Progress of Photodetectors Based on the Photothermoelectric Effect

High‐performance uncooled photodetectors operating in the long‐wavelength infrared and terahertz regimes are highly demanded in the military and civilian fields. Photothermoelectric (PTE) detectors, which combine photothermal and thermoelectric conversion processes, can realize ultra‐broadband photo...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 50; pp. e1902044 - n/a
Main Authors Lu, Xiaowei, Sun, Lin, Jiang, Peng, Bao, Xinhe
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐performance uncooled photodetectors operating in the long‐wavelength infrared and terahertz regimes are highly demanded in the military and civilian fields. Photothermoelectric (PTE) detectors, which combine photothermal and thermoelectric conversion processes, can realize ultra‐broadband photodetection without the requirement of a cooling unit and external bias. In the last few decades, the responsivity and speed of PTE‐based photodetectors have made impressive progress with the discovery of novel thermoelectric materials and the development of nanophotonics. In particular, by introducing hot‐carrier transport into low‐dimensional material–based PTE detectors, the response time has been successfully pushed down to the picosecond level. Furthermore, with the assistance of surface plasmon, antenna, and phonon absorption, the responsivity of PTE detectors can be significantly enhanced. Beyond the photodetection, PTE effect can also be utilized to probe exotic physical phenomena in spintronics and valleytronics. Herein, recent advances in PTE detectors are summarized, and some potential strategies to further improve the performance are proposed. The room‐temperature detection of long‐wavelength infrared and terahertz radiation can be realized by photothermoelectric (PTE) detectors. The responsivity and the response speed of PTE‐based photodetectors have made impressive progress with the discovery of novel thermoelectric materials and the development of nanophotonics. Beyond light detection, the PTE effect can be utilized to study novel physical phenomena in spintronics and valleytronics.
AbstractList High‐performance uncooled photodetectors operating in the long‐wavelength infrared and terahertz regimes are highly demanded in the military and civilian fields. Photothermoelectric (PTE) detectors, which combine photothermal and thermoelectric conversion processes, can realize ultra‐broadband photodetection without the requirement of a cooling unit and external bias. In the last few decades, the responsivity and speed of PTE‐based photodetectors have made impressive progress with the discovery of novel thermoelectric materials and the development of nanophotonics. In particular, by introducing hot‐carrier transport into low‐dimensional material–based PTE detectors, the response time has been successfully pushed down to the picosecond level. Furthermore, with the assistance of surface plasmon, antenna, and phonon absorption, the responsivity of PTE detectors can be significantly enhanced. Beyond the photodetection, PTE effect can also be utilized to probe exotic physical phenomena in spintronics and valleytronics. Herein, recent advances in PTE detectors are summarized, and some potential strategies to further improve the performance are proposed. The room‐temperature detection of long‐wavelength infrared and terahertz radiation can be realized by photothermoelectric (PTE) detectors. The responsivity and the response speed of PTE‐based photodetectors have made impressive progress with the discovery of novel thermoelectric materials and the development of nanophotonics. Beyond light detection, the PTE effect can be utilized to study novel physical phenomena in spintronics and valleytronics.
High‐performance uncooled photodetectors operating in the long‐wavelength infrared and terahertz regimes are highly demanded in the military and civilian fields. Photothermoelectric (PTE) detectors, which combine photothermal and thermoelectric conversion processes, can realize ultra‐broadband photodetection without the requirement of a cooling unit and external bias. In the last few decades, the responsivity and speed of PTE‐based photodetectors have made impressive progress with the discovery of novel thermoelectric materials and the development of nanophotonics. In particular, by introducing hot‐carrier transport into low‐dimensional material–based PTE detectors, the response time has been successfully pushed down to the picosecond level. Furthermore, with the assistance of surface plasmon, antenna, and phonon absorption, the responsivity of PTE detectors can be significantly enhanced. Beyond the photodetection, PTE effect can also be utilized to probe exotic physical phenomena in spintronics and valleytronics. Herein, recent advances in PTE detectors are summarized, and some potential strategies to further improve the performance are proposed.
High-performance uncooled photodetectors operating in the long-wavelength infrared and terahertz regimes are highly demanded in the military and civilian fields. Photothermoelectric (PTE) detectors, which combine photothermal and thermoelectric conversion processes, can realize ultra-broadband photodetection without the requirement of a cooling unit and external bias. In the last few decades, the responsivity and speed of PTE-based photodetectors have made impressive progress with the discovery of novel thermoelectric materials and the development of nanophotonics. In particular, by introducing hot-carrier transport into low-dimensional material-based PTE detectors, the response time has been successfully pushed down to the picosecond level. Furthermore, with the assistance of surface plasmon, antenna, and phonon absorption, the responsivity of PTE detectors can be significantly enhanced. Beyond the photodetection, PTE effect can also be utilized to probe exotic physical phenomena in spintronics and valleytronics. Herein, recent advances in PTE detectors are summarized, and some potential strategies to further improve the performance are proposed.High-performance uncooled photodetectors operating in the long-wavelength infrared and terahertz regimes are highly demanded in the military and civilian fields. Photothermoelectric (PTE) detectors, which combine photothermal and thermoelectric conversion processes, can realize ultra-broadband photodetection without the requirement of a cooling unit and external bias. In the last few decades, the responsivity and speed of PTE-based photodetectors have made impressive progress with the discovery of novel thermoelectric materials and the development of nanophotonics. In particular, by introducing hot-carrier transport into low-dimensional material-based PTE detectors, the response time has been successfully pushed down to the picosecond level. Furthermore, with the assistance of surface plasmon, antenna, and phonon absorption, the responsivity of PTE detectors can be significantly enhanced. Beyond the photodetection, PTE effect can also be utilized to probe exotic physical phenomena in spintronics and valleytronics. Herein, recent advances in PTE detectors are summarized, and some potential strategies to further improve the performance are proposed.
Author Bao, Xinhe
Sun, Lin
Lu, Xiaowei
Jiang, Peng
Author_xml – sequence: 1
  givenname: Xiaowei
  surname: Lu
  fullname: Lu, Xiaowei
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Lin
  surname: Sun
  fullname: Sun, Lin
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Peng
  orcidid: 0000-0001-6281-5617
  surname: Jiang
  fullname: Jiang, Peng
  email: pengjiang@dicp.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Xinhe
  surname: Bao
  fullname: Bao, Xinhe
  email: xhbao@dicp.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31483546$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEURoNU7EO3LmXAjZupeXeybGt9QMUudB0yScZOmZnUZIr035vSVkEQV7kk51zuzdcHncY1FoBLBIcIQnyrTK2GGCIBMaT0BPQQwyilULAO6EFBWCo4zbqgH8IKQig45GegSxDNCKO8ByYL7969DSFxRbJYutYZ21rdOh-SiQrWJK5J2qXdv8XC185WEfClTmZFEatzcFqoKtiLwzkAb_ez1-ljOn95eJqO56mmRNCU5RzmGhluSZFniCM2yjS2I5gxhJWKl6LIqdIZM3hElIlLmRFnxlBFlcKMDMDNvu_au4-NDa2sy6BtVanGuk2QGGeUcRzXiuj1L3TlNr6J00lMMIE8TiQidXWgNnltjVz7slZ-K4-_EwG6B7R3IXhbSF22qi1d03pVVhJBuQtB7kKQ3yFEbfhLO3b-UxB74bOs7PYfWo7vnsc_7hfdPJg3
CitedBy_id crossref_primary_10_1002_marc_202100854
crossref_primary_10_1002_apxr_202400094
crossref_primary_10_1002_pssa_202200612
crossref_primary_10_1016_j_gce_2024_03_001
crossref_primary_10_1088_1361_6528_ad4cf0
crossref_primary_10_1063_5_0153494
crossref_primary_10_1021_acsaelm_1c01060
crossref_primary_10_1038_s41427_024_00580_6
crossref_primary_10_1016_j_xcrp_2021_100418
crossref_primary_10_1002_adom_202302847
crossref_primary_10_1016_j_cej_2024_154263
crossref_primary_10_1021_acsaelm_4c01343
crossref_primary_10_1002_admt_202202104
crossref_primary_10_1002_admt_202200321
crossref_primary_10_1002_advs_202205837
crossref_primary_10_1021_acsami_2c20487
crossref_primary_10_1063_5_0213002
crossref_primary_10_1080_10408436_2023_2289928
crossref_primary_10_1364_PRJ_430960
crossref_primary_10_1021_acsphotonics_3c01609
crossref_primary_10_1039_D2TC02594A
crossref_primary_10_1002_admi_202300528
crossref_primary_10_3390_photonics8030076
crossref_primary_10_1016_j_matdes_2023_112383
crossref_primary_10_1063_5_0161026
crossref_primary_10_1021_acsami_4c07979
crossref_primary_10_1063_5_0187137
crossref_primary_10_1021_acs_nanolett_4c04422
crossref_primary_10_1364_PRJ_496848
crossref_primary_10_1002_adfm_202406897
crossref_primary_10_1063_5_0218545
crossref_primary_10_1016_j_apmt_2024_102376
crossref_primary_10_1364_OE_486114
crossref_primary_10_1021_acsnano_1c06286
crossref_primary_10_1002_admt_202401724
crossref_primary_10_1039_D5TC00891C
crossref_primary_10_1002_anie_202413805
crossref_primary_10_1002_adfm_202010901
crossref_primary_10_1021_acsami_2c08341
crossref_primary_10_1002_adfm_202312245
crossref_primary_10_1002_adma_202309864
crossref_primary_10_1088_2632_959X_ac46b9
crossref_primary_10_1039_D3TA01223A
crossref_primary_10_1002_adsr_202400159
crossref_primary_10_1063_5_0109032
crossref_primary_10_1364_AO_486815
crossref_primary_10_3390_mi14010061
crossref_primary_10_1002_adma_202410952
crossref_primary_10_1002_smsc_202400448
crossref_primary_10_1002_adma_202410275
crossref_primary_10_1007_s12598_023_02497_5
crossref_primary_10_1063_5_0219048
crossref_primary_10_1103_PhysRevApplied_23_034077
crossref_primary_10_1038_s41467_022_30951_y
crossref_primary_10_1039_D3MA00017F
crossref_primary_10_3390_nano11102688
crossref_primary_10_1002_adfm_202010439
crossref_primary_10_1109_JSEN_2024_3422169
crossref_primary_10_1002_apxr_202300027
crossref_primary_10_1126_sciadv_adi9980
crossref_primary_10_1002_adfm_202111970
crossref_primary_10_1039_D2NA00609J
crossref_primary_10_1039_D4SC03428G
crossref_primary_10_1016_j_cej_2025_160008
crossref_primary_10_1016_j_mtcomm_2024_109723
crossref_primary_10_1002_adfm_202501917
crossref_primary_10_1002_aenm_202101213
crossref_primary_10_1002_adfm_202312872
crossref_primary_10_1063_5_0180323
crossref_primary_10_3788_CJL240797
crossref_primary_10_1016_j_apsadv_2020_100050
crossref_primary_10_1021_acsphotonics_3c00458
crossref_primary_10_1515_nanoph_2019_0565
crossref_primary_10_1016_j_jechem_2021_04_056
crossref_primary_10_1021_acsnano_4c15136
crossref_primary_10_1002_adma_202000273
crossref_primary_10_3390_s23125367
crossref_primary_10_1039_D3TC01045G
crossref_primary_10_1126_science_adp2444
crossref_primary_10_1002_adma_202501833
crossref_primary_10_1002_ejic_202400762
crossref_primary_10_1016_j_sna_2022_114051
crossref_primary_10_1063_5_0078394
crossref_primary_10_3390_nano15060459
crossref_primary_10_1002_adpr_202100221
crossref_primary_10_1002_advs_201903389
crossref_primary_10_1002_adfm_202213970
crossref_primary_10_1021_acsami_3c07585
crossref_primary_10_1063_5_0248034
crossref_primary_10_1016_j_mattod_2022_02_005
crossref_primary_10_1002_adfm_202303352
crossref_primary_10_1002_ange_202413805
crossref_primary_10_1002_adom_202301377
crossref_primary_10_1016_j_optcom_2023_129714
crossref_primary_10_1038_s41378_022_00454_3
crossref_primary_10_1039_D4TA07692C
crossref_primary_10_1063_5_0205333
crossref_primary_10_1093_nsr_nwae419
crossref_primary_10_1016_j_optlastec_2021_107821
crossref_primary_10_1021_acsaelm_1c00963
crossref_primary_10_1002_adfm_202104787
crossref_primary_10_1007_s11432_023_3812_1
crossref_primary_10_1021_acs_chemmater_2c03651
crossref_primary_10_1109_JSEN_2024_3523526
crossref_primary_10_1063_5_0245833
crossref_primary_10_1038_s41377_020_00425_1
crossref_primary_10_1063_5_0223521
crossref_primary_10_3390_s23063249
crossref_primary_10_1002_adfm_202107499
crossref_primary_10_1039_D2NR00497F
crossref_primary_10_1038_s41378_024_00722_4
crossref_primary_10_1002_adma_202204355
crossref_primary_10_1002_admt_202400706
crossref_primary_10_1038_s41467_024_44970_4
crossref_primary_10_1016_j_apenergy_2024_124127
crossref_primary_10_1002_adom_202301721
crossref_primary_10_1002_adma_202309371
crossref_primary_10_1021_acs_nanolett_2c03574
crossref_primary_10_1002_adom_202401450
crossref_primary_10_1016_j_ceramint_2021_10_175
crossref_primary_10_1016_j_surfin_2023_102909
crossref_primary_10_1039_D4NR03543G
crossref_primary_10_1039_D4TC03507K
crossref_primary_10_1063_5_0029050
crossref_primary_10_1021_acs_nanolett_2c01957
crossref_primary_10_3390_s23094385
crossref_primary_10_1016_j_carbon_2022_10_005
crossref_primary_10_1021_jacs_2c07864
crossref_primary_10_1002_smm2_1034
crossref_primary_10_1002_inf2_12093
crossref_primary_10_1016_j_fmre_2024_01_002
crossref_primary_10_1016_j_optlastec_2023_109942
crossref_primary_10_1002_smll_202205778
crossref_primary_10_1016_j_mattod_2022_11_003
crossref_primary_10_1038_s41377_025_01803_3
crossref_primary_10_1088_2053_1591_abc6cc
crossref_primary_10_1002_admt_202300309
crossref_primary_10_1002_adma_202005940
crossref_primary_10_1038_s41467_024_49855_0
crossref_primary_10_1021_acsnano_0c08035
crossref_primary_10_1038_s41377_024_01496_0
crossref_primary_10_1021_acsanm_2c01039
crossref_primary_10_1073_pnas_2002284117
crossref_primary_10_1002_adfm_202200973
crossref_primary_10_1039_D1TA02946K
crossref_primary_10_1002_adma_202313911
crossref_primary_10_1002_advs_202003864
crossref_primary_10_1002_inf2_12384
crossref_primary_10_1063_5_0142575
crossref_primary_10_1039_D1TC00786F
crossref_primary_10_3390_photonics8040119
crossref_primary_10_1002_advs_202401631
crossref_primary_10_1364_OPTICA_398135
crossref_primary_10_3390_photonics12010006
crossref_primary_10_1016_j_optmat_2023_113432
crossref_primary_10_1002_adma_202312570
crossref_primary_10_3390_ma17163988
crossref_primary_10_1021_acs_nanolett_4c03269
crossref_primary_10_1021_acsami_3c04541
crossref_primary_10_1364_AO_456247
crossref_primary_10_1021_acsami_2c02557
crossref_primary_10_1002_adfm_202310811
crossref_primary_10_3390_su162210137
crossref_primary_10_1002_inf2_12556
crossref_primary_10_1021_acsami_4c10489
crossref_primary_10_1021_jacs_4c11531
crossref_primary_10_1002_adma_202008080
crossref_primary_10_1016_j_mtcomm_2024_108436
crossref_primary_10_1016_j_carbon_2023_02_020
crossref_primary_10_1039_D3RA03104G
crossref_primary_10_1002_smm2_1056
crossref_primary_10_1016_j_mtphys_2020_100331
crossref_primary_10_1002_pssr_202300120
crossref_primary_10_1016_j_fmre_2021_09_018
crossref_primary_10_1016_j_device_2024_100524
crossref_primary_10_1021_acsaelm_1c01056
crossref_primary_10_1021_acsami_0c15639
crossref_primary_10_1007_s12274_021_3367_2
crossref_primary_10_1002_inf2_12169
crossref_primary_10_1016_j_optcom_2023_130216
crossref_primary_10_1038_s41467_023_39071_7
crossref_primary_10_1002_inf2_12600
crossref_primary_10_1515_nanoph_2022_0660
crossref_primary_10_1002_smtd_202201044
crossref_primary_10_1016_j_mtcomm_2022_105094
crossref_primary_10_3390_catal15030229
crossref_primary_10_3788_LOP232089
crossref_primary_10_1021_acsaelm_3c01270
crossref_primary_10_1364_OE_453920
Cites_doi 10.1021/nl300262j
10.1088/0034-4885/70/8/R02
10.1002/adma.201800262
10.1038/nature11253
10.1021/acsphotonics.7b01593
10.1126/science.1173034
10.1002/adma.201301834
10.1039/C7NR02678A
10.1038/nnano.2014.182
10.1038/nphoton.2016.209
10.1039/C8NR09060B
10.1038/s41566-018-0134-3
10.1021/acsami.8b20095
10.1126/science.1102896
10.1038/ncomms5458
10.1088/0034-4885/68/10/R01
10.1021/nl5012678
10.1038/nnano.2014.215
10.1021/nl8029493
10.1038/nphoton.2013.311
10.1007/s12274-011-0186-x
10.1038/nature06381
10.1038/srep03344
10.1063/1.127104
10.1017/CBO9780511635595
10.1021/acsnano.5b03873
10.1039/C7QM00596B
10.1021/acs.jpcc.9b01174
10.1021/acs.nanolett.8b00023
10.1126/science.aag1992
10.1038/nmat4169
10.1021/nn5013429
10.1039/C7EE03617E
10.1126/science.1211384
10.1021/acs.nanolett.6b03078
10.1002/anie.201612041
10.1021/nl502928y
10.1515/nanoph-2015-0154
10.1002/adma.201502052
10.1002/adma.201305371
10.1039/C8NR10222H
10.1038/nnano.2017.87
10.1038/nature09720
10.1063/1.2348781
10.1021/acs.nanolett.6b01977
10.1021/nl903451y
10.1038/s41467-018-07508-z
10.1021/acs.nanolett.5b03572
10.1021/nn402679u
10.1038/nphys1274
10.1002/adma.200600527
10.1021/nl901696j
10.1109/TNANO.2015.2397861
10.1038/nphys1270
10.1021/nl301702r
10.1038/srep01335
10.1103/PhysRevLett.101.267403
10.1002/adom.201801248
10.1021/nl5004762
10.1038/nature11254
10.1021/acsphotonics.6b00226
10.1002/adma.201200644
10.1038/ncomms10783
10.1021/nl501276e
10.1021/nn403137a
10.1038/ncomms7617
10.1038/s41565-017-0008-8
10.1038/nphoton.2007.3
10.1038/ncomms6463
10.7567/APEX.7.025103
10.1038/nnano.2014.148
10.1080/00018732.2012.737982
10.1063/1.4752435
10.1021/nl502741k
10.1038/nnano.2015.112
10.1021/acsnano.5b06160
10.1038/s41467-017-01149-4
10.1021/nn101247g
10.1007/978-3-642-00716-3
10.1038/nmat4755
10.1002/adma.201504990
10.1038/nnano.2013.197
10.1007/978-1-4899-6443-4_35
10.1126/science.1086534
10.1038/nnano.2016.185
10.1021/nl4001037
10.1038/nnano.2015.54
10.1021/nl500666m
10.1029/2006JE002790
10.1038/nmat1821
10.1103/PhysRevB.90.081408
10.1021/nl4042627
10.1038/nmat3004
10.1021/acsnano.8b01660
10.1063/1.4820408
10.1038/nature02308
10.1103/PhysRevLett.112.247401
10.1021/nl502847v
10.1021/acs.nanolett.5b00137
10.1103/PhysRevB.77.041409
10.1021/nl202318u
10.1038/nnano.2014.35
10.1038/nmat3635
10.1103/PhysRevLett.99.227401
10.1021/acs.nanolett.5b01755
10.1103/PhysRevLett.85.1096
10.1038/nnano.2008.199
10.1002/smll.201403413
10.1038/s41467-018-07860-0
10.1038/nnano.2012.88
10.1103/PhysRev.181.1336
10.1021/acsami.5b01460
10.1021/acs.nanolett.7b00536
10.1021/acs.nanolett.5b01635
10.1088/0957-0233/25/1/015603
10.1038/nnano.2011.243
10.1038/ncomms1656
10.1002/smll.201700894
10.1016/S0079-6727(02)00024-1
10.1039/c1ee01646f
10.1063/1.357128
10.1063/1.4788674
10.1038/nphoton.2010.237
10.1021/nl303321g
10.1038/nature08916
10.1021/ja404890n
10.1063/1.371145
10.1088/0953-8984/27/16/164207
10.1146/annurev.physchem.58.032806.104607
10.1126/science.1244358
10.1021/nl802086x
10.1021/acsnano.5b04042
10.1038/ncomms6139
10.1038/nnano.2013.100
10.1021/nl302015v
10.1021/nl9041966
10.1038/nphys3549
10.1063/1.3653824
10.1103/PhysRevLett.102.166808
10.1021/nl5029717
10.1103/PhysRevMaterials.2.015201
10.1017/CBO9781139013475
10.1103/PhysRevLett.105.136805
10.1103/PhysRevB.90.075434
10.1103/PhysRevB.90.075430
10.1021/acs.jpclett.7b00507
10.1021/nl034841q
10.1021/acs.nanolett.6b03374
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201902044
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31483546
10_1002_adma_201902044
ADMA201902044
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Dalian Institute of Chemical Physics
  funderid: DICP ZZBS201608
– fundername: National Key Research and Development Program of China
  funderid: 2016YFA0203500
– fundername: National Key Research and Development Program of China
  grantid: 2016YFA0203500
– fundername: Dalian Institute of Chemical Physics
  grantid: DICP ZZBS201608
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4394-5b60bc1d6e3fb8161578c2e708512aa3fb9fb4ac85d273ad201d765dd4a4aa253
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 03:53:07 EDT 2025
Mon Jul 14 10:47:14 EDT 2025
Thu Apr 03 07:09:12 EDT 2025
Tue Jul 01 02:32:40 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Wed Jan 22 16:36:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords low-dimensional materials
nanophotonics
photodetectors
photothermoelectric effect
thermoelectrics
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4394-5b60bc1d6e3fb8161578c2e708512aa3fb9fb4ac85d273ad201d765dd4a4aa253
Notes Dedicated to the 70th anniversary of Dalian Institute of Chemical Physics, CAS
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6281-5617
PMID 31483546
PQID 2323064399
PQPubID 2045203
PageCount 26
ParticipantIDs proquest_miscellaneous_2284562546
proquest_journals_2323064399
pubmed_primary_31483546
crossref_citationtrail_10_1002_adma_201902044
crossref_primary_10_1002_adma_201902044
wiley_primary_10_1002_adma_201902044_ADMA201902044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2013; 3
2012; 487
2010; 105
2019; 11
2019; 10
2000; 85
2010; 464
2004; 4
2014; 26
2014; 25
2007; 70
2008; 101
2013; 7
2013; 8
2012; 12
2005; 68
2011; 110
2018; 9
1969; 181
2018; 2
2018; 5
2014; 14
2007; 6
2013; 113
2018; 30
2007; 1
2012; 24
2010; 4
1994; 76
2019; 7
2007; 19
2012; 101
2016; 10
2013; 342
2013; 103
1992
2011; 4
2004; 306
2004; 427
2016; 16
2007; 99
2011; 5
2016; 12
2018; 18
2016; 7
2016; 3
2000; 77
2017; 56
2003; 27
2009; 102
2018; 12
2016; 28
2018; 11
2018; 13
2012; 61
2017; 6
2017; 8
2013; 25
2011; 11
2011; 10
2008; 8
1999; 86
2008; 77
2008; 3
2017; 9
2019; 123
2014; 5
2013; 13
2013; 12
2016; 354
2014; 9
2014; 8
2014; 7
2009; 325
2011; 334
2015; 15
2015; 14
2015; 6
2014; 90
2010
2015; 11
2015; 10
2009
2015; 9
2015; 7
2007; 58
2014; 112
2014 2016; 9 16
2007; 112
2015; 27
2012; 3
2011; 469
2006; 89
2017; 17
2017; 16
2017; 13
2017; 12
1965
2009; 9
2013; 135
2009; 5
2013
2012; 7
2003; 301
2008; 451
2012; 5
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_148_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_102_1
e_1_2_11_144_1
e_1_2_11_140_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_117_1
e_1_2_11_136_1
e_1_2_11_59_1
e_1_2_11_113_1
e_1_2_11_132_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_149_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_1_1
e_1_2_11_141_1
e_1_2_11_61_1
e_1_2_11_80_1
Shah J. (e_1_2_11_13_1) 1992
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_133_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_53_2
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_127_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_1
e_1_2_11_142_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_130_1
Stiens J. (e_1_2_11_10_1) 2010
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_143_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_112_1
e_1_2_11_131_1
e_1_2_11_150_1
References_xml – volume: 8
  start-page: 216
  year: 2014
  publication-title: ACS Nano
– volume: 6
  start-page: 4987
  year: 2015
  publication-title: Nat. Commun.
– volume: 342
  start-page: 614
  year: 2013
  publication-title: Science
– volume: 12
  start-page: 195
  year: 2018
  publication-title: Nat. Photonics
– volume: 6
  start-page: 177
  year: 2017
  publication-title: Nanophotonics
– volume: 110
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 27
  start-page: 5567
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  start-page: 497
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 18
  start-page: 2879
  year: 2018
  publication-title: Nano Lett.
– volume: 15
  start-page: 7211
  year: 2015
  publication-title: Nano Lett.
– volume: 16
  start-page: 204
  year: 2017
  publication-title: Nat. Mater.
– volume: 15
  start-page: 4295
  year: 2015
  publication-title: Nano Lett.
– volume: 8
  start-page: 1739
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 707
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 1644
  year: 2013
  publication-title: Nano Lett.
– volume: 77
  year: 2008
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 646
  year: 2012
  publication-title: Nat. Commun.
– volume: 56
  start-page: 3546
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 138
  year: 2019
  publication-title: Nat. Commun.
– volume: 7
  year: 2014
  publication-title: Appl. Phys. Express
– volume: 14
  start-page: 3953
  year: 2014
  publication-title: Nano Lett.
– volume: 487
  start-page: 82
  year: 2012
  publication-title: Nature
– volume: 14
  start-page: 6374
  year: 2014
  publication-title: Nano Lett.
– volume: 3
  start-page: 1335
  year: 2013
  publication-title: Sci. Rep.
– volume: 14
  start-page: 6414
  year: 2014
  publication-title: Nano Lett.
– volume: 7
  start-page: 7271
  year: 2013
  publication-title: ACS Nano
– volume: 3
  start-page: 3344
  year: 2013
  publication-title: Sci. Rep.
– volume: 12
  start-page: 3788
  year: 2012
  publication-title: Nano Lett.
– volume: 14
  start-page: 2730
  year: 2014
  publication-title: Nano Lett.
– volume: 85
  start-page: 1096
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 112
  start-page: E05S06
  year: 2007
  publication-title: J. Geophys. Res.
– volume: 12
  start-page: 4674
  year: 2012
  publication-title: Nano Lett.
– volume: 464
  start-page: 194
  year: 2010
  publication-title: Nature
– volume: 28
  start-page: 2644
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 611
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 76
  start-page: 1
  year: 1994
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 4918
  year: 2019
  publication-title: Nanoscale
– volume: 77
  start-page: 741
  year: 2000
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 1995
  year: 2019
  publication-title: Nanoscale
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 6
  start-page: 6617
  year: 2015
  publication-title: Nat. Commun.
– volume: 90
  year: 2014
  publication-title: Phys. Rev. B
– start-page: 827
  year: 1965
– volume: 3
  start-page: 936
  year: 2016
  publication-title: ACS Photonics
– year: 1992
– volume: 99
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 103
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 112
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 2051
  year: 2018
  publication-title: ACS Photonics
– volume: 16
  start-page: 7107
  year: 2016
  publication-title: Nano Lett.
– volume: 13
  start-page: 358
  year: 2013
  publication-title: Nano Lett.
– volume: 86
  start-page: 1
  year: 1999
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 4458
  year: 2014
  publication-title: Nat. Commun.
– volume: 12
  start-page: 770
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 14
  start-page: 901
  year: 2014
  publication-title: Nano Lett.
– volume: 5
  start-page: 73
  year: 2012
  publication-title: Nano Res.
– volume: 27
  start-page: 59
  year: 2003
  publication-title: Prog. Quantum Electron.
– volume: 12
  start-page: 719
  year: 2013
  publication-title: Nat. Mater.
– volume: 13
  year: 2017
  publication-title: Small
– year: 2013
– volume: 89
  year: 2006
  publication-title: Appl. Phys. Lett.
– year: 2009
– volume: 10
  start-page: 437
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 1276
  year: 2018
  publication-title: Mater. Chem. Front.
– volume: 9
  start-page: 5190
  year: 2018
  publication-title: Nat. Commun.
– volume: 14
  start-page: 6424
  year: 2014
  publication-title: Nano Lett.
– volume: 14
  start-page: 421
  year: 2015
  publication-title: Nat. Mater.
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 102
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 780
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 25
  start-page: 5483
  year: 2013
  publication-title: Adv. Mater.
– volume: 7
  start-page: 8968
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 469
  start-page: 189
  year: 2011
  publication-title: Nature
– volume: 1
  start-page: 97
  year: 2007
  publication-title: Nat. Photonics
– volume: 101
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 301
  start-page: 344
  year: 2003
  publication-title: Science
– volume: 10
  start-page: 809
  year: 2016
  publication-title: Nat. Photonics
– volume: 8
  start-page: 1024
  year: 2017
  publication-title: Nat. Commun.
– volume: 11
  start-page: 3119
  year: 2015
  publication-title: Small
– volume: 14
  start-page: 5846
  year: 2014
  publication-title: Nano Lett.
– volume: 7
  start-page: 472
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: 1043
  year: 2007
  publication-title: Adv. Mater.
– volume: 354
  start-page: aag1992
  year: 2016
  publication-title: Science
– volume: 17
  start-page: 4055
  year: 2017
  publication-title: Nano Lett.
– volume: 12
  start-page: 31
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 334
  start-page: 648
  year: 2011
  publication-title: Science
– volume: 9
  start-page: 814
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 26
  start-page: 6829
  year: 2014
  publication-title: Adv. Mater.
– volume: 15
  start-page: 5295
  year: 2015
  publication-title: Nano Lett.
– volume: 58
  start-page: 267
  year: 2007
  publication-title: Annu. Rev. Phys. Chem.
– volume: 10
  start-page: 1645
  year: 2010
  publication-title: Nano Lett.
– volume: 6
  start-page: 129
  year: 2007
  publication-title: Nat. Mater.
– volume: 16
  start-page: 6988
  year: 2016
  publication-title: Nano Lett.
– volume: 8
  start-page: 5270
  year: 2014
  publication-title: ACS Nano
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 68
  start-page: 2267
  year: 2005
  publication-title: Rep. Prog. Phys.
– volume: 113
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 4
  start-page: 35
  year: 2004
  publication-title: Nano Lett.
– volume: 9
  start-page: 3503
  year: 2009
  publication-title: Nano Lett.
– volume: 10
  start-page: 361
  year: 2011
  publication-title: Nat. Mater.
– volume: 8
  start-page: 821
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 70
  start-page: 1325
  year: 2007
  publication-title: Rep. Prog. Phys.
– volume: 12
  start-page: 236
  year: 2016
  publication-title: Nat. Phys.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 451
  start-page: 163
  year: 2008
  publication-title: Nature
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 4861
  year: 2018
  publication-title: ACS Nano
– volume: 61
  start-page: 745
  year: 2012
  publication-title: Adv. Phys.
– volume: 7
  start-page: 114
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 41
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 325
  start-page: 178
  year: 2009
  publication-title: Science
– volume: 5
  start-page: 5139
  year: 2014
  publication-title: Nat. Commun.
– volume: 4
  start-page: 3676
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 438
  year: 2009
  publication-title: Nat. Phys.
– volume: 3
  start-page: 491
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 27
  year: 2015
  publication-title: J. Phys.: Condens. Matter
– volume: 12
  start-page: 2337
  year: 2012
  publication-title: Nano Lett.
– volume: 5
  start-page: 83
  year: 2011
  publication-title: Nat. Photonics
– volume: 14
  start-page: 4389
  year: 2014
  publication-title: Nano Lett.
– start-page: 144
  year: 2010
– volume: 427
  start-page: 423
  year: 2004
  publication-title: Nature
– volume: 24
  start-page: 3275
  year: 2012
  publication-title: Adv. Mater.
– volume: 5
  start-page: 398
  year: 2009
  publication-title: Nat. Phys.
– volume: 487
  start-page: 77
  year: 2012
  publication-title: Nature
– volume: 4
  start-page: 4701
  year: 2010
  publication-title: ACS Nano
– volume: 8
  start-page: 3766
  year: 2008
  publication-title: Nano Lett.
– volume: 14
  start-page: 379
  year: 2015
  publication-title: IEEE Trans. Nanotechnol.
– volume: 11
  start-page: 4688
  year: 2011
  publication-title: Nano Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 25
  year: 2014
  publication-title: Meas. Sci. Technol.
– volume: 9 16
  start-page: 372 4648
  year: 2014 2016
  publication-title: Nat. Nanotechnol. Nano Lett.
– volume: 11
  start-page: 6411
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  year: 2018
  publication-title: Phys. Rev. Mater.
– volume: 10
  start-page: 562
  year: 2010
  publication-title: Nano Lett.
– volume: 9
  start-page: 1742
  year: 2009
  publication-title: Nano Lett.
– volume: 15
  start-page: 8129
  year: 2015
  publication-title: Nano Lett.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 181
  start-page: 1336
  year: 1969
  publication-title: Phys. Rev.
– volume: 14
  start-page: 3733
  year: 2014
  publication-title: Nano Lett.
– volume: 11
  start-page: 1307
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 47
  year: 2014
  publication-title: Nat. Photonics
– volume: 9
  start-page: 9160
  year: 2017
  publication-title: Nanoscale
– ident: e_1_2_11_84_1
  doi: 10.1021/nl300262j
– ident: e_1_2_11_5_1
  doi: 10.1088/0034-4885/70/8/R02
– ident: e_1_2_11_105_1
  doi: 10.1002/adma.201800262
– ident: e_1_2_11_136_1
  doi: 10.1038/nature11253
– ident: e_1_2_11_104_1
  doi: 10.1021/acsphotonics.7b01593
– ident: e_1_2_11_116_1
  doi: 10.1126/science.1173034
– ident: e_1_2_11_100_1
  doi: 10.1002/adma.201301834
– ident: e_1_2_11_90_1
  doi: 10.1039/C7NR02678A
– ident: e_1_2_11_42_1
  doi: 10.1038/nnano.2014.182
– ident: e_1_2_11_75_1
  doi: 10.1038/nphoton.2016.209
– ident: e_1_2_11_62_1
  doi: 10.1039/C8NR09060B
– ident: e_1_2_11_140_1
  doi: 10.1038/s41566-018-0134-3
– ident: e_1_2_11_97_1
  doi: 10.1021/acsami.8b20095
– ident: e_1_2_11_27_1
  doi: 10.1126/science.1102896
– ident: e_1_2_11_56_1
  doi: 10.1038/ncomms5458
– ident: e_1_2_11_2_1
  doi: 10.1088/0034-4885/68/10/R01
– ident: e_1_2_11_77_1
  doi: 10.1021/nl5012678
– ident: e_1_2_11_28_1
  doi: 10.1038/nnano.2014.215
– ident: e_1_2_11_33_1
  doi: 10.1021/nl8029493
– ident: e_1_2_11_25_1
  doi: 10.1038/nphoton.2013.311
– ident: e_1_2_11_73_1
  doi: 10.1007/s12274-011-0186-x
– ident: e_1_2_11_94_1
  doi: 10.1038/nature06381
– ident: e_1_2_11_79_1
  doi: 10.1038/srep03344
– ident: e_1_2_11_3_1
  doi: 10.1063/1.127104
– ident: e_1_2_11_22_1
  doi: 10.1017/CBO9780511635595
– ident: e_1_2_11_69_1
  doi: 10.1021/acsnano.5b03873
– ident: e_1_2_11_145_1
  doi: 10.1039/C7QM00596B
– ident: e_1_2_11_92_1
  doi: 10.1021/acs.jpcc.9b01174
– ident: e_1_2_11_119_1
  doi: 10.1021/acs.nanolett.8b00023
– ident: e_1_2_11_102_1
  doi: 10.1126/science.aag1992
– ident: e_1_2_11_138_1
  doi: 10.1038/nmat4169
– ident: e_1_2_11_49_1
  doi: 10.1021/nn5013429
– ident: e_1_2_11_146_1
  doi: 10.1039/C7EE03617E
– ident: e_1_2_11_24_1
  doi: 10.1126/science.1211384
– ident: e_1_2_11_43_1
  doi: 10.1021/acs.nanolett.6b03078
– ident: e_1_2_11_95_1
  doi: 10.1002/anie.201612041
– ident: e_1_2_11_61_1
  doi: 10.1021/nl502928y
– ident: e_1_2_11_103_1
  doi: 10.1515/nanoph-2015-0154
– ident: e_1_2_11_128_1
  doi: 10.1002/adma.201502052
– ident: e_1_2_11_98_1
  doi: 10.1002/adma.201305371
– ident: e_1_2_11_112_1
  doi: 10.1039/C8NR10222H
– ident: e_1_2_11_121_1
  doi: 10.1038/nnano.2017.87
– ident: e_1_2_11_150_1
  doi: 10.1038/nature09720
– ident: e_1_2_11_131_1
  doi: 10.1063/1.2348781
– ident: e_1_2_11_53_2
  doi: 10.1021/acs.nanolett.6b01977
– ident: e_1_2_11_32_1
  doi: 10.1021/nl903451y
– ident: e_1_2_11_113_1
  doi: 10.1038/s41467-018-07508-z
– ident: e_1_2_11_83_1
  doi: 10.1021/acs.nanolett.5b03572
– ident: e_1_2_11_74_1
  doi: 10.1021/nn402679u
– ident: e_1_2_11_117_1
  doi: 10.1038/nphys1274
– ident: e_1_2_11_85_1
  doi: 10.1002/adma.200600527
– ident: e_1_2_11_72_1
  doi: 10.1021/nl901696j
– ident: e_1_2_11_93_1
  doi: 10.1109/TNANO.2015.2397861
– ident: e_1_2_11_118_1
  doi: 10.1038/nphys1270
– ident: e_1_2_11_54_1
  doi: 10.1021/nl301702r
– ident: e_1_2_11_78_1
  doi: 10.1038/srep01335
– ident: e_1_2_11_63_1
  doi: 10.1103/PhysRevLett.101.267403
– ident: e_1_2_11_126_1
  doi: 10.1002/adom.201801248
– ident: e_1_2_11_34_1
  doi: 10.1021/nl5004762
– ident: e_1_2_11_135_1
  doi: 10.1038/nature11254
– ident: e_1_2_11_127_1
  doi: 10.1021/acsphotonics.6b00226
– ident: e_1_2_11_87_1
  doi: 10.1002/adma.201200644
– ident: e_1_2_11_133_1
  doi: 10.1038/ncomms10783
– ident: e_1_2_11_141_1
  doi: 10.1021/nl501276e
– ident: e_1_2_11_71_1
  doi: 10.1021/nn403137a
– ident: e_1_2_11_142_1
  doi: 10.1038/ncomms7617
– ident: e_1_2_11_41_1
  doi: 10.1038/s41565-017-0008-8
– ident: e_1_2_11_4_1
  doi: 10.1038/nphoton.2007.3
– ident: e_1_2_11_26_1
  doi: 10.1038/ncomms6463
– ident: e_1_2_11_66_1
  doi: 10.7567/APEX.7.025103
– ident: e_1_2_11_143_1
  doi: 10.1038/nnano.2014.148
– ident: e_1_2_11_132_1
  doi: 10.1080/00018732.2012.737982
– ident: e_1_2_11_124_1
  doi: 10.1063/1.4752435
– ident: e_1_2_11_52_1
  doi: 10.1021/nl502741k
– ident: e_1_2_11_58_1
  doi: 10.1038/nnano.2015.112
– ident: e_1_2_11_76_1
  doi: 10.1021/acsnano.5b06160
– volume-title: Hot Carriers in Semiconductor Nanostructures: Physics and Applications
  year: 1992
  ident: e_1_2_11_13_1
– ident: e_1_2_11_147_1
  doi: 10.1038/s41467-017-01149-4
– ident: e_1_2_11_80_1
  doi: 10.1021/nn101247g
– ident: e_1_2_11_8_1
  doi: 10.1007/978-3-642-00716-3
– ident: e_1_2_11_20_1
  doi: 10.1038/nmat4755
– ident: e_1_2_11_96_1
  doi: 10.1002/adma.201504990
– ident: e_1_2_11_137_1
  doi: 10.1038/nnano.2013.197
– ident: e_1_2_11_89_1
  doi: 10.1007/978-1-4899-6443-4_35
– ident: e_1_2_11_65_1
  doi: 10.1126/science.1086534
– ident: e_1_2_11_134_1
  doi: 10.1038/nnano.2016.185
– ident: e_1_2_11_40_1
  doi: 10.1021/nl4001037
– ident: e_1_2_11_21_1
  doi: 10.1038/nnano.2015.54
– ident: e_1_2_11_47_1
  doi: 10.1021/nl500666m
– ident: e_1_2_11_9_1
  doi: 10.1029/2006JE002790
– ident: e_1_2_11_149_1
  doi: 10.1038/nmat1821
– ident: e_1_2_11_60_1
  doi: 10.1103/PhysRevB.90.081408
– ident: e_1_2_11_44_1
  doi: 10.1021/nl4042627
– ident: e_1_2_11_110_1
  doi: 10.1038/nmat3004
– ident: e_1_2_11_129_1
  doi: 10.1021/acsnano.8b01660
– ident: e_1_2_11_51_1
  doi: 10.1063/1.4820408
– ident: e_1_2_11_148_1
  doi: 10.1038/nature02308
– ident: e_1_2_11_39_1
  doi: 10.1103/PhysRevLett.112.247401
– ident: e_1_2_11_122_1
  doi: 10.1021/nl502847v
– ident: e_1_2_11_114_1
  doi: 10.1021/acs.nanolett.5b00137
– ident: e_1_2_11_19_1
  doi: 10.1038/s41566-018-0134-3
– ident: e_1_2_11_31_1
  doi: 10.1103/PhysRevB.77.041409
– ident: e_1_2_11_23_1
  doi: 10.1021/nl202318u
– ident: e_1_2_11_53_1
  doi: 10.1038/nnano.2014.35
– ident: e_1_2_11_99_1
  doi: 10.1038/nmat3635
– ident: e_1_2_11_70_1
  doi: 10.1103/PhysRevLett.99.227401
– ident: e_1_2_11_45_1
  doi: 10.1021/acs.nanolett.5b01755
– ident: e_1_2_11_67_1
  doi: 10.1103/PhysRevLett.85.1096
– ident: e_1_2_11_37_1
  doi: 10.1038/nnano.2008.199
– ident: e_1_2_11_68_1
  doi: 10.1002/smll.201403413
– ident: e_1_2_11_123_1
  doi: 10.1038/s41467-018-07860-0
– ident: e_1_2_11_12_1
  doi: 10.1038/nnano.2012.88
– ident: e_1_2_11_7_1
  doi: 10.1103/PhysRev.181.1336
– ident: e_1_2_11_101_1
  doi: 10.1021/acsami.5b01460
– ident: e_1_2_11_86_1
  doi: 10.1021/acs.nanolett.7b00536
– ident: e_1_2_11_130_1
  doi: 10.1021/acs.nanolett.5b01635
– ident: e_1_2_11_17_1
  doi: 10.1088/0957-0233/25/1/015603
– ident: e_1_2_11_11_1
  doi: 10.1038/nnano.2011.243
– ident: e_1_2_11_36_1
  doi: 10.1038/ncomms1656
– ident: e_1_2_11_109_1
  doi: 10.1002/smll.201700894
– ident: e_1_2_11_1_1
  doi: 10.1016/S0079-6727(02)00024-1
– ident: e_1_2_11_14_1
  doi: 10.1039/c1ee01646f
– ident: e_1_2_11_6_1
  doi: 10.1063/1.357128
– ident: e_1_2_11_16_1
  doi: 10.1063/1.4788674
– ident: e_1_2_11_106_1
  doi: 10.1038/nphoton.2010.237
– ident: e_1_2_11_50_1
  doi: 10.1021/nl303321g
– ident: e_1_2_11_115_1
  doi: 10.1038/nature08916
– ident: e_1_2_11_111_1
  doi: 10.1021/ja404890n
– ident: e_1_2_11_82_1
  doi: 10.1063/1.371145
– ident: e_1_2_11_35_1
  doi: 10.1088/0953-8984/27/16/164207
– ident: e_1_2_11_108_1
  doi: 10.1146/annurev.physchem.58.032806.104607
– ident: e_1_2_11_38_1
  doi: 10.1126/science.1244358
– ident: e_1_2_11_139_1
  doi: 10.1021/nl802086x
– ident: e_1_2_11_15_1
  doi: 10.1021/acsnano.5b04042
– ident: e_1_2_11_120_1
  doi: 10.1038/ncomms6139
– start-page: 144
  volume-title: Laser Pulse Phenomena and Applications
  year: 2010
  ident: e_1_2_11_10_1
– ident: e_1_2_11_48_1
  doi: 10.1038/nnano.2013.100
– ident: e_1_2_11_55_1
  doi: 10.1021/nl302015v
– ident: e_1_2_11_29_1
  doi: 10.1021/nl9041966
– ident: e_1_2_11_18_1
  doi: 10.1038/nphys3549
– ident: e_1_2_11_88_1
  doi: 10.1063/1.3653824
– ident: e_1_2_11_30_1
  doi: 10.1103/PhysRevLett.102.166808
– ident: e_1_2_11_57_1
  doi: 10.1021/nl5029717
– ident: e_1_2_11_81_1
  doi: 10.1103/PhysRevMaterials.2.015201
– ident: e_1_2_11_107_1
  doi: 10.1017/CBO9781139013475
– ident: e_1_2_11_46_1
  doi: 10.1103/PhysRevLett.105.136805
– ident: e_1_2_11_59_1
  doi: 10.1103/PhysRevB.90.075434
– ident: e_1_2_11_144_1
  doi: 10.1103/PhysRevB.90.075430
– ident: e_1_2_11_91_1
  doi: 10.1021/acs.jpclett.7b00507
– ident: e_1_2_11_64_1
  doi: 10.1021/nl034841q
– ident: e_1_2_11_125_1
  doi: 10.1021/acs.nanolett.6b03374
SSID ssj0009606
Score 2.6588995
SecondaryResourceType review_article
Snippet High‐performance uncooled photodetectors operating in the long‐wavelength infrared and terahertz regimes are highly demanded in the military and civilian...
High-performance uncooled photodetectors operating in the long-wavelength infrared and terahertz regimes are highly demanded in the military and civilian...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1902044
SubjectTerms Broadband
Carrier transport
low‐dimensional materials
Materials science
nanophotonics
Performance enhancement
photodetectors
Photometers
Photothermal conversion
photothermoelectric effect
Response time
Sensors
Spintronics
Thermoelectric materials
thermoelectrics
Title Progress of Photodetectors Based on the Photothermoelectric Effect
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201902044
https://www.ncbi.nlm.nih.gov/pubmed/31483546
https://www.proquest.com/docview/2323064399
https://www.proquest.com/docview/2284562546
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3ZS8MwHMeD7EkfvI_plAqCT9l6pNfjpo4hTIY42Fv55UJRW3Hdi3-9OdZuU0TQt7ZJaJrr9036yycIXUiIIA2kwCBkggmPKU4gdrHwmZBqTE6kIfAN76LBmNxOwsnSLn7Lh6gX3HTPMOO17uBAp50FNBS44QYpg-a7RANBtcOWVkX3C36UlucGtheEOI1IUlEbXb-zmnzVKn2TmqvK1Zie_haCKtPW4-S5PStpm3184Tn-56u20eZclzpd25B20JrId9HGEq1wD_VG2pdLjYxOIZ3RY1EWXJRm0X_q9JQx5E6RO0pP2jAtLF8Le8rOE3MsJXkfjfs3D1cDPD-CATO9ZRaHNHIp83gkAkkTrQ7jhPki1kLNB1APU0kJsCTkSgcBVznncRRyToAA-GFwgBp5kYsj5EhPRp7gDEBNwbw0pJzFkii1xoDGLg2aCFdVkLE5n1wfk_GSWbKyn-myyeqyaaLLOv6bJXP8GLNV1Wg276HTTCnJwMixtInO62DVt_QPE8hFMVNxlO3WE0QSNdGhbQn1qwI1jwxMiG_q85c8ZN3rYbe-O_5LohO0rq-tL00LNcr3mThViqikZ6bVfwI5NgJM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAH9qVQIEhInEzTxNmOLYvK0qpCIHGLvAoEJIimF74eL02gIIQEx3hRHNvjeTMZvwE4kCQkiS8FIkLGCPOIophELhIeE1KdybE0DHy9fti9xRd3QRlNqO_CWH6IyuGmJcOc11rAtUO6-cEaSrghDlIazXMxnoYZndbbWFXXHwxSGqAbuj0_QEmI45K30fWak_0n9dI3sDmJXY3yOVsEWg7bxpw8Ho0KesTevjA6_uu7lmBhDE2dtt1LyzAlshWY_0RYuAqdgQ7nUoejk0tncJ8XOReF8fsPnY7Sh9zJM0dBSlunseVzbhPtPDDHEiWvwe3Z6c1xF42zMCCmb82igIYuZS0eCl_SWAPEKGaeiDRW8whRhYmkmLA44AoKEa5GzqMw4BwTTIgX-OtQy_JMbIIjWzJsCc4IUVZYKwkoZ5HECrAxQiOX-nVA5RqkbExRrjNlPKWWXNlL9dyk1dzU4bBq_2LJOX5s2SiXNB0L6TBVYNI3iCypw35VrcRL_zMhmchHqo1S39pGxGEdNuxWqF7lK1PSNzWeWdBfxpC2T3rt6mnrL532YLZ707tKr877l9swp8ttaE0DasXrSOwogFTQXSMC72NoBmc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JT-MwFIefWCQEB7YZoGwTJCROhjRxnORYKBUMi6oRSNyi500gIEGQXvjr8dIGOgiNNBzjRXFsP7-fHfszwK5GhnmsFUGlM0JlykmGaUhUJJQ2Y3KmHYHv4pKdXNPfN8nNh1P8ng_RLLhZy3DjtTXwJ6kP3qGhKB03yDi0KKR0EqYpCzPbr7t_3gFSVp872l6ckJzRbIRtDKOD8fzjbumT1hyXrs739BYAR6X2W07u9wc13xevfwEdv_NZizA_FKZBx_ekJZhQ5TLMfcAV_oDDvt3MZYbGoNJB_7aqK6lqt-r_EhwabyiDqgyMoPRxVlk-Vv6anTsReEzyT7juHV8dnZDhHQxE2DOzJOEs5KItmYo1z6w8TDMRqdQqtQjRBOaaUxRZIo0QQmlKLlOWSEmRIkZJvAJTZVWqNQh0W7O2kgLRzMHaecKlSDU1ck0gT0Met4CMmqAQQ0C5vSfjofBo5aiwdVM0ddOCvSb9k0dzfJlyc9SixdBEXwojJWOnx_IW7DTRxrjsHxMsVTUwaYzztjNEylqw6ntC86rYTCRjFxO59vxHGYpO96LTPK3_T6ZfMNPv9orz08uzDZi1wX5fzSZM1c8DtWXUUc23nQG8AV5nBR8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+of+Photodetectors+Based+on+the+Photothermoelectric+Effect&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lu%2C+Xiaowei&rft.au=Sun%2C+Lin&rft.au=Jiang%2C+Peng&rft.au=Bao%2C+Xinhe&rft.date=2019-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=50&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201902044&rft.externalDBID=10.1002%252Fadma.201902044&rft.externalDocID=ADMA201902044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon