Recent Advances in Design Strategies for Tough and Stretchable Hydrogels
The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research. Numerous research efforts have focused on the design of new hydrogel systems with superior mechanical properties because of their potential applic...
Saved in:
Published in | ChemPlusChem (Weinheim, Germany) Vol. 86; no. 4; pp. 601 - 611 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2192-6506 2192-6506 |
DOI | 10.1002/cplu.202100074 |
Cover
Loading…
Abstract | The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research. Numerous research efforts have focused on the design of new hydrogel systems with superior mechanical properties because of their potential applications in diverse fields. In this Minireview, we consider the most up‐to‐date mechanically strong hydrogels and summarize their design strategies based on the formation of double networks and dual physical crosslinking. Based on the synthetic approaches and different toughening mechanisms, double‐network hydrogels can be further classified into three different categories, namely chemically crosslinked, hybrid physically–chemically crosslinked, and fully physically crosslinked. In addition to the above‐mentioned methods, we also discuss few uniquely designed hydrogels with the intention of guiding the future development of these fascinating materials for superior mechanical performance.
Tough stuff: This Minireview highlights network designs to prepare mechanically tough and stretchable hydrogels. These design strategies are generally focused on the formation of double networks and dual physical crosslinking of various polymeric materials. Double networks can be further detailed into chemically crosslinked, fully physical crosslinked, and hybrid chemically‐physically crosslinked. |
---|---|
AbstractList | The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research. Numerous research efforts have focused on the design of new hydrogel systems with superior mechanical properties because of their potential applications in diverse fields. In this Minireview, we consider the most up-to-date mechanically strong hydrogels and summarize their design strategies based on the formation of double networks and dual physical crosslinking. Based on the synthetic approaches and different toughening mechanisms, double-network hydrogels can be further classified into three different categories, namely chemically crosslinked, hybrid physically-chemically crosslinked, and fully physically crosslinked. In addition to the above-mentioned methods, we also discuss few uniquely designed hydrogels with the intention of guiding the future development of these fascinating materials for superior mechanical performance. The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research. Numerous research efforts have focused on the design of new hydrogel systems with superior mechanical properties because of their potential applications in diverse fields. In this Minireview, we consider the most up‐to‐date mechanically strong hydrogels and summarize their design strategies based on the formation of double networks and dual physical crosslinking. Based on the synthetic approaches and different toughening mechanisms, double‐network hydrogels can be further classified into three different categories, namely chemically crosslinked, hybrid physically–chemically crosslinked, and fully physically crosslinked. In addition to the above‐mentioned methods, we also discuss few uniquely designed hydrogels with the intention of guiding the future development of these fascinating materials for superior mechanical performance. Tough stuff: This Minireview highlights network designs to prepare mechanically tough and stretchable hydrogels. These design strategies are generally focused on the formation of double networks and dual physical crosslinking of various polymeric materials. Double networks can be further detailed into chemically crosslinked, fully physical crosslinked, and hybrid chemically‐physically crosslinked. The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research. Numerous research efforts have focused on the design of new hydrogel systems with superior mechanical properties because of their potential applications in diverse fields. In this Minireview, we consider the most up-to-date mechanically strong hydrogels and summarize their design strategies based on the formation of double networks and dual physical crosslinking. Based on the synthetic approaches and different toughening mechanisms, double-network hydrogels can be further classified into three different categories, namely chemically crosslinked, hybrid physically-chemically crosslinked, and fully physically crosslinked. In addition to the above-mentioned methods, we also discuss few uniquely designed hydrogels with the intention of guiding the future development of these fascinating materials for superior mechanical performance.The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research. Numerous research efforts have focused on the design of new hydrogel systems with superior mechanical properties because of their potential applications in diverse fields. In this Minireview, we consider the most up-to-date mechanically strong hydrogels and summarize their design strategies based on the formation of double networks and dual physical crosslinking. Based on the synthetic approaches and different toughening mechanisms, double-network hydrogels can be further classified into three different categories, namely chemically crosslinked, hybrid physically-chemically crosslinked, and fully physically crosslinked. In addition to the above-mentioned methods, we also discuss few uniquely designed hydrogels with the intention of guiding the future development of these fascinating materials for superior mechanical performance. |
Author | Maiti, Chiranjit Imani, Kusuma Betha Cahaya Yoon, Jinhwan |
Author_xml | – sequence: 1 givenname: Chiranjit surname: Maiti fullname: Maiti, Chiranjit organization: Pusan National University – sequence: 2 givenname: Kusuma Betha Cahaya surname: Imani fullname: Imani, Kusuma Betha Cahaya organization: Pusan National University – sequence: 3 givenname: Jinhwan orcidid: 0000-0003-1638-2704 surname: Yoon fullname: Yoon, Jinhwan email: jinhwan@pusan.ac.kr organization: Pusan National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33830663$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkN1LwzAUxYNMnM69-ih99KUzTfqRPo75MWGg6PYc0vS2i2TpTFpl_70Z21QE8enm3vzOgXPOUM80BhC6iPAowphcy7XuRgQTv-AsPkKnJMpJmCY47f1499HQuVeP4BQnJKMnqE8pozhN6SmaPoME0wbj8l0YCS5QJrgBp2oTvLRWtFArf6waG8ybrl4GwpTbD2jlUhQagummtE0N2p2j40poB8P9HKDF3e18Mg1nj_cPk_EslDHN45AlUOAcFxEjNM1kzqKKQJZhTIExUWCW-DAJy0QRs4pKQSogEnJSZSLHaZHRAbra-a5t89aBa_lKOQlaCwNN5zjxBiRJCSEevdyjXbGCkq-tWgm74Yf0Hoh3gLSNcxYqLlUrWtUYH11pHmG-7Zlve-ZfPXvZ6Jfs4PynIN8JPpSGzT80nzzNFt_aTxlLjj8 |
CitedBy_id | crossref_primary_10_1002_marc_202100579 crossref_primary_10_1016_j_jallcom_2021_161555 crossref_primary_10_1002_admt_202400751 crossref_primary_10_1016_j_eurpolymj_2022_111277 crossref_primary_10_1134_S0965545X2460011X crossref_primary_10_1002_adfm_202213560 crossref_primary_10_1002_adma_202400084 crossref_primary_10_1016_j_cej_2024_158641 crossref_primary_10_3390_ijms25126610 crossref_primary_10_1016_j_cej_2022_140925 crossref_primary_10_1016_j_cej_2025_160728 crossref_primary_10_3390_gels9010020 crossref_primary_10_1016_j_ijbiomac_2024_134065 crossref_primary_10_1002_slct_202204319 crossref_primary_10_1021_acsnano_2c12606 crossref_primary_10_1002_aelm_202300677 crossref_primary_10_1039_D2PY00505K crossref_primary_10_1002_macp_202300211 crossref_primary_10_1039_D4MA00122B crossref_primary_10_1039_D2SM00857B crossref_primary_10_3390_gels8090580 |
Cites_doi | 10.1021/ma021301r 10.1021/acsami.0c11167 10.1039/C9TB02570G 10.1021/acs.macromol.6b02150 10.1002/adma.201707071 10.1021/cm2021142 10.1039/C5TB00123D 10.1038/nature11409 10.1039/C4TB01289E 10.1021/ma200579v 10.1002/pol.20200295 10.1002/adfm.201200809 10.1021/mz4002047 10.1021/mz3006318 10.1002/polb.22293 10.1021/ma201653t 10.1038/s41586-018-0185-0 10.1021/acs.macromol.8b02410 10.1016/j.polymer.2008.01.027 10.1021/acsami.6b00912 10.1021/cr000108x 10.1002/marc.201800400 10.1021/acsami.8b06475 10.1039/C4TB01194E 10.1071/CH11156 10.1002/adma.201503255 10.1021/acsami.0c04013 10.1002/anie.201913574 10.1021/acs.macromol.5b01938 10.1002/adfm.201404357 10.1002/adfm.201800739 10.1002/adma.200304907 10.1021/acs.chemmater.8b03999 10.1021/acsami.7b09614 10.1021/acs.macromol.8b02269 10.1021/acsami.9b18796 10.1021/cr100123h 10.1002/adma.200602533 10.1021/acsami.7b07445 10.1039/C7TB01780D 10.1021/acsami.0c15108 10.1039/C5TB00681C 10.1021/jp044473u 10.1021/acsami.8b20520 10.1002/adma.201600480 10.1039/b924290b 10.1002/adma.201300817 10.1039/C8TB03032D 10.1039/C2SM26918J 10.1126/science.1252389 10.1002/ange.201913574 10.1016/j.polymer.2020.122319 10.1002/adma.201002509 10.1038/nmat3713 10.1021/bm800557r 10.1021/acsami.6b11363 10.1039/C4CC10094H 10.1038/s41578-018-0002-2 10.1021/ma2016248 10.1021/mz5002355 10.1021/acsnano.5b01433 10.1039/C9PY00600A 10.1021/acsami.6b12243 10.1038/natrevmats.2016.71 10.1098/rspa.1967.0160 10.1002/adma.201303349 10.1039/C9PY01021A |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1002/cplu.202100074 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2192-6506 |
EndPage | 611 |
ExternalDocumentID | 33830663 10_1002_cplu_202100074 CPLU202100074 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Basic Science Research Program funderid: 2019R1I1A2A01040856 – fundername: National Research Foundation of Korea – fundername: Engineering Research Center Program funderid: 2018R1A5A1025594 – fundername: Ministry of Science and ICT – fundername: Ministry of Education – fundername: Engineering Research Center Program grantid: 2018R1A5A1025594 – fundername: Basic Science Research Program grantid: 2019R1I1A2A01040856 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3V. 50Y 77Q 8-0 8-1 88I 8AO 8FE 8FG 8FH A00 AAESR AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABJCF ABJNI ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIHN ACIWK ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEAQA AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CZ9 D1I DCZOG DPXWK DRFUL DRSTM DWQXO EBS EJD ESX G-S GNUQQ GODZA HCIFZ HGLYW HZ~ KB. KC. LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2P M7R MEWTI MXFUL MXSTM MY~ O9- P2W PCBAR PDBOC PQQKQ PROAC R.K ROL RX1 SUPJJ TUS WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c4394-85eb090b182367c981f2e77003e88ab085100587ab48f3ca2fe2ce92f7a906b73 |
ISSN | 2192-6506 |
IngestDate | Fri Jul 11 03:31:52 EDT 2025 Thu Apr 03 07:07:42 EDT 2025 Tue Jul 01 03:12:34 EDT 2025 Thu Apr 24 22:57:19 EDT 2025 Wed Jan 22 16:31:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | dual physical crosslinking hydrogels double networks mechanical properties network structures |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4394-85eb090b182367c981f2e77003e88ab085100587ab48f3ca2fe2ce92f7a906b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1638-2704 |
PMID | 33830663 |
PQID | 2510256222 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2510256222 pubmed_primary_33830663 crossref_citationtrail_10_1002_cplu_202100074 crossref_primary_10_1002_cplu_202100074 wiley_primary_10_1002_cplu_202100074_CPLU202100074 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 2021-Apr 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | ChemPlusChem (Weinheim, Germany) |
PublicationTitleAlternate | Chempluschem |
PublicationYear | 2021 |
References | 2017; 5 2001; 101 2013; 25 2013; 2 2019; 52 2019; 11 2019; 10 2020; 17 2020 2020; 59 132 2008; 9 2014; 26 2003; 15 2020; 58 2020; 12 2020; 11 2012; 489 2017; 9 2011; 111 2013; 9 2020; 8 2010; 22 2015; 48 2018; 39 2018; 3 2014; 3 2014; 2 2013; 12 2011; 64 2005; 109 1967; 300 2018; 30 2011; 23 2016; 49 2012; 22 2010; 6 2019; 7 2007; 19 2018; 28 2019; 4 2015; 3 2015; 51 2002; 35 2015; 9 2015; 25 2016; 1 2018; 558 2020; 192 2008; 49 2011; 44 2016; 28 2011; 49 2018; 10 2016; 8 2014; 344 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_55_1 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 Sun Z. (e_1_2_8_4_1) 2020; 17 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 Han L. (e_1_2_8_32_1) e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 Kim D. (e_1_2_8_9_1) 2019; 4 e_1_2_8_52_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 5 start-page: 7683 year: 2017 end-page: 7691 publication-title: J. Mater. Chem. B – volume: 44 start-page: 7775 year: 2011 end-page: 7781 publication-title: Macromolecules – volume: 8 start-page: 8956 year: 2016 end-page: 8966 publication-title: ACS Appl. Mater. Interfaces – volume: 101 start-page: 1869 year: 2001 end-page: 1880 publication-title: Chem. Rev. – volume: 4 year: 2019 publication-title: Adv. Mater. – volume: 64 start-page: 1007 year: 2011 end-page: 1025 publication-title: Aust. J. Chem. – volume: 39 year: 2018 publication-title: Macromol. Rapid Commun. – volume: 26 start-page: 149 year: 2014 end-page: 162 publication-title: Adv. Mater. – volume: 52 start-page: 629 year: 2019 end-page: 638 publication-title: Macromolecules – volume: 9 start-page: 28305 year: 2017 end-page: 28318 publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 4426 year: 2012 end-page: 4432 publication-title: Adv. Funct. Mater. – volume: 44 start-page: 4997 year: 2011 end-page: 5005 publication-title: Macromolecules – volume: 30 start-page: 8062 year: 2018 end-page: 8069 publication-title: Chem. Mater. – volume: 300 start-page: 108 year: 1967 end-page: 119 publication-title: R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. – volume: 52 start-page: 1249 year: 2019 end-page: 1256 publication-title: Macromolecules – volume: 109 start-page: 5638 year: 2005 end-page: 5643 publication-title: J. Phys. Chem. B – volume: 12 start-page: 1577 year: 2020 end-page: 1587 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 137 year: 2013 end-page: 140 publication-title: ACS Macro Lett. – volume: 3 start-page: 84 year: 2018 end-page: 100 publication-title: Nat. Rev. Mater. – volume: 192 year: 2020 publication-title: Polymer – volume: 19 start-page: 1622 year: 2007 end-page: 1626 publication-title: Adv. Mater. – volume: 1 start-page: 16071 year: 2016 publication-title: Nat. Rev. Mater. – volume: 49 start-page: 9637 year: 2016 end-page: 9646 publication-title: Macromolecules – volume: 59 132 start-page: 5611 5660 year: 2020 2020 end-page: 5615 5664 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 35 start-page: 10162 year: 2002 end-page: 10171 publication-title: Macromolecules – volume: 28 start-page: 40 year: 2016 end-page: 49 publication-title: Adv. Mater. – volume: 28 start-page: 4678 year: 2016 end-page: 4683 publication-title: Adv. Mater. – volume: 10 start-page: 3503 year: 2019 end-page: 3513 publication-title: Polym. Chem. – volume: 9 start-page: 4686 year: 2015 end-page: 4697 publication-title: ACS Nano – volume: 6 start-page: 2583 year: 2010 end-page: 2590 publication-title: Soft Matter – volume: 12 start-page: 51969 year: 2020 end-page: 51977 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 132 year: 2013 end-page: 137 publication-title: Soft Matter – volume: 2 start-page: 518 year: 2013 end-page: 521 publication-title: ACS Macro Lett. – volume: 12 start-page: 932 year: 2013 end-page: 937 publication-title: Nat. Mater. – volume: 58 start-page: 2062 year: 2020 end-page: 2073 publication-title: J. Polym. Sci. – volume: 12 start-page: 40786 year: 2020 end-page: 40793 publication-title: ACS Appl. Mater. Interfaces – volume: 489 start-page: 133 year: 2012 end-page: 136 publication-title: Nature – volume: 2 start-page: 6708 year: 2014 end-page: 6713 publication-title: J. Mater. Chem. B – volume: 10 start-page: 20897 year: 2018 end-page: 20909 publication-title: ACS Appl. Mater. Interfaces – start-page: 2017 publication-title: Asia Mat. – volume: 12 start-page: 20965 year: 2020 end-page: 20972 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 520 year: 2014 end-page: 523 publication-title: ACS Macro Lett. – volume: 8 start-page: 34034 year: 2016 end-page: 34044 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 5426 year: 2015 end-page: 5435 publication-title: J. Mater. Chem. B – volume: 49 start-page: 1993 year: 2008 end-page: 2007 publication-title: Polymer – volume: 44 start-page: 8916 year: 2011 end-page: 8924 publication-title: Macromolecules – volume: 111 start-page: 4453 year: 2011 end-page: 4474 publication-title: Chem. Rev. – volume: 2 start-page: 7631 year: 2014 end-page: 7638 publication-title: J. Mater. Chem. B – volume: 558 start-page: 274 year: 2018 end-page: 279 publication-title: Nature – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 17 start-page: 373 year: 2020 end-page: 391 publication-title: Mol. Pharmaceutics – volume: 11 start-page: 184 year: 2020 end-page: 219 publication-title: Polym. Chem. – volume: 8 start-page: 29749 year: 2016 end-page: 29758 publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 8003 year: 2015 end-page: 8010 publication-title: Macromolecules – volume: 51 start-page: 8512 year: 2015 end-page: 8515 publication-title: Chem. Commun. – volume: 49 start-page: 1246 year: 2011 end-page: 1254 publication-title: J. Polym. Sci. Part B – volume: 8 start-page: 3437 year: 2020 end-page: 3459 publication-title: J. Mater. Chem. B – volume: 3 start-page: 3654 year: 2015 end-page: 3676 publication-title: J. Mater. Chem. B – volume: 22 start-page: 5110 year: 2010 end-page: 5114 publication-title: Adv. Mater. – volume: 9 start-page: 2784 year: 2008 end-page: 2791 publication-title: Biomacromolecules – volume: 23 start-page: 5200 year: 2011 end-page: 5207 publication-title: Chem. Mater. – volume: 9 start-page: 26429 year: 2017 end-page: 26437 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 5441 year: 2019 end-page: 5454 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 1155 year: 2003 end-page: 1158 publication-title: Adv. Mater. – volume: 344 start-page: 161 year: 2014 end-page: 162 publication-title: Science – volume: 25 start-page: 1598 year: 2015 end-page: 1607 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 676 year: 2019 end-page: 683 publication-title: J. Mater. Chem. B – volume: 25 start-page: 4171 year: 2013 end-page: 4176 publication-title: Adv. Mater. – ident: e_1_2_8_20_1 doi: 10.1021/ma021301r – ident: e_1_2_8_68_1 doi: 10.1021/acsami.0c11167 – ident: e_1_2_8_10_1 doi: 10.1039/C9TB02570G – ident: e_1_2_8_22_1 doi: 10.1021/acs.macromol.6b02150 – ident: e_1_2_8_50_1 doi: 10.1002/adma.201707071 – ident: e_1_2_8_46_1 doi: 10.1021/cm2021142 – ident: e_1_2_8_17_1 doi: 10.1039/C5TB00123D – ident: e_1_2_8_47_1 doi: 10.1038/nature11409 – ident: e_1_2_8_53_1 doi: 10.1039/C4TB01289E – ident: e_1_2_8_58_1 doi: 10.1021/ma200579v – ident: e_1_2_8_49_1 doi: 10.1002/pol.20200295 – ident: e_1_2_8_36_1 doi: 10.1002/adfm.201200809 – ident: e_1_2_8_37_1 doi: 10.1021/mz4002047 – ident: e_1_2_8_34_1 doi: 10.1021/mz3006318 – ident: e_1_2_8_38_1 doi: 10.1002/polb.22293 – ident: e_1_2_8_44_1 doi: 10.1021/ma201653t – ident: e_1_2_8_13_1 doi: 10.1038/s41586-018-0185-0 – ident: e_1_2_8_27_1 doi: 10.1021/acs.macromol.8b02410 – ident: e_1_2_8_2_1 doi: 10.1016/j.polymer.2008.01.027 – ident: e_1_2_8_23_1 doi: 10.1021/acsami.6b00912 – ident: e_1_2_8_7_1 doi: 10.1021/cr000108x – ident: e_1_2_8_66_1 doi: 10.1002/marc.201800400 – ident: e_1_2_8_71_1 doi: 10.1021/acsami.8b06475 – ident: e_1_2_8_55_1 doi: 10.1039/C4TB01194E – ident: e_1_2_8_15_1 doi: 10.1071/CH11156 – ident: e_1_2_8_21_1 doi: 10.1002/adma.201503255 – ident: e_1_2_8_8_1 doi: 10.1021/acsami.0c04013 – ident: e_1_2_8_30_1 doi: 10.1002/anie.201913574 – ident: e_1_2_8_41_1 doi: 10.1021/acs.macromol.5b01938 – ident: e_1_2_8_57_1 doi: 10.1002/adfm.201404357 – ident: e_1_2_8_65_1 doi: 10.1002/adfm.201800739 – ident: e_1_2_8_35_1 doi: 10.1002/adma.200304907 – ident: e_1_2_8_56_1 doi: 10.1021/acs.chemmater.8b03999 – ident: e_1_2_8_64_1 doi: 10.1002/adma.201707071 – ident: e_1_2_8_67_1 doi: 10.1021/acsami.7b09614 – volume: 4 start-page: 1800739 year: 2019 ident: e_1_2_8_9_1 publication-title: Adv. Mater. – ident: e_1_2_8_54_1 doi: 10.1021/acs.macromol.8b02269 – ident: e_1_2_8_62_1 doi: 10.1021/acsami.9b18796 – ident: e_1_2_8_6_1 doi: 10.1021/cr100123h – ident: e_1_2_8_26_1 doi: 10.1002/adma.200602533 – ident: e_1_2_8_52_1 doi: 10.1021/acsami.7b07445 – ident: e_1_2_8_43_1 doi: 10.1039/C7TB01780D – ident: e_1_2_8_61_1 doi: 10.1021/acsami.0c15108 – ident: e_1_2_8_42_1 doi: 10.1039/C5TB00681C – ident: e_1_2_8_40_1 doi: 10.1021/jp044473u – ident: e_1_2_8_63_1 doi: 10.1021/acsami.8b20520 – ident: e_1_2_8_29_1 doi: 10.1002/adma.201600480 – ident: e_1_2_8_16_1 doi: 10.1039/b924290b – ident: e_1_2_8_39_1 doi: 10.1002/adma.201300817 – ident: e_1_2_8_19_1 doi: 10.1039/C8TB03032D – start-page: 2017 ident: e_1_2_8_32_1 publication-title: Asia Mat. – volume: 17 start-page: 373 year: 2020 ident: e_1_2_8_4_1 publication-title: Mol. Pharmaceutics – ident: e_1_2_8_24_1 doi: 10.1039/C2SM26918J – ident: e_1_2_8_33_1 doi: 10.1126/science.1252389 – ident: e_1_2_8_30_2 doi: 10.1002/ange.201913574 – ident: e_1_2_8_60_1 doi: 10.1016/j.polymer.2020.122319 – ident: e_1_2_8_45_1 doi: 10.1002/adma.201002509 – ident: e_1_2_8_18_1 doi: 10.1038/nmat3713 – ident: e_1_2_8_31_1 doi: 10.1021/bm800557r – ident: e_1_2_8_51_1 doi: 10.1021/acsami.6b11363 – ident: e_1_2_8_70_1 doi: 10.1039/C4CC10094H – ident: e_1_2_8_11_1 doi: 10.1038/s41578-018-0002-2 – ident: e_1_2_8_28_1 doi: 10.1021/ma2016248 – ident: e_1_2_8_48_1 doi: 10.1021/mz5002355 – ident: e_1_2_8_3_1 doi: 10.1021/acsnano.5b01433 – ident: e_1_2_8_25_1 doi: 10.1039/C9PY00600A – ident: e_1_2_8_69_1 doi: 10.1021/acs.macromol.8b02410 – ident: e_1_2_8_59_1 doi: 10.1021/acsami.6b12243 – ident: e_1_2_8_1_1 doi: 10.1038/natrevmats.2016.71 – ident: e_1_2_8_14_1 doi: 10.1098/rspa.1967.0160 – ident: e_1_2_8_12_1 doi: 10.1002/adma.201303349 – ident: e_1_2_8_5_1 doi: 10.1039/C9PY01021A |
SSID | ssj0000605273 |
Score | 2.379776 |
SecondaryResourceType | review_article |
Snippet | The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 601 |
SubjectTerms | double networks dual physical crosslinking hydrogels mechanical properties network structures |
Title | Recent Advances in Design Strategies for Tough and Stretchable Hydrogels |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcplu.202100074 https://www.ncbi.nlm.nih.gov/pubmed/33830663 https://www.proquest.com/docview/2510256222 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67QFeEN90g8lISDxEGYnbJs7jFraVwaYKtWJvkeM6JKhLpy4RlL-e80eclhUxeElbK3Fc3_n8O_v8O4TeDHzRY8wDtyQNp26figyGlKSthEHOmSdoQOV55_OLYDjpn10OLjudHytRS3WVHvCfG8-V_I9UoQzkKk_J_oNkbaVQAN9BvnAFCcP1TjIGzCe38g_1Pr6KbH2vIjKchnRWKLoFZ6xy8agozWohBaUOTA2X08X8q-ZTbukKcnE1mtU38lPCzy-iKHOhcy6fSjNeLldWD85ZoeMB4ryAWe9bYaNoPlzpbFHOxxq6hDlHosqZE7OcLVlravSe_xm84rtRU7MCQfyVwBVlqMDoEReQnqG03lBmLK0hvS5WlxGU2QxMdXoGDrT5vWXcNVksv57VB7IZCv6001izdf_b7GZjDjU_M0nk84l9fgvtEHAwwKTvHB1fjD7b9TkP_DyiAhTsX2k4Pz3ybr0R65jmlqOy7vco4DJ-iB4YjwMfavV5hDqifIzuxU2ivydoqNUIN2qEixJrNcKtGmFQI6zUCIMa4RU1wlaNnqLJyfE4HromwYbL5YFolw5E6kVe6sus9yGPqJ8REYZg6AWlLJVoXKadDFnap1mPM5IJwkVEspBFHgzu3jO0Xc5L8QJhwsD15gDWCQ36ImLUA8cg4tMBl_nsp34XuU0XJdywz8skKLNks1y66K29_1rzrvzxztdNjyfQcXK_i5ViXt8kAN0logcE3EXPtShsXXJlRqLtLiJKNn95SRKPPk3sr907N24P3W9HzEu0XS1q8QpQbJXuoy16crpv1O4X2daW8Q |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Design+Strategies+for+Tough+and+Stretchable+Hydrogels&rft.jtitle=ChemPlusChem+%28Weinheim%2C+Germany%29&rft.au=Maiti%2C+Chiranjit&rft.au=Imani%2C+Kusuma+Betha+Cahaya&rft.au=Yoon%2C+Jinhwan&rft.date=2021-04-01&rft.issn=2192-6506&rft.eissn=2192-6506&rft.volume=86&rft.issue=4&rft.spage=601&rft.epage=611&rft_id=info:doi/10.1002%2Fcplu.202100074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cplu_202100074 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6506&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6506&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6506&client=summon |