In Vivo Dynamic Monitoring of Bacterial Infection by NIR‐II Fluorescence Imaging

Time window of antibiotic administration is a critical but long‐neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug‐resistance. Here, a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfi...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 34; pp. e2002054 - n/a
Main Authors Chen, Jun, Feng, Sijia, Chen, Mo, Li, Pei, Yang, Yimeng, Zhang, Jian, Xu, Xiaogang, Li, Yunxia, Chen, Shiyi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Time window of antibiotic administration is a critical but long‐neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug‐resistance. Here, a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) is presented to dynamically monitor bacterial infection in vivo in a real‐time manner. The prepared PbS QDs not only provide a low detection limit (104 CFU mL−1) of four typical bacteria strains in vitro but also show a particularly high labeling efficiency with Escherichia coli (E. coli). The NIR‐II in vivo imaging results reveal that the number of invading bacteria first decreases after post‐injection, then increases from 1 d to 1 week and drop again over time in infected mouse models. Meanwhile, there is a simultaneous variation of dendritic cells, neutrophils, macrophages, and CD8+ T lymphocytes against bacterial infection at the same time points. Notably, the infected mouse self‐heals eventually without antibiotic treatment, as a robust immune system can successfully prevent further health deterioration. The NIR‐II imaging approach enables real‐time monitoring of bacterial infection in vivo, thus facilitating spatiotemporal deciphering of time window for antibiotic treatment. The study presents a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) to dynamically monitor bacterial infection and the immune response in vivo in a real‐time manner. A new avenue is paved for spatiotemporally deciphering the interaction between bacterial infection and human immune system in vivo, thus facilitating optimization of antibiotic treatment in future.
AbstractList Time window of antibiotic administration is a critical but long‐neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug‐resistance. Here, a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) is presented to dynamically monitor bacterial infection in vivo in a real‐time manner. The prepared PbS QDs not only provide a low detection limit (10 4 CFU mL −1 ) of four typical bacteria strains in vitro but also show a particularly high labeling efficiency with Escherichia coli ( E. coli ). The NIR‐II in vivo imaging results reveal that the number of invading bacteria first decreases after post‐injection, then increases from 1 d to 1 week and drop again over time in infected mouse models. Meanwhile, there is a simultaneous variation of dendritic cells, neutrophils, macrophages, and CD8+ T lymphocytes against bacterial infection at the same time points. Notably, the infected mouse self‐heals eventually without antibiotic treatment, as a robust immune system can successfully prevent further health deterioration. The NIR‐II imaging approach enables real‐time monitoring of bacterial infection in vivo, thus facilitating spatiotemporal deciphering of time window for antibiotic treatment.
Time window of antibiotic administration is a critical but long-neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug-resistance. Here, a second near-infrared (NIR-II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) is presented to dynamically monitor bacterial infection in vivo in a real-time manner. The prepared PbS QDs not only provide a low detection limit (10 CFU mL ) of four typical bacteria strains in vitro but also show a particularly high labeling efficiency with Escherichia coli (E. coli). The NIR-II in vivo imaging results reveal that the number of invading bacteria first decreases after post-injection, then increases from 1 d to 1 week and drop again over time in infected mouse models. Meanwhile, there is a simultaneous variation of dendritic cells, neutrophils, macrophages, and CD8+ T lymphocytes against bacterial infection at the same time points. Notably, the infected mouse self-heals eventually without antibiotic treatment, as a robust immune system can successfully prevent further health deterioration. The NIR-II imaging approach enables real-time monitoring of bacterial infection in vivo, thus facilitating spatiotemporal deciphering of time window for antibiotic treatment.
Time window of antibiotic administration is a critical but long‐neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug‐resistance. Here, a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) is presented to dynamically monitor bacterial infection in vivo in a real‐time manner. The prepared PbS QDs not only provide a low detection limit (104 CFU mL−1) of four typical bacteria strains in vitro but also show a particularly high labeling efficiency with Escherichia coli (E. coli). The NIR‐II in vivo imaging results reveal that the number of invading bacteria first decreases after post‐injection, then increases from 1 d to 1 week and drop again over time in infected mouse models. Meanwhile, there is a simultaneous variation of dendritic cells, neutrophils, macrophages, and CD8+ T lymphocytes against bacterial infection at the same time points. Notably, the infected mouse self‐heals eventually without antibiotic treatment, as a robust immune system can successfully prevent further health deterioration. The NIR‐II imaging approach enables real‐time monitoring of bacterial infection in vivo, thus facilitating spatiotemporal deciphering of time window for antibiotic treatment. The study presents a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) to dynamically monitor bacterial infection and the immune response in vivo in a real‐time manner. A new avenue is paved for spatiotemporally deciphering the interaction between bacterial infection and human immune system in vivo, thus facilitating optimization of antibiotic treatment in future.
Time window of antibiotic administration is a critical but long‐neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug‐resistance. Here, a second near‐infrared (NIR‐II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) is presented to dynamically monitor bacterial infection in vivo in a real‐time manner. The prepared PbS QDs not only provide a low detection limit (104 CFU mL−1) of four typical bacteria strains in vitro but also show a particularly high labeling efficiency with Escherichia coli (E. coli). The NIR‐II in vivo imaging results reveal that the number of invading bacteria first decreases after post‐injection, then increases from 1 d to 1 week and drop again over time in infected mouse models. Meanwhile, there is a simultaneous variation of dendritic cells, neutrophils, macrophages, and CD8+ T lymphocytes against bacterial infection at the same time points. Notably, the infected mouse self‐heals eventually without antibiotic treatment, as a robust immune system can successfully prevent further health deterioration. The NIR‐II imaging approach enables real‐time monitoring of bacterial infection in vivo, thus facilitating spatiotemporal deciphering of time window for antibiotic treatment.
Author Yang, Yimeng
Li, Pei
Li, Yunxia
Feng, Sijia
Chen, Shiyi
Zhang, Jian
Chen, Mo
Chen, Jun
Xu, Xiaogang
Author_xml – sequence: 1
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  organization: Fudan University
– sequence: 2
  givenname: Sijia
  surname: Feng
  fullname: Feng, Sijia
  organization: Fudan University
– sequence: 3
  givenname: Mo
  surname: Chen
  fullname: Chen, Mo
  organization: Fudan University
– sequence: 4
  givenname: Pei
  surname: Li
  fullname: Li, Pei
  organization: Fudan University
– sequence: 5
  givenname: Yimeng
  surname: Yang
  fullname: Yang, Yimeng
  organization: Fudan University
– sequence: 6
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  organization: Fudan University
– sequence: 7
  givenname: Xiaogang
  surname: Xu
  fullname: Xu, Xiaogang
  email: xuxiaogang@fudan.edu.cn
  organization: Fudan University
– sequence: 8
  givenname: Yunxia
  surname: Li
  fullname: Li, Yunxia
  email: liyunxia@huashan.org.cn
  organization: Fudan University
– sequence: 9
  givenname: Shiyi
  orcidid: 0000-0002-6003-4929
  surname: Chen
  fullname: Chen, Shiyi
  email: shiyi_chen@fudan.edu.cn
  organization: Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32715565$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1KAzEUhYMo1qpblxJw46Y1N5nfpVarA1XBv-2QZu6UyEyiSUfpzkfwGX0SI9UKblzds_jOx-X0ybqxBgnZAzYExviRb5tmyBkPmcXRGtmCBMQgyXi-vsrAeqTv_SNjAniUbpKe4CnEcRJvkZvC0Af9YunpwshWK3ppjZ5bp82M2pqeSDVHp2VDC1Ojmmtr6HRBr4qbj7f3oqDjprMOvUKjkBatnIXeDtmoZeNx9_tuk_vx2d3oYjC5Pi9Gx5OBikQeDQSvsFbAJcea5wJQJKi4SgVCzhJI5TSuqopnksk0U1HCMM9iJSNIo2oKmRTb5HDpfXL2uUM_L1sdPmkaadB2vuQRT2PIsiQJ6MEf9NF2zoTvAiVSwQFEHqjhklLOeu-wLp-cbqVblMDKr7XLr7XL1dqhsP-t7aYtViv8Z94A5EvgVTe4-EdX3l5OJr_yTxIOjM0
CitedBy_id crossref_primary_10_1016_j_cej_2023_144530
crossref_primary_10_1002_adfm_202207662
crossref_primary_10_1002_agt2_620
crossref_primary_10_1002_smsc_202300081
crossref_primary_10_3389_fmicb_2023_1128638
crossref_primary_10_1016_j_cej_2022_138584
crossref_primary_10_1021_acsanm_1c02769
crossref_primary_10_1002_btm2_10656
crossref_primary_10_1039_D2BM00550F
crossref_primary_10_1093_rb_rbac102
crossref_primary_10_3390_pharmaceutics13081226
crossref_primary_10_1155_2023_1984200
crossref_primary_10_1016_j_addr_2023_114863
crossref_primary_10_1016_j_ejmech_2024_116173
crossref_primary_10_1515_revac_2020_0119
crossref_primary_10_1007_s12274_022_4836_y
crossref_primary_10_1016_j_addr_2022_114634
crossref_primary_10_1021_acsmaterialslett_2c00551
crossref_primary_10_1021_acsbiomaterials_2c00886
crossref_primary_10_1002_adom_202201826
crossref_primary_10_3390_bioengineering10080954
crossref_primary_10_1016_j_ijbiomac_2023_123683
crossref_primary_10_3389_fbioe_2021_768927
crossref_primary_10_1109_TBME_2023_3239735
Cites_doi 10.1093/molbev/mst187
10.1128/AEM.69.7.4205-4213.2003
10.1038/nnano.2009.326
10.1002/smll.201001050
10.1007/s00775-006-0116-7
10.1016/j.jcis.2019.03.050
10.1016/j.jaci.2007.06.005
10.1021/acs.chemmater.6b00208
10.1016/j.jbbm.2003.10.005
10.1007/s00253-015-6946-x
10.1002/anie.200902612
10.1038/s41551-016-0010
10.1002/adma.201800106
10.3109/10408419609106456
10.3389/fimmu.2018.02530
10.1038/nature.2017.21550
10.1126/science.281.5385.2013
10.1038/nmat961
10.1016/j.biomaterials.2016.06.043
10.1038/nbt764
10.1063/1.1532109
10.1039/C8SC04637A
10.1007/s00216-010-4624-5
10.1126/science.1104274
10.1016/S0140-6736(18)30110-7
10.1111/j.1365-2796.2007.01821.x
10.1021/nl034165s
10.1007/s00216-016-9730-6
10.1162/153535003765276282
10.1038/ni.3048
10.1021/nl015619t
10.1039/C7NR06373C
10.1073/pnas.1014501108
10.1126/science.281.5385.2016
10.1021/ac050641i
10.1021/jp012018h
10.1016/j.biomaterials.2015.02.105
10.1038/nm1145
10.1038/nmat3074
10.1039/C6CC00099A
10.1016/j.talanta.2008.10.025
10.1111/omi.12056
10.1002/adma.201503821
10.1007/s12274-009-9009-8
10.1016/j.colsurfb.2019.03.042
10.1166/jnn.2018.14673
10.1002/viw2.6
10.1021/ac049442
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 Wiley‐VCH GmbH
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202002054
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202002054
32715565
SMLL202002054
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Shanghai Committee of Science and Technology
  funderid: 19441901600; 19441902000
– fundername: Shanghai Rising‐Star Project
  funderid: 18QB1400500
– fundername: Key Clinical Medicine Center of Shanghai
  funderid: 2017ZZ01006
– fundername: Introduction Project of Clinical Medicine Expert Team for Suzhou
  funderid: SZYJTD201714
– fundername: National Key Research and Development Program of China
  funderid: 2016YFC1100300
– fundername: National Natural Science Foundation of China
  funderid: 81572108; 81772339; 8181101445; 81811530750; 81811530389; 81972129
– fundername: Development Project of Shanghai Peak Disciplines‐Integrative Medicine
  funderid: 20180101
– fundername: Sanming Project of Medicine in Shenzhen
  funderid: SZSM201612078
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
EJD
FEDTE
GODZA
HVGLF
NPM
AAMNL
AAYXX
ACRPL
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4394-32defc12a2ef2931e36ec2c73e190617ab5ddd28a0a78c460e985ca4174db18a3
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Wed Dec 04 05:12:13 EST 2024
Thu Oct 10 19:26:53 EDT 2024
Fri Dec 06 01:58:16 EST 2024
Sat Sep 28 08:26:18 EDT 2024
Sat Aug 24 01:05:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords immune system
NIR-II
in vivo imaging
bacterial infection
bioimaging
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4394-32defc12a2ef2931e36ec2c73e190617ab5ddd28a0a78c460e985ca4174db18a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6003-4929
PMID 32715565
PQID 2437321139
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2427518866
proquest_journals_2437321139
crossref_primary_10_1002_smll_202002054
pubmed_primary_32715565
wiley_primary_10_1002_smll_202002054_SMLL202002054
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1998; 281
2011; 399
2017; 1
2004; 61
2015; 16
2007; 261
2006; 11
2015; 53
2015; 99
2016; 408
2007; 120
2016; 52
2011; 10
2002; 81
2019; 546
2014; 29
2016; 103
2009; 48
2001; 105
2004; 10
2004; 76
2009; 77
2018; 9
2018; 18
2018; 391
2011; 108
2015; 27
2020; 1
2003; 2
2003; 3
2003; 69
2005; 307
2019; 179
2018; 30
2001; 1
2009; 4
2009; 2
2016; 28
2018; 10
2017; 543
2005; 77
2003; 21
2010; 6
1996; 22
2014; 31
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 28
  start-page: 3041
  year: 2016
  publication-title: Chem. Mater.
– volume: 543
  start-page: 15
  year: 2017
  publication-title: Nature
– volume: 81
  start-page: 5045
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 408
  start-page: 6269
  year: 2016
  publication-title: Anal. Bioanal. Chem.
– volume: 546
  start-page: 192
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 2
  start-page: 630
  year: 2003
  publication-title: Nat. Mater.
– volume: 21
  start-page: 41
  year: 2003
  publication-title: Nat. Biotechnol.
– volume: 120
  start-page: 13
  year: 2007
  publication-title: J. Allergy Clin. Immunol.
– volume: 2
  start-page: 85
  year: 2009
  publication-title: Nano Res.
– volume: 6
  start-page: 2367
  year: 2010
  publication-title: Small
– volume: 3
  start-page: 747
  year: 2003
  publication-title: Nano Lett.
– volume: 281
  start-page: 2016
  year: 1998
  publication-title: Science
– volume: 52
  start-page: 4025
  year: 2016
  publication-title: Chem. Commun.
– volume: 1
  start-page: 667
  year: 2001
  publication-title: Nano Lett.
– volume: 27
  start-page: 7782
  year: 2015
  publication-title: Adv. Mater.
– volume: 108
  start-page: 8943
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 57
  year: 2015
  publication-title: Nat. Immunol.
– volume: 1
  start-page: 0010
  year: 2017
  publication-title: Nat. Biomed. Eng.
– volume: 2
  start-page: 50
  year: 2003
  publication-title: Mol. Imaging
– volume: 9
  start-page: 2530
  year: 2018
  publication-title: Front. Immunol.
– volume: 11
  start-page: 663
  year: 2006
  publication-title: JBIC, J. Biol. Inorg. Chem.
– volume: 69
  start-page: 4205
  year: 2003
  publication-title: Appl. Environ. Microbiol.
– volume: 10
  start-page: 132
  year: 2018
  publication-title: Nanoscale
– volume: 22
  start-page: 67
  year: 1996
  publication-title: Crit. Rev. Microbiol.
– volume: 29
  start-page: 145
  year: 2014
  publication-title: Mol. Oral Microbiol.
– volume: 179
  start-page: 17
  year: 2019
  publication-title: Colloids Surf. B
– volume: 99
  start-page: 8883
  year: 2015
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 10
  start-page: S122
  year: 2004
  publication-title: Nat. Med.
– volume: 1
  start-page: 6
  year: 2020
  publication-title: View
– volume: 61
  start-page: 265
  year: 2004
  publication-title: J. Biochem. Biophys. Methods
– volume: 48
  start-page: 7668
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 602
  year: 2011
  publication-title: Nat. Mater.
– volume: 391
  start-page: 420
  year: 2018
  publication-title: Lancet
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 31
  start-page: 232
  year: 2014
  publication-title: Mol. Biol. Evol.
– volume: 261
  start-page: 511
  year: 2007
  publication-title: J. Intern. Med.
– volume: 18
  start-page: 3654
  year: 2018
  publication-title: J. Nanosci. Nanotechnol.
– volume: 281
  start-page: 2013
  year: 1998
  publication-title: Science
– volume: 77
  start-page: 1808
  year: 2009
  publication-title: Talanta
– volume: 105
  start-page: 8281
  year: 2001
  publication-title: J. Phys. Chem. B
– volume: 53
  start-page: 532
  year: 2015
  publication-title: Biomaterials
– volume: 4
  start-page: 710
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 8781
  year: 2018
  publication-title: Chem. Sci.
– volume: 307
  start-page: 538
  year: 2005
  publication-title: Science
– volume: 76
  start-page: 4806
  year: 2004
  publication-title: Anal. Chem.
– volume: 103
  start-page: 256
  year: 2016
  publication-title: Biomaterials
– volume: 399
  start-page: 2755
  year: 2011
  publication-title: Anal. Bioanal. Chem.
– volume: 77
  start-page: 4861
  year: 2005
  publication-title: Anal. Chem.
– ident: e_1_2_5_48_1
  doi: 10.1093/molbev/mst187
– ident: e_1_2_5_34_1
  doi: 10.1128/AEM.69.7.4205-4213.2003
– ident: e_1_2_5_12_1
  doi: 10.1038/nnano.2009.326
– ident: e_1_2_5_27_1
  doi: 10.1002/smll.201001050
– ident: e_1_2_5_36_1
  doi: 10.1007/s00775-006-0116-7
– ident: e_1_2_5_44_1
  doi: 10.1016/j.jcis.2019.03.050
– ident: e_1_2_5_47_1
  doi: 10.1016/j.jaci.2007.06.005
– ident: e_1_2_5_20_1
  doi: 10.1021/acs.chemmater.6b00208
– ident: e_1_2_5_39_1
  doi: 10.1016/j.jbbm.2003.10.005
– ident: e_1_2_5_42_1
  doi: 10.1007/s00253-015-6946-x
– ident: e_1_2_5_9_1
  doi: 10.1002/anie.200902612
– ident: e_1_2_5_7_1
  doi: 10.1038/s41551-016-0010
– ident: e_1_2_5_8_1
  doi: 10.1002/adma.201800106
– ident: e_1_2_5_43_1
  doi: 10.3109/10408419609106456
– ident: e_1_2_5_4_1
  doi: 10.3389/fimmu.2018.02530
– ident: e_1_2_5_2_1
  doi: 10.1038/nature.2017.21550
– ident: e_1_2_5_14_1
  doi: 10.1126/science.281.5385.2013
– ident: e_1_2_5_15_1
  doi: 10.1038/nmat961
– ident: e_1_2_5_19_1
  doi: 10.1016/j.biomaterials.2016.06.043
– ident: e_1_2_5_16_1
  doi: 10.1038/nbt764
– ident: e_1_2_5_24_1
  doi: 10.1063/1.1532109
– ident: e_1_2_5_30_1
  doi: 10.1039/C8SC04637A
– ident: e_1_2_5_37_1
  doi: 10.1007/s00216-010-4624-5
– ident: e_1_2_5_17_1
  doi: 10.1126/science.1104274
– ident: e_1_2_5_3_1
  doi: 10.1016/S0140-6736(18)30110-7
– ident: e_1_2_5_46_1
  doi: 10.1111/j.1365-2796.2007.01821.x
– ident: e_1_2_5_23_1
  doi: 10.1021/nl034165s
– ident: e_1_2_5_29_1
  doi: 10.1007/s00216-016-9730-6
– ident: e_1_2_5_28_1
  doi: 10.1162/153535003765276282
– ident: e_1_2_5_5_1
  doi: 10.1038/ni.3048
– ident: e_1_2_5_21_1
  doi: 10.1021/nl015619t
– ident: e_1_2_5_31_1
  doi: 10.1039/C7NR06373C
– ident: e_1_2_5_10_1
  doi: 10.1073/pnas.1014501108
– ident: e_1_2_5_13_1
  doi: 10.1126/science.281.5385.2016
– ident: e_1_2_5_35_1
  doi: 10.1021/ac050641i
– ident: e_1_2_5_22_1
  doi: 10.1021/jp012018h
– ident: e_1_2_5_33_1
  doi: 10.1016/j.biomaterials.2015.02.105
– ident: e_1_2_5_1_1
  doi: 10.1038/nm1145
– ident: e_1_2_5_32_1
  doi: 10.1038/nmat3074
– ident: e_1_2_5_18_1
  doi: 10.1039/C6CC00099A
– ident: e_1_2_5_40_1
  doi: 10.1016/j.talanta.2008.10.025
– ident: e_1_2_5_45_1
  doi: 10.1111/omi.12056
– ident: e_1_2_5_26_1
  doi: 10.1002/adma.201503821
– ident: e_1_2_5_11_1
  doi: 10.1007/s12274-009-9009-8
– ident: e_1_2_5_25_1
  doi: 10.1016/j.colsurfb.2019.03.042
– ident: e_1_2_5_41_1
  doi: 10.1166/jnn.2018.14673
– ident: e_1_2_5_6_1
  doi: 10.1002/viw2.6
– ident: e_1_2_5_38_1
  doi: 10.1021/ac049442
SSID ssj0031247
Score 2.5104523
Snippet Time window of antibiotic administration is a critical but long‐neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics...
Time window of antibiotic administration is a critical but long-neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2002054
SubjectTerms Antibiotics
Bacteria
bacterial infection
Bacterial infections
bioimaging
E coli
Fluorescence
Immune system
in vivo imaging
Infections
Infrared imaging
Lead sulfides
Lymphocytes
Macrophages
Nanotechnology
NIR‐II
Quantum dots
Windows (intervals)
Title In Vivo Dynamic Monitoring of Bacterial Infection by NIR‐II Fluorescence Imaging
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202002054
https://www.ncbi.nlm.nih.gov/pubmed/32715565
https://www.proquest.com/docview/2437321139
https://search.proquest.com/docview/2427518866
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5Ve2oPQCk_KVvkSpV6CiR2YmePwHZFqmUPC4u4RbbjSAg2qfYHiZ76CDxjn6TjeDewcECilyiR7djxeDyf4_E3AN9UFMgCDbGvOQttCLPIl5jVT7SIlDDC8Dry3NmAn46in1fx1ZNT_I4fovnhZjWjnq-tgks1PXwkDZ2Ob-3WgXUyQNiBk3DIhPXp6w4b_iiGxquOroI2y7fEW0vWxoAerhZftUovoOYqcq1NT28d5LLRzuPk5mA-Uwf69zM-x__5qg1YW-BScuQG0kd4Z8pN-PCErfATDNOSXF7fVaTrotgTNx_YRFIV5NjxPuNL0oWDV0nUPRmkw79_HtKU9G7n1aQmj9KGpOM6OtIWjHo_Lk5O_UVIBl_bI7Q-o7kpdEglNQUChdAwbjTVghkEFihWqeI8z2kiAykSHfHAdJJYywjXPbkKE8m2oVVWpdkFojo6F52ECyrjyMR4jblWOeK3gBaGhh58X4ok--WYNzLHsUwz20tZ00setJcSyxYaOM0s0SLD1S3rePC1SUbdsRsisjTV3Oahdtcp4dyDHSfppipGBUItHntAa3m90obs_Kzfb54-v6XQHry39867sA2t2WRuviDiman9elT_A8Kr9vY
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BORQO0FIeoS9XQuKUNrETJ3sslNWm3d3D9qHeIttxJESboHYXCU78BH5jf0ln4k3K0gMSvURKbCeOx-P5bI-_AXivo0CVaIh9I0VIIcwiX2FWPzVJpBObWNlEnhuN5eA0OjyPW29COgvj-CG6BTfSjGa8JgWnBem9O9bQ68sL2jsgLwPEHY_hCep8SF5dB5OOQUqg-Wriq6DV8ol6q-VtDPjeYvlFu3QPbC5i18b49F-AbqvtfE6-7s6metf8_IvR8UH_tQLP59CU7bu-tAqPbPUSnv1BWLgGk6xiZ1--1-zABbJnbkigRFaX7KOjfsaXZHMfr4rpH2ycTW5-_c4y1r-Y1VcNf5SxLLtsAiS9gtP-55NPA38elcE3dIrWF7ywpQm54rZErBBaIa3hJhEWsQVKVum4KAqeqkAlqYlkYHtpbFSEU59Ch6kSr2Gpqiv7FpjumSLppTLhKo5sjNdYGl0ghAt4aXnowYdWJvk3R76RO5plnlMr5V0rebDRiiyfK-F1TlyLAie4oufBTpeM6kN7Iqqy9YzycNp4SqX04I0TdfcpwRNEWzL2gDcC-0cd8uPRcNjdvfufQtuwPDgZDfNhNj5ah6f03DkbbsDS9GpmNxEATfVW08VvAU00-xc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEJ74SIwefD_wWRMTT7jQQoGjum5E141ZH_FG2lISo4LRXRM9-RP8jf4SW7qLrh5M9EICbWnpdDpf6fQbgC3uOSxThtgWlLg6hJlnM5XVDkXg8UAGkpaR505a9PDCO7ryr76c4jf8ENUPN60Z5XytFfw-zWqfpKGPd7d660A7GSjYMQyjHsWRZs-vtysCKaKsVxleRRktWzNv9WkbHVwbLD9oln5gzUHoWtqexhSwfquNy8nNTrfDd8TLN0LH_3zWNEz2gCnaNSNpBoZkPgsTX-gK56Ad5-jy-qlAdRPGHpkJQSeiIkN7hvhZvSTueXjliD-jVtx-f32LY9S47RYPJXuUkCi-K8MjzcNF4-B8_9DuxWSwhT5DaxOcyky4mGGZKaTgSkKlwCIgUiELJVfG_TRNccgcFoTCo46MQl8wTy18Uu6GjCzASF7kcgkQj0QaRCENMPM96aurTwVPFYBzcCaxa8F2XyTJvaHeSAzJMk50LyVVL1mw2pdY0lPBx0QzLRK1vCWRBZtVslIevSPCcll0dR6st51CSi1YNJKuqiI4UFiL-hbgUl6_tCE5O2k2q7vlvxTagLHTeiNpxq3jFRjXj42n4SqMdB66ck2hnw5fLwf4B1lb-cY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vivo+Dynamic+Monitoring+of+Bacterial+Infection+by+NIR%E2%80%90II+Fluorescence+Imaging&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Chen%2C+Jun&rft.au=Feng%2C+Sijia&rft.au=Chen%2C+Mo&rft.au=Li%2C+Pei&rft.date=2020-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=16&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202002054&rft.externalDBID=10.1002%252Fsmll.202002054&rft.externalDocID=SMLL202002054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon