Highly‐Adaptable Optothermal Nanotweezers for Trapping, Sorting, and Assembling across Diverse Nanoparticles
Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompa...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 9; pp. e2309143 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo‐osmotic flows in the boundary layer of an optothermal‐responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub‐10 nm are designed. Additionally, a novel optothermal doughnut‐shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science.
Highly‐adaptable optothermal nanotweezer (HAONT) is a universal optothermal manipulation scheme with sub‐10 nm precision, enabling trapping, sorting, assembling, and novel doughnut‐shaped vortex trapping across diverse nanoparticles. Its versatility expands its functionality to a broad spectrum of nanoparticles, making it a useful tool for versatile nano‐fabrication across various materials, charges, shapes, sizes, and beyond. |
---|---|
AbstractList | Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo‐osmotic flows in the boundary layer of an optothermal‐responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub‐10 nm are designed. Additionally, a novel optothermal doughnut‐shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science.
Highly‐adaptable optothermal nanotweezer (HAONT) is a universal optothermal manipulation scheme with sub‐10 nm precision, enabling trapping, sorting, assembling, and novel doughnut‐shaped vortex trapping across diverse nanoparticles. Its versatility expands its functionality to a broad spectrum of nanoparticles, making it a useful tool for versatile nano‐fabrication across various materials, charges, shapes, sizes, and beyond. Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo-osmotic flows in the boundary layer of an optothermal-responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub-10 nm are designed. Additionally, a novel optothermal doughnut-shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science. Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo-osmotic flows in the boundary layer of an optothermal-responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub-10 nm are designed. Additionally, a novel optothermal doughnut-shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science.Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo-osmotic flows in the boundary layer of an optothermal-responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub-10 nm are designed. Additionally, a novel optothermal doughnut-shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science. Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo‐osmotic flows in the boundary layer of an optothermal‐responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub‐10 nm are designed. Additionally, a novel optothermal doughnut‐shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science. |
Author | Zhou, Jianxing Wang, Meiting Peng, Yuhang Tan, Yan Qu, Junle Hu, Rui Cui, Ximin Gao, Bruce Zhi Dai, Xiaoqi Zou, Yanhua Zhang, Han Ho, Ho‐Pui Zhang, Xueji Chen, Yu Li, Tianzhong Shao, Yonghong Zhong, Yili Chen, Jiajie |
Author_xml | – sequence: 1 givenname: Jiajie orcidid: 0000-0002-7200-6626 surname: Chen fullname: Chen, Jiajie email: cjj@szu.edu.cn organization: Shenzhen University – sequence: 2 givenname: Jianxing surname: Zhou fullname: Zhou, Jianxing organization: Shenzhen University – sequence: 3 givenname: Yuhang surname: Peng fullname: Peng, Yuhang organization: Shenzhen University – sequence: 4 givenname: Xiaoqi surname: Dai fullname: Dai, Xiaoqi organization: Shenzhen University – sequence: 5 givenname: Yan surname: Tan fullname: Tan, Yan organization: Shenzhen University – sequence: 6 givenname: Yili surname: Zhong fullname: Zhong, Yili organization: Shenzhen University – sequence: 7 givenname: Tianzhong surname: Li fullname: Li, Tianzhong organization: Shenzhen University – sequence: 8 givenname: Yanhua surname: Zou fullname: Zou, Yanhua organization: Shenzhen University – sequence: 9 givenname: Rui surname: Hu fullname: Hu, Rui organization: Shenzhen University – sequence: 10 givenname: Ximin surname: Cui fullname: Cui, Ximin organization: Shenzhen University – sequence: 11 givenname: Ho‐Pui orcidid: 0000-0001-5001-5911 surname: Ho fullname: Ho, Ho‐Pui organization: The Chinese University of Hong Kong – sequence: 12 givenname: Bruce Zhi surname: Gao fullname: Gao, Bruce Zhi organization: Clemson University – sequence: 13 givenname: Han surname: Zhang fullname: Zhang, Han organization: Shenzhen University – sequence: 14 givenname: Yu surname: Chen fullname: Chen, Yu organization: Shenzhen University – sequence: 15 givenname: Meiting surname: Wang fullname: Wang, Meiting organization: Shenzhen University – sequence: 16 givenname: Xueji orcidid: 0000-0002-0035-3821 surname: Zhang fullname: Zhang, Xueji organization: Shenzhen University – sequence: 17 givenname: Junle orcidid: 0000-0001-7833-4711 surname: Qu fullname: Qu, Junle email: jlqu@szu.edu.cn organization: Shenzhen University – sequence: 18 givenname: Yonghong surname: Shao fullname: Shao, Yonghong email: shaoyh@szu.edu.cn organization: Shenzhen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37944998$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URKeFLUsUiQ0LMvgvnngZtUCRCl1Q1tZ1fNO6cuJgZ6iGFY_AM_IkZGZakCohVralcz753u-IHAxxQEKeM7pklPI34HpYcsoF1UyKR2TBKs5KSXV1QBZUi6rUStaH5CjnG0qpVlQ9IYdipaXUul6Q4cxfXYfNrx8_GwfjBDZgcTFOcbrG1EMoPsEQp1vE75hy0cVUXCYYRz9cvS4-xzTtLjC4oskZexvmdwFtijkXp_7b7OAuYYQZbQPmp-RxByHjs7vzmHx59_by5Kw8v3j_4aQ5L1sptChrbRGxYq5G1WppO1a3onKKAueCc21XFoBapaRdCYetQMacckBZBavOMXFMXu1zxxS_rjFPpve5xRBgwLjOhte15rJicou-fIDexHUa5t8ZroVQ8y531Is7am17dGZMvoe0MfebnAG5B3bTJ-xM6yeYfBymBD4YRs22MLMtzPwpbNaWD7T75H8Kei_c-oCb_9CmOf3Y_HV_A2_UqkQ |
CitedBy_id | crossref_primary_10_1088_1361_6463_adb75f crossref_primary_10_1002_lpor_202400412 crossref_primary_10_1364_OE_543990 crossref_primary_10_1002_adma_202412895 crossref_primary_10_1103_PhysRevFluids_9_124202 crossref_primary_10_1515_nanoph_2024_0484 crossref_primary_10_1088_1361_6463_ad6612 crossref_primary_10_1021_acs_jpcc_4c00340 crossref_primary_10_1038_s41377_024_01734_5 crossref_primary_10_3788_CJL240861 crossref_primary_10_1002_adma_202401115 crossref_primary_10_1002_smtd_202400828 crossref_primary_10_1021_acs_analchem_4c01234 crossref_primary_10_1186_s43074_024_00144_5 crossref_primary_10_1002_lpor_202400791 crossref_primary_10_1021_acsphotonics_4c00666 crossref_primary_10_1103_PhysRevA_110_063517 |
Cites_doi | 10.1021/acssensors.1c01350 10.1002/pssa.201900604 10.1021/nl203200g 10.1021/la904588s 10.1038/s41467-022-28212-z 10.1039/D1CS01111A 10.1103/PhysRevLett.89.188103 10.1038/s41467-023-42076-x 10.1039/D2CS00359G 10.1002/lpor.202100197 10.1021/acs.accounts.8b00102 10.1002/smsc.202300100 10.1063/5.0086855 10.1186/s43593-023-00049-z 10.1002/smll.202103702 10.1063/5.0091280 10.1006/jcis.1995.9946 10.1088/1361-648X/ab421c 10.3390/mi14071326 10.1016/j.bios.2019.02.009 10.1103/PhysRevLett.116.188303 10.1039/c3nr06617g 10.1038/s41566-023-01265-2 10.1063/1.1630351 10.1364/OE.18.018483 10.1007/s12274-023-5659-1 10.1039/C7LC00432J 10.1128/JVI.80.4.1734-1741.2006 10.1364/OE.14.012517 10.1038/srep09978 10.1016/j.bios.2022.114084 10.1039/C5LC00406C 10.1364/AOP.489300 10.1038/nphoton.2011.98 10.1021/acs.nanolett.0c03638 10.1038/s41377-021-00561-2 10.1021/acsnano.5b00286 10.1103/PhysRevLett.107.038301 10.1007/s12274-020-3087-z 10.1103/PhysRevLett.102.208301 10.1364/PRJ.6.000182 10.1146/annurev.fl.21.010189.000425 10.1073/pnas.1215764109 10.1002/adma.201605897 10.1074/jbc.M110.103374 10.1038/s41467-021-25582-8 10.1186/s43593-022-00020-4 10.1364/OPEX.12.003377 10.1016/j.enrev.2023.100018 10.1080/17425247.2016.1182485 10.1073/pnas.2026827118 10.1021/acsnano.2c03111 10.1021/je050130t 10.1038/s41551-020-00634-4 10.1021/nl203719v 10.1364/OE.18.000551 10.1088/0034-4885/73/12/126601 10.1038/s41565-020-0760-z 10.1016/S0142-9612(01)00403-3 10.1063/1.4847636 10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO;2-D 10.1002/adom.201900829 10.1016/j.snb.2018.02.016 10.1021/nn200590u 10.1038/srep35814 10.1021/ma00022a008 10.1038/s41566-018-0134-3 10.1021/acs.nanolett.8b03844 10.1038/nphoton.2011.56 10.1021/acsnano.2c12811 10.1021/acs.chemrev.8b00738 10.1186/s43593-021-00007-7 10.1364/OL.40.003926 10.1021/nn901751w 10.1021/nl504444w 10.1021/nl051289r 10.1002/adma.202001994 10.1364/OL.11.000288 10.1016/j.bios.2020.112482 10.1002/lpor.202270062 10.1021/nn404980k 10.1021/acsnano.3c00583 10.1103/PhysRevE.91.062709 10.1364/OL.19.000930 10.1002/adma.202107691 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202309143 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 37944998 10_1002_adma_202309143 ADMA202309143 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Medical‐Engineering Interdisciplinary Research Foundation of Shenzhen University funderid: 2023YG002 – fundername: Shenzhen Science and Technology R&D and Innovation Foundation funderid: JCYJ20200109105608771 – fundername: Key Technologies Research and Development Program funderid: 2022YFA1206300 – fundername: Natural Science Foundation of Guangdong Province funderid: 2021A1515011916; 2023A1515012250 – fundername: Department of Science and Technology of Guangdong Province funderid: 2021QN02Y124 – fundername: National Natural Science Foundation of China funderid: 62275164; 61905145; 62275168; 61775148 – fundername: Science and Technology Planning Project of Shenzhen Municipality funderid: ZDSYS20210623092006020 – fundername: National Natural Science Foundation of China grantid: 61905145 – fundername: National Natural Science Foundation of China grantid: 61775148 – fundername: Science and Technology Planning Project of Shenzhen Municipality grantid: ZDSYS20210623092006020 – fundername: Shenzhen Science and Technology R&D and Innovation Foundation grantid: JCYJ20200109105608771 – fundername: Department of Science and Technology of Guangdong Province grantid: 2021QN02Y124 – fundername: Natural Science Foundation of Guangdong Province grantid: 2021A1515011916 – fundername: Medical-Engineering Interdisciplinary Research Foundation of Shenzhen University grantid: 2023YG002 – fundername: National Natural Science Foundation of China grantid: 62275168 – fundername: Natural Science Foundation of Guangdong Province grantid: 2023A1515012250 – fundername: Key Technologies Research and Development Program grantid: 2022YFA1206300 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4393-89beee51d8e6c94bf18c35d60a223229b7baa0b664b73dec3e11d6da015a7fd13 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 16:44:43 EDT 2025 Sun Aug 10 10:21:38 EDT 2025 Thu Apr 03 07:00:37 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Thu Aug 14 00:12:46 EDT 2025 Wed Jan 22 16:14:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | optothermal trapping assembling optical tweezers nanostructure fabrication diffusiophoresis thermo-osmosis |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4393-89beee51d8e6c94bf18c35d60a223229b7baa0b664b73dec3e11d6da015a7fd13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7200-6626 0000-0001-7833-4711 0000-0002-0035-3821 0000-0001-5001-5911 |
PMID | 37944998 |
PQID | 2933640941 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2889245141 proquest_journals_2933640941 pubmed_primary_37944998 crossref_citationtrail_10_1002_adma_202309143 crossref_primary_10_1002_adma_202309143 wiley_primary_10_1002_adma_202309143_ADMA202309143 |
PublicationCentury | 2000 |
PublicationDate | March 1, 2024 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 1, 2024 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020; 20 2010; 18 2013; 20 2000; 51 2011; 11 2020; 15 1988; 73 2020; 167 2023; 2 2023; 3 2013; 7 1995; 176 2012; 12 1979 2020; 8 2018; 6 2022; 120 2010; 26 2015; 40 2002; 89 2021; 118 2022; 34 2020; 217 2019; 119 2016; 116 2015; 91 2003; 83 2010; 4 2014; 6 2022; 204 2010; 73 2015; 15 2021; 6 2018; 264 2007; 685 2021; 5 2023; 14 2015; 5 1989; 21 2023; 17 2019; 31 2023; 15 1986; 11 2022; 51 2023; 16 2006; 14 2013; 103 2010; 285 2017; 29 2020; 32 2021; 1 2015; 9 2011; 5 2016; 13 2012; 109 2021; 14 2018; 18 2016; 6 2006; 80 2021; 10 2021; 12 2011; 107 2023 1991; 24 1994; 19 2017; 17 2002; 23 2021; 17 2022; 9 2004; 12 2005; 5 2022; 13 2009; 102 2018; 51 2022; 2 2005; 50 2018; 12 2022; 16 2019; 133 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_62_1 e_1_2_8_85_1 Hong I. (e_1_2_8_52_1) 2023 Baek J.‐H. (e_1_2_8_90_1) 2007; 685 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Doi M. (e_1_2_8_68_1) 1988 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 Bendix P. M. (e_1_2_8_8_1) 2013; 20 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e Gennes P.‐G. (e_1_2_8_70_1) 1979 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 15 start-page: 1766 year: 2015 publication-title: Nano Lett. – volume: 264 start-page: 224 year: 2018 publication-title: Sens. Actuators, B – volume: 83 start-page: 4625 year: 2003 publication-title: Appl. Phys. Lett. – volume: 10 start-page: 124 year: 2021 publication-title: Light: Sci. Appl. – volume: 12 start-page: 195 year: 2018 publication-title: Nat. Photonics – volume: 204 year: 2022 publication-title: Biosens. Bioelectron. – volume: 15 start-page: 2504 year: 2015 publication-title: Lab Chip – volume: 16 start-page: 7710 year: 2023 publication-title: Nano Res. – volume: 102 year: 2009 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 1937 year: 2005 publication-title: Nano Lett. – volume: 51 start-page: 343 year: 2000 publication-title: J. Biomed. Mater. Res. – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 14 year: 2006 publication-title: Opt. Express – volume: 5 start-page: 5457 year: 2011 publication-title: ACS Nano – volume: 73 year: 1988 – year: 1979 – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 73 year: 2010 publication-title: Rep. Prog. Phys. – volume: 19 start-page: 930 year: 1994 publication-title: Opt. Lett. – volume: 5 start-page: 349 year: 2011 publication-title: Nat. Photonics – volume: 20 start-page: 8811 year: 2020 publication-title: Nano Lett. – volume: 285 year: 2010 publication-title: J. Biol. Chem. – volume: 17 start-page: 3061 year: 2017 publication-title: Lab Chip – volume: 50 start-page: 1662 year: 2005 publication-title: J. Chem. Eng. Data – volume: 18 start-page: 7400 year: 2018 publication-title: Nano Lett. – volume: 24 start-page: 5943 year: 1991 publication-title: Macromolecules – volume: 23 start-page: 2641 year: 2002 publication-title: Biomaterials – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2023 publication-title: ACS Photonics – volume: 13 start-page: 656 year: 2022 publication-title: Nat. Commun. – volume: 12 start-page: 402 year: 2012 publication-title: Nano Lett. – volume: 15 start-page: 908 year: 2020 publication-title: Nat. Nanotechnol. – volume: 89 year: 2002 publication-title: Phys. Rev. Lett. – volume: 176 start-page: 454 year: 1995 publication-title: J. Colloid Interface Sci. – volume: 4 start-page: 2256 year: 2010 publication-title: ACS Nano – volume: 80 start-page: 1734 year: 2006 publication-title: J. Virol. – volume: 1 start-page: 7 year: 2021 publication-title: eLight – volume: 21 start-page: 61 year: 1989 publication-title: Annu. Rev. Fluid Mech. – volume: 15 start-page: 835 year: 2023 publication-title: Adv. Opt. Photonics – volume: 9 start-page: 3453 year: 2015 publication-title: ACS Nano – volume: 16 year: 2022 publication-title: Laser Photonics Rev. – volume: 6 start-page: 182 year: 2018 publication-title: Photonics Res. – volume: 7 year: 2013 publication-title: ACS Nano – volume: 109 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 133 start-page: 236 year: 2019 publication-title: Biosens. Bioelectron. – volume: 11 start-page: 288 year: 1986 publication-title: Opt. Lett. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 9 year: 2022 publication-title: Appl. Phys. Rev. – volume: 12 start-page: 3377 year: 2004 publication-title: Opt. Express – volume: 16 year: 2022 publication-title: ACS Nano – volume: 13 start-page: 1257 year: 2016 publication-title: Expert Opin. Drug Delivery – volume: 17 start-page: 904 year: 2023 publication-title: Nat. Photonics – volume: 17 year: 2021 publication-title: Small – volume: 3 start-page: 16 year: 2023 publication-title: eLight – volume: 12 start-page: 5349 year: 2021 publication-title: Nat. Commun. – volume: 20 start-page: 15 year: 2013 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 217 year: 2020 publication-title: Phys. Status Solidi – volume: 14 start-page: 6361 year: 2023 publication-title: Nat. Commun. – volume: 11 start-page: 5431 year: 2011 publication-title: Nano Lett. – volume: 5 start-page: 9978 year: 2015 publication-title: Sci. Rep. – volume: 18 year: 2010 publication-title: Opt. Express – volume: 5 start-page: 103 year: 2021 publication-title: Nat. Biomed. Eng. – volume: 6 start-page: 4458 year: 2014 publication-title: Nanoscale – volume: 14 start-page: 1326 year: 2023 publication-title: Micromachines – volume: 103 year: 2013 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 295 year: 2021 publication-title: Nano Res. – volume: 91 year: 2015 publication-title: Phys. Rev. E – volume: 26 start-page: 7792 year: 2010 publication-title: Langmuir – volume: 3 year: 2023 publication-title: Small Sci. – volume: 17 start-page: 5894 year: 2023 publication-title: ACS Nano – volume: 31 year: 2019 publication-title: J. Phys.: Condens. Matter – volume: 5 start-page: 322 year: 2011 publication-title: Nat. Photonics – volume: 2 start-page: 13 year: 2022 publication-title: eLight – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 685 start-page: 61 year: 2007 publication-title: Mirror – volume: 167 year: 2020 publication-title: Biosens. Bioelectron. – volume: 6 start-page: 3445 year: 2021 publication-title: ACS Sens. – volume: 40 start-page: 3926 year: 2015 publication-title: Opt. Lett. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 51 start-page: 9203 year: 2022 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 2601 year: 2022 publication-title: Chem. Soc. Rev. – volume: 17 start-page: 9280 year: 2023 publication-title: ACS Nano – volume: 107 year: 2011 publication-title: Phys. Rev. Lett. – volume: 2 year: 2023 publication-title: Energy Rev. – volume: 18 start-page: 551 year: 2010 publication-title: Opt. Express – volume: 51 start-page: 1465 year: 2018 publication-title: Acc. Chem. Res. – volume: 116 year: 2016 publication-title: Phys. Rev. Lett. – volume: 120 year: 2022 publication-title: Appl. Phys. Lett. – volume: 119 start-page: 8087 year: 2019 publication-title: Chem. Rev. – ident: e_1_2_8_22_1 doi: 10.1021/acssensors.1c01350 – ident: e_1_2_8_55_1 doi: 10.1002/pssa.201900604 – ident: e_1_2_8_9_1 doi: 10.1021/nl203200g – ident: e_1_2_8_65_1 doi: 10.1021/la904588s – ident: e_1_2_8_35_1 doi: 10.1038/s41467-022-28212-z – volume: 20 start-page: 15 year: 2013 ident: e_1_2_8_8_1 publication-title: IEEE J. Sel. Top. Quantum Electron. – ident: e_1_2_8_74_1 doi: 10.1039/D1CS01111A – ident: e_1_2_8_46_1 doi: 10.1103/PhysRevLett.89.188103 – ident: e_1_2_8_11_1 doi: 10.1038/s41467-023-42076-x – ident: e_1_2_8_15_1 doi: 10.1039/D2CS00359G – ident: e_1_2_8_20_1 doi: 10.1002/lpor.202100197 – ident: e_1_2_8_26_1 doi: 10.1021/acs.accounts.8b00102 – ident: e_1_2_8_10_1 doi: 10.1002/smsc.202300100 – ident: e_1_2_8_67_1 doi: 10.1063/5.0086855 – ident: e_1_2_8_25_1 doi: 10.1186/s43593-023-00049-z – ident: e_1_2_8_18_1 doi: 10.1002/smll.202103702 – ident: e_1_2_8_13_1 doi: 10.1063/5.0091280 – ident: e_1_2_8_69_1 doi: 10.1006/jcis.1995.9946 – ident: e_1_2_8_61_1 doi: 10.1088/1361-648X/ab421c – ident: e_1_2_8_19_1 doi: 10.3390/mi14071326 – ident: e_1_2_8_34_1 doi: 10.1016/j.bios.2019.02.009 – ident: e_1_2_8_57_1 doi: 10.1103/PhysRevLett.116.188303 – ident: e_1_2_8_77_1 doi: 10.1039/c3nr06617g – ident: e_1_2_8_76_1 doi: 10.1038/s41566-023-01265-2 – ident: e_1_2_8_78_1 doi: 10.1063/1.1630351 – ident: e_1_2_8_29_1 doi: 10.1364/OE.18.018483 – ident: e_1_2_8_56_1 doi: 10.1007/s12274-023-5659-1 – ident: e_1_2_8_40_1 doi: 10.1039/C7LC00432J – ident: e_1_2_8_84_1 doi: 10.1128/JVI.80.4.1734-1741.2006 – ident: e_1_2_8_89_1 doi: 10.1364/OE.14.012517 – ident: e_1_2_8_31_1 doi: 10.1038/srep09978 – volume-title: Scaling Concepts in Polymer Physics year: 1979 ident: e_1_2_8_70_1 – ident: e_1_2_8_36_1 doi: 10.1016/j.bios.2022.114084 – ident: e_1_2_8_87_1 doi: 10.1039/C5LC00406C – ident: e_1_2_8_5_1 doi: 10.1364/AOP.489300 – ident: e_1_2_8_14_1 doi: 10.1038/nphoton.2011.98 – ident: e_1_2_8_42_1 doi: 10.1021/acs.nanolett.0c03638 – ident: e_1_2_8_3_1 doi: 10.1038/s41377-021-00561-2 – ident: e_1_2_8_82_1 doi: 10.1021/acsnano.5b00286 – ident: e_1_2_8_64_1 doi: 10.1103/PhysRevLett.107.038301 – volume: 685 start-page: 61 year: 2007 ident: e_1_2_8_90_1 publication-title: Mirror – ident: e_1_2_8_41_1 doi: 10.1007/s12274-020-3087-z – ident: e_1_2_8_47_1 doi: 10.1103/PhysRevLett.102.208301 – ident: e_1_2_8_53_1 doi: 10.1364/PRJ.6.000182 – ident: e_1_2_8_44_1 doi: 10.1146/annurev.fl.21.010189.000425 – ident: e_1_2_8_49_1 doi: 10.1073/pnas.1215764109 – ident: e_1_2_8_75_1 doi: 10.1002/adma.201605897 – ident: e_1_2_8_86_1 doi: 10.1074/jbc.M110.103374 – ident: e_1_2_8_17_1 doi: 10.1038/s41467-021-25582-8 – ident: e_1_2_8_24_1 doi: 10.1186/s43593-022-00020-4 – ident: e_1_2_8_81_1 doi: 10.1364/OPEX.12.003377 – ident: e_1_2_8_88_1 doi: 10.1016/j.enrev.2023.100018 – ident: e_1_2_8_60_1 doi: 10.1080/17425247.2016.1182485 – ident: e_1_2_8_2_1 doi: 10.1073/pnas.2026827118 – ident: e_1_2_8_50_1 doi: 10.1021/acsnano.2c03111 – ident: e_1_2_8_62_1 doi: 10.1021/je050130t – ident: e_1_2_8_73_1 doi: 10.1038/s41551-020-00634-4 – ident: e_1_2_8_28_1 doi: 10.1021/nl203719v – ident: e_1_2_8_7_1 doi: 10.1364/OE.18.000551 – ident: e_1_2_8_43_1 doi: 10.1088/0034-4885/73/12/126601 – ident: e_1_2_8_54_1 doi: 10.1038/s41565-020-0760-z – ident: e_1_2_8_58_1 doi: 10.1016/S0142-9612(01)00403-3 – ident: e_1_2_8_48_1 doi: 10.1063/1.4847636 – year: 2023 ident: e_1_2_8_52_1 publication-title: ACS Photonics – ident: e_1_2_8_59_1 doi: 10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO;2-D – ident: e_1_2_8_27_1 doi: 10.1002/adom.201900829 – ident: e_1_2_8_33_1 doi: 10.1016/j.snb.2018.02.016 – ident: e_1_2_8_66_1 doi: 10.1021/nn200590u – ident: e_1_2_8_39_1 doi: 10.1038/srep35814 – ident: e_1_2_8_63_1 doi: 10.1021/ma00022a008 – ident: e_1_2_8_32_1 doi: 10.1038/s41566-018-0134-3 – volume-title: The Theory of Polymer Dynamics year: 1988 ident: e_1_2_8_68_1 – ident: e_1_2_8_23_1 doi: 10.1021/acs.nanolett.8b03844 – ident: e_1_2_8_12_1 doi: 10.1038/nphoton.2011.56 – ident: e_1_2_8_16_1 doi: 10.1021/acsnano.2c12811 – ident: e_1_2_8_72_1 doi: 10.1021/acs.chemrev.8b00738 – ident: e_1_2_8_21_1 doi: 10.1186/s43593-021-00007-7 – ident: e_1_2_8_38_1 doi: 10.1364/OL.40.003926 – ident: e_1_2_8_71_1 doi: 10.1021/nn901751w – ident: e_1_2_8_80_1 doi: 10.1021/nl504444w – ident: e_1_2_8_6_1 doi: 10.1021/nl051289r – ident: e_1_2_8_4_1 doi: 10.1002/adma.202001994 – ident: e_1_2_8_1_1 doi: 10.1364/OL.11.000288 – ident: e_1_2_8_85_1 doi: 10.1016/j.bios.2020.112482 – ident: e_1_2_8_79_1 doi: 10.1002/lpor.202270062 – ident: e_1_2_8_30_1 doi: 10.1021/nn404980k – ident: e_1_2_8_51_1 doi: 10.1021/acsnano.3c00583 – ident: e_1_2_8_45_1 doi: 10.1103/PhysRevE.91.062709 – ident: e_1_2_8_83_1 doi: 10.1364/OL.19.000930 – ident: e_1_2_8_37_1 doi: 10.1002/adma.202107691 |
SSID | ssj0009606 |
Score | 2.5516665 |
Snippet | Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2309143 |
SubjectTerms | assembling Biocompatibility Biomedical engineering Boundary layers diffusiophoresis Nanoparticles nanostructure fabrication optical tweezers optothermal trapping thermo‐osmosis Trapping |
Title | Highly‐Adaptable Optothermal Nanotweezers for Trapping, Sorting, and Assembling across Diverse Nanoparticles |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202309143 https://www.ncbi.nlm.nih.gov/pubmed/37944998 https://www.proquest.com/docview/2933640941 https://www.proquest.com/docview/2889245141 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwL2WTkZC4kLaxEyc5VpSqQgIkoFJv0Th2OFDSCtIDnPgEvpEvYew0oQUhJLg5ytjxNuPneOaZkKMoVYH2IXBS7YHjCalQ53TgoEXUTRm4WtiD9otL0e15532_PxXFX_BDVD_cjGZYe20UHORT45M0FJTlDUIIHeGaj0bYOGwZVHT9yR9l4Lkl2-O-EwkvLFkbm6wxm312VfoGNWeRq116OssEykoXHif39XEu68nLFz7H_7RqhSxNcCltFRNplczpbI0sTrEVrpPM-IQMnt9f31oKRrmJuaJXo9yGcD1gXjTUQ-P09YKIkiIWprgOGvaHuxN6MzRkBZiATFFzzvwgTRg8BdsdtG2dQ7QtYVS66m2QXufs9rTrTK5rcBJENdwJI6m19l0VapFEnkzdMOG-Ek1ACMJYJAMJ0JRCeDLgSidcu64SChCQQJAql2-S-WyY6W1CWQBcMYhciegU92RSYbGRlzJQCZO-qhGnHK44mXCZmys1BnHBwsxi049x1Y81clzJjwoWjx8l98rRjyfa_BQjJOLCbITdGjmsXqMemsMVyPRwjDJhiFtZhJ8os1XMmupTHI0etiKsEWbH_pc6xK32Rat62vlLpl2ygGmvcJbbI_P541jvI3rK5YHVkA86RhLY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOAAHyrNsS8FIlbgQ2NiJkxxXpWh5LJUKSNwiO3Y4FLKrNnuAEz-B39hf0hlnE7oghAS3POzEr5n5bM98Bvia5CayoYq83AbKC6Q2KHM28lAj2raOfCvdRnvvVHYvgqPLsPYmpFiYih-iWXAjyXD6mgScFqT3HllDlXHEQYihEzT6kzBNx3q7WdXPRwYpAuiObk-EXiKDuOZtbPO98fzjdukZ2BzHrs74HHwAXRe78jn5tTss9W5294TR8V31WoD5ETRlnWosLcKELZZg7j_CwmUoyC3k-vbv_UPHqEFJYVfsx6B0UVw3mBd1dZ_8vu4QVDKEwwxNIRFAXO2wsz7xFeCFKgyjreYbTZHwTLn2YPvOP8S6Lwxqb70VuDj4fv6t641ObPAyBDbCixNtrQ19E1uZJYHO_TgToZFthSiE80RHWqm2ljLQkTA2E9b3jTQKMYmKcuOLVZgq-oVdA8YjJQxXia8RoOK0TBv8bBLkXJmM69C0wKv7K81GdOZ0qsZ1WhEx85TaMW3asQXbTfpBReTxYsr1uvvTkUD_SREVCUlzYb8FW81rFEXaX1GF7Q8xTRzjbBYRKKb5WA2b5lcC9R7WIm4Bd53_ShnSzn6v09x9ekumTZjpnvdO0pPD0-PPMIvPg8p3bh2myt9D-wXBVKk3nLj8A1xKFvM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKlX0UNoCZQttXQmJC1kS23GS46rb1faxtAJW4hbZsdNDIRvR7AFO_IT-Rn4JY2eTZYsqJLjlMXb8Gs_neOYzwE6S68iEMvJyw6XHhdKocybycEY0vooCI9xG--hADMf860l4ciuKv-aHaH-4Wc1w87VV8FLn-3PSUKkdbxBC6ARt_hI85cKP7bjuH84JpCw-d2x7LPQSweOGttGn-4vpF83SHay5CF2d7RmsgmxKXbuc_O5OK9XNLv8hdHxMtV7CixkwJb16JL2CJ6Z4Dc9v0RWuQWGdQk4vrq_-9rQsKxt0RX6UlYvhOsO0OFNPrNfXJUJKgmCYoCG09A-_9sjRxLIV4IUsNLEbzWfKxsET6ZqD9J13iHE5lI2v3jqMB5-PPw292XkNXoawhnlxoowxYaBjI7KEqzyIMxZq4UvEIJQmKlJS-koIriKmTcZMEGihJSISGeU6YBuwXEwKswmERpJpKpNAITzFRZnSmG3Ccyp1RlWoO-A13ZVmMzJze6bGaVrTMNPUtmPatmMHdlv5sqbx-K_kdtP76Uyd_6SIiZiwK-GgAx_b16iIdndFFmYyRZk4xrUs4k-UeVOPmvZTDGc9rEXcAer6_p4ypL3-qNfevX1Iog_w7Gd_kH7_cvBtC1bwMa8d57ZhuTqfmneIpCr13inLDSBvFas |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly-Adaptable+Optothermal+Nanotweezers+for+Trapping%2C+Sorting%2C+and+Assembling+across+Diverse+Nanoparticles&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Jiajie&rft.au=Zhou%2C+Jianxing&rft.au=Peng%2C+Yuhang&rft.au=Dai%2C+Xiaoqi&rft.date=2024-03-01&rft.eissn=1521-4095&rft.spage=e2309143&rft_id=info:doi/10.1002%2Fadma.202309143&rft_id=info%3Apmid%2F37944998&rft.externalDocID=37944998 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |