The role of vascular function on exercise capacity in health and disease
Three sentinel parameters of aerobic performance are the maximal oxygen uptake (V̇O2max), critical power (CP) and speed of the V̇O2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal musc...
Saved in:
Published in | The Journal of physiology Vol. 599; no. 3; pp. 889 - 910 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-3751 1469-7793 1469-7793 |
DOI | 10.1113/JP278931 |
Cover
Abstract | Three sentinel parameters of aerobic performance are the maximal oxygen uptake (V̇O2max), critical power (CP) and speed of the V̇O2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal muscle mitochondria. Fast V̇O2 kinetics demands that the cardiovascular system distributes exercise‐induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V̇O2. Chronic disease and ageing create an O2 delivery (i.e. blood flow × arterial [O2], Q̇O2) dependency that slows V̇O2 kinetics, decreasing CP and V̇O2max, increasing the O2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical ), this brief review examines the training‐induced plasticity of key elements in the O2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q̇O2 and thus defend microvascular O2 partial pressures and capillary blood–myocyte O2 diffusion across a ∼100‐fold range of muscle V̇O2 values. Recent discoveries, especially in the muscle microcirculation and Q̇O2‐to‐V̇O2 heterogeneity, are integrated with the O2 transport pathway to appreciate how local and systemic vascular control helps defend V̇O2 kinetics and determine CP and V̇O2max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented.
figure legend Three sentinel parameters of aerobic performance are the O2 uptake (V̇O2) kinetics following the onset of exercise, critical power (CP) or critical speed (CS) (asymptote of the power/speed–time relation for high intensity exercise) and the maximal O2 uptake (V̇O2max). The dependence of each parameter on O2 delivery is highly subject, exercise mode and context dependent. That said, for upright rhythmic cycling or running exercise the boxes apportion the relative importance of cardiac, vascular and mitochondrial O2 delivery/utilization to each in the untrained state (pre‐) and the participation of each in the training adaptation (post‐) for each parameter. This brief review explores that dependency in health and disease utilizing exercise training and other conditions such as nitrate supplementation to unveil how vascular function and dysfunction predicate exercise tolerance and intolerance within the scope of these three parameters of aerobic function. |
---|---|
AbstractList | Three sentinel parameters of aerobic performance are the maximal oxygen uptake (
), critical power (CP) and speed of the
kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O
2
transport pathway from lungs to skeletal muscle mitochondria. Fast
kinetics demands that the cardiovascular system distributes exercise‐induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates
. Chronic disease and ageing create an O
2
delivery (i.e. blood flow × arterial [O
2
],
) dependency that slows
kinetics, decreasing CP and
, increasing the O
2
deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract), this brief review examines the training‐induced plasticity of key elements in the O
2
transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle
and thus defend microvascular O
2
partial pressures and capillary blood–myocyte O
2
diffusion across a ∼100‐fold range of muscle
values. Recent discoveries, especially in the muscle microcirculation and
‐to‐
heterogeneity, are integrated with the O
2
transport pathway to appreciate how local and systemic vascular control helps defend
kinetics and determine CP and
in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented.
image Three sentinel parameters of aerobic performance are the maximal oxygen uptake (V̇O2max), critical power (CP) and speed of the V̇O2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal muscle mitochondria. Fast V̇O2 kinetics demands that the cardiovascular system distributes exercise‐induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V̇O2. Chronic disease and ageing create an O2 delivery (i.e. blood flow × arterial [O2], Q̇O2) dependency that slows V̇O2 kinetics, decreasing CP and V̇O2max, increasing the O2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical ), this brief review examines the training‐induced plasticity of key elements in the O2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q̇O2 and thus defend microvascular O2 partial pressures and capillary blood–myocyte O2 diffusion across a ∼100‐fold range of muscle V̇O2 values. Recent discoveries, especially in the muscle microcirculation and Q̇O2‐to‐V̇O2 heterogeneity, are integrated with the O2 transport pathway to appreciate how local and systemic vascular control helps defend V̇O2 kinetics and determine CP and V̇O2max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented. figure legend Three sentinel parameters of aerobic performance are the O2 uptake (V̇O2) kinetics following the onset of exercise, critical power (CP) or critical speed (CS) (asymptote of the power/speed–time relation for high intensity exercise) and the maximal O2 uptake (V̇O2max). The dependence of each parameter on O2 delivery is highly subject, exercise mode and context dependent. That said, for upright rhythmic cycling or running exercise the boxes apportion the relative importance of cardiac, vascular and mitochondrial O2 delivery/utilization to each in the untrained state (pre‐) and the participation of each in the training adaptation (post‐) for each parameter. This brief review explores that dependency in health and disease utilizing exercise training and other conditions such as nitrate supplementation to unveil how vascular function and dysfunction predicate exercise tolerance and intolerance within the scope of these three parameters of aerobic function. Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( V ˙ O 2 max ) , critical power (CP) and speed of the V ˙ O 2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O 2 transport pathway from lungs to skeletal muscle mitochondria. Fast V ˙ O 2 kinetics demands that the cardiovascular system distributes exercise-induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V ˙ O 2 . Chronic disease and ageing create an O 2 delivery (i.e. blood flow × arterial [ O 2 ] , Q ˙ O 2 ) dependency that slows V ˙ O 2 kinetics, decreasing CP and V ˙ O 2 max , increasing the O 2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract ), this brief review examines the training-induced plasticity of key elements in the O 2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q ˙ O 2 and thus defend microvascular O 2 partial pressures and capillary blood-myocyte O 2 diffusion across a ~100-fold range of muscle V ˙ O 2 values. Recent discoveries, especially in the muscle microcirculation and Q ˙ O 2 -to- V ˙ O 2 heterogeneity, are integrated with the O 2 transport pathway to appreciate how local and systemic vascular control helps defend V ˙ O 2 kinetics and determine CP and V ˙ O 2 max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented. Three sentinel parameters of aerobic performance are the O 2 uptake ( V ˙ O 2 ) kinetics following the onset of exercise, critical power (CP) or critical speed (CS) (asymptote of the power/speed–time relation for high intensity exercise) and the maximal O 2 uptake ( V ˙ O 2 max ) . The dependence of each parameter on O 2 delivery is highly subject, exercise mode and context dependent. That said, for upright rhythmic cycling or running exercise the boxes apportion the relative importance of cardiac, vascular and mitochondrial O 2 delivery/utilization to each in the untrained state (pre-) and the participation of each in the training adaptation (post-) for each parameter. This brief review explores that dependency in health and disease utilizing exercise training and other conditions such as nitrate supplementation to unveil how vascular function and dysfunction predicate exercise tolerance and intolerance within the scope of these three parameters of aerobic function. Three sentinel parameters of aerobic performance are the maximal oxygen uptake (V̇O2max), critical power (CP) and speed of the V̇O2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal muscle mitochondria. Fast V̇O2 kinetics demands that the cardiovascular system distributes exercise‐induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V̇O2. Chronic disease and ageing create an O2 delivery (i.e. blood flow × arterial [O2], Q̇O2) dependency that slows V̇O2 kinetics, decreasing CP and V̇O2max, increasing the O2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract), this brief review examines the training‐induced plasticity of key elements in the O2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q̇O2 and thus defend microvascular O2 partial pressures and capillary blood–myocyte O2 diffusion across a ∼100‐fold range of muscle V̇O2 values. Recent discoveries, especially in the muscle microcirculation and Q̇O2‐to‐V̇O2 heterogeneity, are integrated with the O2 transport pathway to appreciate how local and systemic vascular control helps defend V̇O2 kinetics and determine CP and V̇O2max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented. Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( V̇O2max ), critical power (CP) and speed of the V̇O2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal muscle mitochondria. Fast V̇O2 kinetics demands that the cardiovascular system distributes exercise-induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V̇O2 . Chronic disease and ageing create an O2 delivery (i.e. blood flow × arterial [O2 ], Q̇O2 ) dependency that slows V̇O2 kinetics, decreasing CP and V̇O2max , increasing the O2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract), this brief review examines the training-induced plasticity of key elements in the O2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q̇O2 and thus defend microvascular O2 partial pressures and capillary blood-myocyte O2 diffusion across a ∼100-fold range of muscle V̇O2 values. Recent discoveries, especially in the muscle microcirculation and Q̇O2 -to- V̇O2 heterogeneity, are integrated with the O2 transport pathway to appreciate how local and systemic vascular control helps defend V̇O2 kinetics and determine CP and V̇O2max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented.Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( V̇O2max ), critical power (CP) and speed of the V̇O2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal muscle mitochondria. Fast V̇O2 kinetics demands that the cardiovascular system distributes exercise-induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V̇O2 . Chronic disease and ageing create an O2 delivery (i.e. blood flow × arterial [O2 ], Q̇O2 ) dependency that slows V̇O2 kinetics, decreasing CP and V̇O2max , increasing the O2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract), this brief review examines the training-induced plasticity of key elements in the O2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q̇O2 and thus defend microvascular O2 partial pressures and capillary blood-myocyte O2 diffusion across a ∼100-fold range of muscle V̇O2 values. Recent discoveries, especially in the muscle microcirculation and Q̇O2 -to- V̇O2 heterogeneity, are integrated with the O2 transport pathway to appreciate how local and systemic vascular control helps defend V̇O2 kinetics and determine CP and V̇O2max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented. Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( ), critical power (CP) and speed of the kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O transport pathway from lungs to skeletal muscle mitochondria. Fast kinetics demands that the cardiovascular system distributes exercise-induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates . Chronic disease and ageing create an O delivery (i.e. blood flow × arterial [O ], ) dependency that slows kinetics, decreasing CP and , increasing the O deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract), this brief review examines the training-induced plasticity of key elements in the O transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle and thus defend microvascular O partial pressures and capillary blood-myocyte O diffusion across a ∼100-fold range of muscle values. Recent discoveries, especially in the muscle microcirculation and -to- heterogeneity, are integrated with the O transport pathway to appreciate how local and systemic vascular control helps defend kinetics and determine CP and in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented. |
Author | Behnke, Brad J. Musch, Timothy I. Poole, David C. |
Author_xml | – sequence: 1 givenname: David C. orcidid: 0000-0003-2441-3793 surname: Poole fullname: Poole, David C. email: poole@vet.k-state.edu organization: Kansas State University – sequence: 2 givenname: Brad J. surname: Behnke fullname: Behnke, Brad J. organization: Kansas State University – sequence: 3 givenname: Timothy I. orcidid: 0000-0003-1599-1751 surname: Musch fullname: Musch, Timothy I. organization: Kansas State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31977068$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1rFDEUhkOptNta8BdIwBtvpuZrk8mNIEWtpWAv1utwNnPGTZlN1mSmdf-9Kd1tVRQCuThPXp6854QcxhSRkFecnXPO5burG2FaK_kBmXGlbWOMlYdkxpgQjTRzfkxOSrlljEtm7RE5ltwaw3Q7I5eLFdKcBqSpp3dQ_DRApv0U_RhSpPXgT8w-FKQeNuDDuKUh0hXCMK4oxI52dQYFX5IXPQwFz3b3Kfn26ePi4rK5_vr5y8WH68YraVWjuZXgDfAlWMat91WVozVaz03rtbZohfAdaCFsr3ppPMJSLpkE2ymFvTwl7x9zN9NyjZ3HOGYY3CaHNeStSxDcn5MYVu57unOmNUoyWQPe7gJy-jFhGd06FI_DABHTVJyQSgltmOAVffMXepumHOv3nFCt4nPNpKnU69-NnlT2JVfg_BHwOZWSsXe1RnjotwqGwXHmHrbo9lt8Vnx6sM_8B7rLvg8Dbv_LucXVDZe2VfIXTneouA |
CitedBy_id | crossref_primary_10_1113_JP279554 crossref_primary_10_1161_HYPERTENSIONAHA_121_17875 crossref_primary_10_31083_RCM25302 crossref_primary_10_1016_j_echo_2021_12_014 crossref_primary_10_1111_apha_14081 crossref_primary_10_1152_japplphysiol_00291_2020 crossref_primary_10_3389_fphys_2023_1281715 crossref_primary_10_1152_japplphysiol_00982_2020 crossref_primary_10_1113_EP092258 crossref_primary_10_3233_THC_236022 crossref_primary_10_1093_function_zqad013 crossref_primary_10_1080_15502783_2024_2410426 crossref_primary_10_1088_1361_6579_ad4c36 crossref_primary_10_1183_16000617_0284_2020 crossref_primary_10_1007_s00421_021_04623_6 crossref_primary_10_1177_20503121241296701 crossref_primary_10_1113_JP279936 crossref_primary_10_1152_japplphysiol_00468_2020 crossref_primary_10_1113_JP281172 crossref_primary_10_1111_micc_12751 crossref_primary_10_1113_EP089820 crossref_primary_10_1113_JP281003 crossref_primary_10_3389_fphys_2022_1052449 crossref_primary_10_1152_japplphysiol_00734_2021 crossref_primary_10_1113_JP279223 crossref_primary_10_1113_JP281120 crossref_primary_10_14814_phy2_14551 crossref_primary_10_1113_EP091571 crossref_primary_10_2217_fca_2022_0086 crossref_primary_10_1113_EP091606 crossref_primary_10_1152_japplphysiol_00833_2021 crossref_primary_10_3389_fendo_2022_954418 crossref_primary_10_2478_amns_2022_2_0082 crossref_primary_10_34133_cbsystems_0107 crossref_primary_10_1007_s00421_023_05182_8 crossref_primary_10_1152_ajpregu_00053_2021 crossref_primary_10_3389_fphys_2024_1359119 crossref_primary_10_31680_gaunjss_948063 crossref_primary_10_1152_japplphysiol_00344_2022 crossref_primary_10_3390_ijms232315303 crossref_primary_10_3390_nu17071106 crossref_primary_10_1097_NPT_0000000000000423 crossref_primary_10_1152_japplphysiol_00497_2022 |
Cites_doi | 10.1016/j.jacc.2009.11.086 10.1152/jappl.1992.73.3.1067 10.1152/japplphysiol.00949.2013 10.1152/jappl.1991.71.6.2099 10.1152/jappl.1996.80.3.988 10.1371/journal.pone.0111409 10.1152/jappl.1992.73.3.1114 10.1152/japplphysiol.00487.2007 10.1152/japplphysiol.01084.2010 10.1161/CIRCULATIONAHA.114.012957 10.14814/phy2.12432 10.1152/ajpheart.1979.237.4.H481 10.1152/japplphysiol.00458.2014 10.1152/ajpheart.00290.2006 10.1249/MSS.0000000000000939 10.1161/01.CIR.65.6.1213 10.1113/jphysiol.2005.099507 10.1152/ajpregu.00101.2011 10.1152/ajpregu.00479.2010 10.1097/CCM.0b013e31825b933a 10.1016/S0034-5687(01)00195-5 10.1249/JES.0000000000000044 10.1161/CIRCULATIONAHA.106.675041 10.1152/japplphysiol.01141.2014 10.1152/ajpheart.00901.2013 10.1161/HYPERTENSIONAHA.117.09289 10.1152/jappl.1992.73.2.737 10.1113/jphysiol.2004.079533 10.1371/journal.pone.0059678 10.1152/jappl.1995.79.6.2050 10.1001/jama.2018.14852 10.1161/CIRCRESAHA.116.309832 10.1152/ajpregu.00263.2016 10.1152/japplphysiol.00747.2017 10.1152/japplphysiol.00367.2016 10.1097/jes.0b013e318156e4ac 10.1113/JP272409 10.1139/cjpp-78-1-67 10.1113/expphysiol.2009.050500 10.1152/jappl.1999.87.2.652 10.2147/DDDT.S117277 10.1016/j.cophys.2019.05.011 10.1016/j.resp.2013.04.001 10.1152/jappl.1997.83.4.1318 10.1152/ajpheart.00059.2002 10.1113/jphysiol.1985.sp015794 10.1152/japplphysiol.01355.2009 10.1249/00003677-199600240-00004 10.1113/expphysiol.2005.032904 10.1152/jappl.1998.85.2.627 10.1152/japplphysiol.01123.2014 10.1152/ajpheart.00596.2009 10.1016/j.cmet.2011.01.004 10.1152/japplphysiol.00189.2019 10.1097/jes.0b013e31815ddba4 10.1249/MSS.0000000000001052 10.1152/japplphysiol.00014.2016 10.1055/s-2007-1025043 10.1016/0026-2862(86)90052-X 10.1002/cphy.c100048 10.1152/japplphysiol.00446.2013 10.1152/ajpheart.00298.2013 10.1152/ajpheart.00751.2015 10.1152/jappl.2000.88.1.186 10.1113/EP087599 10.1152/ajpregu.2000.279.3.R899 10.1111/micc.12497 10.1152/ajpregu.00554.2006 10.1152/japplphysiol.00057.2016 10.1152/ajpregu.00048.2009 10.1113/JP275186 10.1152/japplphysiol.00297.2019 10.1113/JP278494 10.1113/expphysiol.2005.032789 10.1113/JP270169 10.1113/EP086908 10.1152/ajpregu.2001.280.2.R441 10.1097/HJR.0b013e32833f3aa5 10.1152/japplphysiol.00013.2019 10.1161/01.CIR.83.3.778 10.1016/j.mvr.2012.11.006 10.1016/S0008-6363(95)00068-2 10.1113/jphysiol.2012.243121 10.1113/jphysiol.2002.035915 10.1152/jappl.1994.77.5.2413 10.1152/japplphysiol.00574.2015 10.1152/ajpheart.00943.2011 10.1113/jphysiol.2003.060301 10.1152/jappl.1995.79.3.838 10.1097/00005768-200001000-00017 10.1097/HJR.0b013e3283361dc5 10.1152/japplphysiol.00895.2011 10.1016/S0008-6363(02)00545-X 10.1002/cphy.c100072 10.1177/1074248415599061 10.1113/expphysiol.2013.073874 10.1249/MSS.0000000000000178 10.1113/jphysiol.2012.232777 10.14814/phy2.13808 10.1152/japplphysiol.01003.2014 10.1152/japplphysiol.00151.2012 10.1007/s00418-004-0641-9 10.1152/japplphysiol.00970.2009 10.1152/jappl.1994.77.3.1288 10.1152/jappl.1984.56.4.831 10.1152/ajpheart.01086.2002 10.1152/ajpcell.1977.233.5.C135 10.1152/jappl.1999.87.5.1741 10.1152/japplphysiol.01063.2016 10.1152/jappl.1999.87.1.325 10.1152/ajpheart.00590.2010 10.1016/j.resp.2006.08.008 10.1152/ajpheart.1984.246.1.H59 10.1249/JES.0000000000000074 10.1007/s11897-016-0293-9 10.1152/japplphysiol.00895.2009 10.1007/s00421-010-1649-6 10.1016/j.jacc.2011.06.025 10.1152/ajpregu.00147.2004 10.1152/ajpheart.00469.2015 10.1152/ajpheart.1990.259.1.H84 10.1016/j.niox.2014.09.157 10.1080/17461391.2018.1445298 10.1152/ajpheart.00421.2015 10.1113/jphysiol.2006.113936 10.1152/japplphysiol.00567.2007 10.1016/j.resp.2005.11.004 10.1093/ajh/hpx162 10.1152/japplphysiol.00627.2007 10.1152/japplphysiol.00046.2010 10.1152/jappl.1998.85.4.1394 10.1152/ajpregu.00015.2019 10.3109/10739689609148286 10.1152/japplphysiol.01222.2001 10.1111/j.1748-1716.2007.01713.x 10.1016/S1569-9048(02)00183-0 10.1152/japplphysiol.00179.2004 10.1249/MSS.0000000000000264 10.1152/jappl.2001.91.4.1845 10.1172/JCI118237 10.1249/MSS.0b013e3181d9cf7f 10.1111/j.1748-1716.2006.01598.x 10.1152/ajpheart.1982.243.2.H296 10.1152/jappl.1993.75.4.1911 10.1152/ajpregu.00205.2011 10.14814/phy2.13402 10.1152/ajpheart.00435.2012 10.1152/jappl.1996.80.1.261 10.1016/S0008-6363(95)00199-9 10.1080/00140138808966766 10.1152/jappl.1992.73.2.728 10.1161/CIRCHEARTFAILURE.113.001420 10.1016/0034-5687(87)90022-3 10.1152/ajpregu.00399.2016 10.1152/physrev.00035.2013 10.1152/jappl.1990.68.6.2369 10.14814/phy2.14098 10.1146/annurev-nutr-082117-051622 10.1002/9781444303315.ch3 10.1161/HYPERTENSIONAHA.114.04540 10.1152/japplphysiol.00308.2003 10.1113/jphysiol.2005.084327 10.1113/JP276678 10.1146/annurev.ph.58.030196.000321 10.3389/fphys.2019.00031 10.1152/ajpregu.00295.2013 10.1152/japplphysiol.00518.2014 10.1152/ajpregu.00226.2002 10.1126/science.3420417 10.1113/jphysiol.2001.013165 10.1016/j.resp.2013.11.010 10.1113/JP275170 10.1161/CIRCRESAHA.117.310699 |
ContentType | Journal Article |
Copyright | 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society. Journal compilation © 2021 The Physiological Society |
Copyright_xml | – notice: 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society – notice: 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society. – notice: Journal compilation © 2021 The Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/JP278931 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Technology Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 910 |
ExternalDocumentID | PMC7874303 31977068 10_1113_JP278931 TJP13984 |
Genre | reviewArticle Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R15 HL137156 – fundername: NHLBI NIH HHS grantid: P01 HL017731 – fundername: NHLBI NIH HHS grantid: R15 HL108328 – fundername: NHLBI NIH HHS grantid: R01 HL142877 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 123 18M 1OC 24P 29L 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HGLYW HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ TEORI TLM TN5 TR2 UB1 UPT V8K VH1 W8F W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ XG1 YBU YHG YKV YQT YSK YZZ ZZTAW ~IA ~WT .55 .GJ .Y3 0YM 31~ 3EH 3O- AASGY AAYJJ AAYXX ADXHL AEYWJ AFFNX AGHNM AGYGG C1A CAG CHEAL CITATION COF EJD FA8 H13 HF~ H~9 LW6 MVM NEJ OHT RIG UKR WHG X7M XOL YXB YYP ZGI ZXP CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c4394-6193ac7a1ba9019cc7791e9766578c669e922cda6229f4f37ceab3b03a9d44ef3 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 1469-7793 |
IngestDate | Thu Aug 21 18:18:32 EDT 2025 Fri Jul 11 11:11:56 EDT 2025 Fri Jul 25 12:03:38 EDT 2025 Thu Apr 03 06:53:50 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 Tue Jul 01 04:29:29 EDT 2025 Wed Jan 22 16:32:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | parameters of aerobic function heart failure maximal oxygen uptake exercise training oxygen transport exercise intolerance critical power oxygen uptake kinetics |
Language | English |
License | 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4394-6193ac7a1ba9019cc7791e9766578c669e922cda6229f4f37ceab3b03a9d44ef3 |
Notes | This review was presented at the 2018 ACSM ‘Integrative Physiology of Exercise (IPE)’ conference, which took place in San Diego, California, US, 5‐8 September 2018. Edited by: Ian Forsythe & Scott Powers ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 All authors have read and approved the final version of this manuscript and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed. Author contributions |
ORCID | 0000-0003-1599-1751 0000-0003-2441-3793 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7874303 |
PMID | 31977068 |
PQID | 2484156037 |
PQPubID | 1086388 |
PageCount | 22 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7874303 proquest_miscellaneous_2344267021 proquest_journals_2484156037 pubmed_primary_31977068 crossref_citationtrail_10_1113_JP278931 crossref_primary_10_1113_JP278931 wiley_primary_10_1113_JP278931_TJP13984 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 February 2021 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 1 February 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 103 2002b; 283 1995; 30 2018; 320 2010; 109 2019b; 127 2010; 108 2019; 10 2000; 88 2008; 36 1974 2006; 572 2015; 309 2019; 19 2006; 291 2007; 191 2011; 58 1998; 85 2013; 8 2017; 312 2011; 111 2016a; 21 2011; 110 2006; 575 2018; 6 2017; 70 2007; 292 2016b; 121 2013; 115 1984; 56 1991; 83 1982; 65 2015; 131 1994; 77 2016; 310 1962; 62–89 2002; 92 2019; 317 1983 2018; 31 2016; 48 2018; 38 2003; 285 2016; 44 2019; 7 2006a; 188 2011; 1 2001; 280 2010a; 17 2013; 85 2018; 103 2019; 104 2009; 297 1997 2013a; 187 2014; 46 2019a; 26 2016; 13 2012; 590 1987; 69 2014; 306 2011; 301 2007; 156 2010; 42 2011; 300 2004; 556 2012; 113 2000; 78 2018; 596 2010; 299 2015; 65 2015; 593 1991; 71 2015; 119 2015; 118 1996; 80 1977; 233 2012; 40 2017; 5 2001; 91 2010; 55 2004; 121 2015; 36 1997; 83 1987; 76 1984; 246 1986; 32 2002; 56 2018; 124 1995; 79 1985; 366 2019; 127 1999; 87 2011; 13 1994; 26 1988; 31 2017; 595 2003; 95 2007; 35 1996; 31 2015; 48 1979; 237 1990; 259 2002c; 539 2013; 98 1986; 45 1993; 75 2015; 43 2019; 597 2006b; 153 2016; 594 2017; 120 2017; 122 2014; 9 1996; 24 1996; 3 2010b; 17 1995; 96 2006; 91 2015; 3 2000; 28 2000; 279 2015; 95 2013; 46 2013b; 591 2013; 305 2009 1982; 243 1988; 241 2014; 192 1996; 58 2012; 302 2002a; 133 2015; 8 2012; 303 2001; 126 2016; 120 1992; 73 2007; 115 2003; 549 2004; 97 2012; 2 1990; 68 1988; 9 2005; 288 2005; 563 2002; 283 2000; 32 2017; 11 2005; 565 2010; 95 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_20_1 e_1_2_2_109_1 e_1_2_2_2_1 e_1_2_2_62_1 e_1_2_2_105_1 e_1_2_2_43_1 e_1_2_2_85_1 e_1_2_2_28_1 e_1_2_2_66_1 e_1_2_2_101_1 e_1_2_2_150_1 e_1_2_2_47_1 e_1_2_2_89_1 e_1_2_2_173_1 e_1_2_2_143_1 e_1_2_2_124_1 e_1_2_2_166_1 e_1_2_2_81_1 e_1_2_2_128_1 e_1_2_2_13_1 e_1_2_2_59_1 e_1_2_2_97_1 e_1_2_2_51_1 e_1_2_2_181_1 Whipp BJ (e_1_2_2_178_1) 1987; 76 e_1_2_2_32_1 e_1_2_2_74_1 e_1_2_2_113_1 e_1_2_2_17_1 e_1_2_2_55_1 e_1_2_2_185_1 e_1_2_2_36_1 e_1_2_2_78_1 e_1_2_2_120_1 e_1_2_2_162_1 e_1_2_2_132_1 e_1_2_2_155_1 e_1_2_2_70_1 e_1_2_2_93_1 e_1_2_2_159_1 Whipp BJ (e_1_2_2_179_1) 1986; 45 e_1_2_2_117_1 e_1_2_2_25_1 e_1_2_2_48_1 e_1_2_2_5_1 e_1_2_2_21_1 e_1_2_2_40_1 e_1_2_2_63_1 e_1_2_2_86_1 e_1_2_2_106_1 e_1_2_2_170_1 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_67_1 e_1_2_2_102_1 e_1_2_2_151_1 e_1_2_2_174_1 e_1_2_2_121_1 e_1_2_2_144_1 e_1_2_2_167_1 e_1_2_2_82_1 e_1_2_2_125_1 e_1_2_2_148_1 e_1_2_2_129_1 e_1_2_2_14_1 e_1_2_2_37_1 Wagner PD (e_1_2_2_176_1) 1997 e_1_2_2_10_1 e_1_2_2_52_1 e_1_2_2_75_1 e_1_2_2_182_1 e_1_2_2_98_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_56_1 e_1_2_2_79_1 e_1_2_2_140_1 e_1_2_2_186_1 e_1_2_2_110_1 e_1_2_2_90_1 e_1_2_2_114_1 e_1_2_2_94_1 e_1_2_2_137_1 e_1_2_2_71_1 e_1_2_2_118_1 Wagner PD (e_1_2_2_175_1) 2000; 28 Saltin B (e_1_2_2_160_1) 1983 e_1_2_2_4_1 e_1_2_2_49_1 e_1_2_2_22_1 e_1_2_2_107_1 e_1_2_2_41_1 e_1_2_2_87_1 e_1_2_2_171_1 e_1_2_2_64_1 e_1_2_2_103_1 e_1_2_2_8_1 e_1_2_2_45_1 e_1_2_2_26_1 e_1_2_2_68_1 e_1_2_2_152_1 Rossiter HB (e_1_2_2_156_1) 2011; 1 e_1_2_2_122_1 e_1_2_2_168_1 e_1_2_2_145_1 e_1_2_2_83_1 e_1_2_2_126_1 e_1_2_2_60_1 e_1_2_2_149_1 Poole DC (e_1_2_2_131_1) 1997 e_1_2_2_38_1 e_1_2_2_11_1 e_1_2_2_30_1 e_1_2_2_76_1 e_1_2_2_95_1 e_1_2_2_19_1 e_1_2_2_53_1 e_1_2_2_34_1 e_1_2_2_164_1 e_1_2_2_99_1 e_1_2_2_111_1 e_1_2_2_15_1 e_1_2_2_57_1 e_1_2_2_141_1 e_1_2_2_183_1 e_1_2_2_134_1 e_1_2_2_157_1 Reynafarje B (e_1_2_2_147_1) 1962; 62 e_1_2_2_115_1 e_1_2_2_72_1 e_1_2_2_91_1 e_1_2_2_138_1 e_1_2_2_119_1 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_108_1 e_1_2_2_42_1 e_1_2_2_65_1 e_1_2_2_84_1 e_1_2_2_104_1 e_1_2_2_27_1 e_1_2_2_46_1 e_1_2_2_69_1 e_1_2_2_88_1 e_1_2_2_100_1 e_1_2_2_130_1 e_1_2_2_153_1 e_1_2_2_172_1 e_1_2_2_123_1 e_1_2_2_146_1 e_1_2_2_165_1 e_1_2_2_61_1 e_1_2_2_80_1 e_1_2_2_127_1 e_1_2_2_169_1 Altman PL (e_1_2_2_3_1) 1974 Poole DC (e_1_2_2_133_1) 1994; 26 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_31_1 e_1_2_2_54_1 e_1_2_2_73_1 e_1_2_2_180_1 e_1_2_2_96_1 e_1_2_2_112_1 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_58_1 e_1_2_2_77_1 e_1_2_2_142_1 e_1_2_2_161_1 e_1_2_2_184_1 Simpson LP (e_1_2_2_163_1) 2015; 36 e_1_2_2_154_1 Poole DC (e_1_2_2_136_1) 2011; 1 e_1_2_2_135_1 e_1_2_2_177_1 e_1_2_2_158_1 e_1_2_2_50_1 e_1_2_2_116_1 e_1_2_2_92_1 e_1_2_2_139_1 |
References_xml | – volume: 237 start-page: H481 year: 1979 end-page: H490 article-title: Microvascular hematocrit and red cell flow in resting and contracting striated muscle publication-title: Am J Physiol – volume: 241 start-page: 1649 year: 1988 end-page: 1651 article-title: Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue publication-title: Science – volume: 10 start-page: 31 year: 2019 article-title: Long‐term aerobic exercise improves vascular function into old age: a systematic review, meta‐analysis and meta regression of observational and interventional studies publication-title: Front Physiol – volume: 24 start-page: 35 year: 1996 end-page: 71 article-title: The slow component of oxygen uptake kinetics in humans publication-title: Exerc Sport Sci Rev – volume: 80 start-page: 988 year: 1996 end-page: 998 article-title: Muscle O uptake kinetics in humans: implications for metabolic control publication-title: J Appl Physiol – volume: 26 year: 2019a article-title: Skeletal muscle interstitial O pressures: bridging the gap between the capillary and myocyte publication-title: Microcirculation – volume: 42 start-page: 1876 year: 2010 end-page: 1890 article-title: Critical power: implications for determination of V̇O max and exercise tolerance publication-title: Med Sci Sports Exerc – volume: 80 start-page: 261 year: 1996 end-page: 270 article-title: Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle publication-title: J Appl Physiol – volume: 118 start-page: 1396 year: 2015 end-page: 1405 article-title: Inorganic nitrate supplementation improves muscle oxygenation, O₂ uptake kinetics, and exercise tolerance at high but not low pedal rates publication-title: J Appl Physiol – volume: 597 start-page: 5429 issue: 22 year: 2019 end-page: 5443 article-title: Incubation with sodium nitrite attenuates fatigue development in intact single mouse fibres at physiological PO2 publication-title: J Physiol – volume: 36 start-page: 25 year: 2008 end-page: 29 article-title: Rapid vascular responses to muscle contraction publication-title: Exerc Sport Sci Rev – volume: 31 start-page: 1265 year: 1988 end-page: 1279 article-title: Metabolic and respiratory profile of the upper limit for prolonged exercise in man publication-title: Ergonomics – volume: 21 start-page: 201 year: 2016a end-page: 208 article-title: Skeletal muscle vascular control during exercise: impact of nitrite infusion during nitric oxide synthase inhibition in healthy rats publication-title: J Cardiovasc Pharmacol Ther – volume: 127 start-page: 1012 year: 2019 end-page: 1033 article-title: Edward F. Adolph Distinguished Lecture. Contemporary model of muscle microcirculation: Gateway to function and dysfunction publication-title: J Appl Physiol – volume: 317 start-page: R203 year: 2019 end-page: R213 article-title: Unaltered V̇o kinetics despite greater muscle oxygenation during heavy‐intensity two‐legged knee extension versus cycle exercise in humans publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 297 start-page: H1720 year: 2009 end-page: H1728 article-title: Microvascular oxygen delivery‐to‐utilization mismatch at the onset of heavy‐intensity exercise in optimally treated patients with CHF publication-title: Am J Physiol Heart Circ Physiol – volume: 299 start-page: H1755 year: 2010 end-page: H1761 article-title: Progressive chronic heart failure slows the recovery of microvascular O pressures after contractions in the rat spinotrapezius muscle publication-title: Am J Physiol Heart Circ Physiol – volume: 91 start-page: 621 year: 2006 end-page: 632 article-title: Human critical power‐oxygen uptake relationship at different pedalling frequencies publication-title: Exp Physiol – start-page: 43 year: 2009 end-page: 55 – volume: 38 start-page: 303 year: 2018 end-page: 328 article-title: Dietary nitrate and physical performance publication-title: Annu Rev Nutr – volume: 288 start-page: R212 year: 2005 end-page: R220 article-title: Comparison of oxygen uptake kinetics during knee extension and cycle exercise publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 1 start-page: 203 year: 2011 end-page: 244 article-title: Exercise: Kinetic considerations for gas exchange publication-title: Compr Physiol – volume: 108 start-page: 913 year: 2010 end-page: 922 article-title: Speeding of V̇O kinetics with endurance training in old and young men is associated with improved matching of local O delivery to muscle O utilization publication-title: J Appl Physiol – volume: 115 start-page: 3086 year: 2007 end-page: 3094 article-title: Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study publication-title: Circulation – volume: 8 start-page: 209 year: 2015 end-page: 220 article-title: Exercise training as therapy for heart failure: current status and future directions publication-title: Circ Heart Fail – volume: 56 start-page: 479 year: 2002 end-page: 486 article-title: Dynamics of microvascular oxygen partial pressure in contracting skeletal muscle of rats with chronic heart failure publication-title: Cardiovasc Res – volume: 246 start-page: H59 year: 1984 end-page: H68 article-title: Exercise blood flow patterns within and among rat muscles after training publication-title: Am J Physiol – volume: 594 start-page: 6987 year: 2016 end-page: 7004 article-title: Differential α‐adrenergic modulation of rapid onset vasodilatation along resistance networks of skeletal muscle in old versus young mice publication-title: J Physiol – volume: 65 start-page: 1213 year: 1982 end-page: 1223 article-title: Oxygen utilization and ventilation during exercise in patients with chronic cardiac failure publication-title: Circulation – volume: 556 start-page: 947 year: 2004 end-page: 958 article-title: Effects of ageing and exercise training on endothelium‐dependent vasodilatation and structure of rat skeletal muscle arterioles publication-title: J Physiol – volume: 591 start-page: 547 year: 2013b end-page: 557 article-title: Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats publication-title: J Physiol – volume: 87 start-page: 652 year: 1999 end-page: 660 article-title: Impaired capillary hemodynamics in skeletal muscle of rats in chronic heart failure publication-title: J Appl Physiol – volume: 539 start-page: 927 year: 2002c end-page: 934 article-title: Effects of prior contractions on muscle microvascular oxygen pressure at onset of subsequent contractions publication-title: J Physiol – volume: 110 start-page: 695 year: 2011 end-page: 704 article-title: Effects of aging and exercise training on spinotrapezius muscle microvascular PO dynamics and vasomotor control publication-title: J Appl Physiol – volume: 111 start-page: 1527 year: 2011 end-page: 1538 article-title: Local control of skeletal muscle blood flow during exercise: influence of available oxygen publication-title: J Appl Physiol – volume: 259 start-page: H84 year: 1990 end-page: H92 article-title: Calculated intra‐ and extracellular PO gradients in heavily working red muscle publication-title: Am J Physiol – volume: 187 start-page: 250 year: 2013a end-page: 255 article-title: Effects of nitrate supplementation via beetroot juice on contracting rat skeletal muscle microvascular oxygen pressure dynamics publication-title: Respir Physiol Neurobiol – start-page: 1957 year: 1997 end-page: 1967 – volume: 103 start-page: 2049 year: 2007 end-page: 2056 article-title: Spatial heterogeneity of quadriceps muscle deoxygenation kinetics during cycle exercise publication-title: J Appl Physiol – volume: 124 start-page: 208 year: 2018 end-page: 224 article-title: Exercise limitations in heart failure with reduced and preserved ejection fraction publication-title: J Appl Physiol – volume: 549 start-page: 597 year: 2003 end-page: 605 article-title: Oxygen exchange profile in rat muscles of contrasting fibre types publication-title: J Physiol – volume: 115 start-page: 1846 year: 2013 end-page: 1854 article-title: Effects of exercise training on tumor hypoxia and vascular function in the rodent preclinical orthotopic prostate cancer model publication-title: J Appl Physiol – volume: 108 start-page: 76 year: 2010 end-page: 84 article-title: Central and peripheral contributors to skeletal muscle hyperemia: response to passive limb movement publication-title: J Appl Physiol – volume: 575 start-page: 937 year: 2006 end-page: 952 article-title: Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans publication-title: J Physiol – volume: 119 start-page: 753 year: 2015 end-page: 758 article-title: High‐intensity interval training vs. moderate‐intensity continuous exercise training in heart failure with preserved ejection fraction: a pilot study publication-title: J Appl Physiol – volume: 88 start-page: 186 year: 2000 end-page: 194 article-title: Respiratory muscle blood flows during physiological and chemical hyperpnea in the rat publication-title: J Appl Physiol – volume: 40 start-page: 2858 year: 2012 end-page: 2566 article-title: Mechanical ventilation reduces rat diaphragm blood flow and impairs oxygen delivery and uptake publication-title: Crit Care Med – volume: 35 start-page: 166 year: 2007 end-page: 173 article-title: The final frontier: oxygen flux into muscle at exercise onset publication-title: Exerc Sport Sci Rev – volume: 91 start-page: 1845 year: 2001 end-page: 1853 article-title: Local perfusion and metabolic demand during exercise: a noninvasive MRI method of assessment publication-title: J Appl Physiol – volume: 188 start-page: 3 year: 2006a end-page: 13 article-title: Muscle microvascular oxygenation in chronic heart failure: role of nitric oxide availability publication-title: Acta Physiol – volume: 73 start-page: 1067 year: 1992 end-page: 1076 article-title: Effects of training on muscle O transport at V̇O max publication-title: J Appl Physiol – volume: 85 start-page: 627 year: 1998 end-page: 634 article-title: Lactate efflux from exercising human skeletal muscle: role of intracellular PO publication-title: J Appl Physiol – volume: 68 start-page: 2369 year: 1990 end-page: 2372 article-title: Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? publication-title: J Appl Physiol – volume: 73 start-page: 737 year: 1992 end-page: 742 article-title: Modeling the effects of hypoxia on ATP turnover in exercising muscle publication-title: J Appl Physiol – volume: 13 start-page: 149 year: 2011 end-page: 159 article-title: Dietary inorganic nitrate improves mitochondrial efficiency in humans publication-title: Cell Metab – volume: 79 start-page: 838 year: 1995 end-page: 845 article-title: Slow component of O uptake during heavy exercise: adaptation to endurance training publication-title: J Appl Physiol – volume: 19 start-page: 15 year: 2019 end-page: 29 article-title: Potential benefits of dietary nitrate ingestion in healthy and clinical populations: A brief review publication-title: Eur J Sport Sci – volume: 108 start-page: 14 year: 2010 end-page: 20 article-title: Aging blunts the dynamics of vasodilation in isolated skeletal muscle resistance vessels publication-title: J Appl Physiol – volume: 127 start-page: 423 year: 2019 end-page: 431 article-title: Impaired diaphragm resistance vessel vasodilation with prolonged mechanical ventilation publication-title: J Appl Physiol – volume: 156 start-page: 187 year: 2007 end-page: 195 article-title: Effects of Type II diabetes on muscle microvascular oxygen pressures publication-title: Respir Physiol Neurobiol – volume: 31 start-page: 278 year: 1996 end-page: 286 article-title: Faster femoral artery blood velocity kinetics at the onset of exercise following short‐term training publication-title: Cardiovasc Res – volume: 92 start-page: 2513 year: 2002 end-page: 2520 article-title: Skeletal muscle capillary hemodynamics from rest to contractions: Implications for oxygen transfer publication-title: J Appl Physiol – volume: 48 start-page: 38 year: 2015 end-page: 43 article-title: Microvascular oxygen pressures in muscles comprised of different fiber types: Impact of dietary nitrate supplementation publication-title: Nitric Oxide – volume: 45 start-page: 2942 year: 1986 end-page: 2947 article-title: Effect of anaerobiosis on the kinetics of O uptake during exercise publication-title: Fed Proc – volume: 243 start-page: H296 year: 1982 end-page: H306 article-title: Muscular blood flow distribution patterns as a function of running speed in rats publication-title: Am J Physiol – volume: 297 start-page: R615 year: 2009 end-page: R621 article-title: Effects of prior heavy exercise on heterogeneity of muscle deoxygenation kinetics during subsequent heavy exercise publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 83 start-page: 1318 year: 1997 end-page: 1325 article-title: Acceleration of V̇O kinetics in heavy submaximal exercise by hyperoxia and prior high‐intensity exercise publication-title: J Appl Physiol – volume: 13 start-page: 158 year: 2016 end-page: 165 article-title: Dietary nitrate and skeletal muscle contractile function in heart failure publication-title: Curr Heart Fail Rep – volume: 69 start-page: 129 year: 1987 end-page: 147 article-title: Oxygen diffusing capacity estimates derived from measured V̇ /Q̇ distributions in man publication-title: Respir Physiol – volume: 127 start-page: 930 year: 2019b end-page: 939 article-title: Skeletal muscle interstitial PO kinetics during recovery from contractions publication-title: J Appl Physiol – volume: 71 start-page: 2099 year: 1991 end-page: 2106 article-title: Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise publication-title: J Appl Physiol – volume: 56 start-page: 831 year: 1984 end-page: 838 article-title: Adaptations of skeletal muscle to endurance exercise and their metabolic consequences publication-title: J Appl Physiol Respir Environ Exerc Physiol – volume: 70 start-page: 166 year: 2017 end-page: 173 article-title: PGC‐1α (peroxisome proliferator‐activated receptor γ coactivator 1‐α) overexpression in coronary artery disease recruits NO and hydrogen peroxide during flow‐mediated dilation and protects against increased intraluminal pressure publication-title: Hypertension – volume: 83 start-page: 778 year: 1991 end-page: 786 article-title: Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure publication-title: Circulation – volume: 44 start-page: 53 year: 2016 end-page: 60 article-title: Fiber type‐specific effects of dietary nitrate publication-title: Exerc Sport Sci Rev – volume: 122 start-page: 153 year: 2017 end-page: 160 article-title: Effect of sodium nitrite on local control of contracting skeletal muscle microvascular oxygen pressure in healthy rats publication-title: J Appl Physiol – volume: 98 start-page: 1645 year: 2013 end-page: 1658 article-title: Skeletal muscle capillary function: contemporary observations and novel hypotheses publication-title: Exp Physiol – volume: 300 start-page: R685 year: 2011 end-page: R692 article-title: Older type 2 diabetic males do not exhibit abnormal pulmonary oxygen uptake and muscle oxygen utilization dynamics during submaximal cycling exercise publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 565 start-page: 1053 year: 2005 end-page: 1060 article-title: Onset exercise hyperaemia in humans: partitioning the contributors publication-title: J Physiol – volume: 590 start-page: 3575 year: 2012 end-page: 3583 article-title: Dietary nitrate increases tetanic [Ca ] and contractile force in mouse fast‐twitch muscle publication-title: J Physiol – volume: 120 start-page: 1151 year: 2017 end-page: 1161 article-title: Pharmacokinetics and pharmacodynamics of inorganic nitrate in heart failure with preserved ejection fraction publication-title: Circ Res – volume: 65 start-page: 140 year: 2015 end-page: 145 article-title: Acute exertion elicits a H O ‐dependent vasodilator mechanism in the microvasculature of exercise‐trained but not sedentary adults publication-title: Hypertension – volume: 301 start-page: R534 year: 2011 end-page: R541 article-title: Methodological validation of the dynamic heterogeneity of muscle deoxygenation within the quadriceps during cycle exercise publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 103 start-page: 1757 year: 2007 end-page: 1763 article-title: Aging potentiates the effect of congestive heart failure on muscle microvascular oxygenation publication-title: J Appl Physiol – volume: 103 start-page: 728 year: 2018 end-page: 737 article-title: Age‐associated impairments in contraction‐induced rapid‐onset vasodilatation within the forearm are independent of mechanical factors publication-title: Exp Physiol – volume: 366 start-page: 233 year: 1985 end-page: 249 article-title: Maximal perfusion of skeletal muscle in man publication-title: J Physiol – volume: 120 start-page: 1335 year: 2016 end-page: 1342 article-title: Chronic endurance exercise training offsets the age‐related attenuation in contraction‐induced rapid vasodilation publication-title: J Appl Physiol – volume: 77 start-page: 1288 year: 1994 end-page: 1293 article-title: Effects of NO synthase inhibition on the muscular blood flow response to treadmill exercise in rats publication-title: J Appl Physiol – volume: 595 start-page: 7149 year: 2017 end-page: 7165 article-title: Rapid versus slow ascending vasodilatation: intercellular conduction versus flow‐mediated signalling with tetanic versus rhythmic muscle contractions publication-title: J Physiol – volume: 6 year: 2018 article-title: Mechanisms underlying extremely fast muscle V̇O on‐kinetics in humans publication-title: Physiol Rep – start-page: 2033 year: 1997 end-page: 2041 – volume: 30 start-page: 469 year: 1995 end-page: 476 article-title: Effects of nitric oxide synthase inhibition on the muscle blood flow response to exercise in rats with heart failure publication-title: Cardiovasc Res – volume: 46 start-page: 1498 year: 2013 end-page: 1505 article-title: V̇O peak, myocardial hypertrophy, and myocardial blood flow in endurance‐trained men publication-title: Med Sci Sports Exerc – volume: 9 start-page: 417 year: 1988 end-page: 421 article-title: Effects of continuous and interval training on the parameters of the power‐endurance time relationship for high‐intensity exercise publication-title: Int J Sports Med – volume: 233 start-page: C135 year: 1977 end-page: C140 article-title: Effect of oxygen tension on cellular energetics publication-title: Am J Physiol – volume: 85 start-page: 1394 year: 1998 end-page: 1403 article-title: Faster adjustment of O delivery does not affect V̇O on‐kinetics in isolated in situ canine muscle publication-title: J Appl Physiol – volume: 97 start-page: 393 year: 2004 end-page: 403 article-title: Vasodilatory mechanisms in contracting skeletal muscle publication-title: J Appl Physiol – volume: 563 start-page: 903 year: 2005 end-page: 913 article-title: Control of microvascular oxygen pressures in rat muscles comprised of different fibre types publication-title: J Physiol – volume: 2 start-page: 321 year: 2012 end-page: 447 article-title: Peripheral circulation publication-title: Compr Physiol – volume: 153 start-page: 237 year: 2006b end-page: 249 article-title: Blood flow and O extraction as a function of O uptake in muscles composed of different fiber types publication-title: Respir Physiol Neurobiol – volume: 10 start-page: 202 year: 2019 end-page: 209 article-title: Exercise intolerance in patients with mitochondrial myopathies: Perfusive and diffusive limitations in the O pathway publication-title: Curr Opin Physiol – volume: 43 start-page: 117 year: 2015 end-page: 124 article-title: Heterogeneity of muscle blood flow and metabolism: Influence of exercise, aging, and disease states publication-title: Exerc Sport Sci Rev – volume: 191 start-page: 59 year: 2007 end-page: 66 article-title: Effects of dietary nitrate on oxygen cost during exercise publication-title: Acta Physiol – volume: 301 start-page: R783 year: 2011 end-page: R790 article-title: Adrenergic control of vascular resistance varies in muscles composed of different fiber types: influence of the vascular endothelium publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 58 start-page: 1353 year: 2011 end-page: 1362 article-title: Isolated quadriceps training increases maximal exercise capacity in chronic heart failure: the role of skeletal muscle convective and diffusive oxygen transport publication-title: J Am Coll Cardiol – volume: 310 start-page: H821 year: 2016 end-page: H829 article-title: Exercise training improves vascular mitochondrial function publication-title: Am J Physiol Heart Circ Physiol – volume: 133 start-page: 229 year: 2002a end-page: 239 article-title: Dynamics of oxygen uptake following exercise onset in rat skeletal muscle publication-title: Respir Physiol Neurobiol – volume: 291 start-page: H2439 year: 2006 end-page: H2444 article-title: Effects of Type II diabetes on capillary hemodynamics in skeletal muscle publication-title: Am J Physiol Heart Circ Physiol – volume: 36 start-page: 113 year: 2015 end-page: 119 article-title: Influence of hypoxia on the power‐duration relationship during high‐intensity exercise publication-title: Int J Sports Med – volume: 3 year: 2015 article-title: Reduction of V̇O slow component by priming exercise: novel mechanistic insights from time‐resolved near‐infrared spectroscopy publication-title: Physiol Rep – volume: 46 start-page: 860 year: 2014 end-page: 876 article-title: Dynamic heterogeneity of exercising muscle blood flow and O utilization publication-title: Med Sci Sports Exerc – volume: 303 start-page: H1474 year: 2012 end-page: H1480 article-title: Sildenafil improves microvascular O delivery‐to‐utilization matching and accelerates exercise O uptake kinetics in chronic heart failure publication-title: Am J Physiol Heart Circ Physiol – volume: 305 start-page: H29 year: 2013 end-page: H40 article-title: Mechanisms of rapid vasodilation after a brief contraction in human skeletal muscle publication-title: Am J Physiol Heart Circ Physiol – volume: 28 start-page: 10 year: 2000 end-page: 14 article-title: New ideas on limitations to V̇O max publication-title: Exerc Sport Sci Rev – volume: 126 start-page: 53 year: 2001 end-page: 63 article-title: Dynamics of microvascular oxygen pressure across the rest‐exercise transition in rat skeletal muscle publication-title: Respir Physiol – start-page: 555 year: 1983 end-page: 631 – volume: 32 start-page: 108 year: 2000 end-page: 116 article-title: Skeletal muscle on‐kinetics: set by O delivery or by O utilization? New insights into an old issue publication-title: Med Sci Sports Exerc – volume: 87 start-page: 325 year: 1999 end-page: 331 article-title: Cellular PO as a determinant of maximal mitochondrial O consumption in trained human skeletal muscle publication-title: J Appl Physiol – volume: 77 start-page: 2413 year: 1994 end-page: 2419 article-title: Effects of infused epinephrine on slow phase of O uptake kinetics during heavy exercise in humans publication-title: J Appl Physiol – volume: 1 start-page: 1 year: 2011 end-page: 37 article-title: Highly athletic terrestrial mammals: horses and dogs publication-title: Compr Physiol – volume: 122 start-page: 997 year: 2017 end-page: 1002 article-title: Measurement of the maximum oxygen uptake V̇o : V̇o is no longer acceptable publication-title: J Appl Physiol – volume: 279 start-page: R899 year: 2000 end-page: R906 article-title: Muscle oxygen kinetics at onset of intense dynamic exercise in humans publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 119 start-page: 1313 year: 2015 end-page: 1319 article-title: Muscle deoxygenation in the quadriceps during ramp incremental cycling: Deep vs. superficial heterogeneity publication-title: J Appl Physiol – volume: 572 start-page: 561 year: 2006 end-page: 567 article-title: Mechanical compression elicits vasodilatation in rat skeletal muscle feed arteries publication-title: J Physiol – volume: 320 start-page: 1764 year: 2018 end-page: 1773 article-title: Effect of inorganic nitrite vs placebo on exercise capacity among patients with heart failure with preserved ejection fraction: The INDIE‐HFpEF randomized clinical trial publication-title: JAMA – volume: 121 start-page: 335 year: 2004 end-page: 342 article-title: Determination of myoglobin concentration and oxidative capacity in cryostat sections of human and rat skeletal muscle fibres and rat cardiomyocytes publication-title: Histochem Cell Biol – volume: 115 start-page: 446 year: 2013 end-page: 455 article-title: Contribution of nitric oxide in the contraction‐induced rapid vasodilation in young and older adults publication-title: J Appl Physiol – volume: 309 start-page: H1354 year: 2015 end-page: H1360 article-title: Effects of nitrite infusion on skeletal muscle vascular control during exercise in rats with chronic heart failure publication-title: Am J Physiol Heart Circ Physiol – volume: 73 start-page: 1114 year: 1992 end-page: 1121 article-title: Relationship between body and leg V̇O during maximal cycle ergometry publication-title: J Appl Physiol – volume: 596 start-page: 869 year: 2018 end-page: 883 article-title: Skeletal muscle microvascular and interstitial PO from rest to contractions publication-title: J Physiol – volume: 87 start-page: 1741 year: 1999 end-page: 1746 article-title: Rapid vasodilation in response to a brief tetanic muscle contraction publication-title: J Appl Physiol – volume: 75 start-page: 1911 year: 1993 end-page: 1916 article-title: High muscle blood flow in man: is maximal O extraction compromised? publication-title: J Appl Physiol – volume: 119 start-page: 745 year: 2015 end-page: 752 article-title: High‐intensity interval training attenuates endothelial dysfunction in a Dahl salt‐sensitive rat model of heart failure with preserved ejection fraction publication-title: J Appl Physiol – volume: 9 year: 2014 article-title: Exercise‐mediated wall shear stress increases mitochondrial biogenesis in vascular endothelium publication-title: PLoS One – volume: 58 start-page: 21 year: 1996 end-page: 50 article-title: Determinants of maximal oxygen transport and utilization publication-title: Annu Rev Physiol – volume: 31 start-page: 240 year: 2018 end-page: 246 article-title: Microvascular adaptations to exercise: protective effect of PGC‐1 alpha publication-title: Am J Hypertension – volume: 95 start-page: 1055 year: 2003 end-page: 1062 article-title: Effects of chronic heart failure on skeletal muscle capillary hemodynamics at rest and during contractions publication-title: J Appl Physiol – volume: 309 start-page: H1419 year: 2015 end-page: H1439 article-title: Exercise training in chronic heart failure: improving skeletal muscle O transport and utilization publication-title: Am J Physiol Heart Circ Physio – volume: 26 start-page: 1354 year: 1994 end-page: 1358 article-title: V̇O slow component: physiological and functional significance publication-title: Med Sci Sports Exerc – volume: 76 start-page: VI18 year: 1987 end-page: 28 article-title: Dynamics of pulmonary gas exchange publication-title: Circulation – volume: 85 start-page: 104 year: 2013 end-page: 111 article-title: The NO donor sodium nitroprusside: evaluation of skeletal muscle vascular and metabolic dysfunction publication-title: Microvasc Res – volume: 283 start-page: R1131 year: 2002 end-page: R1139 article-title: Effect of mild carboxy‐hemoglobin on exercising skeletal muscle: intravascular and intracellular evidence publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 118 start-page: 783 year: 2015 end-page: 793 article-title: A method for assessing heterogeneity of blood flow and metabolism in exercising normal human muscle by near‐infrared spectroscopy publication-title: J Appl Physiol – volume: 95 start-page: 528 year: 2010 end-page: 540 article-title: Influence of hyperoxia on muscle metabolic responses and the power‐duration relationship during severe‐intensity exercise in humans: a P magnetic resonance spectroscopy study publication-title: Exp Physiol – volume: 192 start-page: 102 year: 2014 end-page: 111 article-title: Influence of duty cycle on the power‐duration relationship: observations and potential mechanisms publication-title: Respir Physiol Neurobiol – volume: 103 start-page: 2042 year: 2007 end-page: 2048 article-title: Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans publication-title: J Appl Physiol – volume: 302 start-page: H1050 year: 2012 end-page: H1063 article-title: Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance publication-title: Am J Physiol Heart Circ Physiol – volume: 120 start-page: 1057 year: 2017 end-page: 1059 article-title: Inorganic nitrates: for heart failure with preserved ejection fraction? publication-title: Circ Res – volume: 104 start-page: 1061 year: 2019 end-page: 1073 article-title: Hyperoxia speeds pulmonary oxygen uptake kinetics and increases critical power during supine cycling publication-title: Exp Physiol – volume: 48 start-page: 2281 year: 2016 end-page: 2293 article-title: No muscle is an island: Integrative perspectives on muscle fatigue publication-title: Med Sci Sports Exerc – volume: 596 start-page: 5149 year: 2018 end-page: 5161 article-title: Acute and chronic exercise in patients with heart failure with reduced ejection fraction: evidence of structural and functional plasticity and intact angiogenic signalling in skeletal muscle publication-title: J Physiol – volume: 306 start-page: H690 year: 2014 end-page: H698 article-title: Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide‐mediated function publication-title: Am J Physiol Heart Circ Physiol – volume: 118 start-page: 1435 year: 2015 end-page: 1442 article-title: Validation of a high‐power, time‐resolved, near‐infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise publication-title: J Appl Physiol – volume: 91 start-page: 661 year: 2006 end-page: 671 article-title: Human femoral artery and estimated muscle capillary blood flow kinetics following the onset of exercise publication-title: Exp Physiol – volume: 11 start-page: 1195 year: 2017 end-page: 1207 article-title: Riociguat: a soluble guanylate cyclase stimulator for the treatment of pulmonary hypertension publication-title: Drug Des Devel Ther – volume: 113 start-page: 557 year: 2012 end-page: 565 article-title: Exercise training and muscle microvascular oxygenation: functional role of nitric oxide publication-title: J Appl Physiol – volume: 17 start-page: 643 year: 2010b end-page: 648 article-title: Exercise intolerance in chronic heart failure: mechanisms and therapies. Part II publication-title: Eur J Cardiovasc Prev Rehabil – volume: 312 start-page: R13 year: 2017 end-page: R22 article-title: Dietary nitrate supplementation and exercise tolerance in patients with heart failure with reduced ejection fraction publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 73 start-page: 728 year: 1992 end-page: 736 article-title: Role of O in regulating tissue respiration in dog muscle working in situ publication-title: J Appl Physiol – volume: 55 start-page: 1945 year: 2010 end-page: 1954 article-title: Limited maximal exercise capacity in patients with chronic heart failure: partitioning the contributors publication-title: J Am Coll Cardiol – volume: 8 year: 2013 article-title: High‐intensity endurance training results in faster vessel‐specific rate of vasorelaxation in type 1 diabetic rats publication-title: PLoS One – volume: 32 start-page: 164 year: 1986 end-page: 189 article-title: A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries publication-title: Microvasc Res – volume: 78 start-page: 67 year: 2000 end-page: 74 article-title: Effect of hyperoxia and hypoxia on leg blood flow and pulmonary and leg oxygen uptake at the onset of kicking exercise publication-title: Can J Physiol Pharmacol – volume: 285 start-page: H251 year: 2003 end-page: H258 article-title: Effects of aging on capillary geometry and hemodynamics in rat spinotrapezius muscle publication-title: Am J Physiol Heart Circ Physiol – volume: 292 start-page: R1279 year: 2007 end-page: R1286 article-title: Effect of arterial oxygenation on quadriceps fatigability during isolated muscle exercise publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 280 start-page: R441 year: 2001 end-page: R447 article-title: Effect of acute exercise on citrate synthase activity in untrained and trained human skeletal muscle publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 62–89 start-page: 8 year: 1962 article-title: Myoglobin content and enzymatic activity of human skeletal muscle–their relation with the process of adaptation to high altitude publication-title: Tech Doc Rep SAMTDR USAF Sch Aerosp Med – volume: 593 start-page: 2155 year: 2015 end-page: 2169 article-title: Advanced age protects microvascular endothelium from aberrant Ca influx and cell death induced by hydrogen peroxide publication-title: J Physiol – volume: 17 start-page: 637 year: 2010a end-page: 642 article-title: Exercise intolerance in chronic heart failure: mechanisms and therapies. Part I publication-title: Eur J Cardiovasc Prev Rehabil – volume: 96 start-page: 1916 year: 1995 end-page: 1926 article-title: Myoglobin O desaturation during exercise. Evidence of limited O transport publication-title: J Clin Invest – volume: 109 start-page: 135 year: 2010 end-page: 148 article-title: Dietary nitrate supplementation enhances muscle contractile efficiency during knee‐extensor exercise in humans publication-title: J Appl Physiol – volume: 7 year: 2019 article-title: The maximal metabolic steady state: redefining the ‘gold standard’ publication-title: Physiol Rep – volume: 95 start-page: 549 year: 2015 end-page: 601 article-title: Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs publication-title: Physiol Rev – volume: 79 start-page: 2050 year: 1995 end-page: 2057 article-title: Diaphragm microvascular plasma PO measured in vivo publication-title: J Appl Physiol – volume: 283 start-page: H926 year: 2002b end-page: H932 article-title: Dynamics of microvascular oxygen pressure during rest‐contraction transition in skeletal muscle of diabetic rats publication-title: Am J Physiol Heart Circ Physiol – volume: 3 start-page: 175 year: 1996 end-page: 186 article-title: Relationship between fiber capillarization and mitochondrial volume density in control and trained rat soleus and plantaris muscles publication-title: Microcirculation – volume: 131 start-page: 371 year: 2015 end-page: 380 article-title: Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction publication-title: Circulation – year: 1974 – volume: 48 start-page: 2320 year: 2016 end-page: 2334 article-title: Critical power: An important fatigue threshold in exercise physiology publication-title: Med Sci Sports Exerc – volume: 5 year: 2017 article-title: Near‐infrared spectroscopy of superficial and deep rectus femoris reveals markedly different exercise response to superficial vastus lateralis publication-title: Physiol Rep – volume: 312 start-page: R467 year: 2017 end-page: R476 article-title: Similar pattern of change in V̇o kinetics, vascular function, and tissue oxygen provision following an endurance training stimulus in older and young adults publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 111 start-page: 235 year: 2011 end-page: 243 article-title: Speeding of V̇O kinetics in response to endurance‐training in older and young women publication-title: Eur J Appl Physiol – volume: 2 start-page: 933 year: 2012 end-page: 996 article-title: Oxygen uptake kinetics publication-title: Compr Physiol – volume: 305 start-page: R1441 year: 2013 end-page: R1450 article-title: Beetroot juice supplementation speeds O uptake kinetics and improves exercise tolerance during severe‐intensity exercise initiated from an elevated metabolic rate publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 121 start-page: 661 year: 2016b end-page: 669 article-title: Dietary nitrate supplementation: impact on skeletal muscle vascular control in exercising rats with chronic heart failure publication-title: J Appl Physiol – ident: e_1_2_2_40_1 doi: 10.1016/j.jacc.2009.11.086 – ident: e_1_2_2_155_1 doi: 10.1152/jappl.1992.73.3.1067 – ident: e_1_2_2_116_1 doi: 10.1152/japplphysiol.00949.2013 – ident: e_1_2_2_14_1 doi: 10.1152/jappl.1991.71.6.2099 – ident: e_1_2_2_60_1 doi: 10.1152/jappl.1996.80.3.988 – ident: e_1_2_2_92_1 doi: 10.1371/journal.pone.0111409 – ident: e_1_2_2_96_1 doi: 10.1152/jappl.1992.73.3.1114 – ident: e_1_2_2_18_1 doi: 10.1152/japplphysiol.00487.2007 – ident: e_1_2_2_115_1 doi: 10.1152/japplphysiol.01084.2010 – ident: e_1_2_2_185_1 doi: 10.1161/CIRCULATIONAHA.114.012957 – ident: e_1_2_2_52_1 doi: 10.14814/phy2.12432 – ident: e_1_2_2_95_1 doi: 10.1152/ajpheart.1979.237.4.H481 – ident: e_1_2_2_173_1 doi: 10.1152/japplphysiol.00458.2014 – ident: e_1_2_2_126_1 doi: 10.1152/ajpheart.00290.2006 – ident: e_1_2_2_134_1 doi: 10.1249/MSS.0000000000000939 – volume: 28 start-page: 10 year: 2000 ident: e_1_2_2_175_1 article-title: New ideas on limitations to V̇O2max publication-title: Exerc Sport Sci Rev – ident: e_1_2_2_177_1 doi: 10.1161/01.CIR.65.6.1213 – ident: e_1_2_2_30_1 doi: 10.1113/jphysiol.2005.099507 – ident: e_1_2_2_101_1 doi: 10.1152/ajpregu.00101.2011 – ident: e_1_2_2_181_1 doi: 10.1152/ajpregu.00479.2010 – ident: e_1_2_2_36_1 doi: 10.1097/CCM.0b013e31825b933a – ident: e_1_2_2_20_1 doi: 10.1016/S0034-5687(01)00195-5 – ident: e_1_2_2_64_1 doi: 10.1249/JES.0000000000000044 – ident: e_1_2_2_182_1 doi: 10.1161/CIRCULATIONAHA.106.675041 – ident: e_1_2_2_10_1 doi: 10.1152/japplphysiol.01141.2014 – ident: e_1_2_2_70_1 doi: 10.1152/ajpheart.00901.2013 – ident: e_1_2_2_89_1 doi: 10.1161/HYPERTENSIONAHA.117.09289 – ident: e_1_2_2_8_1 doi: 10.1152/jappl.1992.73.2.737 – ident: e_1_2_2_119_1 doi: 10.1113/jphysiol.2004.079533 – ident: e_1_2_2_121_1 doi: 10.1371/journal.pone.0059678 – ident: e_1_2_2_144_1 doi: 10.1152/jappl.1995.79.6.2050 – ident: e_1_2_2_23_1 doi: 10.1001/jama.2018.14852 – ident: e_1_2_2_186_1 doi: 10.1161/CIRCRESAHA.116.309832 – ident: e_1_2_2_74_1 doi: 10.1152/ajpregu.00263.2016 – ident: e_1_2_2_142_1 doi: 10.1152/japplphysiol.00747.2017 – ident: e_1_2_2_33_1 doi: 10.1152/japplphysiol.00367.2016 – ident: e_1_2_2_137_1 doi: 10.1097/jes.0b013e318156e4ac – ident: e_1_2_2_164_1 doi: 10.1113/JP272409 – ident: e_1_2_2_113_1 doi: 10.1139/cjpp-78-1-67 – ident: e_1_2_2_172_1 doi: 10.1113/expphysiol.2009.050500 – ident: e_1_2_2_93_1 doi: 10.1152/jappl.1999.87.2.652 – volume: 62 start-page: 8 year: 1962 ident: e_1_2_2_147_1 article-title: Myoglobin content and enzymatic activity of human skeletal muscle–their relation with the process of adaptation to high altitude publication-title: Tech Doc Rep SAMTDR USAF Sch Aerosp Med – ident: e_1_2_2_111_1 doi: 10.2147/DDDT.S117277 – ident: e_1_2_2_146_1 doi: 10.1016/j.cophys.2019.05.011 – ident: e_1_2_2_45_1 doi: 10.1016/j.resp.2013.04.001 – ident: e_1_2_2_112_1 doi: 10.1152/jappl.1997.83.4.1318 – ident: e_1_2_2_19_1 doi: 10.1152/ajpheart.00059.2002 – ident: e_1_2_2_5_1 doi: 10.1113/jphysiol.1985.sp015794 – ident: e_1_2_2_122_1 doi: 10.1152/japplphysiol.01355.2009 – ident: e_1_2_2_53_1 doi: 10.1249/00003677-199600240-00004 – ident: e_1_2_2_63_1 doi: 10.1113/expphysiol.2005.032904 – ident: e_1_2_2_151_1 doi: 10.1152/jappl.1998.85.2.627 – ident: e_1_2_2_2_1 doi: 10.1152/japplphysiol.01123.2014 – ident: e_1_2_2_167_1 doi: 10.1152/ajpheart.00596.2009 – ident: e_1_2_2_106_1 doi: 10.1016/j.cmet.2011.01.004 – ident: e_1_2_2_79_1 doi: 10.1152/japplphysiol.00189.2019 – ident: e_1_2_2_31_1 doi: 10.1097/jes.0b013e31815ddba4 – ident: e_1_2_2_91_1 doi: 10.1249/MSS.0000000000001052 – ident: e_1_2_2_47_1 doi: 10.1152/japplphysiol.00014.2016 – ident: e_1_2_2_55_1 doi: 10.1055/s-2007-1025043 – ident: e_1_2_2_43_1 doi: 10.1016/0026-2862(86)90052-X – ident: e_1_2_2_109_1 doi: 10.1002/cphy.c100048 – ident: e_1_2_2_28_1 doi: 10.1152/japplphysiol.00446.2013 – ident: e_1_2_2_35_1 doi: 10.1152/ajpheart.00298.2013 – ident: e_1_2_2_128_1 doi: 10.1152/ajpheart.00751.2015 – ident: e_1_2_2_143_1 doi: 10.1152/jappl.2000.88.1.186 – ident: e_1_2_2_57_1 doi: 10.1113/EP087599 – ident: e_1_2_2_12_1 doi: 10.1152/ajpregu.2000.279.3.R899 – ident: e_1_2_2_67_1 doi: 10.1111/micc.12497 – ident: e_1_2_2_90_1 doi: 10.1152/ajpregu.00554.2006 – ident: e_1_2_2_81_1 doi: 10.1152/japplphysiol.00057.2016 – ident: e_1_2_2_159_1 doi: 10.1152/ajpregu.00048.2009 – volume-title: Biology Data Book year: 1974 ident: e_1_2_2_3_1 – volume: 36 start-page: 113 year: 2015 ident: e_1_2_2_163_1 article-title: Influence of hypoxia on the power‐duration relationship during high‐intensity exercise publication-title: Int J Sports Med – ident: e_1_2_2_165_1 doi: 10.1113/JP275186 – ident: e_1_2_2_71_1 doi: 10.1152/japplphysiol.00297.2019 – ident: e_1_2_2_11_1 doi: 10.1113/JP278494 – ident: e_1_2_2_13_1 doi: 10.1113/expphysiol.2005.032789 – ident: e_1_2_2_166_1 doi: 10.1113/JP270169 – ident: e_1_2_2_80_1 doi: 10.1113/EP086908 – ident: e_1_2_2_110_1 doi: 10.1152/ajpregu.2001.280.2.R441 – volume: 26 start-page: 1354 year: 1994 ident: e_1_2_2_133_1 article-title: V̇O2 slow component: physiological and functional significance publication-title: Med Sci Sports Exerc – ident: e_1_2_2_130_1 doi: 10.1097/HJR.0b013e32833f3aa5 – ident: e_1_2_2_132_1 doi: 10.1152/japplphysiol.00013.2019 – ident: e_1_2_2_114_1 doi: 10.1161/01.CIR.83.3.778 – ident: e_1_2_2_69_1 doi: 10.1016/j.mvr.2012.11.006 – ident: e_1_2_2_76_1 doi: 10.1016/S0008-6363(95)00068-2 – ident: e_1_2_2_46_1 doi: 10.1113/jphysiol.2012.243121 – ident: e_1_2_2_22_1 doi: 10.1113/jphysiol.2002.035915 – ident: e_1_2_2_54_1 doi: 10.1152/jappl.1994.77.5.2413 – ident: e_1_2_2_125_1 doi: 10.1152/japplphysiol.00574.2015 – ident: e_1_2_2_138_1 doi: 10.1152/ajpheart.00943.2011 – ident: e_1_2_2_169_1 doi: 10.1113/jphysiol.2003.060301 – ident: e_1_2_2_183_1 doi: 10.1152/jappl.1995.79.3.838 – ident: e_1_2_2_58_1 doi: 10.1097/00005768-200001000-00017 – ident: e_1_2_2_129_1 doi: 10.1097/HJR.0b013e3283361dc5 – ident: e_1_2_2_27_1 doi: 10.1152/japplphysiol.00895.2011 – ident: e_1_2_2_38_1 doi: 10.1016/S0008-6363(02)00545-X – ident: e_1_2_2_140_1 doi: 10.1002/cphy.c100072 – ident: e_1_2_2_44_1 doi: 10.1177/1074248415599061 – ident: e_1_2_2_135_1 doi: 10.1113/expphysiol.2013.073874 – ident: e_1_2_2_103_1 doi: 10.1249/MSS.0000000000000178 – volume: 1 start-page: 203 year: 2011 ident: e_1_2_2_156_1 article-title: Exercise: Kinetic considerations for gas exchange publication-title: Compr Physiol – ident: e_1_2_2_66_1 doi: 10.1113/jphysiol.2012.232777 – ident: e_1_2_2_104_1 doi: 10.14814/phy2.13808 – ident: e_1_2_2_97_1 doi: 10.1152/japplphysiol.01003.2014 – ident: e_1_2_2_68_1 doi: 10.1152/japplphysiol.00151.2012 – ident: e_1_2_2_171_1 doi: 10.1007/s00418-004-0641-9 – ident: e_1_2_2_17_1 doi: 10.1152/japplphysiol.00970.2009 – ident: e_1_2_2_75_1 doi: 10.1152/jappl.1994.77.3.1288 – ident: e_1_2_2_78_1 doi: 10.1152/jappl.1984.56.4.831 – ident: e_1_2_2_158_1 doi: 10.1152/ajpheart.01086.2002 – ident: e_1_2_2_180_1 doi: 10.1152/ajpcell.1977.233.5.C135 – ident: e_1_2_2_124_1 doi: 10.1152/jappl.1999.87.5.1741 – ident: e_1_2_2_139_1 doi: 10.1152/japplphysiol.01063.2016 – ident: e_1_2_2_149_1 doi: 10.1152/jappl.1999.87.1.325 – ident: e_1_2_2_34_1 doi: 10.1152/ajpheart.00590.2010 – ident: e_1_2_2_127_1 doi: 10.1016/j.resp.2006.08.008 – ident: e_1_2_2_7_1 doi: 10.1152/ajpheart.1984.246.1.H59 – ident: e_1_2_2_83_1 doi: 10.1249/JES.0000000000000074 – ident: e_1_2_2_32_1 doi: 10.1007/s11897-016-0293-9 – ident: e_1_2_2_117_1 doi: 10.1152/japplphysiol.00895.2009 – volume: 1 start-page: 1 year: 2011 ident: e_1_2_2_136_1 article-title: Highly athletic terrestrial mammals: horses and dogs publication-title: Compr Physiol – ident: e_1_2_2_123_1 doi: 10.1007/s00421-010-1649-6 – ident: e_1_2_2_42_1 doi: 10.1016/j.jacc.2011.06.025 – ident: e_1_2_2_102_1 doi: 10.1152/ajpregu.00147.2004 – ident: e_1_2_2_73_1 doi: 10.1152/ajpheart.00469.2015 – volume: 76 start-page: VI18 year: 1987 ident: e_1_2_2_178_1 article-title: Dynamics of pulmonary gas exchange publication-title: Circulation – ident: e_1_2_2_61_1 doi: 10.1152/ajpheart.1990.259.1.H84 – ident: e_1_2_2_48_1 doi: 10.1016/j.niox.2014.09.157 – ident: e_1_2_2_118_1 doi: 10.1080/17461391.2018.1445298 – ident: e_1_2_2_56_1 doi: 10.1152/ajpheart.00421.2015 – ident: e_1_2_2_4_1 doi: 10.1113/jphysiol.2006.113936 – ident: e_1_2_2_65_1 doi: 10.1152/japplphysiol.00567.2007 – ident: e_1_2_2_50_1 doi: 10.1016/j.resp.2005.11.004 – ident: e_1_2_2_88_1 doi: 10.1093/ajh/hpx162 – ident: e_1_2_2_100_1 doi: 10.1152/japplphysiol.00627.2007 – ident: e_1_2_2_9_1 doi: 10.1152/japplphysiol.00046.2010 – ident: e_1_2_2_59_1 doi: 10.1152/jappl.1998.85.4.1394 – ident: e_1_2_2_99_1 doi: 10.1152/ajpregu.00015.2019 – ident: e_1_2_2_141_1 doi: 10.3109/10739689609148286 – ident: e_1_2_2_94_1 doi: 10.1152/japplphysiol.01222.2001 – ident: e_1_2_2_107_1 doi: 10.1111/j.1748-1716.2007.01713.x – ident: e_1_2_2_16_1 doi: 10.1016/S1569-9048(02)00183-0 – ident: e_1_2_2_29_1 doi: 10.1152/japplphysiol.00179.2004 – ident: e_1_2_2_105_1 doi: 10.1249/MSS.0000000000000264 – ident: e_1_2_2_148_1 doi: 10.1152/jappl.2001.91.4.1845 – ident: e_1_2_2_150_1 doi: 10.1172/JCI118237 – ident: e_1_2_2_86_1 doi: 10.1249/MSS.0b013e3181d9cf7f – ident: e_1_2_2_49_1 doi: 10.1111/j.1748-1716.2006.01598.x – ident: e_1_2_2_108_1 doi: 10.1152/ajpheart.1982.243.2.H296 – ident: e_1_2_2_153_1 doi: 10.1152/jappl.1993.75.4.1911 – ident: e_1_2_2_15_1 doi: 10.1152/ajpregu.00205.2011 – ident: e_1_2_2_98_1 doi: 10.14814/phy2.13402 – ident: e_1_2_2_168_1 doi: 10.1152/ajpheart.00435.2012 – ident: e_1_2_2_37_1 doi: 10.1152/jappl.1996.80.1.261 – ident: e_1_2_2_162_1 doi: 10.1016/S0008-6363(95)00199-9 – ident: e_1_2_2_145_1 doi: 10.1080/00140138808966766 – ident: e_1_2_2_77_1 doi: 10.1152/jappl.1992.73.2.728 – ident: e_1_2_2_51_1 doi: 10.1161/CIRCHEARTFAILURE.113.001420 – ident: e_1_2_2_62_1 doi: 10.1016/0034-5687(87)90022-3 – volume: 45 start-page: 2942 year: 1986 ident: e_1_2_2_179_1 article-title: Effect of anaerobiosis on the kinetics of O2 uptake during exercise publication-title: Fed Proc – ident: e_1_2_2_120_1 doi: 10.1152/ajpregu.00399.2016 – ident: e_1_2_2_87_1 doi: 10.1152/physrev.00035.2013 – ident: e_1_2_2_170_1 doi: 10.1152/jappl.1990.68.6.2369 – start-page: 1957 volume-title: The Lung: Scientific Foundations year: 1997 ident: e_1_2_2_131_1 – ident: e_1_2_2_82_1 doi: 10.14814/phy2.14098 – ident: e_1_2_2_85_1 doi: 10.1146/annurev-nutr-082117-051622 – start-page: 555 volume-title: Handbook of Physiology. Skeletal Muscle year: 1983 ident: e_1_2_2_160_1 – ident: e_1_2_2_84_1 doi: 10.1002/9781444303315.ch3 – ident: e_1_2_2_39_1 doi: 10.1161/HYPERTENSIONAHA.114.04540 – ident: e_1_2_2_154_1 doi: 10.1152/japplphysiol.00308.2003 – ident: e_1_2_2_184_1 doi: 10.1113/jphysiol.2005.084327 – ident: e_1_2_2_41_1 doi: 10.1113/JP276678 – ident: e_1_2_2_174_1 doi: 10.1146/annurev.ph.58.030196.000321 – ident: e_1_2_2_26_1 doi: 10.3389/fphys.2019.00031 – ident: e_1_2_2_24_1 doi: 10.1152/ajpregu.00295.2013 – ident: e_1_2_2_6_1 doi: 10.1152/japplphysiol.00518.2014 – ident: e_1_2_2_152_1 doi: 10.1152/ajpregu.00226.2002 – start-page: 2033 volume-title: The Lung: Scientific Foundations year: 1997 ident: e_1_2_2_176_1 – ident: e_1_2_2_157_1 doi: 10.1126/science.3420417 – ident: e_1_2_2_21_1 doi: 10.1113/jphysiol.2001.013165 – ident: e_1_2_2_25_1 doi: 10.1016/j.resp.2013.11.010 – ident: e_1_2_2_72_1 doi: 10.1113/JP275170 – ident: e_1_2_2_161_1 doi: 10.1161/CIRCRESAHA.117.310699 |
SSID | ssj0013099 |
Score | 2.5332558 |
SecondaryResourceType | review_article |
Snippet | Three sentinel parameters of aerobic performance are the maximal oxygen uptake (V̇O2max), critical power (CP) and speed of the V̇O2 kinetics following exercise... Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( ), critical power (CP) and speed of the kinetics following exercise onset. Of... Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( V̇O2max ), critical power (CP) and speed of the V̇O2 kinetics following... Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( V ˙ O 2 max ) , critical power (CP) and speed of the V ˙ O 2 kinetics... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 889 |
SubjectTerms | Adaptation Aerobic capacity Aging Blood flow Cardiovascular system Chronic illnesses critical power Exercise exercise intolerance Exercise Tolerance exercise training heart failure Intolerance maximal oxygen uptake Microvasculature Mitochondria Mitochondria, Muscle - metabolism Muscle, Skeletal - metabolism Myocytes Oxygen - metabolism Oxygen Consumption oxygen transport oxygen uptake kinetics parameters of aerobic function Physical fitness Physical training Seeds Skeletal muscle Structure-function relationships Supplements |
Title | The role of vascular function on exercise capacity in health and disease |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP278931 https://www.ncbi.nlm.nih.gov/pubmed/31977068 https://www.proquest.com/docview/2484156037 https://www.proquest.com/docview/2344267021 https://pubmed.ncbi.nlm.nih.gov/PMC7874303 |
Volume | 599 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iyYuv9bG-iCB6qrZNmjRHUZd1RRHZBcFDSdIURe2K7h701ztJ0-r6ABF6yyRtmpnkm2TmC0I7Wid5KDQJVCJJQKM8CURRyCChSjPDRcHcccH5BesOaO86ufZRlTYXpuKHaDbcrGW4-doauFT-FpLIkg30Lm0Sp0uhjgiztPnHV_HHAUIoREMUzpPI885C1YO64uRK9A1efo-S_Ixe3fLTmUM39YdXUSf3--OR2tdvXzgd_9ezeTTrUSk-rNRoAU2ZchG1DkvwyB9f8S52caJuA76FuqBZ2AYl4mGB60BWbNdHO8YYnvoaJ6xhJdYA8_FdiauESyzLHPtDoSU06Jz0j7qBv48h0DZ_FrxMQaTmMlISUITQmnMRGcAzDMxeMyaMiGOdSxbHoqAF4dpIRVRIpMgpNQVZRtPlsDSrCJucAVKUBTRpLOmYSGOVKpgCck5yykUb7dVjk2lPVm7vzHjIKqeFZPVPaqPtRvKpIuj4QWajHt7Mm-hLFtPUOq8h4dBEUwzGZU9MZGmGY5AhFBAMBxzURiuVNjQvgbmL85ClbcQn9KQRsMTdkyXl3a0j8IZJEjpNoJNODX797qzfuwSEntK1P0uuo5nYRt24uPINND16HptNgE0jtQUGcnq25czkHbD-Eng |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9N44G98NWNFQZ40gRP2dLYsWPxNG1MpbTVhDppD5Mi23HEBEsnaB-2v5475wPKmISQ8uazE8d39u_su58B9pxLi1g7HtnU8EgMijTSZWmiVFgnvdKlDMcFk6kcnonReXq-Bu_bXJiaH6LbcCPLCPM1GThtSDdWTmwDo1PK4qQc6gcCcQZ5Xsefk19HCLHWHVW4SgcN8yzWPWhrrq5FdwDm3TjJ3_FrWIBOHsNF--l13MnX_eXC7rvbP1gd_7NvT-BRA0zZYa1JT2HNV8-gd1ihU351w96yECoa9uB7METlYhSXyOYla2NZGS2RNMwMn_YmJ-ZwMXaI9NllxeqcS2aqgjXnQptwdvJhdjSMmisZIkcptOhoam6cMgNrEEho55TSA4-QRqLlOym110niCiOTRJei5Mp5Y7mNudGFEL7kW7BezSu_DcwXEsGiKbFJT7xjOktsZnEWKBQvhNJ9eNcOTu4avnK6NuNbXvstPG9_Uh92O8nrmqPjLzI77fjmjZX-yBORkf8ac4VNdMVoX3RoYio_X6IMFwhiFEKhPjyv1aF7CU5fSsUy64NaUZROgLi7V0uqyy-BwxvnSew0x04GPbj3u_PZ6BRBeiZe_LPkG3g4nE3G-fjj9NNL2EgoCCeEme_A-uL70r9CFLWwr4O1_ARb1hWe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB-kgvii1vpx2tYIok9b9zbZZPNYbI_z1HJICwUflnxiad0revegf70z2Q-9VkGEfcsku9nMJL9JZn4BeOFc6XPteGZLwzMx9mWmYzRZKayTQeko03HBhyM5PRGz0_K0i6qkXJiWH2LYcCPLSPM1Gfilj52RE9nAbE5JnJRCfVNIBBIEiD4Wv04Qcq0HpnBVjjviWaz7uq-5vhRdw5fXwyR_h69p_ZnchU_9l7dhJ-d7q6Xdcz-ukDr-X9fuwZ0OlrL9Vo824UZo7sPWfoMu-Zfv7CVLgaJpB34LpqhajKIS2SKyPpKV0QJJg8zw6e9xYg6XYoc4n501rM24ZKbxrDsVegAnk8PjN9Osu5Ahc5RAi26m5sYpM7YGYYR2Tik9DghoJNq9k1IHXRTOG1kUOorIlQvGcptzo70QIfKHsNEsmvAYWPASoaKJ2GQg1jFdFbayOAd4xb1QegSv-rGpXcdWTpdmXNSt18Lr_ieN4PkgedkydPxBZrsf3rqz0W91ISryXnOusImhGK2LjkxMExYrlOECIYxCIDSCR602DC_ByUupXFYjUGt6MggQc_d6SXP2OTF44yyJnebYyaQGf_3u-ng2R4heiSf_LPkMbs0PJvX7t0fvnsLtgiJwUoz5Nmwsv67CDkKopd1NtvITCrYUTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+vascular+function+on+exercise+capacity+in+health+and+disease&rft.jtitle=The+Journal+of+physiology&rft.au=Poole%2C+David+C&rft.au=Behnke%2C+Brad+J&rft.au=Musch%2C+Timothy+I&rft.date=2021-02-01&rft.issn=1469-7793&rft.eissn=1469-7793&rft.volume=599&rft.issue=3&rft.spage=889&rft_id=info:doi/10.1113%2FJP278931&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |