Progress of Photodetectors Based on the Photothermoelectric Effect
High‐performance uncooled photodetectors operating in the long‐wavelength infrared and terahertz regimes are highly demanded in the military and civilian fields. Photothermoelectric (PTE) detectors, which combine photothermal and thermoelectric conversion processes, can realize ultra‐broadband photo...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 50; pp. e1902044 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐performance uncooled photodetectors operating in the long‐wavelength infrared and terahertz regimes are highly demanded in the military and civilian fields. Photothermoelectric (PTE) detectors, which combine photothermal and thermoelectric conversion processes, can realize ultra‐broadband photodetection without the requirement of a cooling unit and external bias. In the last few decades, the responsivity and speed of PTE‐based photodetectors have made impressive progress with the discovery of novel thermoelectric materials and the development of nanophotonics. In particular, by introducing hot‐carrier transport into low‐dimensional material–based PTE detectors, the response time has been successfully pushed down to the picosecond level. Furthermore, with the assistance of surface plasmon, antenna, and phonon absorption, the responsivity of PTE detectors can be significantly enhanced. Beyond the photodetection, PTE effect can also be utilized to probe exotic physical phenomena in spintronics and valleytronics. Herein, recent advances in PTE detectors are summarized, and some potential strategies to further improve the performance are proposed.
The room‐temperature detection of long‐wavelength infrared and terahertz radiation can be realized by photothermoelectric (PTE) detectors. The responsivity and the response speed of PTE‐based photodetectors have made impressive progress with the discovery of novel thermoelectric materials and the development of nanophotonics. Beyond light detection, the PTE effect can be utilized to study novel physical phenomena in spintronics and valleytronics. |
---|---|
AbstractList | High‐performance uncooled photodetectors operating in the long‐wavelength infrared and terahertz regimes are highly demanded in the military and civilian fields. Photothermoelectric (PTE) detectors, which combine photothermal and thermoelectric conversion processes, can realize ultra‐broadband photodetection without the requirement of a cooling unit and external bias. In the last few decades, the responsivity and speed of PTE‐based photodetectors have made impressive progress with the discovery of novel thermoelectric materials and the development of nanophotonics. In particular, by introducing hot‐carrier transport into low‐dimensional material–based PTE detectors, the response time has been successfully pushed down to the picosecond level. Furthermore, with the assistance of surface plasmon, antenna, and phonon absorption, the responsivity of PTE detectors can be significantly enhanced. Beyond the photodetection, PTE effect can also be utilized to probe exotic physical phenomena in spintronics and valleytronics. Herein, recent advances in PTE detectors are summarized, and some potential strategies to further improve the performance are proposed.
The room‐temperature detection of long‐wavelength infrared and terahertz radiation can be realized by photothermoelectric (PTE) detectors. The responsivity and the response speed of PTE‐based photodetectors have made impressive progress with the discovery of novel thermoelectric materials and the development of nanophotonics. Beyond light detection, the PTE effect can be utilized to study novel physical phenomena in spintronics and valleytronics. High‐performance uncooled photodetectors operating in the long‐wavelength infrared and terahertz regimes are highly demanded in the military and civilian fields. Photothermoelectric (PTE) detectors, which combine photothermal and thermoelectric conversion processes, can realize ultra‐broadband photodetection without the requirement of a cooling unit and external bias. In the last few decades, the responsivity and speed of PTE‐based photodetectors have made impressive progress with the discovery of novel thermoelectric materials and the development of nanophotonics. In particular, by introducing hot‐carrier transport into low‐dimensional material–based PTE detectors, the response time has been successfully pushed down to the picosecond level. Furthermore, with the assistance of surface plasmon, antenna, and phonon absorption, the responsivity of PTE detectors can be significantly enhanced. Beyond the photodetection, PTE effect can also be utilized to probe exotic physical phenomena in spintronics and valleytronics. Herein, recent advances in PTE detectors are summarized, and some potential strategies to further improve the performance are proposed. High-performance uncooled photodetectors operating in the long-wavelength infrared and terahertz regimes are highly demanded in the military and civilian fields. Photothermoelectric (PTE) detectors, which combine photothermal and thermoelectric conversion processes, can realize ultra-broadband photodetection without the requirement of a cooling unit and external bias. In the last few decades, the responsivity and speed of PTE-based photodetectors have made impressive progress with the discovery of novel thermoelectric materials and the development of nanophotonics. In particular, by introducing hot-carrier transport into low-dimensional material-based PTE detectors, the response time has been successfully pushed down to the picosecond level. Furthermore, with the assistance of surface plasmon, antenna, and phonon absorption, the responsivity of PTE detectors can be significantly enhanced. Beyond the photodetection, PTE effect can also be utilized to probe exotic physical phenomena in spintronics and valleytronics. Herein, recent advances in PTE detectors are summarized, and some potential strategies to further improve the performance are proposed.High-performance uncooled photodetectors operating in the long-wavelength infrared and terahertz regimes are highly demanded in the military and civilian fields. Photothermoelectric (PTE) detectors, which combine photothermal and thermoelectric conversion processes, can realize ultra-broadband photodetection without the requirement of a cooling unit and external bias. In the last few decades, the responsivity and speed of PTE-based photodetectors have made impressive progress with the discovery of novel thermoelectric materials and the development of nanophotonics. In particular, by introducing hot-carrier transport into low-dimensional material-based PTE detectors, the response time has been successfully pushed down to the picosecond level. Furthermore, with the assistance of surface plasmon, antenna, and phonon absorption, the responsivity of PTE detectors can be significantly enhanced. Beyond the photodetection, PTE effect can also be utilized to probe exotic physical phenomena in spintronics and valleytronics. Herein, recent advances in PTE detectors are summarized, and some potential strategies to further improve the performance are proposed. |
Author | Bao, Xinhe Sun, Lin Lu, Xiaowei Jiang, Peng |
Author_xml | – sequence: 1 givenname: Xiaowei surname: Lu fullname: Lu, Xiaowei organization: Chinese Academy of Sciences – sequence: 2 givenname: Lin surname: Sun fullname: Sun, Lin organization: Chinese Academy of Sciences – sequence: 3 givenname: Peng orcidid: 0000-0001-6281-5617 surname: Jiang fullname: Jiang, Peng email: pengjiang@dicp.ac.cn organization: Chinese Academy of Sciences – sequence: 4 givenname: Xinhe surname: Bao fullname: Bao, Xinhe email: xhbao@dicp.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31483546$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEURoNU7EO3LmXAjZupeXeybGt9QMUudB0yScZOmZnUZIr035vSVkEQV7kk51zuzdcHncY1FoBLBIcIQnyrTK2GGCIBMaT0BPQQwyilULAO6EFBWCo4zbqgH8IKQig45GegSxDNCKO8ByYL7969DSFxRbJYutYZ21rdOh-SiQrWJK5J2qXdv8XC185WEfClTmZFEatzcFqoKtiLwzkAb_ez1-ljOn95eJqO56mmRNCU5RzmGhluSZFniCM2yjS2I5gxhJWKl6LIqdIZM3hElIlLmRFnxlBFlcKMDMDNvu_au4-NDa2sy6BtVanGuk2QGGeUcRzXiuj1L3TlNr6J00lMMIE8TiQidXWgNnltjVz7slZ-K4-_EwG6B7R3IXhbSF22qi1d03pVVhJBuQtB7kKQ3yFEbfhLO3b-UxB74bOs7PYfWo7vnsc_7hfdPJg3 |
CitedBy_id | crossref_primary_10_1002_marc_202100854 crossref_primary_10_1002_apxr_202400094 crossref_primary_10_1002_pssa_202200612 crossref_primary_10_1016_j_gce_2024_03_001 crossref_primary_10_1088_1361_6528_ad4cf0 crossref_primary_10_1063_5_0153494 crossref_primary_10_1021_acsaelm_1c01060 crossref_primary_10_1038_s41427_024_00580_6 crossref_primary_10_1016_j_xcrp_2021_100418 crossref_primary_10_1002_adom_202302847 crossref_primary_10_1016_j_cej_2024_154263 crossref_primary_10_1021_acsaelm_4c01343 crossref_primary_10_1002_admt_202202104 crossref_primary_10_1002_admt_202200321 crossref_primary_10_1002_advs_202205837 crossref_primary_10_1021_acsami_2c20487 crossref_primary_10_1063_5_0213002 crossref_primary_10_1080_10408436_2023_2289928 crossref_primary_10_1364_PRJ_430960 crossref_primary_10_1021_acsphotonics_3c01609 crossref_primary_10_1039_D2TC02594A crossref_primary_10_1002_admi_202300528 crossref_primary_10_3390_photonics8030076 crossref_primary_10_1016_j_matdes_2023_112383 crossref_primary_10_1063_5_0161026 crossref_primary_10_1021_acsami_4c07979 crossref_primary_10_1063_5_0187137 crossref_primary_10_1021_acs_nanolett_4c04422 crossref_primary_10_1364_PRJ_496848 crossref_primary_10_1002_adfm_202406897 crossref_primary_10_1063_5_0218545 crossref_primary_10_1016_j_apmt_2024_102376 crossref_primary_10_1364_OE_486114 crossref_primary_10_1021_acsnano_1c06286 crossref_primary_10_1002_admt_202401724 crossref_primary_10_1039_D5TC00891C crossref_primary_10_1002_anie_202413805 crossref_primary_10_1002_adfm_202010901 crossref_primary_10_1021_acsami_2c08341 crossref_primary_10_1002_adfm_202312245 crossref_primary_10_1002_adma_202309864 crossref_primary_10_1088_2632_959X_ac46b9 crossref_primary_10_1039_D3TA01223A crossref_primary_10_1002_adsr_202400159 crossref_primary_10_1063_5_0109032 crossref_primary_10_1364_AO_486815 crossref_primary_10_3390_mi14010061 crossref_primary_10_1002_adma_202410952 crossref_primary_10_1002_smsc_202400448 crossref_primary_10_1002_adma_202410275 crossref_primary_10_1007_s12598_023_02497_5 crossref_primary_10_1063_5_0219048 crossref_primary_10_1103_PhysRevApplied_23_034077 crossref_primary_10_1038_s41467_022_30951_y crossref_primary_10_1039_D3MA00017F crossref_primary_10_3390_nano11102688 crossref_primary_10_1002_adfm_202010439 crossref_primary_10_1109_JSEN_2024_3422169 crossref_primary_10_1002_apxr_202300027 crossref_primary_10_1126_sciadv_adi9980 crossref_primary_10_1002_adfm_202111970 crossref_primary_10_1039_D2NA00609J crossref_primary_10_1039_D4SC03428G crossref_primary_10_1016_j_cej_2025_160008 crossref_primary_10_1016_j_mtcomm_2024_109723 crossref_primary_10_1002_adfm_202501917 crossref_primary_10_1002_aenm_202101213 crossref_primary_10_1002_adfm_202312872 crossref_primary_10_1063_5_0180323 crossref_primary_10_3788_CJL240797 crossref_primary_10_1016_j_apsadv_2020_100050 crossref_primary_10_1021_acsphotonics_3c00458 crossref_primary_10_1515_nanoph_2019_0565 crossref_primary_10_1016_j_jechem_2021_04_056 crossref_primary_10_1021_acsnano_4c15136 crossref_primary_10_1002_adma_202000273 crossref_primary_10_3390_s23125367 crossref_primary_10_1039_D3TC01045G crossref_primary_10_1126_science_adp2444 crossref_primary_10_1002_adma_202501833 crossref_primary_10_1002_ejic_202400762 crossref_primary_10_1016_j_sna_2022_114051 crossref_primary_10_1063_5_0078394 crossref_primary_10_3390_nano15060459 crossref_primary_10_1002_adpr_202100221 crossref_primary_10_1002_advs_201903389 crossref_primary_10_1002_adfm_202213970 crossref_primary_10_1021_acsami_3c07585 crossref_primary_10_1063_5_0248034 crossref_primary_10_1016_j_mattod_2022_02_005 crossref_primary_10_1002_adfm_202303352 crossref_primary_10_1002_ange_202413805 crossref_primary_10_1002_adom_202301377 crossref_primary_10_1016_j_optcom_2023_129714 crossref_primary_10_1038_s41378_022_00454_3 crossref_primary_10_1039_D4TA07692C crossref_primary_10_1063_5_0205333 crossref_primary_10_1093_nsr_nwae419 crossref_primary_10_1016_j_optlastec_2021_107821 crossref_primary_10_1021_acsaelm_1c00963 crossref_primary_10_1002_adfm_202104787 crossref_primary_10_1007_s11432_023_3812_1 crossref_primary_10_1021_acs_chemmater_2c03651 crossref_primary_10_1109_JSEN_2024_3523526 crossref_primary_10_1063_5_0245833 crossref_primary_10_1038_s41377_020_00425_1 crossref_primary_10_1063_5_0223521 crossref_primary_10_3390_s23063249 crossref_primary_10_1002_adfm_202107499 crossref_primary_10_1039_D2NR00497F crossref_primary_10_1038_s41378_024_00722_4 crossref_primary_10_1002_adma_202204355 crossref_primary_10_1002_admt_202400706 crossref_primary_10_1038_s41467_024_44970_4 crossref_primary_10_1016_j_apenergy_2024_124127 crossref_primary_10_1002_adom_202301721 crossref_primary_10_1002_adma_202309371 crossref_primary_10_1021_acs_nanolett_2c03574 crossref_primary_10_1002_adom_202401450 crossref_primary_10_1016_j_ceramint_2021_10_175 crossref_primary_10_1016_j_surfin_2023_102909 crossref_primary_10_1039_D4NR03543G crossref_primary_10_1039_D4TC03507K crossref_primary_10_1063_5_0029050 crossref_primary_10_1021_acs_nanolett_2c01957 crossref_primary_10_3390_s23094385 crossref_primary_10_1016_j_carbon_2022_10_005 crossref_primary_10_1021_jacs_2c07864 crossref_primary_10_1002_smm2_1034 crossref_primary_10_1002_inf2_12093 crossref_primary_10_1016_j_fmre_2024_01_002 crossref_primary_10_1016_j_optlastec_2023_109942 crossref_primary_10_1002_smll_202205778 crossref_primary_10_1016_j_mattod_2022_11_003 crossref_primary_10_1038_s41377_025_01803_3 crossref_primary_10_1088_2053_1591_abc6cc crossref_primary_10_1002_admt_202300309 crossref_primary_10_1002_adma_202005940 crossref_primary_10_1038_s41467_024_49855_0 crossref_primary_10_1021_acsnano_0c08035 crossref_primary_10_1038_s41377_024_01496_0 crossref_primary_10_1021_acsanm_2c01039 crossref_primary_10_1073_pnas_2002284117 crossref_primary_10_1002_adfm_202200973 crossref_primary_10_1039_D1TA02946K crossref_primary_10_1002_adma_202313911 crossref_primary_10_1002_advs_202003864 crossref_primary_10_1002_inf2_12384 crossref_primary_10_1063_5_0142575 crossref_primary_10_1039_D1TC00786F crossref_primary_10_3390_photonics8040119 crossref_primary_10_1002_advs_202401631 crossref_primary_10_1364_OPTICA_398135 crossref_primary_10_3390_photonics12010006 crossref_primary_10_1016_j_optmat_2023_113432 crossref_primary_10_1002_adma_202312570 crossref_primary_10_3390_ma17163988 crossref_primary_10_1021_acs_nanolett_4c03269 crossref_primary_10_1021_acsami_3c04541 crossref_primary_10_1364_AO_456247 crossref_primary_10_1021_acsami_2c02557 crossref_primary_10_1002_adfm_202310811 crossref_primary_10_3390_su162210137 crossref_primary_10_1002_inf2_12556 crossref_primary_10_1021_acsami_4c10489 crossref_primary_10_1021_jacs_4c11531 crossref_primary_10_1002_adma_202008080 crossref_primary_10_1016_j_mtcomm_2024_108436 crossref_primary_10_1016_j_carbon_2023_02_020 crossref_primary_10_1039_D3RA03104G crossref_primary_10_1002_smm2_1056 crossref_primary_10_1016_j_mtphys_2020_100331 crossref_primary_10_1002_pssr_202300120 crossref_primary_10_1016_j_fmre_2021_09_018 crossref_primary_10_1016_j_device_2024_100524 crossref_primary_10_1021_acsaelm_1c01056 crossref_primary_10_1021_acsami_0c15639 crossref_primary_10_1007_s12274_021_3367_2 crossref_primary_10_1002_inf2_12169 crossref_primary_10_1016_j_optcom_2023_130216 crossref_primary_10_1038_s41467_023_39071_7 crossref_primary_10_1002_inf2_12600 crossref_primary_10_1515_nanoph_2022_0660 crossref_primary_10_1002_smtd_202201044 crossref_primary_10_1016_j_mtcomm_2022_105094 crossref_primary_10_3390_catal15030229 crossref_primary_10_3788_LOP232089 crossref_primary_10_1021_acsaelm_3c01270 crossref_primary_10_1364_OE_453920 |
Cites_doi | 10.1021/nl300262j 10.1088/0034-4885/70/8/R02 10.1002/adma.201800262 10.1038/nature11253 10.1021/acsphotonics.7b01593 10.1126/science.1173034 10.1002/adma.201301834 10.1039/C7NR02678A 10.1038/nnano.2014.182 10.1038/nphoton.2016.209 10.1039/C8NR09060B 10.1038/s41566-018-0134-3 10.1021/acsami.8b20095 10.1126/science.1102896 10.1038/ncomms5458 10.1088/0034-4885/68/10/R01 10.1021/nl5012678 10.1038/nnano.2014.215 10.1021/nl8029493 10.1038/nphoton.2013.311 10.1007/s12274-011-0186-x 10.1038/nature06381 10.1038/srep03344 10.1063/1.127104 10.1017/CBO9780511635595 10.1021/acsnano.5b03873 10.1039/C7QM00596B 10.1021/acs.jpcc.9b01174 10.1021/acs.nanolett.8b00023 10.1126/science.aag1992 10.1038/nmat4169 10.1021/nn5013429 10.1039/C7EE03617E 10.1126/science.1211384 10.1021/acs.nanolett.6b03078 10.1002/anie.201612041 10.1021/nl502928y 10.1515/nanoph-2015-0154 10.1002/adma.201502052 10.1002/adma.201305371 10.1039/C8NR10222H 10.1038/nnano.2017.87 10.1038/nature09720 10.1063/1.2348781 10.1021/acs.nanolett.6b01977 10.1021/nl903451y 10.1038/s41467-018-07508-z 10.1021/acs.nanolett.5b03572 10.1021/nn402679u 10.1038/nphys1274 10.1002/adma.200600527 10.1021/nl901696j 10.1109/TNANO.2015.2397861 10.1038/nphys1270 10.1021/nl301702r 10.1038/srep01335 10.1103/PhysRevLett.101.267403 10.1002/adom.201801248 10.1021/nl5004762 10.1038/nature11254 10.1021/acsphotonics.6b00226 10.1002/adma.201200644 10.1038/ncomms10783 10.1021/nl501276e 10.1021/nn403137a 10.1038/ncomms7617 10.1038/s41565-017-0008-8 10.1038/nphoton.2007.3 10.1038/ncomms6463 10.7567/APEX.7.025103 10.1038/nnano.2014.148 10.1080/00018732.2012.737982 10.1063/1.4752435 10.1021/nl502741k 10.1038/nnano.2015.112 10.1021/acsnano.5b06160 10.1038/s41467-017-01149-4 10.1021/nn101247g 10.1007/978-3-642-00716-3 10.1038/nmat4755 10.1002/adma.201504990 10.1038/nnano.2013.197 10.1007/978-1-4899-6443-4_35 10.1126/science.1086534 10.1038/nnano.2016.185 10.1021/nl4001037 10.1038/nnano.2015.54 10.1021/nl500666m 10.1029/2006JE002790 10.1038/nmat1821 10.1103/PhysRevB.90.081408 10.1021/nl4042627 10.1038/nmat3004 10.1021/acsnano.8b01660 10.1063/1.4820408 10.1038/nature02308 10.1103/PhysRevLett.112.247401 10.1021/nl502847v 10.1021/acs.nanolett.5b00137 10.1103/PhysRevB.77.041409 10.1021/nl202318u 10.1038/nnano.2014.35 10.1038/nmat3635 10.1103/PhysRevLett.99.227401 10.1021/acs.nanolett.5b01755 10.1103/PhysRevLett.85.1096 10.1038/nnano.2008.199 10.1002/smll.201403413 10.1038/s41467-018-07860-0 10.1038/nnano.2012.88 10.1103/PhysRev.181.1336 10.1021/acsami.5b01460 10.1021/acs.nanolett.7b00536 10.1021/acs.nanolett.5b01635 10.1088/0957-0233/25/1/015603 10.1038/nnano.2011.243 10.1038/ncomms1656 10.1002/smll.201700894 10.1016/S0079-6727(02)00024-1 10.1039/c1ee01646f 10.1063/1.357128 10.1063/1.4788674 10.1038/nphoton.2010.237 10.1021/nl303321g 10.1038/nature08916 10.1021/ja404890n 10.1063/1.371145 10.1088/0953-8984/27/16/164207 10.1146/annurev.physchem.58.032806.104607 10.1126/science.1244358 10.1021/nl802086x 10.1021/acsnano.5b04042 10.1038/ncomms6139 10.1038/nnano.2013.100 10.1021/nl302015v 10.1021/nl9041966 10.1038/nphys3549 10.1063/1.3653824 10.1103/PhysRevLett.102.166808 10.1021/nl5029717 10.1103/PhysRevMaterials.2.015201 10.1017/CBO9781139013475 10.1103/PhysRevLett.105.136805 10.1103/PhysRevB.90.075434 10.1103/PhysRevB.90.075430 10.1021/acs.jpclett.7b00507 10.1021/nl034841q 10.1021/acs.nanolett.6b03374 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201902044 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 31483546 10_1002_adma_201902044 ADMA201902044 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Dalian Institute of Chemical Physics funderid: DICP ZZBS201608 – fundername: National Key Research and Development Program of China funderid: 2016YFA0203500 – fundername: National Key Research and Development Program of China grantid: 2016YFA0203500 – fundername: Dalian Institute of Chemical Physics grantid: DICP ZZBS201608 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4394-5b60bc1d6e3fb8161578c2e708512aa3fb9fb4ac85d273ad201d765dd4a4aa253 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 03:53:07 EDT 2025 Mon Jul 14 10:47:14 EDT 2025 Thu Apr 03 07:09:12 EDT 2025 Tue Jul 01 02:32:40 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Wed Jan 22 16:36:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | low-dimensional materials nanophotonics photodetectors photothermoelectric effect thermoelectrics |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4394-5b60bc1d6e3fb8161578c2e708512aa3fb9fb4ac85d273ad201d765dd4a4aa253 |
Notes | Dedicated to the 70th anniversary of Dalian Institute of Chemical Physics, CAS ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6281-5617 |
PMID | 31483546 |
PQID | 2323064399 |
PQPubID | 2045203 |
PageCount | 26 |
ParticipantIDs | proquest_miscellaneous_2284562546 proquest_journals_2323064399 pubmed_primary_31483546 crossref_citationtrail_10_1002_adma_201902044 crossref_primary_10_1002_adma_201902044 wiley_primary_10_1002_adma_201902044_ADMA201902044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 2013; 3 2012; 487 2010; 105 2019; 11 2019; 10 2000; 85 2010; 464 2004; 4 2014; 26 2014; 25 2007; 70 2008; 101 2013; 7 2013; 8 2012; 12 2005; 68 2011; 110 2018; 9 1969; 181 2018; 2 2018; 5 2014; 14 2007; 6 2013; 113 2018; 30 2007; 1 2012; 24 2010; 4 1994; 76 2019; 7 2007; 19 2012; 101 2016; 10 2013; 342 2013; 103 1992 2011; 4 2004; 306 2004; 427 2016; 16 2007; 99 2011; 5 2016; 12 2018; 18 2016; 7 2016; 3 2000; 77 2017; 56 2003; 27 2009; 102 2018; 12 2016; 28 2018; 11 2018; 13 2012; 61 2017; 6 2017; 8 2013; 25 2011; 11 2011; 10 2008; 8 1999; 86 2008; 77 2008; 3 2017; 9 2019; 123 2014; 5 2013; 13 2013; 12 2016; 354 2014; 9 2014; 8 2014; 7 2009; 325 2011; 334 2015; 15 2015; 14 2015; 6 2014; 90 2010 2015; 11 2015; 10 2009 2015; 9 2015; 7 2007; 58 2014; 112 2014 2016; 9 16 2007; 112 2015; 27 2012; 3 2011; 469 2006; 89 2017; 17 2017; 16 2017; 13 2017; 12 1965 2009; 9 2013; 135 2009; 5 2013 2012; 7 2003; 301 2008; 451 2012; 5 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_148_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_102_1 e_1_2_11_144_1 e_1_2_11_140_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_117_1 e_1_2_11_136_1 e_1_2_11_59_1 e_1_2_11_113_1 e_1_2_11_132_1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_149_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_1_1 e_1_2_11_141_1 e_1_2_11_61_1 e_1_2_11_80_1 Shah J. (e_1_2_11_13_1) 1992 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_133_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_53_2 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_127_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_123_1 e_1_2_11_142_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_130_1 Stiens J. (e_1_2_11_10_1) 2010 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_143_1 e_1_2_11_120_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_1 e_1_2_11_37_1 e_1_2_11_135_1 e_1_2_11_112_1 e_1_2_11_131_1 e_1_2_11_150_1 |
References_xml | – volume: 8 start-page: 216 year: 2014 publication-title: ACS Nano – volume: 6 start-page: 4987 year: 2015 publication-title: Nat. Commun. – volume: 342 start-page: 614 year: 2013 publication-title: Science – volume: 12 start-page: 195 year: 2018 publication-title: Nat. Photonics – volume: 6 start-page: 177 year: 2017 publication-title: Nanophotonics – volume: 110 year: 2011 publication-title: J. Appl. Phys. – volume: 27 start-page: 5567 year: 2015 publication-title: Adv. Mater. – volume: 8 start-page: 497 year: 2013 publication-title: Nat. Nanotechnol. – volume: 18 start-page: 2879 year: 2018 publication-title: Nano Lett. – volume: 15 start-page: 7211 year: 2015 publication-title: Nano Lett. – volume: 16 start-page: 204 year: 2017 publication-title: Nat. Mater. – volume: 15 start-page: 4295 year: 2015 publication-title: Nano Lett. – volume: 8 start-page: 1739 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 707 year: 2015 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 1644 year: 2013 publication-title: Nano Lett. – volume: 77 year: 2008 publication-title: Phys. Rev. B – volume: 3 start-page: 646 year: 2012 publication-title: Nat. Commun. – volume: 56 start-page: 3546 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 138 year: 2019 publication-title: Nat. Commun. – volume: 7 year: 2014 publication-title: Appl. Phys. Express – volume: 14 start-page: 3953 year: 2014 publication-title: Nano Lett. – volume: 487 start-page: 82 year: 2012 publication-title: Nature – volume: 14 start-page: 6374 year: 2014 publication-title: Nano Lett. – volume: 3 start-page: 1335 year: 2013 publication-title: Sci. Rep. – volume: 14 start-page: 6414 year: 2014 publication-title: Nano Lett. – volume: 7 start-page: 7271 year: 2013 publication-title: ACS Nano – volume: 3 start-page: 3344 year: 2013 publication-title: Sci. Rep. – volume: 12 start-page: 3788 year: 2012 publication-title: Nano Lett. – volume: 14 start-page: 2730 year: 2014 publication-title: Nano Lett. – volume: 85 start-page: 1096 year: 2000 publication-title: Phys. Rev. Lett. – volume: 112 start-page: E05S06 year: 2007 publication-title: J. Geophys. Res. – volume: 12 start-page: 4674 year: 2012 publication-title: Nano Lett. – volume: 464 start-page: 194 year: 2010 publication-title: Nature – volume: 28 start-page: 2644 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 611 year: 2014 publication-title: Nat. Nanotechnol. – volume: 76 start-page: 1 year: 1994 publication-title: J. Appl. Phys. – volume: 11 start-page: 4918 year: 2019 publication-title: Nanoscale – volume: 77 start-page: 741 year: 2000 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 1995 year: 2019 publication-title: Nanoscale – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 6 start-page: 6617 year: 2015 publication-title: Nat. Commun. – volume: 90 year: 2014 publication-title: Phys. Rev. B – start-page: 827 year: 1965 – volume: 3 start-page: 936 year: 2016 publication-title: ACS Photonics – year: 1992 – volume: 99 year: 2007 publication-title: Phys. Rev. Lett. – volume: 103 year: 2013 publication-title: Appl. Phys. Lett. – volume: 112 year: 2014 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 2051 year: 2018 publication-title: ACS Photonics – volume: 16 start-page: 7107 year: 2016 publication-title: Nano Lett. – volume: 13 start-page: 358 year: 2013 publication-title: Nano Lett. – volume: 86 start-page: 1 year: 1999 publication-title: J. Appl. Phys. – volume: 5 start-page: 4458 year: 2014 publication-title: Nat. Commun. – volume: 12 start-page: 770 year: 2017 publication-title: Nat. Nanotechnol. – volume: 14 start-page: 901 year: 2014 publication-title: Nano Lett. – volume: 5 start-page: 73 year: 2012 publication-title: Nano Res. – volume: 27 start-page: 59 year: 2003 publication-title: Prog. Quantum Electron. – volume: 12 start-page: 719 year: 2013 publication-title: Nat. Mater. – volume: 13 year: 2017 publication-title: Small – year: 2013 – volume: 89 year: 2006 publication-title: Appl. Phys. Lett. – year: 2009 – volume: 10 start-page: 437 year: 2015 publication-title: Nat. Nanotechnol. – volume: 2 start-page: 1276 year: 2018 publication-title: Mater. Chem. Front. – volume: 9 start-page: 5190 year: 2018 publication-title: Nat. Commun. – volume: 14 start-page: 6424 year: 2014 publication-title: Nano Lett. – volume: 14 start-page: 421 year: 2015 publication-title: Nat. Mater. – volume: 9 year: 2015 publication-title: ACS Nano – volume: 102 year: 2009 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 780 year: 2014 publication-title: Nat. Nanotechnol. – volume: 25 start-page: 5483 year: 2013 publication-title: Adv. Mater. – volume: 7 start-page: 8968 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 469 start-page: 189 year: 2011 publication-title: Nature – volume: 1 start-page: 97 year: 2007 publication-title: Nat. Photonics – volume: 101 year: 2008 publication-title: Phys. Rev. Lett. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 301 start-page: 344 year: 2003 publication-title: Science – volume: 10 start-page: 809 year: 2016 publication-title: Nat. Photonics – volume: 8 start-page: 1024 year: 2017 publication-title: Nat. Commun. – volume: 11 start-page: 3119 year: 2015 publication-title: Small – volume: 14 start-page: 5846 year: 2014 publication-title: Nano Lett. – volume: 7 start-page: 472 year: 2012 publication-title: Nat. Nanotechnol. – volume: 19 start-page: 1043 year: 2007 publication-title: Adv. Mater. – volume: 354 start-page: aag1992 year: 2016 publication-title: Science – volume: 17 start-page: 4055 year: 2017 publication-title: Nano Lett. – volume: 12 start-page: 31 year: 2017 publication-title: Nat. Nanotechnol. – volume: 334 start-page: 648 year: 2011 publication-title: Science – volume: 9 start-page: 814 year: 2014 publication-title: Nat. Nanotechnol. – volume: 26 start-page: 6829 year: 2014 publication-title: Adv. Mater. – volume: 15 start-page: 5295 year: 2015 publication-title: Nano Lett. – volume: 58 start-page: 267 year: 2007 publication-title: Annu. Rev. Phys. Chem. – volume: 10 start-page: 1645 year: 2010 publication-title: Nano Lett. – volume: 6 start-page: 129 year: 2007 publication-title: Nat. Mater. – volume: 16 start-page: 6988 year: 2016 publication-title: Nano Lett. – volume: 8 start-page: 5270 year: 2014 publication-title: ACS Nano – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 68 start-page: 2267 year: 2005 publication-title: Rep. Prog. Phys. – volume: 113 year: 2013 publication-title: J. Appl. Phys. – volume: 4 start-page: 35 year: 2004 publication-title: Nano Lett. – volume: 9 start-page: 3503 year: 2009 publication-title: Nano Lett. – volume: 10 start-page: 361 year: 2011 publication-title: Nat. Mater. – volume: 8 start-page: 821 year: 2013 publication-title: Nat. Nanotechnol. – volume: 70 start-page: 1325 year: 2007 publication-title: Rep. Prog. Phys. – volume: 12 start-page: 236 year: 2016 publication-title: Nat. Phys. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 451 start-page: 163 year: 2008 publication-title: Nature – volume: 101 year: 2012 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 4861 year: 2018 publication-title: ACS Nano – volume: 61 start-page: 745 year: 2012 publication-title: Adv. Phys. – volume: 7 start-page: 114 year: 2012 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 41 year: 2018 publication-title: Nat. Nanotechnol. – volume: 325 start-page: 178 year: 2009 publication-title: Science – volume: 5 start-page: 5139 year: 2014 publication-title: Nat. Commun. – volume: 4 start-page: 3676 year: 2011 publication-title: Energy Environ. Sci. – volume: 5 start-page: 438 year: 2009 publication-title: Nat. Phys. – volume: 3 start-page: 491 year: 2008 publication-title: Nat. Nanotechnol. – volume: 27 year: 2015 publication-title: J. Phys.: Condens. Matter – volume: 12 start-page: 2337 year: 2012 publication-title: Nano Lett. – volume: 5 start-page: 83 year: 2011 publication-title: Nat. Photonics – volume: 14 start-page: 4389 year: 2014 publication-title: Nano Lett. – start-page: 144 year: 2010 – volume: 427 start-page: 423 year: 2004 publication-title: Nature – volume: 24 start-page: 3275 year: 2012 publication-title: Adv. Mater. – volume: 5 start-page: 398 year: 2009 publication-title: Nat. Phys. – volume: 487 start-page: 77 year: 2012 publication-title: Nature – volume: 4 start-page: 4701 year: 2010 publication-title: ACS Nano – volume: 8 start-page: 3766 year: 2008 publication-title: Nano Lett. – volume: 14 start-page: 379 year: 2015 publication-title: IEEE Trans. Nanotechnol. – volume: 11 start-page: 4688 year: 2011 publication-title: Nano Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 25 year: 2014 publication-title: Meas. Sci. Technol. – volume: 9 16 start-page: 372 4648 year: 2014 2016 publication-title: Nat. Nanotechnol. Nano Lett. – volume: 11 start-page: 6411 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 2 year: 2018 publication-title: Phys. Rev. Mater. – volume: 10 start-page: 562 year: 2010 publication-title: Nano Lett. – volume: 9 start-page: 1742 year: 2009 publication-title: Nano Lett. – volume: 15 start-page: 8129 year: 2015 publication-title: Nano Lett. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 181 start-page: 1336 year: 1969 publication-title: Phys. Rev. – volume: 14 start-page: 3733 year: 2014 publication-title: Nano Lett. – volume: 11 start-page: 1307 year: 2018 publication-title: Energy Environ. Sci. – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 47 year: 2014 publication-title: Nat. Photonics – volume: 9 start-page: 9160 year: 2017 publication-title: Nanoscale – ident: e_1_2_11_84_1 doi: 10.1021/nl300262j – ident: e_1_2_11_5_1 doi: 10.1088/0034-4885/70/8/R02 – ident: e_1_2_11_105_1 doi: 10.1002/adma.201800262 – ident: e_1_2_11_136_1 doi: 10.1038/nature11253 – ident: e_1_2_11_104_1 doi: 10.1021/acsphotonics.7b01593 – ident: e_1_2_11_116_1 doi: 10.1126/science.1173034 – ident: e_1_2_11_100_1 doi: 10.1002/adma.201301834 – ident: e_1_2_11_90_1 doi: 10.1039/C7NR02678A – ident: e_1_2_11_42_1 doi: 10.1038/nnano.2014.182 – ident: e_1_2_11_75_1 doi: 10.1038/nphoton.2016.209 – ident: e_1_2_11_62_1 doi: 10.1039/C8NR09060B – ident: e_1_2_11_140_1 doi: 10.1038/s41566-018-0134-3 – ident: e_1_2_11_97_1 doi: 10.1021/acsami.8b20095 – ident: e_1_2_11_27_1 doi: 10.1126/science.1102896 – ident: e_1_2_11_56_1 doi: 10.1038/ncomms5458 – ident: e_1_2_11_2_1 doi: 10.1088/0034-4885/68/10/R01 – ident: e_1_2_11_77_1 doi: 10.1021/nl5012678 – ident: e_1_2_11_28_1 doi: 10.1038/nnano.2014.215 – ident: e_1_2_11_33_1 doi: 10.1021/nl8029493 – ident: e_1_2_11_25_1 doi: 10.1038/nphoton.2013.311 – ident: e_1_2_11_73_1 doi: 10.1007/s12274-011-0186-x – ident: e_1_2_11_94_1 doi: 10.1038/nature06381 – ident: e_1_2_11_79_1 doi: 10.1038/srep03344 – ident: e_1_2_11_3_1 doi: 10.1063/1.127104 – ident: e_1_2_11_22_1 doi: 10.1017/CBO9780511635595 – ident: e_1_2_11_69_1 doi: 10.1021/acsnano.5b03873 – ident: e_1_2_11_145_1 doi: 10.1039/C7QM00596B – ident: e_1_2_11_92_1 doi: 10.1021/acs.jpcc.9b01174 – ident: e_1_2_11_119_1 doi: 10.1021/acs.nanolett.8b00023 – ident: e_1_2_11_102_1 doi: 10.1126/science.aag1992 – ident: e_1_2_11_138_1 doi: 10.1038/nmat4169 – ident: e_1_2_11_49_1 doi: 10.1021/nn5013429 – ident: e_1_2_11_146_1 doi: 10.1039/C7EE03617E – ident: e_1_2_11_24_1 doi: 10.1126/science.1211384 – ident: e_1_2_11_43_1 doi: 10.1021/acs.nanolett.6b03078 – ident: e_1_2_11_95_1 doi: 10.1002/anie.201612041 – ident: e_1_2_11_61_1 doi: 10.1021/nl502928y – ident: e_1_2_11_103_1 doi: 10.1515/nanoph-2015-0154 – ident: e_1_2_11_128_1 doi: 10.1002/adma.201502052 – ident: e_1_2_11_98_1 doi: 10.1002/adma.201305371 – ident: e_1_2_11_112_1 doi: 10.1039/C8NR10222H – ident: e_1_2_11_121_1 doi: 10.1038/nnano.2017.87 – ident: e_1_2_11_150_1 doi: 10.1038/nature09720 – ident: e_1_2_11_131_1 doi: 10.1063/1.2348781 – ident: e_1_2_11_53_2 doi: 10.1021/acs.nanolett.6b01977 – ident: e_1_2_11_32_1 doi: 10.1021/nl903451y – ident: e_1_2_11_113_1 doi: 10.1038/s41467-018-07508-z – ident: e_1_2_11_83_1 doi: 10.1021/acs.nanolett.5b03572 – ident: e_1_2_11_74_1 doi: 10.1021/nn402679u – ident: e_1_2_11_117_1 doi: 10.1038/nphys1274 – ident: e_1_2_11_85_1 doi: 10.1002/adma.200600527 – ident: e_1_2_11_72_1 doi: 10.1021/nl901696j – ident: e_1_2_11_93_1 doi: 10.1109/TNANO.2015.2397861 – ident: e_1_2_11_118_1 doi: 10.1038/nphys1270 – ident: e_1_2_11_54_1 doi: 10.1021/nl301702r – ident: e_1_2_11_78_1 doi: 10.1038/srep01335 – ident: e_1_2_11_63_1 doi: 10.1103/PhysRevLett.101.267403 – ident: e_1_2_11_126_1 doi: 10.1002/adom.201801248 – ident: e_1_2_11_34_1 doi: 10.1021/nl5004762 – ident: e_1_2_11_135_1 doi: 10.1038/nature11254 – ident: e_1_2_11_127_1 doi: 10.1021/acsphotonics.6b00226 – ident: e_1_2_11_87_1 doi: 10.1002/adma.201200644 – ident: e_1_2_11_133_1 doi: 10.1038/ncomms10783 – ident: e_1_2_11_141_1 doi: 10.1021/nl501276e – ident: e_1_2_11_71_1 doi: 10.1021/nn403137a – ident: e_1_2_11_142_1 doi: 10.1038/ncomms7617 – ident: e_1_2_11_41_1 doi: 10.1038/s41565-017-0008-8 – ident: e_1_2_11_4_1 doi: 10.1038/nphoton.2007.3 – ident: e_1_2_11_26_1 doi: 10.1038/ncomms6463 – ident: e_1_2_11_66_1 doi: 10.7567/APEX.7.025103 – ident: e_1_2_11_143_1 doi: 10.1038/nnano.2014.148 – ident: e_1_2_11_132_1 doi: 10.1080/00018732.2012.737982 – ident: e_1_2_11_124_1 doi: 10.1063/1.4752435 – ident: e_1_2_11_52_1 doi: 10.1021/nl502741k – ident: e_1_2_11_58_1 doi: 10.1038/nnano.2015.112 – ident: e_1_2_11_76_1 doi: 10.1021/acsnano.5b06160 – volume-title: Hot Carriers in Semiconductor Nanostructures: Physics and Applications year: 1992 ident: e_1_2_11_13_1 – ident: e_1_2_11_147_1 doi: 10.1038/s41467-017-01149-4 – ident: e_1_2_11_80_1 doi: 10.1021/nn101247g – ident: e_1_2_11_8_1 doi: 10.1007/978-3-642-00716-3 – ident: e_1_2_11_20_1 doi: 10.1038/nmat4755 – ident: e_1_2_11_96_1 doi: 10.1002/adma.201504990 – ident: e_1_2_11_137_1 doi: 10.1038/nnano.2013.197 – ident: e_1_2_11_89_1 doi: 10.1007/978-1-4899-6443-4_35 – ident: e_1_2_11_65_1 doi: 10.1126/science.1086534 – ident: e_1_2_11_134_1 doi: 10.1038/nnano.2016.185 – ident: e_1_2_11_40_1 doi: 10.1021/nl4001037 – ident: e_1_2_11_21_1 doi: 10.1038/nnano.2015.54 – ident: e_1_2_11_47_1 doi: 10.1021/nl500666m – ident: e_1_2_11_9_1 doi: 10.1029/2006JE002790 – ident: e_1_2_11_149_1 doi: 10.1038/nmat1821 – ident: e_1_2_11_60_1 doi: 10.1103/PhysRevB.90.081408 – ident: e_1_2_11_44_1 doi: 10.1021/nl4042627 – ident: e_1_2_11_110_1 doi: 10.1038/nmat3004 – ident: e_1_2_11_129_1 doi: 10.1021/acsnano.8b01660 – ident: e_1_2_11_51_1 doi: 10.1063/1.4820408 – ident: e_1_2_11_148_1 doi: 10.1038/nature02308 – ident: e_1_2_11_39_1 doi: 10.1103/PhysRevLett.112.247401 – ident: e_1_2_11_122_1 doi: 10.1021/nl502847v – ident: e_1_2_11_114_1 doi: 10.1021/acs.nanolett.5b00137 – ident: e_1_2_11_19_1 doi: 10.1038/s41566-018-0134-3 – ident: e_1_2_11_31_1 doi: 10.1103/PhysRevB.77.041409 – ident: e_1_2_11_23_1 doi: 10.1021/nl202318u – ident: e_1_2_11_53_1 doi: 10.1038/nnano.2014.35 – ident: e_1_2_11_99_1 doi: 10.1038/nmat3635 – ident: e_1_2_11_70_1 doi: 10.1103/PhysRevLett.99.227401 – ident: e_1_2_11_45_1 doi: 10.1021/acs.nanolett.5b01755 – ident: e_1_2_11_67_1 doi: 10.1103/PhysRevLett.85.1096 – ident: e_1_2_11_37_1 doi: 10.1038/nnano.2008.199 – ident: e_1_2_11_68_1 doi: 10.1002/smll.201403413 – ident: e_1_2_11_123_1 doi: 10.1038/s41467-018-07860-0 – ident: e_1_2_11_12_1 doi: 10.1038/nnano.2012.88 – ident: e_1_2_11_7_1 doi: 10.1103/PhysRev.181.1336 – ident: e_1_2_11_101_1 doi: 10.1021/acsami.5b01460 – ident: e_1_2_11_86_1 doi: 10.1021/acs.nanolett.7b00536 – ident: e_1_2_11_130_1 doi: 10.1021/acs.nanolett.5b01635 – ident: e_1_2_11_17_1 doi: 10.1088/0957-0233/25/1/015603 – ident: e_1_2_11_11_1 doi: 10.1038/nnano.2011.243 – ident: e_1_2_11_36_1 doi: 10.1038/ncomms1656 – ident: e_1_2_11_109_1 doi: 10.1002/smll.201700894 – ident: e_1_2_11_1_1 doi: 10.1016/S0079-6727(02)00024-1 – ident: e_1_2_11_14_1 doi: 10.1039/c1ee01646f – ident: e_1_2_11_6_1 doi: 10.1063/1.357128 – ident: e_1_2_11_16_1 doi: 10.1063/1.4788674 – ident: e_1_2_11_106_1 doi: 10.1038/nphoton.2010.237 – ident: e_1_2_11_50_1 doi: 10.1021/nl303321g – ident: e_1_2_11_115_1 doi: 10.1038/nature08916 – ident: e_1_2_11_111_1 doi: 10.1021/ja404890n – ident: e_1_2_11_82_1 doi: 10.1063/1.371145 – ident: e_1_2_11_35_1 doi: 10.1088/0953-8984/27/16/164207 – ident: e_1_2_11_108_1 doi: 10.1146/annurev.physchem.58.032806.104607 – ident: e_1_2_11_38_1 doi: 10.1126/science.1244358 – ident: e_1_2_11_139_1 doi: 10.1021/nl802086x – ident: e_1_2_11_15_1 doi: 10.1021/acsnano.5b04042 – ident: e_1_2_11_120_1 doi: 10.1038/ncomms6139 – start-page: 144 volume-title: Laser Pulse Phenomena and Applications year: 2010 ident: e_1_2_11_10_1 – ident: e_1_2_11_48_1 doi: 10.1038/nnano.2013.100 – ident: e_1_2_11_55_1 doi: 10.1021/nl302015v – ident: e_1_2_11_29_1 doi: 10.1021/nl9041966 – ident: e_1_2_11_18_1 doi: 10.1038/nphys3549 – ident: e_1_2_11_88_1 doi: 10.1063/1.3653824 – ident: e_1_2_11_30_1 doi: 10.1103/PhysRevLett.102.166808 – ident: e_1_2_11_57_1 doi: 10.1021/nl5029717 – ident: e_1_2_11_81_1 doi: 10.1103/PhysRevMaterials.2.015201 – ident: e_1_2_11_107_1 doi: 10.1017/CBO9781139013475 – ident: e_1_2_11_46_1 doi: 10.1103/PhysRevLett.105.136805 – ident: e_1_2_11_59_1 doi: 10.1103/PhysRevB.90.075434 – ident: e_1_2_11_144_1 doi: 10.1103/PhysRevB.90.075430 – ident: e_1_2_11_91_1 doi: 10.1021/acs.jpclett.7b00507 – ident: e_1_2_11_64_1 doi: 10.1021/nl034841q – ident: e_1_2_11_125_1 doi: 10.1021/acs.nanolett.6b03374 |
SSID | ssj0009606 |
Score | 2.6588995 |
SecondaryResourceType | review_article |
Snippet | High‐performance uncooled photodetectors operating in the long‐wavelength infrared and terahertz regimes are highly demanded in the military and civilian... High-performance uncooled photodetectors operating in the long-wavelength infrared and terahertz regimes are highly demanded in the military and civilian... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1902044 |
SubjectTerms | Broadband Carrier transport low‐dimensional materials Materials science nanophotonics Performance enhancement photodetectors Photometers Photothermal conversion photothermoelectric effect Response time Sensors Spintronics Thermoelectric materials thermoelectrics |
Title | Progress of Photodetectors Based on the Photothermoelectric Effect |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201902044 https://www.ncbi.nlm.nih.gov/pubmed/31483546 https://www.proquest.com/docview/2323064399 https://www.proquest.com/docview/2284562546 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3ZS8MwHMeD7EkfvI_plAqCT9l6pNfjpo4hTIY42Fv55UJRW3Hdi3-9OdZuU0TQt7ZJaJrr9036yycIXUiIIA2kwCBkggmPKU4gdrHwmZBqTE6kIfAN76LBmNxOwsnSLn7Lh6gX3HTPMOO17uBAp50FNBS44QYpg-a7RANBtcOWVkX3C36UlucGtheEOI1IUlEbXb-zmnzVKn2TmqvK1Zie_haCKtPW4-S5PStpm3184Tn-56u20eZclzpd25B20JrId9HGEq1wD_VG2pdLjYxOIZ3RY1EWXJRm0X_q9JQx5E6RO0pP2jAtLF8Le8rOE3MsJXkfjfs3D1cDPD-CATO9ZRaHNHIp83gkAkkTrQ7jhPki1kLNB1APU0kJsCTkSgcBVznncRRyToAA-GFwgBp5kYsj5EhPRp7gDEBNwbw0pJzFkii1xoDGLg2aCFdVkLE5n1wfk_GSWbKyn-myyeqyaaLLOv6bJXP8GLNV1Wg276HTTCnJwMixtInO62DVt_QPE8hFMVNxlO3WE0QSNdGhbQn1qwI1jwxMiG_q85c8ZN3rYbe-O_5LohO0rq-tL00LNcr3mThViqikZ6bVfwI5NgJM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAH9qVQIEhInEzTxNmOLYvK0qpCIHGLvAoEJIimF74eL02gIIQEx3hRHNvjeTMZvwE4kCQkiS8FIkLGCPOIophELhIeE1KdybE0DHy9fti9xRd3QRlNqO_CWH6IyuGmJcOc11rAtUO6-cEaSrghDlIazXMxnoYZndbbWFXXHwxSGqAbuj0_QEmI45K30fWak_0n9dI3sDmJXY3yOVsEWg7bxpw8Ho0KesTevjA6_uu7lmBhDE2dtt1LyzAlshWY_0RYuAqdgQ7nUoejk0tncJ8XOReF8fsPnY7Sh9zJM0dBSlunseVzbhPtPDDHEiWvwe3Z6c1xF42zMCCmb82igIYuZS0eCl_SWAPEKGaeiDRW8whRhYmkmLA44AoKEa5GzqMw4BwTTIgX-OtQy_JMbIIjWzJsCc4IUVZYKwkoZ5HECrAxQiOX-nVA5RqkbExRrjNlPKWWXNlL9dyk1dzU4bBq_2LJOX5s2SiXNB0L6TBVYNI3iCypw35VrcRL_zMhmchHqo1S39pGxGEdNuxWqF7lK1PSNzWeWdBfxpC2T3rt6mnrL532YLZ707tKr877l9swp8ttaE0DasXrSOwogFTQXSMC72NoBmc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JT-MwFIefWCQEB7YZoGwTJCROhjRxnORYKBUMi6oRSNyi500gIEGQXvjr8dIGOgiNNBzjRXFsP7-fHfszwK5GhnmsFUGlM0JlykmGaUhUJJQ2Y3KmHYHv4pKdXNPfN8nNh1P8ng_RLLhZy3DjtTXwJ6kP3qGhKB03yDi0KKR0EqYpCzPbr7t_3gFSVp872l6ckJzRbIRtDKOD8fzjbumT1hyXrs739BYAR6X2W07u9wc13xevfwEdv_NZizA_FKZBx_ekJZhQ5TLMfcAV_oDDvt3MZYbGoNJB_7aqK6lqt-r_EhwabyiDqgyMoPRxVlk-Vv6anTsReEzyT7juHV8dnZDhHQxE2DOzJOEs5KItmYo1z6w8TDMRqdQqtQjRBOaaUxRZIo0QQmlKLlOWSEmRIkZJvAJTZVWqNQh0W7O2kgLRzMHaecKlSDU1ck0gT0Met4CMmqAQQ0C5vSfjofBo5aiwdVM0ddOCvSb9k0dzfJlyc9SixdBEXwojJWOnx_IW7DTRxrjsHxMsVTUwaYzztjNEylqw6ntC86rYTCRjFxO59vxHGYpO96LTPK3_T6ZfMNPv9orz08uzDZi1wX5fzSZM1c8DtWXUUc23nQG8AV5nBR8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+of+Photodetectors+Based+on+the+Photothermoelectric+Effect&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lu%2C+Xiaowei&rft.au=Sun%2C+Lin&rft.au=Jiang%2C+Peng&rft.au=Bao%2C+Xinhe&rft.date=2019-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=50&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201902044&rft.externalDBID=10.1002%252Fadma.201902044&rft.externalDocID=ADMA201902044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |