Defect‐Free Metal–Organic Framework Membrane for Precise Ion/Solvent Separation toward Highly Stable Magnesium Metal Anode
Metallic magnesium batteries are promising candidates beyond lithium‐ion batteries; however, a passive interfacial layer because of the electro‐reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect o...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 6; pp. e2108114 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metallic magnesium batteries are promising candidates beyond lithium‐ion batteries; however, a passive interfacial layer because of the electro‐reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect of permselective metal–organic framework (MOF) at angstrom scale, a large‐area and defect‐free MOF membrane directly on Mg surfaces is here constructed. In this process, the electrochemical deprotonation of ligand can be facilitated to afford the self‐correcting of intercrystalline voids until a seamless membrane formed, which can eliminate nonselective intercrystalline diffusion of electrolyte and realize selective Mg2+ transport but precisely separate the solvent molecules from the MOF channels. Compared with the continuous solvent reduction on bare Mg anode, the as‐constructed MOF membrane is demonstrated to significantly stabilize the Mg electrode via suppressing the permeation of solvents, hence contributing to a low‐overpotential plating/stripping in conventional electrolytes. The concept is demonstrated that membrane separation can serve as solid‐electrolyte interphase, which would be widely applicable to other energy‐storage systems.
An artificial solid‐electrolyte interphase enabled by an intact metal–organic framework (MOF) membrane is constructed directly on Mg foils. Through precious solvent molecule/Mg ion sieve owing to the angstrom‐sized aperture window, the MOF membrane suppresses the solvent reduction and enables a low migration barrier for Mg2+ transportation within this MOF‐based solid‐electrolyte interphase. |
---|---|
AbstractList | Metallic magnesium batteries are promising candidates beyond lithium‐ion batteries; however, a passive interfacial layer because of the electro‐reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect of permselective metal–organic framework (MOF) at angstrom scale, a large‐area and defect‐free MOF membrane directly on Mg surfaces is here constructed. In this process, the electrochemical deprotonation of ligand can be facilitated to afford the self‐correcting of intercrystalline voids until a seamless membrane formed, which can eliminate nonselective intercrystalline diffusion of electrolyte and realize selective Mg
2+
transport but precisely separate the solvent molecules from the MOF channels. Compared with the continuous solvent reduction on bare Mg anode, the as‐constructed MOF membrane is demonstrated to significantly stabilize the Mg electrode via suppressing the permeation of solvents, hence contributing to a low‐overpotential plating/stripping in conventional electrolytes. The concept is demonstrated that membrane separation can serve as solid‐electrolyte interphase, which would be widely applicable to other energy‐storage systems. Metallic magnesium batteries are promising candidates beyond lithium‐ion batteries; however, a passive interfacial layer because of the electro‐reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect of permselective metal–organic framework (MOF) at angstrom scale, a large‐area and defect‐free MOF membrane directly on Mg surfaces is here constructed. In this process, the electrochemical deprotonation of ligand can be facilitated to afford the self‐correcting of intercrystalline voids until a seamless membrane formed, which can eliminate nonselective intercrystalline diffusion of electrolyte and realize selective Mg2+ transport but precisely separate the solvent molecules from the MOF channels. Compared with the continuous solvent reduction on bare Mg anode, the as‐constructed MOF membrane is demonstrated to significantly stabilize the Mg electrode via suppressing the permeation of solvents, hence contributing to a low‐overpotential plating/stripping in conventional electrolytes. The concept is demonstrated that membrane separation can serve as solid‐electrolyte interphase, which would be widely applicable to other energy‐storage systems. Metallic magnesium batteries are promising candidates beyond lithium‐ion batteries; however, a passive interfacial layer because of the electro‐reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect of permselective metal–organic framework (MOF) at angstrom scale, a large‐area and defect‐free MOF membrane directly on Mg surfaces is here constructed. In this process, the electrochemical deprotonation of ligand can be facilitated to afford the self‐correcting of intercrystalline voids until a seamless membrane formed, which can eliminate nonselective intercrystalline diffusion of electrolyte and realize selective Mg2+ transport but precisely separate the solvent molecules from the MOF channels. Compared with the continuous solvent reduction on bare Mg anode, the as‐constructed MOF membrane is demonstrated to significantly stabilize the Mg electrode via suppressing the permeation of solvents, hence contributing to a low‐overpotential plating/stripping in conventional electrolytes. The concept is demonstrated that membrane separation can serve as solid‐electrolyte interphase, which would be widely applicable to other energy‐storage systems. An artificial solid‐electrolyte interphase enabled by an intact metal–organic framework (MOF) membrane is constructed directly on Mg foils. Through precious solvent molecule/Mg ion sieve owing to the angstrom‐sized aperture window, the MOF membrane suppresses the solvent reduction and enables a low migration barrier for Mg2+ transportation within this MOF‐based solid‐electrolyte interphase. Metallic magnesium batteries are promising candidates beyond lithium-ion batteries; however, a passive interfacial layer because of the electro-reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect of permselective metal-organic framework (MOF) at angstrom scale, a large-area and defect-free MOF membrane directly on Mg surfaces is here constructed. In this process, the electrochemical deprotonation of ligand can be facilitated to afford the self-correcting of intercrystalline voids until a seamless membrane formed, which can eliminate nonselective intercrystalline diffusion of electrolyte and realize selective Mg transport but precisely separate the solvent molecules from the MOF channels. Compared with the continuous solvent reduction on bare Mg anode, the as-constructed MOF membrane is demonstrated to significantly stabilize the Mg electrode via suppressing the permeation of solvents, hence contributing to a low-overpotential plating/stripping in conventional electrolytes. The concept is demonstrated that membrane separation can serve as solid-electrolyte interphase, which would be widely applicable to other energy-storage systems. Metallic magnesium batteries are promising candidates beyond lithium-ion batteries; however, a passive interfacial layer because of the electro-reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect of permselective metal-organic framework (MOF) at angstrom scale, a large-area and defect-free MOF membrane directly on Mg surfaces is here constructed. In this process, the electrochemical deprotonation of ligand can be facilitated to afford the self-correcting of intercrystalline voids until a seamless membrane formed, which can eliminate nonselective intercrystalline diffusion of electrolyte and realize selective Mg2+ transport but precisely separate the solvent molecules from the MOF channels. Compared with the continuous solvent reduction on bare Mg anode, the as-constructed MOF membrane is demonstrated to significantly stabilize the Mg electrode via suppressing the permeation of solvents, hence contributing to a low-overpotential plating/stripping in conventional electrolytes. The concept is demonstrated that membrane separation can serve as solid-electrolyte interphase, which would be widely applicable to other energy-storage systems.Metallic magnesium batteries are promising candidates beyond lithium-ion batteries; however, a passive interfacial layer because of the electro-reduction of solvents on Mg surfaces usually leads to ultrahigh overpotential for the reversible Mg chemistry. Inspired by the excellent separation effect of permselective metal-organic framework (MOF) at angstrom scale, a large-area and defect-free MOF membrane directly on Mg surfaces is here constructed. In this process, the electrochemical deprotonation of ligand can be facilitated to afford the self-correcting of intercrystalline voids until a seamless membrane formed, which can eliminate nonselective intercrystalline diffusion of electrolyte and realize selective Mg2+ transport but precisely separate the solvent molecules from the MOF channels. Compared with the continuous solvent reduction on bare Mg anode, the as-constructed MOF membrane is demonstrated to significantly stabilize the Mg electrode via suppressing the permeation of solvents, hence contributing to a low-overpotential plating/stripping in conventional electrolytes. The concept is demonstrated that membrane separation can serve as solid-electrolyte interphase, which would be widely applicable to other energy-storage systems. |
Author | Zhang, Yijie Zhao, Wanyu Liu, Yuan Yang, Xiaowei Li, Jiang Zhang, Bowen Dou, Huanglin Zhao, Xiaoli |
Author_xml | – sequence: 1 givenname: Yijie surname: Zhang fullname: Zhang, Yijie organization: Tongji University – sequence: 2 givenname: Jiang surname: Li fullname: Li, Jiang organization: Chang'an University – sequence: 3 givenname: Wanyu surname: Zhao fullname: Zhao, Wanyu organization: Tongji University – sequence: 4 givenname: Huanglin surname: Dou fullname: Dou, Huanglin organization: Tongji University – sequence: 5 givenname: Xiaoli surname: Zhao fullname: Zhao, Xiaoli organization: Tongji University – sequence: 6 givenname: Yuan surname: Liu fullname: Liu, Yuan organization: Tongji University – sequence: 7 givenname: Bowen surname: Zhang fullname: Zhang, Bowen organization: Shanghai Jiao Tong University – sequence: 8 givenname: Xiaowei orcidid: 0000-0002-4862-7422 surname: Yang fullname: Yang, Xiaowei email: yangxw@sjtu.edu.cn organization: Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34813680$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1URLeFK0dkiQuXbO3YSZzjqmXbSq2KtHC2Js7s4pLYi52w2gvqT6jEP-wvwe22IFVCnHyY773xvHdA9px3SMhbzqacsfwI2h6mOcs5U5zLF2TCi5xnktXFHpmwWhRZXUq1Tw5ivGaM1SUrX5F9IRUXpWIT8vMEl2iGu5vbeUCklzhAd3fz6yqswFlD5wF63PjwLU36JoBDuvSBfgpobER67t3Rwnc_0A10gWsIMFjv6OA3EFp6Zldfuy1dDNB0yRpWDqMd-90SOnO-xdfk5RK6iG8e30PyZf7x8_FZdnF1en48u8iMFLXMOIi2AJbXlRE1K0WhUKoCoKqkgSo3qhAVpGnepsMLKZZccJSm5XlTtaxh4pB82Pmug_8-Yhx0b6PBrksX-THqvGS8VkqxKqHvn6HXfgwu_S5RecUeokvUu0dqbHps9TrYHsJWPyWbALkDTPAxBlxqY4eHeIYAttOc6fsC9X2B-k-BSTZ9Jnty_qeg3gk2tsPtf2g9O7mc_dX-BrkSrig |
CitedBy_id | crossref_primary_10_1007_s12274_023_6251_4 crossref_primary_10_1021_acsami_4c01826 crossref_primary_10_1021_acsenergylett_2c01970 crossref_primary_10_1021_acsnano_2c06924 crossref_primary_10_1016_j_jhazmat_2022_129900 crossref_primary_10_1002_adma_202309339 crossref_primary_10_1002_aenm_202300283 crossref_primary_10_1021_acsami_3c03877 crossref_primary_10_1002_ange_202205187 crossref_primary_10_1016_j_cej_2023_141901 crossref_primary_10_1016_j_ijhydene_2023_11_268 crossref_primary_10_1002_adma_202203783 crossref_primary_10_1016_j_ccr_2023_215101 crossref_primary_10_1038_s41467_024_53796_z crossref_primary_10_1021_acsenergylett_4c02123 crossref_primary_10_1039_D2CS00810F crossref_primary_10_1021_acsami_4c08304 crossref_primary_10_1039_D3NR01306E crossref_primary_10_1016_j_jcis_2024_06_134 crossref_primary_10_1002_adfm_202307746 crossref_primary_10_1021_acsnano_3c13028 crossref_primary_10_1016_j_jallcom_2025_178899 crossref_primary_10_1002_ange_202404825 crossref_primary_10_1002_smtd_202301109 crossref_primary_10_1021_acs_energyfuels_2c00576 crossref_primary_10_1002_adfm_202410406 crossref_primary_10_1002_ange_202304411 crossref_primary_10_1002_ange_202416582 crossref_primary_10_1016_j_cej_2023_141694 crossref_primary_10_1360_SSC_2023_0191 crossref_primary_10_1126_sciadv_adh1181 crossref_primary_10_1016_j_cej_2022_138663 crossref_primary_10_1016_j_est_2025_116213 crossref_primary_10_1016_j_cej_2022_137013 crossref_primary_10_1039_D4DT03423F crossref_primary_10_1002_inf2_12549 crossref_primary_10_1007_s40820_024_01495_1 crossref_primary_10_1002_ange_202309918 crossref_primary_10_1016_j_joule_2023_10_012 crossref_primary_10_3390_inorganics12010021 crossref_primary_10_1002_adfm_202412730 crossref_primary_10_1016_j_seppur_2023_125485 crossref_primary_10_1134_S1070328424601043 crossref_primary_10_1002_cjoc_202300012 crossref_primary_10_1002_adfm_202208735 crossref_primary_10_1002_anie_202404825 crossref_primary_10_1002_anie_202304411 crossref_primary_10_1039_D5QI00310E crossref_primary_10_1021_acsenergylett_2c02525 crossref_primary_10_1002_adfm_202421442 crossref_primary_10_1039_D4CS00929K crossref_primary_10_1039_D3EE02317F crossref_primary_10_1016_j_cjche_2023_06_016 crossref_primary_10_1002_anie_202407770 crossref_primary_10_1021_acsnano_3c06367 crossref_primary_10_1039_D2CC04357B crossref_primary_10_1002_cssc_202301589 crossref_primary_10_1016_j_pmatsci_2023_101123 crossref_primary_10_20517_energymater_2023_94 crossref_primary_10_1002_ange_202302617 crossref_primary_10_1002_anie_202205187 crossref_primary_10_1002_EXP_20210255 crossref_primary_10_1016_j_cej_2023_148193 crossref_primary_10_1002_anie_202301934 crossref_primary_10_1016_j_seppur_2023_125178 crossref_primary_10_1021_acsmaterialslett_4c01589 crossref_primary_10_1360_TB_2023_1025 crossref_primary_10_1016_j_scib_2023_01_029 crossref_primary_10_1039_D3CS00131H crossref_primary_10_1002_smtd_202201598 crossref_primary_10_1021_acsami_2c11911 crossref_primary_10_1002_celc_202300664 crossref_primary_10_1021_acs_nanolett_2c03710 crossref_primary_10_20517_energymater_2024_102 crossref_primary_10_1002_eem2_12792 crossref_primary_10_1002_marc_202200198 crossref_primary_10_1039_D4TA05386A crossref_primary_10_1002_anie_202309918 crossref_primary_10_1016_j_cej_2023_141998 crossref_primary_10_1002_smtd_202300561 crossref_primary_10_1002_ange_202407770 crossref_primary_10_1021_acsami_3c07223 crossref_primary_10_1021_acsami_3c11156 crossref_primary_10_1002_anie_202302617 crossref_primary_10_1016_j_cej_2025_160216 crossref_primary_10_1002_adma_202205625 crossref_primary_10_1002_ange_202301934 crossref_primary_10_1016_j_matlet_2023_134994 crossref_primary_10_1002_anie_202416582 |
Cites_doi | 10.1021/acsenergylett.7b00692 10.1002/anie.202100494 10.1016/j.ensm.2019.11.012 10.1126/science.abg3954 10.1021/acsenergylett.1c01243 10.1038/s41565-020-00788-x 10.1016/j.joule.2020.12.021 10.1002/aenm.201701728 10.1021/la1009994 10.1016/j.ccr.2015.09.013 10.1093/nsr/nwz157 10.1039/D1EE00614B 10.1016/j.matt.2020.08.011 10.1016/j.cej.2021.130751 10.1002/anie.202001844 10.1002/adma.202008424 10.1016/j.joule.2018.07.010 10.1038/nenergy.2016.94 10.1038/s41560-020-0655-0 10.1016/j.joule.2018.10.028 10.1126/science.abi6643 10.1021/acs.chemmater.5b02986 10.1039/C8EE03651A 10.1021/cr500049y 10.1021/jacs.9b12474 10.1038/35037553 10.1021/acs.jpcc.5b03508 10.1002/anie.201808465 10.1016/j.nanoen.2021.106087 10.1021/acsami.0c07213 10.1002/adma.202004240 10.1038/natrevmats.2016.78 10.1038/s41524-018-0064-0 10.1149/1.1429925 10.1016/j.joule.2020.06.011 10.1021/acsenergylett.1c00045 10.1126/sciadv.aau1393 10.1021/cm103571y 10.1002/anie.201908706 10.1039/C4CS00159A 10.1073/pnas.1806878115 10.1021/acsenergylett.0c02102 10.1038/s41557-018-0019-6 10.1149/2.1471809jes |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202108114 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 34813680 10_1002_adma_202108114 ADMA202108114 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22178217; 22008011 – fundername: Fundamental Research Funds for the Central Universities funderid: 300102319308 – fundername: National Natural Science Foundation of China grantid: 22008011 – fundername: National Natural Science Foundation of China grantid: 22178217 – fundername: Fundamental Research Funds for the Central Universities grantid: 300102319308 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4394-1a3d5a0297c3906358e485aa774ca72c8537a2972d095543f131e4cd12b7d0b03 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 02:05:11 EDT 2025 Fri Jul 25 06:57:08 EDT 2025 Wed Feb 19 02:27:33 EST 2025 Tue Jul 01 02:33:10 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Wed Jan 22 16:27:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | electro-deposition Mg-ion batteries solid-electrolyte interphase membrane separation metal-organic frameworks |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4394-1a3d5a0297c3906358e485aa774ca72c8537a2972d095543f131e4cd12b7d0b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4862-7422 |
PMID | 34813680 |
PQID | 2627048136 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2601988807 proquest_journals_2627048136 pubmed_primary_34813680 crossref_citationtrail_10_1002_adma_202108114 crossref_primary_10_1002_adma_202108114 wiley_primary_10_1002_adma_202108114_ADMA202108114 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 165 2017; 2 2021; 86 2016; 307 2020 2002 2015; 142 149 119 2019; 58 2020; 16 2019 2016; 12 1 2000 2020 2014; 407 5 114 2014; 43 2021; 14 2020; 5 2015; 27 2010; 26 2021 2021; 374 374 2018; 4 2021; 33 2018; 115 2021 2021; 60 6 2011; 23 2016 2020 2020 2018 2019 2020 2020; 1 59 3 2 58 4 32 2018; 10 2018 2021; 8 426 2019 2021; 3 5 2020 2021 2019 2020; 12 6 7 26 e_1_2_7_4_3 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_1_3 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_7_3 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_7_1 e_1_2_7_18_2 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_10_7 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_10_6 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_10_5 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_13_1 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 2 start-page: 2362 year: 2017 publication-title: ACS Energy Lett. – volume: 5 start-page: 3733 year: 2020 publication-title: ACS Energy Lett. – volume: 115 start-page: 8529 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 26 year: 2010 publication-title: Langmuir – volume: 60 6 start-page: 8521 1134 year: 2021 2021 publication-title: Angew. Chem., Int. Ed. ACS Energy Lett. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 142 149 119 start-page: 5146 A115 year: 2020 2002 2015 publication-title: J. Am. Chem. Soc. J. Electro. Soc. J. Phys. Chem. C – volume: 8 426 year: 2018 2021 publication-title: Adv. Energy Mater. Chem. Eng. J. – volume: 407 5 114 start-page: 724 646 year: 2000 2020 2014 publication-title: Nature Nat. Energy Chem. Rev. – volume: 43 start-page: 6116 year: 2014 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 4391 year: 2021 publication-title: Energy Environ. Sci. – volume: 374 374 start-page: 172 156 year: 2021 2021 publication-title: Science Science – volume: 4 start-page: 15 year: 2018 publication-title: npj Comput. Mater. – volume: 16 start-page: 77 year: 2020 publication-title: Nat. Nanotechnol. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 165 year: 2018 publication-title: J. Electro. Soc. – volume: 10 start-page: 532 year: 2018 publication-title: Nat. Chem. – volume: 23 start-page: 2130 year: 2011 publication-title: Chem. Mater. – volume: 86 year: 2021 publication-title: Nano Energy – volume: 27 start-page: 7355 year: 2015 publication-title: Chem. Mater. – volume: 12 1 start-page: 2327 year: 2019 2016 publication-title: Energy Environ. Sci. Nat. Rev. Mater. – volume: 3 5 start-page: 27 581 year: 2019 2021 publication-title: Joule Joule – volume: 307 start-page: 391 year: 2016 publication-title: Coordin. Chem. Rev. – volume: 1 59 3 2 58 4 32 start-page: 9377 1685 2117 1776 year: 2016 2020 2020 2018 2019 2020 2020 publication-title: Nat. Energy Angew. Chem., Int. Ed. Matter Joule Angew. Chem., Int. Ed. Joule Adv. Mater. – volume: 58 start-page: 1123 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 12 6 7 26 start-page: 2594 333 408 year: 2020 2021 2019 2020 publication-title: ACS Appl. Mater. Interfaces ACS Energy Lett. Natl. Sci. Rev. Energy Storage Mater. – ident: e_1_2_7_11_1 doi: 10.1021/acsenergylett.7b00692 – ident: e_1_2_7_18_1 doi: 10.1002/anie.202100494 – ident: e_1_2_7_4_4 doi: 10.1016/j.ensm.2019.11.012 – ident: e_1_2_7_8_1 doi: 10.1126/science.abg3954 – ident: e_1_2_7_4_2 doi: 10.1021/acsenergylett.1c01243 – ident: e_1_2_7_14_1 doi: 10.1038/s41565-020-00788-x – ident: e_1_2_7_2_2 doi: 10.1016/j.joule.2020.12.021 – ident: e_1_2_7_5_1 doi: 10.1002/aenm.201701728 – ident: e_1_2_7_26_1 doi: 10.1021/la1009994 – ident: e_1_2_7_13_1 doi: 10.1016/j.ccr.2015.09.013 – ident: e_1_2_7_4_3 doi: 10.1093/nsr/nwz157 – ident: e_1_2_7_21_1 doi: 10.1039/D1EE00614B – ident: e_1_2_7_10_3 doi: 10.1016/j.matt.2020.08.011 – ident: e_1_2_7_5_2 doi: 10.1016/j.cej.2021.130751 – ident: e_1_2_7_10_2 doi: 10.1002/anie.202001844 – ident: e_1_2_7_22_1 doi: 10.1002/adma.202008424 – ident: e_1_2_7_10_4 doi: 10.1016/j.joule.2018.07.010 – ident: e_1_2_7_10_1 doi: 10.1038/nenergy.2016.94 – ident: e_1_2_7_1_2 doi: 10.1038/s41560-020-0655-0 – ident: e_1_2_7_2_1 doi: 10.1016/j.joule.2018.10.028 – ident: e_1_2_7_8_2 doi: 10.1126/science.abi6643 – ident: e_1_2_7_19_1 doi: 10.1021/acs.chemmater.5b02986 – ident: e_1_2_7_9_1 doi: 10.1039/C8EE03651A – ident: e_1_2_7_1_3 doi: 10.1021/cr500049y – ident: e_1_2_7_7_1 doi: 10.1021/jacs.9b12474 – ident: e_1_2_7_1_1 doi: 10.1038/35037553 – ident: e_1_2_7_7_3 doi: 10.1021/acs.jpcc.5b03508 – ident: e_1_2_7_16_1 doi: 10.1002/anie.201808465 – ident: e_1_2_7_23_1 doi: 10.1016/j.nanoen.2021.106087 – ident: e_1_2_7_4_1 doi: 10.1021/acsami.0c07213 – ident: e_1_2_7_10_7 doi: 10.1002/adma.202004240 – ident: e_1_2_7_9_2 doi: 10.1038/natrevmats.2016.78 – ident: e_1_2_7_20_1 doi: 10.1038/s41524-018-0064-0 – ident: e_1_2_7_7_2 doi: 10.1149/1.1429925 – ident: e_1_2_7_10_6 doi: 10.1016/j.joule.2020.06.011 – ident: e_1_2_7_18_2 doi: 10.1021/acsenergylett.1c00045 – ident: e_1_2_7_17_1 doi: 10.1126/sciadv.aau1393 – ident: e_1_2_7_15_1 doi: 10.1021/cm103571y – ident: e_1_2_7_10_5 doi: 10.1002/anie.201908706 – ident: e_1_2_7_12_1 doi: 10.1039/C4CS00159A – ident: e_1_2_7_25_1 doi: 10.1073/pnas.1806878115 – ident: e_1_2_7_6_1 doi: 10.1021/acsenergylett.0c02102 – ident: e_1_2_7_3_1 doi: 10.1038/s41557-018-0019-6 – ident: e_1_2_7_24_1 doi: 10.1149/2.1471809jes |
SSID | ssj0009606 |
Score | 2.6476946 |
Snippet | Metallic magnesium batteries are promising candidates beyond lithium‐ion batteries; however, a passive interfacial layer because of the electro‐reduction of... Metallic magnesium batteries are promising candidates beyond lithium-ion batteries; however, a passive interfacial layer because of the electro-reduction of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2108114 |
SubjectTerms | Anodes Electrolytes electro‐deposition Energy storage Lithium-ion batteries Magnesium Materials science Membrane separation Membranes Metal-organic frameworks Mg‐ion batteries Separation solid‐electrolyte interphase Solvents Storage systems |
Title | Defect‐Free Metal–Organic Framework Membrane for Precise Ion/Solvent Separation toward Highly Stable Magnesium Metal Anode |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202108114 https://www.ncbi.nlm.nih.gov/pubmed/34813680 https://www.proquest.com/docview/2627048136 https://www.proquest.com/docview/2601988807 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hnuAA5TulICMhcUo3sZ3Ye1y1rArSIkSp1FtkOw5CbBPU3T3AAfUnIPEP-0s6Y2_SLgghwTGynTjOjOclefMG4IW2yvqmQEcqVJPK0tvUciHTMQZrNc55LUJtwNnb8vBYvjkpTq5l8Ud9iOGDG3lG2K_JwY1djK5EQ00ddIPwlUXnoZI1EbYIFb2_0o8ieB7E9kSRjkupe9XGjI82h29Gpd-g5iZyDaFnegdMP-nIOPm8t1raPfftFz3H_7mrbbi9xqVsEg3pLtzw7T24dU2t8D58P_DE_bg4_zE9857NPOL2i_OfMZvTsWlP88KWU5xC6xkCYvaO5DMWnr3u2tFRNyd6JTvyUXG8a9ky0HYZ0U3mXxlCXzvHU5uPuAN_Wp3Gi7BJ29X-ARxPX33YP0zX5RtSR-m2aW5EXRgqjuXEGJFQob3UhTEIOJ1R3CFQUAZbeU0yeFI0uci9dHXOraozm4mHsNV2rX8MjEsEPk5JDJ6CcmON9ogEvTNZI5QWTQJp__gqt9Y2pxIb8yqqMvOK1rUa1jWBl0P_L1HV4489d3trqNbevah4yRXp7IgygedDM_ol_WzB5e1W1AfBs8bdUSXwKFrRcCkRxuosAR5s4S9zqCYHs8lwtPMvg57ATU55G4Fuvgtby7OVf4poammfBY-5BCImFRU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAeyn8JFDASiFO6iZ3E2QOHFctql3YrRFupt-A4TlWxTarurlA5oD4CEk_Cq_AIfRJmnJ-yIISE1APHyI6d2DOeb5KZbwCexalMTR6iIoUyd4PIpG7KReB20VjLrs8zYWsDjrej4V7wZj_cX4JvTS5MxQ_RfnAjzbDnNSk4fZDuXLCGqswSB6HPEiOor-MqN83pR_Tapi9Hfdzi55wPXu--Grp1YQFXUyKo6yuRhYrKNml0-dHkxiaIQ6UQCmkluUYTJhW28owI2gKR-8I3gc58nsrMSz2B416Bq1RGnOj6--8uGKvIIbD0fiJ0u1EQNzyRHu8sPu-iHfwN3C5iZWvsBjfge7NMVYzLh435LN3Qn35hkPyv1vEmrNbQm_UqXbkFS6a4DSs_ETLegc99Q-Et52dfBifGsLFB1-T87GuVsKrZoIlkw5YjfOfCMMT87C0xhEwNG5VFZ6ecUAQp2zEVqXpZsJmNTGYUUTM5ZYju0wkOrQ7QyBzOj6pJWK8oM3MX9i5lAe7BclEW5j4wHiC20zJAfCAo_VfFBsGu0crLhYxF7oDbyEuia_p2qiIySSriaZ7QPibtPjrwou1_XBGX_LHneiN-SX2ATRMecUlUQiJy4GnbjEcP_U_C5S3n1Af9gxgNgHRgrRLbdiph7409B7gVvr88Q9Lrj3vt1YN_uekJXBvujreSrdH25kO4zilNxUbXr8Py7GRuHiF4nKWPrboyeH_Zcv0DAVpvZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48P8TKGAkEKd0E9uJswcOK0LUpWxVUSr1FmzHQYhtUnV3hcoB9RGQeBFehVfokzB2fsqCEBJSDxwjO7Fjz3i-SWa-AXicKKFMGaEiRaL0eWyUryjj_hCNtRiGtGCuNuBkK97Y5S_3or0V-NblwjT8EP0HN6sZ7ry2Cn5QlINT0lBZON4gdFkSxPRtWOWmOfqITtvs2TjFHX5CafbizfMNv60r4GubB-qHkhWRtFWbNHr8aHETw5NISkRCWgqq0YIJia20sPxsnJUhCw3XRUiVKAIVMHzuOTjP42Boi0Wkr08Jq6w_4Nj9WOQPY550NJEBHSzPd9kM_oZtl6Gys3XZFfjerVIT4vJhfTFX6_rTLwSS_9MyXoXLLfAmo0ZTrsGKqa7DpZ_oGG_A59TY4JaT4y_ZoTFkYtAxOTn-2qSrapJ1cWzYso-vXBmCiJ9sW36QmSHjuhrs1FMbP0p2TEOpXldk7uKSiY2nmR4RxPZqio-W79DEvF_sN4OQUVUX5ibsnskC3ILVqq7MHSCUI7LTgiM6YDb5VyYGoa7RMiiZSFjpgd-JS65b8nZbQ2SaN7TTNLf7mPf76MHTvv9BQ1vyx55rnfTl7fE1y2lMhSUSYrEHj_pmPHjs3yRc3nph-6B3kODxLzy43UhtPxRz9yaBB9TJ3l_mkI_Syai_uvsvNz2EC9tplr8ab23eg4vU5qi40Po1WJ0fLsx9RI5z9cApK4G3Zy3WPwAYRG4T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect-Free+Metal-Organic+Framework+Membrane+for+Precise+Ion%2FSolvent+Separation+toward+Highly+Stable+Magnesium+Metal+Anode&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Yijie&rft.au=Li%2C+Jiang&rft.au=Zhao%2C+Wanyu&rft.au=Dou%2C+Huanglin&rft.date=2022-02-01&rft.eissn=1521-4095&rft.volume=34&rft.issue=6&rft.spage=e2108114&rft_id=info:doi/10.1002%2Fadma.202108114&rft_id=info%3Apmid%2F34813680&rft.externalDocID=34813680 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |