Multiple 2D Phase Transformations in Monolayer Transition Metal Chalcogenides
Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 19; pp. e2200643 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS2 and MoSe2. The multiphase transformations: MoS2 → Mo4S6 and MoSe2 → Mo6Se6 which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor–metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides.
Atomically resolved multiple 2D phase transformations (MoS2 → Mo4S6, MoSe2 → L‐, Z‐Mo6Se6) is observed in monolayer transition metal dichalcogenides under in situ heating with stoichiometry control by electron beam irradiation. Through chalcogen sliding and reconstruction mechanisms, phase transformations are well manipulated to fabricate diphase heterostructures with atomically sharp interfaces, which will pave the way to phase engineered optoelectronics. |
---|---|
AbstractList | Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS 2 and MoSe 2 . The multiphase transformations: MoS 2 → Mo 4 S 6 and MoSe 2 → Mo 6 Se 6 which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor–metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides. Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS2 and MoSe2. The multiphase transformations: MoS2 → Mo4S6 and MoSe2 → Mo6Se6 which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor–metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides. Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS2 and MoSe2 . The multiphase transformations: MoS2 → Mo4 S6 and MoSe2 → Mo6 Se6 which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor-metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides.Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS2 and MoSe2 . The multiphase transformations: MoS2 → Mo4 S6 and MoSe2 → Mo6 Se6 which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor-metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides. Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS and MoSe . The multiphase transformations: MoS → Mo S and MoSe → Mo Se which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor-metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides. Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS2 and MoSe2. The multiphase transformations: MoS2 → Mo4S6 and MoSe2 → Mo6Se6 which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor–metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides. Atomically resolved multiple 2D phase transformations (MoS2 → Mo4S6, MoSe2 → L‐, Z‐Mo6Se6) is observed in monolayer transition metal dichalcogenides under in situ heating with stoichiometry control by electron beam irradiation. Through chalcogen sliding and reconstruction mechanisms, phase transformations are well manipulated to fabricate diphase heterostructures with atomically sharp interfaces, which will pave the way to phase engineered optoelectronics. |
Author | Chen, Xi Suenaga, Kazu Xu, Hua Li, Pai Li, Shisheng Koshino, Masanori Ding, Feng Hu, Zhixin Hong, Jinhua |
Author_xml | – sequence: 1 givenname: Jinhua orcidid: 0000-0002-6406-1780 surname: Hong fullname: Hong, Jinhua organization: National Institute of Advanced Industrial Science and Technology (AIST) – sequence: 2 givenname: Xi surname: Chen fullname: Chen, Xi organization: Tianjin University – sequence: 3 givenname: Pai surname: Li fullname: Li, Pai organization: Institute for Basic Science (IBS) – sequence: 4 givenname: Masanori surname: Koshino fullname: Koshino, Masanori organization: National Institute of Advanced Industrial Science and Technology (AIST) – sequence: 5 givenname: Shisheng surname: Li fullname: Li, Shisheng organization: National Institute for Materials Science (NIMS) – sequence: 6 givenname: Hua surname: Xu fullname: Xu, Hua organization: Shaanxi Normal University – sequence: 7 givenname: Zhixin orcidid: 0000-0002-3253-6964 surname: Hu fullname: Hu, Zhixin email: zhixin.hu@tju.edu.cn organization: Tianjin University – sequence: 8 givenname: Feng surname: Ding fullname: Ding, Feng organization: Ulsan National Institute of Science and Technology (UNIST) – sequence: 9 givenname: Kazu surname: Suenaga fullname: Suenaga, Kazu email: suenaga-kazu@sanken.osaka-u.ac.jp organization: Osaka University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35307877$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1vFDEQhi0URC6BlhKtREOzx_j7XJ4ufElZQRFqy3hniSOvfdi7Qvfv2eMSkCIhqinmeV6N5r0gZyknJOQlhTUFYG9dP7o1A8YAlOBPyIpKRlsBRp6RFRguW6PE5pxc1HoHAEaBekbOueSgN1qvSNfNcQr7iA27ar7cuorNTXGpDrmMbgo51SakpsspR3fAclqG46LpcHKx2d266PN3TKHH-pw8HVys-OJ-XpKv79_d7D62158_fNptr1svuOGt45oNaKDHXnA_SNmrjZMMtRTgNAp0ivbMgeq13Bik4IxhFD1l6AcvgF-SN6fcfck_ZqyTHUP1GKNLmOdqmRJUgtBaLujrR-hdnktarlsoxQSTiuuFenVPzd9G7O2-hNGVg3141AKIE-BLrrXgYH2Yfj9oKi5ES8Ee-7DHPuyfPhZt_Uh7SP6nYE7CzxDx8B_abq-67V_3F2PYnBE |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_2c03779 crossref_primary_10_1016_j_coco_2024_101956 crossref_primary_10_1002_admi_202300277 crossref_primary_10_1002_smll_202310396 crossref_primary_10_1021_acsanm_3c01314 crossref_primary_10_1002_smll_202310526 crossref_primary_10_1021_acsnano_4c16095 crossref_primary_10_1038_s41467_024_50525_4 crossref_primary_10_1021_acssensors_4c01642 crossref_primary_10_1016_j_est_2024_111672 crossref_primary_10_1021_acsnano_4c09938 crossref_primary_10_3390_inorganics13030084 crossref_primary_10_1038_s41467_022_35325_y crossref_primary_10_1021_jacs_4c12428 crossref_primary_10_1002_smll_202302365 crossref_primary_10_1016_j_cap_2024_04_002 |
Cites_doi | 10.1038/nnano.2014.81 10.1103/PhysRevLett.83.5334 10.1007/s12274-018-2089-6 10.1021/acs.nanolett.6b05342 10.1021/acs.nanolett.6b04814 10.1103/PhysRevB.50.17953 10.1038/nphys3527 10.1021/ja404523s 10.1038/nphys3314 10.1021/acsnano.8b01610 10.1038/s41586-021-03339-z 10.1103/PhysRevB.54.11169 10.1063/1.1329672 10.1038/s41467-018-04435-x 10.1021/acs.nanolett.7b03058 10.1038/nmat2157 10.1021/acs.nanolett.0c00670 10.1038/nnano.2011.96 10.1021/jacs.7b05765 10.1140/epjb/e2006-00221-y 10.1103/PhysRevB.88.035301 10.1021/acsnano.6b01673 10.1039/C9NR10144F 10.1002/adfm.201802473 10.1038/nature24043 10.1063/1.3382344 10.1038/nchem.1589 10.1021/nn302422x 10.1038/natrevmats.2017.33 10.1038/nmat4080 10.1021/acs.nanolett.0c00090 10.1103/PhysRevB.59.1758 10.1021/acs.nanolett.8b05074 10.1103/PhysRevLett.77.3865 10.1038/nnano.2014.64 10.1038/nmat2318 10.1038/nnano.2015.143 10.1038/nmat3700 10.1126/science.aab3175 10.1039/C5CS00151J 10.1038/nnano.2015.40 10.1103/PhysRevB.74.235433 10.1038/nnano.2012.193 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202200643 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 35307877 10_1002_adma_202200643 ADMA202200643 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51972204; 11804247 – fundername: Japan Society for the Promotion of Science funderid: JP16H06333; JP19K04434; JP17H04797 – fundername: Institute for Basic Science funderid: IBS‐R019‐D1 – fundername: Japan Science and Technology Agency funderid: JPMJCR20B1; JPMJCR20B5; JPMJCR1993 – fundername: Japan Science and Technology Agency grantid: JPMJCR20B1 – fundername: National Natural Science Foundation of China grantid: 51972204 – fundername: National Natural Science Foundation of China grantid: 11804247 – fundername: Japan Science and Technology Agency grantid: JPMJCR1993 – fundername: Institute for Basic Science grantid: IBS-R019-D1 – fundername: Japan Society for the Promotion of Science grantid: JP16H06333 – fundername: Japan Society for the Promotion of Science grantid: JP17H04797 – fundername: Japan Science and Technology Agency grantid: JPMJCR20B5 – fundername: Japan Society for the Promotion of Science grantid: JP19K04434 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4393-a372fe90ded43cf55d68a52e7540a7e4ea61d2a06d7589e10a9921ec12ecfc403 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 09:48:22 EDT 2025 Sat Jul 12 02:49:34 EDT 2025 Mon Jul 21 06:00:36 EDT 2025 Wed Aug 20 07:44:04 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Wed Jan 22 16:24:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | in situ electron microscopy stoichiometry atomic mechanisms transition metal dichalcogenides chalcogen deficiency 2D phase transformations |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4393-a372fe90ded43cf55d68a52e7540a7e4ea61d2a06d7589e10a9921ec12ecfc403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6406-1780 0000-0002-3253-6964 |
PMID | 35307877 |
PQID | 2662425637 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2641504775 proquest_journals_2662425637 pubmed_primary_35307877 crossref_citationtrail_10_1002_adma_202200643 crossref_primary_10_1002_adma_202200643 wiley_primary_10_1002_adma_202200643_ADMA202200643 |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 28 2006; 74 2017; 2 2006; 51 2013; 88 2020; 20 2000; 113 2015; 11 2015; 10 2016; 10 2008; 7 2019; 19 2020; 12 2015; 349 2017; 550 2020; 10 1999; 83 2013; 5 2011; 6 1996; 54 2016; 12 2017; 139 1996; 77 2018; 9 2018; 18 2017; 17 2013; 12 2015; 44 1999; 59 2010; 132 2021; 591 2014; 13 2013; 135 2014; 9 2012; 6 2018; 12 2012; 7 2018; 11 1994; 50 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 Yang X. (e_1_2_8_28_1) 2020; 10 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 10 year: 2020 publication-title: Phys. Rev. X – volume: 13 start-page: 1128 year: 2014 publication-title: Nat. Mater. – volume: 5 start-page: 263 year: 2013 publication-title: Nat. Chem. – volume: 88 year: 2013 publication-title: Phys. Rev. B – volume: 7 start-page: 699 year: 2012 publication-title: Nat. Nanotechnol. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 436 year: 2014 publication-title: Nat. Nanotechnol. – volume: 20 start-page: 2094 year: 2020 publication-title: Nano Lett. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 10 start-page: 313 year: 2015 publication-title: Nat. Nanotechnol. – volume: 50 year: 1994 publication-title: Phys. Rev. B – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 5419 year: 2016 publication-title: ACS Nano – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 550 start-page: 487 year: 2017 publication-title: Nature – volume: 12 start-page: 7721 year: 2018 publication-title: ACS Nano – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 591 start-page: 43 year: 2021 publication-title: Nature – volume: 51 start-page: 277 year: 2006 publication-title: Eur. Phys. J. B – volume: 349 start-page: 625 year: 2015 publication-title: Science – volume: 17 start-page: 1616 year: 2017 publication-title: Nano Lett. – volume: 17 start-page: 3383 year: 2017 publication-title: Nano Lett. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 6 start-page: 7311 year: 2012 publication-title: ACS Nano – volume: 7 start-page: 399 year: 2008 publication-title: Nat. Mater. – volume: 11 start-page: 482 year: 2015 publication-title: Nat. Phys. – volume: 12 start-page: 92 year: 2016 publication-title: Nat. Phys. – volume: 11 start-page: 5849 year: 2018 publication-title: Nano Res. – volume: 9 start-page: 2051 year: 2018 publication-title: Nat. Commun. – volume: 74 year: 2006 publication-title: Phys. Rev. B – volume: 12 start-page: 8285 year: 2020 publication-title: Nanoscale – volume: 20 start-page: 2865 year: 2020 publication-title: Nano Lett. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 44 start-page: 2702 year: 2015 publication-title: Chem. Soc. Rev. – volume: 113 start-page: 9901 year: 2000 publication-title: J. Chem. Phys. – volume: 12 start-page: 850 year: 2013 publication-title: Nat. Mater. – volume: 19 start-page: 4845 year: 2019 publication-title: Nano Lett. – volume: 18 start-page: 675 year: 2018 publication-title: Nano Lett. – volume: 10 start-page: 765 year: 2015 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 391 year: 2014 publication-title: Nat. Nanotechnol. – volume: 83 start-page: 5334 year: 1999 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 501 year: 2011 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 960 year: 2008 publication-title: Nat. Mater. – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_8_25_1 doi: 10.1038/nnano.2014.81 – ident: e_1_2_8_30_1 doi: 10.1103/PhysRevLett.83.5334 – ident: e_1_2_8_32_1 doi: 10.1007/s12274-018-2089-6 – ident: e_1_2_8_36_1 doi: 10.1021/acs.nanolett.6b05342 – ident: e_1_2_8_17_1 doi: 10.1021/acs.nanolett.6b04814 – ident: e_1_2_8_40_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_8_4_1 doi: 10.1038/nphys3527 – ident: e_1_2_8_10_1 doi: 10.1021/ja404523s – ident: e_1_2_8_19_1 doi: 10.1038/nphys3314 – ident: e_1_2_8_24_1 doi: 10.1021/acsnano.8b01610 – ident: e_1_2_8_38_1 doi: 10.1038/s41586-021-03339-z – ident: e_1_2_8_39_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_44_1 doi: 10.1063/1.1329672 – ident: e_1_2_8_26_1 doi: 10.1038/s41467-018-04435-x – ident: e_1_2_8_29_1 doi: 10.1021/acs.nanolett.7b03058 – ident: e_1_2_8_7_1 doi: 10.1038/nmat2157 – ident: e_1_2_8_37_1 doi: 10.1021/acs.nanolett.0c00670 – ident: e_1_2_8_8_1 doi: 10.1038/nnano.2011.96 – ident: e_1_2_8_13_1 doi: 10.1021/jacs.7b05765 – ident: e_1_2_8_33_1 doi: 10.1140/epjb/e2006-00221-y – ident: e_1_2_8_22_1 doi: 10.1103/PhysRevB.88.035301 – ident: e_1_2_8_23_1 doi: 10.1021/acsnano.6b01673 – ident: e_1_2_8_35_1 doi: 10.1039/C9NR10144F – ident: e_1_2_8_6_1 doi: 10.1002/adfm.201802473 – ident: e_1_2_8_16_1 doi: 10.1038/nature24043 – ident: e_1_2_8_43_1 doi: 10.1063/1.3382344 – ident: e_1_2_8_2_1 doi: 10.1038/nchem.1589 – ident: e_1_2_8_15_1 doi: 10.1021/nn302422x – ident: e_1_2_8_12_1 doi: 10.1038/natrevmats.2017.33 – ident: e_1_2_8_9_1 doi: 10.1038/nmat4080 – ident: e_1_2_8_27_1 doi: 10.1021/acs.nanolett.0c00090 – ident: e_1_2_8_41_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_8_31_1 doi: 10.1021/acs.nanolett.8b05074 – ident: e_1_2_8_42_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_3_1 doi: 10.1038/nnano.2014.64 – ident: e_1_2_8_20_1 doi: 10.1038/nmat2318 – ident: e_1_2_8_21_1 doi: 10.1038/nnano.2015.143 – ident: e_1_2_8_5_1 doi: 10.1038/nmat3700 – volume: 10 year: 2020 ident: e_1_2_8_28_1 publication-title: Phys. Rev. X – ident: e_1_2_8_18_1 doi: 10.1126/science.aab3175 – ident: e_1_2_8_1_1 doi: 10.1039/C5CS00151J – ident: e_1_2_8_14_1 doi: 10.1038/nnano.2015.40 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevB.74.235433 – ident: e_1_2_8_11_1 doi: 10.1038/nnano.2012.193 |
SSID | ssj0009606 |
Score | 2.4784875 |
Snippet | Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2200643 |
SubjectTerms | 2D phase transformations atomic mechanisms chalcogen deficiency Chalcogenides Composition Heterostructures in situ electron microscopy Materials science Molybdenum compounds Molybdenum disulfide Monolayers Multiphase Optoelectronics Phase transitions Stoichiometry Transition metal compounds transition metal dichalcogenides |
Title | Multiple 2D Phase Transformations in Monolayer Transition Metal Chalcogenides |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202200643 https://www.ncbi.nlm.nih.gov/pubmed/35307877 https://www.proquest.com/docview/2662425637 https://www.proquest.com/docview/2641504775 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ikz54v0ynRBB8qmZp0jSPwwsiTEQ28K2cJimK0onbXvz1nqRd3RQR9KW0JKGnybl8pz39QshxniMIB8YiYazGA6pxqnQSFUJYXeRcWAhsn7fJ9UDcPMiHmb_4K36I5oWbt4zgr72BQz46-yQNBRt4gzgPURWdsC_Y8qjo_pM_ysPzQLYXy0gnIp2yNjJ-Nj98Pip9g5rzyDWEnqtVAlOhq4qT59PJOD8171_4HP_zVGtkpcaltFsp0jpZcOUGWZ5hK9wkvV5dfEj5Bb17xPBH-zOwF9WXPpUUnQRmywjkq8ZQEUZ7DjE-PX-EFzNEjX2ybrRFBleX_fPrqN6NITIIWuIIYsULp5l1VsSmkNImKUjuFGI-UE44SDqWA0sspiDadRhozTvOdLgzhREs3iaL5bB0u4RKBgY0pm4xKGFZoUXiZAqeDZDnIpUtEk1XIzM1VbnfMeMlq0iWeeanKWumqUVOmv6vFUnHjz3b08XNamMdZYhRfOKVxKpFjppmNDP_7QRKN5z4Poh0mFAKhduplKK5VSzRUaYKR_OwtL_IkHUvet3mau8vg_bJkj-vCi_bZHH8NnEHCI7G-WEwgA96LAOw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qZQEseBcGChgJxCqtx7HjeMFi1KGa0qZCaCp1FxzbUStGmaozI9T-Fb_SL-q182gHhJCQumATKbGdOPZ9nOvcHAO8KwoE4ZrSiBur8IBinEqVRCXnVpUF41YHts_9ZHTAPx-KwxX42f4LU_NDdAtuXjOCvfYK7hekN69YQ7UNxEGMBbfa5FXuurMfGLXNPu4McYrfM7b9abw1ipqNBSKD_jeOdCxZ6RS1zvLYlELYJNWCOYnwRUvHnU76lmmaWETTyvWpVor1nekzZ0rDaYz3vQW3_Tbinq5_-PWKscoHBIHeLxaRSnja8kRStrnc32U_-Bu4XcbKwdltP4CLdpjqHJfvG4t5sWHOf2GQ_K_G8SHcb6A3GdS68ghWXPUY7l0jZHwCWdbkVxI2JF-O0MOT8TVkjxpKjiuCdnA60Rir1IUh6Y1kDsMYsnWkJ2aKSnls3ewpHNzI-6zBajWt3HMggmqjFUansZbc0lLxxIlUe8JDVvBU9CBqpz83DRu73xRkktc80iz305J309KDD139k5qH5I8111tpyht7NMsRhvnYMollD952xWhJ_OchXbnpwtdBMEe5lNi5Z7UUdo-KBfqCVGJrFmTpL33IB8Ns0J29-JdGb-DOaJzt5Xs7-7sv4a6_XueZrsPq_HThXiEWnBevg_YR-HbTYnoJwapiBA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKw4P0YKGAkEKu0HsePeMFi1DBqKVNVqJW6C47tqBWjTMXMCMFX8Sv8EdfOox0QQkLqgk2kxE7i-L7OTW6OAV6WJYJwQ2nCrdO4QTXOlJZJxbnTVcm4M5Htc1_uHPF3x-J4Db53_8I0_BD9C7dgGdFfBwM_c9XWOWmocZE3iLEYVduyyj3_9QsmbfM3uzlK-BVj47eH2ztJu65AYjH8polJFau8ps47ntpKCCczI5hXiF6M8twbOXTMUOkQTGs_pEZrNvR2yLytLKcpXvcKXOWS6rBYRP7hnLAq5AOR3S8ViZY862giKdtaHe9qGPwN265C5RjrxrfgRzdLTYnLp83loty0334hkPyfpvE23GyBNxk1lnIH1nx9F25coGO8B5NJW11JWE4OTjC-k8MLuB7tk5zWBL3gbGowU2kaY8kbmXhMYsj2iZnaGZrkqfPz-3B0Kc_zANbrWe0fARHUWKMxN02N4o5WmksvMhPoDlnJMzGApJN-YVsu9rAkyLRoWKRZEcRS9GIZwOu-_1nDQvLHnhudMhWtN5oXCMJCZilTNYAXfTP6kfBxyNR-tgx9EMpRrhQO7mGjhP2tUoGRIFN4Nouq9JcxFKN8Mur3Hv_LSc_h2kE-Lt7v7u89gevhcFNkugHri89L_xSB4KJ8Fm2PwMfL1tKfE91gsw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+2D+Phase+Transformations+in+Monolayer+Transition+Metal+Chalcogenides&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Hong%2C+Jinhua&rft.au=Chen%2C+Xi&rft.au=Li%2C+Pai&rft.au=Koshino%2C+Masanori&rft.date=2022-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202200643&rft.externalDBID=10.1002%252Fadma.202200643&rft.externalDocID=ADMA202200643 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |