The role of vascular function on exercise capacity in health and disease

Three sentinel parameters of aerobic performance are the maximal oxygen uptake (V̇O2max), critical power (CP) and speed of the V̇O2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal musc...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 599; no. 3; pp. 889 - 910
Main Authors Poole, David C., Behnke, Brad J., Musch, Timothy I.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.02.2021
Subjects
Online AccessGet full text
ISSN0022-3751
1469-7793
1469-7793
DOI10.1113/JP278931

Cover

Abstract Three sentinel parameters of aerobic performance are the maximal oxygen uptake (V̇O2max), critical power (CP) and speed of the V̇O2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal muscle mitochondria. Fast V̇O2 kinetics demands that the cardiovascular system distributes exercise‐induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V̇O2. Chronic disease and ageing create an O2 delivery (i.e. blood flow × arterial [O2], Q̇O2) dependency that slows V̇O2 kinetics, decreasing CP and V̇O2max, increasing the O2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical ), this brief review examines the training‐induced plasticity of key elements in the O2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q̇O2 and thus defend microvascular O2 partial pressures and capillary blood–myocyte O2 diffusion across a ∼100‐fold range of muscle V̇O2 values. Recent discoveries, especially in the muscle microcirculation and Q̇O2‐to‐V̇O2 heterogeneity, are integrated with the O2 transport pathway to appreciate how local and systemic vascular control helps defend V̇O2 kinetics and determine CP and V̇O2max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented. figure legend Three sentinel parameters of aerobic performance are the O2 uptake (V̇O2) kinetics following the onset of exercise, critical power (CP) or critical speed (CS) (asymptote of the power/speed–time relation for high intensity exercise) and the maximal O2 uptake (V̇O2max). The dependence of each parameter on O2 delivery is highly subject, exercise mode and context dependent. That said, for upright rhythmic cycling or running exercise the boxes apportion the relative importance of cardiac, vascular and mitochondrial O2 delivery/utilization to each in the untrained state (pre‐) and the participation of each in the training adaptation (post‐) for each parameter. This brief review explores that dependency in health and disease utilizing exercise training and other conditions such as nitrate supplementation to unveil how vascular function and dysfunction predicate exercise tolerance and intolerance within the scope of these three parameters of aerobic function.
AbstractList Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( ), critical power (CP) and speed of the kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O 2 transport pathway from lungs to skeletal muscle mitochondria. Fast kinetics demands that the cardiovascular system distributes exercise‐induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates . Chronic disease and ageing create an O 2 delivery (i.e. blood flow × arterial [O 2 ], ) dependency that slows kinetics, decreasing CP and , increasing the O 2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract), this brief review examines the training‐induced plasticity of key elements in the O 2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle and thus defend microvascular O 2 partial pressures and capillary blood–myocyte O 2 diffusion across a ∼100‐fold range of muscle values. Recent discoveries, especially in the muscle microcirculation and ‐to‐ heterogeneity, are integrated with the O 2 transport pathway to appreciate how local and systemic vascular control helps defend kinetics and determine CP and in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented. image
Three sentinel parameters of aerobic performance are the maximal oxygen uptake (V̇O2max), critical power (CP) and speed of the V̇O2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal muscle mitochondria. Fast V̇O2 kinetics demands that the cardiovascular system distributes exercise‐induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V̇O2. Chronic disease and ageing create an O2 delivery (i.e. blood flow × arterial [O2], Q̇O2) dependency that slows V̇O2 kinetics, decreasing CP and V̇O2max, increasing the O2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical ), this brief review examines the training‐induced plasticity of key elements in the O2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q̇O2 and thus defend microvascular O2 partial pressures and capillary blood–myocyte O2 diffusion across a ∼100‐fold range of muscle V̇O2 values. Recent discoveries, especially in the muscle microcirculation and Q̇O2‐to‐V̇O2 heterogeneity, are integrated with the O2 transport pathway to appreciate how local and systemic vascular control helps defend V̇O2 kinetics and determine CP and V̇O2max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented. figure legend Three sentinel parameters of aerobic performance are the O2 uptake (V̇O2) kinetics following the onset of exercise, critical power (CP) or critical speed (CS) (asymptote of the power/speed–time relation for high intensity exercise) and the maximal O2 uptake (V̇O2max). The dependence of each parameter on O2 delivery is highly subject, exercise mode and context dependent. That said, for upright rhythmic cycling or running exercise the boxes apportion the relative importance of cardiac, vascular and mitochondrial O2 delivery/utilization to each in the untrained state (pre‐) and the participation of each in the training adaptation (post‐) for each parameter. This brief review explores that dependency in health and disease utilizing exercise training and other conditions such as nitrate supplementation to unveil how vascular function and dysfunction predicate exercise tolerance and intolerance within the scope of these three parameters of aerobic function.
Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( V ˙ O 2 max ) , critical power (CP) and speed of the V ˙ O 2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O 2 transport pathway from lungs to skeletal muscle mitochondria. Fast V ˙ O 2 kinetics demands that the cardiovascular system distributes exercise-induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V ˙ O 2 . Chronic disease and ageing create an O 2 delivery (i.e. blood flow  ×  arterial  [ O 2 ] , Q ˙ O 2 ) dependency that slows V ˙ O 2 kinetics, decreasing CP and V ˙ O 2 max , increasing the O 2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract ), this brief review examines the training-induced plasticity of key elements in the O 2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q ˙ O 2 and thus defend microvascular O 2 partial pressures and capillary blood-myocyte O 2 diffusion across a ~100-fold range of muscle V ˙ O 2 values. Recent discoveries, especially in the muscle microcirculation and Q ˙ O 2 -to- V ˙ O 2 heterogeneity, are integrated with the O 2 transport pathway to appreciate how local and systemic vascular control helps defend V ˙ O 2 kinetics and determine CP and V ˙ O 2 max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented. Three sentinel parameters of aerobic performance are the O 2 uptake ( V ˙ O 2 ) kinetics following the onset of exercise, critical power (CP) or critical speed (CS) (asymptote of the power/speed–time relation for high intensity exercise) and the maximal O 2 uptake ( V ˙ O 2 max ) . The dependence of each parameter on O 2 delivery is highly subject, exercise mode and context dependent. That said, for upright rhythmic cycling or running exercise the boxes apportion the relative importance of cardiac, vascular and mitochondrial O 2 delivery/utilization to each in the untrained state (pre-) and the participation of each in the training adaptation (post-) for each parameter. This brief review explores that dependency in health and disease utilizing exercise training and other conditions such as nitrate supplementation to unveil how vascular function and dysfunction predicate exercise tolerance and intolerance within the scope of these three parameters of aerobic function.
Three sentinel parameters of aerobic performance are the maximal oxygen uptake (V̇O2max), critical power (CP) and speed of the V̇O2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal muscle mitochondria. Fast V̇O2 kinetics demands that the cardiovascular system distributes exercise‐induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V̇O2. Chronic disease and ageing create an O2 delivery (i.e. blood flow × arterial [O2], Q̇O2) dependency that slows V̇O2 kinetics, decreasing CP and V̇O2max, increasing the O2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract), this brief review examines the training‐induced plasticity of key elements in the O2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q̇O2 and thus defend microvascular O2 partial pressures and capillary blood–myocyte O2 diffusion across a ∼100‐fold range of muscle V̇O2 values. Recent discoveries, especially in the muscle microcirculation and Q̇O2‐to‐V̇O2 heterogeneity, are integrated with the O2 transport pathway to appreciate how local and systemic vascular control helps defend V̇O2 kinetics and determine CP and V̇O2max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented.
Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( V̇O2max ), critical power (CP) and speed of the V̇O2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal muscle mitochondria. Fast V̇O2 kinetics demands that the cardiovascular system distributes exercise-induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V̇O2 . Chronic disease and ageing create an O2 delivery (i.e. blood flow × arterial [O2 ], Q̇O2 ) dependency that slows V̇O2 kinetics, decreasing CP and V̇O2max , increasing the O2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract), this brief review examines the training-induced plasticity of key elements in the O2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q̇O2 and thus defend microvascular O2 partial pressures and capillary blood-myocyte O2 diffusion across a ∼100-fold range of muscle V̇O2 values. Recent discoveries, especially in the muscle microcirculation and Q̇O2 -to- V̇O2 heterogeneity, are integrated with the O2 transport pathway to appreciate how local and systemic vascular control helps defend V̇O2 kinetics and determine CP and V̇O2max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented.Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( V̇O2max ), critical power (CP) and speed of the V̇O2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal muscle mitochondria. Fast V̇O2 kinetics demands that the cardiovascular system distributes exercise-induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V̇O2 . Chronic disease and ageing create an O2 delivery (i.e. blood flow × arterial [O2 ], Q̇O2 ) dependency that slows V̇O2 kinetics, decreasing CP and V̇O2max , increasing the O2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract), this brief review examines the training-induced plasticity of key elements in the O2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q̇O2 and thus defend microvascular O2 partial pressures and capillary blood-myocyte O2 diffusion across a ∼100-fold range of muscle V̇O2 values. Recent discoveries, especially in the muscle microcirculation and Q̇O2 -to- V̇O2 heterogeneity, are integrated with the O2 transport pathway to appreciate how local and systemic vascular control helps defend V̇O2 kinetics and determine CP and V̇O2max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented.
Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( ), critical power (CP) and speed of the kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O transport pathway from lungs to skeletal muscle mitochondria. Fast kinetics demands that the cardiovascular system distributes exercise-induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates . Chronic disease and ageing create an O delivery (i.e. blood flow × arterial [O ], ) dependency that slows kinetics, decreasing CP and , increasing the O deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract), this brief review examines the training-induced plasticity of key elements in the O transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle and thus defend microvascular O partial pressures and capillary blood-myocyte O diffusion across a ∼100-fold range of muscle values. Recent discoveries, especially in the muscle microcirculation and -to- heterogeneity, are integrated with the O transport pathway to appreciate how local and systemic vascular control helps defend kinetics and determine CP and in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented.
Author Behnke, Brad J.
Musch, Timothy I.
Poole, David C.
Author_xml – sequence: 1
  givenname: David C.
  orcidid: 0000-0003-2441-3793
  surname: Poole
  fullname: Poole, David C.
  email: poole@vet.k-state.edu
  organization: Kansas State University
– sequence: 2
  givenname: Brad J.
  surname: Behnke
  fullname: Behnke, Brad J.
  organization: Kansas State University
– sequence: 3
  givenname: Timothy I.
  orcidid: 0000-0003-1599-1751
  surname: Musch
  fullname: Musch, Timothy I.
  organization: Kansas State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31977068$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1rFDEUhkOptNta8BdIwBtvpuZrk8mNIEWtpWAv1utwNnPGTZlN1mSmdf-9Kd1tVRQCuThPXp6854QcxhSRkFecnXPO5burG2FaK_kBmXGlbWOMlYdkxpgQjTRzfkxOSrlljEtm7RE5ltwaw3Q7I5eLFdKcBqSpp3dQ_DRApv0U_RhSpPXgT8w-FKQeNuDDuKUh0hXCMK4oxI52dQYFX5IXPQwFz3b3Kfn26ePi4rK5_vr5y8WH68YraVWjuZXgDfAlWMat91WVozVaz03rtbZohfAdaCFsr3ppPMJSLpkE2ymFvTwl7x9zN9NyjZ3HOGYY3CaHNeStSxDcn5MYVu57unOmNUoyWQPe7gJy-jFhGd06FI_DABHTVJyQSgltmOAVffMXepumHOv3nFCt4nPNpKnU69-NnlT2JVfg_BHwOZWSsXe1RnjotwqGwXHmHrbo9lt8Vnx6sM_8B7rLvg8Dbv_LucXVDZe2VfIXTneouA
CitedBy_id crossref_primary_10_1113_JP279554
crossref_primary_10_1161_HYPERTENSIONAHA_121_17875
crossref_primary_10_31083_RCM25302
crossref_primary_10_1016_j_echo_2021_12_014
crossref_primary_10_1111_apha_14081
crossref_primary_10_1152_japplphysiol_00291_2020
crossref_primary_10_3389_fphys_2023_1281715
crossref_primary_10_1152_japplphysiol_00982_2020
crossref_primary_10_1113_EP092258
crossref_primary_10_3233_THC_236022
crossref_primary_10_1093_function_zqad013
crossref_primary_10_1080_15502783_2024_2410426
crossref_primary_10_1088_1361_6579_ad4c36
crossref_primary_10_1183_16000617_0284_2020
crossref_primary_10_1007_s00421_021_04623_6
crossref_primary_10_1177_20503121241296701
crossref_primary_10_1113_JP279936
crossref_primary_10_1152_japplphysiol_00468_2020
crossref_primary_10_1113_JP281172
crossref_primary_10_1111_micc_12751
crossref_primary_10_1113_EP089820
crossref_primary_10_1113_JP281003
crossref_primary_10_3389_fphys_2022_1052449
crossref_primary_10_1152_japplphysiol_00734_2021
crossref_primary_10_1113_JP279223
crossref_primary_10_1113_JP281120
crossref_primary_10_14814_phy2_14551
crossref_primary_10_1113_EP091571
crossref_primary_10_2217_fca_2022_0086
crossref_primary_10_1113_EP091606
crossref_primary_10_1152_japplphysiol_00833_2021
crossref_primary_10_3389_fendo_2022_954418
crossref_primary_10_2478_amns_2022_2_0082
crossref_primary_10_34133_cbsystems_0107
crossref_primary_10_1007_s00421_023_05182_8
crossref_primary_10_1152_ajpregu_00053_2021
crossref_primary_10_3389_fphys_2024_1359119
crossref_primary_10_31680_gaunjss_948063
crossref_primary_10_1152_japplphysiol_00344_2022
crossref_primary_10_3390_ijms232315303
crossref_primary_10_3390_nu17071106
crossref_primary_10_1097_NPT_0000000000000423
crossref_primary_10_1152_japplphysiol_00497_2022
Cites_doi 10.1016/j.jacc.2009.11.086
10.1152/jappl.1992.73.3.1067
10.1152/japplphysiol.00949.2013
10.1152/jappl.1991.71.6.2099
10.1152/jappl.1996.80.3.988
10.1371/journal.pone.0111409
10.1152/jappl.1992.73.3.1114
10.1152/japplphysiol.00487.2007
10.1152/japplphysiol.01084.2010
10.1161/CIRCULATIONAHA.114.012957
10.14814/phy2.12432
10.1152/ajpheart.1979.237.4.H481
10.1152/japplphysiol.00458.2014
10.1152/ajpheart.00290.2006
10.1249/MSS.0000000000000939
10.1161/01.CIR.65.6.1213
10.1113/jphysiol.2005.099507
10.1152/ajpregu.00101.2011
10.1152/ajpregu.00479.2010
10.1097/CCM.0b013e31825b933a
10.1016/S0034-5687(01)00195-5
10.1249/JES.0000000000000044
10.1161/CIRCULATIONAHA.106.675041
10.1152/japplphysiol.01141.2014
10.1152/ajpheart.00901.2013
10.1161/HYPERTENSIONAHA.117.09289
10.1152/jappl.1992.73.2.737
10.1113/jphysiol.2004.079533
10.1371/journal.pone.0059678
10.1152/jappl.1995.79.6.2050
10.1001/jama.2018.14852
10.1161/CIRCRESAHA.116.309832
10.1152/ajpregu.00263.2016
10.1152/japplphysiol.00747.2017
10.1152/japplphysiol.00367.2016
10.1097/jes.0b013e318156e4ac
10.1113/JP272409
10.1139/cjpp-78-1-67
10.1113/expphysiol.2009.050500
10.1152/jappl.1999.87.2.652
10.2147/DDDT.S117277
10.1016/j.cophys.2019.05.011
10.1016/j.resp.2013.04.001
10.1152/jappl.1997.83.4.1318
10.1152/ajpheart.00059.2002
10.1113/jphysiol.1985.sp015794
10.1152/japplphysiol.01355.2009
10.1249/00003677-199600240-00004
10.1113/expphysiol.2005.032904
10.1152/jappl.1998.85.2.627
10.1152/japplphysiol.01123.2014
10.1152/ajpheart.00596.2009
10.1016/j.cmet.2011.01.004
10.1152/japplphysiol.00189.2019
10.1097/jes.0b013e31815ddba4
10.1249/MSS.0000000000001052
10.1152/japplphysiol.00014.2016
10.1055/s-2007-1025043
10.1016/0026-2862(86)90052-X
10.1002/cphy.c100048
10.1152/japplphysiol.00446.2013
10.1152/ajpheart.00298.2013
10.1152/ajpheart.00751.2015
10.1152/jappl.2000.88.1.186
10.1113/EP087599
10.1152/ajpregu.2000.279.3.R899
10.1111/micc.12497
10.1152/ajpregu.00554.2006
10.1152/japplphysiol.00057.2016
10.1152/ajpregu.00048.2009
10.1113/JP275186
10.1152/japplphysiol.00297.2019
10.1113/JP278494
10.1113/expphysiol.2005.032789
10.1113/JP270169
10.1113/EP086908
10.1152/ajpregu.2001.280.2.R441
10.1097/HJR.0b013e32833f3aa5
10.1152/japplphysiol.00013.2019
10.1161/01.CIR.83.3.778
10.1016/j.mvr.2012.11.006
10.1016/S0008-6363(95)00068-2
10.1113/jphysiol.2012.243121
10.1113/jphysiol.2002.035915
10.1152/jappl.1994.77.5.2413
10.1152/japplphysiol.00574.2015
10.1152/ajpheart.00943.2011
10.1113/jphysiol.2003.060301
10.1152/jappl.1995.79.3.838
10.1097/00005768-200001000-00017
10.1097/HJR.0b013e3283361dc5
10.1152/japplphysiol.00895.2011
10.1016/S0008-6363(02)00545-X
10.1002/cphy.c100072
10.1177/1074248415599061
10.1113/expphysiol.2013.073874
10.1249/MSS.0000000000000178
10.1113/jphysiol.2012.232777
10.14814/phy2.13808
10.1152/japplphysiol.01003.2014
10.1152/japplphysiol.00151.2012
10.1007/s00418-004-0641-9
10.1152/japplphysiol.00970.2009
10.1152/jappl.1994.77.3.1288
10.1152/jappl.1984.56.4.831
10.1152/ajpheart.01086.2002
10.1152/ajpcell.1977.233.5.C135
10.1152/jappl.1999.87.5.1741
10.1152/japplphysiol.01063.2016
10.1152/jappl.1999.87.1.325
10.1152/ajpheart.00590.2010
10.1016/j.resp.2006.08.008
10.1152/ajpheart.1984.246.1.H59
10.1249/JES.0000000000000074
10.1007/s11897-016-0293-9
10.1152/japplphysiol.00895.2009
10.1007/s00421-010-1649-6
10.1016/j.jacc.2011.06.025
10.1152/ajpregu.00147.2004
10.1152/ajpheart.00469.2015
10.1152/ajpheart.1990.259.1.H84
10.1016/j.niox.2014.09.157
10.1080/17461391.2018.1445298
10.1152/ajpheart.00421.2015
10.1113/jphysiol.2006.113936
10.1152/japplphysiol.00567.2007
10.1016/j.resp.2005.11.004
10.1093/ajh/hpx162
10.1152/japplphysiol.00627.2007
10.1152/japplphysiol.00046.2010
10.1152/jappl.1998.85.4.1394
10.1152/ajpregu.00015.2019
10.3109/10739689609148286
10.1152/japplphysiol.01222.2001
10.1111/j.1748-1716.2007.01713.x
10.1016/S1569-9048(02)00183-0
10.1152/japplphysiol.00179.2004
10.1249/MSS.0000000000000264
10.1152/jappl.2001.91.4.1845
10.1172/JCI118237
10.1249/MSS.0b013e3181d9cf7f
10.1111/j.1748-1716.2006.01598.x
10.1152/ajpheart.1982.243.2.H296
10.1152/jappl.1993.75.4.1911
10.1152/ajpregu.00205.2011
10.14814/phy2.13402
10.1152/ajpheart.00435.2012
10.1152/jappl.1996.80.1.261
10.1016/S0008-6363(95)00199-9
10.1080/00140138808966766
10.1152/jappl.1992.73.2.728
10.1161/CIRCHEARTFAILURE.113.001420
10.1016/0034-5687(87)90022-3
10.1152/ajpregu.00399.2016
10.1152/physrev.00035.2013
10.1152/jappl.1990.68.6.2369
10.14814/phy2.14098
10.1146/annurev-nutr-082117-051622
10.1002/9781444303315.ch3
10.1161/HYPERTENSIONAHA.114.04540
10.1152/japplphysiol.00308.2003
10.1113/jphysiol.2005.084327
10.1113/JP276678
10.1146/annurev.ph.58.030196.000321
10.3389/fphys.2019.00031
10.1152/ajpregu.00295.2013
10.1152/japplphysiol.00518.2014
10.1152/ajpregu.00226.2002
10.1126/science.3420417
10.1113/jphysiol.2001.013165
10.1016/j.resp.2013.11.010
10.1113/JP275170
10.1161/CIRCRESAHA.117.310699
ContentType Journal Article
Copyright 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society
2020 The Authors. The Journal of Physiology © 2020 The Physiological Society.
Journal compilation © 2021 The Physiological Society
Copyright_xml – notice: 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society
– notice: 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society.
– notice: Journal compilation © 2021 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/JP278931
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef


Technology Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 910
ExternalDocumentID PMC7874303
31977068
10_1113_JP278931
TJP13984
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R15 HL137156
– fundername: NHLBI NIH HHS
  grantid: P01 HL017731
– fundername: NHLBI NIH HHS
  grantid: R15 HL108328
– fundername: NHLBI NIH HHS
  grantid: R01 HL142877
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
123
18M
1OC
24P
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
.55
.GJ
.Y3
0YM
31~
3EH
3O-
AASGY
AAYJJ
AAYXX
ADXHL
AEYWJ
AFFNX
AGHNM
AGYGG
C1A
CAG
CHEAL
CITATION
COF
EJD
FA8
H13
HF~
H~9
LW6
MVM
NEJ
OHT
RIG
UKR
WHG
X7M
XOL
YXB
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c4394-6193ac7a1ba9019cc7791e9766578c669e922cda6229f4f37ceab3b03a9d44ef3
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Thu Aug 21 18:18:32 EDT 2025
Fri Jul 11 11:11:56 EDT 2025
Fri Jul 25 12:03:38 EDT 2025
Thu Apr 03 06:53:50 EDT 2025
Thu Apr 24 23:03:19 EDT 2025
Tue Jul 01 04:29:29 EDT 2025
Wed Jan 22 16:32:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords parameters of aerobic function
heart failure
maximal oxygen uptake
exercise training
oxygen transport
exercise intolerance
critical power
oxygen uptake kinetics
Language English
License 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4394-6193ac7a1ba9019cc7791e9766578c669e922cda6229f4f37ceab3b03a9d44ef3
Notes This review was presented at the 2018 ACSM ‘Integrative Physiology of Exercise (IPE)’ conference, which took place in San Diego, California, US, 5‐8 September 2018.
Edited by: Ian Forsythe & Scott Powers
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
All authors have read and approved the final version of this manuscript and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.
Author contributions
ORCID 0000-0003-1599-1751
0000-0003-2441-3793
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7874303
PMID 31977068
PQID 2484156037
PQPubID 1086388
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7874303
proquest_miscellaneous_2344267021
proquest_journals_2484156037
pubmed_primary_31977068
crossref_citationtrail_10_1113_JP278931
crossref_primary_10_1113_JP278931
wiley_primary_10_1113_JP278931_TJP13984
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 February 2021
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 1 February 2021
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 103
2002b; 283
1995; 30
2018; 320
2010; 109
2019b; 127
2010; 108
2019; 10
2000; 88
2008; 36
1974
2006; 572
2015; 309
2019; 19
2006; 291
2007; 191
2011; 58
1998; 85
2013; 8
2017; 312
2011; 111
2016a; 21
2011; 110
2006; 575
2018; 6
2017; 70
2007; 292
2016b; 121
2013; 115
1984; 56
1991; 83
1982; 65
2015; 131
1994; 77
2016; 310
1962; 62–89
2002; 92
2019; 317
1983
2018; 31
2016; 48
2018; 38
2003; 285
2016; 44
2019; 7
2006a; 188
2011; 1
2001; 280
2010a; 17
2013; 85
2018; 103
2019; 104
2009; 297
1997
2013a; 187
2014; 46
2019a; 26
2016; 13
2012; 590
1987; 69
2014; 306
2011; 301
2007; 156
2010; 42
2011; 300
2004; 556
2012; 113
2000; 78
2018; 596
2010; 299
2015; 65
2015; 593
1991; 71
2015; 119
2015; 118
1996; 80
1977; 233
2012; 40
2017; 5
2001; 91
2010; 55
2004; 121
2015; 36
1997; 83
1987; 76
1984; 246
1986; 32
2002; 56
2018; 124
1995; 79
1985; 366
2019; 127
1999; 87
2011; 13
1994; 26
1988; 31
2017; 595
2003; 95
2007; 35
1996; 31
2015; 48
1979; 237
1990; 259
2002c; 539
2013; 98
1986; 45
1993; 75
2015; 43
2019; 597
2006b; 153
2016; 594
2017; 120
2017; 122
2014; 9
1996; 24
1996; 3
2010b; 17
1995; 96
2006; 91
2015; 3
2000; 28
2000; 279
2015; 95
2013; 46
2013b; 591
2013; 305
2009
1982; 243
1988; 241
2014; 192
1996; 58
2012; 302
2002a; 133
2015; 8
2012; 303
2001; 126
2016; 120
1992; 73
2007; 115
2003; 549
2004; 97
2012; 2
1990; 68
1988; 9
2005; 288
2005; 563
2002; 283
2000; 32
2017; 11
2005; 565
2010; 95
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_20_1
e_1_2_2_109_1
e_1_2_2_2_1
e_1_2_2_62_1
e_1_2_2_105_1
e_1_2_2_43_1
e_1_2_2_85_1
e_1_2_2_28_1
e_1_2_2_66_1
e_1_2_2_101_1
e_1_2_2_150_1
e_1_2_2_47_1
e_1_2_2_89_1
e_1_2_2_173_1
e_1_2_2_143_1
e_1_2_2_124_1
e_1_2_2_166_1
e_1_2_2_81_1
e_1_2_2_128_1
e_1_2_2_13_1
e_1_2_2_59_1
e_1_2_2_97_1
e_1_2_2_51_1
e_1_2_2_181_1
Whipp BJ (e_1_2_2_178_1) 1987; 76
e_1_2_2_32_1
e_1_2_2_74_1
e_1_2_2_113_1
e_1_2_2_17_1
e_1_2_2_55_1
e_1_2_2_185_1
e_1_2_2_36_1
e_1_2_2_78_1
e_1_2_2_120_1
e_1_2_2_162_1
e_1_2_2_132_1
e_1_2_2_155_1
e_1_2_2_70_1
e_1_2_2_93_1
e_1_2_2_159_1
Whipp BJ (e_1_2_2_179_1) 1986; 45
e_1_2_2_117_1
e_1_2_2_25_1
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_21_1
e_1_2_2_40_1
e_1_2_2_63_1
e_1_2_2_86_1
e_1_2_2_106_1
e_1_2_2_170_1
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_67_1
e_1_2_2_102_1
e_1_2_2_151_1
e_1_2_2_174_1
e_1_2_2_121_1
e_1_2_2_144_1
e_1_2_2_167_1
e_1_2_2_82_1
e_1_2_2_125_1
e_1_2_2_148_1
e_1_2_2_129_1
e_1_2_2_14_1
e_1_2_2_37_1
Wagner PD (e_1_2_2_176_1) 1997
e_1_2_2_10_1
e_1_2_2_52_1
e_1_2_2_75_1
e_1_2_2_182_1
e_1_2_2_98_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_56_1
e_1_2_2_79_1
e_1_2_2_140_1
e_1_2_2_186_1
e_1_2_2_110_1
e_1_2_2_90_1
e_1_2_2_114_1
e_1_2_2_94_1
e_1_2_2_137_1
e_1_2_2_71_1
e_1_2_2_118_1
Wagner PD (e_1_2_2_175_1) 2000; 28
Saltin B (e_1_2_2_160_1) 1983
e_1_2_2_4_1
e_1_2_2_49_1
e_1_2_2_22_1
e_1_2_2_107_1
e_1_2_2_41_1
e_1_2_2_87_1
e_1_2_2_171_1
e_1_2_2_64_1
e_1_2_2_103_1
e_1_2_2_8_1
e_1_2_2_45_1
e_1_2_2_26_1
e_1_2_2_68_1
e_1_2_2_152_1
Rossiter HB (e_1_2_2_156_1) 2011; 1
e_1_2_2_122_1
e_1_2_2_168_1
e_1_2_2_145_1
e_1_2_2_83_1
e_1_2_2_126_1
e_1_2_2_60_1
e_1_2_2_149_1
Poole DC (e_1_2_2_131_1) 1997
e_1_2_2_38_1
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_76_1
e_1_2_2_95_1
e_1_2_2_19_1
e_1_2_2_53_1
e_1_2_2_34_1
e_1_2_2_164_1
e_1_2_2_99_1
e_1_2_2_111_1
e_1_2_2_15_1
e_1_2_2_57_1
e_1_2_2_141_1
e_1_2_2_183_1
e_1_2_2_134_1
e_1_2_2_157_1
Reynafarje B (e_1_2_2_147_1) 1962; 62
e_1_2_2_115_1
e_1_2_2_72_1
e_1_2_2_91_1
e_1_2_2_138_1
e_1_2_2_119_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_108_1
e_1_2_2_42_1
e_1_2_2_65_1
e_1_2_2_84_1
e_1_2_2_104_1
e_1_2_2_27_1
e_1_2_2_46_1
e_1_2_2_69_1
e_1_2_2_88_1
e_1_2_2_100_1
e_1_2_2_130_1
e_1_2_2_153_1
e_1_2_2_172_1
e_1_2_2_123_1
e_1_2_2_146_1
e_1_2_2_165_1
e_1_2_2_61_1
e_1_2_2_80_1
e_1_2_2_127_1
e_1_2_2_169_1
Altman PL (e_1_2_2_3_1) 1974
Poole DC (e_1_2_2_133_1) 1994; 26
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_31_1
e_1_2_2_54_1
e_1_2_2_73_1
e_1_2_2_180_1
e_1_2_2_96_1
e_1_2_2_112_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_58_1
e_1_2_2_77_1
e_1_2_2_142_1
e_1_2_2_161_1
e_1_2_2_184_1
Simpson LP (e_1_2_2_163_1) 2015; 36
e_1_2_2_154_1
Poole DC (e_1_2_2_136_1) 2011; 1
e_1_2_2_135_1
e_1_2_2_177_1
e_1_2_2_158_1
e_1_2_2_50_1
e_1_2_2_116_1
e_1_2_2_92_1
e_1_2_2_139_1
References_xml – volume: 237
  start-page: H481
  year: 1979
  end-page: H490
  article-title: Microvascular hematocrit and red cell flow in resting and contracting striated muscle
  publication-title: Am J Physiol
– volume: 241
  start-page: 1649
  year: 1988
  end-page: 1651
  article-title: Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue
  publication-title: Science
– volume: 10
  start-page: 31
  year: 2019
  article-title: Long‐term aerobic exercise improves vascular function into old age: a systematic review, meta‐analysis and meta regression of observational and interventional studies
  publication-title: Front Physiol
– volume: 24
  start-page: 35
  year: 1996
  end-page: 71
  article-title: The slow component of oxygen uptake kinetics in humans
  publication-title: Exerc Sport Sci Rev
– volume: 80
  start-page: 988
  year: 1996
  end-page: 998
  article-title: Muscle O uptake kinetics in humans: implications for metabolic control
  publication-title: J Appl Physiol
– volume: 26
  year: 2019a
  article-title: Skeletal muscle interstitial O pressures: bridging the gap between the capillary and myocyte
  publication-title: Microcirculation
– volume: 42
  start-page: 1876
  year: 2010
  end-page: 1890
  article-title: Critical power: implications for determination of V̇O max and exercise tolerance
  publication-title: Med Sci Sports Exerc
– volume: 80
  start-page: 261
  year: 1996
  end-page: 270
  article-title: Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle
  publication-title: J Appl Physiol
– volume: 118
  start-page: 1396
  year: 2015
  end-page: 1405
  article-title: Inorganic nitrate supplementation improves muscle oxygenation, O₂ uptake kinetics, and exercise tolerance at high but not low pedal rates
  publication-title: J Appl Physiol
– volume: 597
  start-page: 5429
  issue: 22
  year: 2019
  end-page: 5443
  article-title: Incubation with sodium nitrite attenuates fatigue development in intact single mouse fibres at physiological PO2
  publication-title: J Physiol
– volume: 36
  start-page: 25
  year: 2008
  end-page: 29
  article-title: Rapid vascular responses to muscle contraction
  publication-title: Exerc Sport Sci Rev
– volume: 31
  start-page: 1265
  year: 1988
  end-page: 1279
  article-title: Metabolic and respiratory profile of the upper limit for prolonged exercise in man
  publication-title: Ergonomics
– volume: 21
  start-page: 201
  year: 2016a
  end-page: 208
  article-title: Skeletal muscle vascular control during exercise: impact of nitrite infusion during nitric oxide synthase inhibition in healthy rats
  publication-title: J Cardiovasc Pharmacol Ther
– volume: 127
  start-page: 1012
  year: 2019
  end-page: 1033
  article-title: Edward F. Adolph Distinguished Lecture. Contemporary model of muscle microcirculation: Gateway to function and dysfunction
  publication-title: J Appl Physiol
– volume: 317
  start-page: R203
  year: 2019
  end-page: R213
  article-title: Unaltered V̇o kinetics despite greater muscle oxygenation during heavy‐intensity two‐legged knee extension versus cycle exercise in humans
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 297
  start-page: H1720
  year: 2009
  end-page: H1728
  article-title: Microvascular oxygen delivery‐to‐utilization mismatch at the onset of heavy‐intensity exercise in optimally treated patients with CHF
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 299
  start-page: H1755
  year: 2010
  end-page: H1761
  article-title: Progressive chronic heart failure slows the recovery of microvascular O pressures after contractions in the rat spinotrapezius muscle
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 91
  start-page: 621
  year: 2006
  end-page: 632
  article-title: Human critical power‐oxygen uptake relationship at different pedalling frequencies
  publication-title: Exp Physiol
– start-page: 43
  year: 2009
  end-page: 55
– volume: 38
  start-page: 303
  year: 2018
  end-page: 328
  article-title: Dietary nitrate and physical performance
  publication-title: Annu Rev Nutr
– volume: 288
  start-page: R212
  year: 2005
  end-page: R220
  article-title: Comparison of oxygen uptake kinetics during knee extension and cycle exercise
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 1
  start-page: 203
  year: 2011
  end-page: 244
  article-title: Exercise: Kinetic considerations for gas exchange
  publication-title: Compr Physiol
– volume: 108
  start-page: 913
  year: 2010
  end-page: 922
  article-title: Speeding of V̇O kinetics with endurance training in old and young men is associated with improved matching of local O delivery to muscle O utilization
  publication-title: J Appl Physiol
– volume: 115
  start-page: 3086
  year: 2007
  end-page: 3094
  article-title: Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study
  publication-title: Circulation
– volume: 8
  start-page: 209
  year: 2015
  end-page: 220
  article-title: Exercise training as therapy for heart failure: current status and future directions
  publication-title: Circ Heart Fail
– volume: 56
  start-page: 479
  year: 2002
  end-page: 486
  article-title: Dynamics of microvascular oxygen partial pressure in contracting skeletal muscle of rats with chronic heart failure
  publication-title: Cardiovasc Res
– volume: 246
  start-page: H59
  year: 1984
  end-page: H68
  article-title: Exercise blood flow patterns within and among rat muscles after training
  publication-title: Am J Physiol
– volume: 594
  start-page: 6987
  year: 2016
  end-page: 7004
  article-title: Differential α‐adrenergic modulation of rapid onset vasodilatation along resistance networks of skeletal muscle in old versus young mice
  publication-title: J Physiol
– volume: 65
  start-page: 1213
  year: 1982
  end-page: 1223
  article-title: Oxygen utilization and ventilation during exercise in patients with chronic cardiac failure
  publication-title: Circulation
– volume: 556
  start-page: 947
  year: 2004
  end-page: 958
  article-title: Effects of ageing and exercise training on endothelium‐dependent vasodilatation and structure of rat skeletal muscle arterioles
  publication-title: J Physiol
– volume: 591
  start-page: 547
  year: 2013b
  end-page: 557
  article-title: Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats
  publication-title: J Physiol
– volume: 87
  start-page: 652
  year: 1999
  end-page: 660
  article-title: Impaired capillary hemodynamics in skeletal muscle of rats in chronic heart failure
  publication-title: J Appl Physiol
– volume: 539
  start-page: 927
  year: 2002c
  end-page: 934
  article-title: Effects of prior contractions on muscle microvascular oxygen pressure at onset of subsequent contractions
  publication-title: J Physiol
– volume: 110
  start-page: 695
  year: 2011
  end-page: 704
  article-title: Effects of aging and exercise training on spinotrapezius muscle microvascular PO dynamics and vasomotor control
  publication-title: J Appl Physiol
– volume: 111
  start-page: 1527
  year: 2011
  end-page: 1538
  article-title: Local control of skeletal muscle blood flow during exercise: influence of available oxygen
  publication-title: J Appl Physiol
– volume: 259
  start-page: H84
  year: 1990
  end-page: H92
  article-title: Calculated intra‐ and extracellular PO gradients in heavily working red muscle
  publication-title: Am J Physiol
– volume: 187
  start-page: 250
  year: 2013a
  end-page: 255
  article-title: Effects of nitrate supplementation via beetroot juice on contracting rat skeletal muscle microvascular oxygen pressure dynamics
  publication-title: Respir Physiol Neurobiol
– start-page: 1957
  year: 1997
  end-page: 1967
– volume: 103
  start-page: 2049
  year: 2007
  end-page: 2056
  article-title: Spatial heterogeneity of quadriceps muscle deoxygenation kinetics during cycle exercise
  publication-title: J Appl Physiol
– volume: 124
  start-page: 208
  year: 2018
  end-page: 224
  article-title: Exercise limitations in heart failure with reduced and preserved ejection fraction
  publication-title: J Appl Physiol
– volume: 549
  start-page: 597
  year: 2003
  end-page: 605
  article-title: Oxygen exchange profile in rat muscles of contrasting fibre types
  publication-title: J Physiol
– volume: 115
  start-page: 1846
  year: 2013
  end-page: 1854
  article-title: Effects of exercise training on tumor hypoxia and vascular function in the rodent preclinical orthotopic prostate cancer model
  publication-title: J Appl Physiol
– volume: 108
  start-page: 76
  year: 2010
  end-page: 84
  article-title: Central and peripheral contributors to skeletal muscle hyperemia: response to passive limb movement
  publication-title: J Appl Physiol
– volume: 575
  start-page: 937
  year: 2006
  end-page: 952
  article-title: Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans
  publication-title: J Physiol
– volume: 119
  start-page: 753
  year: 2015
  end-page: 758
  article-title: High‐intensity interval training vs. moderate‐intensity continuous exercise training in heart failure with preserved ejection fraction: a pilot study
  publication-title: J Appl Physiol
– volume: 88
  start-page: 186
  year: 2000
  end-page: 194
  article-title: Respiratory muscle blood flows during physiological and chemical hyperpnea in the rat
  publication-title: J Appl Physiol
– volume: 40
  start-page: 2858
  year: 2012
  end-page: 2566
  article-title: Mechanical ventilation reduces rat diaphragm blood flow and impairs oxygen delivery and uptake
  publication-title: Crit Care Med
– volume: 35
  start-page: 166
  year: 2007
  end-page: 173
  article-title: The final frontier: oxygen flux into muscle at exercise onset
  publication-title: Exerc Sport Sci Rev
– volume: 91
  start-page: 1845
  year: 2001
  end-page: 1853
  article-title: Local perfusion and metabolic demand during exercise: a noninvasive MRI method of assessment
  publication-title: J Appl Physiol
– volume: 188
  start-page: 3
  year: 2006a
  end-page: 13
  article-title: Muscle microvascular oxygenation in chronic heart failure: role of nitric oxide availability
  publication-title: Acta Physiol
– volume: 73
  start-page: 1067
  year: 1992
  end-page: 1076
  article-title: Effects of training on muscle O transport at V̇O max
  publication-title: J Appl Physiol
– volume: 85
  start-page: 627
  year: 1998
  end-page: 634
  article-title: Lactate efflux from exercising human skeletal muscle: role of intracellular PO
  publication-title: J Appl Physiol
– volume: 68
  start-page: 2369
  year: 1990
  end-page: 2372
  article-title: Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin?
  publication-title: J Appl Physiol
– volume: 73
  start-page: 737
  year: 1992
  end-page: 742
  article-title: Modeling the effects of hypoxia on ATP turnover in exercising muscle
  publication-title: J Appl Physiol
– volume: 13
  start-page: 149
  year: 2011
  end-page: 159
  article-title: Dietary inorganic nitrate improves mitochondrial efficiency in humans
  publication-title: Cell Metab
– volume: 79
  start-page: 838
  year: 1995
  end-page: 845
  article-title: Slow component of O uptake during heavy exercise: adaptation to endurance training
  publication-title: J Appl Physiol
– volume: 19
  start-page: 15
  year: 2019
  end-page: 29
  article-title: Potential benefits of dietary nitrate ingestion in healthy and clinical populations: A brief review
  publication-title: Eur J Sport Sci
– volume: 108
  start-page: 14
  year: 2010
  end-page: 20
  article-title: Aging blunts the dynamics of vasodilation in isolated skeletal muscle resistance vessels
  publication-title: J Appl Physiol
– volume: 127
  start-page: 423
  year: 2019
  end-page: 431
  article-title: Impaired diaphragm resistance vessel vasodilation with prolonged mechanical ventilation
  publication-title: J Appl Physiol
– volume: 156
  start-page: 187
  year: 2007
  end-page: 195
  article-title: Effects of Type II diabetes on muscle microvascular oxygen pressures
  publication-title: Respir Physiol Neurobiol
– volume: 31
  start-page: 278
  year: 1996
  end-page: 286
  article-title: Faster femoral artery blood velocity kinetics at the onset of exercise following short‐term training
  publication-title: Cardiovasc Res
– volume: 92
  start-page: 2513
  year: 2002
  end-page: 2520
  article-title: Skeletal muscle capillary hemodynamics from rest to contractions: Implications for oxygen transfer
  publication-title: J Appl Physiol
– volume: 48
  start-page: 38
  year: 2015
  end-page: 43
  article-title: Microvascular oxygen pressures in muscles comprised of different fiber types: Impact of dietary nitrate supplementation
  publication-title: Nitric Oxide
– volume: 45
  start-page: 2942
  year: 1986
  end-page: 2947
  article-title: Effect of anaerobiosis on the kinetics of O uptake during exercise
  publication-title: Fed Proc
– volume: 243
  start-page: H296
  year: 1982
  end-page: H306
  article-title: Muscular blood flow distribution patterns as a function of running speed in rats
  publication-title: Am J Physiol
– volume: 297
  start-page: R615
  year: 2009
  end-page: R621
  article-title: Effects of prior heavy exercise on heterogeneity of muscle deoxygenation kinetics during subsequent heavy exercise
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 83
  start-page: 1318
  year: 1997
  end-page: 1325
  article-title: Acceleration of V̇O kinetics in heavy submaximal exercise by hyperoxia and prior high‐intensity exercise
  publication-title: J Appl Physiol
– volume: 13
  start-page: 158
  year: 2016
  end-page: 165
  article-title: Dietary nitrate and skeletal muscle contractile function in heart failure
  publication-title: Curr Heart Fail Rep
– volume: 69
  start-page: 129
  year: 1987
  end-page: 147
  article-title: Oxygen diffusing capacity estimates derived from measured V̇ /Q̇ distributions in man
  publication-title: Respir Physiol
– volume: 127
  start-page: 930
  year: 2019b
  end-page: 939
  article-title: Skeletal muscle interstitial PO kinetics during recovery from contractions
  publication-title: J Appl Physiol
– volume: 71
  start-page: 2099
  year: 1991
  end-page: 2106
  article-title: Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise
  publication-title: J Appl Physiol
– volume: 56
  start-page: 831
  year: 1984
  end-page: 838
  article-title: Adaptations of skeletal muscle to endurance exercise and their metabolic consequences
  publication-title: J Appl Physiol Respir Environ Exerc Physiol
– volume: 70
  start-page: 166
  year: 2017
  end-page: 173
  article-title: PGC‐1α (peroxisome proliferator‐activated receptor γ coactivator 1‐α) overexpression in coronary artery disease recruits NO and hydrogen peroxide during flow‐mediated dilation and protects against increased intraluminal pressure
  publication-title: Hypertension
– volume: 83
  start-page: 778
  year: 1991
  end-page: 786
  article-title: Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure
  publication-title: Circulation
– volume: 44
  start-page: 53
  year: 2016
  end-page: 60
  article-title: Fiber type‐specific effects of dietary nitrate
  publication-title: Exerc Sport Sci Rev
– volume: 122
  start-page: 153
  year: 2017
  end-page: 160
  article-title: Effect of sodium nitrite on local control of contracting skeletal muscle microvascular oxygen pressure in healthy rats
  publication-title: J Appl Physiol
– volume: 98
  start-page: 1645
  year: 2013
  end-page: 1658
  article-title: Skeletal muscle capillary function: contemporary observations and novel hypotheses
  publication-title: Exp Physiol
– volume: 300
  start-page: R685
  year: 2011
  end-page: R692
  article-title: Older type 2 diabetic males do not exhibit abnormal pulmonary oxygen uptake and muscle oxygen utilization dynamics during submaximal cycling exercise
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 565
  start-page: 1053
  year: 2005
  end-page: 1060
  article-title: Onset exercise hyperaemia in humans: partitioning the contributors
  publication-title: J Physiol
– volume: 590
  start-page: 3575
  year: 2012
  end-page: 3583
  article-title: Dietary nitrate increases tetanic [Ca ] and contractile force in mouse fast‐twitch muscle
  publication-title: J Physiol
– volume: 120
  start-page: 1151
  year: 2017
  end-page: 1161
  article-title: Pharmacokinetics and pharmacodynamics of inorganic nitrate in heart failure with preserved ejection fraction
  publication-title: Circ Res
– volume: 65
  start-page: 140
  year: 2015
  end-page: 145
  article-title: Acute exertion elicits a H O ‐dependent vasodilator mechanism in the microvasculature of exercise‐trained but not sedentary adults
  publication-title: Hypertension
– volume: 301
  start-page: R534
  year: 2011
  end-page: R541
  article-title: Methodological validation of the dynamic heterogeneity of muscle deoxygenation within the quadriceps during cycle exercise
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 103
  start-page: 1757
  year: 2007
  end-page: 1763
  article-title: Aging potentiates the effect of congestive heart failure on muscle microvascular oxygenation
  publication-title: J Appl Physiol
– volume: 103
  start-page: 728
  year: 2018
  end-page: 737
  article-title: Age‐associated impairments in contraction‐induced rapid‐onset vasodilatation within the forearm are independent of mechanical factors
  publication-title: Exp Physiol
– volume: 366
  start-page: 233
  year: 1985
  end-page: 249
  article-title: Maximal perfusion of skeletal muscle in man
  publication-title: J Physiol
– volume: 120
  start-page: 1335
  year: 2016
  end-page: 1342
  article-title: Chronic endurance exercise training offsets the age‐related attenuation in contraction‐induced rapid vasodilation
  publication-title: J Appl Physiol
– volume: 77
  start-page: 1288
  year: 1994
  end-page: 1293
  article-title: Effects of NO synthase inhibition on the muscular blood flow response to treadmill exercise in rats
  publication-title: J Appl Physiol
– volume: 595
  start-page: 7149
  year: 2017
  end-page: 7165
  article-title: Rapid versus slow ascending vasodilatation: intercellular conduction versus flow‐mediated signalling with tetanic versus rhythmic muscle contractions
  publication-title: J Physiol
– volume: 6
  year: 2018
  article-title: Mechanisms underlying extremely fast muscle V̇O on‐kinetics in humans
  publication-title: Physiol Rep
– start-page: 2033
  year: 1997
  end-page: 2041
– volume: 30
  start-page: 469
  year: 1995
  end-page: 476
  article-title: Effects of nitric oxide synthase inhibition on the muscle blood flow response to exercise in rats with heart failure
  publication-title: Cardiovasc Res
– volume: 46
  start-page: 1498
  year: 2013
  end-page: 1505
  article-title: V̇O peak, myocardial hypertrophy, and myocardial blood flow in endurance‐trained men
  publication-title: Med Sci Sports Exerc
– volume: 9
  start-page: 417
  year: 1988
  end-page: 421
  article-title: Effects of continuous and interval training on the parameters of the power‐endurance time relationship for high‐intensity exercise
  publication-title: Int J Sports Med
– volume: 233
  start-page: C135
  year: 1977
  end-page: C140
  article-title: Effect of oxygen tension on cellular energetics
  publication-title: Am J Physiol
– volume: 85
  start-page: 1394
  year: 1998
  end-page: 1403
  article-title: Faster adjustment of O delivery does not affect V̇O on‐kinetics in isolated in situ canine muscle
  publication-title: J Appl Physiol
– volume: 97
  start-page: 393
  year: 2004
  end-page: 403
  article-title: Vasodilatory mechanisms in contracting skeletal muscle
  publication-title: J Appl Physiol
– volume: 563
  start-page: 903
  year: 2005
  end-page: 913
  article-title: Control of microvascular oxygen pressures in rat muscles comprised of different fibre types
  publication-title: J Physiol
– volume: 2
  start-page: 321
  year: 2012
  end-page: 447
  article-title: Peripheral circulation
  publication-title: Compr Physiol
– volume: 153
  start-page: 237
  year: 2006b
  end-page: 249
  article-title: Blood flow and O extraction as a function of O uptake in muscles composed of different fiber types
  publication-title: Respir Physiol Neurobiol
– volume: 10
  start-page: 202
  year: 2019
  end-page: 209
  article-title: Exercise intolerance in patients with mitochondrial myopathies: Perfusive and diffusive limitations in the O pathway
  publication-title: Curr Opin Physiol
– volume: 43
  start-page: 117
  year: 2015
  end-page: 124
  article-title: Heterogeneity of muscle blood flow and metabolism: Influence of exercise, aging, and disease states
  publication-title: Exerc Sport Sci Rev
– volume: 191
  start-page: 59
  year: 2007
  end-page: 66
  article-title: Effects of dietary nitrate on oxygen cost during exercise
  publication-title: Acta Physiol
– volume: 301
  start-page: R783
  year: 2011
  end-page: R790
  article-title: Adrenergic control of vascular resistance varies in muscles composed of different fiber types: influence of the vascular endothelium
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 58
  start-page: 1353
  year: 2011
  end-page: 1362
  article-title: Isolated quadriceps training increases maximal exercise capacity in chronic heart failure: the role of skeletal muscle convective and diffusive oxygen transport
  publication-title: J Am Coll Cardiol
– volume: 310
  start-page: H821
  year: 2016
  end-page: H829
  article-title: Exercise training improves vascular mitochondrial function
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 133
  start-page: 229
  year: 2002a
  end-page: 239
  article-title: Dynamics of oxygen uptake following exercise onset in rat skeletal muscle
  publication-title: Respir Physiol Neurobiol
– volume: 291
  start-page: H2439
  year: 2006
  end-page: H2444
  article-title: Effects of Type II diabetes on capillary hemodynamics in skeletal muscle
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 36
  start-page: 113
  year: 2015
  end-page: 119
  article-title: Influence of hypoxia on the power‐duration relationship during high‐intensity exercise
  publication-title: Int J Sports Med
– volume: 3
  year: 2015
  article-title: Reduction of V̇O slow component by priming exercise: novel mechanistic insights from time‐resolved near‐infrared spectroscopy
  publication-title: Physiol Rep
– volume: 46
  start-page: 860
  year: 2014
  end-page: 876
  article-title: Dynamic heterogeneity of exercising muscle blood flow and O utilization
  publication-title: Med Sci Sports Exerc
– volume: 303
  start-page: H1474
  year: 2012
  end-page: H1480
  article-title: Sildenafil improves microvascular O delivery‐to‐utilization matching and accelerates exercise O uptake kinetics in chronic heart failure
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 305
  start-page: H29
  year: 2013
  end-page: H40
  article-title: Mechanisms of rapid vasodilation after a brief contraction in human skeletal muscle
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 28
  start-page: 10
  year: 2000
  end-page: 14
  article-title: New ideas on limitations to V̇O max
  publication-title: Exerc Sport Sci Rev
– volume: 126
  start-page: 53
  year: 2001
  end-page: 63
  article-title: Dynamics of microvascular oxygen pressure across the rest‐exercise transition in rat skeletal muscle
  publication-title: Respir Physiol
– start-page: 555
  year: 1983
  end-page: 631
– volume: 32
  start-page: 108
  year: 2000
  end-page: 116
  article-title: Skeletal muscle on‐kinetics: set by O delivery or by O utilization? New insights into an old issue
  publication-title: Med Sci Sports Exerc
– volume: 87
  start-page: 325
  year: 1999
  end-page: 331
  article-title: Cellular PO as a determinant of maximal mitochondrial O consumption in trained human skeletal muscle
  publication-title: J Appl Physiol
– volume: 77
  start-page: 2413
  year: 1994
  end-page: 2419
  article-title: Effects of infused epinephrine on slow phase of O uptake kinetics during heavy exercise in humans
  publication-title: J Appl Physiol
– volume: 1
  start-page: 1
  year: 2011
  end-page: 37
  article-title: Highly athletic terrestrial mammals: horses and dogs
  publication-title: Compr Physiol
– volume: 122
  start-page: 997
  year: 2017
  end-page: 1002
  article-title: Measurement of the maximum oxygen uptake V̇o : V̇o is no longer acceptable
  publication-title: J Appl Physiol
– volume: 279
  start-page: R899
  year: 2000
  end-page: R906
  article-title: Muscle oxygen kinetics at onset of intense dynamic exercise in humans
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 119
  start-page: 1313
  year: 2015
  end-page: 1319
  article-title: Muscle deoxygenation in the quadriceps during ramp incremental cycling: Deep vs. superficial heterogeneity
  publication-title: J Appl Physiol
– volume: 572
  start-page: 561
  year: 2006
  end-page: 567
  article-title: Mechanical compression elicits vasodilatation in rat skeletal muscle feed arteries
  publication-title: J Physiol
– volume: 320
  start-page: 1764
  year: 2018
  end-page: 1773
  article-title: Effect of inorganic nitrite vs placebo on exercise capacity among patients with heart failure with preserved ejection fraction: The INDIE‐HFpEF randomized clinical trial
  publication-title: JAMA
– volume: 121
  start-page: 335
  year: 2004
  end-page: 342
  article-title: Determination of myoglobin concentration and oxidative capacity in cryostat sections of human and rat skeletal muscle fibres and rat cardiomyocytes
  publication-title: Histochem Cell Biol
– volume: 115
  start-page: 446
  year: 2013
  end-page: 455
  article-title: Contribution of nitric oxide in the contraction‐induced rapid vasodilation in young and older adults
  publication-title: J Appl Physiol
– volume: 309
  start-page: H1354
  year: 2015
  end-page: H1360
  article-title: Effects of nitrite infusion on skeletal muscle vascular control during exercise in rats with chronic heart failure
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 73
  start-page: 1114
  year: 1992
  end-page: 1121
  article-title: Relationship between body and leg V̇O during maximal cycle ergometry
  publication-title: J Appl Physiol
– volume: 596
  start-page: 869
  year: 2018
  end-page: 883
  article-title: Skeletal muscle microvascular and interstitial PO from rest to contractions
  publication-title: J Physiol
– volume: 87
  start-page: 1741
  year: 1999
  end-page: 1746
  article-title: Rapid vasodilation in response to a brief tetanic muscle contraction
  publication-title: J Appl Physiol
– volume: 75
  start-page: 1911
  year: 1993
  end-page: 1916
  article-title: High muscle blood flow in man: is maximal O extraction compromised?
  publication-title: J Appl Physiol
– volume: 119
  start-page: 745
  year: 2015
  end-page: 752
  article-title: High‐intensity interval training attenuates endothelial dysfunction in a Dahl salt‐sensitive rat model of heart failure with preserved ejection fraction
  publication-title: J Appl Physiol
– volume: 9
  year: 2014
  article-title: Exercise‐mediated wall shear stress increases mitochondrial biogenesis in vascular endothelium
  publication-title: PLoS One
– volume: 58
  start-page: 21
  year: 1996
  end-page: 50
  article-title: Determinants of maximal oxygen transport and utilization
  publication-title: Annu Rev Physiol
– volume: 31
  start-page: 240
  year: 2018
  end-page: 246
  article-title: Microvascular adaptations to exercise: protective effect of PGC‐1 alpha
  publication-title: Am J Hypertension
– volume: 95
  start-page: 1055
  year: 2003
  end-page: 1062
  article-title: Effects of chronic heart failure on skeletal muscle capillary hemodynamics at rest and during contractions
  publication-title: J Appl Physiol
– volume: 309
  start-page: H1419
  year: 2015
  end-page: H1439
  article-title: Exercise training in chronic heart failure: improving skeletal muscle O transport and utilization
  publication-title: Am J Physiol Heart Circ Physio
– volume: 26
  start-page: 1354
  year: 1994
  end-page: 1358
  article-title: V̇O slow component: physiological and functional significance
  publication-title: Med Sci Sports Exerc
– volume: 76
  start-page: VI18
  year: 1987
  end-page: 28
  article-title: Dynamics of pulmonary gas exchange
  publication-title: Circulation
– volume: 85
  start-page: 104
  year: 2013
  end-page: 111
  article-title: The NO donor sodium nitroprusside: evaluation of skeletal muscle vascular and metabolic dysfunction
  publication-title: Microvasc Res
– volume: 283
  start-page: R1131
  year: 2002
  end-page: R1139
  article-title: Effect of mild carboxy‐hemoglobin on exercising skeletal muscle: intravascular and intracellular evidence
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 118
  start-page: 783
  year: 2015
  end-page: 793
  article-title: A method for assessing heterogeneity of blood flow and metabolism in exercising normal human muscle by near‐infrared spectroscopy
  publication-title: J Appl Physiol
– volume: 95
  start-page: 528
  year: 2010
  end-page: 540
  article-title: Influence of hyperoxia on muscle metabolic responses and the power‐duration relationship during severe‐intensity exercise in humans: a P magnetic resonance spectroscopy study
  publication-title: Exp Physiol
– volume: 192
  start-page: 102
  year: 2014
  end-page: 111
  article-title: Influence of duty cycle on the power‐duration relationship: observations and potential mechanisms
  publication-title: Respir Physiol Neurobiol
– volume: 103
  start-page: 2042
  year: 2007
  end-page: 2048
  article-title: Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans
  publication-title: J Appl Physiol
– volume: 302
  start-page: H1050
  year: 2012
  end-page: H1063
  article-title: Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 120
  start-page: 1057
  year: 2017
  end-page: 1059
  article-title: Inorganic nitrates: for heart failure with preserved ejection fraction?
  publication-title: Circ Res
– volume: 104
  start-page: 1061
  year: 2019
  end-page: 1073
  article-title: Hyperoxia speeds pulmonary oxygen uptake kinetics and increases critical power during supine cycling
  publication-title: Exp Physiol
– volume: 48
  start-page: 2281
  year: 2016
  end-page: 2293
  article-title: No muscle is an island: Integrative perspectives on muscle fatigue
  publication-title: Med Sci Sports Exerc
– volume: 596
  start-page: 5149
  year: 2018
  end-page: 5161
  article-title: Acute and chronic exercise in patients with heart failure with reduced ejection fraction: evidence of structural and functional plasticity and intact angiogenic signalling in skeletal muscle
  publication-title: J Physiol
– volume: 306
  start-page: H690
  year: 2014
  end-page: H698
  article-title: Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide‐mediated function
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 118
  start-page: 1435
  year: 2015
  end-page: 1442
  article-title: Validation of a high‐power, time‐resolved, near‐infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise
  publication-title: J Appl Physiol
– volume: 91
  start-page: 661
  year: 2006
  end-page: 671
  article-title: Human femoral artery and estimated muscle capillary blood flow kinetics following the onset of exercise
  publication-title: Exp Physiol
– volume: 11
  start-page: 1195
  year: 2017
  end-page: 1207
  article-title: Riociguat: a soluble guanylate cyclase stimulator for the treatment of pulmonary hypertension
  publication-title: Drug Des Devel Ther
– volume: 113
  start-page: 557
  year: 2012
  end-page: 565
  article-title: Exercise training and muscle microvascular oxygenation: functional role of nitric oxide
  publication-title: J Appl Physiol
– volume: 17
  start-page: 643
  year: 2010b
  end-page: 648
  article-title: Exercise intolerance in chronic heart failure: mechanisms and therapies. Part II
  publication-title: Eur J Cardiovasc Prev Rehabil
– volume: 312
  start-page: R13
  year: 2017
  end-page: R22
  article-title: Dietary nitrate supplementation and exercise tolerance in patients with heart failure with reduced ejection fraction
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 73
  start-page: 728
  year: 1992
  end-page: 736
  article-title: Role of O in regulating tissue respiration in dog muscle working in situ
  publication-title: J Appl Physiol
– volume: 55
  start-page: 1945
  year: 2010
  end-page: 1954
  article-title: Limited maximal exercise capacity in patients with chronic heart failure: partitioning the contributors
  publication-title: J Am Coll Cardiol
– volume: 8
  year: 2013
  article-title: High‐intensity endurance training results in faster vessel‐specific rate of vasorelaxation in type 1 diabetic rats
  publication-title: PLoS One
– volume: 32
  start-page: 164
  year: 1986
  end-page: 189
  article-title: A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries
  publication-title: Microvasc Res
– volume: 78
  start-page: 67
  year: 2000
  end-page: 74
  article-title: Effect of hyperoxia and hypoxia on leg blood flow and pulmonary and leg oxygen uptake at the onset of kicking exercise
  publication-title: Can J Physiol Pharmacol
– volume: 285
  start-page: H251
  year: 2003
  end-page: H258
  article-title: Effects of aging on capillary geometry and hemodynamics in rat spinotrapezius muscle
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 292
  start-page: R1279
  year: 2007
  end-page: R1286
  article-title: Effect of arterial oxygenation on quadriceps fatigability during isolated muscle exercise
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 280
  start-page: R441
  year: 2001
  end-page: R447
  article-title: Effect of acute exercise on citrate synthase activity in untrained and trained human skeletal muscle
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 62–89
  start-page: 8
  year: 1962
  article-title: Myoglobin content and enzymatic activity of human skeletal muscle–their relation with the process of adaptation to high altitude
  publication-title: Tech Doc Rep SAMTDR USAF Sch Aerosp Med
– volume: 593
  start-page: 2155
  year: 2015
  end-page: 2169
  article-title: Advanced age protects microvascular endothelium from aberrant Ca influx and cell death induced by hydrogen peroxide
  publication-title: J Physiol
– volume: 17
  start-page: 637
  year: 2010a
  end-page: 642
  article-title: Exercise intolerance in chronic heart failure: mechanisms and therapies. Part I
  publication-title: Eur J Cardiovasc Prev Rehabil
– volume: 96
  start-page: 1916
  year: 1995
  end-page: 1926
  article-title: Myoglobin O desaturation during exercise. Evidence of limited O transport
  publication-title: J Clin Invest
– volume: 109
  start-page: 135
  year: 2010
  end-page: 148
  article-title: Dietary nitrate supplementation enhances muscle contractile efficiency during knee‐extensor exercise in humans
  publication-title: J Appl Physiol
– volume: 7
  year: 2019
  article-title: The maximal metabolic steady state: redefining the ‘gold standard’
  publication-title: Physiol Rep
– volume: 95
  start-page: 549
  year: 2015
  end-page: 601
  article-title: Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs
  publication-title: Physiol Rev
– volume: 79
  start-page: 2050
  year: 1995
  end-page: 2057
  article-title: Diaphragm microvascular plasma PO measured in vivo
  publication-title: J Appl Physiol
– volume: 283
  start-page: H926
  year: 2002b
  end-page: H932
  article-title: Dynamics of microvascular oxygen pressure during rest‐contraction transition in skeletal muscle of diabetic rats
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 3
  start-page: 175
  year: 1996
  end-page: 186
  article-title: Relationship between fiber capillarization and mitochondrial volume density in control and trained rat soleus and plantaris muscles
  publication-title: Microcirculation
– volume: 131
  start-page: 371
  year: 2015
  end-page: 380
  article-title: Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction
  publication-title: Circulation
– year: 1974
– volume: 48
  start-page: 2320
  year: 2016
  end-page: 2334
  article-title: Critical power: An important fatigue threshold in exercise physiology
  publication-title: Med Sci Sports Exerc
– volume: 5
  year: 2017
  article-title: Near‐infrared spectroscopy of superficial and deep rectus femoris reveals markedly different exercise response to superficial vastus lateralis
  publication-title: Physiol Rep
– volume: 312
  start-page: R467
  year: 2017
  end-page: R476
  article-title: Similar pattern of change in V̇o kinetics, vascular function, and tissue oxygen provision following an endurance training stimulus in older and young adults
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 111
  start-page: 235
  year: 2011
  end-page: 243
  article-title: Speeding of V̇O kinetics in response to endurance‐training in older and young women
  publication-title: Eur J Appl Physiol
– volume: 2
  start-page: 933
  year: 2012
  end-page: 996
  article-title: Oxygen uptake kinetics
  publication-title: Compr Physiol
– volume: 305
  start-page: R1441
  year: 2013
  end-page: R1450
  article-title: Beetroot juice supplementation speeds O uptake kinetics and improves exercise tolerance during severe‐intensity exercise initiated from an elevated metabolic rate
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 121
  start-page: 661
  year: 2016b
  end-page: 669
  article-title: Dietary nitrate supplementation: impact on skeletal muscle vascular control in exercising rats with chronic heart failure
  publication-title: J Appl Physiol
– ident: e_1_2_2_40_1
  doi: 10.1016/j.jacc.2009.11.086
– ident: e_1_2_2_155_1
  doi: 10.1152/jappl.1992.73.3.1067
– ident: e_1_2_2_116_1
  doi: 10.1152/japplphysiol.00949.2013
– ident: e_1_2_2_14_1
  doi: 10.1152/jappl.1991.71.6.2099
– ident: e_1_2_2_60_1
  doi: 10.1152/jappl.1996.80.3.988
– ident: e_1_2_2_92_1
  doi: 10.1371/journal.pone.0111409
– ident: e_1_2_2_96_1
  doi: 10.1152/jappl.1992.73.3.1114
– ident: e_1_2_2_18_1
  doi: 10.1152/japplphysiol.00487.2007
– ident: e_1_2_2_115_1
  doi: 10.1152/japplphysiol.01084.2010
– ident: e_1_2_2_185_1
  doi: 10.1161/CIRCULATIONAHA.114.012957
– ident: e_1_2_2_52_1
  doi: 10.14814/phy2.12432
– ident: e_1_2_2_95_1
  doi: 10.1152/ajpheart.1979.237.4.H481
– ident: e_1_2_2_173_1
  doi: 10.1152/japplphysiol.00458.2014
– ident: e_1_2_2_126_1
  doi: 10.1152/ajpheart.00290.2006
– ident: e_1_2_2_134_1
  doi: 10.1249/MSS.0000000000000939
– volume: 28
  start-page: 10
  year: 2000
  ident: e_1_2_2_175_1
  article-title: New ideas on limitations to V̇O2max
  publication-title: Exerc Sport Sci Rev
– ident: e_1_2_2_177_1
  doi: 10.1161/01.CIR.65.6.1213
– ident: e_1_2_2_30_1
  doi: 10.1113/jphysiol.2005.099507
– ident: e_1_2_2_101_1
  doi: 10.1152/ajpregu.00101.2011
– ident: e_1_2_2_181_1
  doi: 10.1152/ajpregu.00479.2010
– ident: e_1_2_2_36_1
  doi: 10.1097/CCM.0b013e31825b933a
– ident: e_1_2_2_20_1
  doi: 10.1016/S0034-5687(01)00195-5
– ident: e_1_2_2_64_1
  doi: 10.1249/JES.0000000000000044
– ident: e_1_2_2_182_1
  doi: 10.1161/CIRCULATIONAHA.106.675041
– ident: e_1_2_2_10_1
  doi: 10.1152/japplphysiol.01141.2014
– ident: e_1_2_2_70_1
  doi: 10.1152/ajpheart.00901.2013
– ident: e_1_2_2_89_1
  doi: 10.1161/HYPERTENSIONAHA.117.09289
– ident: e_1_2_2_8_1
  doi: 10.1152/jappl.1992.73.2.737
– ident: e_1_2_2_119_1
  doi: 10.1113/jphysiol.2004.079533
– ident: e_1_2_2_121_1
  doi: 10.1371/journal.pone.0059678
– ident: e_1_2_2_144_1
  doi: 10.1152/jappl.1995.79.6.2050
– ident: e_1_2_2_23_1
  doi: 10.1001/jama.2018.14852
– ident: e_1_2_2_186_1
  doi: 10.1161/CIRCRESAHA.116.309832
– ident: e_1_2_2_74_1
  doi: 10.1152/ajpregu.00263.2016
– ident: e_1_2_2_142_1
  doi: 10.1152/japplphysiol.00747.2017
– ident: e_1_2_2_33_1
  doi: 10.1152/japplphysiol.00367.2016
– ident: e_1_2_2_137_1
  doi: 10.1097/jes.0b013e318156e4ac
– ident: e_1_2_2_164_1
  doi: 10.1113/JP272409
– ident: e_1_2_2_113_1
  doi: 10.1139/cjpp-78-1-67
– ident: e_1_2_2_172_1
  doi: 10.1113/expphysiol.2009.050500
– ident: e_1_2_2_93_1
  doi: 10.1152/jappl.1999.87.2.652
– volume: 62
  start-page: 8
  year: 1962
  ident: e_1_2_2_147_1
  article-title: Myoglobin content and enzymatic activity of human skeletal muscle–their relation with the process of adaptation to high altitude
  publication-title: Tech Doc Rep SAMTDR USAF Sch Aerosp Med
– ident: e_1_2_2_111_1
  doi: 10.2147/DDDT.S117277
– ident: e_1_2_2_146_1
  doi: 10.1016/j.cophys.2019.05.011
– ident: e_1_2_2_45_1
  doi: 10.1016/j.resp.2013.04.001
– ident: e_1_2_2_112_1
  doi: 10.1152/jappl.1997.83.4.1318
– ident: e_1_2_2_19_1
  doi: 10.1152/ajpheart.00059.2002
– ident: e_1_2_2_5_1
  doi: 10.1113/jphysiol.1985.sp015794
– ident: e_1_2_2_122_1
  doi: 10.1152/japplphysiol.01355.2009
– ident: e_1_2_2_53_1
  doi: 10.1249/00003677-199600240-00004
– ident: e_1_2_2_63_1
  doi: 10.1113/expphysiol.2005.032904
– ident: e_1_2_2_151_1
  doi: 10.1152/jappl.1998.85.2.627
– ident: e_1_2_2_2_1
  doi: 10.1152/japplphysiol.01123.2014
– ident: e_1_2_2_167_1
  doi: 10.1152/ajpheart.00596.2009
– ident: e_1_2_2_106_1
  doi: 10.1016/j.cmet.2011.01.004
– ident: e_1_2_2_79_1
  doi: 10.1152/japplphysiol.00189.2019
– ident: e_1_2_2_31_1
  doi: 10.1097/jes.0b013e31815ddba4
– ident: e_1_2_2_91_1
  doi: 10.1249/MSS.0000000000001052
– ident: e_1_2_2_47_1
  doi: 10.1152/japplphysiol.00014.2016
– ident: e_1_2_2_55_1
  doi: 10.1055/s-2007-1025043
– ident: e_1_2_2_43_1
  doi: 10.1016/0026-2862(86)90052-X
– ident: e_1_2_2_109_1
  doi: 10.1002/cphy.c100048
– ident: e_1_2_2_28_1
  doi: 10.1152/japplphysiol.00446.2013
– ident: e_1_2_2_35_1
  doi: 10.1152/ajpheart.00298.2013
– ident: e_1_2_2_128_1
  doi: 10.1152/ajpheart.00751.2015
– ident: e_1_2_2_143_1
  doi: 10.1152/jappl.2000.88.1.186
– ident: e_1_2_2_57_1
  doi: 10.1113/EP087599
– ident: e_1_2_2_12_1
  doi: 10.1152/ajpregu.2000.279.3.R899
– ident: e_1_2_2_67_1
  doi: 10.1111/micc.12497
– ident: e_1_2_2_90_1
  doi: 10.1152/ajpregu.00554.2006
– ident: e_1_2_2_81_1
  doi: 10.1152/japplphysiol.00057.2016
– ident: e_1_2_2_159_1
  doi: 10.1152/ajpregu.00048.2009
– volume-title: Biology Data Book
  year: 1974
  ident: e_1_2_2_3_1
– volume: 36
  start-page: 113
  year: 2015
  ident: e_1_2_2_163_1
  article-title: Influence of hypoxia on the power‐duration relationship during high‐intensity exercise
  publication-title: Int J Sports Med
– ident: e_1_2_2_165_1
  doi: 10.1113/JP275186
– ident: e_1_2_2_71_1
  doi: 10.1152/japplphysiol.00297.2019
– ident: e_1_2_2_11_1
  doi: 10.1113/JP278494
– ident: e_1_2_2_13_1
  doi: 10.1113/expphysiol.2005.032789
– ident: e_1_2_2_166_1
  doi: 10.1113/JP270169
– ident: e_1_2_2_80_1
  doi: 10.1113/EP086908
– ident: e_1_2_2_110_1
  doi: 10.1152/ajpregu.2001.280.2.R441
– volume: 26
  start-page: 1354
  year: 1994
  ident: e_1_2_2_133_1
  article-title: V̇O2 slow component: physiological and functional significance
  publication-title: Med Sci Sports Exerc
– ident: e_1_2_2_130_1
  doi: 10.1097/HJR.0b013e32833f3aa5
– ident: e_1_2_2_132_1
  doi: 10.1152/japplphysiol.00013.2019
– ident: e_1_2_2_114_1
  doi: 10.1161/01.CIR.83.3.778
– ident: e_1_2_2_69_1
  doi: 10.1016/j.mvr.2012.11.006
– ident: e_1_2_2_76_1
  doi: 10.1016/S0008-6363(95)00068-2
– ident: e_1_2_2_46_1
  doi: 10.1113/jphysiol.2012.243121
– ident: e_1_2_2_22_1
  doi: 10.1113/jphysiol.2002.035915
– ident: e_1_2_2_54_1
  doi: 10.1152/jappl.1994.77.5.2413
– ident: e_1_2_2_125_1
  doi: 10.1152/japplphysiol.00574.2015
– ident: e_1_2_2_138_1
  doi: 10.1152/ajpheart.00943.2011
– ident: e_1_2_2_169_1
  doi: 10.1113/jphysiol.2003.060301
– ident: e_1_2_2_183_1
  doi: 10.1152/jappl.1995.79.3.838
– ident: e_1_2_2_58_1
  doi: 10.1097/00005768-200001000-00017
– ident: e_1_2_2_129_1
  doi: 10.1097/HJR.0b013e3283361dc5
– ident: e_1_2_2_27_1
  doi: 10.1152/japplphysiol.00895.2011
– ident: e_1_2_2_38_1
  doi: 10.1016/S0008-6363(02)00545-X
– ident: e_1_2_2_140_1
  doi: 10.1002/cphy.c100072
– ident: e_1_2_2_44_1
  doi: 10.1177/1074248415599061
– ident: e_1_2_2_135_1
  doi: 10.1113/expphysiol.2013.073874
– ident: e_1_2_2_103_1
  doi: 10.1249/MSS.0000000000000178
– volume: 1
  start-page: 203
  year: 2011
  ident: e_1_2_2_156_1
  article-title: Exercise: Kinetic considerations for gas exchange
  publication-title: Compr Physiol
– ident: e_1_2_2_66_1
  doi: 10.1113/jphysiol.2012.232777
– ident: e_1_2_2_104_1
  doi: 10.14814/phy2.13808
– ident: e_1_2_2_97_1
  doi: 10.1152/japplphysiol.01003.2014
– ident: e_1_2_2_68_1
  doi: 10.1152/japplphysiol.00151.2012
– ident: e_1_2_2_171_1
  doi: 10.1007/s00418-004-0641-9
– ident: e_1_2_2_17_1
  doi: 10.1152/japplphysiol.00970.2009
– ident: e_1_2_2_75_1
  doi: 10.1152/jappl.1994.77.3.1288
– ident: e_1_2_2_78_1
  doi: 10.1152/jappl.1984.56.4.831
– ident: e_1_2_2_158_1
  doi: 10.1152/ajpheart.01086.2002
– ident: e_1_2_2_180_1
  doi: 10.1152/ajpcell.1977.233.5.C135
– ident: e_1_2_2_124_1
  doi: 10.1152/jappl.1999.87.5.1741
– ident: e_1_2_2_139_1
  doi: 10.1152/japplphysiol.01063.2016
– ident: e_1_2_2_149_1
  doi: 10.1152/jappl.1999.87.1.325
– ident: e_1_2_2_34_1
  doi: 10.1152/ajpheart.00590.2010
– ident: e_1_2_2_127_1
  doi: 10.1016/j.resp.2006.08.008
– ident: e_1_2_2_7_1
  doi: 10.1152/ajpheart.1984.246.1.H59
– ident: e_1_2_2_83_1
  doi: 10.1249/JES.0000000000000074
– ident: e_1_2_2_32_1
  doi: 10.1007/s11897-016-0293-9
– ident: e_1_2_2_117_1
  doi: 10.1152/japplphysiol.00895.2009
– volume: 1
  start-page: 1
  year: 2011
  ident: e_1_2_2_136_1
  article-title: Highly athletic terrestrial mammals: horses and dogs
  publication-title: Compr Physiol
– ident: e_1_2_2_123_1
  doi: 10.1007/s00421-010-1649-6
– ident: e_1_2_2_42_1
  doi: 10.1016/j.jacc.2011.06.025
– ident: e_1_2_2_102_1
  doi: 10.1152/ajpregu.00147.2004
– ident: e_1_2_2_73_1
  doi: 10.1152/ajpheart.00469.2015
– volume: 76
  start-page: VI18
  year: 1987
  ident: e_1_2_2_178_1
  article-title: Dynamics of pulmonary gas exchange
  publication-title: Circulation
– ident: e_1_2_2_61_1
  doi: 10.1152/ajpheart.1990.259.1.H84
– ident: e_1_2_2_48_1
  doi: 10.1016/j.niox.2014.09.157
– ident: e_1_2_2_118_1
  doi: 10.1080/17461391.2018.1445298
– ident: e_1_2_2_56_1
  doi: 10.1152/ajpheart.00421.2015
– ident: e_1_2_2_4_1
  doi: 10.1113/jphysiol.2006.113936
– ident: e_1_2_2_65_1
  doi: 10.1152/japplphysiol.00567.2007
– ident: e_1_2_2_50_1
  doi: 10.1016/j.resp.2005.11.004
– ident: e_1_2_2_88_1
  doi: 10.1093/ajh/hpx162
– ident: e_1_2_2_100_1
  doi: 10.1152/japplphysiol.00627.2007
– ident: e_1_2_2_9_1
  doi: 10.1152/japplphysiol.00046.2010
– ident: e_1_2_2_59_1
  doi: 10.1152/jappl.1998.85.4.1394
– ident: e_1_2_2_99_1
  doi: 10.1152/ajpregu.00015.2019
– ident: e_1_2_2_141_1
  doi: 10.3109/10739689609148286
– ident: e_1_2_2_94_1
  doi: 10.1152/japplphysiol.01222.2001
– ident: e_1_2_2_107_1
  doi: 10.1111/j.1748-1716.2007.01713.x
– ident: e_1_2_2_16_1
  doi: 10.1016/S1569-9048(02)00183-0
– ident: e_1_2_2_29_1
  doi: 10.1152/japplphysiol.00179.2004
– ident: e_1_2_2_105_1
  doi: 10.1249/MSS.0000000000000264
– ident: e_1_2_2_148_1
  doi: 10.1152/jappl.2001.91.4.1845
– ident: e_1_2_2_150_1
  doi: 10.1172/JCI118237
– ident: e_1_2_2_86_1
  doi: 10.1249/MSS.0b013e3181d9cf7f
– ident: e_1_2_2_49_1
  doi: 10.1111/j.1748-1716.2006.01598.x
– ident: e_1_2_2_108_1
  doi: 10.1152/ajpheart.1982.243.2.H296
– ident: e_1_2_2_153_1
  doi: 10.1152/jappl.1993.75.4.1911
– ident: e_1_2_2_15_1
  doi: 10.1152/ajpregu.00205.2011
– ident: e_1_2_2_98_1
  doi: 10.14814/phy2.13402
– ident: e_1_2_2_168_1
  doi: 10.1152/ajpheart.00435.2012
– ident: e_1_2_2_37_1
  doi: 10.1152/jappl.1996.80.1.261
– ident: e_1_2_2_162_1
  doi: 10.1016/S0008-6363(95)00199-9
– ident: e_1_2_2_145_1
  doi: 10.1080/00140138808966766
– ident: e_1_2_2_77_1
  doi: 10.1152/jappl.1992.73.2.728
– ident: e_1_2_2_51_1
  doi: 10.1161/CIRCHEARTFAILURE.113.001420
– ident: e_1_2_2_62_1
  doi: 10.1016/0034-5687(87)90022-3
– volume: 45
  start-page: 2942
  year: 1986
  ident: e_1_2_2_179_1
  article-title: Effect of anaerobiosis on the kinetics of O2 uptake during exercise
  publication-title: Fed Proc
– ident: e_1_2_2_120_1
  doi: 10.1152/ajpregu.00399.2016
– ident: e_1_2_2_87_1
  doi: 10.1152/physrev.00035.2013
– ident: e_1_2_2_170_1
  doi: 10.1152/jappl.1990.68.6.2369
– start-page: 1957
  volume-title: The Lung: Scientific Foundations
  year: 1997
  ident: e_1_2_2_131_1
– ident: e_1_2_2_82_1
  doi: 10.14814/phy2.14098
– ident: e_1_2_2_85_1
  doi: 10.1146/annurev-nutr-082117-051622
– start-page: 555
  volume-title: Handbook of Physiology. Skeletal Muscle
  year: 1983
  ident: e_1_2_2_160_1
– ident: e_1_2_2_84_1
  doi: 10.1002/9781444303315.ch3
– ident: e_1_2_2_39_1
  doi: 10.1161/HYPERTENSIONAHA.114.04540
– ident: e_1_2_2_154_1
  doi: 10.1152/japplphysiol.00308.2003
– ident: e_1_2_2_184_1
  doi: 10.1113/jphysiol.2005.084327
– ident: e_1_2_2_41_1
  doi: 10.1113/JP276678
– ident: e_1_2_2_174_1
  doi: 10.1146/annurev.ph.58.030196.000321
– ident: e_1_2_2_26_1
  doi: 10.3389/fphys.2019.00031
– ident: e_1_2_2_24_1
  doi: 10.1152/ajpregu.00295.2013
– ident: e_1_2_2_6_1
  doi: 10.1152/japplphysiol.00518.2014
– ident: e_1_2_2_152_1
  doi: 10.1152/ajpregu.00226.2002
– start-page: 2033
  volume-title: The Lung: Scientific Foundations
  year: 1997
  ident: e_1_2_2_176_1
– ident: e_1_2_2_157_1
  doi: 10.1126/science.3420417
– ident: e_1_2_2_21_1
  doi: 10.1113/jphysiol.2001.013165
– ident: e_1_2_2_25_1
  doi: 10.1016/j.resp.2013.11.010
– ident: e_1_2_2_72_1
  doi: 10.1113/JP275170
– ident: e_1_2_2_161_1
  doi: 10.1161/CIRCRESAHA.117.310699
SSID ssj0013099
Score 2.5332558
SecondaryResourceType review_article
Snippet Three sentinel parameters of aerobic performance are the maximal oxygen uptake (V̇O2max), critical power (CP) and speed of the V̇O2 kinetics following exercise...
Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( ), critical power (CP) and speed of the kinetics following exercise onset. Of...
Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( V̇O2max ), critical power (CP) and speed of the V̇O2 kinetics following...
Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( V ˙ O 2 max ) , critical power (CP) and speed of the V ˙ O 2 kinetics...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 889
SubjectTerms Adaptation
Aerobic capacity
Aging
Blood flow
Cardiovascular system
Chronic illnesses
critical power
Exercise
exercise intolerance
Exercise Tolerance
exercise training
heart failure
Intolerance
maximal oxygen uptake
Microvasculature
Mitochondria
Mitochondria, Muscle - metabolism
Muscle, Skeletal - metabolism
Myocytes
Oxygen - metabolism
Oxygen Consumption
oxygen transport
oxygen uptake kinetics
parameters of aerobic function
Physical fitness
Physical training
Seeds
Skeletal muscle
Structure-function relationships
Supplements
Title The role of vascular function on exercise capacity in health and disease
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP278931
https://www.ncbi.nlm.nih.gov/pubmed/31977068
https://www.proquest.com/docview/2484156037
https://www.proquest.com/docview/2344267021
https://pubmed.ncbi.nlm.nih.gov/PMC7874303
Volume 599
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iyYuv9bG-iCB6qrZNmjRHUZd1RRHZBcFDSdIURe2K7h701ztJ0-r6ABF6yyRtmpnkm2TmC0I7Wid5KDQJVCJJQKM8CURRyCChSjPDRcHcccH5BesOaO86ufZRlTYXpuKHaDbcrGW4-doauFT-FpLIkg30Lm0Sp0uhjgiztPnHV_HHAUIoREMUzpPI885C1YO64uRK9A1efo-S_Ixe3fLTmUM39YdXUSf3--OR2tdvXzgd_9ezeTTrUSk-rNRoAU2ZchG1DkvwyB9f8S52caJuA76FuqBZ2AYl4mGB60BWbNdHO8YYnvoaJ6xhJdYA8_FdiauESyzLHPtDoSU06Jz0j7qBv48h0DZ_FrxMQaTmMlISUITQmnMRGcAzDMxeMyaMiGOdSxbHoqAF4dpIRVRIpMgpNQVZRtPlsDSrCJucAVKUBTRpLOmYSGOVKpgCck5yykUb7dVjk2lPVm7vzHjIKqeFZPVPaqPtRvKpIuj4QWajHt7Mm-hLFtPUOq8h4dBEUwzGZU9MZGmGY5AhFBAMBxzURiuVNjQvgbmL85ClbcQn9KQRsMTdkyXl3a0j8IZJEjpNoJNODX797qzfuwSEntK1P0uuo5nYRt24uPINND16HptNgE0jtQUGcnq25czkHbD-Eng
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9N44G98NWNFQZ40gRP2dLYsWPxNG1MpbTVhDppD5Mi23HEBEsnaB-2v5475wPKmISQ8uazE8d39u_su58B9pxLi1g7HtnU8EgMijTSZWmiVFgnvdKlDMcFk6kcnonReXq-Bu_bXJiaH6LbcCPLCPM1GThtSDdWTmwDo1PK4qQc6gcCcQZ5Xsefk19HCLHWHVW4SgcN8yzWPWhrrq5FdwDm3TjJ3_FrWIBOHsNF--l13MnX_eXC7rvbP1gd_7NvT-BRA0zZYa1JT2HNV8-gd1ihU351w96yECoa9uB7METlYhSXyOYla2NZGS2RNMwMn_YmJ-ZwMXaI9NllxeqcS2aqgjXnQptwdvJhdjSMmisZIkcptOhoam6cMgNrEEho55TSA4-QRqLlOym110niCiOTRJei5Mp5Y7mNudGFEL7kW7BezSu_DcwXEsGiKbFJT7xjOktsZnEWKBQvhNJ9eNcOTu4avnK6NuNbXvstPG9_Uh92O8nrmqPjLzI77fjmjZX-yBORkf8ac4VNdMVoX3RoYio_X6IMFwhiFEKhPjyv1aF7CU5fSsUy64NaUZROgLi7V0uqyy-BwxvnSew0x04GPbj3u_PZ6BRBeiZe_LPkG3g4nE3G-fjj9NNL2EgoCCeEme_A-uL70r9CFLWwr4O1_ARb1hWe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB-kgvii1vpx2tYIok9b9zbZZPNYbI_z1HJICwUflnxiad0revegf70z2Q-9VkGEfcsku9nMJL9JZn4BeOFc6XPteGZLwzMx9mWmYzRZKayTQeko03HBhyM5PRGz0_K0i6qkXJiWH2LYcCPLSPM1Gfilj52RE9nAbE5JnJRCfVNIBBIEiD4Wv04Qcq0HpnBVjjviWaz7uq-5vhRdw5fXwyR_h69p_ZnchU_9l7dhJ-d7q6Xdcz-ukDr-X9fuwZ0OlrL9Vo824UZo7sPWfoMu-Zfv7CVLgaJpB34LpqhajKIS2SKyPpKV0QJJg8zw6e9xYg6XYoc4n501rM24ZKbxrDsVegAnk8PjN9Osu5Ahc5RAi26m5sYpM7YGYYR2Tik9DghoJNq9k1IHXRTOG1kUOorIlQvGcptzo70QIfKHsNEsmvAYWPASoaKJ2GQg1jFdFbayOAd4xb1QegSv-rGpXcdWTpdmXNSt18Lr_ieN4PkgedkydPxBZrsf3rqz0W91ISryXnOusImhGK2LjkxMExYrlOECIYxCIDSCR602DC_ByUupXFYjUGt6MggQc_d6SXP2OTF44yyJnebYyaQGf_3u-ng2R4heiSf_LPkMbs0PJvX7t0fvnsLtgiJwUoz5Nmwsv67CDkKopd1NtvITCrYUTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+vascular+function+on+exercise+capacity+in+health+and+disease&rft.jtitle=The+Journal+of+physiology&rft.au=Poole%2C+David+C&rft.au=Behnke%2C+Brad+J&rft.au=Musch%2C+Timothy+I&rft.date=2021-02-01&rft.issn=1469-7793&rft.eissn=1469-7793&rft.volume=599&rft.issue=3&rft.spage=889&rft_id=info:doi/10.1113%2FJP278931&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon