Recent Advances on the Selection Methods of DNA‐Encoded Libraries
DNA‐encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL‐compatible chemistries have greatly improved the ch...
Saved in:
Published in | Chembiochem : a European journal of chemical biology Vol. 22; no. 14; pp. 2384 - 2397 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
15.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DNA‐encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL‐compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less‐covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non‐binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the “classic” DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets.
DNA‐encoded chemical libraries (DEL) have become a major technology platform in drug discovery. Besides encoding method, DEL‐compatible chemistry, and analysis of large datasets, another important but less‐covered technological component of DELs is selection method. Although presently DEL selection is predominantly conducted with immobilized proteins on a matrix, the recent development of novel DEL selection methods has expanded the target scope and led to novel utilities of DELs. In this Review, we provide a comprehensive overview of DEL selection methods with a particular focus on the emerging approaches for DELs to interrogate complex biological targets. |
---|---|
AbstractList | DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL-compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less-covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non-binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the "classic" DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets. DNA‐encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL‐compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less‐covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non‐binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the “classic” DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets. DNA‐encoded chemical libraries (DEL) have become a major technology platform in drug discovery. Besides encoding method, DEL‐compatible chemistry, and analysis of large datasets, another important but less‐covered technological component of DELs is selection method. Although presently DEL selection is predominantly conducted with immobilized proteins on a matrix, the recent development of novel DEL selection methods has expanded the target scope and led to novel utilities of DELs. In this Review, we provide a comprehensive overview of DEL selection methods with a particular focus on the emerging approaches for DELs to interrogate complex biological targets. DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL-compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less-covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non-binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the "classic" DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets.DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL-compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less-covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non-binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the "classic" DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets. |
Author | Li, Xiaoyu Huang, Yiran |
Author_xml | – sequence: 1 givenname: Yiran surname: Huang fullname: Huang, Yiran organization: The University of Hong Kong – sequence: 2 givenname: Xiaoyu orcidid: 0000-0002-8907-6727 surname: Li fullname: Li, Xiaoyu email: xiaoyuli@hku.hk organization: Laboratory for Synthetic Chemistry and Chemical Biology Limited |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33891355$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLAzEQx4MoPqpXj7LgxUtrJsk-5ljXJ1QFH-clzc5iZLuryVbx5kfwM_pJTGmtIIinmSG__2T4bbHVpm2IsV3gA-BcHJqxNQPBRRhAqRW2CUpiP02kXF30Soh0g215_8g5x0TCOtuQMkOQcbzJ8hsy1HTRsHzRjSEftU3UPVB0SzWZzobpkrqHtgwPVXR8Nfx8_zhpTFtSGY3s2GlnyW-ztUrXnnYWtcfuT0_u8vP-6PrsIh-O-ibcofoa40RzHKsUCakkUZFEBMXLClNdpjLJKo2kEUkmMSaqUgnEJgEFFRjIZI8dzPc-ufZ5Sr4rJtYbqmvdUDv1hYghE4BZxgO6_wt9bKeuCdcFKhYAWYyzhXsLajqeUFk8OTvR7q341hOAwRwwrvXeUbVEgBcz_8XMf7H0HwLqV8DYTs88dk7b-u8YzmOvtqa3fz4p8qOL_Cf7BSTal4w |
CitedBy_id | crossref_primary_10_1021_acsmedchemlett_2c00477 crossref_primary_10_1038_s41573_023_00713_6 crossref_primary_10_1038_s41557_024_01442_y crossref_primary_10_1248_cpb_c23_00295 crossref_primary_10_1021_acs_accounts_1c00375 crossref_primary_10_1021_acs_jmedchem_2c01541 crossref_primary_10_1016_j_bmc_2021_116328 crossref_primary_10_1021_acsomega_2c01152 crossref_primary_10_1039_D1CB00240F crossref_primary_10_1021_acs_bioconjchem_1c00427 crossref_primary_10_1021_acsomega_3c03160 crossref_primary_10_1021_acs_jmedchem_1c02106 crossref_primary_10_1039_D2CB00007E crossref_primary_10_1002_cmdc_202400093 crossref_primary_10_1080_17460441_2024_2354287 crossref_primary_10_1016_j_sbi_2023_102578 crossref_primary_10_1002_ijch_202300073 crossref_primary_10_1021_jacs_1c11270 crossref_primary_10_1016_j_bmc_2024_117596 crossref_primary_10_1021_acs_orglett_4c00187 |
Cites_doi | 10.2533/chimia.2021.105 10.1021/acscombsci.9b00207 10.1177/2472555217752091 10.1515/hsz-2018-0119 10.1021/acschembio.5b00378 10.1016/j.isci.2020.101197 10.1039/C9CC01429B 10.1021/acschembio.6b00855 10.1021/acscombsci.8b00116 10.1002/ange.201404830 10.1021/acscombsci.5b00124 10.1073/pnas.1620645114 10.1016/j.trechm.2020.11.010 10.1002/anie.201700813 10.1073/pnas.0805130105 10.1038/nbt0697-553 10.1093/nar/gkp889 10.1002/cbic.201900603 10.1021/acs.analchem.9b01988 10.1021/ja808558a 10.1002/ange.202005070 10.1021/ac8023813 10.1021/acscombsci.9b00037 10.1186/s13045-018-0578-4 10.1039/D0MD00310G 10.1021/bc100198x 10.1038/nrd.2016.213 10.1039/C6MD00241B 10.1021/acs.analchem.6b00980 10.1038/nprot.2016.039 10.1002/chem.201200952 10.1021/ja412934t 10.1002/ange.201302161 10.1038/s42004-020-00374-1 10.1021/acs.chemrev.0c00088 10.1016/j.bbrc.2020.04.024 10.1002/cbic.201800766 10.1038/nature13297 10.1002/anie.201612143 10.1021/ja00074a063 10.1039/C5SC02467F 10.1016/j.bbrc.2020.04.033 10.1002/9781118832738 10.1177/2472555217753840 10.1002/anie.201302161 10.1021/jacs.7b07241 10.1021/acscombsci.0c00007 10.1002/ange.201700813 10.1021/acs.jmedchem.9b01782 10.1016/j.cbpa.2015.02.003 10.1039/D0CC02588G 10.1002/anie.202005070 10.1002/cbic.201600626 10.1073/pnas.061028198 10.1007/s00232-015-9802-0 10.1016/j.chembiol.2011.07.017 10.1021/acs.bioconjchem.9b00363 10.1038/s41557-020-00605-x 10.1002/ijch.201900133 10.1177/2472555217749847 10.1002/chem.201803365 10.1021/acschembio.5b00981 10.1021/acs.analchem.5b04139 10.1177/2472555220908240 10.1002/anie.201501775 10.1002/cbic.201700014 10.1021/ja711193x 10.1002/anie.201811650 10.1016/j.bbrc.2020.04.029 10.1021/acs.jmedchem.5b01874 10.1016/j.tibtech.2017.04.007 10.1021/acsmedchemlett.8b00128 10.1177/2472555218766250 10.1039/C9OB00581A 10.1002/ange.201612143 10.1038/s41557-018-0033-8 10.1021/cb1003477 10.1038/nchem.2158 10.1002/ange.201501775 10.1021/acscombsci.9b00153 10.1021/ja104903x 10.1073/pnas.89.12.5381 10.1073/pnas.90.22.10700 10.1126/science.1102629 10.1016/j.bmcl.2005.05.094 10.1021/jacs.8b09277 10.1038/nbt961 10.1038/348552a0 10.1016/j.tetlet.2020.151889 10.1002/1873-3468.13068 10.1016/j.chembiol.2004.08.008 10.1146/annurev-biochem-060614-034142 10.1002/anie.202001205 10.1021/acschembio.8b00866 10.1021/acs.bioconjchem.9b00628 10.1021/bc7004347 10.1002/ange.201204174 10.1039/C7SC02779F 10.1002/cmdc.202000869 10.1002/bies.201800057 10.1016/j.bbrc.2020.04.080 10.1039/c1cc11668a 10.1039/D0RA09889B 10.1016/j.bmcl.2016.12.025 10.1021/jacs.0c09213 10.1002/anie.201412276 10.1016/bs.pmch.2020.03.001 10.1042/BST20160025 10.1146/annurev-biochem-062917-012550 10.1021/jacs.9b08085 10.1021/acs.jmedchem.0c00688 10.1002/anie.200604467 10.1016/j.bmcl.2021.127851 10.1021/acs.bioconjchem.7b00343 10.1177/2472555218757718 10.1021/jacs.5b04279 10.1021/acsmedchemlett.0c00615 10.1038/nchembio.211 10.1038/ncomms16081 10.1021/acscombsci.0c00023 10.1021/ja107677q 10.1002/cmdc.200900520 10.1021/ar400284t 10.1002/cbic.201600567 10.1021/ac504504c 10.1002/ange.201811650 10.1002/anie.200704936 10.1039/C6MD00288A 10.1002/chem.201702033 10.1146/annurev-bioeng-092115-025322 10.4155/fmc-2020-0285 10.1038/352624a0 10.1039/C5CC01230A 10.1039/C6MD00341A 10.1016/j.chembiol.2009.09.011 10.3390/molecules24081629 10.1177/2472555220979589 10.1039/C6MD00242K 10.1039/C9CC06256D 10.1016/j.bmc.2014.01.050 10.1038/nrd3368 10.1016/j.jpba.2015.03.033 10.1002/ange.200604467 10.1021/jacs.9b07191 10.1073/pnas.88.10.4363 10.1016/j.cbpa.2015.01.004 10.1073/pnas.172286899 10.1021/acscombsci.7b00023 10.1002/anie.201204174 10.1002/ange.200700654 10.1371/journal.pbio.0020173 10.1021/acs.jmedchem.0c00452 10.1039/D1CC00961C 10.1002/elps.201800270 10.1016/j.cbpa.2015.01.005 10.1124/mol.118.111948 10.1021/acscombsci.6b00192 10.1177/2472555219893949 10.1002/ange.201412276 10.1002/anie.200700654 10.1002/chem.201701644 10.1038/s41557-018-0008-9 10.1016/j.bmcl.2018.01.033 10.1073/pnas.94.10.4937 10.1021/acscombsci.5b00106 10.1021/jacs.7b04880 10.1002/anie.201404830 10.1021/acs.jmedchem.6b01751 10.1002/ange.200704936 10.1002/ange.202001205 10.1021/jacs.9b01203 10.1002/advs.202001970 10.1021/ja073993a |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 |
DOI | 10.1002/cbic.202100144 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1439-7633 |
EndPage | 2397 |
ExternalDocumentID | 33891355 10_1002_cbic_202100144 CBIC202100144 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21572014; 21877093; 91953119 – fundername: Research Grants Council funderid: AoE/P-705/16; 17321916; 17302817; 17301118; 17111319; 17303220 – fundername: Research Grants Council grantid: 17321916 – fundername: Research Grants Council grantid: 17302817 – fundername: Research Grants Council grantid: 17111319 – fundername: National Natural Science Foundation of China grantid: 91953119 – fundername: National Natural Science Foundation of China grantid: 21572014 – fundername: National Natural Science Foundation of China grantid: 21877093 – fundername: Research Grants Council grantid: AoE/P-705/16 – fundername: Research Grants Council grantid: 17301118 – fundername: Research Grants Council grantid: 17303220 |
GroupedDBID | --- -DZ -~X 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 4ZD 50Y 5GY 5VS 66C 6J9 6P2 77Q 8-0 8-1 8UM A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IH2 IX1 JPC KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- OIG P2P P2W P4E PQQKQ R.K ROL RWI RX1 SUPJJ SV3 V2E W99 WBKPD WH7 WJL WOHZO WXSBR WYJ XPP XV2 Y6R YZZ ZZTAW ~KM ~S- AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7TM 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 7X8 |
ID | FETCH-LOGICAL-c4394-a956a09b479e9ede2fe399140df97ad7368fa9ea99e365964f4615c6141f1c183 |
IEDL.DBID | DR2 |
ISSN | 1439-4227 1439-7633 |
IngestDate | Fri Jul 11 08:32:30 EDT 2025 Sun Jul 13 04:31:46 EDT 2025 Wed Feb 19 02:09:09 EST 2025 Thu Apr 24 23:11:52 EDT 2025 Tue Jul 01 04:34:59 EDT 2025 Wed Jan 22 16:28:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | High throughput screening Ligand discovery DNA-encoded library Drug discovery Combinatorial library |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4394-a956a09b479e9ede2fe399140df97ad7368fa9ea99e365964f4615c6141f1c183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8907-6727 |
PMID | 33891355 |
PQID | 2552118598 |
PQPubID | 986344 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2518219880 proquest_journals_2552118598 pubmed_primary_33891355 crossref_primary_10_1002_cbic_202100144 crossref_citationtrail_10_1002_cbic_202100144 wiley_primary_10_1002_cbic_202100144_CBIC202100144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 15, 2021 |
PublicationDateYYYYMMDD | 2021-07-15 |
PublicationDate_xml | – month: 07 year: 2021 text: July 15, 2021 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chembiochem : a European journal of chemical biology |
PublicationTitleAlternate | Chembiochem |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1991; 352 2004; 22 2019; 91 1990; 348 2009; 81 2002; 99 2019; 14 2019; 17 2008; 105 2012; 18 2018; 40 2004; 2 2008 2008; 47 120 2014; 136 2014; 22 2018; 9 2010; 21 2018; 39 2021; 75 2019; 20 2015; 137 2015; 84 2019; 21 1991; 88 2019; 24 2015; 87 2019; 25 2010; 5 2009; 16 2016; 44 2018; 28 2010; 38 2017; 60 2015; 248 2019; 30 2015; 51 2014; 47 2017 2017; 56 129 2021; 143 2018; 23 2016; 18 2004; 305 2011; 6 2017; 139 2016; 11 2018; 592 2017; 50 2021; 57 2016; 7 2015; 111 2007 2007; 46 119 2020; 25 2020; 23 2020; 22 2018; 94 2020; 21 2005; 15 2018; 11 2018; 10 1993; 115 2008; 130 2014 2014; 53 126 2021; 26 2017; 8 2020; 63 2019; 52 2020; 120 2019; 55 2020; 61 2020; 60 2020 2020; 59 132 2020; 59 2011; 10 2020; 56 2018; 87 2011; 18 2017; 114 2020; 527 2013 2013; 52 125 2020; 7 2020; 3 1997; 94 1997; 15 2018 2018; 57 130 2012 2012; 51 124 2021; 39 2017; 35 2020; 533 2015 2015; 54 127 1992; 89 2001; 98 2016; 88 2015; 6 2015; 17 2007; 129 2021; 3 2018; 140 2017; 28 2017; 27 2008; 19 2015; 10 2017; 23 1993; 90 2009; 131 2019; 141 2016; 59 2015; 7 2014; 511 2004; 11 2021; 13 2015; 26 2021; 16 2021; 12 2021; 11 2021 2017; 16 2018; 399 2017; 12 2010; 132 2019 2018 2017 2017; 19 2017; 18 2015 2009; 5 2011; 47 e_1_2_10_109_2 e_1_2_10_40_2 Zhu Z. (e_1_2_10_127_1) 2018 e_1_2_10_210_1 e_1_2_10_158_1 e_1_2_10_97_1 e_1_2_10_74_2 e_1_2_10_6_1 e_1_2_10_112_2 e_1_2_10_150_2 e_1_2_10_173_2 e_1_2_10_37_2 e_1_2_10_173_1 e_1_2_10_14_2 e_1_2_10_196_1 Denton K. E. (e_1_2_10_111_2) 2018 e_1_2_10_51_1 e_1_2_10_147_2 e_1_2_10_86_1 e_1_2_10_63_2 e_1_2_10_25_3 e_1_2_10_101_2 e_1_2_10_162_2 e_1_2_10_185_2 e_1_2_10_48_2 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_2 e_1_2_10_41_2 e_1_2_10_211_1 e_1_2_10_197_3 e_1_2_10_90_2 e_1_2_10_159_1 e_1_2_10_208_2 e_1_2_10_52_1 e_1_2_10_15_2 e_1_2_10_75_2 e_1_2_10_98_2 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_174_1 e_1_2_10_38_1 e_1_2_10_151_2 e_1_2_10_197_2 e_1_2_10_7_1 e_1_2_10_200_2 Goodnow R. A. (e_1_2_10_81_2) 2017; 50 e_1_2_10_148_1 e_1_2_10_49_2 e_1_2_10_64_2 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_87_1 e_1_2_10_102_2 e_1_2_10_140_2 e_1_2_10_26_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_212_1 e_1_2_10_198_2 e_1_2_10_209_1 e_1_2_10_91_2 Cuozzo J. W. (e_1_2_10_122_1) 2017 e_1_2_10_4_1 e_1_2_10_39_2 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_2 e_1_2_10_76_2 e_1_2_10_114_1 e_1_2_10_152_2 e_1_2_10_99_2 e_1_2_10_175_1 e_1_2_10_30_1 e_1_2_10_201_1 e_1_2_10_149_2 e_1_2_10_80_2 e_1_2_10_103_2 e_1_2_10_126_1 e_1_2_10_27_2 Reddavide F. V. (e_1_2_10_84_2) 2019; 52 e_1_2_10_187_1 e_1_2_10_141_2 e_1_2_10_164_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_213_2 e_1_2_10_130_1 e_1_2_10_199_2 e_1_2_10_92_2 Cochrane W. G. (e_1_2_10_203_1) 2019 e_1_2_10_17_2 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_77_2 e_1_2_10_176_1 e_1_2_10_153_2 e_1_2_10_31_2 Wang S. (e_1_2_10_88_2) 2019 e_1_2_10_202_1 e_1_2_10_188_1 e_1_2_10_104_3 Scheuermann J. (e_1_2_10_165_1) 2021 e_1_2_10_28_2 e_1_2_10_104_2 e_1_2_10_180_2 e_1_2_10_66_2 e_1_2_10_89_2 e_1_2_10_142_1 e_1_2_10_21_3 e_1_2_10_44_1 e_1_2_10_21_2 e_1_2_10_214_2 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_93_1 e_1_2_10_70_2 e_1_2_10_2_1 e_1_2_10_116_2 e_1_2_10_192_2 e_1_2_10_139_1 e_1_2_10_192_3 e_1_2_10_18_2 Dalton S. E. (e_1_2_10_125_1) 2019 e_1_2_10_55_1 e_1_2_10_78_2 e_1_2_10_154_1 e_1_2_10_79_2 e_1_2_10_32_2 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_128_2 e_1_2_10_181_2 e_1_2_10_82_2 e_1_2_10_128_1 e_1_2_10_29_2 e_1_2_10_105_1 e_1_2_10_67_2 e_1_2_10_143_1 e_1_2_10_22_2 e_1_2_10_68_2 e_1_2_10_45_1 Kolmel D. K. (e_1_2_10_72_2) 2021 e_1_2_10_132_1 e_1_2_10_178_1 e_1_2_10_155_2 e_1_2_10_71_2 e_1_2_10_117_2 e_1_2_10_193_2 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_170_2 e_1_2_10_56_1 Reddavide F. V. (e_1_2_10_160_2) 2015 e_1_2_10_57_2 e_1_2_10_57_3 e_1_2_10_10_1 e_1_2_10_33_1 Neri D. (e_1_2_10_65_2) 2018 e_1_2_10_204_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_144_2 e_1_2_10_167_3 e_1_2_10_167_2 e_1_2_10_60_2 e_1_2_10_83_2 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_46_1 e_1_2_10_23_2 e_1_2_10_69_2 e_1_2_10_107_2 e_1_2_10_156_2 e_1_2_10_179_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_2 e_1_2_10_95_2 e_1_2_10_8_1 e_1_2_10_110_2 e_1_2_10_194_2 e_1_2_10_35_2 e_1_2_10_133_1 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_58_2 e_1_2_10_119_1 e_1_2_10_205_1 Kim D. (e_1_2_10_94_2) 2019; 24 e_1_2_10_145_1 e_1_2_10_168_2 Shi B. (e_1_2_10_146_2) 2019 Kuai L. (e_1_2_10_135_1) 2018 e_1_2_10_61_2 e_1_2_10_183_2 e_1_2_10_108_2 Roy A. (e_1_2_10_207_2) 2021 e_1_2_10_157_2 e_1_2_10_157_3 e_1_2_10_206_2 e_1_2_10_1_1 e_1_2_10_73_2 e_1_2_10_96_2 e_1_2_10_172_1 e_1_2_10_13_2 e_1_2_10_36_2 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_9_1 e_1_2_10_12_2 e_1_2_10_59_2 e_1_2_10_50_2 e_1_2_10_169_1 e_1_2_10_62_2 e_1_2_10_85_2 e_1_2_10_161_2 e_1_2_10_24_2 e_1_2_10_123_1 e_1_2_10_47_1 e_1_2_10_100_2 e_1_2_10_184_2 |
References_xml | – volume: 27 start-page: 361 year: 2017 end-page: 369 publication-title: Bioorg. Med. Chem. Lett. – volume: 98 start-page: 3750 year: 2001 end-page: 3755 publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 553 year: 1997 publication-title: Nat. Biotechnol. – volume: 511 start-page: 94 year: 2014 end-page: 98 publication-title: Nature – volume: 18 start-page: 848 year: 2017 end-page: 852 publication-title: ChemBioChem – volume: 17 start-page: 722 year: 2015 end-page: 731 publication-title: ACS Comb. Sci. – volume: 46 119 start-page: 4671 4755 year: 2007 2007 end-page: 4674 4758 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 23 start-page: 429 year: 2018 end-page: 436 publication-title: SLAS Discov. – volume: 21 start-page: 75 year: 2019 end-page: 82 publication-title: ACS Comb. Sci. – volume: 13 start-page: 77 year: 2021 end-page: 88 publication-title: Nat. Chem. – volume: 141 start-page: 17174 year: 2019 end-page: 17179 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 10192 year: 2017 end-page: 10195 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 420 year: 2018 end-page: 427 publication-title: Nat. Chem. – year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 47 120 start-page: 3196 3240 year: 2008 2008 end-page: 3201 3245 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 790 year: 2016 end-page: 795 publication-title: Biochem. Soc. Trans. – volume: 26 start-page: 263 year: 2021 end-page: 280 publication-title: SLAS Discov. – volume: 11 start-page: 2359 year: 2021 end-page: 2376 publication-title: RSC Adv. – volume: 9 start-page: 408 year: 2018 end-page: 410 publication-title: ACS Med. Chem. Lett. – volume: 527 start-page: 250 year: 2020 end-page: 256 publication-title: Biochem. Biophys. Res. Commun. – volume: 7 start-page: 241 year: 2015 end-page: 249 publication-title: Nat. Chem. – volume: 19 start-page: 778 year: 2008 end-page: 785 publication-title: Bioconjugate Chem. – volume: 305 start-page: 1601 year: 2004 end-page: 1605 publication-title: Science – volume: 22 start-page: 101 year: 2020 end-page: 108 publication-title: ACS Comb. Sci. – volume: 22 start-page: 25 year: 2020 end-page: 34 publication-title: ACS Comb. Sci. – volume: 59 132 start-page: 17525 17678 year: 2020 2020 end-page: 17532 17685 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 23 start-page: 397 year: 2018 end-page: 404 publication-title: SLAS Discov. – volume: 60 start-page: 1247 year: 2017 end-page: 1261 publication-title: J. Med. Chem. – volume: 19 start-page: 234 year: 2017 end-page: 238 publication-title: ACS Comb. Sci. – volume: 3 start-page: 127 year: 2020 publication-title: Commun. Chem. – volume: 81 start-page: 490 year: 2009 end-page: 494 publication-title: Anal. Chem. – volume: 16 start-page: 1075 year: 2009 end-page: 1086 publication-title: Chem. Biol. – volume: 57 start-page: 3769 year: 2021 end-page: 3772 publication-title: Chem. Commun. – year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 23 start-page: 10906 year: 2017 end-page: 10914 publication-title: Chem. Eur. J. – year: 2018 publication-title: Ann. Rev. Biochem. – volume: 10 start-page: 704 year: 2018 end-page: 714 publication-title: Nat. Chem. – volume: 54 127 start-page: 6057 6155 year: 2015 2015 end-page: 6061 6159 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 19 start-page: 181 year: 2017 end-page: 192 publication-title: ACS Comb. Sci. – volume: 88 start-page: 4363 year: 1991 end-page: 4366 publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 2020 year: 2016 end-page: 2027 publication-title: MedChemComm – volume: 11 start-page: 31 year: 2018 publication-title: J. Hematol. Oncol. – volume: 12 start-page: 343 year: 2021 end-page: 350 publication-title: ACS Med. Chem. Lett. – volume: 23 start-page: 405 year: 2018 end-page: 416 publication-title: SLAS Discov. – volume: 114 start-page: 1708 year: 2017 end-page: 1713 publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 131 year: 2017 end-page: 147 publication-title: Nat. Rev. Drug Discovery – volume: 8 start-page: 16081 year: 2017 publication-title: Nat. Commun. – volume: 26 start-page: 62 year: 2015 end-page: 71 publication-title: Curr. Opin. Chem. Biol. – volume: 28 start-page: 2773 year: 2018 end-page: 2778 publication-title: Bioorg. Med. Chem. Lett. – volume: 6 start-page: 7097 year: 2015 end-page: 7104 publication-title: Chem. Sci. – volume: 132 start-page: 11779 year: 2010 end-page: 11791 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 1836 year: 2010 end-page: 1841 publication-title: Bioconjugate Chem. – volume: 15 start-page: 3908 year: 2005 end-page: 3911 publication-title: Bioorg. Med. Chem. Lett. – volume: 16 start-page: 1048 year: 2021 end-page: 1062 publication-title: ChemMedChem – volume: 533 start-page: 249 year: 2020 end-page: 255 publication-title: Biochem. Biophys. Res. Commun. – year: 2019 publication-title: ACS Chem. Biol. – year: 2021 publication-title: Chem. Rec. – volume: 111 start-page: 126 year: 2015 end-page: 130 publication-title: J. Pharm. Biomed. Anal. – volume: 14 start-page: 37 year: 2019 end-page: 49 publication-title: ACS Chem. Biol. – volume: 90 start-page: 10700 year: 1993 end-page: 10704 publication-title: Proc. Natl. Acad. Sci. USA – volume: 22 start-page: 204 year: 2020 end-page: 212 publication-title: ACS Comb. Sci. – volume: 115 start-page: 9812 year: 1993 end-page: 9813 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1898 year: 2016 end-page: 1909 publication-title: MedChemComm – volume: 30 start-page: 2127 year: 2019 end-page: 2135 publication-title: Bioconjugate Chem. – volume: 12 start-page: 234 year: 2017 end-page: 243 publication-title: ACS Chem. Biol. – volume: 28 start-page: 2293 year: 2017 end-page: 2301 publication-title: Bioconjugate Chem. – volume: 120 start-page: 10454 year: 2020 end-page: 10515 publication-title: Chem. Rev. – volume: 592 start-page: 2168 year: 2018 end-page: 2180 publication-title: FEBS Lett. – volume: 51 start-page: 8014 year: 2015 end-page: 8016 publication-title: Chem. Commun. – volume: 23 start-page: 8152 year: 2017 end-page: 8155 publication-title: Chem. Eur. J. – volume: 35 start-page: 691 year: 2017 end-page: 712 publication-title: Trends Biotechnol. – volume: 51 124 start-page: 9176 9311 year: 2012 2012 end-page: 9180 9315 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 23 start-page: 387 year: 2018 end-page: 396 publication-title: SLAS Discov. – volume: 18 start-page: 51 year: 2016 end-page: 76 publication-title: Annu. Rev. Biomed. Eng. – volume: 136 start-page: 3264 year: 2014 end-page: 3270 publication-title: J. Am. Chem. Soc. – volume: 63 start-page: 8857 year: 2020 end-page: 8866 publication-title: J. Med. Chem. – volume: 22 start-page: 2353 year: 2014 end-page: 2365 publication-title: Bioorg. Med. Chem. – volume: 30 start-page: 2931 year: 2019 end-page: 2938 publication-title: Bioconjugate Chem. – volume: 6 start-page: 336 year: 2011 end-page: 344 publication-title: ACS Chem. Biol. – volume: 52 start-page: 63 year: 2019 end-page: 74 publication-title: Aldrichimica Acta – volume: 75 start-page: 105 year: 2021 end-page: 107 publication-title: Chimia – year: 2019 publication-title: ACS Comb. Sci. – volume: 10 start-page: 2237 year: 2015 end-page: 2245 publication-title: ACS Chem. Biol. – volume: 88 start-page: 339 year: 2016 end-page: 353 publication-title: Anal. Chem. – volume: 94 start-page: 4937 year: 1997 end-page: 4942 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 647 year: 2009 end-page: 654 publication-title: Nat. Chem. Biol. – volume: 26 start-page: 25 year: 2015 end-page: 33 publication-title: Curr. Opin. Chem. Biol. – volume: 11 start-page: 764 year: 2016 end-page: 780 publication-title: Nat. Protoc. – volume: 87 start-page: 2474 year: 2015 end-page: 2479 publication-title: Anal. Chem. – volume: 23 start-page: 385 year: 2018 end-page: 386 publication-title: SLAS Discov. – year: 2017 publication-title: ChemBioChem – year: 2021 publication-title: Chem. Eur. J. – volume: 3 start-page: 161 year: 2021 end-page: 175 publication-title: Trends Chem. – volume: 21 start-page: 1144 year: 2020 end-page: 1149 publication-title: ChemBioChem – volume: 399 start-page: 691 year: 2018 end-page: 710 publication-title: Biol. Chem. – volume: 47 start-page: 7638 year: 2011 end-page: 7640 publication-title: Chem. Commun. – volume: 25 start-page: 523 year: 2020 end-page: 529 publication-title: SLAS Discov. – volume: 27 start-page: 361 year: 2017 end-page: 369 publication-title: Bio. Med. Chem. Lett. – volume: 11 start-page: 1361 year: 2004 end-page: 1372 publication-title: Chem. Biol. – volume: 63 start-page: 6578 year: 2020 end-page: 6599 publication-title: J. Med. Chem. – volume: 348 start-page: 552 year: 1990 publication-title: Nature – volume: 99 start-page: 11139 year: 2002 end-page: 11144 publication-title: Proc. Natl. Acad. Sci. USA – volume: 105 start-page: 17670 year: 2008 end-page: 17675 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 584 year: 2010 end-page: 590 publication-title: ChemMedChem – volume: 55 start-page: 3753 year: 2019 end-page: 3756 publication-title: Chem. Commun. – volume: 50 start-page: 1 year: 2017 end-page: 15 publication-title: Ann. Rep. Med. Chem. – volume: 141 start-page: 10225 year: 2019 end-page: 10235 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 25 start-page: 60 year: 2019 end-page: 73 publication-title: Chem. Eur. J. – volume: 10 start-page: 188 year: 2011 end-page: 195 publication-title: Nat. Rev. Drug Discovery – volume: 22 start-page: 410 year: 2020 end-page: 421 publication-title: ACS Comb. Sci. – volume: 88 start-page: 5498 year: 2016 end-page: 5506 publication-title: Anal. Chem. – volume: 11 start-page: 296 year: 2016 end-page: 307 publication-title: ACS Chem. Biol. – volume: 140 start-page: 15859 year: 2018 end-page: 15867 publication-title: J. Am. Chem. Soc. – volume: 24 year: 2019 publication-title: Molecules – volume: 25 start-page: 515 year: 2020 end-page: 522 publication-title: SLAS Discov. – volume: 248 start-page: 611 year: 2015 end-page: 640 publication-title: J. Membr. Biol. – volume: 91 start-page: 9221 year: 2019 end-page: 9228 publication-title: Anal. Chem. – volume: 143 start-page: 2751 year: 2021 end-page: 2756 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 568 year: 2004 end-page: 574 publication-title: Nat. Biotechnol. – volume: 89 start-page: 5381 year: 1992 end-page: 5383 publication-title: Proc. Natl. Acad. Sci. USA – volume: 63 start-page: 7840 year: 2020 end-page: 7856 publication-title: J. Med. Chem. – volume: 87 start-page: 479 year: 2018 end-page: 502 publication-title: Annu. Rev. Biochem. – volume: 132 start-page: 15522 year: 2010 end-page: 15524 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 13330 year: 2019 end-page: 13341 publication-title: Chem. Commun. – volume: 23 year: 2020 publication-title: iScience – volume: 21 start-page: 425 year: 2019 end-page: 435 publication-title: ACS Comb. Sci. – volume: 7 start-page: 1340 year: 2016 end-page: 1351 publication-title: MedChemComm – volume: 39 year: 2021 publication-title: Bioorg. Med. Chem. Lett. – volume: 18 start-page: 837 year: 2017 end-page: 842 publication-title: ChemBioChem – volume: 139 start-page: 13977 year: 2017 end-page: 13980 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 1247 year: 2014 end-page: 1255 publication-title: Acc. Chem. Res. – volume: 59 start-page: 181 year: 2020 end-page: 249 publication-title: Prog. Med. Chem. – volume: 84 start-page: 551 year: 2015 end-page: 575 publication-title: Ann. Rev. Biochem. – volume: 39 start-page: 2991 year: 2018 end-page: 2996 publication-title: Electrophoresis – volume: 40 year: 2018 publication-title: BioEssays – volume: 527 start-page: 757 year: 2020 end-page: 759 publication-title: Biochem. Biophys. Res. Commun. – volume: 2 year: 2004 publication-title: PLoS Biol. – volume: 52 125 start-page: 9544 9723 year: 2013 2013 end-page: 9549 9728 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 129 start-page: 13137 year: 2007 end-page: 13143 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 1284 year: 2011 end-page: 1289 publication-title: Chem. Biol. – volume: 56 129 start-page: 1164 1184 year: 2017 2017 end-page: 1165 1185 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 38 start-page: D750 year: 2010 end-page: D753 publication-title: Nucleic Acids Res. – volume: 46 119 start-page: 4180 4258 year: 2007 2007 end-page: 4183 4261 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 130 start-page: 5744 year: 2008 end-page: 5752 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 10452 year: 2015 end-page: 10455 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 14965 15075 year: 2020 2020 end-page: 14972 15082 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 352 start-page: 624 year: 1991 end-page: 628 publication-title: Nature – volume: 16 start-page: 131 year: 2017 publication-title: Nat. Rev. Drug Discovery – volume: 56 129 start-page: 6762 6866 year: 2017 2017 end-page: 6766 6870 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 10056 10220 year: 2014 2014 end-page: 10059 10223 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 533 start-page: 215 year: 2020 end-page: 222 publication-title: Biochem. Biophys. Res. Commun. – volume: 141 start-page: 17057 year: 2019 end-page: 17061 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 7924 8035 year: 2015 2015 end-page: 7928 8039 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2019 publication-title: ChemBioChem – volume: 12 start-page: 363 year: 2021 end-page: 369 publication-title: RSC Med. Chem. – volume: 59 start-page: 6629 year: 2016 end-page: 6644 publication-title: J. Med. Chem. – volume: 18 start-page: 7729 year: 2012 end-page: 7737 publication-title: Chem. Eur. J. – volume: 56 start-page: 10560 year: 2020 end-page: 10563 publication-title: Chem. Commun. – volume: 17 start-page: 4676 year: 2019 end-page: 4688 publication-title: Org. Biomol. Chem. – volume: 60 start-page: 1 year: 2020 end-page: 14 publication-title: Isr. J. Chem. – volume: 26 start-page: 8 year: 2015 end-page: 15 publication-title: Curr. Opin. Chem. Biol. – volume: 61 year: 2020 publication-title: Tetrahedron Lett. – volume: 8 start-page: 7072 year: 2017 end-page: 7076 publication-title: Chem. Sci. – volume: 17 start-page: 518 year: 2015 end-page: 534 publication-title: ACS Comb. Sci. – volume: 131 start-page: 1322 year: 2009 end-page: 1327 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 955 year: 2019 end-page: 962 publication-title: ChemBioChem – volume: 94 start-page: 850 year: 2018 end-page: 861 publication-title: Mol. Pharmacol. – volume: 18 start-page: 829 year: 2017 end-page: 836 publication-title: ChemBioChem – year: 2018 publication-title: SLAS Discov. – volume: 57 130 start-page: 17178 17424 year: 2018 2018 end-page: 17182 17428 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 1332 year: 2016 end-page: 1339 publication-title: MedChemComm – ident: e_1_2_10_27_2 doi: 10.2533/chimia.2021.105 – ident: e_1_2_10_31_2 doi: 10.1021/acscombsci.9b00207 – ident: e_1_2_10_32_2 doi: 10.1177/2472555217752091 – ident: e_1_2_10_63_2 doi: 10.1515/hsz-2018-0119 – ident: e_1_2_10_114_1 doi: 10.1021/acschembio.5b00378 – ident: e_1_2_10_185_2 doi: 10.1016/j.isci.2020.101197 – ident: e_1_2_10_22_2 doi: 10.1039/C9CC01429B – ident: e_1_2_10_41_2 doi: 10.1021/acschembio.6b00855 – ident: e_1_2_10_134_1 doi: 10.1021/acscombsci.8b00116 – ident: e_1_2_10_144_2 doi: 10.1002/ange.201404830 – ident: e_1_2_10_182_1 – ident: e_1_2_10_188_1 doi: 10.1021/acscombsci.5b00124 – ident: e_1_2_10_161_2 doi: 10.1039/C9CC01429B – ident: e_1_2_10_186_1 doi: 10.1073/pnas.1620645114 – ident: e_1_2_10_11_2 doi: 10.1016/j.trechm.2020.11.010 – ident: e_1_2_10_196_1 – ident: e_1_2_10_26_1 – ident: e_1_2_10_162_1 doi: 10.1002/anie.201700813 – ident: e_1_2_10_78_2 doi: 10.1515/hsz-2018-0119 – ident: e_1_2_10_9_1 doi: 10.1073/pnas.0805130105 – ident: e_1_2_10_52_1 doi: 10.1038/nbt0697-553 – ident: e_1_2_10_179_1 – year: 2019 ident: e_1_2_10_125_1 publication-title: ChemBioChem – ident: e_1_2_10_189_1 doi: 10.1093/nar/gkp889 – ident: e_1_2_10_113_1 doi: 10.1002/cbic.201900603 – ident: e_1_2_10_202_1 doi: 10.1021/acs.analchem.9b01988 – ident: e_1_2_10_96_2 doi: 10.1021/ja808558a – ident: e_1_2_10_25_3 doi: 10.1002/ange.202005070 – ident: e_1_2_10_149_2 doi: 10.1021/ac8023813 – ident: e_1_2_10_36_2 doi: 10.1021/acscombsci.9b00037 – ident: e_1_2_10_169_1 – year: 2021 ident: e_1_2_10_72_2 publication-title: Chem. Rec. – ident: e_1_2_10_33_1 – ident: e_1_2_10_8_1 doi: 10.1073/pnas.0805130105 – start-page: 247255521875771 year: 2018 ident: e_1_2_10_135_1 publication-title: SLAS Discov. – year: 2021 ident: e_1_2_10_165_1 publication-title: Chem. Eur. J. – ident: e_1_2_10_176_1 doi: 10.1186/s13045-018-0578-4 – ident: e_1_2_10_168_2 doi: 10.1039/D0MD00310G – ident: e_1_2_10_100_2 doi: 10.1021/bc100198x – volume: 24 year: 2019 ident: e_1_2_10_94_2 publication-title: Molecules – ident: e_1_2_10_66_2 doi: 10.1038/nrd.2016.213 – ident: e_1_2_10_142_1 doi: 10.1039/C6MD00241B – ident: e_1_2_10_152_2 doi: 10.1021/acs.analchem.6b00980 – ident: e_1_2_10_105_1 doi: 10.1038/nprot.2016.039 – ident: e_1_2_10_93_1 – ident: e_1_2_10_98_2 doi: 10.1002/chem.201200952 – ident: e_1_2_10_130_1 doi: 10.1021/ja412934t – ident: e_1_2_10_192_3 doi: 10.1002/ange.201302161 – ident: e_1_2_10_28_2 doi: 10.1038/s42004-020-00374-1 – ident: e_1_2_10_14_2 doi: 10.1021/acs.chemrev.0c00088 – ident: e_1_2_10_133_1 doi: 10.1016/j.bbrc.2020.04.024 – ident: e_1_2_10_109_2 doi: 10.1002/cbic.201800766 – ident: e_1_2_10_90_2 doi: 10.1038/nature13297 – ident: e_1_2_10_115_1 – ident: e_1_2_10_57_2 doi: 10.1002/anie.201612143 – ident: e_1_2_10_3_1 doi: 10.1021/ja00074a063 – ident: e_1_2_10_23_2 doi: 10.1039/C5SC02467F – ident: e_1_2_10_163_1 doi: 10.1016/j.bbrc.2020.04.033 – ident: e_1_2_10_59_2 doi: 10.1002/9781118832738 – ident: e_1_2_10_137_1 doi: 10.1177/2472555217753840 – ident: e_1_2_10_192_2 doi: 10.1002/anie.201302161 – ident: e_1_2_10_214_2 doi: 10.1021/jacs.7b07241 – ident: e_1_2_10_136_1 doi: 10.1021/acscombsci.0c00007 – ident: e_1_2_10_162_2 doi: 10.1002/ange.201700813 – ident: e_1_2_10_12_2 doi: 10.1021/acs.jmedchem.9b01782 – ident: e_1_2_10_141_2 doi: 10.1016/j.cbpa.2015.02.003 – ident: e_1_2_10_208_2 doi: 10.1039/D0CC02588G – ident: e_1_2_10_25_2 doi: 10.1002/anie.202005070 – ident: e_1_2_10_108_2 doi: 10.1002/cbic.201600626 – start-page: 247255521880845 year: 2018 ident: e_1_2_10_127_1 publication-title: SLAS Discov. – ident: e_1_2_10_51_1 doi: 10.1073/pnas.061028198 – ident: e_1_2_10_174_1 doi: 10.1007/s00232-015-9802-0 – ident: e_1_2_10_180_2 doi: 10.1016/j.chembiol.2011.07.017 – year: 2019 ident: e_1_2_10_88_2 publication-title: ACS Chem. Biol. – ident: e_1_2_10_18_2 doi: 10.1038/nrd.2016.213 – ident: e_1_2_10_200_2 doi: 10.1021/acs.bioconjchem.9b00363 – ident: e_1_2_10_178_1 doi: 10.1038/s41557-020-00605-x – ident: e_1_2_10_76_2 doi: 10.1002/ijch.201900133 – ident: e_1_2_10_83_2 doi: 10.1177/2472555217752091 – ident: e_1_2_10_123_1 doi: 10.1177/2472555217749847 – ident: e_1_2_10_164_1 doi: 10.1002/chem.201803365 – ident: e_1_2_10_62_2 doi: 10.1021/acschembio.5b00981 – ident: e_1_2_10_204_1 doi: 10.1021/acs.analchem.5b04139 – ident: e_1_2_10_118_1 doi: 10.1177/2472555220908240 – ident: e_1_2_10_21_2 doi: 10.1002/anie.201501775 – ident: e_1_2_10_107_2 doi: 10.1002/cbic.201700014 – ident: e_1_2_10_209_1 doi: 10.1021/ja711193x – ident: e_1_2_10_167_2 doi: 10.1002/anie.201811650 – ident: e_1_2_10_47_1 – ident: e_1_2_10_187_1 doi: 10.1177/2472555217749847 – ident: e_1_2_10_132_1 doi: 10.1016/j.bbrc.2020.04.029 – year: 2015 ident: e_1_2_10_160_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_10_17_2 doi: 10.1021/acs.jmedchem.5b01874 – ident: e_1_2_10_195_1 doi: 10.1016/j.tibtech.2017.04.007 – ident: e_1_2_10_86_1 doi: 10.1021/acsmedchemlett.8b00128 – ident: e_1_2_10_69_2 doi: 10.1177/2472555218766250 – ident: e_1_2_10_154_1 – ident: e_1_2_10_38_1 – ident: e_1_2_10_15_2 doi: 10.1039/C9OB00581A – ident: e_1_2_10_57_3 doi: 10.1002/ange.201612143 – ident: e_1_2_10_92_2 doi: 10.1038/s41557-018-0033-8 – ident: e_1_2_10_101_2 doi: 10.1021/cb1003477 – ident: e_1_2_10_19_1 doi: 10.1038/nchem.2158 – ident: e_1_2_10_21_3 doi: 10.1002/ange.201501775 – ident: e_1_2_10_37_2 doi: 10.1021/acscombsci.9b00153 – ident: e_1_2_10_145_1 – ident: e_1_2_10_89_2 doi: 10.1021/ja104903x – ident: e_1_2_10_2_1 doi: 10.1073/pnas.89.12.5381 – ident: e_1_2_10_4_1 doi: 10.1073/pnas.90.22.10700 – ident: e_1_2_10_6_1 doi: 10.1126/science.1102629 – start-page: 247255521775087 year: 2018 ident: e_1_2_10_111_2 publication-title: SLAS Discov. – ident: e_1_2_10_158_1 doi: 10.1016/j.bmcl.2005.05.094 – ident: e_1_2_10_24_2 doi: 10.1021/jacs.8b09277 – ident: e_1_2_10_155_2 doi: 10.1038/nbt961 – ident: e_1_2_10_48_2 doi: 10.1038/348552a0 – ident: e_1_2_10_80_2 doi: 10.1016/j.tetlet.2020.151889 – ident: e_1_2_10_64_2 doi: 10.1002/1873-3468.13068 – ident: e_1_2_10_170_2 doi: 10.1016/j.chembiol.2004.08.008 – ident: e_1_2_10_30_1 – ident: e_1_2_10_172_1 doi: 10.1146/annurev-biochem-060614-034142 – ident: e_1_2_10_173_1 doi: 10.1002/anie.202001205 – ident: e_1_2_10_166_1 – ident: e_1_2_10_184_2 doi: 10.1021/acschembio.8b00866 – ident: e_1_2_10_39_2 doi: 10.1021/acs.bioconjchem.9b00628 – ident: e_1_2_10_99_2 doi: 10.1021/bc7004347 – ident: e_1_2_10_197_3 doi: 10.1002/ange.201204174 – ident: e_1_2_10_211_1 doi: 10.1039/C7SC02779F – ident: e_1_2_10_205_1 – ident: e_1_2_10_79_2 doi: 10.1002/cmdc.202000869 – ident: e_1_2_10_210_1 doi: 10.1002/bies.201800057 – ident: e_1_2_10_75_2 doi: 10.1016/j.bbrc.2020.04.080 – ident: e_1_2_10_181_2 doi: 10.1039/c1cc11668a – ident: e_1_2_10_74_2 doi: 10.1039/D0RA09889B – year: 2018 ident: e_1_2_10_65_2 publication-title: Ann. Rev. Biochem. – ident: e_1_2_10_106_1 – ident: e_1_2_10_206_2 doi: 10.1039/D0CC02588G – ident: e_1_2_10_67_2 doi: 10.1016/j.bmcl.2016.12.025 – ident: e_1_2_10_143_1 doi: 10.1021/jacs.0c09213 – ident: e_1_2_10_128_1 doi: 10.1002/anie.201412276 – ident: e_1_2_10_85_2 doi: 10.1016/bs.pmch.2020.03.001 – ident: e_1_2_10_177_1 doi: 10.1042/BST20160025 – ident: e_1_2_10_54_1 doi: 10.1146/annurev-biochem-062917-012550 – ident: e_1_2_10_140_2 – ident: e_1_2_10_190_1 doi: 10.1021/jacs.9b08085 – ident: e_1_2_10_46_1 doi: 10.1021/acs.jmedchem.0c00688 – ident: e_1_2_10_194_1 doi: 10.1002/anie.200604467 – ident: e_1_2_10_56_1 – ident: e_1_2_10_71_2 doi: 10.1016/j.bmcl.2021.127851 – ident: e_1_2_10_147_2 doi: 10.1021/acs.bioconjchem.7b00343 – ident: e_1_2_10_117_2 doi: 10.1177/2472555218757718 – ident: e_1_2_10_198_2 doi: 10.1021/jacs.5b04279 – ident: e_1_2_10_73_2 doi: 10.1021/acsmedchemlett.0c00615 – ident: e_1_2_10_42_1 doi: 10.1038/nchembio.211 – ident: e_1_2_10_121_1 doi: 10.1038/ncomms16081 – ident: e_1_2_10_112_2 doi: 10.1021/acscombsci.0c00023 – ident: e_1_2_10_138_1 doi: 10.1021/ja107677q – ident: e_1_2_10_102_2 doi: 10.1002/cmdc.200900520 – year: 2019 ident: e_1_2_10_146_2 publication-title: ACS Comb. Sci. – ident: e_1_2_10_58_2 doi: 10.1021/ar400284t – ident: e_1_2_10_68_2 doi: 10.1002/cbic.201600567 – ident: e_1_2_10_151_2 doi: 10.1021/ac504504c – volume: 52 start-page: 63 year: 2019 ident: e_1_2_10_84_2 publication-title: Aldrichimica Acta – ident: e_1_2_10_167_3 doi: 10.1002/ange.201811650 – ident: e_1_2_10_104_2 doi: 10.1002/anie.200704936 – ident: e_1_2_10_110_2 doi: 10.1039/C6MD00288A – ident: e_1_2_10_193_2 doi: 10.1002/chem.201702033 – ident: e_1_2_10_87_1 – ident: e_1_2_10_175_1 doi: 10.1146/annurev-bioeng-092115-025322 – ident: e_1_2_10_13_2 doi: 10.4155/fmc-2020-0285 – ident: e_1_2_10_159_1 – ident: e_1_2_10_50_2 doi: 10.1038/352624a0 – ident: e_1_2_10_120_1 doi: 10.1039/C5CC01230A – ident: e_1_2_10_43_1 doi: 10.1039/C6MD00341A – ident: e_1_2_10_191_1 – ident: e_1_2_10_103_2 doi: 10.1016/j.chembiol.2009.09.011 – ident: e_1_2_10_16_2 doi: 10.3390/molecules24081629 – ident: e_1_2_10_70_2 doi: 10.1177/2472555220979589 – ident: e_1_2_10_129_1 doi: 10.1039/C6MD00242K – ident: e_1_2_10_82_2 doi: 10.1039/C9CC06256D – ident: e_1_2_10_97_1 – volume: 50 start-page: 1 year: 2017 ident: e_1_2_10_81_2 publication-title: Ann. Rep. Med. Chem. – ident: e_1_2_10_212_1 – ident: e_1_2_10_183_2 doi: 10.1016/j.bmc.2014.01.050 – ident: e_1_2_10_5_1 doi: 10.1038/nbt961 – ident: e_1_2_10_1_1 doi: 10.1038/nrd3368 – ident: e_1_2_10_153_2 doi: 10.1016/j.jpba.2015.03.033 – ident: e_1_2_10_194_2 doi: 10.1002/ange.200604467 – ident: e_1_2_10_44_1 doi: 10.1002/cbic.201700014 – ident: e_1_2_10_199_2 doi: 10.1021/jacs.9b07191 – ident: e_1_2_10_20_1 – ident: e_1_2_10_49_2 doi: 10.1073/pnas.88.10.4363 – ident: e_1_2_10_61_2 doi: 10.1016/j.cbpa.2015.01.004 – ident: e_1_2_10_171_2 doi: 10.1073/pnas.172286899 – ident: e_1_2_10_116_2 doi: 10.1021/acscombsci.7b00023 – ident: e_1_2_10_197_2 doi: 10.1002/anie.201204174 – ident: e_1_2_10_157_3 doi: 10.1002/ange.200700654 – year: 2021 ident: e_1_2_10_207_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_10_7_1 doi: 10.1371/journal.pbio.0020173 – ident: e_1_2_10_29_2 doi: 10.1021/acs.jmedchem.0c00452 – year: 2017 ident: e_1_2_10_122_1 publication-title: ChemBioChem – ident: e_1_2_10_201_1 doi: 10.1039/D1CC00961C – ident: e_1_2_10_150_2 doi: 10.1002/elps.201800270 – ident: e_1_2_10_60_2 doi: 10.1016/j.cbpa.2015.01.005 – ident: e_1_2_10_124_1 doi: 10.1124/mol.118.111948 – ident: e_1_2_10_35_2 doi: 10.1021/acscombsci.6b00192 – ident: e_1_2_10_77_2 doi: 10.1021/acschembio.5b00981 – year: 2019 ident: e_1_2_10_203_1 publication-title: ACS Comb. Sci. – ident: e_1_2_10_119_1 doi: 10.1177/2472555219893949 – ident: e_1_2_10_10_1 – ident: e_1_2_10_128_2 doi: 10.1002/ange.201412276 – ident: e_1_2_10_157_2 doi: 10.1002/anie.200700654 – ident: e_1_2_10_139_1 – ident: e_1_2_10_126_1 doi: 10.1002/chem.201701644 – ident: e_1_2_10_213_2 doi: 10.1038/s41557-018-0008-9 – ident: e_1_2_10_40_2 doi: 10.1016/j.bmcl.2018.01.033 – ident: e_1_2_10_55_1 doi: 10.1016/j.bmcl.2016.12.025 – ident: e_1_2_10_53_1 doi: 10.1073/pnas.94.10.4937 – ident: e_1_2_10_34_2 doi: 10.1021/acscombsci.5b00106 – ident: e_1_2_10_131_1 doi: 10.1021/jacs.7b04880 – ident: e_1_2_10_144_1 doi: 10.1002/anie.201404830 – ident: e_1_2_10_45_1 doi: 10.1021/acs.jmedchem.6b01751 – ident: e_1_2_10_104_3 doi: 10.1002/ange.200704936 – ident: e_1_2_10_173_2 doi: 10.1002/ange.202001205 – ident: e_1_2_10_91_2 doi: 10.1021/jacs.9b01203 – ident: e_1_2_10_156_2 doi: 10.1002/advs.202001970 – ident: e_1_2_10_95_2 doi: 10.1021/ja073993a – ident: e_1_2_10_148_1 |
SSID | ssj0009631 |
Score | 2.4473479 |
SecondaryResourceType | review_article |
Snippet | DNA‐encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry.... DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2384 |
SubjectTerms | Binders Binding Combinatorial library Deoxyribonucleic acid DNA DNA - chemistry DNA-encoded library Drug Discovery Gene Library High throughput screening Humans Libraries Ligand discovery Ligands Pharmaceutical industry Proteins Proteins - chemistry Proteins - metabolism Small Molecule Libraries - chemistry Small Molecule Libraries - metabolism Solid phases |
Title | Recent Advances on the Selection Methods of DNA‐Encoded Libraries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbic.202100144 https://www.ncbi.nlm.nih.gov/pubmed/33891355 https://www.proquest.com/docview/2552118598 https://www.proquest.com/docview/2518219880 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hLnApf6UNBWQk1J4CiTdO4uMSQICAAz8St8h2bAnRZhG7eygnHqHP2CdhxtkEtlVVCW6JbCuOx_Z8Mx5_A7CdptLQFcbQOKPDBFVYqGOehVag-kB1LKx3ZZ-dp0fXycmNuHl1i7_hh-gcbrQy_H5NC1zp4e4LaajRt0RByIlEKCFCUArYIlR08cIfhbPLW1wJHXdynrWsjRHfnW4-rZX-gprTyNWrnsMFUG2nm4iTu53xSO-Yxz_4HN_zV4vwYYJLWb-ZSEswY-tlWOnXaJP_-Mm-Mh8p6l3wyzBXtFniVqBA3Il6i_WbWIIhG9QMMSW79Pl1UOjszOeoxgLH9s_7v59-HdR0j75ip62l_hGuDw-uiqNwkpghNHSRNlRoVKlI6iSTVtrKcmcR56CpVjmZqSrrpblT0iopLcpEpolLEDgZRAKxiw1uIqswWw9q-xkYIhInTWTyXm6SSkRaOSF7FHwV6YxXVQBhK5jSTFjLKXnG97LhW-YljVjZjVgA37r69w1fxz9rrrdyLifrdliigYUWcS5kHsBWV4xDSscoqraDMdVBmyyW2MMAPjXzo_tUzx_7ChEA91L-Tx_KYu-46N7W3tLoC8zTM7mbY7EOs6OHsd1AnDTSm34tPAPJQwWL |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V9lAu0A-ggVKMhOCUNnHsJD5uQ6st7O4BWolbFDu2hNpmEd09wImf0N_YX8KMs0m1VKgSHJPYiuOPzHvj8RuAN2mqDB1hDI0zOhRowkId8yy0Es0HmmNpvSt7PEmHZ-LDF9lFE9JZmFYfone40crw_2ta4OSQPrhVDTX6K2kQclIREuIBrFFab8-qPt0qSOH88pxL0IYn51mn2xjxg-X6y3bpDthcxq7e-Bw_Bt01u405Od-fz_S--fmHouN_fdcGPFpAUzZo59ImrNhmC7YHDdLyyx_sLfPBot4LvwXrRZcobhsKhJ5outigDSe4YtOGIaxkn32KHRx3NvZpqvGBY-8ng5tf10cNHaWv2agj60_g7PjotBiGi9wMoaGztGGFvKqKlBaZssrWljuLUAfZWu1UVtVZkuauUrZSyiapVKlwArGTQTAQu9jgf-QprDbTxu4AQ1DilIlMnuRG1DLSlZMqofirSGe8rgMIu5EpzUK4nPJnXJSt5DIvqcfKvscCeNeX_9ZKdvy15G430OVi6V6VyLGQFOdS5QG87h9jl9JOStXY6ZzKIC2LFbYwgGftBOlflfidXykD4H6Y72lDWRyeFP3V83-p9ArWh6fjUTk6mXx8AQ_pPnmfY7kLq7Pvc_sSYdNM7_mF8Rst_gmm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5RkNpe-O1PgBZXQu0pu4ljJ_ExZFmx7e4KtSDtLUocW6raZhHsHtoTj9Bn7JMwdjahS1UhwTGxrTieseebsf0NwGEYCmmuMLpSy8JlaMLcwqeRqziaDzTHXNlQ9mgcnpyzjxM--esWf80P0QbczMyw67WZ4Bel7t6Shsriq6EgpIZEiLEnsMZCLzZ63ft8SyCF6mVdLmb2OymNGtpGj3aX2y-bpX-w5jJ0tbanvwF50-v6yMm3znxWdOSvO4SOj_mtTVhfAFOS1Jq0BSuq2oadpEKn_MdP8p7Yo6I2Br8Nz9ImTdwOpAg80XCRpD5McEWmFUFQSb7YBDsodTKySaqxQJPeOPlz_fu4MhfpSzJsXPUXcN4_PktP3EVmBleam7Rujl5V7omCRUIJVSqqFQId9NVKLaK8jIIw1rlQuRAqCLkImWaInCRCAV_7EleRl7BaTSv1GghCEi2kJ-MglqzkXpFrLgJz-sorIlqWDriNYDK5oC032TO-ZzXhMs3MiGXtiDnwoa1_URN2_LfmfiPnbDFxrzL0sNAljrmIHXjXFuOQmn2UvFLTuamDTpkvsIcOvKr1o_1UYPd9OXeAWinf04csPRqk7dPuQxodwNPTXj8bDsaf9uC5eW1Czz7fh9XZ5Vy9Qcw0K97aaXEDFeIIXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+on+the+Selection+Methods+of+DNA-Encoded+Libraries&rft.jtitle=Chembiochem+%3A+a+European+journal+of+chemical+biology&rft.au=Huang%2C+Yiran&rft.au=Li%2C+Xiaoyu&rft.date=2021-07-15&rft.issn=1439-7633&rft.eissn=1439-7633&rft.volume=22&rft.issue=14&rft.spage=2384&rft_id=info:doi/10.1002%2Fcbic.202100144&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4227&client=summon |