Dilute Alloying to Implant Activation Centers in Nitride Electrocatalysts for Lithium–Sulfur Batteries
Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electro...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 7; pp. e2209233 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium–sulfur (Li–S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li–S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mgS cm−2. This work opens up new opportunities toward the rational design of Li–S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain‐catalyzed reactions in energy applications.
Dilute alloying implants “activating” centers in nitride alloy electrocatalysts to boost lithium–sulfur (Li–S) batteries. Dilute Co dopants activate the surrounding N and Ti atoms to construct multiatom active domains for efficient bidirectional catalysis of S redox reactions. The corresponding dilute nitride alloy improves the reaction kinetics and electrochemical performance of Li–S batteries. |
---|---|
AbstractList | Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium–sulfur (Li–S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li–S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mgS cm−2. This work opens up new opportunities toward the rational design of Li–S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain‐catalyzed reactions in energy applications. Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium-sulfur (Li-S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li-S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mgS cm-2 . This work opens up new opportunities toward the rational design of Li-S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain-catalyzed reactions in energy applications.Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium-sulfur (Li-S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li-S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mgS cm-2 . This work opens up new opportunities toward the rational design of Li-S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain-catalyzed reactions in energy applications. Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium–sulfur (Li–S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li–S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mg S cm −2 . This work opens up new opportunities toward the rational design of Li–S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain‐catalyzed reactions in energy applications. Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium-sulfur (Li-S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li-S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mg cm . This work opens up new opportunities toward the rational design of Li-S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain-catalyzed reactions in energy applications. Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium–sulfur (Li–S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li–S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mgS cm−2. This work opens up new opportunities toward the rational design of Li–S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain‐catalyzed reactions in energy applications. Dilute alloying implants “activating” centers in nitride alloy electrocatalysts to boost lithium–sulfur (Li–S) batteries. Dilute Co dopants activate the surrounding N and Ti atoms to construct multiatom active domains for efficient bidirectional catalysis of S redox reactions. The corresponding dilute nitride alloy improves the reaction kinetics and electrochemical performance of Li–S batteries. |
Author | Huang, Jia‐Qi Li, Dong Peng, Yan‐Qi Liu, Xinyan Li, Bo‐Quan Peng, Hong‐Jie Liu, Quanbing Wu, Yujie |
Author_xml | – sequence: 1 givenname: Quanbing surname: Liu fullname: Liu, Quanbing organization: Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory) – sequence: 2 givenname: Yujie surname: Wu fullname: Wu, Yujie organization: Guangdong University of Technology – sequence: 3 givenname: Dong surname: Li fullname: Li, Dong organization: Guangdong University of Technology – sequence: 4 givenname: Yan‐Qi surname: Peng fullname: Peng, Yan‐Qi organization: Beijing Institute of Technology – sequence: 5 givenname: Xinyan orcidid: 0000-0002-3629-1730 surname: Liu fullname: Liu, Xinyan email: xinyanl@uestc.edu.cn organization: University of Electronic Science and Technology of China – sequence: 6 givenname: Bo‐Quan orcidid: 0000-0002-9544-5795 surname: Li fullname: Li, Bo‐Quan organization: Beijing Institute of Technology – sequence: 7 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi organization: Beijing Institute of Technology – sequence: 8 givenname: Hong‐Jie orcidid: 0000-0002-4183-703X surname: Peng fullname: Peng, Hong‐Jie email: hjpeng@uestc.edu.cn organization: University of Electronic Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36414611$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQhy1URLcLV47IEhcuWfwvTnwM20IrLXCgPVuOM6GunHixnaK98Q68IU9CttuCVAlxmbl832hmfifoaAwjIPSSkhUlhL013WBWjDBGFOP8CVrQktFCEFUeoQVRvCyUFPUxOknphhCiJJHP0DGXggpJ6QJdnzo_ZcCN92Hnxq84B3wxbL0ZM25sdrcmuzDiNYwZYsJuxJ9cjq4DfObB5hisycbvUk64DxFvXL520_Drx88vk--niN-ZPIsO0nP0tDc-wYv7vkRX788u1-fF5vOHi3WzKazgihcAVdXKvuwUaauulyCZJVCpmrWiV5VsLWVQli1wXgPplKoFN4bQlnYcakv5Er05zN3G8G2ClPXgkgU_XwRhSppVXAnOy7ks0etH6E2Y4jhvN1NVpeZ92J56dU9N7QCd3kY3mLjTDz-cAXEAbAwpRei1dfnubTka5zUleh-V3kel_0Q1a6tH2sPkfwrqIHx3Hnb_oXVz-rH56_4G9UmnqA |
CitedBy_id | crossref_primary_10_1007_s12598_024_02704_x crossref_primary_10_1007_s12598_024_02958_5 crossref_primary_10_1016_j_jcis_2024_11_156 crossref_primary_10_1002_smll_202312288 crossref_primary_10_1002_smll_202402725 crossref_primary_10_1016_j_cej_2024_151105 crossref_primary_10_1016_j_cej_2024_150452 crossref_primary_10_1002_ange_202406693 crossref_primary_10_1002_smll_202401153 crossref_primary_10_1002_smll_202405159 crossref_primary_10_1002_ange_202408474 crossref_primary_10_1021_acsami_4c09591 crossref_primary_10_1002_adfm_202306578 crossref_primary_10_1002_smll_202301755 crossref_primary_10_1002_smll_202302249 crossref_primary_10_1016_j_est_2024_113401 crossref_primary_10_1016_j_ijoes_2023_100400 crossref_primary_10_1021_acssuschemeng_4c09648 crossref_primary_10_1002_adfm_202409303 crossref_primary_10_1016_j_jelechem_2024_118923 crossref_primary_10_1016_j_jcis_2025_02_156 crossref_primary_10_1016_j_jechem_2023_03_045 crossref_primary_10_1016_j_jallcom_2024_176275 crossref_primary_10_1039_D4TC02573C crossref_primary_10_1016_j_cej_2023_146229 crossref_primary_10_1016_j_cej_2023_148209 crossref_primary_10_1016_j_ces_2024_121074 crossref_primary_10_1016_j_cej_2023_146705 crossref_primary_10_1016_j_cej_2024_151990 crossref_primary_10_1016_j_cej_2023_145619 crossref_primary_10_1002_anie_202406693 crossref_primary_10_1002_anie_202408474 crossref_primary_10_1002_adfm_202409450 crossref_primary_10_1002_smll_202411838 crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1002_adfm_202310301 crossref_primary_10_1016_j_cej_2025_159406 crossref_primary_10_1016_j_ces_2023_118640 crossref_primary_10_1002_smll_202411397 crossref_primary_10_1002_adfm_202412579 crossref_primary_10_1002_adfm_202410517 crossref_primary_10_1021_acs_iecr_4c01878 crossref_primary_10_1016_j_cej_2023_144553 crossref_primary_10_1002_adfm_202400262 crossref_primary_10_1002_ange_202402624 crossref_primary_10_1002_batt_202300596 crossref_primary_10_1002_smll_202310526 crossref_primary_10_20517_microstructures_2023_82 crossref_primary_10_1016_j_cej_2024_151285 crossref_primary_10_1039_D4TA01997K crossref_primary_10_1002_adfm_202309624 crossref_primary_10_1016_j_jcis_2024_02_017 crossref_primary_10_1002_adfm_202301743 crossref_primary_10_1016_j_jechem_2023_07_003 crossref_primary_10_1063_5_0215001 crossref_primary_10_1021_acsami_5c00972 crossref_primary_10_1002_advs_202301355 crossref_primary_10_1002_adfm_202314133 crossref_primary_10_1016_j_jcis_2024_04_229 crossref_primary_10_1002_smll_202308603 crossref_primary_10_1002_aenm_202403092 crossref_primary_10_1016_j_cej_2024_156291 crossref_primary_10_1002_sstr_202400293 crossref_primary_10_1002_smll_202407116 crossref_primary_10_1021_acs_energyfuels_4c02185 crossref_primary_10_20517_energymater_2023_111 crossref_primary_10_1002_anie_202402624 crossref_primary_10_1002_ece2_80 crossref_primary_10_1039_D3QM00326D crossref_primary_10_1016_j_cej_2024_149611 crossref_primary_10_1039_D4SE01208A crossref_primary_10_1002_eem2_12703 crossref_primary_10_1007_s11581_025_06169_5 crossref_primary_10_1016_j_cej_2023_146880 |
Cites_doi | 10.1002/anie.202214037 10.1063/1.4812323 10.1021/acsenergylett.6b00603 10.1021/acsnano.9b09371 10.1093/nsr/nwv023 10.1002/anie.201812062 10.1002/anie.202003136 10.1016/j.jechem.2020.01.033 10.1016/j.esci.2022.07.001 10.1002/aenm.202003020 10.1038/nmat4834 10.1021/jacs.8b12973 10.1038/natrevmats.2016.13 10.1016/j.jechem.2021.03.041 10.1038/ncomms14627 10.1021/acs.chemrev.0c00078 10.1002/adfm.202106966 10.1007/s10562-004-3434-9 10.1016/j.nanoen.2019.03.064 10.1038/s41929-019-0376-6 10.1039/C7EE01430A 10.1038/s41929-020-0498-x 10.1016/j.nanoen.2020.104555 10.1016/j.jechem.2020.05.007 10.1016/j.ensm.2018.05.019 10.1021/acsnano.1c00896 10.1126/science.aad4998 10.1016/j.ensm.2019.04.038 10.1002/adfm.202008034 10.1021/acsnano.1c00446 10.1038/nmat4738 10.1002/advs.201700270 10.1016/j.physb.2004.07.001 10.1038/nmat3191 10.1002/adma.201603401 10.1016/j.mattod.2022.05.017 10.1002/anie.201902413 10.1016/j.jechem.2021.08.048 10.1002/adma.201903955 10.1039/C6TA07221F 10.1016/j.ensm.2022.07.024 10.1002/adma.201606802 10.1002/adma.202000315 10.1002/adma.202105947 10.1002/adfm.201707536 10.1002/aenm.201602567 10.1002/aenm.202101926 10.1039/C8EE01402G 10.1021/jacs.1c09107 10.1016/j.cclet.2020.12.051 10.1016/j.esci.2021.08.001 10.1016/j.jechem.2021.05.023 10.1002/anie.202101522 10.1002/anie.201605676 10.1016/j.ensm.2017.07.015 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202209233 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 36414611 10_1002_adma_202209233 ADMA202209233 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21975056; 22179025; 22109020; 22109082; U1801257 – fundername: University of Electronic Science and Technology of China Start‐Up Fund for Outstanding Talent funderid: A1098531023601307 – fundername: National Natural Science Foundation of China grantid: 21975056 – fundername: National Natural Science Foundation of China grantid: 22109082 – fundername: University of Electronic Science and Technology of China Start-Up Fund for Outstanding Talent grantid: A1098531023601307 – fundername: National Natural Science Foundation of China grantid: 22109020 – fundername: National Natural Science Foundation of China grantid: U1801257 – fundername: National Natural Science Foundation of China grantid: 22179025 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4393-ee77b6f5d90b7df6e62c0e7982b4f976bc12e55be338e0d99843aa01b1d3e8c13 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 16:11:05 EDT 2025 Fri Jul 25 04:57:38 EDT 2025 Wed Feb 19 02:25:34 EST 2025 Thu Apr 24 22:53:05 EDT 2025 Tue Jul 01 02:33:25 EDT 2025 Wed Jan 22 16:23:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | shuttle effect polysulfide electrocatalysis metal nitride dilute alloy lithium-sulfur battery |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4393-ee77b6f5d90b7df6e62c0e7982b4f976bc12e55be338e0d99843aa01b1d3e8c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9544-5795 0000-0001-7394-9186 0000-0002-3629-1730 0000-0002-4183-703X |
PMID | 36414611 |
PQID | 2777939324 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2739433594 proquest_journals_2777939324 pubmed_primary_36414611 crossref_citationtrail_10_1002_adma_202209233 crossref_primary_10_1002_adma_202209233 wiley_primary_10_1002_adma_202209233_ADMA202209233 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021 2022; 11 64 2016; 4 2016 2020; 55 3 2018 2020 2022; 10 47 66 2017 2016 2012; 16 1 11 2013; 1 2019 2019 2021 2022; 141 31 33 51 2018 2018 2019 2019 2022; 5 28 58 20 57 2005; 100 2020; 120 2022; 61 2017 2017; 355 16 2019 2020; 58 59 2020 2021 2021 2021 2021; 70 11 31 15 61 2017 2021; 29 143 2017 2017 2020 2020 2021 2021 2022 2022; 8 7 14 32 15 32 32 2 2017 2018; 10 11 2017 2019 2021; 2 16 54 2021; 1 2021; 60 2016; 28 2004 2019; 352 60 2015 2019; 2 2 e_1_2_7_5_2 e_1_2_7_5_1 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_5_5 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_5_4 e_1_2_7_7_2 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_11_8 e_1_2_7_11_7 e_1_2_7_17_1 e_1_2_7_11_6 e_1_2_7_1_2 e_1_2_7_11_5 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_11_4 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_12_5 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_12_4 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_12_2 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_22_2 e_1_2_7_20_3 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 5 28 58 20 57 start-page: 55 84 year: 2018 2018 2019 2019 2022 publication-title: Adv. Sci. Adv. Funct. Mater. Angew. Chem., Int. Ed. Energy Storage Mater. Mater. Today – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 1 year: 2013 publication-title: APL Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 352 60 start-page: 118 305 year: 2004 2019 publication-title: Phys. B Nano Energy – volume: 11 64 start-page: 568 year: 2021 2022 publication-title: Adv. Energy Mater. J. Energy Chem. – volume: 16 1 11 start-page: 16 19 year: 2017 2016 2012 publication-title: Nat. Mater. Nat. Rev. Mater. Nat. Mater. – volume: 29 143 year: 2017 2021 publication-title: Adv. Mater. J. Am. Chem. Soc. – volume: 8 7 14 32 15 32 32 2 start-page: 6673 8583 2249 405 year: 2017 2017 2020 2020 2021 2021 2022 2022 publication-title: Nat. Commun. Adv. Energy Mater. ACS Nano Adv. Mater. ACS Nano Chin. Chem. Lett. Adv. Funct. Mater. eScience – volume: 2 16 54 start-page: 327 228 16 year: 2017 2019 2021 publication-title: ACS Energy Lett. Energy Storage Mater. J. Energy Chem. – volume: 141 31 33 51 start-page: 3977 890 year: 2019 2019 2021 2022 publication-title: J. Am. Chem. Soc. Adv. Mater. Adv. Mater. Energy Storage Mater. – volume: 100 start-page: 111 year: 2005 publication-title: Catal. Lett. – volume: 355 16 start-page: 57 year: 2017 2017 publication-title: Science Nat. Mater. – volume: 2 2 start-page: 140 971 year: 2015 2019 publication-title: Natl. Sci. Rev. Nat. Catal. – volume: 120 year: 2020 publication-title: Chem. Rev. – volume: 58 59 start-page: 3779 9011 year: 2019 2020 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 28 start-page: 9551 year: 2016 publication-title: Adv. Mater. – volume: 10 11 start-page: 1694 2620 year: 2017 2018 publication-title: Energy Environ. Sci. Energy Environ. Sci. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 55 3 start-page: 762 year: 2016 2020 publication-title: Angew. Chem., Int. Ed. Nat. Catal. – volume: 70 11 31 15 61 start-page: 7491 336 year: 2020 2021 2021 2021 2021 publication-title: Nano Energy Adv. Energy Mater. Adv. Funct. Mater. ACS Nano J. Energy Chem. – volume: 1 start-page: 44 year: 2021 publication-title: eScience – volume: 10 47 66 start-page: 1 281 474 year: 2018 2020 2022 publication-title: Energy Storage Mater. J. Energy Chem. J. Energy Chem. – ident: e_1_2_7_23_1 doi: 10.1002/anie.202214037 – ident: e_1_2_7_17_1 doi: 10.1063/1.4812323 – ident: e_1_2_7_20_1 doi: 10.1021/acsenergylett.6b00603 – ident: e_1_2_7_11_3 doi: 10.1021/acsnano.9b09371 – ident: e_1_2_7_4_1 doi: 10.1093/nsr/nwv023 – ident: e_1_2_7_16_1 doi: 10.1002/anie.201812062 – ident: e_1_2_7_16_2 doi: 10.1002/anie.202003136 – ident: e_1_2_7_7_2 doi: 10.1016/j.jechem.2020.01.033 – ident: e_1_2_7_11_8 doi: 10.1016/j.esci.2022.07.001 – ident: e_1_2_7_12_2 doi: 10.1002/aenm.202003020 – ident: e_1_2_7_1_1 doi: 10.1038/nmat4834 – ident: e_1_2_7_10_1 doi: 10.1021/jacs.8b12973 – ident: e_1_2_7_1_2 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_7_12_5 doi: 10.1016/j.jechem.2021.03.041 – ident: e_1_2_7_11_1 doi: 10.1038/ncomms14627 – ident: e_1_2_7_13_1 doi: 10.1021/acs.chemrev.0c00078 – ident: e_1_2_7_11_7 doi: 10.1002/adfm.202106966 – ident: e_1_2_7_14_1 doi: 10.1007/s10562-004-3434-9 – ident: e_1_2_7_18_2 doi: 10.1016/j.nanoen.2019.03.064 – ident: e_1_2_7_4_2 doi: 10.1038/s41929-019-0376-6 – ident: e_1_2_7_22_1 doi: 10.1039/C7EE01430A – ident: e_1_2_7_6_2 doi: 10.1038/s41929-020-0498-x – ident: e_1_2_7_12_1 doi: 10.1016/j.nanoen.2020.104555 – ident: e_1_2_7_20_3 doi: 10.1016/j.jechem.2020.05.007 – ident: e_1_2_7_20_2 doi: 10.1016/j.ensm.2018.05.019 – ident: e_1_2_7_12_4 doi: 10.1021/acsnano.1c00896 – ident: e_1_2_7_2_1 doi: 10.1126/science.aad4998 – ident: e_1_2_7_5_4 doi: 10.1016/j.ensm.2019.04.038 – ident: e_1_2_7_12_3 doi: 10.1002/adfm.202008034 – ident: e_1_2_7_11_5 doi: 10.1021/acsnano.1c00446 – ident: e_1_2_7_2_2 doi: 10.1038/nmat4738 – ident: e_1_2_7_5_1 doi: 10.1002/advs.201700270 – ident: e_1_2_7_18_1 doi: 10.1016/j.physb.2004.07.001 – ident: e_1_2_7_1_3 doi: 10.1038/nmat3191 – ident: e_1_2_7_19_1 doi: 10.1002/adma.201603401 – ident: e_1_2_7_5_5 doi: 10.1016/j.mattod.2022.05.017 – ident: e_1_2_7_5_3 doi: 10.1002/anie.201902413 – ident: e_1_2_7_7_3 doi: 10.1016/j.jechem.2021.08.048 – ident: e_1_2_7_10_2 doi: 10.1002/adma.201903955 – ident: e_1_2_7_15_1 doi: 10.1039/C6TA07221F – ident: e_1_2_7_10_4 doi: 10.1016/j.ensm.2022.07.024 – ident: e_1_2_7_8_1 doi: 10.1002/adma.201606802 – ident: e_1_2_7_11_4 doi: 10.1002/adma.202000315 – ident: e_1_2_7_10_3 doi: 10.1002/adma.202105947 – ident: e_1_2_7_5_2 doi: 10.1002/adfm.201707536 – ident: e_1_2_7_11_2 doi: 10.1002/aenm.201602567 – ident: e_1_2_7_9_1 doi: 10.1002/aenm.202101926 – ident: e_1_2_7_22_2 doi: 10.1039/C8EE01402G – ident: e_1_2_7_8_2 doi: 10.1021/jacs.1c09107 – ident: e_1_2_7_11_6 doi: 10.1016/j.cclet.2020.12.051 – ident: e_1_2_7_21_1 doi: 10.1016/j.esci.2021.08.001 – ident: e_1_2_7_9_2 doi: 10.1016/j.jechem.2021.05.023 – ident: e_1_2_7_3_1 doi: 10.1002/anie.202101522 – ident: e_1_2_7_6_1 doi: 10.1002/anie.201605676 – ident: e_1_2_7_7_1 doi: 10.1016/j.ensm.2017.07.015 |
SSID | ssj0009606 |
Score | 2.7138083 |
Snippet | Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2209233 |
SubjectTerms | Alloying Catalysts Chemical reactions Conversion Decay rate dilute alloy Dilution Domains Electrocatalysts Lithium sulfur batteries lithium–sulfur battery Materials science metal nitride Metal nitrides polysulfide electrocatalysis Reaction kinetics shuttle effect Sulfur Titanium nitride |
Title | Dilute Alloying to Implant Activation Centers in Nitride Electrocatalysts for Lithium–Sulfur Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202209233 https://www.ncbi.nlm.nih.gov/pubmed/36414611 https://www.proquest.com/docview/2777939324 https://www.proquest.com/docview/2739433594 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LatwwFIZFyKpZ9JL0Ms0FBQpdKbEulu2lyYVQmizSBrIzknVMTCeeMmMv2lXfIW_YJ-mRNXYyLaXQ7Gx8hGVJR_olS98h5F2iLaQm44xXVjPFwTEDccW0xvEitULKPnzb-YU-u1IfruPrB6f4Ax9iXHDzntH3197BjV0c3kNDjeu5QUJEqFE87tNv2PKq6PKeH-XleQ_bkzHLtEoHamMkDleTr45Kf0jNVeXaDz2nz4gZMh12nHw56Fp7UH7_jef4mK96Tp4udSnNQ0N6Qdag2SQbD2iFW-TmuMZmCjSfTmf-cBRtZ9TDhbFuaF4OYdKoXy9GTUnrhl7U7bx2QE9CrJ1-qejbol1QVMr0Y93e1N3tzx93n7pp1c1pQH3izP0luTo9-Xx0xpaBGliJekYygCSxuopdFtnEVRq0KCNIslRYVaHesSUXEMcWcD4MkcMZnpLGRNxyJyEtuXxF1ptZA28IFRb7GOcRM5FUlkMaGet0JTIf_RCcnhA2VFRRLinmPpjGtAj8ZVH4EizGEpyQ96P918Dv-KvlzlDvxdKPF4VIEuzAUOOqCdkfH6MH-t8qpoFZ521kpqSMM7R5HdrL-CqplQ-czidE9LX-jzwU-fF5Pt69_Z9E2-QJXsuwsXyHrLfzDnZRN7V2r_eNXw07D10 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb5RAGH5T60E9-P2xWnVMNJ5oYQYGOHggbput3d2DtklvyDAvKXFlzQIx9eR_6C_pX-lP6C_xHVioqzEmJj14BAYYZt5vZp4H4KUvFQZJ6FhOpqTlOqitBL3MkpL8RaC4EA1922QqRwfuu0PvcA1Ou70wLT5EX3AzmtHYa6PgpiC9dYEamugGOIhzm4KUjr96D4-_UtZWvtkd0hS_4nxne__tyFoSC1gp-V9hIfq-kpmnQ1v5OpMoeWqjHwZcuRn5Z5U6HD1PIeVvaGvKSFyRJLajHC0wSB1Bz70CVw2NuIHrH76_QKwyCUED7yc8K5Ru0OFE2nxrtb-rfvC34HY1Vm6c3c4tOOuGqV3j8mmzrtRm-u0XBMn_ahxvw81l6M2iVlfuwBoWd-HGT4CM9-BomJMmIotms7nZ_8WqOTP4ySR-LEo7JjhmSuIUNrO8YNO8WuQa2XZLJ9RUw47LqmSUDLBxXh3l9efz7ycf6llWL1iLZppjeR8OLuVTH8B6MS_wETCuyIxqg6JjC1c5GNiJ0jLjoSF4RC0HYHWSEadLoHbDFzKLW4hpHpsZi_sZG8Drvv2XFqLkjy03OkGLl6aqjLnvk42mMN4dwIv-MhkZ8-coKXBemzYidIXwQmrzsBXQ_lVCuoYb3hkAb8TsL32Io-Ek6o8e_8tNz-HaaH8yjse7070ncJ3Oi3Yd_QasV4san1KYWKlnjWIy-HjZEvwD3Fht9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbpVAFD6pNTG68F97teqYaFzRwgwMsHBBpDetbW-M2qQ7yjCHlHjLbS4QU1e-gy_iq_gKPoln4EK9GmNi0oVL4ADDzPkdZr4P4JkvFQZp6FhOrqTlOqitFL3ckpLiRaC4EC192_5Ebh-4rw-9wxX42u-F6fAhhgk3YxmtvzYGfqrzzXPQ0FS3uEGc25Sj9PTVu3j2kYq26uVOTCP8nPPx1vtX29aCV8DKKPwKC9H3lcw9HdrK17lEyTMb_TDgys0pPKvM4eh5Cql8Q1tTQeKKNLUd5WiBQeYIeu4luOxKOzRkEfHbc8AqUw-06H7Cs0LpBj1MpM03l9u7HAZ_y22XU-U21o1vwLe-l7olLh82mlptZJ9-AZD8n7rxJlxfJN4s6izlFqxgeRuu_QTHeAeO44LsEFk0nc7M7i9Wz5hBTyblY1HW88AxMyFOSTMrSjYp6nmhkW11ZELtXNhZVVeMSgG2V9THRXPy_fOXd800b-aswzItsLoLBxfyqfdgtZyVuAaMK3Ki2mDo2MJVDgZ2qrTMeWjoHVHLEVi9YiTZAqbdsIVMkw5gmidmxJJhxEbwYpA_7QBK_ii53utZsnBUVcJ9nzw0JfHuCJ4Ol8nFmP9GaYmzxsiI0BXCC0nmfqefw6uEdA0zvDMC3mrZX9qQRPF-NBw9-JebnsCVN_E42duZ7D6Eq3RadIvo12G1njf4iHLEWj1uzZLB0UUr8A8JKGyl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dilute+Alloying+to+Implant+Activation+Centers+in+Nitride+Electrocatalysts+for+Lithium-Sulfur+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Quanbing&rft.au=Wu%2C+Yujie&rft.au=Li%2C+Dong&rft.au=Peng%2C+Yan-Qi&rft.date=2023-02-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=7&rft.spage=e2209233&rft_id=info:doi/10.1002%2Fadma.202209233&rft_id=info%3Apmid%2F36414611&rft.externalDocID=36414611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |