In Vivo Dynamic Monitoring of Bacterial Infection by NIR‐II Fluorescence Imaging
Time window of antibiotic administration is a critical but long‐neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug‐resistance. Here, a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfi...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 34; pp. e2002054 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Time window of antibiotic administration is a critical but long‐neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug‐resistance. Here, a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) is presented to dynamically monitor bacterial infection in vivo in a real‐time manner. The prepared PbS QDs not only provide a low detection limit (104 CFU mL−1) of four typical bacteria strains in vitro but also show a particularly high labeling efficiency with Escherichia coli (E. coli). The NIR‐II in vivo imaging results reveal that the number of invading bacteria first decreases after post‐injection, then increases from 1 d to 1 week and drop again over time in infected mouse models. Meanwhile, there is a simultaneous variation of dendritic cells, neutrophils, macrophages, and CD8+ T lymphocytes against bacterial infection at the same time points. Notably, the infected mouse self‐heals eventually without antibiotic treatment, as a robust immune system can successfully prevent further health deterioration. The NIR‐II imaging approach enables real‐time monitoring of bacterial infection in vivo, thus facilitating spatiotemporal deciphering of time window for antibiotic treatment.
The study presents a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) to dynamically monitor bacterial infection and the immune response in vivo in a real‐time manner. A new avenue is paved for spatiotemporally deciphering the interaction between bacterial infection and human immune system in vivo, thus facilitating optimization of antibiotic treatment in future. |
---|---|
AbstractList | Time window of antibiotic administration is a critical but long‐neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug‐resistance. Here, a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) is presented to dynamically monitor bacterial infection in vivo in a real‐time manner. The prepared PbS QDs not only provide a low detection limit (10
4
CFU mL
−1
) of four typical bacteria strains in vitro but also show a particularly high labeling efficiency with
Escherichia coli
(
E. coli
). The NIR‐II in vivo imaging results reveal that the number of invading bacteria first decreases after post‐injection, then increases from 1 d to 1 week and drop again over time in infected mouse models. Meanwhile, there is a simultaneous variation of dendritic cells, neutrophils, macrophages, and CD8+ T lymphocytes against bacterial infection at the same time points. Notably, the infected mouse self‐heals eventually without antibiotic treatment, as a robust immune system can successfully prevent further health deterioration. The NIR‐II imaging approach enables real‐time monitoring of bacterial infection in vivo, thus facilitating spatiotemporal deciphering of time window for antibiotic treatment. Time window of antibiotic administration is a critical but long-neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug-resistance. Here, a second near-infrared (NIR-II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) is presented to dynamically monitor bacterial infection in vivo in a real-time manner. The prepared PbS QDs not only provide a low detection limit (10 CFU mL ) of four typical bacteria strains in vitro but also show a particularly high labeling efficiency with Escherichia coli (E. coli). The NIR-II in vivo imaging results reveal that the number of invading bacteria first decreases after post-injection, then increases from 1 d to 1 week and drop again over time in infected mouse models. Meanwhile, there is a simultaneous variation of dendritic cells, neutrophils, macrophages, and CD8+ T lymphocytes against bacterial infection at the same time points. Notably, the infected mouse self-heals eventually without antibiotic treatment, as a robust immune system can successfully prevent further health deterioration. The NIR-II imaging approach enables real-time monitoring of bacterial infection in vivo, thus facilitating spatiotemporal deciphering of time window for antibiotic treatment. Time window of antibiotic administration is a critical but long‐neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug‐resistance. Here, a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) is presented to dynamically monitor bacterial infection in vivo in a real‐time manner. The prepared PbS QDs not only provide a low detection limit (104 CFU mL−1) of four typical bacteria strains in vitro but also show a particularly high labeling efficiency with Escherichia coli (E. coli). The NIR‐II in vivo imaging results reveal that the number of invading bacteria first decreases after post‐injection, then increases from 1 d to 1 week and drop again over time in infected mouse models. Meanwhile, there is a simultaneous variation of dendritic cells, neutrophils, macrophages, and CD8+ T lymphocytes against bacterial infection at the same time points. Notably, the infected mouse self‐heals eventually without antibiotic treatment, as a robust immune system can successfully prevent further health deterioration. The NIR‐II imaging approach enables real‐time monitoring of bacterial infection in vivo, thus facilitating spatiotemporal deciphering of time window for antibiotic treatment. The study presents a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) to dynamically monitor bacterial infection and the immune response in vivo in a real‐time manner. A new avenue is paved for spatiotemporally deciphering the interaction between bacterial infection and human immune system in vivo, thus facilitating optimization of antibiotic treatment in future. Time window of antibiotic administration is a critical but long‐neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug‐resistance. Here, a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) is presented to dynamically monitor bacterial infection in vivo in a real‐time manner. The prepared PbS QDs not only provide a low detection limit (104 CFU mL−1) of four typical bacteria strains in vitro but also show a particularly high labeling efficiency with Escherichia coli (E. coli). The NIR‐II in vivo imaging results reveal that the number of invading bacteria first decreases after post‐injection, then increases from 1 d to 1 week and drop again over time in infected mouse models. Meanwhile, there is a simultaneous variation of dendritic cells, neutrophils, macrophages, and CD8+ T lymphocytes against bacterial infection at the same time points. Notably, the infected mouse self‐heals eventually without antibiotic treatment, as a robust immune system can successfully prevent further health deterioration. The NIR‐II imaging approach enables real‐time monitoring of bacterial infection in vivo, thus facilitating spatiotemporal deciphering of time window for antibiotic treatment. |
Author | Yang, Yimeng Li, Pei Li, Yunxia Feng, Sijia Chen, Shiyi Zhang, Jian Chen, Mo Chen, Jun Xu, Xiaogang |
Author_xml | – sequence: 1 givenname: Jun surname: Chen fullname: Chen, Jun organization: Fudan University – sequence: 2 givenname: Sijia surname: Feng fullname: Feng, Sijia organization: Fudan University – sequence: 3 givenname: Mo surname: Chen fullname: Chen, Mo organization: Fudan University – sequence: 4 givenname: Pei surname: Li fullname: Li, Pei organization: Fudan University – sequence: 5 givenname: Yimeng surname: Yang fullname: Yang, Yimeng organization: Fudan University – sequence: 6 givenname: Jian surname: Zhang fullname: Zhang, Jian organization: Fudan University – sequence: 7 givenname: Xiaogang surname: Xu fullname: Xu, Xiaogang email: xuxiaogang@fudan.edu.cn organization: Fudan University – sequence: 8 givenname: Yunxia surname: Li fullname: Li, Yunxia email: liyunxia@huashan.org.cn organization: Fudan University – sequence: 9 givenname: Shiyi orcidid: 0000-0002-6003-4929 surname: Chen fullname: Chen, Shiyi email: shiyi_chen@fudan.edu.cn organization: Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32715565$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkM1KAzEUhYMo1qpblxJw46Y1N5nfpVarA1XBv-2QZu6UyEyiSUfpzkfwGX0SI9UKblzds_jOx-X0ybqxBgnZAzYExviRb5tmyBkPmcXRGtmCBMQgyXi-vsrAeqTv_SNjAniUbpKe4CnEcRJvkZvC0Af9YunpwshWK3ppjZ5bp82M2pqeSDVHp2VDC1Ojmmtr6HRBr4qbj7f3oqDjprMOvUKjkBatnIXeDtmoZeNx9_tuk_vx2d3oYjC5Pi9Gx5OBikQeDQSvsFbAJcea5wJQJKi4SgVCzhJI5TSuqopnksk0U1HCMM9iJSNIo2oKmRTb5HDpfXL2uUM_L1sdPmkaadB2vuQRT2PIsiQJ6MEf9NF2zoTvAiVSwQFEHqjhklLOeu-wLp-cbqVblMDKr7XLr7XL1dqhsP-t7aYtViv8Z94A5EvgVTe4-EdX3l5OJr_yTxIOjM0 |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_144530 crossref_primary_10_1002_adfm_202207662 crossref_primary_10_1002_agt2_620 crossref_primary_10_1002_smsc_202300081 crossref_primary_10_3389_fmicb_2023_1128638 crossref_primary_10_1016_j_cej_2022_138584 crossref_primary_10_1021_acsanm_1c02769 crossref_primary_10_1002_btm2_10656 crossref_primary_10_1039_D2BM00550F crossref_primary_10_1093_rb_rbac102 crossref_primary_10_3390_pharmaceutics13081226 crossref_primary_10_1155_2023_1984200 crossref_primary_10_1016_j_addr_2023_114863 crossref_primary_10_1016_j_ejmech_2024_116173 crossref_primary_10_1515_revac_2020_0119 crossref_primary_10_1007_s12274_022_4836_y crossref_primary_10_1016_j_addr_2022_114634 crossref_primary_10_1021_acsmaterialslett_2c00551 crossref_primary_10_1021_acsbiomaterials_2c00886 crossref_primary_10_1002_adom_202201826 crossref_primary_10_3390_bioengineering10080954 crossref_primary_10_1016_j_ijbiomac_2023_123683 crossref_primary_10_3389_fbioe_2021_768927 crossref_primary_10_1109_TBME_2023_3239735 |
Cites_doi | 10.1093/molbev/mst187 10.1128/AEM.69.7.4205-4213.2003 10.1038/nnano.2009.326 10.1002/smll.201001050 10.1007/s00775-006-0116-7 10.1016/j.jcis.2019.03.050 10.1016/j.jaci.2007.06.005 10.1021/acs.chemmater.6b00208 10.1016/j.jbbm.2003.10.005 10.1007/s00253-015-6946-x 10.1002/anie.200902612 10.1038/s41551-016-0010 10.1002/adma.201800106 10.3109/10408419609106456 10.3389/fimmu.2018.02530 10.1038/nature.2017.21550 10.1126/science.281.5385.2013 10.1038/nmat961 10.1016/j.biomaterials.2016.06.043 10.1038/nbt764 10.1063/1.1532109 10.1039/C8SC04637A 10.1007/s00216-010-4624-5 10.1126/science.1104274 10.1016/S0140-6736(18)30110-7 10.1111/j.1365-2796.2007.01821.x 10.1021/nl034165s 10.1007/s00216-016-9730-6 10.1162/153535003765276282 10.1038/ni.3048 10.1021/nl015619t 10.1039/C7NR06373C 10.1073/pnas.1014501108 10.1126/science.281.5385.2016 10.1021/ac050641i 10.1021/jp012018h 10.1016/j.biomaterials.2015.02.105 10.1038/nm1145 10.1038/nmat3074 10.1039/C6CC00099A 10.1016/j.talanta.2008.10.025 10.1111/omi.12056 10.1002/adma.201503821 10.1007/s12274-009-9009-8 10.1016/j.colsurfb.2019.03.042 10.1166/jnn.2018.14673 10.1002/viw2.6 10.1021/ac049442 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 Wiley‐VCH GmbH |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202002054 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202002054 32715565 SMLL202002054 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Shanghai Committee of Science and Technology funderid: 19441901600; 19441902000 – fundername: Shanghai Rising‐Star Project funderid: 18QB1400500 – fundername: Key Clinical Medicine Center of Shanghai funderid: 2017ZZ01006 – fundername: Introduction Project of Clinical Medicine Expert Team for Suzhou funderid: SZYJTD201714 – fundername: National Key Research and Development Program of China funderid: 2016YFC1100300 – fundername: National Natural Science Foundation of China funderid: 81572108; 81772339; 8181101445; 81811530750; 81811530389; 81972129 – fundername: Development Project of Shanghai Peak Disciplines‐Integrative Medicine funderid: 20180101 – fundername: Sanming Project of Medicine in Shenzhen funderid: SZSM201612078 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AAYOK ACBWZ ASPBG AVWKF AZFZN BDRZF EJD FEDTE GODZA HVGLF NPM AAMNL AAYXX ACRPL CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4394-32defc12a2ef2931e36ec2c73e190617ab5ddd28a0a78c460e985ca4174db18a3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Wed Dec 04 05:12:13 EST 2024 Thu Oct 10 19:26:53 EDT 2024 Fri Dec 06 01:58:16 EST 2024 Sat Sep 28 08:26:18 EDT 2024 Sat Aug 24 01:05:34 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | immune system NIR-II in vivo imaging bacterial infection bioimaging |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4394-32defc12a2ef2931e36ec2c73e190617ab5ddd28a0a78c460e985ca4174db18a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6003-4929 |
PMID | 32715565 |
PQID | 2437321139 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2427518866 proquest_journals_2437321139 crossref_primary_10_1002_smll_202002054 pubmed_primary_32715565 wiley_primary_10_1002_smll_202002054_SMLL202002054 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1998; 281 2011; 399 2017; 1 2004; 61 2015; 16 2007; 261 2006; 11 2015; 53 2015; 99 2016; 408 2007; 120 2016; 52 2011; 10 2002; 81 2019; 546 2014; 29 2016; 103 2009; 48 2001; 105 2004; 10 2004; 76 2009; 77 2018; 9 2018; 18 2018; 391 2011; 108 2015; 27 2020; 1 2003; 2 2003; 3 2003; 69 2005; 307 2019; 179 2018; 30 2001; 1 2009; 4 2009; 2 2016; 28 2018; 10 2017; 543 2005; 77 2003; 21 2010; 6 1996; 22 2014; 31 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 28 start-page: 3041 year: 2016 publication-title: Chem. Mater. – volume: 543 start-page: 15 year: 2017 publication-title: Nature – volume: 81 start-page: 5045 year: 2002 publication-title: Appl. Phys. Lett. – volume: 408 start-page: 6269 year: 2016 publication-title: Anal. Bioanal. Chem. – volume: 546 start-page: 192 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 2 start-page: 630 year: 2003 publication-title: Nat. Mater. – volume: 21 start-page: 41 year: 2003 publication-title: Nat. Biotechnol. – volume: 120 start-page: 13 year: 2007 publication-title: J. Allergy Clin. Immunol. – volume: 2 start-page: 85 year: 2009 publication-title: Nano Res. – volume: 6 start-page: 2367 year: 2010 publication-title: Small – volume: 3 start-page: 747 year: 2003 publication-title: Nano Lett. – volume: 281 start-page: 2016 year: 1998 publication-title: Science – volume: 52 start-page: 4025 year: 2016 publication-title: Chem. Commun. – volume: 1 start-page: 667 year: 2001 publication-title: Nano Lett. – volume: 27 start-page: 7782 year: 2015 publication-title: Adv. Mater. – volume: 108 start-page: 8943 year: 2011 publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 57 year: 2015 publication-title: Nat. Immunol. – volume: 1 start-page: 0010 year: 2017 publication-title: Nat. Biomed. Eng. – volume: 2 start-page: 50 year: 2003 publication-title: Mol. Imaging – volume: 9 start-page: 2530 year: 2018 publication-title: Front. Immunol. – volume: 11 start-page: 663 year: 2006 publication-title: JBIC, J. Biol. Inorg. Chem. – volume: 69 start-page: 4205 year: 2003 publication-title: Appl. Environ. Microbiol. – volume: 10 start-page: 132 year: 2018 publication-title: Nanoscale – volume: 22 start-page: 67 year: 1996 publication-title: Crit. Rev. Microbiol. – volume: 29 start-page: 145 year: 2014 publication-title: Mol. Oral Microbiol. – volume: 179 start-page: 17 year: 2019 publication-title: Colloids Surf. B – volume: 99 start-page: 8883 year: 2015 publication-title: Appl. Microbiol. Biotechnol. – volume: 10 start-page: S122 year: 2004 publication-title: Nat. Med. – volume: 1 start-page: 6 year: 2020 publication-title: View – volume: 61 start-page: 265 year: 2004 publication-title: J. Biochem. Biophys. Methods – volume: 48 start-page: 7668 year: 2009 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 602 year: 2011 publication-title: Nat. Mater. – volume: 391 start-page: 420 year: 2018 publication-title: Lancet – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 31 start-page: 232 year: 2014 publication-title: Mol. Biol. Evol. – volume: 261 start-page: 511 year: 2007 publication-title: J. Intern. Med. – volume: 18 start-page: 3654 year: 2018 publication-title: J. Nanosci. Nanotechnol. – volume: 281 start-page: 2013 year: 1998 publication-title: Science – volume: 77 start-page: 1808 year: 2009 publication-title: Talanta – volume: 105 start-page: 8281 year: 2001 publication-title: J. Phys. Chem. B – volume: 53 start-page: 532 year: 2015 publication-title: Biomaterials – volume: 4 start-page: 710 year: 2009 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 8781 year: 2018 publication-title: Chem. Sci. – volume: 307 start-page: 538 year: 2005 publication-title: Science – volume: 76 start-page: 4806 year: 2004 publication-title: Anal. Chem. – volume: 103 start-page: 256 year: 2016 publication-title: Biomaterials – volume: 399 start-page: 2755 year: 2011 publication-title: Anal. Bioanal. Chem. – volume: 77 start-page: 4861 year: 2005 publication-title: Anal. Chem. – ident: e_1_2_5_48_1 doi: 10.1093/molbev/mst187 – ident: e_1_2_5_34_1 doi: 10.1128/AEM.69.7.4205-4213.2003 – ident: e_1_2_5_12_1 doi: 10.1038/nnano.2009.326 – ident: e_1_2_5_27_1 doi: 10.1002/smll.201001050 – ident: e_1_2_5_36_1 doi: 10.1007/s00775-006-0116-7 – ident: e_1_2_5_44_1 doi: 10.1016/j.jcis.2019.03.050 – ident: e_1_2_5_47_1 doi: 10.1016/j.jaci.2007.06.005 – ident: e_1_2_5_20_1 doi: 10.1021/acs.chemmater.6b00208 – ident: e_1_2_5_39_1 doi: 10.1016/j.jbbm.2003.10.005 – ident: e_1_2_5_42_1 doi: 10.1007/s00253-015-6946-x – ident: e_1_2_5_9_1 doi: 10.1002/anie.200902612 – ident: e_1_2_5_7_1 doi: 10.1038/s41551-016-0010 – ident: e_1_2_5_8_1 doi: 10.1002/adma.201800106 – ident: e_1_2_5_43_1 doi: 10.3109/10408419609106456 – ident: e_1_2_5_4_1 doi: 10.3389/fimmu.2018.02530 – ident: e_1_2_5_2_1 doi: 10.1038/nature.2017.21550 – ident: e_1_2_5_14_1 doi: 10.1126/science.281.5385.2013 – ident: e_1_2_5_15_1 doi: 10.1038/nmat961 – ident: e_1_2_5_19_1 doi: 10.1016/j.biomaterials.2016.06.043 – ident: e_1_2_5_16_1 doi: 10.1038/nbt764 – ident: e_1_2_5_24_1 doi: 10.1063/1.1532109 – ident: e_1_2_5_30_1 doi: 10.1039/C8SC04637A – ident: e_1_2_5_37_1 doi: 10.1007/s00216-010-4624-5 – ident: e_1_2_5_17_1 doi: 10.1126/science.1104274 – ident: e_1_2_5_3_1 doi: 10.1016/S0140-6736(18)30110-7 – ident: e_1_2_5_46_1 doi: 10.1111/j.1365-2796.2007.01821.x – ident: e_1_2_5_23_1 doi: 10.1021/nl034165s – ident: e_1_2_5_29_1 doi: 10.1007/s00216-016-9730-6 – ident: e_1_2_5_28_1 doi: 10.1162/153535003765276282 – ident: e_1_2_5_5_1 doi: 10.1038/ni.3048 – ident: e_1_2_5_21_1 doi: 10.1021/nl015619t – ident: e_1_2_5_31_1 doi: 10.1039/C7NR06373C – ident: e_1_2_5_10_1 doi: 10.1073/pnas.1014501108 – ident: e_1_2_5_13_1 doi: 10.1126/science.281.5385.2016 – ident: e_1_2_5_35_1 doi: 10.1021/ac050641i – ident: e_1_2_5_22_1 doi: 10.1021/jp012018h – ident: e_1_2_5_33_1 doi: 10.1016/j.biomaterials.2015.02.105 – ident: e_1_2_5_1_1 doi: 10.1038/nm1145 – ident: e_1_2_5_32_1 doi: 10.1038/nmat3074 – ident: e_1_2_5_18_1 doi: 10.1039/C6CC00099A – ident: e_1_2_5_40_1 doi: 10.1016/j.talanta.2008.10.025 – ident: e_1_2_5_45_1 doi: 10.1111/omi.12056 – ident: e_1_2_5_26_1 doi: 10.1002/adma.201503821 – ident: e_1_2_5_11_1 doi: 10.1007/s12274-009-9009-8 – ident: e_1_2_5_25_1 doi: 10.1016/j.colsurfb.2019.03.042 – ident: e_1_2_5_41_1 doi: 10.1166/jnn.2018.14673 – ident: e_1_2_5_6_1 doi: 10.1002/viw2.6 – ident: e_1_2_5_38_1 doi: 10.1021/ac049442 |
SSID | ssj0031247 |
Score | 2.5104523 |
Snippet | Time window of antibiotic administration is a critical but long‐neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics... Time window of antibiotic administration is a critical but long-neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2002054 |
SubjectTerms | Antibiotics Bacteria bacterial infection Bacterial infections bioimaging E coli Fluorescence Immune system in vivo imaging Infections Infrared imaging Lead sulfides Lymphocytes Macrophages Nanotechnology NIR‐II Quantum dots Windows (intervals) |
Title | In Vivo Dynamic Monitoring of Bacterial Infection by NIR‐II Fluorescence Imaging |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202002054 https://www.ncbi.nlm.nih.gov/pubmed/32715565 https://www.proquest.com/docview/2437321139 https://search.proquest.com/docview/2427518866 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5Ve2oPQCk_KVvkSpV6CiR2YmePwHZFqmUPC4u4RbbjSAg2qfYHiZ76CDxjn6TjeDewcECilyiR7djxeDyf4_E3AN9UFMgCDbGvOQttCLPIl5jVT7SIlDDC8Dry3NmAn46in1fx1ZNT_I4fovnhZjWjnq-tgks1PXwkDZ2Ob-3WgXUyQNiBk3DIhPXp6w4b_iiGxquOroI2y7fEW0vWxoAerhZftUovoOYqcq1NT28d5LLRzuPk5mA-Uwf69zM-x__5qg1YW-BScuQG0kd4Z8pN-PCErfATDNOSXF7fVaTrotgTNx_YRFIV5NjxPuNL0oWDV0nUPRmkw79_HtKU9G7n1aQmj9KGpOM6OtIWjHo_Lk5O_UVIBl_bI7Q-o7kpdEglNQUChdAwbjTVghkEFihWqeI8z2kiAykSHfHAdJJYywjXPbkKE8m2oVVWpdkFojo6F52ECyrjyMR4jblWOeK3gBaGhh58X4ok--WYNzLHsUwz20tZ00setJcSyxYaOM0s0SLD1S3rePC1SUbdsRsisjTV3Oahdtcp4dyDHSfppipGBUItHntAa3m90obs_Kzfb54-v6XQHry39867sA2t2WRuviDiman9elT_A8Kr9vY |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BORQO0FIeoS9XQuKUNrETJ3sslNWm3d3D9qHeIttxJESboHYXCU78BH5jf0ln4k3K0gMSvURKbCeOx-P5bI-_AXivo0CVaIh9I0VIIcwiX2FWPzVJpBObWNlEnhuN5eA0OjyPW29COgvj-CG6BTfSjGa8JgWnBem9O9bQ68sL2jsgLwPEHY_hCep8SF5dB5OOQUqg-Wriq6DV8ol6q-VtDPjeYvlFu3QPbC5i18b49F-AbqvtfE6-7s6metf8_IvR8UH_tQLP59CU7bu-tAqPbPUSnv1BWLgGk6xiZ1--1-zABbJnbkigRFaX7KOjfsaXZHMfr4rpH2ycTW5-_c4y1r-Y1VcNf5SxLLtsAiS9gtP-55NPA38elcE3dIrWF7ywpQm54rZErBBaIa3hJhEWsQVKVum4KAqeqkAlqYlkYHtpbFSEU59Ch6kSr2Gpqiv7FpjumSLppTLhKo5sjNdYGl0ghAt4aXnowYdWJvk3R76RO5plnlMr5V0rebDRiiyfK-F1TlyLAie4oufBTpeM6kN7Iqqy9YzycNp4SqX04I0TdfcpwRNEWzL2gDcC-0cd8uPRcNjdvfufQtuwPDgZDfNhNj5ah6f03DkbbsDS9GpmNxEATfVW08VvAU00-xc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEJ74SIwefD_wWRMTT7jQQoGjum5E141ZH_FG2lISo4LRXRM9-RP8jf4SW7qLrh5M9EICbWnpdDpf6fQbgC3uOSxThtgWlLg6hJlnM5XVDkXg8UAGkpaR505a9PDCO7ryr76c4jf8ENUPN60Z5XytFfw-zWqfpKGPd7d660A7GSjYMQyjHsWRZs-vtysCKaKsVxleRRktWzNv9WkbHVwbLD9oln5gzUHoWtqexhSwfquNy8nNTrfDd8TLN0LH_3zWNEz2gCnaNSNpBoZkPgsTX-gK56Ad5-jy-qlAdRPGHpkJQSeiIkN7hvhZvSTueXjliD-jVtx-f32LY9S47RYPJXuUkCi-K8MjzcNF4-B8_9DuxWSwhT5DaxOcyky4mGGZKaTgSkKlwCIgUiELJVfG_TRNccgcFoTCo46MQl8wTy18Uu6GjCzASF7kcgkQj0QaRCENMPM96aurTwVPFYBzcCaxa8F2XyTJvaHeSAzJMk50LyVVL1mw2pdY0lPBx0QzLRK1vCWRBZtVslIevSPCcll0dR6st51CSi1YNJKuqiI4UFiL-hbgUl6_tCE5O2k2q7vlvxTagLHTeiNpxq3jFRjXj42n4SqMdB66ck2hnw5fLwf4B1lb-cY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vivo+Dynamic+Monitoring+of+Bacterial+Infection+by+NIR%E2%80%90II+Fluorescence+Imaging&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Chen%2C+Jun&rft.au=Feng%2C+Sijia&rft.au=Chen%2C+Mo&rft.au=Li%2C+Pei&rft.date=2020-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=16&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202002054&rft.externalDBID=10.1002%252Fsmll.202002054&rft.externalDocID=SMLL202002054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |