Multiple 2D Phase Transformations in Monolayer Transition Metal Chalcogenides

Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 19; pp. e2200643 - n/a
Main Authors Hong, Jinhua, Chen, Xi, Li, Pai, Koshino, Masanori, Li, Shisheng, Xu, Hua, Hu, Zhixin, Ding, Feng, Suenaga, Kazu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS2 and MoSe2. The multiphase transformations: MoS2 → Mo4S6 and MoSe2 → Mo6Se6 which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor–metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides. Atomically resolved multiple 2D phase transformations (MoS2 → Mo4S6, MoSe2 → L‐, Z‐Mo6Se6) is observed in monolayer transition metal dichalcogenides under in situ heating with stoichiometry control by electron beam irradiation. Through chalcogen sliding and reconstruction mechanisms, phase transformations are well manipulated to fabricate diphase heterostructures with atomically sharp interfaces, which will pave the way to phase engineered optoelectronics.
AbstractList Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS 2 and MoSe 2 . The multiphase transformations: MoS 2  → Mo 4 S 6 and MoSe 2  → Mo 6 Se 6 which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor–metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides.
Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS2 and MoSe2. The multiphase transformations: MoS2 → Mo4S6 and MoSe2 → Mo6Se6 which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor–metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides.
Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS2 and MoSe2 . The multiphase transformations: MoS2 → Mo4 S6 and MoSe2 → Mo6 Se6 which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor-metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides.Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS2 and MoSe2 . The multiphase transformations: MoS2 → Mo4 S6 and MoSe2 → Mo6 Se6 which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor-metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides.
Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS and MoSe . The multiphase transformations: MoS  → Mo S and MoSe  → Mo Se which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor-metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides.
Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS2 and MoSe2. The multiphase transformations: MoS2 → Mo4S6 and MoSe2 → Mo6Se6 which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor–metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides. Atomically resolved multiple 2D phase transformations (MoS2 → Mo4S6, MoSe2 → L‐, Z‐Mo6Se6) is observed in monolayer transition metal dichalcogenides under in situ heating with stoichiometry control by electron beam irradiation. Through chalcogen sliding and reconstruction mechanisms, phase transformations are well manipulated to fabricate diphase heterostructures with atomically sharp interfaces, which will pave the way to phase engineered optoelectronics.
Author Chen, Xi
Suenaga, Kazu
Xu, Hua
Li, Pai
Li, Shisheng
Koshino, Masanori
Ding, Feng
Hu, Zhixin
Hong, Jinhua
Author_xml – sequence: 1
  givenname: Jinhua
  orcidid: 0000-0002-6406-1780
  surname: Hong
  fullname: Hong, Jinhua
  organization: National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 2
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
  organization: Tianjin University
– sequence: 3
  givenname: Pai
  surname: Li
  fullname: Li, Pai
  organization: Institute for Basic Science (IBS)
– sequence: 4
  givenname: Masanori
  surname: Koshino
  fullname: Koshino, Masanori
  organization: National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 5
  givenname: Shisheng
  surname: Li
  fullname: Li, Shisheng
  organization: National Institute for Materials Science (NIMS)
– sequence: 6
  givenname: Hua
  surname: Xu
  fullname: Xu, Hua
  organization: Shaanxi Normal University
– sequence: 7
  givenname: Zhixin
  orcidid: 0000-0002-3253-6964
  surname: Hu
  fullname: Hu, Zhixin
  email: zhixin.hu@tju.edu.cn
  organization: Tianjin University
– sequence: 8
  givenname: Feng
  surname: Ding
  fullname: Ding, Feng
  organization: Ulsan National Institute of Science and Technology (UNIST)
– sequence: 9
  givenname: Kazu
  surname: Suenaga
  fullname: Suenaga, Kazu
  email: suenaga-kazu@sanken.osaka-u.ac.jp
  organization: Osaka University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35307877$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1vFDEQhi0URC6BlhKtREOzx_j7XJ4ufElZQRFqy3hniSOvfdi7Qvfv2eMSkCIhqinmeV6N5r0gZyknJOQlhTUFYG9dP7o1A8YAlOBPyIpKRlsBRp6RFRguW6PE5pxc1HoHAEaBekbOueSgN1qvSNfNcQr7iA27ar7cuorNTXGpDrmMbgo51SakpsspR3fAclqG46LpcHKx2d266PN3TKHH-pw8HVys-OJ-XpKv79_d7D62158_fNptr1svuOGt45oNaKDHXnA_SNmrjZMMtRTgNAp0ivbMgeq13Bik4IxhFD1l6AcvgF-SN6fcfck_ZqyTHUP1GKNLmOdqmRJUgtBaLujrR-hdnktarlsoxQSTiuuFenVPzd9G7O2-hNGVg3141AKIE-BLrrXgYH2Yfj9oKi5ES8Ee-7DHPuyfPhZt_Uh7SP6nYE7CzxDx8B_abq-67V_3F2PYnBE
CitedBy_id crossref_primary_10_1021_acs_jpcc_2c03779
crossref_primary_10_1016_j_coco_2024_101956
crossref_primary_10_1002_admi_202300277
crossref_primary_10_1002_smll_202310396
crossref_primary_10_1021_acsanm_3c01314
crossref_primary_10_1002_smll_202310526
crossref_primary_10_1021_acsnano_4c16095
crossref_primary_10_1038_s41467_024_50525_4
crossref_primary_10_1021_acssensors_4c01642
crossref_primary_10_1016_j_est_2024_111672
crossref_primary_10_1021_acsnano_4c09938
crossref_primary_10_3390_inorganics13030084
crossref_primary_10_1038_s41467_022_35325_y
crossref_primary_10_1021_jacs_4c12428
crossref_primary_10_1002_smll_202302365
crossref_primary_10_1016_j_cap_2024_04_002
Cites_doi 10.1038/nnano.2014.81
10.1103/PhysRevLett.83.5334
10.1007/s12274-018-2089-6
10.1021/acs.nanolett.6b05342
10.1021/acs.nanolett.6b04814
10.1103/PhysRevB.50.17953
10.1038/nphys3527
10.1021/ja404523s
10.1038/nphys3314
10.1021/acsnano.8b01610
10.1038/s41586-021-03339-z
10.1103/PhysRevB.54.11169
10.1063/1.1329672
10.1038/s41467-018-04435-x
10.1021/acs.nanolett.7b03058
10.1038/nmat2157
10.1021/acs.nanolett.0c00670
10.1038/nnano.2011.96
10.1021/jacs.7b05765
10.1140/epjb/e2006-00221-y
10.1103/PhysRevB.88.035301
10.1021/acsnano.6b01673
10.1039/C9NR10144F
10.1002/adfm.201802473
10.1038/nature24043
10.1063/1.3382344
10.1038/nchem.1589
10.1021/nn302422x
10.1038/natrevmats.2017.33
10.1038/nmat4080
10.1021/acs.nanolett.0c00090
10.1103/PhysRevB.59.1758
10.1021/acs.nanolett.8b05074
10.1103/PhysRevLett.77.3865
10.1038/nnano.2014.64
10.1038/nmat2318
10.1038/nnano.2015.143
10.1038/nmat3700
10.1126/science.aab3175
10.1039/C5CS00151J
10.1038/nnano.2015.40
10.1103/PhysRevB.74.235433
10.1038/nnano.2012.193
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202200643
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35307877
10_1002_adma_202200643
ADMA202200643
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51972204; 11804247
– fundername: Japan Society for the Promotion of Science
  funderid: JP16H06333; JP19K04434; JP17H04797
– fundername: Institute for Basic Science
  funderid: IBS‐R019‐D1
– fundername: Japan Science and Technology Agency
  funderid: JPMJCR20B1; JPMJCR20B5; JPMJCR1993
– fundername: Japan Science and Technology Agency
  grantid: JPMJCR20B1
– fundername: National Natural Science Foundation of China
  grantid: 51972204
– fundername: National Natural Science Foundation of China
  grantid: 11804247
– fundername: Japan Science and Technology Agency
  grantid: JPMJCR1993
– fundername: Institute for Basic Science
  grantid: IBS-R019-D1
– fundername: Japan Society for the Promotion of Science
  grantid: JP16H06333
– fundername: Japan Society for the Promotion of Science
  grantid: JP17H04797
– fundername: Japan Science and Technology Agency
  grantid: JPMJCR20B5
– fundername: Japan Society for the Promotion of Science
  grantid: JP19K04434
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4393-a372fe90ded43cf55d68a52e7540a7e4ea61d2a06d7589e10a9921ec12ecfc403
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 09:48:22 EDT 2025
Sat Jul 12 02:49:34 EDT 2025
Mon Jul 21 06:00:36 EDT 2025
Wed Aug 20 07:44:04 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Wed Jan 22 16:24:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords in situ electron microscopy
stoichiometry
atomic mechanisms
transition metal dichalcogenides
chalcogen deficiency
2D phase transformations
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4393-a372fe90ded43cf55d68a52e7540a7e4ea61d2a06d7589e10a9921ec12ecfc403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6406-1780
0000-0002-3253-6964
PMID 35307877
PQID 2662425637
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2641504775
proquest_journals_2662425637
pubmed_primary_35307877
crossref_citationtrail_10_1002_adma_202200643
crossref_primary_10_1002_adma_202200643
wiley_primary_10_1002_adma_202200643_ADMA202200643
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 28
2006; 74
2017; 2
2006; 51
2013; 88
2020; 20
2000; 113
2015; 11
2015; 10
2016; 10
2008; 7
2019; 19
2020; 12
2015; 349
2017; 550
2020; 10
1999; 83
2013; 5
2011; 6
1996; 54
2016; 12
2017; 139
1996; 77
2018; 9
2018; 18
2017; 17
2013; 12
2015; 44
1999; 59
2010; 132
2021; 591
2014; 13
2013; 135
2014; 9
2012; 6
2018; 12
2012; 7
2018; 11
1994; 50
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
Yang X. (e_1_2_8_28_1) 2020; 10
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 10
  year: 2020
  publication-title: Phys. Rev. X
– volume: 13
  start-page: 1128
  year: 2014
  publication-title: Nat. Mater.
– volume: 5
  start-page: 263
  year: 2013
  publication-title: Nat. Chem.
– volume: 88
  year: 2013
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 699
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 436
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 20
  start-page: 2094
  year: 2020
  publication-title: Nano Lett.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 10
  start-page: 313
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 5419
  year: 2016
  publication-title: ACS Nano
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 550
  start-page: 487
  year: 2017
  publication-title: Nature
– volume: 12
  start-page: 7721
  year: 2018
  publication-title: ACS Nano
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 591
  start-page: 43
  year: 2021
  publication-title: Nature
– volume: 51
  start-page: 277
  year: 2006
  publication-title: Eur. Phys. J. B
– volume: 349
  start-page: 625
  year: 2015
  publication-title: Science
– volume: 17
  start-page: 1616
  year: 2017
  publication-title: Nano Lett.
– volume: 17
  start-page: 3383
  year: 2017
  publication-title: Nano Lett.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 7311
  year: 2012
  publication-title: ACS Nano
– volume: 7
  start-page: 399
  year: 2008
  publication-title: Nat. Mater.
– volume: 11
  start-page: 482
  year: 2015
  publication-title: Nat. Phys.
– volume: 12
  start-page: 92
  year: 2016
  publication-title: Nat. Phys.
– volume: 11
  start-page: 5849
  year: 2018
  publication-title: Nano Res.
– volume: 9
  start-page: 2051
  year: 2018
  publication-title: Nat. Commun.
– volume: 74
  year: 2006
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 8285
  year: 2020
  publication-title: Nanoscale
– volume: 20
  start-page: 2865
  year: 2020
  publication-title: Nano Lett.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 44
  start-page: 2702
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 113
  start-page: 9901
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 12
  start-page: 850
  year: 2013
  publication-title: Nat. Mater.
– volume: 19
  start-page: 4845
  year: 2019
  publication-title: Nano Lett.
– volume: 18
  start-page: 675
  year: 2018
  publication-title: Nano Lett.
– volume: 10
  start-page: 765
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 391
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 83
  start-page: 5334
  year: 1999
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 501
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 960
  year: 2008
  publication-title: Nat. Mater.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_8_25_1
  doi: 10.1038/nnano.2014.81
– ident: e_1_2_8_30_1
  doi: 10.1103/PhysRevLett.83.5334
– ident: e_1_2_8_32_1
  doi: 10.1007/s12274-018-2089-6
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.nanolett.6b05342
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.nanolett.6b04814
– ident: e_1_2_8_40_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_8_4_1
  doi: 10.1038/nphys3527
– ident: e_1_2_8_10_1
  doi: 10.1021/ja404523s
– ident: e_1_2_8_19_1
  doi: 10.1038/nphys3314
– ident: e_1_2_8_24_1
  doi: 10.1021/acsnano.8b01610
– ident: e_1_2_8_38_1
  doi: 10.1038/s41586-021-03339-z
– ident: e_1_2_8_39_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_44_1
  doi: 10.1063/1.1329672
– ident: e_1_2_8_26_1
  doi: 10.1038/s41467-018-04435-x
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.nanolett.7b03058
– ident: e_1_2_8_7_1
  doi: 10.1038/nmat2157
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.nanolett.0c00670
– ident: e_1_2_8_8_1
  doi: 10.1038/nnano.2011.96
– ident: e_1_2_8_13_1
  doi: 10.1021/jacs.7b05765
– ident: e_1_2_8_33_1
  doi: 10.1140/epjb/e2006-00221-y
– ident: e_1_2_8_22_1
  doi: 10.1103/PhysRevB.88.035301
– ident: e_1_2_8_23_1
  doi: 10.1021/acsnano.6b01673
– ident: e_1_2_8_35_1
  doi: 10.1039/C9NR10144F
– ident: e_1_2_8_6_1
  doi: 10.1002/adfm.201802473
– ident: e_1_2_8_16_1
  doi: 10.1038/nature24043
– ident: e_1_2_8_43_1
  doi: 10.1063/1.3382344
– ident: e_1_2_8_2_1
  doi: 10.1038/nchem.1589
– ident: e_1_2_8_15_1
  doi: 10.1021/nn302422x
– ident: e_1_2_8_12_1
  doi: 10.1038/natrevmats.2017.33
– ident: e_1_2_8_9_1
  doi: 10.1038/nmat4080
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.nanolett.0c00090
– ident: e_1_2_8_41_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.nanolett.8b05074
– ident: e_1_2_8_42_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_3_1
  doi: 10.1038/nnano.2014.64
– ident: e_1_2_8_20_1
  doi: 10.1038/nmat2318
– ident: e_1_2_8_21_1
  doi: 10.1038/nnano.2015.143
– ident: e_1_2_8_5_1
  doi: 10.1038/nmat3700
– volume: 10
  year: 2020
  ident: e_1_2_8_28_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_18_1
  doi: 10.1126/science.aab3175
– ident: e_1_2_8_1_1
  doi: 10.1039/C5CS00151J
– ident: e_1_2_8_14_1
  doi: 10.1038/nnano.2015.40
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevB.74.235433
– ident: e_1_2_8_11_1
  doi: 10.1038/nnano.2012.193
SSID ssj0009606
Score 2.4784875
Snippet Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2200643
SubjectTerms 2D phase transformations
atomic mechanisms
chalcogen deficiency
Chalcogenides
Composition
Heterostructures
in situ electron microscopy
Materials science
Molybdenum compounds
Molybdenum disulfide
Monolayers
Multiphase
Optoelectronics
Phase transitions
Stoichiometry
Transition metal compounds
transition metal dichalcogenides
Title Multiple 2D Phase Transformations in Monolayer Transition Metal Chalcogenides
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202200643
https://www.ncbi.nlm.nih.gov/pubmed/35307877
https://www.proquest.com/docview/2662425637
https://www.proquest.com/docview/2641504775
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ikz54v0ynRBB8qmZp0jSPwwsiTEQ28K2cJimK0onbXvz1nqRd3RQR9KW0JKGnybl8pz39QshxniMIB8YiYazGA6pxqnQSFUJYXeRcWAhsn7fJ9UDcPMiHmb_4K36I5oWbt4zgr72BQz46-yQNBRt4gzgPURWdsC_Y8qjo_pM_ysPzQLYXy0gnIp2yNjJ-Nj98Pip9g5rzyDWEnqtVAlOhq4qT59PJOD8171_4HP_zVGtkpcaltFsp0jpZcOUGWZ5hK9wkvV5dfEj5Bb17xPBH-zOwF9WXPpUUnQRmywjkq8ZQEUZ7DjE-PX-EFzNEjX2ybrRFBleX_fPrqN6NITIIWuIIYsULp5l1VsSmkNImKUjuFGI-UE44SDqWA0sspiDadRhozTvOdLgzhREs3iaL5bB0u4RKBgY0pm4xKGFZoUXiZAqeDZDnIpUtEk1XIzM1VbnfMeMlq0iWeeanKWumqUVOmv6vFUnHjz3b08XNamMdZYhRfOKVxKpFjppmNDP_7QRKN5z4Poh0mFAKhduplKK5VSzRUaYKR_OwtL_IkHUvet3mau8vg_bJkj-vCi_bZHH8NnEHCI7G-WEwgA96LAOw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qZQEseBcGChgJxCqtx7HjeMFi1KGa0qZCaCp1FxzbUStGmaozI9T-Fb_SL-q182gHhJCQumATKbGdOPZ9nOvcHAO8KwoE4ZrSiBur8IBinEqVRCXnVpUF41YHts_9ZHTAPx-KwxX42f4LU_NDdAtuXjOCvfYK7hekN69YQ7UNxEGMBbfa5FXuurMfGLXNPu4McYrfM7b9abw1ipqNBSKD_jeOdCxZ6RS1zvLYlELYJNWCOYnwRUvHnU76lmmaWETTyvWpVor1nekzZ0rDaYz3vQW3_Tbinq5_-PWKscoHBIHeLxaRSnja8kRStrnc32U_-Bu4XcbKwdltP4CLdpjqHJfvG4t5sWHOf2GQ_K_G8SHcb6A3GdS68ghWXPUY7l0jZHwCWdbkVxI2JF-O0MOT8TVkjxpKjiuCdnA60Rir1IUh6Y1kDsMYsnWkJ2aKSnls3ewpHNzI-6zBajWt3HMggmqjFUansZbc0lLxxIlUe8JDVvBU9CBqpz83DRu73xRkktc80iz305J309KDD139k5qH5I8111tpyht7NMsRhvnYMollD952xWhJ_OchXbnpwtdBMEe5lNi5Z7UUdo-KBfqCVGJrFmTpL33IB8Ns0J29-JdGb-DOaJzt5Xs7-7sv4a6_XueZrsPq_HThXiEWnBevg_YR-HbTYnoJwapiBA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRUKw4P0YKGAkEKu0HsePeMFi1DBqKVNVqJW6C47tqBWjTMXMCMFX8Sv8EdfOox0QQkLqgk2kxE7i-L7OTW6OAV6WJYJwQ2nCrdO4QTXOlJZJxbnTVcm4M5Htc1_uHPF3x-J4Db53_8I0_BD9C7dgGdFfBwM_c9XWOWmocZE3iLEYVduyyj3_9QsmbfM3uzlK-BVj47eH2ztJu65AYjH8polJFau8ps47ntpKCCczI5hXiF6M8twbOXTMUOkQTGs_pEZrNvR2yLytLKcpXvcKXOWS6rBYRP7hnLAq5AOR3S8ViZY862giKdtaHe9qGPwN265C5RjrxrfgRzdLTYnLp83loty0334hkPyfpvE23GyBNxk1lnIH1nx9F25coGO8B5NJW11JWE4OTjC-k8MLuB7tk5zWBL3gbGowU2kaY8kbmXhMYsj2iZnaGZrkqfPz-3B0Kc_zANbrWe0fARHUWKMxN02N4o5WmksvMhPoDlnJMzGApJN-YVsu9rAkyLRoWKRZEcRS9GIZwOu-_1nDQvLHnhudMhWtN5oXCMJCZilTNYAXfTP6kfBxyNR-tgx9EMpRrhQO7mGjhP2tUoGRIFN4Nouq9JcxFKN8Mur3Hv_LSc_h2kE-Lt7v7u89gevhcFNkugHri89L_xSB4KJ8Fm2PwMfL1tKfE91gsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+2D+Phase+Transformations+in+Monolayer+Transition+Metal+Chalcogenides&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Hong%2C+Jinhua&rft.au=Chen%2C+Xi&rft.au=Li%2C+Pai&rft.au=Koshino%2C+Masanori&rft.date=2022-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202200643&rft.externalDBID=10.1002%252Fadma.202200643&rft.externalDocID=ADMA202200643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon