Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications
Semitransparent solar cells (ST‐SCs) have received great attention due to their promising application in many areas, such as building integrated photovoltaics (BIPVs), tandem devices, and wearable electronics. In the past decade, perovskite solar cells (PSCs) have revolutionized the field of photovo...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 3; pp. e1806474 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Semitransparent solar cells (ST‐SCs) have received great attention due to their promising application in many areas, such as building integrated photovoltaics (BIPVs), tandem devices, and wearable electronics. In the past decade, perovskite solar cells (PSCs) have revolutionized the field of photovoltaics (PVs) with their high efficiencies and facile preparation processes. Due to their large absorption coefficient and bandgap tunability, perovskites offer new opportunities to ST‐SCs. Here, a general overview is provided on the recent advances in ST‐PSCs from materials and devices to applications and some personal perspectives on the future development of ST‐PSCs.
Semi‐transparent perovskite solar cells (ST‐PSCs) have received great attention due to their promising applications in many areas, such as building integrated photovoltaics (BIPV), tandem devices, and wearable electronics. A general overview of recent advances in ST‐PSCs from materials and devices to applications is provided, and presented alongside some personal perspectives on their future development. |
---|---|
AbstractList | Semitransparent solar cells (ST-SCs) have received great attention due to their promising application in many areas, such as building integrated photovoltaics (BIPVs), tandem devices, and wearable electronics. In the past decade, perovskite solar cells (PSCs) have revolutionized the field of photovoltaics (PVs) with their high efficiencies and facile preparation processes. Due to their large absorption coefficient and bandgap tunability, perovskites offer new opportunities to ST-SCs. Here, a general overview is provided on the recent advances in ST-PSCs from materials and devices to applications and some personal perspectives on the future development of ST-PSCs.Semitransparent solar cells (ST-SCs) have received great attention due to their promising application in many areas, such as building integrated photovoltaics (BIPVs), tandem devices, and wearable electronics. In the past decade, perovskite solar cells (PSCs) have revolutionized the field of photovoltaics (PVs) with their high efficiencies and facile preparation processes. Due to their large absorption coefficient and bandgap tunability, perovskites offer new opportunities to ST-SCs. Here, a general overview is provided on the recent advances in ST-PSCs from materials and devices to applications and some personal perspectives on the future development of ST-PSCs. Semitransparent solar cells (ST‐SCs) have received great attention due to their promising application in many areas, such as building integrated photovoltaics (BIPVs), tandem devices, and wearable electronics. In the past decade, perovskite solar cells (PSCs) have revolutionized the field of photovoltaics (PVs) with their high efficiencies and facile preparation processes. Due to their large absorption coefficient and bandgap tunability, perovskites offer new opportunities to ST‐SCs. Here, a general overview is provided on the recent advances in ST‐PSCs from materials and devices to applications and some personal perspectives on the future development of ST‐PSCs. Semi‐transparent perovskite solar cells (ST‐PSCs) have received great attention due to their promising applications in many areas, such as building integrated photovoltaics (BIPV), tandem devices, and wearable electronics. A general overview of recent advances in ST‐PSCs from materials and devices to applications is provided, and presented alongside some personal perspectives on their future development. Semitransparent solar cells (ST-SCs) have received great attention due to their promising application in many areas, such as building integrated photovoltaics (BIPVs), tandem devices, and wearable electronics. In the past decade, perovskite solar cells (PSCs) have revolutionized the field of photovoltaics (PVs) with their high efficiencies and facile preparation processes. Due to their large absorption coefficient and bandgap tunability, perovskites offer new opportunities to ST-SCs. Here, a general overview is provided on the recent advances in ST-PSCs from materials and devices to applications and some personal perspectives on the future development of ST-PSCs. |
Author | Duan, Linrui Zhang, Xiaodan Luo, Jingshan Shi, Biao Zhao, Ying |
Author_xml | – sequence: 1 givenname: Biao surname: Shi fullname: Shi, Biao organization: Tianjin Collaborative Innovation Center of Chemical Science and Engineering – sequence: 2 givenname: Linrui surname: Duan fullname: Duan, Linrui organization: Tianjin Collaborative Innovation Center of Chemical Science and Engineering – sequence: 3 givenname: Ying surname: Zhao fullname: Zhao, Ying organization: Tianjin Collaborative Innovation Center of Chemical Science and Engineering – sequence: 4 givenname: Jingshan orcidid: 0000-0002-1770-7681 surname: Luo fullname: Luo, Jingshan email: jingshan.luo@nankai.edu.cn organization: Tianjin Collaborative Innovation Center of Chemical Science and Engineering – sequence: 5 givenname: Xiaodan surname: Zhang fullname: Zhang, Xiaodan email: xdzhang@nankai.edu.cn organization: Tianjin Collaborative Innovation Center of Chemical Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31408225$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaTZprz0WQS-5eDP6sFbqbdk0H5DQ0rRnI0tjUGpbruRNyb-P0k0TCJQeBl2eRzO87wHZG-OIhLxnsGQA_Nj6wS45MA1KruQrsmA1Z5UEU--RBRhRV0ZJvU8Ocr4BAKNAvSH7gknQnNcL8u0ahzAnO-bJJhxn-hVTvM0_w4z0OvY20Q32ff5ET1Mc6JWdMQXbZ2pHT0_wNjjMdI50PU19cHYOccxvyeuuIPju8T0kP04_f9-cV5dfzi4268vKSWFkpbGVVhpnWYetakEb7LRTyteddJx7cJKpbiU8aGCt99w5zbEDr7WW2lhxSI52_04p_tpinpshZFeutSPGbW44X_GVUApkQT--QG_iNo3luoYLycsoIQr14ZHatgP6ZkphsOmu-ZtWAZY7wKWYc8LuCWHQPNTRPNTRPNVRBPlCcGH-k1KJPPT_1sxO-x16vPvPkmZ9crV-du8Bn8eefQ |
CitedBy_id | crossref_primary_10_1002_solr_202400456 crossref_primary_10_1002_admi_202000591 crossref_primary_10_1007_s40843_022_2450_8 crossref_primary_10_1038_s41566_022_01033_8 crossref_primary_10_1039_D2TA01135B crossref_primary_10_1016_j_mtelec_2025_100143 crossref_primary_10_1016_j_surfin_2023_103765 crossref_primary_10_1002_adma_202406872 crossref_primary_10_1002_aenm_202300481 crossref_primary_10_1016_j_mtener_2025_101816 crossref_primary_10_1002_adfm_202103130 crossref_primary_10_1002_adfm_202307471 crossref_primary_10_1016_j_vacuum_2023_112053 crossref_primary_10_1002_adfm_202104868 crossref_primary_10_1039_D2TA00248E crossref_primary_10_1039_D3TA06721A crossref_primary_10_1002_advs_202201487 crossref_primary_10_1021_acsami_3c05333 crossref_primary_10_15446_dyna_v90n226_106108 crossref_primary_10_1016_j_est_2023_108171 crossref_primary_10_1021_acsami_4c01071 crossref_primary_10_1039_D1TA09815B crossref_primary_10_1021_acsami_2c20124 crossref_primary_10_1021_acsaem_0c01081 crossref_primary_10_1021_acsami_1c02327 crossref_primary_10_1039_D2RA08198A crossref_primary_10_1039_D3QM00970J crossref_primary_10_3390_ma14216341 crossref_primary_10_1002_admi_202201222 crossref_primary_10_1002_ente_202401452 crossref_primary_10_1039_D0TA08752A crossref_primary_10_1002_solr_202400724 crossref_primary_10_1002_adfm_202200385 crossref_primary_10_1039_D0SE00598C crossref_primary_10_3390_nano12193295 crossref_primary_10_1002_adma_202104661 crossref_primary_10_1002_solr_202100702 crossref_primary_10_1021_acsomega_3c08912 crossref_primary_10_1063_1_5133803 crossref_primary_10_1002_aesr_202200132 crossref_primary_10_1016_j_synthmet_2024_117651 crossref_primary_10_1039_D4EE05462H crossref_primary_10_1007_s40820_021_00604_8 crossref_primary_10_1002_adma_202206574 crossref_primary_10_1016_j_solmat_2022_111683 crossref_primary_10_1021_acsami_1c24349 crossref_primary_10_56767_jfpe_2022_1_1_65 crossref_primary_10_1021_acsami_1c16691 crossref_primary_10_1016_j_solener_2023_02_003 crossref_primary_10_1002_solr_202000385 crossref_primary_10_1039_D4EE04209C crossref_primary_10_1016_j_chemosphere_2023_138923 crossref_primary_10_1364_OL_410557 crossref_primary_10_1021_acsami_4c11164 crossref_primary_10_1002_adom_202202827 crossref_primary_10_1002_er_5563 crossref_primary_10_1002_admi_202001604 crossref_primary_10_1007_s11664_022_10181_0 crossref_primary_10_1016_j_spmi_2021_106811 crossref_primary_10_3390_mi15040529 crossref_primary_10_1016_j_tsf_2022_139252 crossref_primary_10_1063_5_0188454 crossref_primary_10_3390_cryst14060524 crossref_primary_10_1002_adma_202002582 crossref_primary_10_1007_s11433_022_1928_8 crossref_primary_10_1088_2515_7655_accf34 crossref_primary_10_1039_D1TC02413B crossref_primary_10_1007_s10854_022_08368_6 crossref_primary_10_1016_j_cap_2024_05_006 crossref_primary_10_1021_acs_jpclett_0c03445 crossref_primary_10_3390_buildings10070129 crossref_primary_10_1016_j_jechem_2021_03_024 crossref_primary_10_1039_D0CS01488E crossref_primary_10_1039_D1CS00841B crossref_primary_10_1016_j_optlastec_2024_111695 crossref_primary_10_1007_s40843_021_1660_6 crossref_primary_10_1016_j_solener_2021_09_065 crossref_primary_10_1039_D4EE01659A crossref_primary_10_1088_1402_4896_ad63d7 crossref_primary_10_1002_solr_202200739 crossref_primary_10_1002_solr_202100264 crossref_primary_10_1016_j_matt_2021_12_011 crossref_primary_10_1002_adma_202402143 crossref_primary_10_1021_acsami_1c10657 crossref_primary_10_1039_D1TA06247F crossref_primary_10_1016_j_jpcs_2024_112021 crossref_primary_10_1007_s10854_022_08663_2 crossref_primary_10_1021_acsaem_0c01442 crossref_primary_10_1039_D3EE00646H crossref_primary_10_1002_advs_202105085 crossref_primary_10_1002_solr_202100809 crossref_primary_10_3390_su141610014 crossref_primary_10_1007_s40820_020_00457_7 crossref_primary_10_1007_s10904_024_03302_1 crossref_primary_10_1016_j_scib_2023_08_043 crossref_primary_10_1021_acsenergylett_4c01149 crossref_primary_10_1002_advs_202306110 crossref_primary_10_1016_j_nanoen_2021_106362 crossref_primary_10_1016_j_inoche_2023_111419 crossref_primary_10_1016_j_ceja_2022_100267 crossref_primary_10_1016_j_solmat_2022_111917 crossref_primary_10_1016_j_mseb_2023_116855 crossref_primary_10_1088_2631_8695_ad43bb crossref_primary_10_1016_j_optmat_2022_112881 crossref_primary_10_3389_felec_2021_712785 crossref_primary_10_1002_aenm_202200713 crossref_primary_10_1016_j_solmat_2025_113547 crossref_primary_10_1038_s43246_022_00325_4 crossref_primary_10_1002_aenm_202402595 crossref_primary_10_1002_solr_202500025 crossref_primary_10_1088_1674_1056_ab99ae crossref_primary_10_1021_acsaem_3c00735 crossref_primary_10_1002_ange_202104201 crossref_primary_10_1016_j_jechem_2022_05_015 crossref_primary_10_1016_j_gee_2023_05_006 crossref_primary_10_7498_aps_69_20200822 crossref_primary_10_1021_acsaem_1c01649 crossref_primary_10_1039_D4TC04111A crossref_primary_10_1002_sus2_25 crossref_primary_10_1016_j_mattod_2021_05_016 crossref_primary_10_1002_solr_202400006 crossref_primary_10_1109_JPHOTOV_2024_3377190 crossref_primary_10_1016_j_mtener_2024_101629 crossref_primary_10_1002_smtd_202300224 crossref_primary_10_1021_acs_jpclett_4c00320 crossref_primary_10_3390_nano11102732 crossref_primary_10_1016_j_jechem_2023_02_041 crossref_primary_10_1038_s41578_021_00286_z crossref_primary_10_1021_acsenergylett_1c01233 crossref_primary_10_1016_j_tws_2022_109231 crossref_primary_10_1002_smsc_202300085 crossref_primary_10_1002_adma_202312704 crossref_primary_10_1021_acsaem_3c00100 crossref_primary_10_1002_adts_202301015 crossref_primary_10_1002_adfm_202110435 crossref_primary_10_1039_D4EE03956D crossref_primary_10_1002_aenm_202301555 crossref_primary_10_1002_admt_202000856 crossref_primary_10_1016_j_matre_2021_100062 crossref_primary_10_1364_OE_440989 crossref_primary_10_1002_adma_202006745 crossref_primary_10_1039_D4TA03542A crossref_primary_10_1002_adom_202202982 crossref_primary_10_1007_s42452_020_2549_y crossref_primary_10_1016_j_solener_2024_113069 crossref_primary_10_1002_aenm_202200417 crossref_primary_10_1515_zpch_2020_1729 crossref_primary_10_1002_ente_202300611 crossref_primary_10_1016_j_matchemphys_2021_124426 crossref_primary_10_1007_s40089_021_00359_5 crossref_primary_10_1002_aenm_202200661 crossref_primary_10_1016_j_solmat_2024_113112 crossref_primary_10_1002_aesr_202400147 crossref_primary_10_1007_s42247_023_00482_3 crossref_primary_10_1039_D4DT02224F crossref_primary_10_3390_en16020889 crossref_primary_10_1016_j_optmat_2021_111288 crossref_primary_10_1021_acsami_1c07686 crossref_primary_10_1002_adma_202000631 crossref_primary_10_1002_aenm_202002774 crossref_primary_10_1007_s10853_020_05704_1 crossref_primary_10_1016_j_scib_2020_03_014 crossref_primary_10_1002_admt_202000960 crossref_primary_10_1016_j_nanoen_2024_110523 crossref_primary_10_1039_D4RA00324A crossref_primary_10_1002_solr_202200793 crossref_primary_10_1021_acsaelm_1c00084 crossref_primary_10_1002_adom_202203140 crossref_primary_10_1109_JPHOTOV_2020_3004926 crossref_primary_10_1002_aesr_202000035 crossref_primary_10_1016_j_mtener_2023_101473 crossref_primary_10_1016_j_cej_2021_132683 crossref_primary_10_1002_anie_202104201 crossref_primary_10_1016_j_orgel_2024_107060 crossref_primary_10_1016_j_rser_2021_111608 crossref_primary_10_1515_nanoph_2021_0683 crossref_primary_10_32604_jrm_2022_021400 crossref_primary_10_1002_adfm_202004765 crossref_primary_10_1016_j_nanoen_2021_106285 crossref_primary_10_1021_acsaem_2c03640 crossref_primary_10_1021_acsami_1c23476 crossref_primary_10_1002_solr_202200708 |
Cites_doi | 10.1021/acsnano.6b00225 10.1126/science.aad5845 10.1002/adma.201603850 10.1038/s41563-018-0017-5 10.1016/j.nanoen.2017.02.025 10.1039/C5TA09011C 10.1039/C6TA05497H 10.1039/C5EE02965A 10.1002/aenm.201601062 10.1039/C7EE01232B 10.1039/C5MH00126A 10.1016/j.solmat.2017.06.024 10.1039/C5EE01169H 10.1021/acs.nanolett.6b04019 10.1002/adma.201700192 10.1016/j.solmat.2015.06.024 10.1002/adma.201501145 10.1063/1.4914179 10.1016/j.solmat.2017.05.057 10.1021/acsami.5b04040 10.1002/admi.201400532 10.1002/aenm.201500486 10.1002/adma.201602696 10.1021/acs.jpclett.5b01177 10.1126/science.aaf9717 10.1021/acsenergylett.7b01255 10.1021/acs.chemmater.5b03137 10.1039/C4CP03788J 10.1021/acs.chemmater.5b01933 10.1039/C4EE01138D 10.1021/nl400349b 10.1002/aenm.201803241 10.1021/jz502367k 10.1002/adma.201403939 10.1016/j.apsusc.2016.02.104 10.1016/j.coelec.2018.10.002 10.1002/admi.201500837 10.1038/nenergy.2017.18 10.1039/C5TA08450D 10.1038/nenergy.2016.190 10.1016/j.nanoen.2017.12.043 10.1002/adma.201505279 10.1039/C5TC00622H 10.1016/j.apenergy.2017.03.011 10.1002/aenm.201502317 10.1088/2040-8978/18/6/064012 10.1038/s41467-018-05531-8 10.1038/nenergy.2016.137 10.1002/pip.1088 10.1126/science.aan2301 10.1021/acs.jpclett.5b02597 10.1002/chem.201705031 10.1039/c2ra20075a 10.1038/ncomms9932 10.1021/nn501096h 10.1021/nn4052309 10.1126/science.aah5557 10.1038/nphoton.2014.134 10.1007/s12274-017-1880-0 10.1002/anie.201710869 10.1021/acs.jpcc.6b09671 10.1126/science.aaa9272 10.1021/acs.jpcc.5b11144 10.1039/C4CS00455H 10.1038/s41560-018-0190-4 10.1002/aenm.201502466 10.1021/acsami.7b06607 10.1039/C4EE02539C 10.1039/C4EE03322A 10.1039/C5TA08744A 10.1002/adma.201403965 10.1364/OE.25.00A473 10.1002/aenm.201801668 10.1021/ja411509g 10.1021/jacs.6b10227 10.1126/science.aap9282 10.1364/OL.42.001958 10.1021/acs.jpclett.7b02277 10.1021/jacs.5b05602 10.1021/acsami.5b00468 10.1021/jacs.8b07927 10.1021/acsenergylett.6b00495 10.1016/j.solmat.2017.04.038 10.1002/adfm.201800113 10.1016/j.ceramint.2018.04.084 10.1016/j.nanoen.2015.02.028 10.1038/nenergy.2017.9 10.1002/admi.201700731 10.1039/C8EE00154E 10.1038/nature12340 10.1021/acsami.5b10830 10.1038/nature14133 10.1002/adma.201502969 10.1126/science.aaf8060 10.1021/acsphotonics.5b00119 10.1021/acsenergylett.7b00282 10.1038/nature12509 10.1038/s41560-017-0016-9 10.1021/acs.jpclett.5b02686 10.1002/adma.201004301 10.1038/s41563-017-0006-0 10.1039/C5EE01050K 10.1038/nphoton.2016.41 10.1039/C8EE02469C 10.1002/aenm.201601128 10.1002/aenm.201602121 10.1002/adma.201800855 10.1021/acs.jpclett.5b01108 10.1039/C7RA06365B 10.1021/acs.jpclett.6b00002 10.2172/6977475 10.1021/am900446x 10.1021/ja809598r 10.1016/j.nanoen.2018.04.036 10.1039/C6EE00030D 10.1039/C4NR06033D 10.1021/acsami.5b03171 10.1002/aenm.201703519 10.1126/science.aam5655 10.1021/acsami.8b01611 10.1002/aenm.201700228 10.1039/C7NR04069E 10.1002/aenm.201701569 10.3390/molecules21040475 10.1016/j.solmat.2016.10.035 10.1021/acsenergylett.8b01201 10.1039/C5NR06177F 10.1088/1361-6463/aa53d7 10.1126/science.aaa5760 10.1021/acs.jpclett.5b01666 10.1002/adfm.201602094 10.1039/C4EE01389A 10.1039/C7TA01383C 10.1039/c4ta00379a 10.1039/C6TA06232F 10.1038/s41563-018-0115-4 10.1002/adma.201703852 10.1002/aenm.201602333 10.1080/14686996.2016.1176512 10.1002/smll.201203142 10.1016/j.solmat.2015.05.036 10.1002/aenm.201601055 10.1039/C6EE01037G 10.1126/science.aav7911 10.1016/j.joule.2018.10.003 10.1038/nenergy.2016.177 10.1021/acsnano.5b03189 10.1021/acsenergylett.7b00187 10.1109/JPHOTOV.2013.2270351 10.1002/aenm.201501520 10.1021/acs.jpclett.5b01426 10.1002/aenm.201602599 10.1021/acsenergylett.6b00167 10.1016/j.solmat.2016.07.010 10.1021/acsenergylett.6b00254 10.1039/C7EE02288C 10.1016/j.nanoen.2016.10.044 10.1039/C6TA04790D 10.1016/j.solmat.2016.07.012 10.1126/science.aai9081 10.1038/s41467-017-01842-4 10.1016/j.solmat.2017.05.071 10.1016/j.rser.2018.06.031 10.1039/C7SE00383H 10.1002/admi.201500118 10.1126/science.1222453 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201806474 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 31408225 10_1002_adma_201806474 ADMA201806474 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China funderid: B16027 – fundername: National Key Research and Development Program of China funderid: 2018YFB1500103 – fundername: National Natural Science Foundation of China funderid: 61674084 – fundername: Fundamental Research Funds for the Central Universities funderid: 63191736; ZB19500204 – fundername: Tianjin Science and Technology Project funderid: 18ZXJMTG00220 – fundername: Fundamental Research Funds for the Central Universities grantid: 63191736 – fundername: Tianjin Science and Technology Project grantid: 18ZXJMTG00220 – fundername: Fundamental Research Funds for the Central Universities grantid: ZB19500204 – fundername: Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China grantid: B16027 – fundername: National Natural Science Foundation of China grantid: 61674084 – fundername: National Key Research and Development Program of China grantid: 2018YFB1500103 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4394-8eb4a49ca1feb6b089ef8c66d5f4c22d0c416f73d0801bdd2cc82ef0d888489a3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 05:29:27 EDT 2025 Fri Jul 25 04:05:50 EDT 2025 Thu Apr 03 07:08:48 EDT 2025 Tue Jul 01 00:44:54 EDT 2025 Thu Apr 24 22:54:06 EDT 2025 Wed Jan 22 16:37:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | tandem devices semitransparent solar cells transparent electrodes perovskite solar cells |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4394-8eb4a49ca1feb6b089ef8c66d5f4c22d0c416f73d0801bdd2cc82ef0d888489a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1770-7681 |
PMID | 31408225 |
PQID | 2342234633 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2272736604 proquest_journals_2342234633 pubmed_primary_31408225 crossref_primary_10_1002_adma_201806474 crossref_citationtrail_10_1002_adma_201806474 wiley_primary_10_1002_adma_201806474_ADMA201806474 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 141 2013; 3 2019; 11 2014; 26 2016; 30 2018; 45 2018; 44 2014; 136 2018; 49 2013; 9 2018; 9 2018; 8 2018; 3 2018; 5 2015; 137 2016; 157 2017; 160 2018; 30 2017; 168 1989 2019; 9 2018; 28 2019; 3 2013; 501 2016; 10 2016; 18 2016; 17 2016; 16 2018; 24 2016; 4 2017; 50 2016; 6 2018; 17 2016; 7 2016; 1 2016; 3 2013; 339 2016; 21 2015; 517 2018; 94 2018; 11 2016; 28 2018; 10 2016; 26 2016; 8 2016; 9 2017; 5 2017; 7 2017; 42 2017; 8 2017; 1 2017; 2 2018; 360 2015; 347 2017; 194 2015; 106 2015; 348 2017; 355 2011; 19 2017; 356 2019; 364 2017; 9 2017; 358 2014; 2 2013; 13 2015; 44 2017; 34 2016; 354 2016; 353 2011; 23 2014; 8 2014; 7 2016; 351 2015; 2 2015; 13 2015; 6 2015; 17 2015; 5 2018; 140 2015; 3 2017; 25 2017; 170 2017; 173 2017; 29 2016; 369 2009; 131 2015; 9 2015; 8 2015; 7 2016; 120 2012; 2 2015; 27 2017; 10 2013; 499 2018 2016; 138 2015 2009; 1 2018; 57 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_161_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_165_1 Mailoa J. P. (e_1_2_7_168_1) 2015 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 Lampert C. M. (e_1_2_7_172_1) 1989 e_1_2_7_105_1 Yang T. C.‐J. (e_1_2_7_159_1) 2018 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_166_1 e_1_2_7_147_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_151_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_136_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_170_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 Jung J. W. (e_1_2_7_117_1) 2015; 5 e_1_2_7_148_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_171_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_160_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_164_1 e_1_2_7_145_1 e_1_2_7_149_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_153_1 e_1_2_7_134_1 e_1_2_7_157_1 e_1_2_7_138_1 |
References_xml | – volume: 353 start-page: 58 year: 2016 publication-title: Science – volume: 136 start-page: 622 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 3632 year: 2015 publication-title: Adv. Mater. – volume: 3 start-page: 2173 year: 2018 publication-title: ACS Energy Lett. – volume: 355 start-page: 722 year: 2017 publication-title: Science – volume: 28 start-page: 3937 year: 2016 publication-title: Adv. Mater. – volume: 17 start-page: 260 year: 2016 publication-title: Sci. Technol. Adv. Mater. – year: 1989 – volume: 44 year: 2018 publication-title: Ceram. Int. – volume: 17 start-page: 261 year: 2018 publication-title: Nat. Mater. – volume: 160 start-page: 193 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – volume: 8 start-page: 506 year: 2014 publication-title: Nat. Photonics – volume: 11 start-page: 114 year: 2018 publication-title: Curr. Opin. Electrochem. – volume: 120 start-page: 4233 year: 2016 publication-title: J. Phys. Chem. C – volume: 354 start-page: 206 year: 2016 publication-title: Science – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 578 year: 2015 publication-title: Mater. Horiz. – volume: 10 start-page: 1983 year: 2017 publication-title: Energy Environ. Sci. – volume: 11 start-page: 3511 year: 2019 publication-title: Energy Environ. Sci. – volume: 24 start-page: 2305 year: 2018 publication-title: Chem. ‐ Eur. J. – volume: 2 year: 2015 publication-title: Adv. Mater. Interfaces – volume: 157 start-page: 757 year: 2016 publication-title: Sol. Energy Mater. Sol. Cells – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 10 start-page: 5104 year: 2016 publication-title: ACS Nano – volume: 194 start-page: 94 year: 2017 publication-title: Appl. Energy – start-page: 2 year: 2018 publication-title: Joule – volume: 7 start-page: 2968 year: 2014 publication-title: Energy Environ. Sci. – volume: 9 start-page: 446 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 173 start-page: 37 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – volume: 3 start-page: 177 year: 2019 publication-title: Joule – volume: 1 start-page: 2120 year: 2017 publication-title: Sustainable Energy Fuels – volume: 19 start-page: 84 year: 2011 publication-title: Prog. Photovoltaics – volume: 13 start-page: 249 year: 2015 publication-title: Nano Energy – volume: 4 start-page: 1208 year: 2016 publication-title: J. Mater. Chem. A – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1722 year: 2017 publication-title: Nat. Commun. – volume: 10 start-page: 2472 year: 2017 publication-title: Energy Environ. Sci. – volume: 157 start-page: 660 year: 2016 publication-title: Sol. Energy Mater. Sol. Cells – volume: 27 start-page: 7119 year: 2015 publication-title: Chem. Mater. – volume: 9 start-page: 2887 year: 2013 publication-title: Small – volume: 1 start-page: 474 year: 2016 publication-title: ACS Energy Lett. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 339 start-page: 535 year: 2013 publication-title: Science – volume: 364 start-page: 475 year: 2019 publication-title: Science – volume: 17 start-page: 820 year: 2018 publication-title: Nat. Mater. – volume: 16 start-page: 7829 year: 2016 publication-title: Nano Lett. – volume: 57 start-page: 3337 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 8990 year: 2016 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 3 start-page: 5377 year: 2015 publication-title: J. Mater. Chem. C – volume: 7 start-page: 746 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 849 year: 2017 publication-title: Nat. Energy – volume: 23 start-page: 1679 year: 2011 publication-title: Adv. Mater. – volume: 358 start-page: 768 year: 2017 publication-title: Science – volume: 1 start-page: 161 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 1416 year: 2017 publication-title: ACS Energy Lett. – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 9 start-page: 2262 year: 2016 publication-title: Energy Environ. Sci. – volume: 354 start-page: 861 year: 2016 publication-title: Science – volume: 6 start-page: 129 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 42 start-page: 1958 year: 2017 publication-title: Opt. Lett. – volume: 26 start-page: 6545 year: 2016 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 591 year: 2014 publication-title: ACS Nano – volume: 356 start-page: 1376 year: 2017 publication-title: Science – volume: 170 start-page: 178 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – volume: 6 start-page: 2676 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 2922 year: 2015 publication-title: Energy Environ. Sci. – volume: 25 start-page: A473 year: 2017 publication-title: Opt. Express – volume: 34 start-page: 271 year: 2017 publication-title: Nano Energy – volume: 7 start-page: 2619 year: 2014 publication-title: Energy Environ. Sci. – volume: 4 start-page: 3970 year: 2016 publication-title: J. Mater. Chem. A – volume: 6 start-page: 3180 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 170 start-page: 278 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – volume: 141 start-page: 194 year: 2015 publication-title: Sol. Energy Mater. Sol. Cells – volume: 8 start-page: 6352 year: 2016 publication-title: Nanoscale – volume: 168 start-page: 214 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – volume: 499 start-page: 316 year: 2013 publication-title: Nature – volume: 21 start-page: 475 year: 2016 publication-title: Molecules – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 6 start-page: 2745 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 49 start-page: 59 year: 2018 publication-title: Nano Energy – volume: 45 start-page: 280 year: 2018 publication-title: Nano Energy – volume: 1 start-page: 391 year: 2016 publication-title: ACS Energy Lett. – volume: 13 start-page: 1764 year: 2013 publication-title: Nano Lett. – volume: 6 start-page: 3781 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 161 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 8932 year: 2015 publication-title: Nat. Commun. – volume: 9 year: 2017 publication-title: Nanoscale – volume: 9 start-page: 81 year: 2016 publication-title: Energy Environ. Sci. – volume: 106 year: 2015 publication-title: Appl. Phys. Lett. – year: 2015 – volume: 8 start-page: 6797 year: 2014 publication-title: ACS Nano – volume: 3 start-page: 1184 year: 2013 publication-title: IEEE J. Photovoltaics – volume: 351 start-page: 151 year: 2016 publication-title: Science – volume: 8 start-page: 2041 year: 2015 publication-title: Energy Environ. Sci. – volume: 27 start-page: 53 year: 2015 publication-title: Adv. Mater. – volume: 28 start-page: 9648 year: 2016 publication-title: Adv. Mater. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 360 start-page: 1442 year: 2018 publication-title: Science – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 369 start-page: 308 year: 2016 publication-title: Appl. Surf. Sci. – volume: 9 start-page: 3100 year: 2018 publication-title: Nat. Commun. – volume: 7 start-page: 3989 year: 2014 publication-title: Energy Environ. Sci. – volume: 10 start-page: 333 year: 2016 publication-title: Nat. Photonics – volume: 3 start-page: 428 year: 2018 publication-title: ACS Energy Lett. – volume: 7 start-page: 6230 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1688 year: 2018 publication-title: Energy Environ. Sci. – volume: 9 start-page: 1706 year: 2016 publication-title: Energy Environ. Sci. – volume: 1 start-page: 1199 year: 2016 publication-title: ACS Energy Lett. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 17 start-page: 218 year: 2018 publication-title: Nat. Mater. – volume: 2 start-page: 8607 year: 2014 publication-title: J. Mater. Chem. A – volume: 141 start-page: 407 year: 2015 publication-title: Sol. Energy Mater. Sol. Cells – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 167 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 30 start-page: 542 year: 2016 publication-title: Nano Energy – volume: 2 start-page: 680 year: 2015 publication-title: ACS Photonics – volume: 11 start-page: 2553 year: 2018 publication-title: Nano Res. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 8 start-page: 4523 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 26 start-page: 7499 year: 2014 publication-title: Adv. Mater. – volume: 3 start-page: 828 year: 2018 publication-title: Nat. Energy – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 17 start-page: 1619 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 18 year: 2016 publication-title: J. Optics – volume: 7 start-page: 1642 year: 2015 publication-title: Nanoscale – volume: 2 start-page: 807 year: 2017 publication-title: ACS Energy Lett. – volume: 8 start-page: 956 year: 2015 publication-title: Energy Environ. Sci. – volume: 9 start-page: 7714 year: 2015 publication-title: ACS Nano – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 5122 year: 2015 publication-title: Chem. Mater. – volume: 1 start-page: 2107 year: 2009 publication-title: ACS Appl. Mater. Interfaces – volume: 50 year: 2017 publication-title: J. Phys. D: Appl. Phys. – volume: 517 start-page: 476 year: 2015 publication-title: Nature – volume: 44 start-page: 5638 year: 2015 publication-title: Chem. Soc. Rev. – volume: 94 start-page: 779 year: 2018 publication-title: Renewable Sustainable Energy Rev. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 7938 year: 2015 publication-title: Adv. Mater. – volume: 2 start-page: 3335 year: 2012 publication-title: RSC Adv. – volume: 501 start-page: 395 year: 2013 publication-title: Nature – ident: e_1_2_7_145_1 doi: 10.1021/acsnano.6b00225 – ident: e_1_2_7_43_1 doi: 10.1126/science.aad5845 – ident: e_1_2_7_74_1 doi: 10.1002/adma.201603850 – ident: e_1_2_7_16_1 doi: 10.1038/s41563-018-0017-5 – ident: e_1_2_7_98_1 doi: 10.1016/j.nanoen.2017.02.025 – ident: e_1_2_7_97_1 doi: 10.1039/C5TA09011C – ident: e_1_2_7_59_1 doi: 10.1039/C6TA05497H – ident: e_1_2_7_126_1 doi: 10.1039/C5EE02965A – ident: e_1_2_7_72_1 doi: 10.1002/aenm.201601062 – ident: e_1_2_7_163_1 doi: 10.1039/C7EE01232B – ident: e_1_2_7_65_1 doi: 10.1039/C5MH00126A – ident: e_1_2_7_148_1 doi: 10.1016/j.solmat.2017.06.024 – ident: e_1_2_7_62_1 doi: 10.1039/C5EE01169H – ident: e_1_2_7_122_1 doi: 10.1021/acs.nanolett.6b04019 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201700192 – ident: e_1_2_7_77_1 doi: 10.1016/j.solmat.2015.06.024 – ident: e_1_2_7_90_1 doi: 10.1002/adma.201501145 – ident: e_1_2_7_154_1 doi: 10.1063/1.4914179 – ident: e_1_2_7_55_1 doi: 10.1016/j.solmat.2017.05.057 – ident: e_1_2_7_96_1 doi: 10.1021/acsami.5b04040 – ident: e_1_2_7_71_1 doi: 10.1002/admi.201400532 – ident: e_1_2_7_109_1 doi: 10.1002/aenm.201500486 – ident: e_1_2_7_128_1 doi: 10.1002/adma.201602696 – ident: e_1_2_7_86_1 doi: 10.1021/acs.jpclett.5b01177 – ident: e_1_2_7_161_1 doi: 10.1126/science.aaf9717 – ident: e_1_2_7_44_1 doi: 10.1021/acsenergylett.7b01255 – ident: e_1_2_7_88_1 doi: 10.1021/acs.chemmater.5b03137 – ident: e_1_2_7_111_1 doi: 10.1039/C4CP03788J – ident: e_1_2_7_119_1 doi: 10.1021/acs.chemmater.5b01933 – ident: e_1_2_7_25_1 doi: 10.1039/C4EE01138D – ident: e_1_2_7_35_1 doi: 10.1021/nl400349b – ident: e_1_2_7_10_1 doi: 10.1002/aenm.201803241 – ident: e_1_2_7_57_1 doi: 10.1021/jz502367k – ident: e_1_2_7_92_1 doi: 10.1002/adma.201403939 – ident: e_1_2_7_132_1 doi: 10.1016/j.apsusc.2016.02.104 – ident: e_1_2_7_8_1 doi: 10.1016/j.coelec.2018.10.002 – ident: e_1_2_7_58_1 doi: 10.1002/admi.201500837 – ident: e_1_2_7_36_1 doi: 10.1038/nenergy.2017.18 – ident: e_1_2_7_51_1 doi: 10.1039/C5TA08450D – ident: e_1_2_7_80_1 doi: 10.1038/nenergy.2016.190 – ident: e_1_2_7_84_1 doi: 10.1016/j.nanoen.2017.12.043 – ident: e_1_2_7_91_1 doi: 10.1002/adma.201505279 – ident: e_1_2_7_131_1 doi: 10.1039/C5TC00622H – ident: e_1_2_7_6_1 doi: 10.1016/j.apenergy.2017.03.011 – ident: e_1_2_7_69_1 doi: 10.1002/aenm.201502317 – ident: e_1_2_7_157_1 doi: 10.1088/2040-8978/18/6/064012 – ident: e_1_2_7_167_1 doi: 10.1038/s41467-018-05531-8 – ident: e_1_2_7_151_1 doi: 10.1038/nenergy.2016.137 – ident: e_1_2_7_149_1 doi: 10.1002/pip.1088 – ident: e_1_2_7_165_1 doi: 10.1126/science.aad5845 – ident: e_1_2_7_101_1 doi: 10.1126/science.aan2301 – ident: e_1_2_7_45_1 doi: 10.1021/acs.jpclett.5b02597 – ident: e_1_2_7_34_1 doi: 10.1002/chem.201705031 – ident: e_1_2_7_19_1 doi: 10.1039/c2ra20075a – ident: e_1_2_7_81_1 doi: 10.1038/ncomms9932 – ident: e_1_2_7_94_1 doi: 10.1021/nn501096h – ident: e_1_2_7_56_1 doi: 10.1021/nn4052309 – ident: e_1_2_7_103_1 doi: 10.1126/science.aah5557 – ident: e_1_2_7_27_1 doi: 10.1038/nphoton.2014.134 – ident: e_1_2_7_141_1 doi: 10.1007/s12274-017-1880-0 – ident: e_1_2_7_48_1 doi: 10.1002/anie.201710869 – ident: e_1_2_7_53_1 doi: 10.1021/acs.jpcc.6b09671 – ident: e_1_2_7_107_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_7_140_1 doi: 10.1021/acs.jpcc.5b11144 – ident: e_1_2_7_170_1 doi: 10.1039/C4CS00455H – ident: e_1_2_7_152_1 doi: 10.1038/s41560-018-0190-4 – ident: e_1_2_7_130_1 doi: 10.1002/aenm.201502466 – ident: e_1_2_7_116_1 doi: 10.1021/acsami.7b06607 – ident: e_1_2_7_20_1 doi: 10.1039/C4EE02539C – ident: e_1_2_7_87_1 doi: 10.1039/C4EE03322A – ident: e_1_2_7_158_1 doi: 10.1039/C5TA08744A – ident: e_1_2_7_18_1 doi: 10.1002/adma.201403965 – ident: e_1_2_7_166_1 doi: 10.1364/OE.25.00A473 – ident: e_1_2_7_73_1 doi: 10.1002/aenm.201801668 – ident: e_1_2_7_23_1 doi: 10.1021/ja411509g – ident: e_1_2_7_46_1 doi: 10.1021/jacs.6b10227 – ident: e_1_2_7_99_1 doi: 10.1126/science.aap9282 – ident: e_1_2_7_129_1 doi: 10.1364/OL.42.001958 – ident: e_1_2_7_37_1 doi: 10.1126/science.aaf9717 – ident: e_1_2_7_160_1 doi: 10.1021/acs.jpclett.7b02277 – ident: e_1_2_7_47_1 doi: 10.1021/jacs.5b05602 – ident: e_1_2_7_125_1 doi: 10.1021/acsami.5b00468 – ident: e_1_2_7_4_1 doi: 10.1021/jacs.8b07927 – ident: e_1_2_7_40_1 doi: 10.1021/acsenergylett.6b00495 – ident: e_1_2_7_28_1 doi: 10.1016/j.solmat.2017.04.038 – ident: e_1_2_7_17_1 doi: 10.1002/adfm.201800113 – ident: e_1_2_7_50_1 doi: 10.1016/j.ceramint.2018.04.084 – ident: e_1_2_7_85_1 doi: 10.1016/j.nanoen.2015.02.028 – ident: e_1_2_7_12_1 doi: 10.1038/nenergy.2017.9 – ident: e_1_2_7_153_1 doi: 10.1002/admi.201700731 – ident: e_1_2_7_2_1 doi: 10.1039/C8EE00154E – ident: e_1_2_7_21_1 doi: 10.1038/nature12340 – ident: e_1_2_7_118_1 doi: 10.1021/acsami.5b10830 – ident: e_1_2_7_106_1 doi: 10.1038/nature14133 – volume: 5 year: 2015 ident: e_1_2_7_117_1 publication-title: Adv. Energy Mater. – ident: e_1_2_7_42_1 doi: 10.1002/adma.201502969 – ident: e_1_2_7_104_1 doi: 10.1126/science.aaf8060 – ident: e_1_2_7_24_1 doi: 10.1021/acsphotonics.5b00119 – ident: e_1_2_7_41_1 doi: 10.1021/acsenergylett.7b00282 – ident: e_1_2_7_22_1 doi: 10.1038/nature12509 – ident: e_1_2_7_5_1 doi: 10.1038/s41560-017-0016-9 – ident: e_1_2_7_142_1 doi: 10.1021/acs.jpclett.5b02686 – ident: e_1_2_7_75_1 doi: 10.1002/adma.201004301 – ident: e_1_2_7_32_1 doi: 10.1038/s41563-017-0006-0 – ident: e_1_2_7_110_1 doi: 10.1039/C5EE01050K – ident: e_1_2_7_136_1 doi: 10.1038/nphoton.2016.41 – ident: e_1_2_7_14_1 doi: 10.1039/C8EE02469C – ident: e_1_2_7_26_1 doi: 10.1002/aenm.201601128 – ident: e_1_2_7_162_1 doi: 10.1002/aenm.201602121 – ident: e_1_2_7_49_1 doi: 10.1002/adma.201800855 – ident: e_1_2_7_112_1 doi: 10.1021/acs.jpclett.5b01108 – ident: e_1_2_7_123_1 doi: 10.1039/C7RA06365B – ident: e_1_2_7_38_1 doi: 10.1021/acs.jpclett.6b00002 – volume-title: Failure and Degradation Modes in Selected Solar Materials: A Review year: 1989 ident: e_1_2_7_172_1 doi: 10.2172/6977475 – ident: e_1_2_7_76_1 doi: 10.1021/am900446x – ident: e_1_2_7_3_1 doi: 10.1021/ja809598r – ident: e_1_2_7_68_1 doi: 10.1016/j.nanoen.2018.04.036 – ident: e_1_2_7_39_1 doi: 10.1039/C6EE00030D – ident: e_1_2_7_83_1 doi: 10.1039/C4NR06033D – ident: e_1_2_7_139_1 doi: 10.1021/acsami.5b03171 – ident: e_1_2_7_108_1 doi: 10.1002/aenm.201703519 – volume-title: Proc. of the 42nd IEEE Photovoltaic Specialist Conf. year: 2015 ident: e_1_2_7_168_1 – ident: e_1_2_7_105_1 doi: 10.1126/science.aam5655 – ident: e_1_2_7_115_1 doi: 10.1021/acsami.8b01611 – ident: e_1_2_7_164_1 doi: 10.1002/aenm.201700228 – ident: e_1_2_7_144_1 doi: 10.1039/C7NR04069E – ident: e_1_2_7_156_1 doi: 10.1021/acs.jpclett.5b02686 – ident: e_1_2_7_138_1 doi: 10.1002/aenm.201701569 – ident: e_1_2_7_7_1 doi: 10.3390/molecules21040475 – ident: e_1_2_7_60_1 doi: 10.1016/j.solmat.2016.10.035 – ident: e_1_2_7_95_1 doi: 10.1021/acsenergylett.8b01201 – ident: e_1_2_7_82_1 doi: 10.1039/C5NR06177F – ident: e_1_2_7_1_1 doi: 10.1088/1361-6463/aa53d7 – ident: e_1_2_7_134_1 doi: 10.1126/science.aaa5760 – ident: e_1_2_7_31_1 doi: 10.1021/acs.jpclett.5b01666 – ident: e_1_2_7_133_1 doi: 10.1002/adfm.201602094 – ident: e_1_2_7_52_1 doi: 10.1039/C4EE01389A – ident: e_1_2_7_121_1 doi: 10.1039/C7TA01383C – ident: e_1_2_7_135_1 doi: 10.1039/c4ta00379a – ident: e_1_2_7_61_1 doi: 10.1039/C6TA06232F – ident: e_1_2_7_11_1 doi: 10.1038/s41563-018-0115-4 – ident: e_1_2_7_100_1 doi: 10.1002/adma.201703852 – ident: e_1_2_7_113_1 doi: 10.1002/aenm.201602333 – ident: e_1_2_7_120_1 doi: 10.1080/14686996.2016.1176512 – ident: e_1_2_7_171_1 doi: 10.1002/smll.201203142 – ident: e_1_2_7_78_1 doi: 10.1016/j.solmat.2015.05.036 – ident: e_1_2_7_67_1 doi: 10.1002/aenm.201601055 – ident: e_1_2_7_124_1 doi: 10.1039/C6EE01037G – ident: e_1_2_7_29_1 doi: 10.1126/science.aav7911 – ident: e_1_2_7_13_1 doi: 10.1016/j.joule.2018.10.003 – ident: e_1_2_7_70_1 doi: 10.1038/nenergy.2016.177 – ident: e_1_2_7_93_1 doi: 10.1021/acsnano.5b03189 – ident: e_1_2_7_127_1 doi: 10.1021/acsenergylett.7b00187 – ident: e_1_2_7_150_1 doi: 10.1109/JPHOTOV.2013.2270351 – ident: e_1_2_7_147_1 doi: 10.1002/aenm.201501520 – ident: e_1_2_7_30_1 doi: 10.1021/acs.jpclett.5b01426 – ident: e_1_2_7_89_1 doi: 10.1002/aenm.201602599 – ident: e_1_2_7_146_1 doi: 10.1021/acsenergylett.6b00167 – ident: e_1_2_7_137_1 doi: 10.1016/j.solmat.2016.07.010 – ident: e_1_2_7_143_1 doi: 10.1021/acsenergylett.6b00254 – start-page: 2 year: 2018 ident: e_1_2_7_159_1 publication-title: Joule – ident: e_1_2_7_155_1 doi: 10.1039/C7EE02288C – ident: e_1_2_7_54_1 doi: 10.1016/j.nanoen.2016.10.044 – ident: e_1_2_7_66_1 doi: 10.1039/C6TA04790D – ident: e_1_2_7_79_1 doi: 10.1016/j.solmat.2016.07.012 – ident: e_1_2_7_102_1 doi: 10.1126/science.aai9081 – ident: e_1_2_7_33_1 doi: 10.1038/s41467-017-01842-4 – ident: e_1_2_7_114_1 doi: 10.1016/j.solmat.2017.05.071 – ident: e_1_2_7_15_1 doi: 10.1016/j.rser.2018.06.031 – ident: e_1_2_7_64_1 doi: 10.1039/C7SE00383H – ident: e_1_2_7_63_1 doi: 10.1002/admi.201500118 – ident: e_1_2_7_169_1 doi: 10.1126/science.1222453 |
SSID | ssj0009606 |
Score | 2.6527975 |
SecondaryResourceType | review_article |
Snippet | Semitransparent solar cells (ST‐SCs) have received great attention due to their promising application in many areas, such as building integrated photovoltaics... Semitransparent solar cells (ST-SCs) have received great attention due to their promising application in many areas, such as building integrated photovoltaics... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1806474 |
SubjectTerms | Absorptivity Electronic devices Materials science perovskite solar cells Perovskites Photovoltaic cells semitransparent solar cells Solar cells tandem devices transparent electrodes |
Title | Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201806474 https://www.ncbi.nlm.nih.gov/pubmed/31408225 https://www.proquest.com/docview/2342234633 https://www.proquest.com/docview/2272736604 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bb9sgFIfR1KftYZd2l6wXUWnSnmhtwAT3LWobVZNSVb1IfbO4HKRpqT0lzh7214-DEzdZNU3aHi0DxsCBHwf4IOSTz3Xgaggs9yowGTJgVviSBV7iaAG5Tq7syaW6uJNf7ov7tVP8HR-id7ihZaT-Gg3c2PnxIzTU-MQNiokpOUQgKG7YQlV0_ciPQnmeYHuiYKWSekVtzPjxZvTNUemJ1NxUrmnoGb8iZpXpbsfJt6NFa4_cz994jv_zV6_Jy6UupaOuIb0hz6DeJi_WaIU75PoGHr62CYaOJ8haegWz5scc3b_0BmfI9BSm0_kJHc-aBzoxbde4qak9PYPUI9G2oaO1JfO35G58fnt6wZZXMjCHR2iZBiuNLJ3JA1hlM11C0E4pXwTpOPeZiwIvDIWPQjS33nPnNIeQ-TjRlro04h3ZqpsaPhBaQnxUClwQMa4ubG5tocHlJgtRZWQDwlZVUrklrxyvzZhWHWmZV1hWVV9WA_K5D_-9I3X8MeTeqoarpcXOKy5kVEpSCTEgh_3raGu4gGJqaBYxDEe1p1QWk3jftYz-UyLHq7t5MSA81e9f8lCNziaj_unjv0TaJc85Tv6TP2iPbLWzBexHhdTag2QFvwAmWwcH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbxQhFH_RetAetH60rraKiYkn2hlgWMbbpu1m1W5j-pF4mwzwSIzbGbM768G_XmB2pt0aY6JHMsAA7z348YDfA3hrU-WYHCJNrXRUuASp5janjuVhtcBURVf29FROLsXHL1l3mzC8hWn5IXqHW7CMOF8HAw8O6YNr1tDSRuIgX5sUQ3EX7oWw3nFXdXbNIBUAeqTb4xnNpVAdb2PCDtbLr69Lv4HNdewaF5_xI9Bds9s7J9_2l43eNz9vMTr-V7-24OEKmpJRq0uP4Q5WT2DzBmHhUzg7x6uvTeRDD4_IGvIZ5_WPRfAAk_OwSSaHOJst3pPxvL4i07Jp9ZuUlSVHGCcl0tRkdOPU_Blcjo8vDid0FZWBmvCKlirUohS5KVOHWupE5eiUkdJmThjGbGI8xnNDbj0WTbW1zBjF0CXW77WFyku-DRtVXeFzIDn6pJRoHPdlVaZTrTOFJi0T54FGMgDayaQwK8ryEDljVrRky6wIY1X0YzWAd33-7y1Zxx9z7nYiLlZGuygYFx4sCcn5AN70n725hTOUssJ66fOwAPikTHwVO61q9L_iaYjezbIBsCjgv7ShGB1NR33qxb8Ueg33JxfTk-Lkw-mnl_CABV9AdA_twkYzX-KeB0yNfhVN4heYPgsi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BkBA88P1RGGAkJJ68JbbjOrxVK9X46DRtTNpb5I-zhOiSqU154K_HdtqsBSEkeLRydpzznf3zOf4dwBuXK8_kEGnupKfCZ0gNdyX1rIyrBeYqhbKnR_LwTHw8L843bvF3_BB9wC16Rpqvo4NfOr9_RRqqXeINCo1JMRTX4YaQmYp2PT65IpCK-Dyx7fGCllKoNW1jxva3628vS79hzW3omtaeyV3Q6153v5x821u2Zs_--IXQ8X8-6x7cWQFTMuos6T5cw_oB3N6gK3wIJ6d48bVNbOjxCllLjnHefF_E-C85jVtkcoCz2eIdmcybCzLVbWfdRNeOjDFNSaRtyGjjzPwRnE3efzk4pKucDNTGO7RUoRFalFbnHo00QePolZXSFV5YxlxmA8LzQ-4CEs2Nc8xaxdBnLuy0hSo1fww7dVPjUyAlhqKUaD0PdVVhcmMKhTbXmQ8wIxsAXQ9JZVeE5TFvxqzqqJZZFXVV9boawNte_rKj6vij5O56hKuVyy4qxkWASkJyPoDX_ePgbPEERdfYLIMMi3BPyiw08aSzjP5VPI-5u1kxAJbG9y99qEbj6agvPfuXSq_g5vF4Un3-cPTpOdxiMRCQYkO7sNPOl_gioKXWvEwO8ROCygna |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semitransparent+Perovskite+Solar+Cells%3A+From+Materials+and+Devices+to+Applications&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Biao&rft.au=Duan%2C+Linrui&rft.au=Zhao%2C+Ying&rft.au=Luo%2C+Jingshan&rft.date=2020-01-01&rft.eissn=1521-4095&rft.volume=32&rft.issue=3&rft.spage=e1806474&rft_id=info:doi/10.1002%2Fadma.201806474&rft_id=info%3Apmid%2F31408225&rft.externalDocID=31408225 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |