Recent Advances in Design Strategies for Tough and Stretchable Hydrogels

The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research. Numerous research efforts have focused on the design of new hydrogel systems with superior mechanical properties because of their potential applic...

Full description

Saved in:
Bibliographic Details
Published inChemPlusChem (Weinheim, Germany) Vol. 86; no. 4; pp. 601 - 611
Main Authors Maiti, Chiranjit, Imani, Kusuma Betha Cahaya, Yoon, Jinhwan
Format Journal Article
LanguageEnglish
Published Germany 01.04.2021
Subjects
Online AccessGet full text
ISSN2192-6506
2192-6506
DOI10.1002/cplu.202100074

Cover

Loading…
Abstract The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research. Numerous research efforts have focused on the design of new hydrogel systems with superior mechanical properties because of their potential applications in diverse fields. In this Minireview, we consider the most up‐to‐date mechanically strong hydrogels and summarize their design strategies based on the formation of double networks and dual physical crosslinking. Based on the synthetic approaches and different toughening mechanisms, double‐network hydrogels can be further classified into three different categories, namely chemically crosslinked, hybrid physically–chemically crosslinked, and fully physically crosslinked. In addition to the above‐mentioned methods, we also discuss few uniquely designed hydrogels with the intention of guiding the future development of these fascinating materials for superior mechanical performance. Tough stuff: This Minireview highlights network designs to prepare mechanically tough and stretchable hydrogels. These design strategies are generally focused on the formation of double networks and dual physical crosslinking of various polymeric materials. Double networks can be further detailed into chemically crosslinked, fully physical crosslinked, and hybrid chemically‐physically crosslinked.
AbstractList The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research. Numerous research efforts have focused on the design of new hydrogel systems with superior mechanical properties because of their potential applications in diverse fields. In this Minireview, we consider the most up-to-date mechanically strong hydrogels and summarize their design strategies based on the formation of double networks and dual physical crosslinking. Based on the synthetic approaches and different toughening mechanisms, double-network hydrogels can be further classified into three different categories, namely chemically crosslinked, hybrid physically-chemically crosslinked, and fully physically crosslinked. In addition to the above-mentioned methods, we also discuss few uniquely designed hydrogels with the intention of guiding the future development of these fascinating materials for superior mechanical performance.
The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research. Numerous research efforts have focused on the design of new hydrogel systems with superior mechanical properties because of their potential applications in diverse fields. In this Minireview, we consider the most up‐to‐date mechanically strong hydrogels and summarize their design strategies based on the formation of double networks and dual physical crosslinking. Based on the synthetic approaches and different toughening mechanisms, double‐network hydrogels can be further classified into three different categories, namely chemically crosslinked, hybrid physically–chemically crosslinked, and fully physically crosslinked. In addition to the above‐mentioned methods, we also discuss few uniquely designed hydrogels with the intention of guiding the future development of these fascinating materials for superior mechanical performance. Tough stuff: This Minireview highlights network designs to prepare mechanically tough and stretchable hydrogels. These design strategies are generally focused on the formation of double networks and dual physical crosslinking of various polymeric materials. Double networks can be further detailed into chemically crosslinked, fully physical crosslinked, and hybrid chemically‐physically crosslinked.
The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research. Numerous research efforts have focused on the design of new hydrogel systems with superior mechanical properties because of their potential applications in diverse fields. In this Minireview, we consider the most up-to-date mechanically strong hydrogels and summarize their design strategies based on the formation of double networks and dual physical crosslinking. Based on the synthetic approaches and different toughening mechanisms, double-network hydrogels can be further classified into three different categories, namely chemically crosslinked, hybrid physically-chemically crosslinked, and fully physically crosslinked. In addition to the above-mentioned methods, we also discuss few uniquely designed hydrogels with the intention of guiding the future development of these fascinating materials for superior mechanical performance.The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research. Numerous research efforts have focused on the design of new hydrogel systems with superior mechanical properties because of their potential applications in diverse fields. In this Minireview, we consider the most up-to-date mechanically strong hydrogels and summarize their design strategies based on the formation of double networks and dual physical crosslinking. Based on the synthetic approaches and different toughening mechanisms, double-network hydrogels can be further classified into three different categories, namely chemically crosslinked, hybrid physically-chemically crosslinked, and fully physically crosslinked. In addition to the above-mentioned methods, we also discuss few uniquely designed hydrogels with the intention of guiding the future development of these fascinating materials for superior mechanical performance.
Author Maiti, Chiranjit
Imani, Kusuma Betha Cahaya
Yoon, Jinhwan
Author_xml – sequence: 1
  givenname: Chiranjit
  surname: Maiti
  fullname: Maiti, Chiranjit
  organization: Pusan National University
– sequence: 2
  givenname: Kusuma Betha Cahaya
  surname: Imani
  fullname: Imani, Kusuma Betha Cahaya
  organization: Pusan National University
– sequence: 3
  givenname: Jinhwan
  orcidid: 0000-0003-1638-2704
  surname: Yoon
  fullname: Yoon, Jinhwan
  email: jinhwan@pusan.ac.kr
  organization: Pusan National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33830663$$D View this record in MEDLINE/PubMed
BookMark eNqFkN1LwzAUxYNMnM69-ih99KUzTfqRPo75MWGg6PYc0vS2i2TpTFpl_70Z21QE8enm3vzOgXPOUM80BhC6iPAowphcy7XuRgQTv-AsPkKnJMpJmCY47f1499HQuVeP4BQnJKMnqE8pozhN6SmaPoME0wbj8l0YCS5QJrgBp2oTvLRWtFArf6waG8ybrl4GwpTbD2jlUhQagummtE0N2p2j40poB8P9HKDF3e18Mg1nj_cPk_EslDHN45AlUOAcFxEjNM1kzqKKQJZhTIExUWCW-DAJy0QRs4pKQSogEnJSZSLHaZHRAbra-a5t89aBa_lKOQlaCwNN5zjxBiRJCSEevdyjXbGCkq-tWgm74Yf0Hoh3gLSNcxYqLlUrWtUYH11pHmG-7Zlve-ZfPXvZ6Jfs4PynIN8JPpSGzT80nzzNFt_aTxlLjj8
CitedBy_id crossref_primary_10_1002_marc_202100579
crossref_primary_10_1016_j_jallcom_2021_161555
crossref_primary_10_1002_admt_202400751
crossref_primary_10_1016_j_eurpolymj_2022_111277
crossref_primary_10_1134_S0965545X2460011X
crossref_primary_10_1002_adfm_202213560
crossref_primary_10_1002_adma_202400084
crossref_primary_10_1016_j_cej_2024_158641
crossref_primary_10_3390_ijms25126610
crossref_primary_10_1016_j_cej_2022_140925
crossref_primary_10_1016_j_cej_2025_160728
crossref_primary_10_3390_gels9010020
crossref_primary_10_1016_j_ijbiomac_2024_134065
crossref_primary_10_1002_slct_202204319
crossref_primary_10_1021_acsnano_2c12606
crossref_primary_10_1002_aelm_202300677
crossref_primary_10_1039_D2PY00505K
crossref_primary_10_1002_macp_202300211
crossref_primary_10_1039_D4MA00122B
crossref_primary_10_1039_D2SM00857B
crossref_primary_10_3390_gels8090580
Cites_doi 10.1021/ma021301r
10.1021/acsami.0c11167
10.1039/C9TB02570G
10.1021/acs.macromol.6b02150
10.1002/adma.201707071
10.1021/cm2021142
10.1039/C5TB00123D
10.1038/nature11409
10.1039/C4TB01289E
10.1021/ma200579v
10.1002/pol.20200295
10.1002/adfm.201200809
10.1021/mz4002047
10.1021/mz3006318
10.1002/polb.22293
10.1021/ma201653t
10.1038/s41586-018-0185-0
10.1021/acs.macromol.8b02410
10.1016/j.polymer.2008.01.027
10.1021/acsami.6b00912
10.1021/cr000108x
10.1002/marc.201800400
10.1021/acsami.8b06475
10.1039/C4TB01194E
10.1071/CH11156
10.1002/adma.201503255
10.1021/acsami.0c04013
10.1002/anie.201913574
10.1021/acs.macromol.5b01938
10.1002/adfm.201404357
10.1002/adfm.201800739
10.1002/adma.200304907
10.1021/acs.chemmater.8b03999
10.1021/acsami.7b09614
10.1021/acs.macromol.8b02269
10.1021/acsami.9b18796
10.1021/cr100123h
10.1002/adma.200602533
10.1021/acsami.7b07445
10.1039/C7TB01780D
10.1021/acsami.0c15108
10.1039/C5TB00681C
10.1021/jp044473u
10.1021/acsami.8b20520
10.1002/adma.201600480
10.1039/b924290b
10.1002/adma.201300817
10.1039/C8TB03032D
10.1039/C2SM26918J
10.1126/science.1252389
10.1002/ange.201913574
10.1016/j.polymer.2020.122319
10.1002/adma.201002509
10.1038/nmat3713
10.1021/bm800557r
10.1021/acsami.6b11363
10.1039/C4CC10094H
10.1038/s41578-018-0002-2
10.1021/ma2016248
10.1021/mz5002355
10.1021/acsnano.5b01433
10.1039/C9PY00600A
10.1021/acsami.6b12243
10.1038/natrevmats.2016.71
10.1098/rspa.1967.0160
10.1002/adma.201303349
10.1039/C9PY01021A
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1002/cplu.202100074
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2192-6506
EndPage 611
ExternalDocumentID 33830663
10_1002_cplu_202100074
CPLU202100074
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Basic Science Research Program
  funderid: 2019R1I1A2A01040856
– fundername: National Research Foundation of Korea
– fundername: Engineering Research Center Program
  funderid: 2018R1A5A1025594
– fundername: Ministry of Science and ICT
– fundername: Ministry of Education
– fundername: Engineering Research Center Program
  grantid: 2018R1A5A1025594
– fundername: Basic Science Research Program
  grantid: 2019R1I1A2A01040856
GroupedDBID 05W
0R~
1OC
31~
33P
3V.
50Y
77Q
8-0
8-1
88I
8AO
8FE
8FG
8FH
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJCF
ABJNI
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIHN
ACIWK
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEAQA
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CZ9
D1I
DCZOG
DPXWK
DRFUL
DRSTM
DWQXO
EBS
EJD
ESX
G-S
GNUQQ
GODZA
HCIFZ
HGLYW
HZ~
KB.
KC.
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2P
M7R
MEWTI
MXFUL
MXSTM
MY~
O9-
P2W
PCBAR
PDBOC
PQQKQ
PROAC
R.K
ROL
RX1
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c4394-85eb090b182367c981f2e77003e88ab085100587ab48f3ca2fe2ce92f7a906b73
ISSN 2192-6506
IngestDate Fri Jul 11 03:31:52 EDT 2025
Thu Apr 03 07:07:42 EDT 2025
Tue Jul 01 03:12:34 EDT 2025
Thu Apr 24 22:57:19 EDT 2025
Wed Jan 22 16:31:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords dual physical crosslinking
hydrogels
double networks
mechanical properties
network structures
Language English
License 2021 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4394-85eb090b182367c981f2e77003e88ab085100587ab48f3ca2fe2ce92f7a906b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1638-2704
PMID 33830663
PQID 2510256222
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2510256222
pubmed_primary_33830663
crossref_citationtrail_10_1002_cplu_202100074
crossref_primary_10_1002_cplu_202100074
wiley_primary_10_1002_cplu_202100074_CPLU202100074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
2021-Apr
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle ChemPlusChem (Weinheim, Germany)
PublicationTitleAlternate Chempluschem
PublicationYear 2021
References 2017; 5
2001; 101
2013; 25
2013; 2
2019; 52
2019; 11
2019; 10
2020; 17
2020 2020; 59 132
2008; 9
2014; 26
2003; 15
2020; 58
2020; 12
2020; 11
2012; 489
2017; 9
2011; 111
2013; 9
2020; 8
2010; 22
2015; 48
2018; 39
2018; 3
2014; 3
2014; 2
2013; 12
2011; 64
2005; 109
1967; 300
2018; 30
2011; 23
2016; 49
2012; 22
2010; 6
2019; 7
2007; 19
2018; 28
2019; 4
2015; 3
2015; 51
2002; 35
2015; 9
2015; 25
2016; 1
2018; 558
2020; 192
2008; 49
2011; 44
2016; 28
2011; 49
2018; 10
2016; 8
2014; 344
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_55_1
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
Sun Z. (e_1_2_8_4_1) 2020; 17
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
Han L. (e_1_2_8_32_1)
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
Kim D. (e_1_2_8_9_1) 2019; 4
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 5
  start-page: 7683
  year: 2017
  end-page: 7691
  publication-title: J. Mater. Chem. B
– volume: 44
  start-page: 7775
  year: 2011
  end-page: 7781
  publication-title: Macromolecules
– volume: 8
  start-page: 8956
  year: 2016
  end-page: 8966
  publication-title: ACS Appl. Mater. Interfaces
– volume: 101
  start-page: 1869
  year: 2001
  end-page: 1880
  publication-title: Chem. Rev.
– volume: 4
  year: 2019
  publication-title: Adv. Mater.
– volume: 64
  start-page: 1007
  year: 2011
  end-page: 1025
  publication-title: Aust. J. Chem.
– volume: 39
  year: 2018
  publication-title: Macromol. Rapid Commun.
– volume: 26
  start-page: 149
  year: 2014
  end-page: 162
  publication-title: Adv. Mater.
– volume: 52
  start-page: 629
  year: 2019
  end-page: 638
  publication-title: Macromolecules
– volume: 9
  start-page: 28305
  year: 2017
  end-page: 28318
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 4426
  year: 2012
  end-page: 4432
  publication-title: Adv. Funct. Mater.
– volume: 44
  start-page: 4997
  year: 2011
  end-page: 5005
  publication-title: Macromolecules
– volume: 30
  start-page: 8062
  year: 2018
  end-page: 8069
  publication-title: Chem. Mater.
– volume: 300
  start-page: 108
  year: 1967
  end-page: 119
  publication-title: R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.
– volume: 52
  start-page: 1249
  year: 2019
  end-page: 1256
  publication-title: Macromolecules
– volume: 109
  start-page: 5638
  year: 2005
  end-page: 5643
  publication-title: J. Phys. Chem. B
– volume: 12
  start-page: 1577
  year: 2020
  end-page: 1587
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 137
  year: 2013
  end-page: 140
  publication-title: ACS Macro Lett.
– volume: 3
  start-page: 84
  year: 2018
  end-page: 100
  publication-title: Nat. Rev. Mater.
– volume: 192
  year: 2020
  publication-title: Polymer
– volume: 19
  start-page: 1622
  year: 2007
  end-page: 1626
  publication-title: Adv. Mater.
– volume: 1
  start-page: 16071
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 49
  start-page: 9637
  year: 2016
  end-page: 9646
  publication-title: Macromolecules
– volume: 59 132
  start-page: 5611 5660
  year: 2020 2020
  end-page: 5615 5664
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 35
  start-page: 10162
  year: 2002
  end-page: 10171
  publication-title: Macromolecules
– volume: 28
  start-page: 40
  year: 2016
  end-page: 49
  publication-title: Adv. Mater.
– volume: 28
  start-page: 4678
  year: 2016
  end-page: 4683
  publication-title: Adv. Mater.
– volume: 10
  start-page: 3503
  year: 2019
  end-page: 3513
  publication-title: Polym. Chem.
– volume: 9
  start-page: 4686
  year: 2015
  end-page: 4697
  publication-title: ACS Nano
– volume: 6
  start-page: 2583
  year: 2010
  end-page: 2590
  publication-title: Soft Matter
– volume: 12
  start-page: 51969
  year: 2020
  end-page: 51977
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 132
  year: 2013
  end-page: 137
  publication-title: Soft Matter
– volume: 2
  start-page: 518
  year: 2013
  end-page: 521
  publication-title: ACS Macro Lett.
– volume: 12
  start-page: 932
  year: 2013
  end-page: 937
  publication-title: Nat. Mater.
– volume: 58
  start-page: 2062
  year: 2020
  end-page: 2073
  publication-title: J. Polym. Sci.
– volume: 12
  start-page: 40786
  year: 2020
  end-page: 40793
  publication-title: ACS Appl. Mater. Interfaces
– volume: 489
  start-page: 133
  year: 2012
  end-page: 136
  publication-title: Nature
– volume: 2
  start-page: 6708
  year: 2014
  end-page: 6713
  publication-title: J. Mater. Chem. B
– volume: 10
  start-page: 20897
  year: 2018
  end-page: 20909
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 2017
  publication-title: Asia Mat.
– volume: 12
  start-page: 20965
  year: 2020
  end-page: 20972
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 520
  year: 2014
  end-page: 523
  publication-title: ACS Macro Lett.
– volume: 8
  start-page: 34034
  year: 2016
  end-page: 34044
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 5426
  year: 2015
  end-page: 5435
  publication-title: J. Mater. Chem. B
– volume: 49
  start-page: 1993
  year: 2008
  end-page: 2007
  publication-title: Polymer
– volume: 44
  start-page: 8916
  year: 2011
  end-page: 8924
  publication-title: Macromolecules
– volume: 111
  start-page: 4453
  year: 2011
  end-page: 4474
  publication-title: Chem. Rev.
– volume: 2
  start-page: 7631
  year: 2014
  end-page: 7638
  publication-title: J. Mater. Chem. B
– volume: 558
  start-page: 274
  year: 2018
  end-page: 279
  publication-title: Nature
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 17
  start-page: 373
  year: 2020
  end-page: 391
  publication-title: Mol. Pharmaceutics
– volume: 11
  start-page: 184
  year: 2020
  end-page: 219
  publication-title: Polym. Chem.
– volume: 8
  start-page: 29749
  year: 2016
  end-page: 29758
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 8003
  year: 2015
  end-page: 8010
  publication-title: Macromolecules
– volume: 51
  start-page: 8512
  year: 2015
  end-page: 8515
  publication-title: Chem. Commun.
– volume: 49
  start-page: 1246
  year: 2011
  end-page: 1254
  publication-title: J. Polym. Sci. Part B
– volume: 8
  start-page: 3437
  year: 2020
  end-page: 3459
  publication-title: J. Mater. Chem. B
– volume: 3
  start-page: 3654
  year: 2015
  end-page: 3676
  publication-title: J. Mater. Chem. B
– volume: 22
  start-page: 5110
  year: 2010
  end-page: 5114
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2784
  year: 2008
  end-page: 2791
  publication-title: Biomacromolecules
– volume: 23
  start-page: 5200
  year: 2011
  end-page: 5207
  publication-title: Chem. Mater.
– volume: 9
  start-page: 26429
  year: 2017
  end-page: 26437
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 5441
  year: 2019
  end-page: 5454
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 1155
  year: 2003
  end-page: 1158
  publication-title: Adv. Mater.
– volume: 344
  start-page: 161
  year: 2014
  end-page: 162
  publication-title: Science
– volume: 25
  start-page: 1598
  year: 2015
  end-page: 1607
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 676
  year: 2019
  end-page: 683
  publication-title: J. Mater. Chem. B
– volume: 25
  start-page: 4171
  year: 2013
  end-page: 4176
  publication-title: Adv. Mater.
– ident: e_1_2_8_20_1
  doi: 10.1021/ma021301r
– ident: e_1_2_8_68_1
  doi: 10.1021/acsami.0c11167
– ident: e_1_2_8_10_1
  doi: 10.1039/C9TB02570G
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.macromol.6b02150
– ident: e_1_2_8_50_1
  doi: 10.1002/adma.201707071
– ident: e_1_2_8_46_1
  doi: 10.1021/cm2021142
– ident: e_1_2_8_17_1
  doi: 10.1039/C5TB00123D
– ident: e_1_2_8_47_1
  doi: 10.1038/nature11409
– ident: e_1_2_8_53_1
  doi: 10.1039/C4TB01289E
– ident: e_1_2_8_58_1
  doi: 10.1021/ma200579v
– ident: e_1_2_8_49_1
  doi: 10.1002/pol.20200295
– ident: e_1_2_8_36_1
  doi: 10.1002/adfm.201200809
– ident: e_1_2_8_37_1
  doi: 10.1021/mz4002047
– ident: e_1_2_8_34_1
  doi: 10.1021/mz3006318
– ident: e_1_2_8_38_1
  doi: 10.1002/polb.22293
– ident: e_1_2_8_44_1
  doi: 10.1021/ma201653t
– ident: e_1_2_8_13_1
  doi: 10.1038/s41586-018-0185-0
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.macromol.8b02410
– ident: e_1_2_8_2_1
  doi: 10.1016/j.polymer.2008.01.027
– ident: e_1_2_8_23_1
  doi: 10.1021/acsami.6b00912
– ident: e_1_2_8_7_1
  doi: 10.1021/cr000108x
– ident: e_1_2_8_66_1
  doi: 10.1002/marc.201800400
– ident: e_1_2_8_71_1
  doi: 10.1021/acsami.8b06475
– ident: e_1_2_8_55_1
  doi: 10.1039/C4TB01194E
– ident: e_1_2_8_15_1
  doi: 10.1071/CH11156
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.201503255
– ident: e_1_2_8_8_1
  doi: 10.1021/acsami.0c04013
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.201913574
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.macromol.5b01938
– ident: e_1_2_8_57_1
  doi: 10.1002/adfm.201404357
– ident: e_1_2_8_65_1
  doi: 10.1002/adfm.201800739
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.200304907
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.chemmater.8b03999
– ident: e_1_2_8_64_1
  doi: 10.1002/adma.201707071
– ident: e_1_2_8_67_1
  doi: 10.1021/acsami.7b09614
– volume: 4
  start-page: 1800739
  year: 2019
  ident: e_1_2_8_9_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_54_1
  doi: 10.1021/acs.macromol.8b02269
– ident: e_1_2_8_62_1
  doi: 10.1021/acsami.9b18796
– ident: e_1_2_8_6_1
  doi: 10.1021/cr100123h
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.200602533
– ident: e_1_2_8_52_1
  doi: 10.1021/acsami.7b07445
– ident: e_1_2_8_43_1
  doi: 10.1039/C7TB01780D
– ident: e_1_2_8_61_1
  doi: 10.1021/acsami.0c15108
– ident: e_1_2_8_42_1
  doi: 10.1039/C5TB00681C
– ident: e_1_2_8_40_1
  doi: 10.1021/jp044473u
– ident: e_1_2_8_63_1
  doi: 10.1021/acsami.8b20520
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.201600480
– ident: e_1_2_8_16_1
  doi: 10.1039/b924290b
– ident: e_1_2_8_39_1
  doi: 10.1002/adma.201300817
– ident: e_1_2_8_19_1
  doi: 10.1039/C8TB03032D
– start-page: 2017
  ident: e_1_2_8_32_1
  publication-title: Asia Mat.
– volume: 17
  start-page: 373
  year: 2020
  ident: e_1_2_8_4_1
  publication-title: Mol. Pharmaceutics
– ident: e_1_2_8_24_1
  doi: 10.1039/C2SM26918J
– ident: e_1_2_8_33_1
  doi: 10.1126/science.1252389
– ident: e_1_2_8_30_2
  doi: 10.1002/ange.201913574
– ident: e_1_2_8_60_1
  doi: 10.1016/j.polymer.2020.122319
– ident: e_1_2_8_45_1
  doi: 10.1002/adma.201002509
– ident: e_1_2_8_18_1
  doi: 10.1038/nmat3713
– ident: e_1_2_8_31_1
  doi: 10.1021/bm800557r
– ident: e_1_2_8_51_1
  doi: 10.1021/acsami.6b11363
– ident: e_1_2_8_70_1
  doi: 10.1039/C4CC10094H
– ident: e_1_2_8_11_1
  doi: 10.1038/s41578-018-0002-2
– ident: e_1_2_8_28_1
  doi: 10.1021/ma2016248
– ident: e_1_2_8_48_1
  doi: 10.1021/mz5002355
– ident: e_1_2_8_3_1
  doi: 10.1021/acsnano.5b01433
– ident: e_1_2_8_25_1
  doi: 10.1039/C9PY00600A
– ident: e_1_2_8_69_1
  doi: 10.1021/acs.macromol.8b02410
– ident: e_1_2_8_59_1
  doi: 10.1021/acsami.6b12243
– ident: e_1_2_8_1_1
  doi: 10.1038/natrevmats.2016.71
– ident: e_1_2_8_14_1
  doi: 10.1098/rspa.1967.0160
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201303349
– ident: e_1_2_8_5_1
  doi: 10.1039/C9PY01021A
SSID ssj0000605273
Score 2.379776
SecondaryResourceType review_article
Snippet The development of multifunctional hydrogels with excellent stretchability and toughness is one of the most fascinating subjects in soft matter research....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 601
SubjectTerms double networks
dual physical crosslinking
hydrogels
mechanical properties
network structures
Title Recent Advances in Design Strategies for Tough and Stretchable Hydrogels
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcplu.202100074
https://www.ncbi.nlm.nih.gov/pubmed/33830663
https://www.proquest.com/docview/2510256222
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67QFeEN90g8lISDxEGYnbJs7jFraVwaYKtWJvkeM6JKhLpy4RlL-e80eclhUxeElbK3Fc3_n8O_v8O4TeDHzRY8wDtyQNp26figyGlKSthEHOmSdoQOV55_OLYDjpn10OLjudHytRS3WVHvCfG8-V_I9UoQzkKk_J_oNkbaVQAN9BvnAFCcP1TjIGzCe38g_1Pr6KbH2vIjKchnRWKLoFZ6xy8agozWohBaUOTA2X08X8q-ZTbukKcnE1mtU38lPCzy-iKHOhcy6fSjNeLldWD85ZoeMB4ryAWe9bYaNoPlzpbFHOxxq6hDlHosqZE7OcLVlravSe_xm84rtRU7MCQfyVwBVlqMDoEReQnqG03lBmLK0hvS5WlxGU2QxMdXoGDrT5vWXcNVksv57VB7IZCv6001izdf_b7GZjDjU_M0nk84l9fgvtEHAwwKTvHB1fjD7b9TkP_DyiAhTsX2k4Pz3ybr0R65jmlqOy7vco4DJ-iB4YjwMfavV5hDqifIzuxU2ivydoqNUIN2qEixJrNcKtGmFQI6zUCIMa4RU1wlaNnqLJyfE4HromwYbL5YFolw5E6kVe6sus9yGPqJ8REYZg6AWlLJVoXKadDFnap1mPM5IJwkVEspBFHgzu3jO0Xc5L8QJhwsD15gDWCQ36ImLUA8cg4tMBl_nsp34XuU0XJdywz8skKLNks1y66K29_1rzrvzxztdNjyfQcXK_i5ViXt8kAN0logcE3EXPtShsXXJlRqLtLiJKNn95SRKPPk3sr907N24P3W9HzEu0XS1q8QpQbJXuoy16crpv1O4X2daW8Q
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Design+Strategies+for+Tough+and+Stretchable+Hydrogels&rft.jtitle=ChemPlusChem+%28Weinheim%2C+Germany%29&rft.au=Maiti%2C+Chiranjit&rft.au=Imani%2C+Kusuma+Betha+Cahaya&rft.au=Yoon%2C+Jinhwan&rft.date=2021-04-01&rft.issn=2192-6506&rft.eissn=2192-6506&rft.volume=86&rft.issue=4&rft.spage=601&rft.epage=611&rft_id=info:doi/10.1002%2Fcplu.202100074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cplu_202100074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6506&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6506&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6506&client=summon