Homojunction of Oxygen and Titanium Vacancies and its Interfacial n–p Effect

The homojunction of oxygen/metal vacancies and its interfacial n–p effect on the physiochemical properties are rarely reported. Interfacial n–p homojunctions of TiO2 are fabricated by directly decorating interfacial p‐type titanium‐defected TiO2 around n‐type oxygen‐defected TiO2 nanocrystals in amo...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 32; pp. e1802173 - n/a
Main Authors Wu, Si‐Ming, Liu, Xiao‐Long, Lian, Xi‐Liang, Tian, Ge, Janiak, Christoph, Zhang, Yue‐Xing, Lu, Yi, Yu, Hao‐Zheng, Hu, Jie, Wei, Hao, Zhao, Heng, Chang, Gang‐Gang, Tendeloo, Gustaaf, Wang, Li‐Ying, Yang, Xiao‐Yu, Su, Bao‐Lian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The homojunction of oxygen/metal vacancies and its interfacial n–p effect on the physiochemical properties are rarely reported. Interfacial n–p homojunctions of TiO2 are fabricated by directly decorating interfacial p‐type titanium‐defected TiO2 around n‐type oxygen‐defected TiO2 nanocrystals in amorphous–anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D 1H TQ‐SQ MAS NMR are present. Amorphous–anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n‐type to p‐type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new “homojunction of oxygen and titanium vacancies” concept, characteristics, and mechanism are proposed at an atomic‐/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer. The homojunction of oxygen and titanium vacancies developed in the amorphous–anatase interface of nanostructured TiO2 results in a unique n–p electronic transmission, which is mostly preferred to the mobility of electronic charge carriers. It also contributes to significant performance regarding photogeneration current, photocatalysis, and energy storage.
AbstractList The homojunction of oxygen/metal vacancies and its interfacial n–p effect on the physiochemical properties are rarely reported. Interfacial n–p homojunctions of TiO2 are fabricated by directly decorating interfacial p‐type titanium‐defected TiO2 around n‐type oxygen‐defected TiO2 nanocrystals in amorphous–anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D 1H TQ‐SQ MAS NMR are present. Amorphous–anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n‐type to p‐type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new “homojunction of oxygen and titanium vacancies” concept, characteristics, and mechanism are proposed at an atomic‐/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.
The homojunction of oxygen/metal vacancies and its interfacial n–p effect on the physiochemical properties are rarely reported. Interfacial n–p homojunctions of TiO2 are fabricated by directly decorating interfacial p‐type titanium‐defected TiO2 around n‐type oxygen‐defected TiO2 nanocrystals in amorphous–anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D 1H TQ‐SQ MAS NMR are present. Amorphous–anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n‐type to p‐type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new “homojunction of oxygen and titanium vacancies” concept, characteristics, and mechanism are proposed at an atomic‐/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer. The homojunction of oxygen and titanium vacancies developed in the amorphous–anatase interface of nanostructured TiO2 results in a unique n–p electronic transmission, which is mostly preferred to the mobility of electronic charge carriers. It also contributes to significant performance regarding photogeneration current, photocatalysis, and energy storage.
The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO2 are fabricated by directly decorating interfacial p-type titanium-defected TiO2 around n-type oxygen-defected TiO2 nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2 ; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D 1 H TQ-SQ MAS NMR are present. Amorphous-anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new "homojunction of oxygen and titanium vacancies" concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO2 are fabricated by directly decorating interfacial p-type titanium-defected TiO2 around n-type oxygen-defected TiO2 nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2 ; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D 1 H TQ-SQ MAS NMR are present. Amorphous-anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new "homojunction of oxygen and titanium vacancies" concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.
The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO are fabricated by directly decorating interfacial p-type titanium-defected TiO around n-type oxygen-defected TiO nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO ; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D H TQ-SQ MAS NMR are present. Amorphous-anatase TiO shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new "homojunction of oxygen and titanium vacancies" concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.
The homojunction of oxygen/metal vacancies and its interfacial n–p effect on the physiochemical properties are rarely reported. Interfacial n–p homojunctions of TiO 2 are fabricated by directly decorating interfacial p‐type titanium‐defected TiO 2 around n‐type oxygen‐defected TiO 2 nanocrystals in amorphous–anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO 2 ; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D 1 H TQ‐SQ MAS NMR are present. Amorphous–anatase TiO 2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n‐type to p‐type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new “homojunction of oxygen and titanium vacancies” concept, characteristics, and mechanism are proposed at an atomic‐/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.
Author Yu, Hao‐Zheng
Liu, Xiao‐Long
Wei, Hao
Hu, Jie
Wu, Si‐Ming
Chang, Gang‐Gang
Tian, Ge
Zhang, Yue‐Xing
Yang, Xiao‐Yu
Lian, Xi‐Liang
Su, Bao‐Lian
Wang, Li‐Ying
Janiak, Christoph
Lu, Yi
Zhao, Heng
Tendeloo, Gustaaf
Author_xml – sequence: 1
  givenname: Si‐Ming
  surname: Wu
  fullname: Wu, Si‐Ming
  organization: Wuhan University of Technology
– sequence: 2
  givenname: Xiao‐Long
  surname: Liu
  fullname: Liu, Xiao‐Long
  organization: The Chinese Academy of Sciences
– sequence: 3
  givenname: Xi‐Liang
  surname: Lian
  fullname: Lian, Xi‐Liang
  organization: Wuhan University of Technology
– sequence: 4
  givenname: Ge
  surname: Tian
  fullname: Tian, Ge
  organization: Wuhan University of Technology
– sequence: 5
  givenname: Christoph
  surname: Janiak
  fullname: Janiak, Christoph
  organization: Heinrich‐Heine‐Universität Düsseldorf
– sequence: 6
  givenname: Yue‐Xing
  surname: Zhang
  fullname: Zhang, Yue‐Xing
  organization: Hubei University
– sequence: 7
  givenname: Yi
  surname: Lu
  fullname: Lu, Yi
  organization: Wuhan University of Technology
– sequence: 8
  givenname: Hao‐Zheng
  surname: Yu
  fullname: Yu, Hao‐Zheng
  organization: Wuhan University of Technology
– sequence: 9
  givenname: Jie
  surname: Hu
  fullname: Hu, Jie
  organization: Wuhan University of Technology
– sequence: 10
  givenname: Hao
  surname: Wei
  fullname: Wei, Hao
  organization: Wuhan University of Technology
– sequence: 11
  givenname: Heng
  surname: Zhao
  fullname: Zhao, Heng
  organization: Wuhan University of Technology
– sequence: 12
  givenname: Gang‐Gang
  surname: Chang
  fullname: Chang, Gang‐Gang
  organization: Wuhan University of Technology
– sequence: 13
  givenname: Gustaaf
  surname: Tendeloo
  fullname: Tendeloo, Gustaaf
  organization: University of Antwerp
– sequence: 14
  givenname: Li‐Ying
  surname: Wang
  fullname: Wang, Li‐Ying
  organization: The Chinese Academy of Sciences
– sequence: 15
  givenname: Xiao‐Yu
  surname: Yang
  fullname: Yang, Xiao‐Yu
  email: xyyang@seas.harvard.edu, xyyang@whut.edu.cn
  organization: Harvard University
– sequence: 16
  givenname: Bao‐Lian
  surname: Su
  fullname: Su, Bao‐Lian
  organization: University of Namur
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29947064$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKxDAUhoMoOl62LqXgxk3Hk3uzHLyDl426LZk0lQxtMjYtOjvfwTf0Sew44wiCuAocvu-c8P_baN0HbxHaxzDEAORYF7UeEsAZECzpGhpgTnDKQPF1NABFeaoEy7bQdowTAFACxCbaIkoxCYIN0O1lqMOk86Z1wSehTO5eZ0_WJ9oXyb1rtXddnTxqo71xNn6NXRuTK9_aptTG6SrxH2_v0-SsLK1pd9FGqato95bvDno4P7s_uUyv7y6uTkbXqWFU0bQEIzkwkJxnlPfblbRjSjNscCGzMQWuC0ospVIRAZRLwoAzogpjMGXM0h10tNg7bcJzZ2Ob1y4aW1Xa29DFnICATAIXtEcPf6GT0DW-_11PZVRkXBDWUwdLqhvXtsinjat1M8u_k-qB4QIwTYixseUKwZDPq8jnVeSrKnqB_RJMn-c85rbRrvpbUwvtxVV29s-RfHR6M_pxPwGtPps9
CitedBy_id crossref_primary_10_1016_j_cej_2023_146994
crossref_primary_10_1039_D0CE00966K
crossref_primary_10_1002_adma_202200756
crossref_primary_10_1039_C8CY01973H
crossref_primary_10_1039_D0TA04297H
crossref_primary_10_1016_j_inoche_2023_111880
crossref_primary_10_1039_D2SC01872A
crossref_primary_10_1021_acssensors_0c01044
crossref_primary_10_1039_D0CP00672F
crossref_primary_10_1021_acsami_4c10346
crossref_primary_10_1039_C8EN01375F
crossref_primary_10_1039_D3TA00553D
crossref_primary_10_1002_adfm_202304912
crossref_primary_10_1016_j_apsusc_2024_159817
crossref_primary_10_1016_j_jiec_2024_05_005
crossref_primary_10_1002_smll_202300620
crossref_primary_10_1021_acs_jpcc_1c09627
crossref_primary_10_1016_j_ijhydene_2020_11_151
crossref_primary_10_1016_j_apcatb_2019_04_046
crossref_primary_10_1002_idm2_12025
crossref_primary_10_1016_j_chempr_2023_06_021
crossref_primary_10_1021_acsami_2c23120
crossref_primary_10_1016_j_cej_2024_155180
crossref_primary_10_1016_j_cej_2023_145810
crossref_primary_10_1021_acs_nanolett_9b05121
crossref_primary_10_1016_j_apcata_2022_119016
crossref_primary_10_1039_C9CC03595H
crossref_primary_10_1002_chem_202101817
crossref_primary_10_1016_j_envres_2021_111056
crossref_primary_10_1002_adfm_202005155
crossref_primary_10_1021_acsami_1c20265
crossref_primary_10_1038_s41467_020_14333_w
crossref_primary_10_1039_D3CC01409F
crossref_primary_10_1039_D2NR03877C
crossref_primary_10_1007_s11082_023_04984_6
crossref_primary_10_1021_acssuschemeng_9b02008
crossref_primary_10_1002_cnma_201800326
crossref_primary_10_1039_D2EE01816K
crossref_primary_10_1016_j_jece_2023_109979
crossref_primary_10_1039_D2NR02977D
crossref_primary_10_1002_adma_202415844
crossref_primary_10_1007_s40843_024_3029_5
crossref_primary_10_1002_smll_202202659
crossref_primary_10_1039_D1RA00251A
crossref_primary_10_1002_adma_201906156
crossref_primary_10_3390_catal10050539
crossref_primary_10_1021_acs_nanolett_2c02070
crossref_primary_10_1039_D4TC00098F
crossref_primary_10_1002_adma_202202873
crossref_primary_10_1002_adfm_202106700
crossref_primary_10_1016_j_jcis_2024_04_180
crossref_primary_10_1002_adfm_202305940
crossref_primary_10_1021_acs_jpcc_3c02592
crossref_primary_10_1039_D3EE01344H
crossref_primary_10_1002_smll_202206176
crossref_primary_10_1002_aoc_7490
crossref_primary_10_3390_catal9050439
crossref_primary_10_1039_D1TA03895H
crossref_primary_10_1039_D3CC06102G
crossref_primary_10_1016_j_cej_2021_129231
crossref_primary_10_1039_D0NR01180K
crossref_primary_10_1016_j_cej_2020_125784
crossref_primary_10_1039_D3NJ03018K
crossref_primary_10_1016_j_apsusc_2021_151175
crossref_primary_10_1016_j_cej_2024_151773
crossref_primary_10_1039_C8TA06783J
crossref_primary_10_3390_catal11020205
crossref_primary_10_1002_anie_201900013
crossref_primary_10_1039_D2GC04362A
crossref_primary_10_1080_02670836_2023_2246306
crossref_primary_10_1007_s10854_019_02257_1
crossref_primary_10_1016_j_cej_2021_132128
crossref_primary_10_1016_j_cplett_2019_136989
crossref_primary_10_1039_D3TA03239F
crossref_primary_10_1016_j_jechem_2020_09_020
crossref_primary_10_1021_acsanm_9b00485
crossref_primary_10_1016_j_cej_2022_139068
crossref_primary_10_1016_j_cplett_2019_01_002
crossref_primary_10_1016_j_chempr_2022_05_007
crossref_primary_10_1039_D3TA01460F
crossref_primary_10_1002_ange_201900013
crossref_primary_10_1002_asia_202000889
crossref_primary_10_1002_chem_202100754
crossref_primary_10_1002_solr_201900487
crossref_primary_10_1016_j_cej_2021_129894
crossref_primary_10_1039_D1CY00750E
crossref_primary_10_1021_acs_jpclett_0c00509
crossref_primary_10_1021_acs_nanolett_1c00897
crossref_primary_10_1021_acsnano_3c05174
crossref_primary_10_1039_D0QI01327G
crossref_primary_10_1016_j_cej_2020_124474
crossref_primary_10_1016_j_jlumin_2021_118454
crossref_primary_10_1039_C9TA13747E
crossref_primary_10_1002_advs_201900053
crossref_primary_10_1039_C9TA06589J
crossref_primary_10_1007_s12598_023_02505_8
crossref_primary_10_1007_s40843_020_1305_6
crossref_primary_10_1039_C9NR10092J
crossref_primary_10_1016_j_jcat_2024_115665
crossref_primary_10_1016_j_buildenv_2022_109216
crossref_primary_10_1039_D2TA08491K
crossref_primary_10_1016_j_apcatb_2024_124517
crossref_primary_10_1039_D3QI01203D
crossref_primary_10_1002_adma_202307003
crossref_primary_10_1021_acsaem_8b01839
crossref_primary_10_1016_j_jcis_2022_05_075
crossref_primary_10_1016_j_apsusc_2022_153744
crossref_primary_10_1016_j_jcis_2022_09_131
crossref_primary_10_1039_D1TA06039B
crossref_primary_10_1002_admi_202300595
crossref_primary_10_1007_s12274_021_3587_5
crossref_primary_10_1016_j_colsurfa_2024_134929
crossref_primary_10_1039_D0RA01218A
crossref_primary_10_1002_ente_202300052
crossref_primary_10_1002_zaac_202000482
crossref_primary_10_1016_j_ecoenv_2024_115927
crossref_primary_10_1021_acsami_9b06511
crossref_primary_10_1016_j_cplett_2019_137068
crossref_primary_10_1016_j_cej_2020_125909
crossref_primary_10_1002_adfm_201910005
crossref_primary_10_1016_j_jcat_2021_04_017
crossref_primary_10_1002_smll_202208036
crossref_primary_10_1007_s11595_023_2695_3
crossref_primary_10_1007_s12274_022_4336_0
crossref_primary_10_1021_acsaem_2c03535
crossref_primary_10_1016_j_apcatb_2019_01_036
crossref_primary_10_1016_j_apsusc_2023_157159
crossref_primary_10_1002_adfm_202210665
crossref_primary_10_1039_D0CP04282J
crossref_primary_10_1039_D2CY01224C
crossref_primary_10_1016_j_cplett_2023_140498
crossref_primary_10_1021_acsami_4c17845
crossref_primary_10_1021_acscatal_2c04481
crossref_primary_10_1021_acsami_9b03368
crossref_primary_10_1002_smll_202203778
crossref_primary_10_1002_eem2_12390
crossref_primary_10_1002_eom2_12202
crossref_primary_10_1016_j_jcis_2020_07_044
crossref_primary_10_1016_j_cej_2022_136146
crossref_primary_10_1016_j_jelechem_2023_117500
crossref_primary_10_1073_pnas_2322107121
Cites_doi 10.1021/jp803020d
10.1039/C0EE00363H
10.1021/nn502247x
10.1039/C6CS00829A
10.1002/mrc.984
10.1021/cm990172z
10.1039/a908800h
10.1016/0009-2614(82)83672-5
10.1103/PhysRevLett.74.2146
10.1016/B978-0-12-655280-5.50009-2
10.1038/370615a0
10.1016/j.jmr.2009.04.004
10.1021/jp0606210
10.1016/j.nanoen.2016.08.054
10.1016/S0081-1947(08)60135-6
10.1016/S0022-3697(02)00481-X
10.1016/j.jallcom.2010.03.093
10.1021/ja512047k
10.1002/aenm.201300294
10.1038/35004548
10.1002/adfm.200800519
10.1021/ja030070g
10.1021/jp9535506
10.1016/0169-4332(94)00548-6
10.1021/jp063699p
10.1021/ja5044787
10.1002/ange.200704788
10.1021/ja100102y
10.1016/j.apcatb.2014.03.027
10.1002/(SICI)1096-9918(199807)26:8<549::AID-SIA396>3.0.CO;2-Q
10.1002/er.1284
10.1002/adfm.200600933
10.1016/0079-6565(91)80006-N
10.1016/j.nanoen.2018.02.021
10.1039/C5CS00838G
10.1021/jp0552473
10.1038/nature11936
10.1021/acsnano.6b07274
10.1002/anie.200704788
10.1021/ja103843d
10.1038/nature21691
10.1002/chem.201101594
10.1021/ja909901f
10.1002/cssc.201100181
10.1021/cs4005776
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201802173
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29947064
10_1002_adma_201802173
ADMA201802173
Genre article
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2017YFC1103800
– fundername: National SFC
  funderid: U1662134; U1663225; 51472190; 51611530672; 21711530705; 51503166; 21706199
– fundername: HPNSF
  funderid: 2016CFA033; 2017CFB487
– fundername: PCSIRT
  funderid: IRT_15R52
– fundername: ISTCP
  funderid: 2015DFE52870
– fundername: SKLPPC
  funderid: PPC2016007
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4393-f0c75040755835aca97eb3381c1d78b305ad32e33792603572405429dcc1344e3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 16:07:51 EDT 2025
Mon Jul 14 08:15:27 EDT 2025
Wed Feb 19 02:41:31 EST 2025
Tue Jul 01 00:44:43 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
Wed Jan 22 16:30:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords titanium dioxide
photocatalysis
energy storage
n-p effect
homojunction of oxygen and titanium vacancy
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4393-f0c75040755835aca97eb3381c1d78b305ad32e33792603572405429dcc1344e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29947064
PQID 2083685624
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2060870563
proquest_journals_2083685624
pubmed_primary_29947064
crossref_primary_10_1002_adma_201802173
crossref_citationtrail_10_1002_adma_201802173
wiley_primary_10_1002_adma_201802173_ADMA201802173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Aug
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-Aug
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1995; 74
1998; 26
2013; 3
1982; 92
2010; 19
2011
2010; 17
2017; 46
1994; 370
2009; 199
2006; 110
2013 2017; 3 11
1972
2005
2000; 2
2008 2006 2003; 112 110 64
1992
2011; 17
2011; 4
2014; 136
2018; 47
1956
2014; 156–157
1995; 84
2015; 137
1991; 23
2007 1996; 31 100
2002; 40
2000; 404
2010; 497
2010; 132
1999; 11
2013; 495
1981
2016; 28
2003; 125
2014; 8
2010; 4
2008 2008; 120 47
2017; 545
2016; 45
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_25_1
e_1_2_4_27_1
Kang L. S. J. (e_1_2_4_20_1) 2005
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
Kofstad P. (e_1_2_4_6_1) 1972
e_1_2_4_9_3
e_1_2_4_9_2
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_12_2
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
Moulder J. (e_1_2_4_42_1) 1992
e_1_2_4_43_2
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_26_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
Gleick J. (e_1_2_4_33_1) 2011
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_17_2
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 120 47
  start-page: 1790 1766
  year: 2008 2008
  publication-title: Angew. Chem. Angew. Chem., Int. Ed.
– year: 2011
– volume: 23
  start-page: 259
  year: 1991
  publication-title: Prog. Nucl. Mag. Res. Sp.
– volume: 132
  start-page: 10982
  year: 2010
  publication-title: J. Am. Chem. Soc.
– year: 1956
– volume: 28
  start-page: 296
  year: 2016
  publication-title: Nano Energy
– volume: 136
  start-page: 8839
  year: 2014
  publication-title: J. Am. Chem. Soc.
– year: 2005
– volume: 370
  start-page: 615
  year: 1994
  publication-title: Nature
– start-page: 155
  year: 1981
– volume: 40
  start-page: 70
  year: 2002
  publication-title: Magn. Reson. Chem.
– volume: 495
  start-page: 215
  year: 2013
  publication-title: Nature
– volume: 17
  start-page: 1984
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 74
  start-page: 2146
  year: 1995
  publication-title: Phys. Rev. Lett.
– volume: 132
  start-page: 6124
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 8
  year: 2018
  publication-title: Nano Energy
– volume: 84
  start-page: 285
  year: 1995
  publication-title: Appl. Surf. Sci.
– volume: 156–157
  start-page: 116
  year: 2014
  publication-title: Appl. Catal. B: Environ.
– volume: 110
  start-page: 18492
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 112 110 64
  start-page: 13248 16270 1069
  year: 2008 2006 2003
  publication-title: J. Phys. Chem. C J. Phys. Chem. B J. Phys. Chem. Solids
– volume: 92
  start-page: 670
  year: 1982
  publication-title: Chem. Phys. Lett.
– volume: 132
  start-page: 11856
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1319
  year: 2000
  publication-title: Phys. Chem. Chem. Phys.
– volume: 46
  start-page: 481
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 7229
  year: 2014
  publication-title: ACS Nano
– year: 1992
– volume: 4
  start-page: 172
  year: 2010
  publication-title: Energy. Environ. Sci.
– volume: 31 100
  start-page: 637 13226
  year: 2007 1996
  publication-title: Int. J. Energy Res. J. Phys. Chem.
– volume: 125
  start-page: 9770
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 545
  start-page: 80
  year: 2017
  publication-title: Nature
– volume: 11
  start-page: 2770
  year: 1999
  publication-title: Chem. Mater.
– volume: 3 11
  start-page: 1516 821
  year: 2013 2017
  publication-title: Adv. Energy. Mater. ACS Nano
– volume: 199
  start-page: 111
  year: 2009
  publication-title: J. Magn. Reson
– volume: 137
  start-page: 2975
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 2603
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 497
  start-page: 420
  year: 2010
  publication-title: J. Alloys Compd.
– volume: 17
  start-page: 14987
  year: 2011
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 1452
  year: 2011
  publication-title: ChemSusChem
– volume: 19
  start-page: 45
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 404
  start-page: 168
  year: 2000
  publication-title: Nature
– year: 1972
– volume: 26
  start-page: 549
  year: 1998
  publication-title: Surf. Interface Anal.
– volume: 110
  start-page: 927
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 3
  start-page: 2479
  year: 2013
  publication-title: ACS Catal.
– ident: e_1_2_4_9_1
  doi: 10.1021/jp803020d
– ident: e_1_2_4_4_1
  doi: 10.1039/C0EE00363H
– volume-title: Sintering: Densification, Grain Growth, and Microstructure
  year: 2005
  ident: e_1_2_4_20_1
– ident: e_1_2_4_22_1
  doi: 10.1021/nn502247x
– volume-title: Chaos: Making a New Science
  year: 2011
  ident: e_1_2_4_33_1
– ident: e_1_2_4_16_1
  doi: 10.1039/C6CS00829A
– ident: e_1_2_4_28_1
  doi: 10.1002/mrc.984
– ident: e_1_2_4_30_1
  doi: 10.1021/cm990172z
– ident: e_1_2_4_40_1
  doi: 10.1039/a908800h
– ident: e_1_2_4_37_1
  doi: 10.1016/0009-2614(82)83672-5
– ident: e_1_2_4_25_1
  doi: 10.1103/PhysRevLett.74.2146
– ident: e_1_2_4_7_1
  doi: 10.1016/B978-0-12-655280-5.50009-2
– ident: e_1_2_4_32_1
  doi: 10.1038/370615a0
– ident: e_1_2_4_29_1
  doi: 10.1016/j.jmr.2009.04.004
– ident: e_1_2_4_9_2
  doi: 10.1021/jp0606210
– ident: e_1_2_4_10_1
  doi: 10.1016/j.nanoen.2016.08.054
– ident: e_1_2_4_44_1
  doi: 10.1016/S0081-1947(08)60135-6
– ident: e_1_2_4_9_3
  doi: 10.1016/S0022-3697(02)00481-X
– ident: e_1_2_4_41_1
  doi: 10.1016/j.jallcom.2010.03.093
– ident: e_1_2_4_11_1
  doi: 10.1021/ja512047k
– ident: e_1_2_4_12_1
  doi: 10.1002/aenm.201300294
– ident: e_1_2_4_19_1
  doi: 10.1038/35004548
– volume-title: Handbook of X‐Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
  year: 1992
  ident: e_1_2_4_42_1
– volume-title: Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides
  year: 1972
  ident: e_1_2_4_6_1
– ident: e_1_2_4_3_1
  doi: 10.1002/adfm.200800519
– ident: e_1_2_4_15_1
  doi: 10.1021/ja030070g
– ident: e_1_2_4_43_2
  doi: 10.1021/jp9535506
– ident: e_1_2_4_39_1
  doi: 10.1016/0169-4332(94)00548-6
– ident: e_1_2_4_8_1
  doi: 10.1021/jp063699p
– ident: e_1_2_4_18_1
  doi: 10.1021/ja5044787
– ident: e_1_2_4_17_1
  doi: 10.1002/ange.200704788
– ident: e_1_2_4_2_1
  doi: 10.1021/ja100102y
– ident: e_1_2_4_5_1
  doi: 10.1016/j.apcatb.2014.03.027
– ident: e_1_2_4_38_1
  doi: 10.1002/(SICI)1096-9918(199807)26:8<549::AID-SIA396>3.0.CO;2-Q
– ident: e_1_2_4_43_1
  doi: 10.1002/er.1284
– ident: e_1_2_4_14_1
  doi: 10.1002/adfm.200600933
– ident: e_1_2_4_36_1
  doi: 10.1016/0079-6565(91)80006-N
– ident: e_1_2_4_21_1
  doi: 10.1016/j.nanoen.2018.02.021
– ident: e_1_2_4_13_1
  doi: 10.1039/C5CS00838G
– ident: e_1_2_4_31_1
  doi: 10.1021/jp0552473
– ident: e_1_2_4_1_1
  doi: 10.1038/nature11936
– ident: e_1_2_4_12_2
  doi: 10.1021/acsnano.6b07274
– ident: e_1_2_4_17_2
  doi: 10.1002/anie.200704788
– ident: e_1_2_4_35_1
  doi: 10.1021/ja103843d
– ident: e_1_2_4_24_1
  doi: 10.1038/nature21691
– ident: e_1_2_4_26_1
  doi: 10.1002/chem.201101594
– ident: e_1_2_4_23_1
  doi: 10.1021/ja909901f
– ident: e_1_2_4_27_1
  doi: 10.1002/cssc.201100181
– ident: e_1_2_4_34_1
  doi: 10.1021/cs4005776
SSID ssj0009606
Score 2.620021
Snippet The homojunction of oxygen/metal vacancies and its interfacial n–p effect on the physiochemical properties are rarely reported. Interfacial n–p homojunctions...
The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1802173
SubjectTerms Anatase
Charge density
Electron transfer
Energy storage
homojunction of oxygen and titanium vacancy
Homojunctions
Lattice parameters
Lattice vacancies
Materials science
NMR spectroscopy
n–p effect
Oxygen
photocatalysis
Physiochemistry
Titanium
Titanium dioxide
Title Homojunction of Oxygen and Titanium Vacancies and its Interfacial n–p Effect
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201802173
https://www.ncbi.nlm.nih.gov/pubmed/29947064
https://www.proquest.com/docview/2083685624
https://www.proquest.com/docview/2060870563
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFMcH8aQH96VujCB4Gm1nSZpjcaEIKoiKtzBboC6J2BbUk9_Bb-gn8b1JG60igt6SzJLlzZv3z2TyG0K2hFNcOx0xhH0xaXTCTKwNE4YnkbKgeGP83_n4JGpfyKMrdfXpL_6SD1ENuKFnhP4aHVyb7u4HNFS7wA1CglkjRtwnTthCVXT2wY9CeR5ge0KxJJLNIbWxzndHi49GpW9Sc1S5htBzOE308KLLGSc3O_2e2bHPX3iO_7mrGTI10KW0VTakWTLm8zky-YlWOE9O2sVdcQ1xEG1Ji4yePj5B86M6d_S8AyKz07-jl9qG9X674XCn16VhzDHTODRP87eX13taEpMXyMXhwflemw2WY2AWVItgWd0iCx40hgLZBrUlMbyJQ8S3DRc3DXQc2gnuhYgTeEkSKgaxgKthOWsbQkovFsl4XuR-mVBhuXIN74WXRloXJVxnUgutpM24rjdrhA3NkdoBqxyXzLhNS8oyT_E5pdVzqpHtKv99Sen4Mefa0LrpwFu7kNpEDn_EZY1sVsngZ_jxROe-6GOeqA59m4qgiqWyVVSngpAuY9B2NcKDbX-5hrS1f9yq9lb-UmiVTOB2ORNxjYz3Hvp-HdRRz2wED3gHP-oD-A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMePYHsAHmBcNgobGAmJJ2-tL0nzWO2iAmuRUId4i3yLVNiSibYS7GnfgW_IJ-Ecp8lWEEKCxyR24tg-Pn87zu8AvJReC-NNwgn2xZU1GbepsVxakSXaoeJN6X_n0TgZnqg3H3Wzm5D-han5EO2CG1lGHK_JwGlBeu-KGmp8BAcRwqyXypuwTmG9CZ9_8P6KIEUCPeL2pOZZovoNt7Er9lbzr_ql38TmqnaNzufoHtim2PWek8-7i7nddRe_EB3_67024O5SmrJB3Zfuw41QPoA714CFD2E8rM6qT-gKqTlZVbB3X79hD2Sm9GwyRZ05XZyxD8bFkL-zeHo6n7G47FgYWp1n5Y_L7-eshiY_gpOjw8n-kC8jMnCHwkXyousIB48yQ6Nyw7tlKU7G0em7nk_7FscO46UIUqYZzpOkTlEvUEAs71xPKhXkJqyVVRkeA5NOaN8LQQZllfNJJkyhjDRauUKYbr8DvGmP3C1x5RQ14zSvQcsip3rK23rqwKs2_XkN6vhjyu2mefOlwc7wap9Q_IlQHXjRXkZTo-8npgzVgtIkXRzedIK32Kq7Rfso9OoqRXnXAREb9y9lyAcHo0F79ORfMj2HW8PJ6Dg_fj1--xRu0_l6Y-I2rM2_LMIOiqW5fRbN4SeLOwgU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMePYEiIPXDfKAwwEhJP3lLf0jxW66pyWUFoQ3uLHNuRCiypaCsBT_sO-4Z8Es5x2mwFISR4TGLnYvv4_O3YvwPwXHotrLeGE-yLq8JmvEhtwWUhMqMdKt6U9jsfjs3oWL060SeXdvE3fIh2wo0sI_bXZOBTX-5dQEOtj9wgIph1U3kVrimTZBS8YfD-AiBF-jzS9qTmmVG9FbYxEXvr-dfd0m9ac126Rt8zvAV29dbNkpNPu4t5seu-_wJ0_J_Pug03l8KU9ZuWdAeuhOoubF7CFd6D8ag-rT-iI6TKZHXJ3n79hu2P2cqzowmqzMnilH2wLgb8ncXTk_mMxUnH0tLcPKt-nJ1PWYNMvg_Hw4Oj_RFfxmPgDmWL5GXiCAaPIkOjbsO7ZSkOxdHlu65PewX2HNZLEaRMMxwlSZ2iWqBwWN65rlQqyC3YqOoqPAAmndC-G4IMqlDOm0zYUllptXKlsEmvA3xVHblbwsopZsbnvMEsi5zKKW_LqQMv2vTTBtPxx5Q7q9rNl-Y6w6s9AvEboTrwrL2MhkZ_T2wV6gWlMQl2btrgLbabVtE-Cn26SlHcdUDEuv3LO-T9wWG_PXr4L5mewvV3g2H-5uX49SO4QaebVYk7sDH_sgiPUSnNiyfRGH4CYI8Gww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homojunction+of+Oxygen+and+Titanium+Vacancies+and+its+Interfacial+n%E2%80%93p+Effect&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Si%E2%80%90Ming+Wu&rft.au=Xiao%E2%80%90Long+Liu&rft.au=Xi%E2%80%90Liang+Lian&rft.au=Tian%2C+Ge&rft.date=2018-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=32&rft_id=info:doi/10.1002%2Fadma.201802173&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon