Homojunction of Oxygen and Titanium Vacancies and its Interfacial n–p Effect
The homojunction of oxygen/metal vacancies and its interfacial n–p effect on the physiochemical properties are rarely reported. Interfacial n–p homojunctions of TiO2 are fabricated by directly decorating interfacial p‐type titanium‐defected TiO2 around n‐type oxygen‐defected TiO2 nanocrystals in amo...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 32; pp. e1802173 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The homojunction of oxygen/metal vacancies and its interfacial n–p effect on the physiochemical properties are rarely reported. Interfacial n–p homojunctions of TiO2 are fabricated by directly decorating interfacial p‐type titanium‐defected TiO2 around n‐type oxygen‐defected TiO2 nanocrystals in amorphous–anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D 1H TQ‐SQ MAS NMR are present. Amorphous–anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n‐type to p‐type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new “homojunction of oxygen and titanium vacancies” concept, characteristics, and mechanism are proposed at an atomic‐/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.
The homojunction of oxygen and titanium vacancies developed in the amorphous–anatase interface of nanostructured TiO2 results in a unique n–p electronic transmission, which is mostly preferred to the mobility of electronic charge carriers. It also contributes to significant performance regarding photogeneration current, photocatalysis, and energy storage. |
---|---|
AbstractList | The homojunction of oxygen/metal vacancies and its interfacial n–p effect on the physiochemical properties are rarely reported. Interfacial n–p homojunctions of TiO2 are fabricated by directly decorating interfacial p‐type titanium‐defected TiO2 around n‐type oxygen‐defected TiO2 nanocrystals in amorphous–anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D 1H TQ‐SQ MAS NMR are present. Amorphous–anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n‐type to p‐type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new “homojunction of oxygen and titanium vacancies” concept, characteristics, and mechanism are proposed at an atomic‐/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer. The homojunction of oxygen/metal vacancies and its interfacial n–p effect on the physiochemical properties are rarely reported. Interfacial n–p homojunctions of TiO2 are fabricated by directly decorating interfacial p‐type titanium‐defected TiO2 around n‐type oxygen‐defected TiO2 nanocrystals in amorphous–anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D 1H TQ‐SQ MAS NMR are present. Amorphous–anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n‐type to p‐type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new “homojunction of oxygen and titanium vacancies” concept, characteristics, and mechanism are proposed at an atomic‐/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer. The homojunction of oxygen and titanium vacancies developed in the amorphous–anatase interface of nanostructured TiO2 results in a unique n–p electronic transmission, which is mostly preferred to the mobility of electronic charge carriers. It also contributes to significant performance regarding photogeneration current, photocatalysis, and energy storage. The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO2 are fabricated by directly decorating interfacial p-type titanium-defected TiO2 around n-type oxygen-defected TiO2 nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2 ; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D 1 H TQ-SQ MAS NMR are present. Amorphous-anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new "homojunction of oxygen and titanium vacancies" concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO2 are fabricated by directly decorating interfacial p-type titanium-defected TiO2 around n-type oxygen-defected TiO2 nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2 ; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D 1 H TQ-SQ MAS NMR are present. Amorphous-anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new "homojunction of oxygen and titanium vacancies" concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer. The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO are fabricated by directly decorating interfacial p-type titanium-defected TiO around n-type oxygen-defected TiO nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO ; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D H TQ-SQ MAS NMR are present. Amorphous-anatase TiO shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new "homojunction of oxygen and titanium vacancies" concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer. The homojunction of oxygen/metal vacancies and its interfacial n–p effect on the physiochemical properties are rarely reported. Interfacial n–p homojunctions of TiO 2 are fabricated by directly decorating interfacial p‐type titanium‐defected TiO 2 around n‐type oxygen‐defected TiO 2 nanocrystals in amorphous–anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO 2 ; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D 1 H TQ‐SQ MAS NMR are present. Amorphous–anatase TiO 2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n‐type to p‐type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new “homojunction of oxygen and titanium vacancies” concept, characteristics, and mechanism are proposed at an atomic‐/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer. |
Author | Yu, Hao‐Zheng Liu, Xiao‐Long Wei, Hao Hu, Jie Wu, Si‐Ming Chang, Gang‐Gang Tian, Ge Zhang, Yue‐Xing Yang, Xiao‐Yu Lian, Xi‐Liang Su, Bao‐Lian Wang, Li‐Ying Janiak, Christoph Lu, Yi Zhao, Heng Tendeloo, Gustaaf |
Author_xml | – sequence: 1 givenname: Si‐Ming surname: Wu fullname: Wu, Si‐Ming organization: Wuhan University of Technology – sequence: 2 givenname: Xiao‐Long surname: Liu fullname: Liu, Xiao‐Long organization: The Chinese Academy of Sciences – sequence: 3 givenname: Xi‐Liang surname: Lian fullname: Lian, Xi‐Liang organization: Wuhan University of Technology – sequence: 4 givenname: Ge surname: Tian fullname: Tian, Ge organization: Wuhan University of Technology – sequence: 5 givenname: Christoph surname: Janiak fullname: Janiak, Christoph organization: Heinrich‐Heine‐Universität Düsseldorf – sequence: 6 givenname: Yue‐Xing surname: Zhang fullname: Zhang, Yue‐Xing organization: Hubei University – sequence: 7 givenname: Yi surname: Lu fullname: Lu, Yi organization: Wuhan University of Technology – sequence: 8 givenname: Hao‐Zheng surname: Yu fullname: Yu, Hao‐Zheng organization: Wuhan University of Technology – sequence: 9 givenname: Jie surname: Hu fullname: Hu, Jie organization: Wuhan University of Technology – sequence: 10 givenname: Hao surname: Wei fullname: Wei, Hao organization: Wuhan University of Technology – sequence: 11 givenname: Heng surname: Zhao fullname: Zhao, Heng organization: Wuhan University of Technology – sequence: 12 givenname: Gang‐Gang surname: Chang fullname: Chang, Gang‐Gang organization: Wuhan University of Technology – sequence: 13 givenname: Gustaaf surname: Tendeloo fullname: Tendeloo, Gustaaf organization: University of Antwerp – sequence: 14 givenname: Li‐Ying surname: Wang fullname: Wang, Li‐Ying organization: The Chinese Academy of Sciences – sequence: 15 givenname: Xiao‐Yu surname: Yang fullname: Yang, Xiao‐Yu email: xyyang@seas.harvard.edu, xyyang@whut.edu.cn organization: Harvard University – sequence: 16 givenname: Bao‐Lian surname: Su fullname: Su, Bao‐Lian organization: University of Namur |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29947064$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKxDAUhoMoOl62LqXgxk3Hk3uzHLyDl426LZk0lQxtMjYtOjvfwTf0Sew44wiCuAocvu-c8P_baN0HbxHaxzDEAORYF7UeEsAZECzpGhpgTnDKQPF1NABFeaoEy7bQdowTAFACxCbaIkoxCYIN0O1lqMOk86Z1wSehTO5eZ0_WJ9oXyb1rtXddnTxqo71xNn6NXRuTK9_aptTG6SrxH2_v0-SsLK1pd9FGqato95bvDno4P7s_uUyv7y6uTkbXqWFU0bQEIzkwkJxnlPfblbRjSjNscCGzMQWuC0ospVIRAZRLwoAzogpjMGXM0h10tNg7bcJzZ2Ob1y4aW1Xa29DFnICATAIXtEcPf6GT0DW-_11PZVRkXBDWUwdLqhvXtsinjat1M8u_k-qB4QIwTYixseUKwZDPq8jnVeSrKnqB_RJMn-c85rbRrvpbUwvtxVV29s-RfHR6M_pxPwGtPps9 |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_146994 crossref_primary_10_1039_D0CE00966K crossref_primary_10_1002_adma_202200756 crossref_primary_10_1039_C8CY01973H crossref_primary_10_1039_D0TA04297H crossref_primary_10_1016_j_inoche_2023_111880 crossref_primary_10_1039_D2SC01872A crossref_primary_10_1021_acssensors_0c01044 crossref_primary_10_1039_D0CP00672F crossref_primary_10_1021_acsami_4c10346 crossref_primary_10_1039_C8EN01375F crossref_primary_10_1039_D3TA00553D crossref_primary_10_1002_adfm_202304912 crossref_primary_10_1016_j_apsusc_2024_159817 crossref_primary_10_1016_j_jiec_2024_05_005 crossref_primary_10_1002_smll_202300620 crossref_primary_10_1021_acs_jpcc_1c09627 crossref_primary_10_1016_j_ijhydene_2020_11_151 crossref_primary_10_1016_j_apcatb_2019_04_046 crossref_primary_10_1002_idm2_12025 crossref_primary_10_1016_j_chempr_2023_06_021 crossref_primary_10_1021_acsami_2c23120 crossref_primary_10_1016_j_cej_2024_155180 crossref_primary_10_1016_j_cej_2023_145810 crossref_primary_10_1021_acs_nanolett_9b05121 crossref_primary_10_1016_j_apcata_2022_119016 crossref_primary_10_1039_C9CC03595H crossref_primary_10_1002_chem_202101817 crossref_primary_10_1016_j_envres_2021_111056 crossref_primary_10_1002_adfm_202005155 crossref_primary_10_1021_acsami_1c20265 crossref_primary_10_1038_s41467_020_14333_w crossref_primary_10_1039_D3CC01409F crossref_primary_10_1039_D2NR03877C crossref_primary_10_1007_s11082_023_04984_6 crossref_primary_10_1021_acssuschemeng_9b02008 crossref_primary_10_1002_cnma_201800326 crossref_primary_10_1039_D2EE01816K crossref_primary_10_1016_j_jece_2023_109979 crossref_primary_10_1039_D2NR02977D crossref_primary_10_1002_adma_202415844 crossref_primary_10_1007_s40843_024_3029_5 crossref_primary_10_1002_smll_202202659 crossref_primary_10_1039_D1RA00251A crossref_primary_10_1002_adma_201906156 crossref_primary_10_3390_catal10050539 crossref_primary_10_1021_acs_nanolett_2c02070 crossref_primary_10_1039_D4TC00098F crossref_primary_10_1002_adma_202202873 crossref_primary_10_1002_adfm_202106700 crossref_primary_10_1016_j_jcis_2024_04_180 crossref_primary_10_1002_adfm_202305940 crossref_primary_10_1021_acs_jpcc_3c02592 crossref_primary_10_1039_D3EE01344H crossref_primary_10_1002_smll_202206176 crossref_primary_10_1002_aoc_7490 crossref_primary_10_3390_catal9050439 crossref_primary_10_1039_D1TA03895H crossref_primary_10_1039_D3CC06102G crossref_primary_10_1016_j_cej_2021_129231 crossref_primary_10_1039_D0NR01180K crossref_primary_10_1016_j_cej_2020_125784 crossref_primary_10_1039_D3NJ03018K crossref_primary_10_1016_j_apsusc_2021_151175 crossref_primary_10_1016_j_cej_2024_151773 crossref_primary_10_1039_C8TA06783J crossref_primary_10_3390_catal11020205 crossref_primary_10_1002_anie_201900013 crossref_primary_10_1039_D2GC04362A crossref_primary_10_1080_02670836_2023_2246306 crossref_primary_10_1007_s10854_019_02257_1 crossref_primary_10_1016_j_cej_2021_132128 crossref_primary_10_1016_j_cplett_2019_136989 crossref_primary_10_1039_D3TA03239F crossref_primary_10_1016_j_jechem_2020_09_020 crossref_primary_10_1021_acsanm_9b00485 crossref_primary_10_1016_j_cej_2022_139068 crossref_primary_10_1016_j_cplett_2019_01_002 crossref_primary_10_1016_j_chempr_2022_05_007 crossref_primary_10_1039_D3TA01460F crossref_primary_10_1002_ange_201900013 crossref_primary_10_1002_asia_202000889 crossref_primary_10_1002_chem_202100754 crossref_primary_10_1002_solr_201900487 crossref_primary_10_1016_j_cej_2021_129894 crossref_primary_10_1039_D1CY00750E crossref_primary_10_1021_acs_jpclett_0c00509 crossref_primary_10_1021_acs_nanolett_1c00897 crossref_primary_10_1021_acsnano_3c05174 crossref_primary_10_1039_D0QI01327G crossref_primary_10_1016_j_cej_2020_124474 crossref_primary_10_1016_j_jlumin_2021_118454 crossref_primary_10_1039_C9TA13747E crossref_primary_10_1002_advs_201900053 crossref_primary_10_1039_C9TA06589J crossref_primary_10_1007_s12598_023_02505_8 crossref_primary_10_1007_s40843_020_1305_6 crossref_primary_10_1039_C9NR10092J crossref_primary_10_1016_j_jcat_2024_115665 crossref_primary_10_1016_j_buildenv_2022_109216 crossref_primary_10_1039_D2TA08491K crossref_primary_10_1016_j_apcatb_2024_124517 crossref_primary_10_1039_D3QI01203D crossref_primary_10_1002_adma_202307003 crossref_primary_10_1021_acsaem_8b01839 crossref_primary_10_1016_j_jcis_2022_05_075 crossref_primary_10_1016_j_apsusc_2022_153744 crossref_primary_10_1016_j_jcis_2022_09_131 crossref_primary_10_1039_D1TA06039B crossref_primary_10_1002_admi_202300595 crossref_primary_10_1007_s12274_021_3587_5 crossref_primary_10_1016_j_colsurfa_2024_134929 crossref_primary_10_1039_D0RA01218A crossref_primary_10_1002_ente_202300052 crossref_primary_10_1002_zaac_202000482 crossref_primary_10_1016_j_ecoenv_2024_115927 crossref_primary_10_1021_acsami_9b06511 crossref_primary_10_1016_j_cplett_2019_137068 crossref_primary_10_1016_j_cej_2020_125909 crossref_primary_10_1002_adfm_201910005 crossref_primary_10_1016_j_jcat_2021_04_017 crossref_primary_10_1002_smll_202208036 crossref_primary_10_1007_s11595_023_2695_3 crossref_primary_10_1007_s12274_022_4336_0 crossref_primary_10_1021_acsaem_2c03535 crossref_primary_10_1016_j_apcatb_2019_01_036 crossref_primary_10_1016_j_apsusc_2023_157159 crossref_primary_10_1002_adfm_202210665 crossref_primary_10_1039_D0CP04282J crossref_primary_10_1039_D2CY01224C crossref_primary_10_1016_j_cplett_2023_140498 crossref_primary_10_1021_acsami_4c17845 crossref_primary_10_1021_acscatal_2c04481 crossref_primary_10_1021_acsami_9b03368 crossref_primary_10_1002_smll_202203778 crossref_primary_10_1002_eem2_12390 crossref_primary_10_1002_eom2_12202 crossref_primary_10_1016_j_jcis_2020_07_044 crossref_primary_10_1016_j_cej_2022_136146 crossref_primary_10_1016_j_jelechem_2023_117500 crossref_primary_10_1073_pnas_2322107121 |
Cites_doi | 10.1021/jp803020d 10.1039/C0EE00363H 10.1021/nn502247x 10.1039/C6CS00829A 10.1002/mrc.984 10.1021/cm990172z 10.1039/a908800h 10.1016/0009-2614(82)83672-5 10.1103/PhysRevLett.74.2146 10.1016/B978-0-12-655280-5.50009-2 10.1038/370615a0 10.1016/j.jmr.2009.04.004 10.1021/jp0606210 10.1016/j.nanoen.2016.08.054 10.1016/S0081-1947(08)60135-6 10.1016/S0022-3697(02)00481-X 10.1016/j.jallcom.2010.03.093 10.1021/ja512047k 10.1002/aenm.201300294 10.1038/35004548 10.1002/adfm.200800519 10.1021/ja030070g 10.1021/jp9535506 10.1016/0169-4332(94)00548-6 10.1021/jp063699p 10.1021/ja5044787 10.1002/ange.200704788 10.1021/ja100102y 10.1016/j.apcatb.2014.03.027 10.1002/(SICI)1096-9918(199807)26:8<549::AID-SIA396>3.0.CO;2-Q 10.1002/er.1284 10.1002/adfm.200600933 10.1016/0079-6565(91)80006-N 10.1016/j.nanoen.2018.02.021 10.1039/C5CS00838G 10.1021/jp0552473 10.1038/nature11936 10.1021/acsnano.6b07274 10.1002/anie.200704788 10.1021/ja103843d 10.1038/nature21691 10.1002/chem.201101594 10.1021/ja909901f 10.1002/cssc.201100181 10.1021/cs4005776 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201802173 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29947064 10_1002_adma_201802173 ADMA201802173 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2017YFC1103800 – fundername: National SFC funderid: U1662134; U1663225; 51472190; 51611530672; 21711530705; 51503166; 21706199 – fundername: HPNSF funderid: 2016CFA033; 2017CFB487 – fundername: PCSIRT funderid: IRT_15R52 – fundername: ISTCP funderid: 2015DFE52870 – fundername: SKLPPC funderid: PPC2016007 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4393-f0c75040755835aca97eb3381c1d78b305ad32e33792603572405429dcc1344e3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 16:07:51 EDT 2025 Mon Jul 14 08:15:27 EDT 2025 Wed Feb 19 02:41:31 EST 2025 Tue Jul 01 00:44:43 EDT 2025 Thu Apr 24 22:54:12 EDT 2025 Wed Jan 22 16:30:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | titanium dioxide photocatalysis energy storage n-p effect homojunction of oxygen and titanium vacancy |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4393-f0c75040755835aca97eb3381c1d78b305ad32e33792603572405429dcc1344e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29947064 |
PQID | 2083685624 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2060870563 proquest_journals_2083685624 pubmed_primary_29947064 crossref_primary_10_1002_adma_201802173 crossref_citationtrail_10_1002_adma_201802173 wiley_primary_10_1002_adma_201802173_ADMA201802173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Aug |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-Aug |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1995; 74 1998; 26 2013; 3 1982; 92 2010; 19 2011 2010; 17 2017; 46 1994; 370 2009; 199 2006; 110 2013 2017; 3 11 1972 2005 2000; 2 2008 2006 2003; 112 110 64 1992 2011; 17 2011; 4 2014; 136 2018; 47 1956 2014; 156–157 1995; 84 2015; 137 1991; 23 2007 1996; 31 100 2002; 40 2000; 404 2010; 497 2010; 132 1999; 11 2013; 495 1981 2016; 28 2003; 125 2014; 8 2010; 4 2008 2008; 120 47 2017; 545 2016; 45 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_25_1 e_1_2_4_27_1 Kang L. S. J. (e_1_2_4_20_1) 2005 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 Kofstad P. (e_1_2_4_6_1) 1972 e_1_2_4_9_3 e_1_2_4_9_2 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_12_1 e_1_2_4_12_2 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 Moulder J. (e_1_2_4_42_1) 1992 e_1_2_4_43_2 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_26_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 Gleick J. (e_1_2_4_33_1) 2011 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_17_2 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 120 47 start-page: 1790 1766 year: 2008 2008 publication-title: Angew. Chem. Angew. Chem., Int. Ed. – year: 2011 – volume: 23 start-page: 259 year: 1991 publication-title: Prog. Nucl. Mag. Res. Sp. – volume: 132 start-page: 10982 year: 2010 publication-title: J. Am. Chem. Soc. – year: 1956 – volume: 28 start-page: 296 year: 2016 publication-title: Nano Energy – volume: 136 start-page: 8839 year: 2014 publication-title: J. Am. Chem. Soc. – year: 2005 – volume: 370 start-page: 615 year: 1994 publication-title: Nature – start-page: 155 year: 1981 – volume: 40 start-page: 70 year: 2002 publication-title: Magn. Reson. Chem. – volume: 495 start-page: 215 year: 2013 publication-title: Nature – volume: 17 start-page: 1984 year: 2010 publication-title: Adv. Funct. Mater. – volume: 74 start-page: 2146 year: 1995 publication-title: Phys. Rev. Lett. – volume: 132 start-page: 6124 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 8 year: 2018 publication-title: Nano Energy – volume: 84 start-page: 285 year: 1995 publication-title: Appl. Surf. Sci. – volume: 156–157 start-page: 116 year: 2014 publication-title: Appl. Catal. B: Environ. – volume: 110 start-page: 18492 year: 2006 publication-title: J. Phys. Chem. B – volume: 112 110 64 start-page: 13248 16270 1069 year: 2008 2006 2003 publication-title: J. Phys. Chem. C J. Phys. Chem. B J. Phys. Chem. Solids – volume: 92 start-page: 670 year: 1982 publication-title: Chem. Phys. Lett. – volume: 132 start-page: 11856 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1319 year: 2000 publication-title: Phys. Chem. Chem. Phys. – volume: 46 start-page: 481 year: 2017 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 7229 year: 2014 publication-title: ACS Nano – year: 1992 – volume: 4 start-page: 172 year: 2010 publication-title: Energy. Environ. Sci. – volume: 31 100 start-page: 637 13226 year: 2007 1996 publication-title: Int. J. Energy Res. J. Phys. Chem. – volume: 125 start-page: 9770 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 545 start-page: 80 year: 2017 publication-title: Nature – volume: 11 start-page: 2770 year: 1999 publication-title: Chem. Mater. – volume: 3 11 start-page: 1516 821 year: 2013 2017 publication-title: Adv. Energy. Mater. ACS Nano – volume: 199 start-page: 111 year: 2009 publication-title: J. Magn. Reson – volume: 137 start-page: 2975 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 2603 year: 2016 publication-title: Chem. Soc. Rev. – volume: 497 start-page: 420 year: 2010 publication-title: J. Alloys Compd. – volume: 17 start-page: 14987 year: 2011 publication-title: Chem. Eur. J. – volume: 4 start-page: 1452 year: 2011 publication-title: ChemSusChem – volume: 19 start-page: 45 year: 2010 publication-title: Adv. Funct. Mater. – volume: 404 start-page: 168 year: 2000 publication-title: Nature – year: 1972 – volume: 26 start-page: 549 year: 1998 publication-title: Surf. Interface Anal. – volume: 110 start-page: 927 year: 2006 publication-title: J. Phys. Chem. B – volume: 3 start-page: 2479 year: 2013 publication-title: ACS Catal. – ident: e_1_2_4_9_1 doi: 10.1021/jp803020d – ident: e_1_2_4_4_1 doi: 10.1039/C0EE00363H – volume-title: Sintering: Densification, Grain Growth, and Microstructure year: 2005 ident: e_1_2_4_20_1 – ident: e_1_2_4_22_1 doi: 10.1021/nn502247x – volume-title: Chaos: Making a New Science year: 2011 ident: e_1_2_4_33_1 – ident: e_1_2_4_16_1 doi: 10.1039/C6CS00829A – ident: e_1_2_4_28_1 doi: 10.1002/mrc.984 – ident: e_1_2_4_30_1 doi: 10.1021/cm990172z – ident: e_1_2_4_40_1 doi: 10.1039/a908800h – ident: e_1_2_4_37_1 doi: 10.1016/0009-2614(82)83672-5 – ident: e_1_2_4_25_1 doi: 10.1103/PhysRevLett.74.2146 – ident: e_1_2_4_7_1 doi: 10.1016/B978-0-12-655280-5.50009-2 – ident: e_1_2_4_32_1 doi: 10.1038/370615a0 – ident: e_1_2_4_29_1 doi: 10.1016/j.jmr.2009.04.004 – ident: e_1_2_4_9_2 doi: 10.1021/jp0606210 – ident: e_1_2_4_10_1 doi: 10.1016/j.nanoen.2016.08.054 – ident: e_1_2_4_44_1 doi: 10.1016/S0081-1947(08)60135-6 – ident: e_1_2_4_9_3 doi: 10.1016/S0022-3697(02)00481-X – ident: e_1_2_4_41_1 doi: 10.1016/j.jallcom.2010.03.093 – ident: e_1_2_4_11_1 doi: 10.1021/ja512047k – ident: e_1_2_4_12_1 doi: 10.1002/aenm.201300294 – ident: e_1_2_4_19_1 doi: 10.1038/35004548 – volume-title: Handbook of X‐Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data year: 1992 ident: e_1_2_4_42_1 – volume-title: Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides year: 1972 ident: e_1_2_4_6_1 – ident: e_1_2_4_3_1 doi: 10.1002/adfm.200800519 – ident: e_1_2_4_15_1 doi: 10.1021/ja030070g – ident: e_1_2_4_43_2 doi: 10.1021/jp9535506 – ident: e_1_2_4_39_1 doi: 10.1016/0169-4332(94)00548-6 – ident: e_1_2_4_8_1 doi: 10.1021/jp063699p – ident: e_1_2_4_18_1 doi: 10.1021/ja5044787 – ident: e_1_2_4_17_1 doi: 10.1002/ange.200704788 – ident: e_1_2_4_2_1 doi: 10.1021/ja100102y – ident: e_1_2_4_5_1 doi: 10.1016/j.apcatb.2014.03.027 – ident: e_1_2_4_38_1 doi: 10.1002/(SICI)1096-9918(199807)26:8<549::AID-SIA396>3.0.CO;2-Q – ident: e_1_2_4_43_1 doi: 10.1002/er.1284 – ident: e_1_2_4_14_1 doi: 10.1002/adfm.200600933 – ident: e_1_2_4_36_1 doi: 10.1016/0079-6565(91)80006-N – ident: e_1_2_4_21_1 doi: 10.1016/j.nanoen.2018.02.021 – ident: e_1_2_4_13_1 doi: 10.1039/C5CS00838G – ident: e_1_2_4_31_1 doi: 10.1021/jp0552473 – ident: e_1_2_4_1_1 doi: 10.1038/nature11936 – ident: e_1_2_4_12_2 doi: 10.1021/acsnano.6b07274 – ident: e_1_2_4_17_2 doi: 10.1002/anie.200704788 – ident: e_1_2_4_35_1 doi: 10.1021/ja103843d – ident: e_1_2_4_24_1 doi: 10.1038/nature21691 – ident: e_1_2_4_26_1 doi: 10.1002/chem.201101594 – ident: e_1_2_4_23_1 doi: 10.1021/ja909901f – ident: e_1_2_4_27_1 doi: 10.1002/cssc.201100181 – ident: e_1_2_4_34_1 doi: 10.1021/cs4005776 |
SSID | ssj0009606 |
Score | 2.620021 |
Snippet | The homojunction of oxygen/metal vacancies and its interfacial n–p effect on the physiochemical properties are rarely reported. Interfacial n–p homojunctions... The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1802173 |
SubjectTerms | Anatase Charge density Electron transfer Energy storage homojunction of oxygen and titanium vacancy Homojunctions Lattice parameters Lattice vacancies Materials science NMR spectroscopy n–p effect Oxygen photocatalysis Physiochemistry Titanium Titanium dioxide |
Title | Homojunction of Oxygen and Titanium Vacancies and its Interfacial n–p Effect |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201802173 https://www.ncbi.nlm.nih.gov/pubmed/29947064 https://www.proquest.com/docview/2083685624 https://www.proquest.com/docview/2060870563 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFMcH8aQH96VujCB4Gm1nSZpjcaEIKoiKtzBboC6J2BbUk9_Bb-gn8b1JG60igt6SzJLlzZv3z2TyG0K2hFNcOx0xhH0xaXTCTKwNE4YnkbKgeGP83_n4JGpfyKMrdfXpL_6SD1ENuKFnhP4aHVyb7u4HNFS7wA1CglkjRtwnTthCVXT2wY9CeR5ge0KxJJLNIbWxzndHi49GpW9Sc1S5htBzOE308KLLGSc3O_2e2bHPX3iO_7mrGTI10KW0VTakWTLm8zky-YlWOE9O2sVdcQ1xEG1Ji4yePj5B86M6d_S8AyKz07-jl9qG9X674XCn16VhzDHTODRP87eX13taEpMXyMXhwflemw2WY2AWVItgWd0iCx40hgLZBrUlMbyJQ8S3DRc3DXQc2gnuhYgTeEkSKgaxgKthOWsbQkovFsl4XuR-mVBhuXIN74WXRloXJVxnUgutpM24rjdrhA3NkdoBqxyXzLhNS8oyT_E5pdVzqpHtKv99Sen4Mefa0LrpwFu7kNpEDn_EZY1sVsngZ_jxROe-6GOeqA59m4qgiqWyVVSngpAuY9B2NcKDbX-5hrS1f9yq9lb-UmiVTOB2ORNxjYz3Hvp-HdRRz2wED3gHP-oD-A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMePYHsAHmBcNgobGAmJJ2-tL0nzWO2iAmuRUId4i3yLVNiSibYS7GnfgW_IJ-Ecp8lWEEKCxyR24tg-Pn87zu8AvJReC-NNwgn2xZU1GbepsVxakSXaoeJN6X_n0TgZnqg3H3Wzm5D-han5EO2CG1lGHK_JwGlBeu-KGmp8BAcRwqyXypuwTmG9CZ9_8P6KIEUCPeL2pOZZovoNt7Er9lbzr_ql38TmqnaNzufoHtim2PWek8-7i7nddRe_EB3_67024O5SmrJB3Zfuw41QPoA714CFD2E8rM6qT-gKqTlZVbB3X79hD2Sm9GwyRZ05XZyxD8bFkL-zeHo6n7G47FgYWp1n5Y_L7-eshiY_gpOjw8n-kC8jMnCHwkXyousIB48yQ6Nyw7tlKU7G0em7nk_7FscO46UIUqYZzpOkTlEvUEAs71xPKhXkJqyVVRkeA5NOaN8LQQZllfNJJkyhjDRauUKYbr8DvGmP3C1x5RQ14zSvQcsip3rK23rqwKs2_XkN6vhjyu2mefOlwc7wap9Q_IlQHXjRXkZTo-8npgzVgtIkXRzedIK32Kq7Rfso9OoqRXnXAREb9y9lyAcHo0F79ORfMj2HW8PJ6Dg_fj1--xRu0_l6Y-I2rM2_LMIOiqW5fRbN4SeLOwgU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMePYEiIPXDfKAwwEhJP3lLf0jxW66pyWUFoQ3uLHNuRCiypaCsBT_sO-4Z8Es5x2mwFISR4TGLnYvv4_O3YvwPwXHotrLeGE-yLq8JmvEhtwWUhMqMdKt6U9jsfjs3oWL060SeXdvE3fIh2wo0sI_bXZOBTX-5dQEOtj9wgIph1U3kVrimTZBS8YfD-AiBF-jzS9qTmmVG9FbYxEXvr-dfd0m9ac126Rt8zvAV29dbNkpNPu4t5seu-_wJ0_J_Pug03l8KU9ZuWdAeuhOoubF7CFd6D8ag-rT-iI6TKZHXJ3n79hu2P2cqzowmqzMnilH2wLgb8ncXTk_mMxUnH0tLcPKt-nJ1PWYNMvg_Hw4Oj_RFfxmPgDmWL5GXiCAaPIkOjbsO7ZSkOxdHlu65PewX2HNZLEaRMMxwlSZ2iWqBwWN65rlQqyC3YqOoqPAAmndC-G4IMqlDOm0zYUllptXKlsEmvA3xVHblbwsopZsbnvMEsi5zKKW_LqQMv2vTTBtPxx5Q7q9rNl-Y6w6s9AvEboTrwrL2MhkZ_T2wV6gWlMQl2btrgLbabVtE-Cn26SlHcdUDEuv3LO-T9wWG_PXr4L5mewvV3g2H-5uX49SO4QaebVYk7sDH_sgiPUSnNiyfRGH4CYI8Gww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homojunction+of+Oxygen+and+Titanium+Vacancies+and+its+Interfacial+n%E2%80%93p+Effect&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Si%E2%80%90Ming+Wu&rft.au=Xiao%E2%80%90Long+Liu&rft.au=Xi%E2%80%90Liang+Lian&rft.au=Tian%2C+Ge&rft.date=2018-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=32&rft_id=info:doi/10.1002%2Fadma.201802173&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |