Water‐Triggered Stiffening of Shape‐Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments

Shape‐memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of pha...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 46; pp. e2201914 - n/a
Main Authors Liu, Wenkai, Wang, Ao, Yang, Ruibo, Wu, Hecheng, Shao, Shuren, Chen, Jinlin, Ma, Yan, Li, Zhen, Wang, Yanchao, He, Xueling, Li, Jiehua, Tan, Hong, Fu, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 17.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shape‐memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase‐transition‐induced stiffening of shape‐memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape‐memory polyurethane (SMPUs), featuring all‐hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft‐to‐stiff transition when shape recovers. The stiffening process is driven by water‐triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape‐recovery process in the hydrated state despite the final increased glass transition temperature (Tg). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape‐memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents. Inspired by the thermally triggered phase transformation process and “soft‐to‐stiff” transition achieved by lattice distortion of shape‐memory alloys, a series of water‐triggered stiffening shape‐memory polyurethanes is developed. They can achieve “soft‐to‐stiff” transition by forming more continuous hard domains upon hydration.
AbstractList Shape-memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase-transition-induced stiffening of shape-memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape-memory polyurethane (SMPUs), featuring all-hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft-to-stiff transition when shape recovers. The stiffening process is driven by water-triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape-recovery process in the hydrated state despite the final increased glass transition temperature (T ). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape-memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents.
Shape‐memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase‐transition‐induced stiffening of shape‐memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape‐memory polyurethane (SMPUs), featuring all‐hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft‐to‐stiff transition when shape recovers. The stiffening process is driven by water‐triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape‐recovery process in the hydrated state despite the final increased glass transition temperature (Tg). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape‐memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents. Inspired by the thermally triggered phase transformation process and “soft‐to‐stiff” transition achieved by lattice distortion of shape‐memory alloys, a series of water‐triggered stiffening shape‐memory polyurethanes is developed. They can achieve “soft‐to‐stiff” transition by forming more continuous hard domains upon hydration.
Shape-memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase-transition-induced stiffening of shape-memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape-memory polyurethane (SMPUs), featuring all-hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft-to-stiff transition when shape recovers. The stiffening process is driven by water-triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape-recovery process in the hydrated state despite the final increased glass transition temperature (Tg ). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape-memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents.Shape-memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase-transition-induced stiffening of shape-memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape-memory polyurethane (SMPUs), featuring all-hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft-to-stiff transition when shape recovers. The stiffening process is driven by water-triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape-recovery process in the hydrated state despite the final increased glass transition temperature (Tg ). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape-memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents.
Shape‐memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase‐transition‐induced stiffening of shape‐memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape‐memory polyurethane (SMPUs), featuring all‐hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft‐to‐stiff transition when shape recovers. The stiffening process is driven by water‐triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape‐recovery process in the hydrated state despite the final increased glass transition temperature ( T g ). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape‐memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents.
Shape‐memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase‐transition‐induced stiffening of shape‐memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape‐memory polyurethane (SMPUs), featuring all‐hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft‐to‐stiff transition when shape recovers. The stiffening process is driven by water‐triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape‐recovery process in the hydrated state despite the final increased glass transition temperature (Tg). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape‐memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents.
Author Yang, Ruibo
Liu, Wenkai
Chen, Jinlin
Li, Zhen
Li, Jiehua
He, Xueling
Fu, Qiang
Wang, Ao
Wu, Hecheng
Tan, Hong
Wang, Yanchao
Shao, Shuren
Ma, Yan
Author_xml – sequence: 1
  givenname: Wenkai
  surname: Liu
  fullname: Liu, Wenkai
  organization: Sichuan University
– sequence: 2
  givenname: Ao
  surname: Wang
  fullname: Wang, Ao
  organization: Sichuan University
– sequence: 3
  givenname: Ruibo
  surname: Yang
  fullname: Yang, Ruibo
  organization: Sichuan University
– sequence: 4
  givenname: Hecheng
  surname: Wu
  fullname: Wu, Hecheng
  organization: Sichuan University
– sequence: 5
  givenname: Shuren
  surname: Shao
  fullname: Shao, Shuren
  organization: Sichuan University
– sequence: 6
  givenname: Jinlin
  surname: Chen
  fullname: Chen, Jinlin
  organization: Sichuan University
– sequence: 7
  givenname: Yan
  surname: Ma
  fullname: Ma, Yan
  organization: Sichuan University
– sequence: 8
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  email: zhenli@scu.edu.cn
  organization: Sichuan University
– sequence: 9
  givenname: Yanchao
  surname: Wang
  fullname: Wang, Yanchao
  organization: Sichuan University
– sequence: 10
  givenname: Xueling
  surname: He
  fullname: He, Xueling
  organization: Laboratory Animal Center of Sichuan University
– sequence: 11
  givenname: Jiehua
  surname: Li
  fullname: Li, Jiehua
  organization: Sichuan University
– sequence: 12
  givenname: Hong
  orcidid: 0000-0003-0695-1619
  surname: Tan
  fullname: Tan, Hong
  email: hongtan@scu.edu.cn
  organization: Sichuan University
– sequence: 13
  givenname: Qiang
  surname: Fu
  fullname: Fu, Qiang
  organization: Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35502474$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFDEYxoNU7LZ69SgDXrzMmsnkz-a4bmsrtFjYiseQSd5Mp85MtkkG2ZsfoZ-xn8Qs2yoUxFMO7-_38JDnCB2MfgSE3lZ4XmFMPmo76DnBhOBKVvQFmlWMVCXFkh2gGZY1KyWni0N0FOMtxlhyzF-hw5oxTKigM3T3XScID7_ur0PXthDAFuvUOQdjN7aFd8X6Rm8g3y9h8GFbXPl-OwVIN3qEWKz8sPExOxk818EWn7T50eSGxYke234XcXV6Vqy9S8Ua2gHGFF-jl073Ed48vsfo2-fT69V5efH17MtqeVEaWktaktzQ1E1NrKSGuQasBVZRxxfSWdFwa8Bhph0ntjFGaL6g1PAKiGsc09LUx-jDPncT_N0EMamhiwb6Pjf3U1SEM0mIEEJm9P0z9NZPYcztFBG1wJRjITL17pGamgGs2oRu0GGrnj4zA3QPmOBjDOCU6ZJOnR9T0F2vKqx2m6ndZurPZlmbP9Oekv8pyL3ws-th-x9aLU8ul3_d33L6q90
CitedBy_id crossref_primary_10_1016_j_nanoen_2023_109166
crossref_primary_10_1021_acs_macromol_3c02285
crossref_primary_10_1016_j_cej_2023_144078
crossref_primary_10_1016_j_cej_2024_150956
crossref_primary_10_1016_j_xcrp_2022_101244
crossref_primary_10_1021_acs_macromol_4c01001
crossref_primary_10_1080_25740881_2023_2204936
crossref_primary_10_1126_sciadv_adl2737
crossref_primary_10_1016_j_cej_2023_144478
crossref_primary_10_3390_polym16243528
crossref_primary_10_1002_admt_202401715
crossref_primary_10_1002_advs_202407596
crossref_primary_10_1002_adfm_202401999
crossref_primary_10_1002_anie_202318434
crossref_primary_10_1039_D2TB01681H
crossref_primary_10_1002_advs_202405175
crossref_primary_10_1021_acsami_3c17722
crossref_primary_10_1021_acsapm_4c01511
crossref_primary_10_1038_s41467_024_45938_0
crossref_primary_10_1021_acsami_4c12023
crossref_primary_10_1002_adma_202401982
crossref_primary_10_1002_app_55445
crossref_primary_10_1016_j_ijbiomac_2023_126294
crossref_primary_10_1038_s41467_023_42209_2
crossref_primary_10_1002_adma_202312816
crossref_primary_10_1007_s12274_023_5801_0
crossref_primary_10_1088_2631_7990_ad7e5f
crossref_primary_10_1016_j_eurpolymj_2024_113349
crossref_primary_10_1016_j_mtchem_2023_101762
crossref_primary_10_1002_pol_20230537
crossref_primary_10_1088_2752_5724_ad8898
crossref_primary_10_1002_pen_26331
crossref_primary_10_1002_ange_202318434
crossref_primary_10_1021_acsmacrolett_3c00017
crossref_primary_10_1021_polymscitech_4c00035
crossref_primary_10_1002_adfm_202403724
crossref_primary_10_1002_smll_202401164
crossref_primary_10_1126_sciadv_adg4031
crossref_primary_10_1002_advs_202308538
crossref_primary_10_1021_acs_chemrev_4c00070
crossref_primary_10_1039_D4MH01292E
crossref_primary_10_1002_pat_6531
crossref_primary_10_1039_D3MA00958K
crossref_primary_10_1016_j_colsurfb_2023_113518
crossref_primary_10_1002_adma_202210753
crossref_primary_10_1002_smtd_202301518
crossref_primary_10_1021_acsami_3c10683
crossref_primary_10_1002_marc_202200720
Cites_doi 10.1002/adhm.201500156
10.1016/j.polymer.2016.03.008
10.1038/nmat5016
10.1038/s41467-020-18308-9
10.1021/acs.jpcc.0c00423
10.1002/adma.201802556
10.1002/adfm.202005361
10.1039/c3ra41337c
10.1016/j.polymer.2020.123228
10.1016/j.progpolymsci.2015.04.001
10.1021/jacs.9b07105
10.1039/D0BM01967D
10.1016/j.polymer.2020.122424
10.1016/j.polymer.2014.07.028
10.1002/adfm.202109850
10.1016/j.polymer.2014.12.014
10.1039/C9CS00855A
10.1002/adma.202000713
10.1021/acs.macromol.8b01496
10.1016/0022-2860(91)80054-8
10.1016/j.polymer.2020.123075
10.1007/s13246-010-0022-8
10.1016/j.jconrel.2009.05.027
10.1021/acs.macromol.7b00629
10.1016/j.msec.2018.12.054
10.1002/adfm.201909047
10.1016/j.actbio.2008.12.014
10.1016/j.compstruct.2006.08.017
10.1016/0142-9612(94)90168-6
10.1021/ja067986i
10.1038/s41578-018-0078-8
10.1039/C6PY01214K
10.1039/D0TB00798F
10.1002/adma.201900561
10.1039/C8TB02462F
10.1016/j.progpolymsci.2012.06.001
10.1063/1.1637958
10.1586/erd.10.8
10.1021/acssuschemeng.9b06080
10.1039/C4PY00554F
10.1021/acs.macromol.7b00765
10.1039/c1sm06619f
10.1111/j.1365-2621.1999.tb15088.x
10.1177/088532828700200403
10.1021/ja500205v
10.1002/(SICI)1097-4628(20000718)77:3<699::AID-APP25>3.0.CO;2-H
10.1021/acs.langmuir.0c01898
10.1016/j.polymer.2021.123498
10.1039/C9PY00502A
10.1007/s10118-018-2118-7
10.1016/j.polymer.2020.122339
10.1002/adem.201300558
10.1021/acs.biomac.9b01764
10.1002/app.10168
10.1038/s41563-020-0789-2
10.1021/acsami.6b14167
10.1557/PROC-55-407
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202201914
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35502474
10_1002_adma_202201914
ADMA202201914
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51973134; 51733005; U1930204
– fundername: National Natural Science Foundation of China
  grantid: 51973134
– fundername: National Natural Science Foundation of China
  grantid: U1930204
– fundername: National Natural Science Foundation of China
  grantid: 51733005
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4394-2502c3b32d94c5fbedde514f689fd7b6dcef05af62dbcc7a6844c61e2fbf5a9c3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 09:23:52 EDT 2025
Sun Jul 13 05:29:49 EDT 2025
Wed Feb 19 02:26:00 EST 2025
Thu Apr 24 23:04:15 EDT 2025
Tue Jul 01 02:33:17 EDT 2025
Wed Jan 22 16:22:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords morphology transformation
microphase separation
biocompatibility
water-triggered stiffening
shape-memory polyurethanes
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4394-2502c3b32d94c5fbedde514f689fd7b6dcef05af62dbcc7a6844c61e2fbf5a9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0695-1619
PMID 35502474
PQID 2737046077
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2659227779
proquest_journals_2737046077
pubmed_primary_35502474
crossref_citationtrail_10_1002_adma_202201914
crossref_primary_10_1002_adma_202201914
wiley_primary_10_1002_adma_202201914_ADMA202201914
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 17, 2022
PublicationDateYYYYMMDD 2022-11-17
PublicationDate_xml – month: 11
  year: 2022
  text: November 17, 2022
  day: 17
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2020 2020; 136 195 36
2009 2018; 5 17
2021 2019; 31 31
2015 2021; 49 213
2021 2019 2019 2013 2014 2009 2020 2007; 20 7 10 3 5 138 21 81
2021 1985 1987; 218 55 2
1999; 64
2020; 11
2020; 124
2012; 37
2020 2020 2015; 8 8 4
2019 2021; 141 9
2014 2016 2017; 55 90 8
1991; 263
2020 2019; 30 97
2017 2007 2012; 9 129 8
2002 2015 2017; 84 58 50
1971; 16
2000; 77
2020; 193
2017 2020; 50 49
2014 2004 2010; 16 84 33
2021 2010 2012; 33 7 37
2018 2019; 36 4
2018; 30
2018; 51
1994; 15
2020; 210
2022; 32
e_1_2_7_5_2
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_15_3
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_28_2
e_1_2_7_28_3
e_1_2_7_28_4
e_1_2_7_28_5
e_1_2_7_28_6
e_1_2_7_28_7
e_1_2_7_28_8
e_1_2_7_25_3
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_3
e_1_2_7_18_2
Brady T. E. (e_1_2_7_17_1) 1971; 16
e_1_2_7_18_1
e_1_2_7_14_3
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_29_1
e_1_2_7_29_2
e_1_2_7_24_1
e_1_2_7_20_3
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 20 7 10 3 5 138 21 81
  start-page: 242 123 3488 4965 243 2032 176
  year: 2021 2019 2019 2013 2014 2009 2020 2007
  publication-title: Nat. Mater. J. Mater. Chem. B Polym. Chem. RSC Adv. Polym. Chem. J. Controlled Release Biomacromolecules Compos. Struct.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 8136
  year: 2018
  publication-title: Macromolecules
– volume: 5 17
  start-page: 1519 96
  year: 2009 2018
  publication-title: Acta Biomater. Nat. Mater.
– volume: 15
  start-page: 695
  year: 1994
  publication-title: Biomaterials
– volume: 84 58 50
  start-page: 229 A1 4425
  year: 2002 2015 2017
  publication-title: J. Appl. Polym. Sci. Polymer Macromolecules
– volume: 136 195 36
  start-page: 6969
  year: 2014 2020 2020
  publication-title: J. Am. Chem. Soc. Polymer Langmuir
– volume: 77
  start-page: 699
  year: 2000
  publication-title: J. Appl. Polym. Sci.
– volume: 33 7 37
  start-page: 357 1720
  year: 2021 2010 2012
  publication-title: Adv. Mater. Expert Rev. Med. Devices Prog. Polym. Sci.
– volume: 8 8 4
  start-page: 1538 5117 1386
  year: 2020 2020 2015
  publication-title: ACS Sustainable Chem. Eng. J. Mater. Chem. B Adv. Healthcare Mater.
– volume: 64
  start-page: 576
  year: 1999
  publication-title: J. Food Sci.
– volume: 50 49
  start-page: 6529 2799
  year: 2017 2020
  publication-title: Macromolecules Chem. Soc. Rev.
– volume: 16
  start-page: 429
  year: 1971
  publication-title: Bull. Am. Phys. Soc.
– volume: 124
  start-page: 4196
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 4502
  year: 2020
  publication-title: Nat. Commun.
– volume: 36 4
  start-page: 905 116
  year: 2018 2019
  publication-title: Chin. J. Polym. Sci. Nat. Rev. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 218 55 2
  start-page: 407 544
  year: 2021 1985 1987
  publication-title: Polymer MRS Online Proc. Libr. J. Biomater. Appl.
– volume: 55 90 8
  start-page: 4563 204 260
  year: 2014 2016 2017
  publication-title: Polymer Polymer Polym. Chem.
– volume: 37
  start-page: 1720
  year: 2012
  publication-title: Prog. Polym. Sci.
– volume: 30 97
  start-page: 864
  year: 2020 2019
  publication-title: Adv. Funct. Mater. Mater. Sci. Eng., C
– volume: 16 84 33
  start-page: 1140 31 129
  year: 2014 2004 2010
  publication-title: Adv. Eng. Mater. Appl. Phys. Lett. Australas. Phys. Eng. Sci. Med.
– volume: 141 9
  start-page: 1381
  year: 2019 2021
  publication-title: J. Am. Chem. Soc. Biomater. Sci.
– volume: 193
  year: 2020
  publication-title: Polymer
– volume: 9 129 8
  start-page: 4450 506 2230
  year: 2017 2007 2012
  publication-title: ACS Appl. Mater. Interfaces J. Am. Chem. Soc. Soft Matter
– volume: 31 31
  year: 2021 2019
  publication-title: Adv. Funct. Mater. Adv. Mater.
– volume: 263
  start-page: 45
  year: 1991
  publication-title: J. Mol. Struct.
– volume: 210
  year: 2020
  publication-title: Polymer
– volume: 49 213
  start-page: 79
  year: 2015 2021
  publication-title: Prog. Polym. Sci. Polymer
– ident: e_1_2_7_4_3
  doi: 10.1002/adhm.201500156
– ident: e_1_2_7_25_2
  doi: 10.1016/j.polymer.2016.03.008
– ident: e_1_2_7_7_2
  doi: 10.1038/nmat5016
– ident: e_1_2_7_10_1
  doi: 10.1038/s41467-020-18308-9
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.jpcc.0c00423
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201802556
– ident: e_1_2_7_29_1
  doi: 10.1002/adfm.202005361
– ident: e_1_2_7_28_4
  doi: 10.1039/c3ra41337c
– ident: e_1_2_7_6_2
  doi: 10.1016/j.polymer.2020.123228
– ident: e_1_2_7_6_1
  doi: 10.1016/j.progpolymsci.2015.04.001
– ident: e_1_2_7_5_1
  doi: 10.1021/jacs.9b07105
– ident: e_1_2_7_5_2
  doi: 10.1039/D0BM01967D
– ident: e_1_2_7_18_2
  doi: 10.1016/j.polymer.2020.122424
– ident: e_1_2_7_25_1
  doi: 10.1016/j.polymer.2014.07.028
– ident: e_1_2_7_13_1
  doi: 10.1002/adfm.202109850
– ident: e_1_2_7_20_2
  doi: 10.1016/j.polymer.2014.12.014
– ident: e_1_2_7_27_2
  doi: 10.1039/C9CS00855A
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.202000713
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.macromol.8b01496
– ident: e_1_2_7_19_1
  doi: 10.1016/0022-2860(91)80054-8
– ident: e_1_2_7_22_1
  doi: 10.1016/j.polymer.2020.123075
– ident: e_1_2_7_8_3
  doi: 10.1007/s13246-010-0022-8
– ident: e_1_2_7_28_6
  doi: 10.1016/j.jconrel.2009.05.027
– ident: e_1_2_7_27_1
  doi: 10.1021/acs.macromol.7b00629
– ident: e_1_2_7_1_2
  doi: 10.1016/j.msec.2018.12.054
– ident: e_1_2_7_1_1
  doi: 10.1002/adfm.201909047
– ident: e_1_2_7_7_1
  doi: 10.1016/j.actbio.2008.12.014
– ident: e_1_2_7_28_8
  doi: 10.1016/j.compstruct.2006.08.017
– ident: e_1_2_7_21_1
  doi: 10.1016/0142-9612(94)90168-6
– ident: e_1_2_7_12_2
  doi: 10.1021/ja067986i
– ident: e_1_2_7_2_2
  doi: 10.1038/s41578-018-0078-8
– ident: e_1_2_7_25_3
  doi: 10.1039/C6PY01214K
– ident: e_1_2_7_4_2
  doi: 10.1039/D0TB00798F
– ident: e_1_2_7_29_2
  doi: 10.1002/adma.201900561
– ident: e_1_2_7_28_2
  doi: 10.1039/C8TB02462F
– ident: e_1_2_7_15_3
  doi: 10.1016/j.progpolymsci.2012.06.001
– ident: e_1_2_7_8_2
  doi: 10.1063/1.1637958
– ident: e_1_2_7_15_2
  doi: 10.1586/erd.10.8
– ident: e_1_2_7_4_1
  doi: 10.1021/acssuschemeng.9b06080
– ident: e_1_2_7_28_5
  doi: 10.1039/C4PY00554F
– ident: e_1_2_7_20_3
  doi: 10.1021/acs.macromol.7b00765
– ident: e_1_2_7_12_3
  doi: 10.1039/c1sm06619f
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-2621.1999.tb15088.x
– ident: e_1_2_7_14_3
  doi: 10.1177/088532828700200403
– ident: e_1_2_7_18_1
  doi: 10.1021/ja500205v
– ident: e_1_2_7_24_1
  doi: 10.1002/(SICI)1097-4628(20000718)77:3<699::AID-APP25>3.0.CO;2-H
– ident: e_1_2_7_18_3
  doi: 10.1021/acs.langmuir.0c01898
– ident: e_1_2_7_14_1
  doi: 10.1016/j.polymer.2021.123498
– ident: e_1_2_7_28_3
  doi: 10.1039/C9PY00502A
– ident: e_1_2_7_2_1
  doi: 10.1007/s10118-018-2118-7
– ident: e_1_2_7_26_1
  doi: 10.1016/j.polymer.2020.122339
– ident: e_1_2_7_3_1
  doi: 10.1016/j.progpolymsci.2012.06.001
– volume: 16
  start-page: 429
  year: 1971
  ident: e_1_2_7_17_1
  publication-title: Bull. Am. Phys. Soc.
– ident: e_1_2_7_8_1
  doi: 10.1002/adem.201300558
– ident: e_1_2_7_28_7
  doi: 10.1021/acs.biomac.9b01764
– ident: e_1_2_7_20_1
  doi: 10.1002/app.10168
– ident: e_1_2_7_28_1
  doi: 10.1038/s41563-020-0789-2
– ident: e_1_2_7_12_1
  doi: 10.1021/acsami.6b14167
– ident: e_1_2_7_14_2
  doi: 10.1557/PROC-55-407
SSID ssj0009606
Score 2.6430197
Snippet Shape‐memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic...
Shape-memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2201914
SubjectTerms Biocompatibility
Biomedical materials
Glass transition temperature
Incompatibility
Materials science
microphase separation
Modulus of elasticity
Molecular structure
morphology transformation
Polyethylene glycol
Polyurethane
Polyurethane resins
Recovery
Segments
shape‐memory polyurethanes
Stiffening
Stress transfer
water‐triggered stiffening
Title Water‐Triggered Stiffening of Shape‐Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201914
https://www.ncbi.nlm.nih.gov/pubmed/35502474
https://www.proquest.com/docview/2737046077
https://www.proquest.com/docview/2659227779
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3DgUV4LBRkJiVPatePY8XELfQhpUcW2orfIj_FWarUp-ziUEz-B38gv6Uyym3ZBCAluiWzHjj3j-fyYbxh766KKTkDIyuhKXKAIyGwqUoaLZ59C6iOgI0fh4Sd9eKI-nhant7z4W36IbsONNKOZr0nBnZ_t3JCGutjwBkm0YLaJZE0XtggVfb7hjyJ43pDt5UVmtSpXrI19ubNefN0q_QY115FrY3r2HzC3anR74-R8ezH32-HbL3yO__NXD9n9JS7lg1aQHrE7MNlk926xFT5mX78gLp3-_P7jGFf0Y4rxyUdziq9CWyu8Tnx05i4B04d0e_eKH9UXV4sp0N48zDhNPPUMy2BGui7Ad1049_UEOAremJzi-dHeAR-hWeAjGDeed0_Yyf7e8fvDbBmxIQvkYZshnpIh97mMVoUiecDJExFZ0qVN0XgdA6R-4ZKW0YdgnC6VClqATD4Vzob8KduYYM3PGY8216CF9jYKFUvj-iJGUUAOVoAC1WPZasSqsKQzp6gaF1VLxCwr6sqq68oee9flv2yJPP6Yc2slANVSoWcVojxDZ8jG9NibLhlVkc5XsBvrBeahI2ppjLE99qwVnK4qhHWIhgx-XDbD_5c2VIMPw0H39uJfCr1kd-mZ_CaF2WIb8-kCXiGAmvvXjZJcA3wQFNk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQewAOlGfZUsBISJzSrh3Hjo9baFmgW1XsVnCL_FykVpuyj0N74ifwG_klnUk2KQtCSHBMPI4d22N_Hnu-IeSl8cIbFlySe5PDBoWFRMcsJrB5ttHFLgA6dBQeHMn-iXj_OWtuE6IvTM0P0RrcUDOq-RoVHA3Su9esocZXxEEcljCNoazXMax3tav6eM0ghQC9ottLs0RLkTe8jV2-u5p_dV36DWyuYtdq8TnYILapdn3n5HRnMbc77vIXRsf_-q-75M4SmtJePZbukRthcp_c_omw8AH5-gmg6fTHt-8j2NSPMcwnHc4xxApaV2gZ6fCLOQ-QPsALvBf0uDy7WEwDmufDjOLcU84gDwjijQG6Z9ypLSeBwtgbo188Pd5_S4ewMtBhGFfOdw_JycH-6HU_WQZtSBw62SYAqbhLbcq9Fi6LNsD8CaAsylxHr6z0LsRuZqLk3jqnjMyFcJIFHm3MjHbpI7I2gZIfE-p1KoNk0mrPhM-V6TLvWRbSoFkQQXRI0nRZ4ZaM5hhY46youZh5gU1ZtE3ZIa9a-fOay-OPktvNCCiWOj0rAOgpPEZWqkNetMmgjXjEAs1YLkAGT6m5Ukp3yGY9ctqiANkBIFLwcV71_1_qUPTeDHrt09a_ZHpObvZHg8Pi8N3RhyfkFr5HN0qmtsnafLoITwFPze2zSmOuALsDGPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAceFMWChgJiVPa2HHs-LiwXcpjqxXbit4iPxep1WbZx6Gc-An8Rn4JM8lu2gUhJDgmHseOPWN_fsw3hLwwXnjDgksKbwpYoLCQ6JjHBBbPNrqYAqBDR-HBoTw4Fu9O8pNLXvwNP0S74YaWUY_XaOBTH_cuSEONr3mDOMxgGiNZXxUyLVCvex8vCKQQn9dse1meaCmKNW1jyvc2829OS79hzU3oWs89_VvErGvdXDk53V0u7K77-guh4__81m1ycwVMabfRpDvkSpjcJTcu0RXeI18-ATCd_fj2_QiW9GMM8klHCwywgnsrtIp09NlMA6QP8PruOR1WZ-fLWcDN-TCnOPJUc8gDgnhfgL4y7tRWk0BB88boFU-H-2_oCOYFOgrj2vXuPjnu7x-9PkhWIRsShy62CQAq7jKbca-Fy6MNMHoCJIuy0NErK70LMc1NlNxb55SRhRBOssCjjbnRLntAtiZQ8kNCvc5kkExa7ZnwhTIp857lIQuaBRFEhyTrHivdis8cw2qclQ0TMy-xKcu2KTvkZSs_bZg8_ii5s1aAcmXR8xJgnsJDZKU65HmbDLaIByzQjNUSZPCMmiuldIdsN4rTFgW4DuCQgo_zuvv_Uoey2xt026dH_5LpGbk27PXLD28P3z8m1_E1-lAytUO2FrNleAJgamGf1vbyE3lnF6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water-Triggered+Stiffening+of+Shape-Memory+Polyurethanes+Composed+of+Hard+Backbone+Dangling+PEG+Soft+Segments&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Wenkai&rft.au=Wang%2C+Ao&rft.au=Yang%2C+Ruibo&rft.au=Wu%2C+Hecheng&rft.date=2022-11-17&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=46&rft.spage=e2201914&rft_id=info:doi/10.1002%2Fadma.202201914&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon