Water‐Triggered Stiffening of Shape‐Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments
Shape‐memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of pha...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 46; pp. e2201914 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
17.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Shape‐memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase‐transition‐induced stiffening of shape‐memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape‐memory polyurethane (SMPUs), featuring all‐hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft‐to‐stiff transition when shape recovers. The stiffening process is driven by water‐triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape‐recovery process in the hydrated state despite the final increased glass transition temperature (Tg). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape‐memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents.
Inspired by the thermally triggered phase transformation process and “soft‐to‐stiff” transition achieved by lattice distortion of shape‐memory alloys, a series of water‐triggered stiffening shape‐memory polyurethanes is developed. They can achieve “soft‐to‐stiff” transition by forming more continuous hard domains upon hydration. |
---|---|
AbstractList | Shape-memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase-transition-induced stiffening of shape-memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape-memory polyurethane (SMPUs), featuring all-hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft-to-stiff transition when shape recovers. The stiffening process is driven by water-triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape-recovery process in the hydrated state despite the final increased glass transition temperature (T
). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape-memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents. Shape‐memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase‐transition‐induced stiffening of shape‐memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape‐memory polyurethane (SMPUs), featuring all‐hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft‐to‐stiff transition when shape recovers. The stiffening process is driven by water‐triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape‐recovery process in the hydrated state despite the final increased glass transition temperature (Tg). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape‐memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents. Inspired by the thermally triggered phase transformation process and “soft‐to‐stiff” transition achieved by lattice distortion of shape‐memory alloys, a series of water‐triggered stiffening shape‐memory polyurethanes is developed. They can achieve “soft‐to‐stiff” transition by forming more continuous hard domains upon hydration. Shape-memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase-transition-induced stiffening of shape-memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape-memory polyurethane (SMPUs), featuring all-hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft-to-stiff transition when shape recovers. The stiffening process is driven by water-triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape-recovery process in the hydrated state despite the final increased glass transition temperature (Tg ). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape-memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents.Shape-memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase-transition-induced stiffening of shape-memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape-memory polyurethane (SMPUs), featuring all-hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft-to-stiff transition when shape recovers. The stiffening process is driven by water-triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape-recovery process in the hydrated state despite the final increased glass transition temperature (Tg ). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape-memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents. Shape‐memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase‐transition‐induced stiffening of shape‐memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape‐memory polyurethane (SMPUs), featuring all‐hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft‐to‐stiff transition when shape recovers. The stiffening process is driven by water‐triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape‐recovery process in the hydrated state despite the final increased glass transition temperature ( T g ). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape‐memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents. Shape‐memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase‐transition‐induced stiffening of shape‐memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape‐memory polyurethane (SMPUs), featuring all‐hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft‐to‐stiff transition when shape recovers. The stiffening process is driven by water‐triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape‐recovery process in the hydrated state despite the final increased glass transition temperature (Tg). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape‐memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents. |
Author | Yang, Ruibo Liu, Wenkai Chen, Jinlin Li, Zhen Li, Jiehua He, Xueling Fu, Qiang Wang, Ao Wu, Hecheng Tan, Hong Wang, Yanchao Shao, Shuren Ma, Yan |
Author_xml | – sequence: 1 givenname: Wenkai surname: Liu fullname: Liu, Wenkai organization: Sichuan University – sequence: 2 givenname: Ao surname: Wang fullname: Wang, Ao organization: Sichuan University – sequence: 3 givenname: Ruibo surname: Yang fullname: Yang, Ruibo organization: Sichuan University – sequence: 4 givenname: Hecheng surname: Wu fullname: Wu, Hecheng organization: Sichuan University – sequence: 5 givenname: Shuren surname: Shao fullname: Shao, Shuren organization: Sichuan University – sequence: 6 givenname: Jinlin surname: Chen fullname: Chen, Jinlin organization: Sichuan University – sequence: 7 givenname: Yan surname: Ma fullname: Ma, Yan organization: Sichuan University – sequence: 8 givenname: Zhen surname: Li fullname: Li, Zhen email: zhenli@scu.edu.cn organization: Sichuan University – sequence: 9 givenname: Yanchao surname: Wang fullname: Wang, Yanchao organization: Sichuan University – sequence: 10 givenname: Xueling surname: He fullname: He, Xueling organization: Laboratory Animal Center of Sichuan University – sequence: 11 givenname: Jiehua surname: Li fullname: Li, Jiehua organization: Sichuan University – sequence: 12 givenname: Hong orcidid: 0000-0003-0695-1619 surname: Tan fullname: Tan, Hong email: hongtan@scu.edu.cn organization: Sichuan University – sequence: 13 givenname: Qiang surname: Fu fullname: Fu, Qiang organization: Sichuan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35502474$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rFDEYxoNU7LZ69SgDXrzMmsnkz-a4bmsrtFjYiseQSd5Mp85MtkkG2ZsfoZ-xn8Qs2yoUxFMO7-_38JDnCB2MfgSE3lZ4XmFMPmo76DnBhOBKVvQFmlWMVCXFkh2gGZY1KyWni0N0FOMtxlhyzF-hw5oxTKigM3T3XScID7_ur0PXthDAFuvUOQdjN7aFd8X6Rm8g3y9h8GFbXPl-OwVIN3qEWKz8sPExOxk818EWn7T50eSGxYke234XcXV6Vqy9S8Ua2gHGFF-jl073Ed48vsfo2-fT69V5efH17MtqeVEaWktaktzQ1E1NrKSGuQasBVZRxxfSWdFwa8Bhph0ntjFGaL6g1PAKiGsc09LUx-jDPncT_N0EMamhiwb6Pjf3U1SEM0mIEEJm9P0z9NZPYcztFBG1wJRjITL17pGamgGs2oRu0GGrnj4zA3QPmOBjDOCU6ZJOnR9T0F2vKqx2m6ndZurPZlmbP9Oekv8pyL3ws-th-x9aLU8ul3_d33L6q90 |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2023_109166 crossref_primary_10_1021_acs_macromol_3c02285 crossref_primary_10_1016_j_cej_2023_144078 crossref_primary_10_1016_j_cej_2024_150956 crossref_primary_10_1016_j_xcrp_2022_101244 crossref_primary_10_1021_acs_macromol_4c01001 crossref_primary_10_1080_25740881_2023_2204936 crossref_primary_10_1126_sciadv_adl2737 crossref_primary_10_1016_j_cej_2023_144478 crossref_primary_10_3390_polym16243528 crossref_primary_10_1002_admt_202401715 crossref_primary_10_1002_advs_202407596 crossref_primary_10_1002_adfm_202401999 crossref_primary_10_1002_anie_202318434 crossref_primary_10_1039_D2TB01681H crossref_primary_10_1002_advs_202405175 crossref_primary_10_1021_acsami_3c17722 crossref_primary_10_1021_acsapm_4c01511 crossref_primary_10_1038_s41467_024_45938_0 crossref_primary_10_1021_acsami_4c12023 crossref_primary_10_1002_adma_202401982 crossref_primary_10_1002_app_55445 crossref_primary_10_1016_j_ijbiomac_2023_126294 crossref_primary_10_1038_s41467_023_42209_2 crossref_primary_10_1002_adma_202312816 crossref_primary_10_1007_s12274_023_5801_0 crossref_primary_10_1088_2631_7990_ad7e5f crossref_primary_10_1016_j_eurpolymj_2024_113349 crossref_primary_10_1016_j_mtchem_2023_101762 crossref_primary_10_1002_pol_20230537 crossref_primary_10_1088_2752_5724_ad8898 crossref_primary_10_1002_pen_26331 crossref_primary_10_1002_ange_202318434 crossref_primary_10_1021_acsmacrolett_3c00017 crossref_primary_10_1021_polymscitech_4c00035 crossref_primary_10_1002_adfm_202403724 crossref_primary_10_1002_smll_202401164 crossref_primary_10_1126_sciadv_adg4031 crossref_primary_10_1002_advs_202308538 crossref_primary_10_1021_acs_chemrev_4c00070 crossref_primary_10_1039_D4MH01292E crossref_primary_10_1002_pat_6531 crossref_primary_10_1039_D3MA00958K crossref_primary_10_1016_j_colsurfb_2023_113518 crossref_primary_10_1002_adma_202210753 crossref_primary_10_1002_smtd_202301518 crossref_primary_10_1021_acsami_3c10683 crossref_primary_10_1002_marc_202200720 |
Cites_doi | 10.1002/adhm.201500156 10.1016/j.polymer.2016.03.008 10.1038/nmat5016 10.1038/s41467-020-18308-9 10.1021/acs.jpcc.0c00423 10.1002/adma.201802556 10.1002/adfm.202005361 10.1039/c3ra41337c 10.1016/j.polymer.2020.123228 10.1016/j.progpolymsci.2015.04.001 10.1021/jacs.9b07105 10.1039/D0BM01967D 10.1016/j.polymer.2020.122424 10.1016/j.polymer.2014.07.028 10.1002/adfm.202109850 10.1016/j.polymer.2014.12.014 10.1039/C9CS00855A 10.1002/adma.202000713 10.1021/acs.macromol.8b01496 10.1016/0022-2860(91)80054-8 10.1016/j.polymer.2020.123075 10.1007/s13246-010-0022-8 10.1016/j.jconrel.2009.05.027 10.1021/acs.macromol.7b00629 10.1016/j.msec.2018.12.054 10.1002/adfm.201909047 10.1016/j.actbio.2008.12.014 10.1016/j.compstruct.2006.08.017 10.1016/0142-9612(94)90168-6 10.1021/ja067986i 10.1038/s41578-018-0078-8 10.1039/C6PY01214K 10.1039/D0TB00798F 10.1002/adma.201900561 10.1039/C8TB02462F 10.1016/j.progpolymsci.2012.06.001 10.1063/1.1637958 10.1586/erd.10.8 10.1021/acssuschemeng.9b06080 10.1039/C4PY00554F 10.1021/acs.macromol.7b00765 10.1039/c1sm06619f 10.1111/j.1365-2621.1999.tb15088.x 10.1177/088532828700200403 10.1021/ja500205v 10.1002/(SICI)1097-4628(20000718)77:3<699::AID-APP25>3.0.CO;2-H 10.1021/acs.langmuir.0c01898 10.1016/j.polymer.2021.123498 10.1039/C9PY00502A 10.1007/s10118-018-2118-7 10.1016/j.polymer.2020.122339 10.1002/adem.201300558 10.1021/acs.biomac.9b01764 10.1002/app.10168 10.1038/s41563-020-0789-2 10.1021/acsami.6b14167 10.1557/PROC-55-407 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202201914 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 35502474 10_1002_adma_202201914 ADMA202201914 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51973134; 51733005; U1930204 – fundername: National Natural Science Foundation of China grantid: 51973134 – fundername: National Natural Science Foundation of China grantid: U1930204 – fundername: National Natural Science Foundation of China grantid: 51733005 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4394-2502c3b32d94c5fbedde514f689fd7b6dcef05af62dbcc7a6844c61e2fbf5a9c3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 09:23:52 EDT 2025 Sun Jul 13 05:29:49 EDT 2025 Wed Feb 19 02:26:00 EST 2025 Thu Apr 24 23:04:15 EDT 2025 Tue Jul 01 02:33:17 EDT 2025 Wed Jan 22 16:22:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | morphology transformation microphase separation biocompatibility water-triggered stiffening shape-memory polyurethanes |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4394-2502c3b32d94c5fbedde514f689fd7b6dcef05af62dbcc7a6844c61e2fbf5a9c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0695-1619 |
PMID | 35502474 |
PQID | 2737046077 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2659227779 proquest_journals_2737046077 pubmed_primary_35502474 crossref_citationtrail_10_1002_adma_202201914 crossref_primary_10_1002_adma_202201914 wiley_primary_10_1002_adma_202201914_ADMA202201914 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 17, 2022 |
PublicationDateYYYYMMDD | 2022-11-17 |
PublicationDate_xml | – month: 11 year: 2022 text: November 17, 2022 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2020 2020; 136 195 36 2009 2018; 5 17 2021 2019; 31 31 2015 2021; 49 213 2021 2019 2019 2013 2014 2009 2020 2007; 20 7 10 3 5 138 21 81 2021 1985 1987; 218 55 2 1999; 64 2020; 11 2020; 124 2012; 37 2020 2020 2015; 8 8 4 2019 2021; 141 9 2014 2016 2017; 55 90 8 1991; 263 2020 2019; 30 97 2017 2007 2012; 9 129 8 2002 2015 2017; 84 58 50 1971; 16 2000; 77 2020; 193 2017 2020; 50 49 2014 2004 2010; 16 84 33 2021 2010 2012; 33 7 37 2018 2019; 36 4 2018; 30 2018; 51 1994; 15 2020; 210 2022; 32 e_1_2_7_5_2 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_15_3 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_28_2 e_1_2_7_28_3 e_1_2_7_28_4 e_1_2_7_28_5 e_1_2_7_28_6 e_1_2_7_28_7 e_1_2_7_28_8 e_1_2_7_25_3 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_3 e_1_2_7_18_2 Brady T. E. (e_1_2_7_17_1) 1971; 16 e_1_2_7_18_1 e_1_2_7_14_3 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_29_1 e_1_2_7_29_2 e_1_2_7_24_1 e_1_2_7_20_3 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 20 7 10 3 5 138 21 81 start-page: 242 123 3488 4965 243 2032 176 year: 2021 2019 2019 2013 2014 2009 2020 2007 publication-title: Nat. Mater. J. Mater. Chem. B Polym. Chem. RSC Adv. Polym. Chem. J. Controlled Release Biomacromolecules Compos. Struct. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 51 start-page: 8136 year: 2018 publication-title: Macromolecules – volume: 5 17 start-page: 1519 96 year: 2009 2018 publication-title: Acta Biomater. Nat. Mater. – volume: 15 start-page: 695 year: 1994 publication-title: Biomaterials – volume: 84 58 50 start-page: 229 A1 4425 year: 2002 2015 2017 publication-title: J. Appl. Polym. Sci. Polymer Macromolecules – volume: 136 195 36 start-page: 6969 year: 2014 2020 2020 publication-title: J. Am. Chem. Soc. Polymer Langmuir – volume: 77 start-page: 699 year: 2000 publication-title: J. Appl. Polym. Sci. – volume: 33 7 37 start-page: 357 1720 year: 2021 2010 2012 publication-title: Adv. Mater. Expert Rev. Med. Devices Prog. Polym. Sci. – volume: 8 8 4 start-page: 1538 5117 1386 year: 2020 2020 2015 publication-title: ACS Sustainable Chem. Eng. J. Mater. Chem. B Adv. Healthcare Mater. – volume: 64 start-page: 576 year: 1999 publication-title: J. Food Sci. – volume: 50 49 start-page: 6529 2799 year: 2017 2020 publication-title: Macromolecules Chem. Soc. Rev. – volume: 16 start-page: 429 year: 1971 publication-title: Bull. Am. Phys. Soc. – volume: 124 start-page: 4196 year: 2020 publication-title: J. Phys. Chem. C – volume: 11 start-page: 4502 year: 2020 publication-title: Nat. Commun. – volume: 36 4 start-page: 905 116 year: 2018 2019 publication-title: Chin. J. Polym. Sci. Nat. Rev. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 218 55 2 start-page: 407 544 year: 2021 1985 1987 publication-title: Polymer MRS Online Proc. Libr. J. Biomater. Appl. – volume: 55 90 8 start-page: 4563 204 260 year: 2014 2016 2017 publication-title: Polymer Polymer Polym. Chem. – volume: 37 start-page: 1720 year: 2012 publication-title: Prog. Polym. Sci. – volume: 30 97 start-page: 864 year: 2020 2019 publication-title: Adv. Funct. Mater. Mater. Sci. Eng., C – volume: 16 84 33 start-page: 1140 31 129 year: 2014 2004 2010 publication-title: Adv. Eng. Mater. Appl. Phys. Lett. Australas. Phys. Eng. Sci. Med. – volume: 141 9 start-page: 1381 year: 2019 2021 publication-title: J. Am. Chem. Soc. Biomater. Sci. – volume: 193 year: 2020 publication-title: Polymer – volume: 9 129 8 start-page: 4450 506 2230 year: 2017 2007 2012 publication-title: ACS Appl. Mater. Interfaces J. Am. Chem. Soc. Soft Matter – volume: 31 31 year: 2021 2019 publication-title: Adv. Funct. Mater. Adv. Mater. – volume: 263 start-page: 45 year: 1991 publication-title: J. Mol. Struct. – volume: 210 year: 2020 publication-title: Polymer – volume: 49 213 start-page: 79 year: 2015 2021 publication-title: Prog. Polym. Sci. Polymer – ident: e_1_2_7_4_3 doi: 10.1002/adhm.201500156 – ident: e_1_2_7_25_2 doi: 10.1016/j.polymer.2016.03.008 – ident: e_1_2_7_7_2 doi: 10.1038/nmat5016 – ident: e_1_2_7_10_1 doi: 10.1038/s41467-020-18308-9 – ident: e_1_2_7_11_1 doi: 10.1021/acs.jpcc.0c00423 – ident: e_1_2_7_23_1 doi: 10.1002/adma.201802556 – ident: e_1_2_7_29_1 doi: 10.1002/adfm.202005361 – ident: e_1_2_7_28_4 doi: 10.1039/c3ra41337c – ident: e_1_2_7_6_2 doi: 10.1016/j.polymer.2020.123228 – ident: e_1_2_7_6_1 doi: 10.1016/j.progpolymsci.2015.04.001 – ident: e_1_2_7_5_1 doi: 10.1021/jacs.9b07105 – ident: e_1_2_7_5_2 doi: 10.1039/D0BM01967D – ident: e_1_2_7_18_2 doi: 10.1016/j.polymer.2020.122424 – ident: e_1_2_7_25_1 doi: 10.1016/j.polymer.2014.07.028 – ident: e_1_2_7_13_1 doi: 10.1002/adfm.202109850 – ident: e_1_2_7_20_2 doi: 10.1016/j.polymer.2014.12.014 – ident: e_1_2_7_27_2 doi: 10.1039/C9CS00855A – ident: e_1_2_7_15_1 doi: 10.1002/adma.202000713 – ident: e_1_2_7_16_1 doi: 10.1021/acs.macromol.8b01496 – ident: e_1_2_7_19_1 doi: 10.1016/0022-2860(91)80054-8 – ident: e_1_2_7_22_1 doi: 10.1016/j.polymer.2020.123075 – ident: e_1_2_7_8_3 doi: 10.1007/s13246-010-0022-8 – ident: e_1_2_7_28_6 doi: 10.1016/j.jconrel.2009.05.027 – ident: e_1_2_7_27_1 doi: 10.1021/acs.macromol.7b00629 – ident: e_1_2_7_1_2 doi: 10.1016/j.msec.2018.12.054 – ident: e_1_2_7_1_1 doi: 10.1002/adfm.201909047 – ident: e_1_2_7_7_1 doi: 10.1016/j.actbio.2008.12.014 – ident: e_1_2_7_28_8 doi: 10.1016/j.compstruct.2006.08.017 – ident: e_1_2_7_21_1 doi: 10.1016/0142-9612(94)90168-6 – ident: e_1_2_7_12_2 doi: 10.1021/ja067986i – ident: e_1_2_7_2_2 doi: 10.1038/s41578-018-0078-8 – ident: e_1_2_7_25_3 doi: 10.1039/C6PY01214K – ident: e_1_2_7_4_2 doi: 10.1039/D0TB00798F – ident: e_1_2_7_29_2 doi: 10.1002/adma.201900561 – ident: e_1_2_7_28_2 doi: 10.1039/C8TB02462F – ident: e_1_2_7_15_3 doi: 10.1016/j.progpolymsci.2012.06.001 – ident: e_1_2_7_8_2 doi: 10.1063/1.1637958 – ident: e_1_2_7_15_2 doi: 10.1586/erd.10.8 – ident: e_1_2_7_4_1 doi: 10.1021/acssuschemeng.9b06080 – ident: e_1_2_7_28_5 doi: 10.1039/C4PY00554F – ident: e_1_2_7_20_3 doi: 10.1021/acs.macromol.7b00765 – ident: e_1_2_7_12_3 doi: 10.1039/c1sm06619f – ident: e_1_2_7_9_1 doi: 10.1111/j.1365-2621.1999.tb15088.x – ident: e_1_2_7_14_3 doi: 10.1177/088532828700200403 – ident: e_1_2_7_18_1 doi: 10.1021/ja500205v – ident: e_1_2_7_24_1 doi: 10.1002/(SICI)1097-4628(20000718)77:3<699::AID-APP25>3.0.CO;2-H – ident: e_1_2_7_18_3 doi: 10.1021/acs.langmuir.0c01898 – ident: e_1_2_7_14_1 doi: 10.1016/j.polymer.2021.123498 – ident: e_1_2_7_28_3 doi: 10.1039/C9PY00502A – ident: e_1_2_7_2_1 doi: 10.1007/s10118-018-2118-7 – ident: e_1_2_7_26_1 doi: 10.1016/j.polymer.2020.122339 – ident: e_1_2_7_3_1 doi: 10.1016/j.progpolymsci.2012.06.001 – volume: 16 start-page: 429 year: 1971 ident: e_1_2_7_17_1 publication-title: Bull. Am. Phys. Soc. – ident: e_1_2_7_8_1 doi: 10.1002/adem.201300558 – ident: e_1_2_7_28_7 doi: 10.1021/acs.biomac.9b01764 – ident: e_1_2_7_20_1 doi: 10.1002/app.10168 – ident: e_1_2_7_28_1 doi: 10.1038/s41563-020-0789-2 – ident: e_1_2_7_12_1 doi: 10.1021/acsami.6b14167 – ident: e_1_2_7_14_2 doi: 10.1557/PROC-55-407 |
SSID | ssj0009606 |
Score | 2.6430197 |
Snippet | Shape‐memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic... Shape-memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2201914 |
SubjectTerms | Biocompatibility Biomedical materials Glass transition temperature Incompatibility Materials science microphase separation Modulus of elasticity Molecular structure morphology transformation Polyethylene glycol Polyurethane Polyurethane resins Recovery Segments shape‐memory polyurethanes Stiffening Stress transfer water‐triggered stiffening |
Title | Water‐Triggered Stiffening of Shape‐Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201914 https://www.ncbi.nlm.nih.gov/pubmed/35502474 https://www.proquest.com/docview/2737046077 https://www.proquest.com/docview/2659227779 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3DgUV4LBRkJiVPatePY8XELfQhpUcW2orfIj_FWarUp-ziUEz-B38gv6Uyym3ZBCAluiWzHjj3j-fyYbxh766KKTkDIyuhKXKAIyGwqUoaLZ59C6iOgI0fh4Sd9eKI-nhant7z4W36IbsONNKOZr0nBnZ_t3JCGutjwBkm0YLaJZE0XtggVfb7hjyJ43pDt5UVmtSpXrI19ubNefN0q_QY115FrY3r2HzC3anR74-R8ezH32-HbL3yO__NXD9n9JS7lg1aQHrE7MNlk926xFT5mX78gLp3-_P7jGFf0Y4rxyUdziq9CWyu8Tnx05i4B04d0e_eKH9UXV4sp0N48zDhNPPUMy2BGui7Ad1049_UEOAremJzi-dHeAR-hWeAjGDeed0_Yyf7e8fvDbBmxIQvkYZshnpIh97mMVoUiecDJExFZ0qVN0XgdA6R-4ZKW0YdgnC6VClqATD4Vzob8KduYYM3PGY8216CF9jYKFUvj-iJGUUAOVoAC1WPZasSqsKQzp6gaF1VLxCwr6sqq68oee9flv2yJPP6Yc2slANVSoWcVojxDZ8jG9NibLhlVkc5XsBvrBeahI2ppjLE99qwVnK4qhHWIhgx-XDbD_5c2VIMPw0H39uJfCr1kd-mZ_CaF2WIb8-kCXiGAmvvXjZJcA3wQFNk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQewAOlGfZUsBISJzSrh3Hjo9baFmgW1XsVnCL_FykVpuyj0N74ifwG_klnUk2KQtCSHBMPI4d22N_Hnu-IeSl8cIbFlySe5PDBoWFRMcsJrB5ttHFLgA6dBQeHMn-iXj_OWtuE6IvTM0P0RrcUDOq-RoVHA3Su9esocZXxEEcljCNoazXMax3tav6eM0ghQC9ottLs0RLkTe8jV2-u5p_dV36DWyuYtdq8TnYILapdn3n5HRnMbc77vIXRsf_-q-75M4SmtJePZbukRthcp_c_omw8AH5-gmg6fTHt-8j2NSPMcwnHc4xxApaV2gZ6fCLOQ-QPsALvBf0uDy7WEwDmufDjOLcU84gDwjijQG6Z9ypLSeBwtgbo188Pd5_S4ewMtBhGFfOdw_JycH-6HU_WQZtSBw62SYAqbhLbcq9Fi6LNsD8CaAsylxHr6z0LsRuZqLk3jqnjMyFcJIFHm3MjHbpI7I2gZIfE-p1KoNk0mrPhM-V6TLvWRbSoFkQQXRI0nRZ4ZaM5hhY46youZh5gU1ZtE3ZIa9a-fOay-OPktvNCCiWOj0rAOgpPEZWqkNetMmgjXjEAs1YLkAGT6m5Ukp3yGY9ctqiANkBIFLwcV71_1_qUPTeDHrt09a_ZHpObvZHg8Pi8N3RhyfkFr5HN0qmtsnafLoITwFPze2zSmOuALsDGPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAceFMWChgJiVPa2HHs-LiwXcpjqxXbit4iPxep1WbZx6Gc-An8Rn4JM8lu2gUhJDgmHseOPWN_fsw3hLwwXnjDgksKbwpYoLCQ6JjHBBbPNrqYAqBDR-HBoTw4Fu9O8pNLXvwNP0S74YaWUY_XaOBTH_cuSEONr3mDOMxgGiNZXxUyLVCvex8vCKQQn9dse1meaCmKNW1jyvc2829OS79hzU3oWs89_VvErGvdXDk53V0u7K77-guh4__81m1ycwVMabfRpDvkSpjcJTcu0RXeI18-ATCd_fj2_QiW9GMM8klHCwywgnsrtIp09NlMA6QP8PruOR1WZ-fLWcDN-TCnOPJUc8gDgnhfgL4y7tRWk0BB88boFU-H-2_oCOYFOgrj2vXuPjnu7x-9PkhWIRsShy62CQAq7jKbca-Fy6MNMHoCJIuy0NErK70LMc1NlNxb55SRhRBOssCjjbnRLntAtiZQ8kNCvc5kkExa7ZnwhTIp857lIQuaBRFEhyTrHivdis8cw2qclQ0TMy-xKcu2KTvkZSs_bZg8_ii5s1aAcmXR8xJgnsJDZKU65HmbDLaIByzQjNUSZPCMmiuldIdsN4rTFgW4DuCQgo_zuvv_Uoey2xt026dH_5LpGbk27PXLD28P3z8m1_E1-lAytUO2FrNleAJgamGf1vbyE3lnF6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water-Triggered+Stiffening+of+Shape-Memory+Polyurethanes+Composed+of+Hard+Backbone+Dangling+PEG+Soft+Segments&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Wenkai&rft.au=Wang%2C+Ao&rft.au=Yang%2C+Ruibo&rft.au=Wu%2C+Hecheng&rft.date=2022-11-17&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=46&rft.spage=e2201914&rft_id=info:doi/10.1002%2Fadma.202201914&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |