Dilute Alloying to Implant Activation Centers in Nitride Electrocatalysts for Lithium–Sulfur Batteries

Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electro...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 7; pp. e2209233 - n/a
Main Authors Liu, Quanbing, Wu, Yujie, Li, Dong, Peng, Yan‐Qi, Liu, Xinyan, Li, Bo‐Quan, Huang, Jia‐Qi, Peng, Hong‐Jie
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium–sulfur (Li–S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li–S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mgS cm−2. This work opens up new opportunities toward the rational design of Li–S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain‐catalyzed reactions in energy applications. Dilute alloying implants “activating” centers in nitride alloy electrocatalysts to boost lithium–sulfur (Li–S) batteries. Dilute Co dopants activate the surrounding N and Ti atoms to construct multiatom active domains for efficient bidirectional catalysis of S redox reactions. The corresponding dilute nitride alloy improves the reaction kinetics and electrochemical performance of Li–S batteries.
AbstractList Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium–sulfur (Li–S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li–S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mgS cm−2. This work opens up new opportunities toward the rational design of Li–S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain‐catalyzed reactions in energy applications.
Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium-sulfur (Li-S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li-S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mgS cm-2 . This work opens up new opportunities toward the rational design of Li-S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain-catalyzed reactions in energy applications.Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium-sulfur (Li-S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li-S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mgS cm-2 . This work opens up new opportunities toward the rational design of Li-S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain-catalyzed reactions in energy applications.
Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium–sulfur (Li–S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li–S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mg S cm −2 . This work opens up new opportunities toward the rational design of Li–S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain‐catalyzed reactions in energy applications.
Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium-sulfur (Li-S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li-S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mg cm . This work opens up new opportunities toward the rational design of Li-S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain-catalyzed reactions in energy applications.
Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion. In this work, dilute dopants are demonstrated to serve as activating centers to construct multiatom catalytic domains in metal nitride electrocatalysts for lithium–sulfur (Li–S) batteries, of which the sulfur cathode suffers from sluggish and complex conversion reactions. With titanium nitride (TiN) as a model system, the dilute cobalt alloying is shown to greatly improve the reaction kinetics while inducing negligible catalyst reconstruction. Compared to the pristine TiN, the dilute nitride alloy catalyst enables onefold increase in the high rate (2.0 C) capacities of Li–S batteries, as well as an impressively low cyclic decay rate of 0.17% at a sulfur loading of 4.0 mgS cm−2. This work opens up new opportunities toward the rational design of Li–S electrocatalysts by dilute alloying and also enlightens the understandings of complex domain‐catalyzed reactions in energy applications. Dilute alloying implants “activating” centers in nitride alloy electrocatalysts to boost lithium–sulfur (Li–S) batteries. Dilute Co dopants activate the surrounding N and Ti atoms to construct multiatom active domains for efficient bidirectional catalysis of S redox reactions. The corresponding dilute nitride alloy improves the reaction kinetics and electrochemical performance of Li–S batteries.
Author Huang, Jia‐Qi
Li, Dong
Peng, Yan‐Qi
Liu, Xinyan
Li, Bo‐Quan
Peng, Hong‐Jie
Liu, Quanbing
Wu, Yujie
Author_xml – sequence: 1
  givenname: Quanbing
  surname: Liu
  fullname: Liu, Quanbing
  organization: Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory)
– sequence: 2
  givenname: Yujie
  surname: Wu
  fullname: Wu, Yujie
  organization: Guangdong University of Technology
– sequence: 3
  givenname: Dong
  surname: Li
  fullname: Li, Dong
  organization: Guangdong University of Technology
– sequence: 4
  givenname: Yan‐Qi
  surname: Peng
  fullname: Peng, Yan‐Qi
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Xinyan
  orcidid: 0000-0002-3629-1730
  surname: Liu
  fullname: Liu, Xinyan
  email: xinyanl@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
– sequence: 6
  givenname: Bo‐Quan
  orcidid: 0000-0002-9544-5795
  surname: Li
  fullname: Li, Bo‐Quan
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Hong‐Jie
  orcidid: 0000-0002-4183-703X
  surname: Peng
  fullname: Peng, Hong‐Jie
  email: hjpeng@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36414611$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQhy1URLcLV47IEhcuWfwvTnwM20IrLXCgPVuOM6GunHixnaK98Q68IU9CttuCVAlxmbl832hmfifoaAwjIPSSkhUlhL013WBWjDBGFOP8CVrQktFCEFUeoQVRvCyUFPUxOknphhCiJJHP0DGXggpJ6QJdnzo_ZcCN92Hnxq84B3wxbL0ZM25sdrcmuzDiNYwZYsJuxJ9cjq4DfObB5hisycbvUk64DxFvXL520_Drx88vk--niN-ZPIsO0nP0tDc-wYv7vkRX788u1-fF5vOHi3WzKazgihcAVdXKvuwUaauulyCZJVCpmrWiV5VsLWVQli1wXgPplKoFN4bQlnYcakv5Er05zN3G8G2ClPXgkgU_XwRhSppVXAnOy7ks0etH6E2Y4jhvN1NVpeZ92J56dU9N7QCd3kY3mLjTDz-cAXEAbAwpRei1dfnubTka5zUleh-V3kel_0Q1a6tH2sPkfwrqIHx3Hnb_oXVz-rH56_4G9UmnqA
CitedBy_id crossref_primary_10_1007_s12598_024_02704_x
crossref_primary_10_1007_s12598_024_02958_5
crossref_primary_10_1016_j_jcis_2024_11_156
crossref_primary_10_1002_smll_202312288
crossref_primary_10_1002_smll_202402725
crossref_primary_10_1016_j_cej_2024_151105
crossref_primary_10_1016_j_cej_2024_150452
crossref_primary_10_1002_ange_202406693
crossref_primary_10_1002_smll_202401153
crossref_primary_10_1002_smll_202405159
crossref_primary_10_1002_ange_202408474
crossref_primary_10_1021_acsami_4c09591
crossref_primary_10_1002_adfm_202306578
crossref_primary_10_1002_smll_202301755
crossref_primary_10_1002_smll_202302249
crossref_primary_10_1016_j_est_2024_113401
crossref_primary_10_1016_j_ijoes_2023_100400
crossref_primary_10_1021_acssuschemeng_4c09648
crossref_primary_10_1002_adfm_202409303
crossref_primary_10_1016_j_jelechem_2024_118923
crossref_primary_10_1016_j_jcis_2025_02_156
crossref_primary_10_1016_j_jechem_2023_03_045
crossref_primary_10_1016_j_jallcom_2024_176275
crossref_primary_10_1039_D4TC02573C
crossref_primary_10_1016_j_cej_2023_146229
crossref_primary_10_1016_j_cej_2023_148209
crossref_primary_10_1016_j_ces_2024_121074
crossref_primary_10_1016_j_cej_2023_146705
crossref_primary_10_1016_j_cej_2024_151990
crossref_primary_10_1016_j_cej_2023_145619
crossref_primary_10_1002_anie_202406693
crossref_primary_10_1002_anie_202408474
crossref_primary_10_1002_adfm_202409450
crossref_primary_10_1002_smll_202411838
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1002_adfm_202310301
crossref_primary_10_1016_j_cej_2025_159406
crossref_primary_10_1016_j_ces_2023_118640
crossref_primary_10_1002_smll_202411397
crossref_primary_10_1002_adfm_202412579
crossref_primary_10_1002_adfm_202410517
crossref_primary_10_1021_acs_iecr_4c01878
crossref_primary_10_1016_j_cej_2023_144553
crossref_primary_10_1002_adfm_202400262
crossref_primary_10_1002_ange_202402624
crossref_primary_10_1002_batt_202300596
crossref_primary_10_1002_smll_202310526
crossref_primary_10_20517_microstructures_2023_82
crossref_primary_10_1016_j_cej_2024_151285
crossref_primary_10_1039_D4TA01997K
crossref_primary_10_1002_adfm_202309624
crossref_primary_10_1016_j_jcis_2024_02_017
crossref_primary_10_1002_adfm_202301743
crossref_primary_10_1016_j_jechem_2023_07_003
crossref_primary_10_1063_5_0215001
crossref_primary_10_1021_acsami_5c00972
crossref_primary_10_1002_advs_202301355
crossref_primary_10_1002_adfm_202314133
crossref_primary_10_1016_j_jcis_2024_04_229
crossref_primary_10_1002_smll_202308603
crossref_primary_10_1002_aenm_202403092
crossref_primary_10_1016_j_cej_2024_156291
crossref_primary_10_1002_sstr_202400293
crossref_primary_10_1002_smll_202407116
crossref_primary_10_1021_acs_energyfuels_4c02185
crossref_primary_10_20517_energymater_2023_111
crossref_primary_10_1002_anie_202402624
crossref_primary_10_1002_ece2_80
crossref_primary_10_1039_D3QM00326D
crossref_primary_10_1016_j_cej_2024_149611
crossref_primary_10_1039_D4SE01208A
crossref_primary_10_1002_eem2_12703
crossref_primary_10_1007_s11581_025_06169_5
crossref_primary_10_1016_j_cej_2023_146880
Cites_doi 10.1002/anie.202214037
10.1063/1.4812323
10.1021/acsenergylett.6b00603
10.1021/acsnano.9b09371
10.1093/nsr/nwv023
10.1002/anie.201812062
10.1002/anie.202003136
10.1016/j.jechem.2020.01.033
10.1016/j.esci.2022.07.001
10.1002/aenm.202003020
10.1038/nmat4834
10.1021/jacs.8b12973
10.1038/natrevmats.2016.13
10.1016/j.jechem.2021.03.041
10.1038/ncomms14627
10.1021/acs.chemrev.0c00078
10.1002/adfm.202106966
10.1007/s10562-004-3434-9
10.1016/j.nanoen.2019.03.064
10.1038/s41929-019-0376-6
10.1039/C7EE01430A
10.1038/s41929-020-0498-x
10.1016/j.nanoen.2020.104555
10.1016/j.jechem.2020.05.007
10.1016/j.ensm.2018.05.019
10.1021/acsnano.1c00896
10.1126/science.aad4998
10.1016/j.ensm.2019.04.038
10.1002/adfm.202008034
10.1021/acsnano.1c00446
10.1038/nmat4738
10.1002/advs.201700270
10.1016/j.physb.2004.07.001
10.1038/nmat3191
10.1002/adma.201603401
10.1016/j.mattod.2022.05.017
10.1002/anie.201902413
10.1016/j.jechem.2021.08.048
10.1002/adma.201903955
10.1039/C6TA07221F
10.1016/j.ensm.2022.07.024
10.1002/adma.201606802
10.1002/adma.202000315
10.1002/adma.202105947
10.1002/adfm.201707536
10.1002/aenm.201602567
10.1002/aenm.202101926
10.1039/C8EE01402G
10.1021/jacs.1c09107
10.1016/j.cclet.2020.12.051
10.1016/j.esci.2021.08.001
10.1016/j.jechem.2021.05.023
10.1002/anie.202101522
10.1002/anie.201605676
10.1016/j.ensm.2017.07.015
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202209233
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 36414611
10_1002_adma_202209233
ADMA202209233
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21975056; 22179025; 22109020; 22109082; U1801257
– fundername: University of Electronic Science and Technology of China Start‐Up Fund for Outstanding Talent
  funderid: A1098531023601307
– fundername: National Natural Science Foundation of China
  grantid: 21975056
– fundername: National Natural Science Foundation of China
  grantid: 22109082
– fundername: University of Electronic Science and Technology of China Start-Up Fund for Outstanding Talent
  grantid: A1098531023601307
– fundername: National Natural Science Foundation of China
  grantid: 22109020
– fundername: National Natural Science Foundation of China
  grantid: U1801257
– fundername: National Natural Science Foundation of China
  grantid: 22179025
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4393-ee77b6f5d90b7df6e62c0e7982b4f976bc12e55be338e0d99843aa01b1d3e8c13
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 16:11:05 EDT 2025
Fri Jul 25 04:57:38 EDT 2025
Wed Feb 19 02:25:34 EST 2025
Thu Apr 24 22:53:05 EDT 2025
Tue Jul 01 02:33:25 EDT 2025
Wed Jan 22 16:23:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords shuttle effect
polysulfide electrocatalysis
metal nitride
dilute alloy
lithium-sulfur battery
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4393-ee77b6f5d90b7df6e62c0e7982b4f976bc12e55be338e0d99843aa01b1d3e8c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9544-5795
0000-0001-7394-9186
0000-0002-3629-1730
0000-0002-4183-703X
PMID 36414611
PQID 2777939324
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2739433594
proquest_journals_2777939324
pubmed_primary_36414611
crossref_citationtrail_10_1002_adma_202209233
crossref_primary_10_1002_adma_202209233
wiley_primary_10_1002_adma_202209233_ADMA202209233
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021 2022; 11 64
2016; 4
2016 2020; 55 3
2018 2020 2022; 10 47 66
2017 2016 2012; 16 1 11
2013; 1
2019 2019 2021 2022; 141 31 33 51
2018 2018 2019 2019 2022; 5 28 58 20 57
2005; 100
2020; 120
2022; 61
2017 2017; 355 16
2019 2020; 58 59
2020 2021 2021 2021 2021; 70 11 31 15 61
2017 2021; 29 143
2017 2017 2020 2020 2021 2021 2022 2022; 8 7 14 32 15 32 32 2
2017 2018; 10 11
2017 2019 2021; 2 16 54
2021; 1
2021; 60
2016; 28
2004 2019; 352 60
2015 2019; 2 2
e_1_2_7_5_2
e_1_2_7_5_1
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_5_5
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_5_4
e_1_2_7_7_2
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_11_8
e_1_2_7_11_7
e_1_2_7_17_1
e_1_2_7_11_6
e_1_2_7_1_2
e_1_2_7_11_5
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_11_4
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_12_5
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_12_4
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_12_2
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_22_2
e_1_2_7_20_3
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 5 28 58 20 57
  start-page: 55 84
  year: 2018 2018 2019 2019 2022
  publication-title: Adv. Sci. Adv. Funct. Mater. Angew. Chem., Int. Ed. Energy Storage Mater. Mater. Today
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 1
  year: 2013
  publication-title: APL Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 352 60
  start-page: 118 305
  year: 2004 2019
  publication-title: Phys. B Nano Energy
– volume: 11 64
  start-page: 568
  year: 2021 2022
  publication-title: Adv. Energy Mater. J. Energy Chem.
– volume: 16 1 11
  start-page: 16 19
  year: 2017 2016 2012
  publication-title: Nat. Mater. Nat. Rev. Mater. Nat. Mater.
– volume: 29 143
  year: 2017 2021
  publication-title: Adv. Mater. J. Am. Chem. Soc.
– volume: 8 7 14 32 15 32 32 2
  start-page: 6673 8583 2249 405
  year: 2017 2017 2020 2020 2021 2021 2022 2022
  publication-title: Nat. Commun. Adv. Energy Mater. ACS Nano Adv. Mater. ACS Nano Chin. Chem. Lett. Adv. Funct. Mater. eScience
– volume: 2 16 54
  start-page: 327 228 16
  year: 2017 2019 2021
  publication-title: ACS Energy Lett. Energy Storage Mater. J. Energy Chem.
– volume: 141 31 33 51
  start-page: 3977 890
  year: 2019 2019 2021 2022
  publication-title: J. Am. Chem. Soc. Adv. Mater. Adv. Mater. Energy Storage Mater.
– volume: 100
  start-page: 111
  year: 2005
  publication-title: Catal. Lett.
– volume: 355 16
  start-page: 57
  year: 2017 2017
  publication-title: Science Nat. Mater.
– volume: 2 2
  start-page: 140 971
  year: 2015 2019
  publication-title: Natl. Sci. Rev. Nat. Catal.
– volume: 120
  year: 2020
  publication-title: Chem. Rev.
– volume: 58 59
  start-page: 3779 9011
  year: 2019 2020
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 28
  start-page: 9551
  year: 2016
  publication-title: Adv. Mater.
– volume: 10 11
  start-page: 1694 2620
  year: 2017 2018
  publication-title: Energy Environ. Sci. Energy Environ. Sci.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 55 3
  start-page: 762
  year: 2016 2020
  publication-title: Angew. Chem., Int. Ed. Nat. Catal.
– volume: 70 11 31 15 61
  start-page: 7491 336
  year: 2020 2021 2021 2021 2021
  publication-title: Nano Energy Adv. Energy Mater. Adv. Funct. Mater. ACS Nano J. Energy Chem.
– volume: 1
  start-page: 44
  year: 2021
  publication-title: eScience
– volume: 10 47 66
  start-page: 1 281 474
  year: 2018 2020 2022
  publication-title: Energy Storage Mater. J. Energy Chem. J. Energy Chem.
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.202214037
– ident: e_1_2_7_17_1
  doi: 10.1063/1.4812323
– ident: e_1_2_7_20_1
  doi: 10.1021/acsenergylett.6b00603
– ident: e_1_2_7_11_3
  doi: 10.1021/acsnano.9b09371
– ident: e_1_2_7_4_1
  doi: 10.1093/nsr/nwv023
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.201812062
– ident: e_1_2_7_16_2
  doi: 10.1002/anie.202003136
– ident: e_1_2_7_7_2
  doi: 10.1016/j.jechem.2020.01.033
– ident: e_1_2_7_11_8
  doi: 10.1016/j.esci.2022.07.001
– ident: e_1_2_7_12_2
  doi: 10.1002/aenm.202003020
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat4834
– ident: e_1_2_7_10_1
  doi: 10.1021/jacs.8b12973
– ident: e_1_2_7_1_2
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_7_12_5
  doi: 10.1016/j.jechem.2021.03.041
– ident: e_1_2_7_11_1
  doi: 10.1038/ncomms14627
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.chemrev.0c00078
– ident: e_1_2_7_11_7
  doi: 10.1002/adfm.202106966
– ident: e_1_2_7_14_1
  doi: 10.1007/s10562-004-3434-9
– ident: e_1_2_7_18_2
  doi: 10.1016/j.nanoen.2019.03.064
– ident: e_1_2_7_4_2
  doi: 10.1038/s41929-019-0376-6
– ident: e_1_2_7_22_1
  doi: 10.1039/C7EE01430A
– ident: e_1_2_7_6_2
  doi: 10.1038/s41929-020-0498-x
– ident: e_1_2_7_12_1
  doi: 10.1016/j.nanoen.2020.104555
– ident: e_1_2_7_20_3
  doi: 10.1016/j.jechem.2020.05.007
– ident: e_1_2_7_20_2
  doi: 10.1016/j.ensm.2018.05.019
– ident: e_1_2_7_12_4
  doi: 10.1021/acsnano.1c00896
– ident: e_1_2_7_2_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_7_5_4
  doi: 10.1016/j.ensm.2019.04.038
– ident: e_1_2_7_12_3
  doi: 10.1002/adfm.202008034
– ident: e_1_2_7_11_5
  doi: 10.1021/acsnano.1c00446
– ident: e_1_2_7_2_2
  doi: 10.1038/nmat4738
– ident: e_1_2_7_5_1
  doi: 10.1002/advs.201700270
– ident: e_1_2_7_18_1
  doi: 10.1016/j.physb.2004.07.001
– ident: e_1_2_7_1_3
  doi: 10.1038/nmat3191
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201603401
– ident: e_1_2_7_5_5
  doi: 10.1016/j.mattod.2022.05.017
– ident: e_1_2_7_5_3
  doi: 10.1002/anie.201902413
– ident: e_1_2_7_7_3
  doi: 10.1016/j.jechem.2021.08.048
– ident: e_1_2_7_10_2
  doi: 10.1002/adma.201903955
– ident: e_1_2_7_15_1
  doi: 10.1039/C6TA07221F
– ident: e_1_2_7_10_4
  doi: 10.1016/j.ensm.2022.07.024
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201606802
– ident: e_1_2_7_11_4
  doi: 10.1002/adma.202000315
– ident: e_1_2_7_10_3
  doi: 10.1002/adma.202105947
– ident: e_1_2_7_5_2
  doi: 10.1002/adfm.201707536
– ident: e_1_2_7_11_2
  doi: 10.1002/aenm.201602567
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.202101926
– ident: e_1_2_7_22_2
  doi: 10.1039/C8EE01402G
– ident: e_1_2_7_8_2
  doi: 10.1021/jacs.1c09107
– ident: e_1_2_7_11_6
  doi: 10.1016/j.cclet.2020.12.051
– ident: e_1_2_7_21_1
  doi: 10.1016/j.esci.2021.08.001
– ident: e_1_2_7_9_2
  doi: 10.1016/j.jechem.2021.05.023
– ident: e_1_2_7_3_1
  doi: 10.1002/anie.202101522
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.201605676
– ident: e_1_2_7_7_1
  doi: 10.1016/j.ensm.2017.07.015
SSID ssj0009606
Score 2.7138083
Snippet Dilute alloying is an effective strategy to tune properties of solid catalysts but is rarely leveraged in complex reactions beyond small molecule conversion....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2209233
SubjectTerms Alloying
Catalysts
Chemical reactions
Conversion
Decay rate
dilute alloy
Dilution
Domains
Electrocatalysts
Lithium sulfur batteries
lithium–sulfur battery
Materials science
metal nitride
Metal nitrides
polysulfide electrocatalysis
Reaction kinetics
shuttle effect
Sulfur
Titanium nitride
Title Dilute Alloying to Implant Activation Centers in Nitride Electrocatalysts for Lithium–Sulfur Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202209233
https://www.ncbi.nlm.nih.gov/pubmed/36414611
https://www.proquest.com/docview/2777939324
https://www.proquest.com/docview/2739433594
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LatwwFIZFyKpZ9JL0Ms0FBQpdKbEulu2lyYVQmizSBrIzknVMTCeeMmMv2lXfIW_YJ-mRNXYyLaXQ7Gx8hGVJR_olS98h5F2iLaQm44xXVjPFwTEDccW0xvEitULKPnzb-YU-u1IfruPrB6f4Ax9iXHDzntH3197BjV0c3kNDjeu5QUJEqFE87tNv2PKq6PKeH-XleQ_bkzHLtEoHamMkDleTr45Kf0jNVeXaDz2nz4gZMh12nHw56Fp7UH7_jef4mK96Tp4udSnNQ0N6Qdag2SQbD2iFW-TmuMZmCjSfTmf-cBRtZ9TDhbFuaF4OYdKoXy9GTUnrhl7U7bx2QE9CrJ1-qejbol1QVMr0Y93e1N3tzx93n7pp1c1pQH3izP0luTo9-Xx0xpaBGliJekYygCSxuopdFtnEVRq0KCNIslRYVaHesSUXEMcWcD4MkcMZnpLGRNxyJyEtuXxF1ptZA28IFRb7GOcRM5FUlkMaGet0JTIf_RCcnhA2VFRRLinmPpjGtAj8ZVH4EizGEpyQ96P918Dv-KvlzlDvxdKPF4VIEuzAUOOqCdkfH6MH-t8qpoFZ521kpqSMM7R5HdrL-CqplQ-czidE9LX-jzwU-fF5Pt69_Z9E2-QJXsuwsXyHrLfzDnZRN7V2r_eNXw07D10
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb5RAGH5T60E9-P2xWnVMNJ5oYQYGOHggbput3d2DtklvyDAvKXFlzQIx9eR_6C_pX-lP6C_xHVioqzEmJj14BAYYZt5vZp4H4KUvFQZJ6FhOpqTlOqitBL3MkpL8RaC4EA1922QqRwfuu0PvcA1Ou70wLT5EX3AzmtHYa6PgpiC9dYEamugGOIhzm4KUjr96D4-_UtZWvtkd0hS_4nxne__tyFoSC1gp-V9hIfq-kpmnQ1v5OpMoeWqjHwZcuRn5Z5U6HD1PIeVvaGvKSFyRJLajHC0wSB1Bz70CVw2NuIHrH76_QKwyCUED7yc8K5Ru0OFE2nxrtb-rfvC34HY1Vm6c3c4tOOuGqV3j8mmzrtRm-u0XBMn_ahxvw81l6M2iVlfuwBoWd-HGT4CM9-BomJMmIotms7nZ_8WqOTP4ySR-LEo7JjhmSuIUNrO8YNO8WuQa2XZLJ9RUw47LqmSUDLBxXh3l9efz7ycf6llWL1iLZppjeR8OLuVTH8B6MS_wETCuyIxqg6JjC1c5GNiJ0jLjoSF4RC0HYHWSEadLoHbDFzKLW4hpHpsZi_sZG8Drvv2XFqLkjy03OkGLl6aqjLnvk42mMN4dwIv-MhkZ8-coKXBemzYidIXwQmrzsBXQ_lVCuoYb3hkAb8TsL32Io-Ek6o8e_8tNz-HaaH8yjse7070ncJ3Oi3Yd_QasV4san1KYWKlnjWIy-HjZEvwD3Fht9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbpVAFD6pNTG68F97teqYaFzRwgwMsHBBpDetbW-M2qQ7yjCHlHjLbS4QU1e-gy_iq_gKPoln4EK9GmNi0oVL4ADDzPkdZr4P4JkvFQZp6FhOrqTlOqitFL3ckpLiRaC4EC192_5Ebh-4rw-9wxX42u-F6fAhhgk3YxmtvzYGfqrzzXPQ0FS3uEGc25Sj9PTVu3j2kYq26uVOTCP8nPPx1vtX29aCV8DKKPwKC9H3lcw9HdrK17lEyTMb_TDgys0pPKvM4eh5Cql8Q1tTQeKKNLUd5WiBQeYIeu4luOxKOzRkEfHbc8AqUw-06H7Cs0LpBj1MpM03l9u7HAZ_y22XU-U21o1vwLe-l7olLh82mlptZJ9-AZD8n7rxJlxfJN4s6izlFqxgeRuu_QTHeAeO44LsEFk0nc7M7i9Wz5hBTyblY1HW88AxMyFOSTMrSjYp6nmhkW11ZELtXNhZVVeMSgG2V9THRXPy_fOXd800b-aswzItsLoLBxfyqfdgtZyVuAaMK3Ki2mDo2MJVDgZ2qrTMeWjoHVHLEVi9YiTZAqbdsIVMkw5gmidmxJJhxEbwYpA_7QBK_ii53utZsnBUVcJ9nzw0JfHuCJ4Ol8nFmP9GaYmzxsiI0BXCC0nmfqefw6uEdA0zvDMC3mrZX9qQRPF-NBw9-JebnsCVN_E42duZ7D6Eq3RadIvo12G1njf4iHLEWj1uzZLB0UUr8A8JKGyl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dilute+Alloying+to+Implant+Activation+Centers+in+Nitride+Electrocatalysts+for+Lithium-Sulfur+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Quanbing&rft.au=Wu%2C+Yujie&rft.au=Li%2C+Dong&rft.au=Peng%2C+Yan-Qi&rft.date=2023-02-01&rft.eissn=1521-4095&rft.volume=35&rft.issue=7&rft.spage=e2209233&rft_id=info:doi/10.1002%2Fadma.202209233&rft_id=info%3Apmid%2F36414611&rft.externalDocID=36414611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon