doi: 10.1002/anie.201204174
– ident: e_1_2_10_157_3
  doi: 10.1002/ange.200700654
– year: 2021
  ident: e_1_2_10_207_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_10_7_1
  doi: 10.1371/journal.pbio.0020173
– ident: e_1_2_10_29_2
  doi: 10.1021/acs.jmedchem.0c00452
– year: 2017
  ident: e_1_2_10_122_1
  publication-title: ChemBioChem
– ident: e_1_2_10_201_1
  doi: 10.1039/D1CC00961C
– ident: e_1_2_10_150_2
  doi: 10.1002/elps.201800270
– ident: e_1_2_10_60_2
  doi: 10.1016/j.cbpa.2015.01.005
– ident: e_1_2_10_124_1
  doi: 10.1124/mol.118.111948
– ident: e_1_2_10_35_2
  doi: 10.1021/acscombsci.6b00192
– ident: e_1_2_10_77_2
  doi: 10.1021/acschembio.5b00981
– year: 2019
  ident: e_1_2_10_203_1
  publication-title: ACS Comb. Sci.
– ident: e_1_2_10_119_1
  doi: 10.1177/2472555219893949
– ident: e_1_2_10_10_1
– ident: e_1_2_10_128_2
  doi: 10.1002/ange.201412276
– ident: e_1_2_10_157_2
  doi: 10.1002/anie.200700654
– ident: e_1_2_10_139_1
– ident: e_1_2_10_126_1
  doi: 10.1002/chem.201701644
– ident: e_1_2_10_213_2
  doi: 10.1038/s41557-018-0008-9
– ident: e_1_2_10_40_2
  doi: 10.1016/j.bmcl.2018.01.033
– ident: e_1_2_10_55_1
  doi: 10.1016/j.bmcl.2016.12.025
– ident: e_1_2_10_53_1
  doi: 10.1073/pnas.94.10.4937
– ident: e_1_2_10_34_2
  doi: 10.1021/acscombsci.5b00106
– ident: e_1_2_10_131_1
  doi: 10.1021/jacs.7b04880
– ident: e_1_2_10_144_1
  doi: 10.1002/anie.201404830
– ident: e_1_2_10_45_1
  doi: 10.1021/acs.jmedchem.6b01751
– ident: e_1_2_10_104_3
  doi: 10.1002/ange.200704936
– ident: e_1_2_10_173_2
  doi: 10.1002/ange.202001205
– ident: e_1_2_10_91_2
  doi: 10.1021/jacs.9b01203
– ident: e_1_2_10_156_2
  doi: 10.1002/advs.202001970
– ident: e_1_2_10_95_2
  doi: 10.1021/ja073993a
– ident: e_1_2_10_148_1
SSID ssj0009631
Score 2.4473479
SecondaryResourceType review_article
Snippet DNA‐encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry....
DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2384
SubjectTerms Binders
Binding
Combinatorial library
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA-encoded library
Drug Discovery
Gene Library
High throughput screening
Humans
Libraries
Ligand discovery
Ligands
Pharmaceutical industry
Proteins
Proteins - chemistry
Proteins - metabolism
Small Molecule Libraries - chemistry
Small Molecule Libraries - metabolism
Solid phases
Title Recent Advances on the Selection Methods of DNA‐Encoded Libraries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbic.202100144
https://www.ncbi.nlm.nih.gov/pubmed/33891355
https://www.proquest.com/docview/2552118598
https://www.proquest.com/docview/2518219880
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hLnApf6UNBWQk1J4CiTdO4uMSQICAAz8St8h2bAnRZhG7eygnHqHP2CdhxtkEtlVVCW6JbCuOx_Z8Mx5_A7CdptLQFcbQOKPDBFVYqGOehVag-kB1LKx3ZZ-dp0fXycmNuHl1i7_hh-gcbrQy_H5NC1zp4e4LaajRt0RByIlEKCFCUArYIlR08cIfhbPLW1wJHXdynrWsjRHfnW4-rZX-gprTyNWrnsMFUG2nm4iTu53xSO-Yxz_4HN_zV4vwYYJLWb-ZSEswY-tlWOnXaJP_-Mm-Mh8p6l3wyzBXtFniVqBA3Il6i_WbWIIhG9QMMSW79Pl1UOjszOeoxgLH9s_7v59-HdR0j75ip62l_hGuDw-uiqNwkpghNHSRNlRoVKlI6iSTVtrKcmcR56CpVjmZqSrrpblT0iopLcpEpolLEDgZRAKxiw1uIqswWw9q-xkYIhInTWTyXm6SSkRaOSF7FHwV6YxXVQBhK5jSTFjLKXnG97LhW-YljVjZjVgA37r69w1fxz9rrrdyLifrdliigYUWcS5kHsBWV4xDSscoqraDMdVBmyyW2MMAPjXzo_tUzx_7ChEA91L-Tx_KYu-46N7W3tLoC8zTM7mbY7EOs6OHsd1AnDTSm34tPAPJQwWL
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V9lAu0A-ggVKMhOCUNnHsJD5uQ6st7O4BWolbFDu2hNpmEd09wImf0N_YX8KMs0m1VKgSHJPYiuOPzHvj8RuAN2mqDB1hDI0zOhRowkId8yy0Es0HmmNpvSt7PEmHZ-LDF9lFE9JZmFYfone40crw_2ta4OSQPrhVDTX6K2kQclIREuIBrFFab8-qPt0qSOH88pxL0IYn51mn2xjxg-X6y3bpDthcxq7e-Bw_Bt01u405Od-fz_S--fmHouN_fdcGPFpAUzZo59ImrNhmC7YHDdLyyx_sLfPBot4LvwXrRZcobhsKhJ5outigDSe4YtOGIaxkn32KHRx3NvZpqvGBY-8ng5tf10cNHaWv2agj60_g7PjotBiGi9wMoaGztGGFvKqKlBaZssrWljuLUAfZWu1UVtVZkuauUrZSyiapVKlwArGTQTAQu9jgf-QprDbTxu4AQ1DilIlMnuRG1DLSlZMqofirSGe8rgMIu5EpzUK4nPJnXJSt5DIvqcfKvscCeNeX_9ZKdvy15G430OVi6V6VyLGQFOdS5QG87h9jl9JOStXY6ZzKIC2LFbYwgGftBOlflfidXykD4H6Y72lDWRyeFP3V83-p9ArWh6fjUTk6mXx8AQ_pPnmfY7kLq7Pvc_sSYdNM7_mF8Rst_gmm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5RkNpe-O1PgBZXQu0pu4ljJ_ExZFmx7e4KtSDtLUocW6raZhHsHtoTj9Bn7JMwdjahS1UhwTGxrTieseebsf0NwGEYCmmuMLpSy8JlaMLcwqeRqziaDzTHXNlQ9mgcnpyzjxM--esWf80P0QbczMyw67WZ4Bel7t6Shsriq6EgpIZEiLEnsMZCLzZ63ft8SyCF6mVdLmb2OymNGtpGj3aX2y-bpX-w5jJ0tbanvwF50-v6yMm3znxWdOSvO4SOj_mtTVhfAFOS1Jq0BSuq2oadpEKn_MdP8p7Yo6I2Br8Nz9ImTdwOpAg80XCRpD5McEWmFUFQSb7YBDsodTKySaqxQJPeOPlz_fu4MhfpSzJsXPUXcN4_PktP3EVmBleam7Rujl5V7omCRUIJVSqqFQId9NVKLaK8jIIw1rlQuRAqCLkImWaInCRCAV_7EleRl7BaTSv1GghCEi2kJ-MglqzkXpFrLgJz-sorIlqWDriNYDK5oC032TO-ZzXhMs3MiGXtiDnwoa1_URN2_LfmfiPnbDFxrzL0sNAljrmIHXjXFuOQmn2UvFLTuamDTpkvsIcOvKr1o_1UYPd9OXeAWinf04csPRqk7dPuQxodwNPTXj8bDsaf9uC5eW1Czz7fh9XZ5Vy9Qcw0K97aaXEDFeIIXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+on+the+Selection+Methods+of+DNA-Encoded+Libraries&rft.jtitle=Chembiochem+%3A+a+European+journal+of+chemical+biology&rft.au=Huang%2C+Yiran&rft.au=Li%2C+Xiaoyu&rft.date=2021-07-15&rft.issn=1439-7633&rft.eissn=1439-7633&rft.volume=22&rft.issue=14&rft.spage=2384&rft_id=info:doi/10.1002%2Fcbic.202100144&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4227&client=summon