Highly‐Adaptable Optothermal Nanotweezers for Trapping, Sorting, and Assembling across Diverse Nanoparticles

Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompa...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 9; pp. e2309143 - n/a
Main Authors Chen, Jiajie, Zhou, Jianxing, Peng, Yuhang, Dai, Xiaoqi, Tan, Yan, Zhong, Yili, Li, Tianzhong, Zou, Yanhua, Hu, Rui, Cui, Ximin, Ho, Ho‐Pui, Gao, Bruce Zhi, Zhang, Han, Chen, Yu, Wang, Meiting, Zhang, Xueji, Qu, Junle, Shao, Yonghong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo‐osmotic flows in the boundary layer of an optothermal‐responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub‐10 nm are designed. Additionally, a novel optothermal doughnut‐shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science. Highly‐adaptable optothermal nanotweezer (HAONT) is a universal optothermal manipulation scheme with sub‐10 nm precision, enabling trapping, sorting, assembling, and novel doughnut‐shaped vortex trapping across diverse nanoparticles. Its versatility expands its functionality to a broad spectrum of nanoparticles, making it a useful tool for versatile nano‐fabrication across various materials, charges, shapes, sizes, and beyond.
AbstractList Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo‐osmotic flows in the boundary layer of an optothermal‐responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub‐10 nm are designed. Additionally, a novel optothermal doughnut‐shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science. Highly‐adaptable optothermal nanotweezer (HAONT) is a universal optothermal manipulation scheme with sub‐10 nm precision, enabling trapping, sorting, assembling, and novel doughnut‐shaped vortex trapping across diverse nanoparticles. Its versatility expands its functionality to a broad spectrum of nanoparticles, making it a useful tool for versatile nano‐fabrication across various materials, charges, shapes, sizes, and beyond.
Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo-osmotic flows in the boundary layer of an optothermal-responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub-10 nm are designed. Additionally, a novel optothermal doughnut-shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science.
Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo-osmotic flows in the boundary layer of an optothermal-responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub-10 nm are designed. Additionally, a novel optothermal doughnut-shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science.Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo-osmotic flows in the boundary layer of an optothermal-responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub-10 nm are designed. Additionally, a novel optothermal doughnut-shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science.
Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo‐osmotic flows in the boundary layer of an optothermal‐responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub‐10 nm are designed. Additionally, a novel optothermal doughnut‐shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science.
Author Zhou, Jianxing
Wang, Meiting
Peng, Yuhang
Tan, Yan
Qu, Junle
Hu, Rui
Cui, Ximin
Gao, Bruce Zhi
Dai, Xiaoqi
Zou, Yanhua
Zhang, Han
Ho, Ho‐Pui
Zhang, Xueji
Chen, Yu
Li, Tianzhong
Shao, Yonghong
Zhong, Yili
Chen, Jiajie
Author_xml – sequence: 1
  givenname: Jiajie
  orcidid: 0000-0002-7200-6626
  surname: Chen
  fullname: Chen, Jiajie
  email: cjj@szu.edu.cn
  organization: Shenzhen University
– sequence: 2
  givenname: Jianxing
  surname: Zhou
  fullname: Zhou, Jianxing
  organization: Shenzhen University
– sequence: 3
  givenname: Yuhang
  surname: Peng
  fullname: Peng, Yuhang
  organization: Shenzhen University
– sequence: 4
  givenname: Xiaoqi
  surname: Dai
  fullname: Dai, Xiaoqi
  organization: Shenzhen University
– sequence: 5
  givenname: Yan
  surname: Tan
  fullname: Tan, Yan
  organization: Shenzhen University
– sequence: 6
  givenname: Yili
  surname: Zhong
  fullname: Zhong, Yili
  organization: Shenzhen University
– sequence: 7
  givenname: Tianzhong
  surname: Li
  fullname: Li, Tianzhong
  organization: Shenzhen University
– sequence: 8
  givenname: Yanhua
  surname: Zou
  fullname: Zou, Yanhua
  organization: Shenzhen University
– sequence: 9
  givenname: Rui
  surname: Hu
  fullname: Hu, Rui
  organization: Shenzhen University
– sequence: 10
  givenname: Ximin
  surname: Cui
  fullname: Cui, Ximin
  organization: Shenzhen University
– sequence: 11
  givenname: Ho‐Pui
  orcidid: 0000-0001-5001-5911
  surname: Ho
  fullname: Ho, Ho‐Pui
  organization: The Chinese University of Hong Kong
– sequence: 12
  givenname: Bruce Zhi
  surname: Gao
  fullname: Gao, Bruce Zhi
  organization: Clemson University
– sequence: 13
  givenname: Han
  surname: Zhang
  fullname: Zhang, Han
  organization: Shenzhen University
– sequence: 14
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: Shenzhen University
– sequence: 15
  givenname: Meiting
  surname: Wang
  fullname: Wang, Meiting
  organization: Shenzhen University
– sequence: 16
  givenname: Xueji
  orcidid: 0000-0002-0035-3821
  surname: Zhang
  fullname: Zhang, Xueji
  organization: Shenzhen University
– sequence: 17
  givenname: Junle
  orcidid: 0000-0001-7833-4711
  surname: Qu
  fullname: Qu, Junle
  email: jlqu@szu.edu.cn
  organization: Shenzhen University
– sequence: 18
  givenname: Yonghong
  surname: Shao
  fullname: Shao, Yonghong
  email: shaoyh@szu.edu.cn
  organization: Shenzhen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37944998$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFLUsUiQ0LMvgvnngZtUCRCl1Q1tZ1fNO6cuJgZ6iGFY_AM_IkZGZakCohVralcz753u-IHAxxQEKeM7pklPI34HpYcsoF1UyKR2TBKs5KSXV1QBZUi6rUStaH5CjnG0qpVlQ9IYdipaXUul6Q4cxfXYfNrx8_GwfjBDZgcTFOcbrG1EMoPsEQp1vE75hy0cVUXCYYRz9cvS4-xzTtLjC4oskZexvmdwFtijkXp_7b7OAuYYQZbQPmp-RxByHjs7vzmHx59_by5Kw8v3j_4aQ5L1sptChrbRGxYq5G1WppO1a3onKKAueCc21XFoBapaRdCYetQMacckBZBavOMXFMXu1zxxS_rjFPpve5xRBgwLjOhte15rJicou-fIDexHUa5t8ZroVQ8y531Is7am17dGZMvoe0MfebnAG5B3bTJ-xM6yeYfBymBD4YRs22MLMtzPwpbNaWD7T75H8Kei_c-oCb_9CmOf3Y_HV_A2_UqkQ
CitedBy_id crossref_primary_10_1088_1361_6463_adb75f
crossref_primary_10_1002_lpor_202400412
crossref_primary_10_1364_OE_543990
crossref_primary_10_1002_adma_202412895
crossref_primary_10_1103_PhysRevFluids_9_124202
crossref_primary_10_1515_nanoph_2024_0484
crossref_primary_10_1088_1361_6463_ad6612
crossref_primary_10_1021_acs_jpcc_4c00340
crossref_primary_10_1038_s41377_024_01734_5
crossref_primary_10_3788_CJL240861
crossref_primary_10_1002_adma_202401115
crossref_primary_10_1002_smtd_202400828
crossref_primary_10_1021_acs_analchem_4c01234
crossref_primary_10_1186_s43074_024_00144_5
crossref_primary_10_1002_lpor_202400791
crossref_primary_10_1021_acsphotonics_4c00666
crossref_primary_10_1103_PhysRevA_110_063517
Cites_doi 10.1021/acssensors.1c01350
10.1002/pssa.201900604
10.1021/nl203200g
10.1021/la904588s
10.1038/s41467-022-28212-z
10.1039/D1CS01111A
10.1103/PhysRevLett.89.188103
10.1038/s41467-023-42076-x
10.1039/D2CS00359G
10.1002/lpor.202100197
10.1021/acs.accounts.8b00102
10.1002/smsc.202300100
10.1063/5.0086855
10.1186/s43593-023-00049-z
10.1002/smll.202103702
10.1063/5.0091280
10.1006/jcis.1995.9946
10.1088/1361-648X/ab421c
10.3390/mi14071326
10.1016/j.bios.2019.02.009
10.1103/PhysRevLett.116.188303
10.1039/c3nr06617g
10.1038/s41566-023-01265-2
10.1063/1.1630351
10.1364/OE.18.018483
10.1007/s12274-023-5659-1
10.1039/C7LC00432J
10.1128/JVI.80.4.1734-1741.2006
10.1364/OE.14.012517
10.1038/srep09978
10.1016/j.bios.2022.114084
10.1039/C5LC00406C
10.1364/AOP.489300
10.1038/nphoton.2011.98
10.1021/acs.nanolett.0c03638
10.1038/s41377-021-00561-2
10.1021/acsnano.5b00286
10.1103/PhysRevLett.107.038301
10.1007/s12274-020-3087-z
10.1103/PhysRevLett.102.208301
10.1364/PRJ.6.000182
10.1146/annurev.fl.21.010189.000425
10.1073/pnas.1215764109
10.1002/adma.201605897
10.1074/jbc.M110.103374
10.1038/s41467-021-25582-8
10.1186/s43593-022-00020-4
10.1364/OPEX.12.003377
10.1016/j.enrev.2023.100018
10.1080/17425247.2016.1182485
10.1073/pnas.2026827118
10.1021/acsnano.2c03111
10.1021/je050130t
10.1038/s41551-020-00634-4
10.1021/nl203719v
10.1364/OE.18.000551
10.1088/0034-4885/73/12/126601
10.1038/s41565-020-0760-z
10.1016/S0142-9612(01)00403-3
10.1063/1.4847636
10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO;2-D
10.1002/adom.201900829
10.1016/j.snb.2018.02.016
10.1021/nn200590u
10.1038/srep35814
10.1021/ma00022a008
10.1038/s41566-018-0134-3
10.1021/acs.nanolett.8b03844
10.1038/nphoton.2011.56
10.1021/acsnano.2c12811
10.1021/acs.chemrev.8b00738
10.1186/s43593-021-00007-7
10.1364/OL.40.003926
10.1021/nn901751w
10.1021/nl504444w
10.1021/nl051289r
10.1002/adma.202001994
10.1364/OL.11.000288
10.1016/j.bios.2020.112482
10.1002/lpor.202270062
10.1021/nn404980k
10.1021/acsnano.3c00583
10.1103/PhysRevE.91.062709
10.1364/OL.19.000930
10.1002/adma.202107691
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202309143
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 37944998
10_1002_adma_202309143
ADMA202309143
Genre article
Journal Article
GrantInformation_xml – fundername: Medical‐Engineering Interdisciplinary Research Foundation of Shenzhen University
  funderid: 2023YG002
– fundername: Shenzhen Science and Technology R&D and Innovation Foundation
  funderid: JCYJ20200109105608771
– fundername: Key Technologies Research and Development Program
  funderid: 2022YFA1206300
– fundername: Natural Science Foundation of Guangdong Province
  funderid: 2021A1515011916; 2023A1515012250
– fundername: Department of Science and Technology of Guangdong Province
  funderid: 2021QN02Y124
– fundername: National Natural Science Foundation of China
  funderid: 62275164; 61905145; 62275168; 61775148
– fundername: Science and Technology Planning Project of Shenzhen Municipality
  funderid: ZDSYS20210623092006020
– fundername: National Natural Science Foundation of China
  grantid: 61905145
– fundername: National Natural Science Foundation of China
  grantid: 61775148
– fundername: Science and Technology Planning Project of Shenzhen Municipality
  grantid: ZDSYS20210623092006020
– fundername: Shenzhen Science and Technology R&D and Innovation Foundation
  grantid: JCYJ20200109105608771
– fundername: Department of Science and Technology of Guangdong Province
  grantid: 2021QN02Y124
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2021A1515011916
– fundername: Medical-Engineering Interdisciplinary Research Foundation of Shenzhen University
  grantid: 2023YG002
– fundername: National Natural Science Foundation of China
  grantid: 62275168
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2023A1515012250
– fundername: Key Technologies Research and Development Program
  grantid: 2022YFA1206300
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4393-89beee51d8e6c94bf18c35d60a223229b7baa0b664b73dec3e11d6da015a7fd13
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 16:44:43 EDT 2025
Sun Aug 10 10:21:38 EDT 2025
Thu Apr 03 07:00:37 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Thu Aug 14 00:12:46 EDT 2025
Wed Jan 22 16:14:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords optothermal trapping
assembling
optical tweezers
nanostructure fabrication
diffusiophoresis
thermo-osmosis
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4393-89beee51d8e6c94bf18c35d60a223229b7baa0b664b73dec3e11d6da015a7fd13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7200-6626
0000-0001-7833-4711
0000-0002-0035-3821
0000-0001-5001-5911
PMID 37944998
PQID 2933640941
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2889245141
proquest_journals_2933640941
pubmed_primary_37944998
crossref_citationtrail_10_1002_adma_202309143
crossref_primary_10_1002_adma_202309143
wiley_primary_10_1002_adma_202309143_ADMA202309143
PublicationCentury 2000
PublicationDate March 1, 2024
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 1, 2024
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020; 20
2010; 18
2013; 20
2000; 51
2011; 11
2020; 15
1988; 73
2020; 167
2023; 2
2023; 3
2013; 7
1995; 176
2012; 12
1979
2020; 8
2018; 6
2022; 120
2010; 26
2015; 40
2002; 89
2021; 118
2022; 34
2020; 217
2019; 119
2016; 116
2015; 91
2003; 83
2010; 4
2014; 6
2022; 204
2010; 73
2015; 15
2021; 6
2018; 264
2007; 685
2021; 5
2023; 14
2015; 5
1989; 21
2023; 17
2019; 31
2023; 15
1986; 11
2022; 51
2023; 16
2006; 14
2013; 103
2010; 285
2017; 29
2020; 32
2021; 1
2015; 9
2011; 5
2016; 13
2012; 109
2021; 14
2018; 18
2016; 6
2006; 80
2021; 10
2021; 12
2011; 107
2023
1991; 24
1994; 19
2017; 17
2002; 23
2021; 17
2022; 9
2004; 12
2005; 5
2022; 13
2009; 102
2018; 51
2022; 2
2005; 50
2018; 12
2022; 16
2019; 133
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_85_1
Hong I. (e_1_2_8_52_1) 2023
Baek J.‐H. (e_1_2_8_90_1) 2007; 685
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Doi M. (e_1_2_8_68_1) 1988
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
Bendix P. M. (e_1_2_8_8_1) 2013; 20
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e Gennes P.‐G. (e_1_2_8_70_1) 1979
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 15
  start-page: 1766
  year: 2015
  publication-title: Nano Lett.
– volume: 264
  start-page: 224
  year: 2018
  publication-title: Sens. Actuators, B
– volume: 83
  start-page: 4625
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 124
  year: 2021
  publication-title: Light: Sci. Appl.
– volume: 12
  start-page: 195
  year: 2018
  publication-title: Nat. Photonics
– volume: 204
  year: 2022
  publication-title: Biosens. Bioelectron.
– volume: 15
  start-page: 2504
  year: 2015
  publication-title: Lab Chip
– volume: 16
  start-page: 7710
  year: 2023
  publication-title: Nano Res.
– volume: 102
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 1937
  year: 2005
  publication-title: Nano Lett.
– volume: 51
  start-page: 343
  year: 2000
  publication-title: J. Biomed. Mater. Res.
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 14
  year: 2006
  publication-title: Opt. Express
– volume: 5
  start-page: 5457
  year: 2011
  publication-title: ACS Nano
– volume: 73
  year: 1988
– year: 1979
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 73
  year: 2010
  publication-title: Rep. Prog. Phys.
– volume: 19
  start-page: 930
  year: 1994
  publication-title: Opt. Lett.
– volume: 5
  start-page: 349
  year: 2011
  publication-title: Nat. Photonics
– volume: 20
  start-page: 8811
  year: 2020
  publication-title: Nano Lett.
– volume: 285
  year: 2010
  publication-title: J. Biol. Chem.
– volume: 17
  start-page: 3061
  year: 2017
  publication-title: Lab Chip
– volume: 50
  start-page: 1662
  year: 2005
  publication-title: J. Chem. Eng. Data
– volume: 18
  start-page: 7400
  year: 2018
  publication-title: Nano Lett.
– volume: 24
  start-page: 5943
  year: 1991
  publication-title: Macromolecules
– volume: 23
  start-page: 2641
  year: 2002
  publication-title: Biomaterials
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2023
  publication-title: ACS Photonics
– volume: 13
  start-page: 656
  year: 2022
  publication-title: Nat. Commun.
– volume: 12
  start-page: 402
  year: 2012
  publication-title: Nano Lett.
– volume: 15
  start-page: 908
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 89
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 176
  start-page: 454
  year: 1995
  publication-title: J. Colloid Interface Sci.
– volume: 4
  start-page: 2256
  year: 2010
  publication-title: ACS Nano
– volume: 80
  start-page: 1734
  year: 2006
  publication-title: J. Virol.
– volume: 1
  start-page: 7
  year: 2021
  publication-title: eLight
– volume: 21
  start-page: 61
  year: 1989
  publication-title: Annu. Rev. Fluid Mech.
– volume: 15
  start-page: 835
  year: 2023
  publication-title: Adv. Opt. Photonics
– volume: 9
  start-page: 3453
  year: 2015
  publication-title: ACS Nano
– volume: 16
  year: 2022
  publication-title: Laser Photonics Rev.
– volume: 6
  start-page: 182
  year: 2018
  publication-title: Photonics Res.
– volume: 7
  year: 2013
  publication-title: ACS Nano
– volume: 109
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 133
  start-page: 236
  year: 2019
  publication-title: Biosens. Bioelectron.
– volume: 11
  start-page: 288
  year: 1986
  publication-title: Opt. Lett.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  year: 2022
  publication-title: Appl. Phys. Rev.
– volume: 12
  start-page: 3377
  year: 2004
  publication-title: Opt. Express
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 13
  start-page: 1257
  year: 2016
  publication-title: Expert Opin. Drug Delivery
– volume: 17
  start-page: 904
  year: 2023
  publication-title: Nat. Photonics
– volume: 17
  year: 2021
  publication-title: Small
– volume: 3
  start-page: 16
  year: 2023
  publication-title: eLight
– volume: 12
  start-page: 5349
  year: 2021
  publication-title: Nat. Commun.
– volume: 20
  start-page: 15
  year: 2013
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 217
  year: 2020
  publication-title: Phys. Status Solidi
– volume: 14
  start-page: 6361
  year: 2023
  publication-title: Nat. Commun.
– volume: 11
  start-page: 5431
  year: 2011
  publication-title: Nano Lett.
– volume: 5
  start-page: 9978
  year: 2015
  publication-title: Sci. Rep.
– volume: 18
  year: 2010
  publication-title: Opt. Express
– volume: 5
  start-page: 103
  year: 2021
  publication-title: Nat. Biomed. Eng.
– volume: 6
  start-page: 4458
  year: 2014
  publication-title: Nanoscale
– volume: 14
  start-page: 1326
  year: 2023
  publication-title: Micromachines
– volume: 103
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 295
  year: 2021
  publication-title: Nano Res.
– volume: 91
  year: 2015
  publication-title: Phys. Rev. E
– volume: 26
  start-page: 7792
  year: 2010
  publication-title: Langmuir
– volume: 3
  year: 2023
  publication-title: Small Sci.
– volume: 17
  start-page: 5894
  year: 2023
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: J. Phys.: Condens. Matter
– volume: 5
  start-page: 322
  year: 2011
  publication-title: Nat. Photonics
– volume: 2
  start-page: 13
  year: 2022
  publication-title: eLight
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 685
  start-page: 61
  year: 2007
  publication-title: Mirror
– volume: 167
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 6
  start-page: 3445
  year: 2021
  publication-title: ACS Sens.
– volume: 40
  start-page: 3926
  year: 2015
  publication-title: Opt. Lett.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 51
  start-page: 9203
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 2601
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 17
  start-page: 9280
  year: 2023
  publication-title: ACS Nano
– volume: 107
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 2
  year: 2023
  publication-title: Energy Rev.
– volume: 18
  start-page: 551
  year: 2010
  publication-title: Opt. Express
– volume: 51
  start-page: 1465
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 116
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 120
  year: 2022
  publication-title: Appl. Phys. Lett.
– volume: 119
  start-page: 8087
  year: 2019
  publication-title: Chem. Rev.
– ident: e_1_2_8_22_1
  doi: 10.1021/acssensors.1c01350
– ident: e_1_2_8_55_1
  doi: 10.1002/pssa.201900604
– ident: e_1_2_8_9_1
  doi: 10.1021/nl203200g
– ident: e_1_2_8_65_1
  doi: 10.1021/la904588s
– ident: e_1_2_8_35_1
  doi: 10.1038/s41467-022-28212-z
– volume: 20
  start-page: 15
  year: 2013
  ident: e_1_2_8_8_1
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– ident: e_1_2_8_74_1
  doi: 10.1039/D1CS01111A
– ident: e_1_2_8_46_1
  doi: 10.1103/PhysRevLett.89.188103
– ident: e_1_2_8_11_1
  doi: 10.1038/s41467-023-42076-x
– ident: e_1_2_8_15_1
  doi: 10.1039/D2CS00359G
– ident: e_1_2_8_20_1
  doi: 10.1002/lpor.202100197
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.accounts.8b00102
– ident: e_1_2_8_10_1
  doi: 10.1002/smsc.202300100
– ident: e_1_2_8_67_1
  doi: 10.1063/5.0086855
– ident: e_1_2_8_25_1
  doi: 10.1186/s43593-023-00049-z
– ident: e_1_2_8_18_1
  doi: 10.1002/smll.202103702
– ident: e_1_2_8_13_1
  doi: 10.1063/5.0091280
– ident: e_1_2_8_69_1
  doi: 10.1006/jcis.1995.9946
– ident: e_1_2_8_61_1
  doi: 10.1088/1361-648X/ab421c
– ident: e_1_2_8_19_1
  doi: 10.3390/mi14071326
– ident: e_1_2_8_34_1
  doi: 10.1016/j.bios.2019.02.009
– ident: e_1_2_8_57_1
  doi: 10.1103/PhysRevLett.116.188303
– ident: e_1_2_8_77_1
  doi: 10.1039/c3nr06617g
– ident: e_1_2_8_76_1
  doi: 10.1038/s41566-023-01265-2
– ident: e_1_2_8_78_1
  doi: 10.1063/1.1630351
– ident: e_1_2_8_29_1
  doi: 10.1364/OE.18.018483
– ident: e_1_2_8_56_1
  doi: 10.1007/s12274-023-5659-1
– ident: e_1_2_8_40_1
  doi: 10.1039/C7LC00432J
– ident: e_1_2_8_84_1
  doi: 10.1128/JVI.80.4.1734-1741.2006
– ident: e_1_2_8_89_1
  doi: 10.1364/OE.14.012517
– ident: e_1_2_8_31_1
  doi: 10.1038/srep09978
– volume-title: Scaling Concepts in Polymer Physics
  year: 1979
  ident: e_1_2_8_70_1
– ident: e_1_2_8_36_1
  doi: 10.1016/j.bios.2022.114084
– ident: e_1_2_8_87_1
  doi: 10.1039/C5LC00406C
– ident: e_1_2_8_5_1
  doi: 10.1364/AOP.489300
– ident: e_1_2_8_14_1
  doi: 10.1038/nphoton.2011.98
– ident: e_1_2_8_42_1
  doi: 10.1021/acs.nanolett.0c03638
– ident: e_1_2_8_3_1
  doi: 10.1038/s41377-021-00561-2
– ident: e_1_2_8_82_1
  doi: 10.1021/acsnano.5b00286
– ident: e_1_2_8_64_1
  doi: 10.1103/PhysRevLett.107.038301
– volume: 685
  start-page: 61
  year: 2007
  ident: e_1_2_8_90_1
  publication-title: Mirror
– ident: e_1_2_8_41_1
  doi: 10.1007/s12274-020-3087-z
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevLett.102.208301
– ident: e_1_2_8_53_1
  doi: 10.1364/PRJ.6.000182
– ident: e_1_2_8_44_1
  doi: 10.1146/annurev.fl.21.010189.000425
– ident: e_1_2_8_49_1
  doi: 10.1073/pnas.1215764109
– ident: e_1_2_8_75_1
  doi: 10.1002/adma.201605897
– ident: e_1_2_8_86_1
  doi: 10.1074/jbc.M110.103374
– ident: e_1_2_8_17_1
  doi: 10.1038/s41467-021-25582-8
– ident: e_1_2_8_24_1
  doi: 10.1186/s43593-022-00020-4
– ident: e_1_2_8_81_1
  doi: 10.1364/OPEX.12.003377
– ident: e_1_2_8_88_1
  doi: 10.1016/j.enrev.2023.100018
– ident: e_1_2_8_60_1
  doi: 10.1080/17425247.2016.1182485
– ident: e_1_2_8_2_1
  doi: 10.1073/pnas.2026827118
– ident: e_1_2_8_50_1
  doi: 10.1021/acsnano.2c03111
– ident: e_1_2_8_62_1
  doi: 10.1021/je050130t
– ident: e_1_2_8_73_1
  doi: 10.1038/s41551-020-00634-4
– ident: e_1_2_8_28_1
  doi: 10.1021/nl203719v
– ident: e_1_2_8_7_1
  doi: 10.1364/OE.18.000551
– ident: e_1_2_8_43_1
  doi: 10.1088/0034-4885/73/12/126601
– ident: e_1_2_8_54_1
  doi: 10.1038/s41565-020-0760-z
– ident: e_1_2_8_58_1
  doi: 10.1016/S0142-9612(01)00403-3
– ident: e_1_2_8_48_1
  doi: 10.1063/1.4847636
– year: 2023
  ident: e_1_2_8_52_1
  publication-title: ACS Photonics
– ident: e_1_2_8_59_1
  doi: 10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO;2-D
– ident: e_1_2_8_27_1
  doi: 10.1002/adom.201900829
– ident: e_1_2_8_33_1
  doi: 10.1016/j.snb.2018.02.016
– ident: e_1_2_8_66_1
  doi: 10.1021/nn200590u
– ident: e_1_2_8_39_1
  doi: 10.1038/srep35814
– ident: e_1_2_8_63_1
  doi: 10.1021/ma00022a008
– ident: e_1_2_8_32_1
  doi: 10.1038/s41566-018-0134-3
– volume-title: The Theory of Polymer Dynamics
  year: 1988
  ident: e_1_2_8_68_1
– ident: e_1_2_8_23_1
  doi: 10.1021/acs.nanolett.8b03844
– ident: e_1_2_8_12_1
  doi: 10.1038/nphoton.2011.56
– ident: e_1_2_8_16_1
  doi: 10.1021/acsnano.2c12811
– ident: e_1_2_8_72_1
  doi: 10.1021/acs.chemrev.8b00738
– ident: e_1_2_8_21_1
  doi: 10.1186/s43593-021-00007-7
– ident: e_1_2_8_38_1
  doi: 10.1364/OL.40.003926
– ident: e_1_2_8_71_1
  doi: 10.1021/nn901751w
– ident: e_1_2_8_80_1
  doi: 10.1021/nl504444w
– ident: e_1_2_8_6_1
  doi: 10.1021/nl051289r
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.202001994
– ident: e_1_2_8_1_1
  doi: 10.1364/OL.11.000288
– ident: e_1_2_8_85_1
  doi: 10.1016/j.bios.2020.112482
– ident: e_1_2_8_79_1
  doi: 10.1002/lpor.202270062
– ident: e_1_2_8_30_1
  doi: 10.1021/nn404980k
– ident: e_1_2_8_51_1
  doi: 10.1021/acsnano.3c00583
– ident: e_1_2_8_45_1
  doi: 10.1103/PhysRevE.91.062709
– ident: e_1_2_8_83_1
  doi: 10.1364/OL.19.000930
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.202107691
SSID ssj0009606
Score 2.5516665
Snippet Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2309143
SubjectTerms assembling
Biocompatibility
Biomedical engineering
Boundary layers
diffusiophoresis
Nanoparticles
nanostructure fabrication
optical tweezers
optothermal trapping
thermo‐osmosis
Trapping
Title Highly‐Adaptable Optothermal Nanotweezers for Trapping, Sorting, and Assembling across Diverse Nanoparticles
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202309143
https://www.ncbi.nlm.nih.gov/pubmed/37944998
https://www.proquest.com/docview/2933640941
https://www.proquest.com/docview/2889245141
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwL2WTkZC4kLaxEyc5VpSqQgIkoFJv0Th2OFDSCtIDnPgEvpEvYew0oQUhJLg5ytjxNuPneOaZkKMoVYH2IXBS7YHjCalQ53TgoEXUTRm4WtiD9otL0e15532_PxXFX_BDVD_cjGZYe20UHORT45M0FJTlDUIIHeGaj0bYOGwZVHT9yR9l4Lkl2-O-EwkvLFkbm6wxm312VfoGNWeRq116OssEykoXHif39XEu68nLFz7H_7RqhSxNcCltFRNplczpbI0sTrEVrpPM-IQMnt9f31oKRrmJuaJXo9yGcD1gXjTUQ-P09YKIkiIWprgOGvaHuxN6MzRkBZiATFFzzvwgTRg8BdsdtG2dQ7QtYVS66m2QXufs9rTrTK5rcBJENdwJI6m19l0VapFEnkzdMOG-Ek1ACMJYJAMJ0JRCeDLgSidcu64SChCQQJAql2-S-WyY6W1CWQBcMYhciegU92RSYbGRlzJQCZO-qhGnHK44mXCZmys1BnHBwsxi049x1Y81clzJjwoWjx8l98rRjyfa_BQjJOLCbITdGjmsXqMemsMVyPRwjDJhiFtZhJ8os1XMmupTHI0etiKsEWbH_pc6xK32Rat62vlLpl2ygGmvcJbbI_P541jvI3rK5YHVkA86RhLY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOAAHyrNsS8FIlbgQ2NiJkxxXpWh5LJUKSNwiO3Y4FLKrNnuAEz-B39hf0hlnE7oghAS3POzEr5n5bM98Bvia5CayoYq83AbKC6Q2KHM28lAj2raOfCvdRnvvVHYvgqPLsPYmpFiYih-iWXAjyXD6mgScFqT3HllDlXHEQYihEzT6kzBNx3q7WdXPRwYpAuiObk-EXiKDuOZtbPO98fzjdukZ2BzHrs74HHwAXRe78jn5tTss9W5294TR8V31WoD5ETRlnWosLcKELZZg7j_CwmUoyC3k-vbv_UPHqEFJYVfsx6B0UVw3mBd1dZ_8vu4QVDKEwwxNIRFAXO2wsz7xFeCFKgyjreYbTZHwTLn2YPvOP8S6Lwxqb70VuDj4fv6t641ObPAyBDbCixNtrQ19E1uZJYHO_TgToZFthSiE80RHWqm2ljLQkTA2E9b3jTQKMYmKcuOLVZgq-oVdA8YjJQxXia8RoOK0TBv8bBLkXJmM69C0wKv7K81GdOZ0qsZ1WhEx85TaMW3asQXbTfpBReTxYsr1uvvTkUD_SREVCUlzYb8FW81rFEXaX1GF7Q8xTRzjbBYRKKb5WA2b5lcC9R7WIm4Bd53_ShnSzn6v09x9ekumTZjpnvdO0pPD0-PPMIvPg8p3bh2myt9D-wXBVKk3nLj8A1xKFvM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKlX0UNoCZQttXQmJC1kS23GS46rb1faxtAJW4hbZsdNDIRvR7AFO_IT-Rn4JY2eTZYsqJLjlMXb8Gs_neOYzwE6S68iEMvJyw6XHhdKocybycEY0vooCI9xG--hADMf860l4ciuKv-aHaH-4Wc1w87VV8FLn-3PSUKkdbxBC6ARt_hI85cKP7bjuH84JpCw-d2x7LPQSweOGttGn-4vpF83SHay5CF2d7RmsgmxKXbuc_O5OK9XNLv8hdHxMtV7CixkwJb16JL2CJ6Z4Dc9v0RWuQWGdQk4vrq_-9rQsKxt0RX6UlYvhOsO0OFNPrNfXJUJKgmCYoCG09A-_9sjRxLIV4IUsNLEbzWfKxsET6ZqD9J13iHE5lI2v3jqMB5-PPw292XkNXoawhnlxoowxYaBjI7KEqzyIMxZq4UvEIJQmKlJS-koIriKmTcZMEGihJSISGeU6YBuwXEwKswmERpJpKpNAITzFRZnSmG3Ccyp1RlWoO-A13ZVmMzJze6bGaVrTMNPUtmPatmMHdlv5sqbx-K_kdtP76Uyd_6SIiZiwK-GgAx_b16iIdndFFmYyRZk4xrUs4k-UeVOPmvZTDGc9rEXcAer6_p4ypL3-qNfevX1Iog_w7Gd_kH7_cvBtC1bwMa8d57ZhuTqfmneIpCr13inLDSBvFas
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly-Adaptable+Optothermal+Nanotweezers+for+Trapping%2C+Sorting%2C+and+Assembling+across+Diverse+Nanoparticles&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Jiajie&rft.au=Zhou%2C+Jianxing&rft.au=Peng%2C+Yuhang&rft.au=Dai%2C+Xiaoqi&rft.date=2024-03-01&rft.eissn=1521-4095&rft.spage=e2309143&rft_id=info:doi/10.1002%2Fadma.202309143&rft_id=info%3Apmid%2F37944998&rft.externalDocID=37944998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon