Defect‐Free Metal–Organic Framework Membrane for Precise Ion/Solvent Separation toward Highly Stable Magnesium Metal Anode

Metallic magnesium batteries are promising candidates beyond lithium‐ion batteries; however, a passive interfacial layer because of the electro‐reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect o...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 6; pp. e2108114 - n/a
Main Authors Zhang, Yijie, Li, Jiang, Zhao, Wanyu, Dou, Huanglin, Zhao, Xiaoli, Liu, Yuan, Zhang, Bowen, Yang, Xiaowei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metallic magnesium batteries are promising candidates beyond lithium‐ion batteries; however, a passive interfacial layer because of the electro‐reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect of permselective metal–organic framework (MOF) at angstrom scale, a large‐area and defect‐free MOF membrane directly on Mg surfaces is here constructed. In this process, the electrochemical deprotonation of ligand can be facilitated to afford the self‐correcting of intercrystalline voids until a seamless membrane formed, which can eliminate nonselective intercrystalline diffusion of electrolyte and realize selective Mg2+ transport but precisely separate the solvent molecules from the MOF channels. Compared with the continuous solvent reduction on bare Mg anode, the as‐constructed MOF membrane is demonstrated to significantly stabilize the Mg electrode via suppressing the permeation of solvents, hence contributing to a low‐overpotential plating/stripping in conventional electrolytes. The concept is demonstrated that membrane separation can serve as solid‐electrolyte interphase, which would be widely applicable to other energy‐storage systems. An artificial solid‐electrolyte interphase enabled by an intact metal–organic framework (MOF) membrane is constructed directly on Mg foils. Through precious solvent molecule/Mg ion sieve owing to the angstrom‐sized aperture window, the MOF membrane suppresses the solvent reduction and enables a low migration barrier for Mg2+ transportation within this MOF‐based solid‐electrolyte interphase.
AbstractList Metallic magnesium batteries are promising candidates beyond lithium‐ion batteries; however, a passive interfacial layer because of the electro‐reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect of permselective metal–organic framework (MOF) at angstrom scale, a large‐area and defect‐free MOF membrane directly on Mg surfaces is here constructed. In this process, the electrochemical deprotonation of ligand can be facilitated to afford the self‐correcting of intercrystalline voids until a seamless membrane formed, which can eliminate nonselective intercrystalline diffusion of electrolyte and realize selective Mg 2+ transport but precisely separate the solvent molecules from the MOF channels. Compared with the continuous solvent reduction on bare Mg anode, the as‐constructed MOF membrane is demonstrated to significantly stabilize the Mg electrode via suppressing the permeation of solvents, hence contributing to a low‐overpotential plating/stripping in conventional electrolytes. The concept is demonstrated that membrane separation can serve as solid‐electrolyte interphase, which would be widely applicable to other energy‐storage systems.
Metallic magnesium batteries are promising candidates beyond lithium‐ion batteries; however, a passive interfacial layer because of the electro‐reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect of permselective metal–organic framework (MOF) at angstrom scale, a large‐area and defect‐free MOF membrane directly on Mg surfaces is here constructed. In this process, the electrochemical deprotonation of ligand can be facilitated to afford the self‐correcting of intercrystalline voids until a seamless membrane formed, which can eliminate nonselective intercrystalline diffusion of electrolyte and realize selective Mg2+ transport but precisely separate the solvent molecules from the MOF channels. Compared with the continuous solvent reduction on bare Mg anode, the as‐constructed MOF membrane is demonstrated to significantly stabilize the Mg electrode via suppressing the permeation of solvents, hence contributing to a low‐overpotential plating/stripping in conventional electrolytes. The concept is demonstrated that membrane separation can serve as solid‐electrolyte interphase, which would be widely applicable to other energy‐storage systems.
Metallic magnesium batteries are promising candidates beyond lithium‐ion batteries; however, a passive interfacial layer because of the electro‐reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect of permselective metal–organic framework (MOF) at angstrom scale, a large‐area and defect‐free MOF membrane directly on Mg surfaces is here constructed. In this process, the electrochemical deprotonation of ligand can be facilitated to afford the self‐correcting of intercrystalline voids until a seamless membrane formed, which can eliminate nonselective intercrystalline diffusion of electrolyte and realize selective Mg2+ transport but precisely separate the solvent molecules from the MOF channels. Compared with the continuous solvent reduction on bare Mg anode, the as‐constructed MOF membrane is demonstrated to significantly stabilize the Mg electrode via suppressing the permeation of solvents, hence contributing to a low‐overpotential plating/stripping in conventional electrolytes. The concept is demonstrated that membrane separation can serve as solid‐electrolyte interphase, which would be widely applicable to other energy‐storage systems. An artificial solid‐electrolyte interphase enabled by an intact metal–organic framework (MOF) membrane is constructed directly on Mg foils. Through precious solvent molecule/Mg ion sieve owing to the angstrom‐sized aperture window, the MOF membrane suppresses the solvent reduction and enables a low migration barrier for Mg2+ transportation within this MOF‐based solid‐electrolyte interphase.
Metallic magnesium batteries are promising candidates beyond lithium-ion batteries; however, a passive interfacial layer because of the electro-reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect of permselective metal-organic framework (MOF) at angstrom scale, a large-area and defect-free MOF membrane directly on Mg surfaces is here constructed. In this process, the electrochemical deprotonation of ligand can be facilitated to afford the self-correcting of intercrystalline voids until a seamless membrane formed, which can eliminate nonselective intercrystalline diffusion of electrolyte and realize selective Mg transport but precisely separate the solvent molecules from the MOF channels. Compared with the continuous solvent reduction on bare Mg anode, the as-constructed MOF membrane is demonstrated to significantly stabilize the Mg electrode via suppressing the permeation of solvents, hence contributing to a low-overpotential plating/stripping in conventional electrolytes. The concept is demonstrated that membrane separation can serve as solid-electrolyte interphase, which would be widely applicable to other energy-storage systems.
Metallic magnesium batteries are promising candidates beyond lithium-ion batteries; however, a passive interfacial layer because of the electro-reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect of permselective metal-organic framework (MOF) at angstrom scale, a large-area and defect-free MOF membrane directly on Mg surfaces is here constructed. In this process, the electrochemical deprotonation of ligand can be facilitated to afford the self-correcting of intercrystalline voids until a seamless membrane formed, which can eliminate nonselective intercrystalline diffusion of electrolyte and realize selective Mg2+ transport but precisely separate the solvent molecules from the MOF channels. Compared with the continuous solvent reduction on bare Mg anode, the as-constructed MOF membrane is demonstrated to significantly stabilize the Mg electrode via suppressing the permeation of solvents, hence contributing to a low-overpotential plating/stripping in conventional electrolytes. The concept is demonstrated that membrane separation can serve as solid-electrolyte interphase, which would be widely applicable to other energy-storage systems.Metallic magnesium batteries are promising candidates beyond lithium-ion batteries; however, a passive interfacial layer because of the electro-reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect of permselective metal-organic framework (MOF) at angstrom scale, a large-area and defect-free MOF membrane directly on Mg surfaces is here constructed. In this process, the electrochemical deprotonation of ligand can be facilitated to afford the self-correcting of intercrystalline voids until a seamless membrane formed, which can eliminate nonselective intercrystalline diffusion of electrolyte and realize selective Mg2+ transport but precisely separate the solvent molecules from the MOF channels. Compared with the continuous solvent reduction on bare Mg anode, the as-constructed MOF membrane is demonstrated to significantly stabilize the Mg electrode via suppressing the permeation of solvents, hence contributing to a low-overpotential plating/stripping in conventional electrolytes. The concept is demonstrated that membrane separation can serve as solid-electrolyte interphase, which would be widely applicable to other energy-storage systems.
Author Zhang, Yijie
Zhao, Wanyu
Liu, Yuan
Yang, Xiaowei
Li, Jiang
Zhang, Bowen
Dou, Huanglin
Zhao, Xiaoli
Author_xml – sequence: 1
  givenname: Yijie
  surname: Zhang
  fullname: Zhang, Yijie
  organization: Tongji University
– sequence: 2
  givenname: Jiang
  surname: Li
  fullname: Li, Jiang
  organization: Chang'an University
– sequence: 3
  givenname: Wanyu
  surname: Zhao
  fullname: Zhao, Wanyu
  organization: Tongji University
– sequence: 4
  givenname: Huanglin
  surname: Dou
  fullname: Dou, Huanglin
  organization: Tongji University
– sequence: 5
  givenname: Xiaoli
  surname: Zhao
  fullname: Zhao, Xiaoli
  organization: Tongji University
– sequence: 6
  givenname: Yuan
  surname: Liu
  fullname: Liu, Yuan
  organization: Tongji University
– sequence: 7
  givenname: Bowen
  surname: Zhang
  fullname: Zhang, Bowen
  organization: Shanghai Jiao Tong University
– sequence: 8
  givenname: Xiaowei
  orcidid: 0000-0002-4862-7422
  surname: Yang
  fullname: Yang, Xiaowei
  email: yangxw@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34813680$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFK0dkiQuXbO3YSZzjqmXbSq2KtHC2Js7s4pLYi52w2gvqT6jEP-wvwe22IFVCnHyY773xvHdA9px3SMhbzqacsfwI2h6mOcs5U5zLF2TCi5xnktXFHpmwWhRZXUq1Tw5ivGaM1SUrX5F9IRUXpWIT8vMEl2iGu5vbeUCklzhAd3fz6yqswFlD5wF63PjwLU36JoBDuvSBfgpobER67t3Rwnc_0A10gWsIMFjv6OA3EFp6Zldfuy1dDNB0yRpWDqMd-90SOnO-xdfk5RK6iG8e30PyZf7x8_FZdnF1en48u8iMFLXMOIi2AJbXlRE1K0WhUKoCoKqkgSo3qhAVpGnepsMLKZZccJSm5XlTtaxh4pB82Pmug_8-Yhx0b6PBrksX-THqvGS8VkqxKqHvn6HXfgwu_S5RecUeokvUu0dqbHps9TrYHsJWPyWbALkDTPAxBlxqY4eHeIYAttOc6fsC9X2B-k-BSTZ9Jnty_qeg3gk2tsPtf2g9O7mc_dX-BrkSrig
CitedBy_id crossref_primary_10_1007_s12274_023_6251_4
crossref_primary_10_1021_acsami_4c01826
crossref_primary_10_1021_acsenergylett_2c01970
crossref_primary_10_1021_acsnano_2c06924
crossref_primary_10_1016_j_jhazmat_2022_129900
crossref_primary_10_1002_adma_202309339
crossref_primary_10_1002_aenm_202300283
crossref_primary_10_1021_acsami_3c03877
crossref_primary_10_1002_ange_202205187
crossref_primary_10_1016_j_cej_2023_141901
crossref_primary_10_1016_j_ijhydene_2023_11_268
crossref_primary_10_1002_adma_202203783
crossref_primary_10_1016_j_ccr_2023_215101
crossref_primary_10_1038_s41467_024_53796_z
crossref_primary_10_1021_acsenergylett_4c02123
crossref_primary_10_1039_D2CS00810F
crossref_primary_10_1021_acsami_4c08304
crossref_primary_10_1039_D3NR01306E
crossref_primary_10_1016_j_jcis_2024_06_134
crossref_primary_10_1002_adfm_202307746
crossref_primary_10_1021_acsnano_3c13028
crossref_primary_10_1016_j_jallcom_2025_178899
crossref_primary_10_1002_ange_202404825
crossref_primary_10_1002_smtd_202301109
crossref_primary_10_1021_acs_energyfuels_2c00576
crossref_primary_10_1002_adfm_202410406
crossref_primary_10_1002_ange_202304411
crossref_primary_10_1002_ange_202416582
crossref_primary_10_1016_j_cej_2023_141694
crossref_primary_10_1360_SSC_2023_0191
crossref_primary_10_1126_sciadv_adh1181
crossref_primary_10_1016_j_cej_2022_138663
crossref_primary_10_1016_j_est_2025_116213
crossref_primary_10_1016_j_cej_2022_137013
crossref_primary_10_1039_D4DT03423F
crossref_primary_10_1002_inf2_12549
crossref_primary_10_1007_s40820_024_01495_1
crossref_primary_10_1002_ange_202309918
crossref_primary_10_1016_j_joule_2023_10_012
crossref_primary_10_3390_inorganics12010021
crossref_primary_10_1002_adfm_202412730
crossref_primary_10_1016_j_seppur_2023_125485
crossref_primary_10_1134_S1070328424601043
crossref_primary_10_1002_cjoc_202300012
crossref_primary_10_1002_adfm_202208735
crossref_primary_10_1002_anie_202404825
crossref_primary_10_1002_anie_202304411
crossref_primary_10_1039_D5QI00310E
crossref_primary_10_1021_acsenergylett_2c02525
crossref_primary_10_1002_adfm_202421442
crossref_primary_10_1039_D4CS00929K
crossref_primary_10_1039_D3EE02317F
crossref_primary_10_1016_j_cjche_2023_06_016
crossref_primary_10_1002_anie_202407770
crossref_primary_10_1021_acsnano_3c06367
crossref_primary_10_1039_D2CC04357B
crossref_primary_10_1002_cssc_202301589
crossref_primary_10_1016_j_pmatsci_2023_101123
crossref_primary_10_20517_energymater_2023_94
crossref_primary_10_1002_ange_202302617
crossref_primary_10_1002_anie_202205187
crossref_primary_10_1002_EXP_20210255
crossref_primary_10_1016_j_cej_2023_148193
crossref_primary_10_1002_anie_202301934
crossref_primary_10_1016_j_seppur_2023_125178
crossref_primary_10_1021_acsmaterialslett_4c01589
crossref_primary_10_1360_TB_2023_1025
crossref_primary_10_1016_j_scib_2023_01_029
crossref_primary_10_1039_D3CS00131H
crossref_primary_10_1002_smtd_202201598
crossref_primary_10_1021_acsami_2c11911
crossref_primary_10_1002_celc_202300664
crossref_primary_10_1021_acs_nanolett_2c03710
crossref_primary_10_20517_energymater_2024_102
crossref_primary_10_1002_eem2_12792
crossref_primary_10_1002_marc_202200198
crossref_primary_10_1039_D4TA05386A
crossref_primary_10_1002_anie_202309918
crossref_primary_10_1016_j_cej_2023_141998
crossref_primary_10_1002_smtd_202300561
crossref_primary_10_1002_ange_202407770
crossref_primary_10_1021_acsami_3c07223
crossref_primary_10_1021_acsami_3c11156
crossref_primary_10_1002_anie_202302617
crossref_primary_10_1016_j_cej_2025_160216
crossref_primary_10_1002_adma_202205625
crossref_primary_10_1002_ange_202301934
crossref_primary_10_1016_j_matlet_2023_134994
crossref_primary_10_1002_anie_202416582
Cites_doi 10.1021/acsenergylett.7b00692
10.1002/anie.202100494
10.1016/j.ensm.2019.11.012
10.1126/science.abg3954
10.1021/acsenergylett.1c01243
10.1038/s41565-020-00788-x
10.1016/j.joule.2020.12.021
10.1002/aenm.201701728
10.1021/la1009994
10.1016/j.ccr.2015.09.013
10.1093/nsr/nwz157
10.1039/D1EE00614B
10.1016/j.matt.2020.08.011
10.1016/j.cej.2021.130751
10.1002/anie.202001844
10.1002/adma.202008424
10.1016/j.joule.2018.07.010
10.1038/nenergy.2016.94
10.1038/s41560-020-0655-0
10.1016/j.joule.2018.10.028
10.1126/science.abi6643
10.1021/acs.chemmater.5b02986
10.1039/C8EE03651A
10.1021/cr500049y
10.1021/jacs.9b12474
10.1038/35037553
10.1021/acs.jpcc.5b03508
10.1002/anie.201808465
10.1016/j.nanoen.2021.106087
10.1021/acsami.0c07213
10.1002/adma.202004240
10.1038/natrevmats.2016.78
10.1038/s41524-018-0064-0
10.1149/1.1429925
10.1016/j.joule.2020.06.011
10.1021/acsenergylett.1c00045
10.1126/sciadv.aau1393
10.1021/cm103571y
10.1002/anie.201908706
10.1039/C4CS00159A
10.1073/pnas.1806878115
10.1021/acsenergylett.0c02102
10.1038/s41557-018-0019-6
10.1149/2.1471809jes
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202108114
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34813680
10_1002_adma_202108114
ADMA202108114
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22178217; 22008011
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 300102319308
– fundername: National Natural Science Foundation of China
  grantid: 22008011
– fundername: National Natural Science Foundation of China
  grantid: 22178217
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 300102319308
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4394-1a3d5a0297c3906358e485aa774ca72c8537a2972d095543f131e4cd12b7d0b03
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 02:05:11 EDT 2025
Fri Jul 25 06:57:08 EDT 2025
Wed Feb 19 02:27:33 EST 2025
Tue Jul 01 02:33:10 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Wed Jan 22 16:27:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords electro-deposition
Mg-ion batteries
solid-electrolyte interphase
membrane separation
metal-organic frameworks
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4394-1a3d5a0297c3906358e485aa774ca72c8537a2972d095543f131e4cd12b7d0b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4862-7422
PMID 34813680
PQID 2627048136
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2601988807
proquest_journals_2627048136
pubmed_primary_34813680
crossref_citationtrail_10_1002_adma_202108114
crossref_primary_10_1002_adma_202108114
wiley_primary_10_1002_adma_202108114_ADMA202108114
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 165
2017; 2
2021; 86
2016; 307
2020 2002 2015; 142 149 119
2019; 58
2020; 16
2019 2016; 12 1
2000 2020 2014; 407 5 114
2014; 43
2021; 14
2020; 5
2015; 27
2010; 26
2021 2021; 374 374
2018; 4
2021; 33
2018; 115
2021 2021; 60 6
2011; 23
2016 2020 2020 2018 2019 2020 2020; 1 59 3 2 58 4 32
2018; 10
2018 2021; 8 426
2019 2021; 3 5
2020 2021 2019 2020; 12 6 7 26
e_1_2_7_4_3
e_1_2_7_5_2
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_1_3
e_1_2_7_2_2
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_7_3
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_7_1
e_1_2_7_18_2
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_10_7
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_10_6
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_10_5
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_13_1
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 2
  start-page: 2362
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 5
  start-page: 3733
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 115
  start-page: 8529
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  year: 2010
  publication-title: Langmuir
– volume: 60 6
  start-page: 8521 1134
  year: 2021 2021
  publication-title: Angew. Chem., Int. Ed. ACS Energy Lett.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 142 149 119
  start-page: 5146 A115
  year: 2020 2002 2015
  publication-title: J. Am. Chem. Soc. J. Electro. Soc. J. Phys. Chem. C
– volume: 8 426
  year: 2018 2021
  publication-title: Adv. Energy Mater. Chem. Eng. J.
– volume: 407 5 114
  start-page: 724 646
  year: 2000 2020 2014
  publication-title: Nature Nat. Energy Chem. Rev.
– volume: 43
  start-page: 6116
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 4391
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 374 374
  start-page: 172 156
  year: 2021 2021
  publication-title: Science Science
– volume: 4
  start-page: 15
  year: 2018
  publication-title: npj Comput. Mater.
– volume: 16
  start-page: 77
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 165
  year: 2018
  publication-title: J. Electro. Soc.
– volume: 10
  start-page: 532
  year: 2018
  publication-title: Nat. Chem.
– volume: 23
  start-page: 2130
  year: 2011
  publication-title: Chem. Mater.
– volume: 86
  year: 2021
  publication-title: Nano Energy
– volume: 27
  start-page: 7355
  year: 2015
  publication-title: Chem. Mater.
– volume: 12 1
  start-page: 2327
  year: 2019 2016
  publication-title: Energy Environ. Sci. Nat. Rev. Mater.
– volume: 3 5
  start-page: 27 581
  year: 2019 2021
  publication-title: Joule Joule
– volume: 307
  start-page: 391
  year: 2016
  publication-title: Coordin. Chem. Rev.
– volume: 1 59 3 2 58 4 32
  start-page: 9377 1685 2117 1776
  year: 2016 2020 2020 2018 2019 2020 2020
  publication-title: Nat. Energy Angew. Chem., Int. Ed. Matter Joule Angew. Chem., Int. Ed. Joule Adv. Mater.
– volume: 58
  start-page: 1123
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 12 6 7 26
  start-page: 2594 333 408
  year: 2020 2021 2019 2020
  publication-title: ACS Appl. Mater. Interfaces ACS Energy Lett. Natl. Sci. Rev. Energy Storage Mater.
– ident: e_1_2_7_11_1
  doi: 10.1021/acsenergylett.7b00692
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.202100494
– ident: e_1_2_7_4_4
  doi: 10.1016/j.ensm.2019.11.012
– ident: e_1_2_7_8_1
  doi: 10.1126/science.abg3954
– ident: e_1_2_7_4_2
  doi: 10.1021/acsenergylett.1c01243
– ident: e_1_2_7_14_1
  doi: 10.1038/s41565-020-00788-x
– ident: e_1_2_7_2_2
  doi: 10.1016/j.joule.2020.12.021
– ident: e_1_2_7_5_1
  doi: 10.1002/aenm.201701728
– ident: e_1_2_7_26_1
  doi: 10.1021/la1009994
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ccr.2015.09.013
– ident: e_1_2_7_4_3
  doi: 10.1093/nsr/nwz157
– ident: e_1_2_7_21_1
  doi: 10.1039/D1EE00614B
– ident: e_1_2_7_10_3
  doi: 10.1016/j.matt.2020.08.011
– ident: e_1_2_7_5_2
  doi: 10.1016/j.cej.2021.130751
– ident: e_1_2_7_10_2
  doi: 10.1002/anie.202001844
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.202008424
– ident: e_1_2_7_10_4
  doi: 10.1016/j.joule.2018.07.010
– ident: e_1_2_7_10_1
  doi: 10.1038/nenergy.2016.94
– ident: e_1_2_7_1_2
  doi: 10.1038/s41560-020-0655-0
– ident: e_1_2_7_2_1
  doi: 10.1016/j.joule.2018.10.028
– ident: e_1_2_7_8_2
  doi: 10.1126/science.abi6643
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.chemmater.5b02986
– ident: e_1_2_7_9_1
  doi: 10.1039/C8EE03651A
– ident: e_1_2_7_1_3
  doi: 10.1021/cr500049y
– ident: e_1_2_7_7_1
  doi: 10.1021/jacs.9b12474
– ident: e_1_2_7_1_1
  doi: 10.1038/35037553
– ident: e_1_2_7_7_3
  doi: 10.1021/acs.jpcc.5b03508
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.201808465
– ident: e_1_2_7_23_1
  doi: 10.1016/j.nanoen.2021.106087
– ident: e_1_2_7_4_1
  doi: 10.1021/acsami.0c07213
– ident: e_1_2_7_10_7
  doi: 10.1002/adma.202004240
– ident: e_1_2_7_9_2
  doi: 10.1038/natrevmats.2016.78
– ident: e_1_2_7_20_1
  doi: 10.1038/s41524-018-0064-0
– ident: e_1_2_7_7_2
  doi: 10.1149/1.1429925
– ident: e_1_2_7_10_6
  doi: 10.1016/j.joule.2020.06.011
– ident: e_1_2_7_18_2
  doi: 10.1021/acsenergylett.1c00045
– ident: e_1_2_7_17_1
  doi: 10.1126/sciadv.aau1393
– ident: e_1_2_7_15_1
  doi: 10.1021/cm103571y
– ident: e_1_2_7_10_5
  doi: 10.1002/anie.201908706
– ident: e_1_2_7_12_1
  doi: 10.1039/C4CS00159A
– ident: e_1_2_7_25_1
  doi: 10.1073/pnas.1806878115
– ident: e_1_2_7_6_1
  doi: 10.1021/acsenergylett.0c02102
– ident: e_1_2_7_3_1
  doi: 10.1038/s41557-018-0019-6
– ident: e_1_2_7_24_1
  doi: 10.1149/2.1471809jes
SSID ssj0009606
Score 2.6476946
Snippet Metallic magnesium batteries are promising candidates beyond lithium‐ion batteries; however, a passive interfacial layer because of the electro‐reduction of...
Metallic magnesium batteries are promising candidates beyond lithium-ion batteries; however, a passive interfacial layer because of the electro-reduction of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2108114
SubjectTerms Anodes
Electrolytes
electro‐deposition
Energy storage
Lithium-ion batteries
Magnesium
Materials science
Membrane separation
Membranes
Metal-organic frameworks
Mg‐ion batteries
Separation
solid‐electrolyte interphase
Solvents
Storage systems
Title Defect‐Free Metal–Organic Framework Membrane for Precise Ion/Solvent Separation toward Highly Stable Magnesium Metal Anode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202108114
https://www.ncbi.nlm.nih.gov/pubmed/34813680
https://www.proquest.com/docview/2627048136
https://www.proquest.com/docview/2601988807
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hnuAA5TulICMhcUo3sZ3Ye1y1rArSIkSp1FtkOw5CbBPU3T3AAfUnIPEP-0s6Y2_SLgghwTGynTjOjOclefMG4IW2yvqmQEcqVJPK0tvUciHTMQZrNc55LUJtwNnb8vBYvjkpTq5l8Ud9iOGDG3lG2K_JwY1djK5EQ00ddIPwlUXnoZI1EbYIFb2_0o8ieB7E9kSRjkupe9XGjI82h29Gpd-g5iZyDaFnegdMP-nIOPm8t1raPfftFz3H_7mrbbi9xqVsEg3pLtzw7T24dU2t8D58P_DE_bg4_zE9857NPOL2i_OfMZvTsWlP88KWU5xC6xkCYvaO5DMWnr3u2tFRNyd6JTvyUXG8a9ky0HYZ0U3mXxlCXzvHU5uPuAN_Wp3Gi7BJ29X-ARxPX33YP0zX5RtSR-m2aW5EXRgqjuXEGJFQob3UhTEIOJ1R3CFQUAZbeU0yeFI0uci9dHXOraozm4mHsNV2rX8MjEsEPk5JDJ6CcmON9ogEvTNZI5QWTQJp__gqt9Y2pxIb8yqqMvOK1rUa1jWBl0P_L1HV4489d3trqNbevah4yRXp7IgygedDM_ol_WzB5e1W1AfBs8bdUSXwKFrRcCkRxuosAR5s4S9zqCYHs8lwtPMvg57ATU55G4Fuvgtby7OVf4poammfBY-5BCImFRU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAeyn8JFDASiFO6iZ3E2QOHFctql3YrRFupt-A4TlWxTarurlA5oD4CEk_Cq_AIfRJmnJ-yIISE1APHyI6d2DOeb5KZbwCexalMTR6iIoUyd4PIpG7KReB20VjLrs8zYWsDjrej4V7wZj_cX4JvTS5MxQ_RfnAjzbDnNSk4fZDuXLCGqswSB6HPEiOor-MqN83pR_Tapi9Hfdzi55wPXu--Grp1YQFXUyKo6yuRhYrKNml0-dHkxiaIQ6UQCmkluUYTJhW28owI2gKR-8I3gc58nsrMSz2B416Bq1RGnOj6--8uGKvIIbD0fiJ0u1EQNzyRHu8sPu-iHfwN3C5iZWvsBjfge7NMVYzLh435LN3Qn35hkPyv1vEmrNbQm_UqXbkFS6a4DSs_ETLegc99Q-Et52dfBifGsLFB1-T87GuVsKrZoIlkw5YjfOfCMMT87C0xhEwNG5VFZ6ecUAQp2zEVqXpZsJmNTGYUUTM5ZYju0wkOrQ7QyBzOj6pJWK8oM3MX9i5lAe7BclEW5j4wHiC20zJAfCAo_VfFBsGu0crLhYxF7oDbyEuia_p2qiIySSriaZ7QPibtPjrwou1_XBGX_LHneiN-SX2ATRMecUlUQiJy4GnbjEcP_U_C5S3n1Af9gxgNgHRgrRLbdiph7409B7gVvr88Q9Lrj3vt1YN_uekJXBvujreSrdH25kO4zilNxUbXr8Py7GRuHiF4nKWPrboyeH_Zcv0DAVpvZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48P8TKGAkEKd0E9uJswcOK0LUpWxVUSr1FmzHQYhtUnV3hcoB9RGQeBFehVfokzB2fsqCEBJSDxwjO7Fjz3i-SWa-AXicKKFMGaEiRaL0eWyUryjj_hCNtRiGtGCuNuBkK97Y5S_3or0V-NblwjT8EP0HN6sZ7ry2Cn5QlINT0lBZON4gdFkSxPRtWOWmOfqITtvs2TjFHX5CafbizfMNv60r4GubB-qHkhWRtFWbNHr8aHETw5NISkRCWgqq0YIJia20sPxsnJUhCw3XRUiVKAIVMHzuOTjP42Boi0Wkr08Jq6w_4Nj9WOQPY550NJEBHSzPd9kM_oZtl6Gys3XZFfjerVIT4vJhfTFX6_rTLwSS_9MyXoXLLfAmo0ZTrsGKqa7DpZ_oGG_A59TY4JaT4y_ZoTFkYtAxOTn-2qSrapJ1cWzYso-vXBmCiJ9sW36QmSHjuhrs1FMbP0p2TEOpXldk7uKSiY2nmR4RxPZqio-W79DEvF_sN4OQUVUX5ibsnskC3ILVqq7MHSCUI7LTgiM6YDb5VyYGoa7RMiiZSFjpgd-JS65b8nZbQ2SaN7TTNLf7mPf76MHTvv9BQ1vyx55rnfTl7fE1y2lMhSUSYrEHj_pmPHjs3yRc3nph-6B3kODxLzy43UhtPxRz9yaBB9TJ3l_mkI_Syai_uvsvNz2EC9tplr8ab23eg4vU5qi40Po1WJ0fLsx9RI5z9cApK4G3Zy3WPwAYRG4T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect-Free+Metal-Organic+Framework+Membrane+for+Precise+Ion%2FSolvent+Separation+toward+Highly+Stable+Magnesium+Metal+Anode&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Yijie&rft.au=Li%2C+Jiang&rft.au=Zhao%2C+Wanyu&rft.au=Dou%2C+Huanglin&rft.date=2022-02-01&rft.eissn=1521-4095&rft.volume=34&rft.issue=6&rft.spage=e2108114&rft_id=info:doi/10.1002%2Fadma.202108114&rft_id=info%3Apmid%2F34813680&rft.externalDocID=34813680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon