Enantioselective Hydroxylation of Dihydrosilanes to Si‐Chiral Silanols Catalyzed by In Situ Generated Copper(II) Species

Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si‐chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single‐electron transfer...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 32; pp. e202205743 - n/a
Main Authors Yang, Wu, Liu, Lin, Guo, Jiandong, Wang, Shou‐Guo, Zhang, Jia‐Yong, Fan, Li‐Wen, Tian, Yu, Wang, Li‐Lei, Luan, Cheng, Li, Zhong‐Liang, He, Chuan, Wang, Xiaotai, Gu, Qiang‐Shuai, Liu, Xin‐Yuan
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 08.08.2022
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si‐chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single‐electron transfer (SET) oxidant for invoking CuII species and chiral multidentate anionic N,N,P‐ligands for effective enantiocontrol. The reaction readily provides a broad range of Si‐chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si‐chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral CuII species as the active catalyst and its subsequent σ‐metathesis with dihydrosilanes. Copper(II)‐mediated σ‐metathesis with prochiral dihydrosilanes has been successfully leveraged to efficiently synthesize Si‐chiral silanols as well as many other related Si‐chiral skeletons. The reaction hinges on the continuous generation of catalytically active copper(II) species via single‐electron transfer oxidation of copper(I) by alkyl halides and the efficient stereocontrol with multidentate anionic N,N,P‐ligands.
AbstractList Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si‐chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single‐electron transfer (SET) oxidant for invoking Cu II species and chiral multidentate anionic N,N,P‐ligands for effective enantiocontrol. The reaction readily provides a broad range of Si‐chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si‐chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral Cu II species as the active catalyst and its subsequent σ ‐metathesis with dihydrosilanes.
Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si‐chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single‐electron transfer (SET) oxidant for invoking CuII species and chiral multidentate anionic N,N,P‐ligands for effective enantiocontrol. The reaction readily provides a broad range of Si‐chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si‐chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral CuII species as the active catalyst and its subsequent σ‐metathesis with dihydrosilanes.Dedicated to Prof. Chi-Ming Che on the occasion of his 65th birthday.
Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si‐chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single‐electron transfer (SET) oxidant for invoking CuII species and chiral multidentate anionic N,N,P‐ligands for effective enantiocontrol. The reaction readily provides a broad range of Si‐chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si‐chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral CuII species as the active catalyst and its subsequent σ‐metathesis with dihydrosilanes. Copper(II)‐mediated σ‐metathesis with prochiral dihydrosilanes has been successfully leveraged to efficiently synthesize Si‐chiral silanols as well as many other related Si‐chiral skeletons. The reaction hinges on the continuous generation of catalytically active copper(II) species via single‐electron transfer oxidation of copper(I) by alkyl halides and the efficient stereocontrol with multidentate anionic N,N,P‐ligands.
Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si-chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single-electron transfer (SET) oxidant for invoking Cu-II species and chiral multidentate anionic N,N,P-ligands for effective enantiocontrol. The reaction readily provides a broad range of Si-chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si-chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral Cu-II species as the active catalyst and its subsequent sigma-metathesis with dihydrosilanes.
Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si-chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single-electron transfer (SET) oxidant for invoking CuII species and chiral multidentate anionic N,N,P-ligands for effective enantiocontrol. The reaction readily provides a broad range of Si-chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si-chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral CuII species as the active catalyst and its subsequent σ-metathesis with dihydrosilanes.
Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si-chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single-electron transfer (SET) oxidant for invoking CuII species and chiral multidentate anionic N,N,P-ligands for effective enantiocontrol. The reaction readily provides a broad range of Si-chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si-chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral CuII species as the active catalyst and its subsequent σ-metathesis with dihydrosilanes.Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si-chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single-electron transfer (SET) oxidant for invoking CuII species and chiral multidentate anionic N,N,P-ligands for effective enantiocontrol. The reaction readily provides a broad range of Si-chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si-chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral CuII species as the active catalyst and its subsequent σ-metathesis with dihydrosilanes.
ArticleNumber 202205743
Author Wang, Shou‐Guo
Guo, Jiandong
He, Chuan
Yang, Wu
Tian, Yu
Wang, Xiaotai
Zhang, Jia‐Yong
Liu, Lin
Wang, Li‐Lei
Li, Zhong‐Liang
Liu, Xin‐Yuan
Gu, Qiang‐Shuai
Luan, Cheng
Fan, Li‐Wen
Author_xml – sequence: 1
  givenname: Wu
  surname: Yang
  fullname: Yang, Wu
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Lin
  surname: Liu
  fullname: Liu, Lin
  organization: Great Bay University
– sequence: 3
  givenname: Jiandong
  surname: Guo
  fullname: Guo, Jiandong
  organization: Hoffmann Institute of Advanced Materials
– sequence: 4
  givenname: Shou‐Guo
  surname: Wang
  fullname: Wang, Shou‐Guo
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Jia‐Yong
  surname: Zhang
  fullname: Zhang, Jia‐Yong
  organization: Southern University of Science and Technology
– sequence: 6
  givenname: Li‐Wen
  surname: Fan
  fullname: Fan, Li‐Wen
  organization: Southern University of Science and Technology
– sequence: 7
  givenname: Yu
  surname: Tian
  fullname: Tian, Yu
  organization: Southern University of Science and Technology
– sequence: 8
  givenname: Li‐Lei
  surname: Wang
  fullname: Wang, Li‐Lei
  organization: Southern University of Science and Technology
– sequence: 9
  givenname: Cheng
  surname: Luan
  fullname: Luan, Cheng
  organization: Southern University of Science and Technology
– sequence: 10
  givenname: Zhong‐Liang
  surname: Li
  fullname: Li, Zhong‐Liang
  organization: Southern University of Science and Technology
– sequence: 11
  givenname: Chuan
  surname: He
  fullname: He, Chuan
  organization: Southern University of Science and Technology
– sequence: 12
  givenname: Xiaotai
  orcidid: 0000-0003-3310-3308
  surname: Wang
  fullname: Wang, Xiaotai
  email: xiaotai.wang@ucdenver.edu
  organization: University of Colorado Denver
– sequence: 13
  givenname: Qiang‐Shuai
  surname: Gu
  fullname: Gu, Qiang‐Shuai
  email: guqs@sustech.edu.cn
  organization: Southern University of Science and Technology
– sequence: 14
  givenname: Xin‐Yuan
  orcidid: 0000-0002-6978-6465
  surname: Liu
  fullname: Liu, Xin‐Yuan
  email: liuxy3@sustech.edu.cn
  organization: Southern University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35652388$$D View this record in MEDLINE/PubMed
BookMark eNqNks9u1DAQxiNURP_AlSOKxKUI7eLYie09VmFpI1VwKJwtx5morrJ2sB0gPfEIPCNPwiy7LVIlBCePP_--8Yw9x9mB8w6y7HlBlgUh9I12FpaUUEoqUbJH2VFR0WLBhGAHGJeMLYSsisPsOMYb5KUk_El2yCpeUSblUXa7dtol6yMMYJL9AvnF3AX_bR40qi73ff7WXm-laAftIObJ51f25_cf9bUNesAYZT_EvNZJD_MtdHk7543DgzTl5-Ag6IRi7ccRwmnTvMqvRjAW4tPsca-HCM_260n26d36Y32xuPxw3tRnlwtTshXW3_UArGpXlHXYihFtz1ta8K4qdcEoa42UJaNlh1sujaZd0QnKUTclZx1lJ9npLu8Y_OcJYlIbGw0M23b8FBXlggrCV6RC9OUD9MZPwWF1SK24pERwgtSLPTW1G-jUGOxGh1ndvSoCcgd8hdb3EZt1Bu4xQohkJZWVxIiL2qbfT137ySW0vv5_K9Lljjb4PzFAr8w-WwraDqogajslajsl6n5K0LZ8YLu74K-G1b4qO8D8D1qdvW_Wf7y_AIYwzfY
CitedBy_id crossref_primary_10_1039_D2SC06181C
crossref_primary_10_1021_acs_orglett_3c00946
crossref_primary_10_1039_D2QO01294D
crossref_primary_10_1021_acscatal_3c02682
crossref_primary_10_1021_acscatal_4c02438
crossref_primary_10_1039_D4QO01698J
crossref_primary_10_6023_cjoc202306027
crossref_primary_10_1002_chem_202302458
crossref_primary_10_1002_anie_202404732
crossref_primary_10_1038_s41467_024_49988_2
crossref_primary_10_1039_D4GC00725E
crossref_primary_10_1002_anie_202402612
crossref_primary_10_1038_s41467_023_41113_z
crossref_primary_10_1021_acscatal_4c07799
crossref_primary_10_1021_acs_oprd_3c00310
crossref_primary_10_1039_D2SC05959B
crossref_primary_10_1002_ange_202217724
crossref_primary_10_1021_jacs_3c00671
crossref_primary_10_1007_s11426_023_1643_7
crossref_primary_10_1002_ange_202402612
crossref_primary_10_6023_cjoc202305001
crossref_primary_10_1021_acs_accounts_4c00667
crossref_primary_10_1039_D4CS00417E
crossref_primary_10_1002_anie_202405520
crossref_primary_10_1016_j_checat_2022_07_009
crossref_primary_10_1021_acscatal_4c06672
crossref_primary_10_1002_ange_202405520
crossref_primary_10_1002_ange_202404732
crossref_primary_10_1038_s41929_024_01182_9
crossref_primary_10_1039_D3QO00846K
crossref_primary_10_1021_acs_orglett_3c02611
crossref_primary_10_1002_anie_202217724
Cites_doi 10.1055/a-1503-7976
10.1038/s41557-019-0346-2
10.1039/D1QO01386F
10.1002/ange.200502631
10.1002/ajoc.201500066
10.1038/s41557-020-00561-6
10.1016/S0040-4039(01)87251-8
10.1021/ja3076555
10.1002/ange.201813229
10.1002/ange.202113052
10.1021/acs.accounts.0c00740
10.1002/pi.2524
10.1002/anie.202010484
10.1055/a-1729-9664
10.1002/anie.200905561
10.1021/ja0283201
10.1039/C7CC01070B
10.1021/jacs.1c07726
10.1021/ja100833h
10.1002/anie.201702349
10.1021/jacs.5b07827
10.1038/s41467-022-28439-w
10.1055/s-2007-980385
10.1038/ncomms15547
10.1039/C6QO00691D
10.1002/ange.202007668
10.1021/jacs.6b04077
10.1038/s41929-020-0439-8
10.4155/fmc-2016-0193
10.1002/ange.201105235
10.1039/C9CS00681H
10.1021/acs.chemrev.5b00162
10.1021/acs.chemrev.1c00582
10.1002/ejic.201600100
10.1021/jacs.0c09125
10.1126/science.aav9713
10.1002/9783527814787.ch14
10.1002/ange.201807493
10.1002/ange.201911742
10.1021/ja962754c
10.1002/ange.200602668
10.1002/ange.200703847
10.1021/om00043a068
10.1021/acs.orglett.8b02932
10.1021/acscatal.1c01970
10.1021/ma991510k
10.1021/om00111a033
10.1016/j.tetlet.2005.01.127
10.1021/acs.orglett.1c00935
10.1002/ange.202111025
10.1002/chem.202003506
10.1002/anie.202005341
10.1080/00958979708027956
10.1002/anie.202110233
10.1039/c2cc36238d
10.1002/anie.201813229
10.1002/adsc.200606071
10.1126/science.aaf7230
10.1021/acs.accounts.8b00265
10.1021/jacs.9b02158
10.1002/anie.201603970
10.1021/acscatal.1c03112
10.1021/jacs.0c03130
10.1021/acs.chemrev.5b00695
10.1002/ange.202110233
10.1002/anie.201105235
10.1039/D0CC05509C
10.1080/00958979808027143
10.1002/9783527829170.ch2
10.1080/00945717408069627
10.1002/ange.202010484
10.1002/anie.201802806
10.1002/anie.200502631
10.1039/C39940002525
10.1021/jacs.1c01106
10.1021/acs.accounts.9b00381
10.1002/ange.201207361
10.1021/ma400149t
10.1021/ja110534g
10.1039/DT9850001743
10.1002/ange.201702349
10.1021/acs.accounts.0c00164
10.1021/acs.oprd.1c00073
10.1002/ange.201802806
10.1007/s11426-020-9939-1
10.1002/ange.202005341
10.1126/science.1237175
10.1055/s-0036-1591839
10.1021/ja038416a
10.1002/anie.202111025
10.1002/anie.202007668
10.1002/anie.201207361
10.1002/ejoc.202101084
10.1002/ange.201603970
10.1021/acs.organomet.6b00371
10.1016/j.chempr.2020.03.024
10.1002/anie.201911742
10.1002/anie.201807493
10.1039/C0CS00037J
10.1002/chem.201900792
10.1002/anie.200703847
10.1038/s41929-020-0460-y
10.1002/anie.202113052
10.1002/anie.200602668
10.1039/C39930000436
10.1002/ange.200905561
10.1002/chem.200801377
10.1039/d0cc05509c
10.1039/c0cs00037j
10.1039/c6qo00691d
10.1039/d1qo01386f
10.1039/c9cs00681h
10.1039/c7cc01070b
10.1002/ANIE.200502631
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
1KN
AHQBO
BLEPL
DTL
EGQ
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202205743
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)

Web of Science
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 35652388
000834285800067
10_1002_anie_202205743
ANIE202205743
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22025103; 22001109; 21831002
– fundername: Guangdong Innovative Program
  funderid: 2019BT02Y335
– fundername: Shenzhen Special Funds
  funderid: JCYJ20200109141001789
– fundername: Guangdong Provincial Key Laboratory of Catalysis
  funderid: 2020B121201002
– fundername: Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis
  funderid: ZDSYS20190902093215877
– fundername: Guangdong Innovative Program
  grantid: 2019BT02Y335
– fundername: Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis
  grantid: ZDSYS20190902093215877
– fundername: Guangdong Provincial Key Laboratory of Catalysis
  grantid: 2020B121201002
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 22025103; 22001109; 21831002
– fundername: Shenzhen Special Funds
  grantid: JCYJ20200109141001789
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
1KN
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4393-7dfee35b923d851c7bf6b216d54a1323bc884324d4a168ca2d1d7263bcc463d23
IEDL.DBID DR2
ISICitedReferencesCount 38
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000834285800067
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 15:39:39 EDT 2025
Sun Jul 13 05:29:44 EDT 2025
Wed Feb 19 02:26:37 EST 2025
Fri Aug 22 19:27:16 EDT 2025
Wed Jul 09 18:32:17 EDT 2025
Tue Jul 01 01:18:23 EDT 2025
Thu Apr 24 23:03:06 EDT 2025
Wed Jan 22 16:25:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords Single-Electron Transfer (SET) Oxidation
ASYMMETRIC-SYNTHESIS
Metathesis
CLASSIFICATION
C-H SILYLATION
SILICON-STEREOGENIC SILANES
COORDINATION-COMPOUNDS
ALKENES
Asymmetric Catalysis
Silanols
KINETIC RESOLUTION
Copper
ACCESS
STRUCTURAL DATA
1,2-DIFUNCTIONALIZATION
silanols
single-electron transfer (SET) oxidation
copper
asymmetric catalysis
metathesis
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4393-7dfee35b923d851c7bf6b216d54a1323bc884324d4a168ca2d1d7263bcc463d23
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6978-6465
0000-0003-3310-3308
0000-0001-6937-7250
0000-0001-8168-2928
0000-0002-2043-5701
0009-0004-9601-2563
PMID 35652388
PQID 2696820760
PQPubID 946352
PageCount 7
ParticipantIDs pubmed_primary_35652388
proquest_miscellaneous_2672706905
webofscience_primary_000834285800067CitationCount
wiley_primary_10_1002_anie_202205743_ANIE202205743
crossref_citationtrail_10_1002_anie_202205743
webofscience_primary_000834285800067
proquest_journals_2696820760
crossref_primary_10_1002_anie_202205743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 8, 2022
PublicationDateYYYYMMDD 2022-08-08
PublicationDate_xml – month: 08
  year: 2022
  text: August 8, 2022
  day: 08
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2021; 25
2017; 8
2021; 64
2004; 126
2021; 23
2017; 4
2019; 11
1997; 41
1973; 14
2020 2020; 59 132
2020; 56
2020; 12
1992; 11
2017; 356
2017; 9
2019; 364
1998; 45
2016; 35
1974; 4
2022; 122
2009; 58
2020; 6
2022 2022; 61 134
2021; 32
2020; 3
2012; 134
2015; 137
2020; 53
2012 2012; 51 124
2018 2018; 57 130
2019; 25
2020; 49
1985
2005 2005; 44 117
2016; 116
2003; 125
2021; 8
2018; 29
2015; 4
2020; 142
2013; 46
2011; 40
1989; 8
2008; 14
2007
1994
2010 2010; 49 122
1993
2013; 341
2021; 143
2017 2017; 56 129
2019; 141
2018; 20
2019 2019; 58 131
2011; 133
2005; 46
2017; 53
2021; 54
2016 2016; 55 128
2021; 11
2015; 115
2022
2021
2000; 33
2007 2007; 46 119
2010; 132
2019
2021 2021; 60 133
2022; 13
2020; 26
2016
2016; 138
2018; 51
2011 2011; 50 123
2022; 54
2012; 48
2006; 348
1996; 118
e_1_2_3_50_2
e_1_2_3_92_2
e_1_2_3_4_2
e_1_2_3_16_2
e_1_2_3_58_3
e_1_2_3_39_2
e_1_2_3_35_1
e_1_2_3_12_2
e_1_2_3_58_2
e_1_2_3_8_1
e_1_2_3_77_2
e_1_2_3_31_1
e_1_2_3_73_2
e_1_2_3_96_2
e_1_2_3_54_1
e_1_2_3_96_1
e_1_2_3_62_1
e_1_2_3_81_2
e_1_2_3_102_1
e_1_2_3_28_2
e_1_2_3_24_2
e_1_2_3_47_2
e_1_2_3_66_2
e_1_2_3_89_2
e_1_2_3_106_2
e_1_2_3_85_3
e_1_2_3_20_2
e_1_2_3_43_2
e_1_2_3_85_2
e_1_2_3_20_3
e_1_2_3_72_1
e_1_2_3_95_1
e_1_2_3_91_2
e_1_2_3_19_2
e_1_2_3_19_3
e_1_2_3_15_2
e_1_2_3_38_2
e_1_2_3_3_2
e_1_2_3_34_2
e_1_2_3_57_3
e_1_2_3_57_2
e_1_2_3_53_1
e_1_2_3_99_1
e_1_2_3_30_2
e_1_2_3_76_2
e_1_2_3_30_3
e_1_2_3_11_1
e_1_2_3_61_2
e_1_2_3_80_2
e_1_2_3_103_2
e_1_2_3_27_2
e_1_2_3_27_3
e_1_2_3_23_2
e_1_2_3_69_2
e_1_2_3_46_2
e_1_2_3_88_1
e_1_2_3_107_1
e_1_2_3_65_2
e_1_2_3_61_3
e_1_2_3_42_2
e_1_2_3_84_2
e_1_2_3_71_2
e_1_2_3_71_3
e_1_2_3_94_1
e_1_2_3_90_2
e_1_2_3_6_1
e_1_2_3_37_2
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_56_2
e_1_2_3_33_2
e_1_2_3_14_2
e_1_2_3_56_3
e_1_2_3_79_1
e_1_2_3_75_2
e_1_2_3_52_1
e_1_2_3_98_1
e_1_2_3_10_1
e_1_2_3_60_2
e_1_2_3_83_2
e_1_2_3_60_3
Wang X. (e_1_2_3_86_2) 2022
e_1_2_3_100_3
e_1_2_3_104_2
e_1_2_3_26_2
e_1_2_3_49_2
e_1_2_3_100_2
e_1_2_3_49_3
e_1_2_3_45_1
e_1_2_3_68_1
e_1_2_3_87_2
e_1_2_3_41_1
e_1_2_3_22_1
e_1_2_3_64_1
e_1_2_3_93_1
e_1_2_3_70_2
Igawa K. (e_1_2_3_7_1) 2019
e_1_2_3_1_1
e_1_2_3_5_1
e_1_2_3_17_2
e_1_2_3_59_2
e_1_2_3_78_3
e_1_2_3_9_1
e_1_2_3_55_2
e_1_2_3_13_2
e_1_2_3_36_1
e_1_2_3_78_2
e_1_2_3_51_2
e_1_2_3_32_2
e_1_2_3_97_1
e_1_2_3_74_2
e_1_2_3_82_2
e_1_2_3_29_3
e_1_2_3_101_2
e_1_2_3_29_2
e_1_2_3_44_2
e_1_2_3_48_1
e_1_2_3_67_1
e_1_2_3_25_2
e_1_2_3_40_3
e_1_2_3_105_3
e_1_2_3_40_2
e_1_2_3_105_2
e_1_2_3_63_1
e_1_2_3_21_2
Shintani, R (WOS:000309854700010) 2012; 134
Dong, XY (WOS:000498875700019) 2019; 11
Kumar, R (WOS:000361502800045) 2015; 137
(000834285800067.80) 2020; 132
Ye, L (WOS:000499021600001) 2020; 59
Wang, F (WOS:000445441200016) 2018; 51
Sladojevich, F (WOS:000287831800026) 2011; 133
Choi, J (WOS:000399013800025) 2017; 356
He, T (WOS:000590177800001) 2020; 26
Melnik, M (WOS:000076138200004) 1998; 45
Zhang, YF (WOS:000700883200054) 2021; 143
SHELDRICK, WS (WOS:A1985AQR3300002) 1985
Liu, L (000834285800067.98) 2021; 133
Lipp, A (WOS:000564447000001) 2021; 60
Zheng, L (WOS:000705545500001) 2021; 2021
Dong, XC (WOS:000402512900001) 2017; 8
Rendler, S (WOS:000233694800026) 2005; 44
Rendler, S (000834285800067.55) 2005; 117
Yasutomi, Y (WOS:000276553600004) 2010; 132
(000834285800067.27) 2012; 124
Zhu, JF (WOS:000658468700001) 2021; 32
Seliger, J (WOS:000583742700001) 2021; 60
(000834285800067.48) 2007; 119
Kurihara, Y (WOS:000310459400022) 2012; 48
Dong, XY (WOS:000537415600047) 2020; 142
Seliger, J (000834285800067.62) 2019; 131
RYU, I (WOS:A1989AQ32300033) 1989; 8
Proctor, RSJ (WOS:000579693400002) 2020; 12
Weiss, ME (WOS:000297467100014) 2011; 50
Lee, DW (WOS:000227506100018) 2005; 46
Xu, LW (WOS:000287585000034) 2011; 40
Liu, RY (WOS:000542223900013) 2020; 53
Liu, L (WOS:000719143700001) 2021; 60
Nakagawa, Y (WOS:000399000900032) 2017; 53
Morris, RH (WOS:000381332000008) 2016; 116
Weickgenannt, A (000834285800067.59) 2010; 122
(000834285800067.107) 2011; 123
Weickgenannt, A (WOS:000276008000027) 2010; 49
Ye, F (WOS:000612345900019) 2021; 54
Kawakami, Y (WOS:000263771500009) 2009; 58
Yang, Y (000834285800067.102) 2017; 129
Shintani, R (WOS:000355651000001) 2015; 4
Wang, Y (WOS:000319795800010) 2013; 46
An, K (WOS:000755220500015) 2022; 13
(000834285800067.87) 2021; 133
Zhu, JF (WOS:000641160700003) 2021; 143
Yang, CJ (WOS:000533815300002) 2020; 3
Wang, X (WOS:000707138200001) 2021; 8
Zhang, G (000834285800067.41) 2020; 132
KUNAI, A (WOS:A1992JD62200068) 1992; 11
Fujii, S (WOS:000400521500004) 2017; 9
Huang, Y.-H. (000834285800067.19) 2022; 61
Wu, LJ (WOS:000395904900004) 2017; 4
Zhang, JY (WOS:000713741200001) 2021; 60
Zhang, J (000834285800067.18) 2021; 133
Bauer, JO (WOS:000379751700001) 2016
Cherney, AH (WOS:000361254500015) 2015; 115
Mondal, S (WOS:000781225500009) 2022; 122
CUNICO, RF (WOS:A1974S440600003) 1974; 4
Zhou, H (WOS:000670659900028) 2021; 11
Seliger, J (WOS:000458828000014) 2019; 58
Tamao, K (WOS:A1996VX65400033) 1996; 118
Schmidt, DR (WOS:000180713000041) 2003; 125
Seliger, J (000834285800067.64) 2021; 133
Klare, HFT (WOS:000251761500043) 2007; 46
Oishi, M (WOS:000086073300010) 2000; 33
YAMAMOTO, K (WOS:A1993KT29900005) 1993
Rendler, S (WOS:000239412400007) 2006; 348
Chemler, SR (WOS:000322884800027) 2013; 341
Hossain, A (WOS:000466809600022) 2019; 364
Chulsky, K (WOS:000449443100041) 2018; 20
Zhang, G (WOS:000533301400001) 2020; 59
Rendler, S (WOS:000243609200005) 2007; 46
Seliger, J (WOS:000482329000004) 2019; 25
CORRIU, RJP (WOS:A1973R056200011) 1973
Zhang, HP (WOS:000693621800005) 2021; 11
Murata, R (WOS:000579572200035) 2020; 56
Wen, H (000834285800067.30) 2018; 130
Lin, JS (WOS:000381062600006) 2016; 138
Yuan, W (WOS:000774221200005) 2022; 54
Wang, X. (000834285800067.88) 2022
Li, XT (WOS:000558678900020) 2020; 6
Wen, HA (WOS:000432710100062) 2018; 57
Zhang, SY (WOS:000383373000018) 2016; 55
Cheng, YF (WOS:000519840000002) 2020; 3
Carvajal, MA (WOS:000188834900042) 2004; 126
Larson, GL (WOS:000687904600001) 2021; 25
Oestreich, M (WOS:000248768200001) 2007
Bi, XF (WOS:000641296000067) 2021; 23
Rendler, S (WOS:000262002900030) 2008; 14
Falivene, L (WOS:000379704300014) 2016; 35
Zhang, S (000834285800067.73) 2016; 128
OHTA, T (WOS:A1994PQ83800048) 1994
Zhan, G (WOS:000444225100020) 2018; 57
Melnik, M (WOS:A1997XA90900005) 1997; 41
(000834285800067.32) 2018; 130
Yang, Y (WOS:000403839000041) 2017; 56
Fang, C (WOS:000467781600033) 2019; 141
Xie, JL (WOS:000623850700001) 2021; 64
Li, ZL (WOS:000508005100002) 2020; 49
Igawa, K. (000834285800067.6) 2019
Igawa, K (WOS:000312305400017) 2012; 51
Klare, HFT (000834285800067.57) 2007; 119
Jiang, SP (WOS:000592911000027) 2020; 142
Shintani, R (WOS:000425173600008) 2018; 29
Gu, QS (WOS:000509420300015) 2020; 53
References_xml – volume: 132
  start-page: 4510
  year: 2010
  end-page: 4511
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 3753
  year: 2017
  end-page: 3756
  publication-title: Chem. Commun.
– volume: 14
  start-page: 4469
  year: 1973
  end-page: 4472
  publication-title: Tetrahedron Lett.
– volume: 35
  start-page: 2286
  year: 2016
  end-page: 2293
  publication-title: Organometallics
– volume: 141
  start-page: 7486
  year: 2019
  end-page: 7497
  publication-title: J. Am. Chem. Soc.
– volume: 356
  year: 2017
  publication-title: Science
– volume: 126
  start-page: 1465
  year: 2004
  end-page: 1477
  publication-title: J. Am. Chem. Soc.
– volume: 46 119
  start-page: 498 504
  year: 2007 2007
  end-page: 504 510
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 26710 26914
  year: 2021 2021
  end-page: 26717 26921
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 122
  start-page: 5842
  year: 2022
  end-page: 5976
  publication-title: Chem. Rev.
– start-page: 1629
  year: 2007
  end-page: 1643
  publication-title: Synlett
– volume: 51 124
  start-page: 12745 12917
  year: 2012 2012
  end-page: 12748 12920
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 6804
  year: 2018
  end-page: 6807
  publication-title: Org. Lett.
– volume: 25
  start-page: 1719
  year: 2021
  end-page: 1787
  publication-title: Org. Process Res. Dev.
– volume: 33
  start-page: 1960
  year: 2000
  end-page: 1963
  publication-title: Macromolecules
– start-page: 2525
  year: 1994
  end-page: 2526
  publication-title: J. Chem. Soc., Chem. Commun.
– volume: 64
  start-page: 761
  year: 2021
  end-page: 769
  publication-title: Sci. China Chem.
– volume: 341
  start-page: 624
  year: 2013
  end-page: 626
  publication-title: Science
– volume: 364
  year: 2019
  publication-title: Science
– volume: 116
  start-page: 8588
  year: 2016
  end-page: 8654
  publication-title: Chem. Rev.
– volume: 142
  start-page: 19652
  year: 2020
  end-page: 19659
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 7916 8024
  year: 2017 2017
  end-page: 7919 8027
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 6577
  year: 2021
  end-page: 6584
  publication-title: Org. Chem. Front.
– volume: 56
  start-page: 12335
  year: 2020
  end-page: 12338
  publication-title: Chem. Commun.
– start-page: 6006
  year: 2021
  end-page: 6014
  publication-title: Eur. J. Org. Chem.
– volume: 118
  start-page: 12469
  year: 1996
  end-page: 12470
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 1575
  year: 2021
  end-page: 1580
  publication-title: Synlett
– volume: 4
  start-page: 350
  year: 2017
  end-page: 353
  publication-title: Org. Chem. Front.
– volume: 3
  start-page: 539
  year: 2020
  end-page: 546
  publication-title: Nat. Catal.
– volume: 115
  start-page: 9587
  year: 2015
  end-page: 9652
  publication-title: Chem. Rev.
– volume: 46
  start-page: 3793
  year: 2013
  end-page: 3802
  publication-title: Macromolecules
– volume: 143
  start-page: 5301
  year: 2021
  end-page: 5307
  publication-title: J. Am. Chem. Soc.
– volume: 46 119
  start-page: 9335 9496
  year: 2007 2007
  end-page: 9338 9499
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 15547
  year: 2017
  publication-title: Nat. Commun.
– volume: 58 131
  start-page: 1970 1991
  year: 2019 2019
  end-page: 1974 1996
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 2708
  year: 1992
  end-page: 2711
  publication-title: Organometallics
– volume: 54
  start-page: 1939
  year: 2022
  end-page: 1950
  publication-title: Synthesis
– volume: 23
  start-page: 3201
  year: 2021
  end-page: 3206
  publication-title: Org. Lett.
– volume: 125
  start-page: 1190
  year: 2003
  end-page: 1191
  publication-title: J. Am. Chem. Soc.
– volume: 348
  start-page: 1171
  year: 2006
  end-page: 1182
  publication-title: Adv. Synth. Catal.
– volume: 8
  start-page: 2279
  year: 1989
  end-page: 2281
  publication-title: Organometallics
– volume: 25
  start-page: 9358
  year: 2019
  end-page: 9365
  publication-title: Chem. Eur. J.
– volume: 11
  start-page: 7978
  year: 2021
  end-page: 7986
  publication-title: ACS Catal.
– volume: 143
  start-page: 15413
  year: 2021
  end-page: 15419
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 452
  year: 2021
  end-page: 470
  publication-title: Acc. Chem. Res.
– volume: 26
  start-page: 17011
  year: 2020
  end-page: 17015
  publication-title: Chem. Eur. J.
– start-page: 1743
  year: 1985
  end-page: 1746
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 1129 1145
  year: 2020 2020
  end-page: 1133 1149
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 847
  year: 2022
  publication-title: Nat. Commun.
– start-page: 495
  year: 2019
  end-page: 532
– volume: 57 130
  start-page: 12342 12522
  year: 2018 2018
  end-page: 12346 12526
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 1714 1738
  year: 2021 2021
  end-page: 1726 1750
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 510
  year: 2015
  end-page: 514
  publication-title: Asian J. Org. Chem.
– volume: 138
  start-page: 9357
  year: 2016
  end-page: 9360
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 1710
  year: 2011
  end-page: 1713
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 485
  year: 2017
  end-page: 505
  publication-title: Future Med. Chem.
– volume: 142
  start-page: 9501
  year: 2020
  end-page: 9509
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 1229
  year: 2020
  end-page: 1243
  publication-title: Acc. Chem. Res.
– volume: 53
  start-page: 170
  year: 2020
  end-page: 181
  publication-title: Acc. Chem. Res.
– volume: 51
  start-page: 2036
  year: 2018
  end-page: 2046
  publication-title: Acc. Chem. Res.
– volume: 49
  start-page: 32
  year: 2020
  end-page: 48
  publication-title: Chem. Soc. Rev.
– volume: 49 122
  start-page: 2223 2269
  year: 2010 2010
  end-page: 2226 2272
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 40
  start-page: 1777
  year: 2011
  end-page: 1790
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 401
  year: 2020
  end-page: 410
  publication-title: Nat. Catal.
– volume: 11
  start-page: 10748
  year: 2021
  end-page: 10753
  publication-title: ACS Catal.
– volume: 60 133
  start-page: 247 251
  year: 2021 2021
  end-page: 251 255
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44 117
  start-page: 7620 7793
  year: 2005 2005
  end-page: 7624 7797
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 6319 6427
  year: 2018 2018
  end-page: 6323 6431
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 11927 12025
  year: 2020 2020
  end-page: 11931 12029
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 41
  start-page: 35
  year: 1997
  end-page: 182
  publication-title: J. Coord. Chem.
– volume: 58
  start-page: 279
  year: 2009
  end-page: 284
  publication-title: Polym. Int.
– volume: 50 123
  start-page: 11125 11321
  year: 2011 2011
  end-page: 11128 11324
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 11564
  year: 2012
  end-page: 11566
  publication-title: Chem. Commun.
– volume: 4
  start-page: 23
  year: 1974
  end-page: 26
  publication-title: Synth. React. Inorg. Met.-Org. Chem.
– start-page: 25
  year: 2022
  end-page: 66
– volume: 14
  start-page: 11512
  year: 2008
  end-page: 11528
  publication-title: Chem. Eur. J.
– volume: 12
  start-page: 990
  year: 2020
  end-page: 1004
  publication-title: Nat. Chem.
– start-page: 436
  year: 1993
  end-page: 437
  publication-title: J. Chem. Soc. Chem., Commun.
– start-page: 2868
  year: 2016
  end-page: 2881
  publication-title: Eur. J. Inorg. Chem.
– volume: 134
  start-page: 16955
  year: 2012
  end-page: 16958
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 11838
  year: 2015
  end-page: 11845
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 9927 10081
  year: 2016 2016
  end-page: 9931 10085
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 1158
  year: 2019
  end-page: 1166
  publication-title: Nat. Chem.
– volume: 46
  start-page: 2037
  year: 2005
  end-page: 2039
  publication-title: Tetrahedron Lett.
– volume: 6
  start-page: 1692
  year: 2020
  end-page: 1706
  publication-title: Chem
– volume: 29
  start-page: 388
  year: 2018
  end-page: 396
  publication-title: Synlett
– volume: 45
  start-page: 31
  year: 1998
  end-page: 145
  publication-title: J. Coord. Chem.
– volume: 60 133
  start-page: 25723 25927
  year: 2021 2021
  end-page: 25728 25932
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_3_34_2
  doi: 10.1055/a-1503-7976
– ident: e_1_2_3_90_2
  doi: 10.1038/s41557-019-0346-2
– ident: e_1_2_3_17_2
  doi: 10.1039/D1QO01386F
– ident: e_1_2_3_88_1
– ident: e_1_2_3_56_3
  doi: 10.1002/ange.200502631
– ident: e_1_2_3_12_2
  doi: 10.1002/ajoc.201500066
– ident: e_1_2_3_83_2
  doi: 10.1038/s41557-020-00561-6
– ident: e_1_2_3_32_2
  doi: 10.1016/S0040-4039(01)87251-8
– ident: e_1_2_3_38_2
  doi: 10.1021/ja3076555
– ident: e_1_2_3_60_3
  doi: 10.1002/ange.201813229
– ident: e_1_2_3_20_3
  doi: 10.1002/ange.202113052
– ident: e_1_2_3_14_2
  doi: 10.1021/acs.accounts.0c00740
– ident: e_1_2_3_6_1
  doi: 10.1002/pi.2524
– ident: e_1_2_3_61_2
  doi: 10.1002/anie.202010484
– ident: e_1_2_3_15_2
  doi: 10.1055/a-1729-9664
– ident: e_1_2_3_58_2
  doi: 10.1002/anie.200905561
– ident: e_1_2_3_52_1
  doi: 10.1021/ja0283201
– ident: e_1_2_3_11_1
– ident: e_1_2_3_28_2
  doi: 10.1039/C7CC01070B
– ident: e_1_2_3_92_2
  doi: 10.1021/jacs.1c07726
– ident: e_1_2_3_25_2
  doi: 10.1021/ja100833h
– ident: e_1_2_3_100_2
  doi: 10.1002/anie.201702349
– ident: e_1_2_3_39_2
  doi: 10.1021/jacs.5b07827
– ident: e_1_2_3_21_2
  doi: 10.1038/s41467-022-28439-w
– ident: e_1_2_3_2_2
  doi: 10.1055/s-2007-980385
– ident: e_1_2_3_72_1
– ident: e_1_2_3_59_2
  doi: 10.1038/ncomms15547
– ident: e_1_2_3_101_2
  doi: 10.1039/C6QO00691D
– ident: e_1_2_3_85_3
  doi: 10.1002/ange.202007668
– ident: e_1_2_3_74_2
  doi: 10.1021/jacs.6b04077
– ident: e_1_2_3_76_2
  doi: 10.1038/s41929-020-0439-8
– ident: e_1_2_3_5_1
  doi: 10.4155/fmc-2016-0193
– ident: e_1_2_3_105_3
  doi: 10.1002/ange.201105235
– ident: e_1_2_3_84_2
  doi: 10.1039/C9CS00681H
– ident: e_1_2_3_80_2
  doi: 10.1021/acs.chemrev.5b00162
– ident: e_1_2_3_87_2
  doi: 10.1021/acs.chemrev.1c00582
– ident: e_1_2_3_4_2
  doi: 10.1002/ejic.201600100
– ident: e_1_2_3_91_2
  doi: 10.1021/jacs.0c09125
– ident: e_1_2_3_99_1
– ident: e_1_2_3_47_2
  doi: 10.1126/science.aav9713
– start-page: 495
  volume-title: Organosilicon Chemistry: Novel Approaches and Reactions
  year: 2019
  ident: e_1_2_3_7_1
  doi: 10.1002/9783527814787.ch14
– ident: e_1_2_3_30_3
  doi: 10.1002/ange.201807493
– ident: e_1_2_3_78_3
  doi: 10.1002/ange.201911742
– ident: e_1_2_3_24_2
  doi: 10.1021/ja962754c
– ident: e_1_2_3_68_1
– ident: e_1_2_3_49_3
  doi: 10.1002/ange.200602668
– ident: e_1_2_3_57_3
  doi: 10.1002/ange.200703847
– ident: e_1_2_3_104_2
  doi: 10.1021/om00043a068
– ident: e_1_2_3_98_1
  doi: 10.1021/acs.orglett.8b02932
– ident: e_1_2_3_89_2
  doi: 10.1021/acscatal.1c01970
– ident: e_1_2_3_9_1
  doi: 10.1021/ma991510k
– ident: e_1_2_3_69_2
  doi: 10.1021/om00111a033
– ident: e_1_2_3_70_2
  doi: 10.1016/j.tetlet.2005.01.127
– ident: e_1_2_3_45_1
– ident: e_1_2_3_36_1
– ident: e_1_2_3_44_2
  doi: 10.1021/acs.orglett.1c00935
– ident: e_1_2_3_19_3
  doi: 10.1002/ange.202111025
– ident: e_1_2_3_16_2
  doi: 10.1002/chem.202003506
– ident: e_1_2_3_40_2
  doi: 10.1002/anie.202005341
– ident: e_1_2_3_65_2
  doi: 10.1080/00958979708027956
– ident: e_1_2_3_96_1
  doi: 10.1002/anie.202110233
– ident: e_1_2_3_26_2
  doi: 10.1039/c2cc36238d
– ident: e_1_2_3_60_2
  doi: 10.1002/anie.201813229
– ident: e_1_2_3_53_1
  doi: 10.1002/adsc.200606071
– ident: e_1_2_3_81_2
  doi: 10.1126/science.aaf7230
– ident: e_1_2_3_82_2
  doi: 10.1021/acs.accounts.8b00265
– ident: e_1_2_3_93_1
  doi: 10.1021/jacs.9b02158
– ident: e_1_2_3_35_1
– ident: e_1_2_3_71_2
  doi: 10.1002/anie.201603970
– ident: e_1_2_3_10_1
  doi: 10.1021/acscatal.1c03112
– ident: e_1_2_3_95_1
  doi: 10.1021/jacs.0c03130
– ident: e_1_2_3_106_2
  doi: 10.1021/acs.chemrev.5b00695
– ident: e_1_2_3_48_1
– ident: e_1_2_3_96_2
  doi: 10.1002/ange.202110233
– ident: e_1_2_3_79_1
– ident: e_1_2_3_105_2
  doi: 10.1002/anie.201105235
– ident: e_1_2_3_43_2
  doi: 10.1039/D0CC05509C
– ident: e_1_2_3_66_2
  doi: 10.1080/00958979808027143
– ident: e_1_2_3_64_1
– start-page: 25
  volume-title: Transition Metal-Catalyzed Carbene Transformations
  year: 2022
  ident: e_1_2_3_86_2
  doi: 10.1002/9783527829170.ch2
– ident: e_1_2_3_103_2
  doi: 10.1080/00945717408069627
– ident: e_1_2_3_61_3
  doi: 10.1002/ange.202010484
– ident: e_1_2_3_29_2
  doi: 10.1002/anie.201802806
– ident: e_1_2_3_56_2
  doi: 10.1002/anie.200502631
– ident: e_1_2_3_37_2
  doi: 10.1039/C39940002525
– ident: e_1_2_3_33_2
  doi: 10.1021/jacs.1c01106
– ident: e_1_2_3_73_2
  doi: 10.1021/acs.accounts.9b00381
– ident: e_1_2_3_27_3
  doi: 10.1002/ange.201207361
– ident: e_1_2_3_97_1
– ident: e_1_2_3_102_1
– ident: e_1_2_3_107_1
  doi: 10.1021/ma400149t
– ident: e_1_2_3_94_1
  doi: 10.1021/ja110534g
– ident: e_1_2_3_8_1
  doi: 10.1039/DT9850001743
– ident: e_1_2_3_100_3
  doi: 10.1002/ange.201702349
– ident: e_1_2_3_50_2
  doi: 10.1021/acs.accounts.0c00164
– ident: e_1_2_3_51_2
  doi: 10.1021/acs.oprd.1c00073
– ident: e_1_2_3_1_1
– ident: e_1_2_3_29_3
  doi: 10.1002/ange.201802806
– ident: e_1_2_3_18_2
  doi: 10.1007/s11426-020-9939-1
– ident: e_1_2_3_40_3
  doi: 10.1002/ange.202005341
– ident: e_1_2_3_46_2
  doi: 10.1126/science.1237175
– ident: e_1_2_3_23_2
  doi: 10.1055/s-0036-1591839
– ident: e_1_2_3_54_1
– ident: e_1_2_3_63_1
  doi: 10.1021/ja038416a
– ident: e_1_2_3_19_2
  doi: 10.1002/anie.202111025
– ident: e_1_2_3_31_1
– ident: e_1_2_3_85_2
  doi: 10.1002/anie.202007668
– ident: e_1_2_3_27_2
  doi: 10.1002/anie.201207361
– ident: e_1_2_3_13_2
  doi: 10.1002/ejoc.202101084
– ident: e_1_2_3_71_3
  doi: 10.1002/ange.201603970
– ident: e_1_2_3_67_1
  doi: 10.1021/acs.organomet.6b00371
– ident: e_1_2_3_77_2
  doi: 10.1016/j.chempr.2020.03.024
– ident: e_1_2_3_78_2
  doi: 10.1002/anie.201911742
– ident: e_1_2_3_22_1
– ident: e_1_2_3_30_2
  doi: 10.1002/anie.201807493
– ident: e_1_2_3_3_2
  doi: 10.1039/C0CS00037J
– ident: e_1_2_3_55_2
  doi: 10.1002/chem.201900792
– ident: e_1_2_3_57_2
  doi: 10.1002/anie.200703847
– ident: e_1_2_3_75_2
  doi: 10.1038/s41929-020-0460-y
– ident: e_1_2_3_41_1
– ident: e_1_2_3_20_2
  doi: 10.1002/anie.202113052
– ident: e_1_2_3_49_2
  doi: 10.1002/anie.200602668
– ident: e_1_2_3_42_2
  doi: 10.1039/C39930000436
– ident: e_1_2_3_58_3
  doi: 10.1002/ange.200905561
– ident: e_1_2_3_62_1
  doi: 10.1002/chem.200801377
– volume: 56
  start-page: 12335
  year: 2020
  ident: WOS:000579572200035
  article-title: Desymmetrization of gem-diols via water-assisted organocatalytic enantio- and diastereoselective cycloetherification
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/d0cc05509c
– volume: 51
  start-page: 12745
  year: 2012
  ident: WOS:000312305400017
  article-title: Catalytic Enantioselective Synthesis of Alkenylhydrosilanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201207361
– volume: 11
  start-page: 1158
  year: 2019
  ident: WOS:000498875700019
  article-title: A general asymmetric copper-catalysed Sonogashira C(sp3)-C(sp) coupling
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-019-0346-2
– volume: 40
  start-page: 1777
  year: 2011
  ident: WOS:000287585000034
  article-title: The recent synthesis and application of silicon-stereogenic silanes: A renewed and significant challenge in asymmetric synthesis
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c0cs00037j
– volume: 134
  start-page: 16955
  year: 2012
  ident: WOS:000309854700010
  article-title: Rhodium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Dibenzooxasilines via Enantioselective Transmetalation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja3076555
– volume: 132
  start-page: 1145
  year: 2020
  ident: 000834285800067.80
  publication-title: Angew. Chem
– volume: 33
  start-page: 1960
  year: 2000
  ident: WOS:000086073300010
  article-title: Synthesis of stereoregular and optically active polysiloxanes containing 1,3-dimethyl-1,3-diphenyldisiloxane as a constitutional unit
  publication-title: MACROMOLECULES
– volume: 122
  start-page: 5842
  year: 2022
  ident: WOS:000781225500009
  article-title: Enantioselective Radical Reactions Using Chiral Catalysts
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.1c00582
– volume: 142
  start-page: 19652
  year: 2020
  ident: WOS:000592911000027
  article-title: Copper-Catalyzed Enantioconvergent Radical Suzuki-Miyaura C(sp3)-C(sp2) Cross-Coupling
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c09125
– volume: 141
  start-page: 7486
  year: 2019
  ident: WOS:000467781600033
  article-title: Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP)
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b02158
– volume: 143
  start-page: 15413
  year: 2021
  ident: WOS:000700883200054
  article-title: Enantioconvergent Cu-Catalyzed Radical C-N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c07726
– volume: 126
  start-page: 1465
  year: 2004
  ident: WOS:000188834900042
  article-title: Choice of coordination number in d10 complexes of group 11 metals
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja038416a
– volume: 54
  start-page: 452
  year: 2021
  ident: WOS:000612345900019
  article-title: The Discovery of Multifunctional Chiral P Ligands for the Catalytic Construction of Quaternary Carbon/Silicon and Multiple Stereogenic Centers
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.0c00740
– volume: 138
  start-page: 9357
  year: 2016
  ident: WOS:000381062600006
  article-title: A Dual-Catalytic Strategy To Direct Asymmetric Radical Aminotrifluoromethylation of Alkenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b04077
– volume: 3
  start-page: 401
  year: 2020
  ident: WOS:000519840000002
  article-title: Catalytic enantioselective desymmetrizing functionalization of alkyl radicals via Cu(i)/CPA cooperative catalysis
  publication-title: NATURE CATALYSIS
  doi: 10.1038/s41929-020-0439-8
– volume: 116
  start-page: 8588
  year: 2016
  ident: WOS:000381332000008
  article-title: Bronsted-Lowry Acid Strength of Metal Hydride and Dihydrogen Complexes
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.5b00695
– volume: 51
  start-page: 2036
  year: 2018
  ident: WOS:000445441200016
  article-title: Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.8b00265
– volume: 59
  start-page: 1129
  year: 2020
  ident: WOS:000499021600001
  article-title: Enantioselective Copper(I)/Chiral Phosphoric Acid Catalyzed Intramolecular Amination of Allylic and Benzylic C-H Bonds
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201911742
– volume: 4
  start-page: 350
  year: 2017
  ident: WOS:000395904900004
  article-title: Fe-Catalyzed oxidative spirocyclization of N-arylpropiolamides with silanes and TBHP involving the formation of C-Si bonds
  publication-title: ORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/c6qo00691d
– volume: 53
  start-page: 170
  year: 2020
  ident: WOS:000509420300015
  article-title: Copper(I)-Catalyzed Asymmetric Reactions Involving Radicals
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.9b00381
– volume: 8
  start-page: 6577
  year: 2021
  ident: WOS:000707138200001
  article-title: Multifunctional P-ligand-controlled "silicon-centered" selectivity in Rh/Cu-catalyzed Si-C bond cleavage of silacyclobutanes
  publication-title: ORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/d1qo01386f
– volume: 142
  start-page: 9501
  year: 2020
  ident: WOS:000537415600047
  article-title: Copper-Catalyzed Asymmetric Radical 1,2-Carboalkynylation of Alkenes with Alkyl Halides and Terminal Alkynes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c03130
– volume: 46
  start-page: 9335
  year: 2007
  ident: WOS:000251761500043
  article-title: Chiral recognition with silicon-stereogenic silanes: Remarkable selectivity factors in the kinetic resolution of donor-functionalized alcohols
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200703847
– volume: 133
  start-page: 251
  year: 2021
  ident: 000834285800067.64
  publication-title: Angew. Chem
– volume: 23
  start-page: 3201
  year: 2021
  ident: WOS:000641296000067
  article-title: Construction of Axial Chirality and Silicon-Stereogenic Center via Rh-Catalyzed Asymmetric Ring-Opening of Silafluorenes
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.1c00935
– volume: 9
  start-page: 485
  year: 2017
  ident: WOS:000400521500004
  article-title: Progress in the medicinal chemistry of silicon: C/Si exchange and beyond
  publication-title: FUTURE MEDICINAL CHEMISTRY
  doi: 10.4155/fmc-2016-0193
– volume: 58
  start-page: 279
  year: 2009
  ident: WOS:000263771500009
  article-title: Control of stereochemical structures of silicon-containing polymeric systems
  publication-title: POLYMER INTERNATIONAL
  doi: 10.1002/pi.2524
– volume: 4
  start-page: 23
  year: 1974
  ident: WOS:A1974S440600003
  article-title: IMPROVED METHOD FOR PREPARATION OF TRIALKYLCHLOROSILANES FROM TRIALKYLSILANES USING CUPRIC CHLORIDE
  publication-title: SYNTHESIS AND REACTIVITY IN INORGANIC AND METAL-ORGANIC CHEMISTRY
– volume: 26
  start-page: 17011
  year: 2020
  ident: WOS:000590177800001
  article-title: Enantioselective Construction of Si-Stereogenic Center via Rhodium-Catalyzed Intermolecular Hydrosilylation of Alkene
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.202003506
– volume: 348
  start-page: 1171
  year: 2006
  ident: WOS:000239412400007
  article-title: Preparation of a privileged silicon-stereogenic silane:: Classical versus kinetic resolution
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.200606071
– start-page: 4469
  year: 1973
  ident: WOS:A1973R056200011
  article-title: ASYMMETRICAL SYNTHESIS OF ALKOXYSILANES CATALYZED BY RHODIUM COMPLEXES
  publication-title: TETRAHEDRON LETTERS
– volume: 12
  start-page: 990
  year: 2020
  ident: WOS:000579693400002
  article-title: Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-020-00561-6
– volume: 25
  start-page: 9358
  year: 2019
  ident: WOS:000482329000004
  article-title: Making the Silylation of Alcohols Chiral: Asymmetric Protection of Hydroxy Groups
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201900792
– volume: 60
  start-page: 25723
  year: 2021
  ident: WOS:000713741200001
  article-title: Nickel(0)-Catalyzed Asymmetric Ring Expansion Toward Enantioenriched Silicon-Stereogenic Benzosiloles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202111025
– volume: 132
  start-page: 12025
  year: 2020
  ident: 000834285800067.41
  publication-title: Angew. Chem
– volume: 57
  start-page: 12342
  year: 2018
  ident: WOS:000444225100020
  article-title: Enantioselective Construction of Silicon-Stereogenic Silanes by Scandium-Catalyzed Intermolecular Alkene Hydrosilylation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201807493
– volume: 60
  start-page: 247
  year: 2021
  ident: WOS:000583742700001
  article-title: Dynamic Kinetic Resolution of Alcohols by Enantioselective Silylation Enabled by Two Orthogonal Transition-Metal Catalysts
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202010484
– volume: 57
  start-page: 6319
  year: 2018
  ident: WOS:000432710100062
  article-title: Asymmetric Synthesis of Silicon-Stereogenic Vinylhydrosilanes by Cobalt-Catalyzed Regio- and Enantioselective Alkyne Hydrosilylation with Dihydrosilanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201802806
– volume: 45
  start-page: 31
  year: 1998
  ident: WOS:000076138200004
  article-title: Copper(II) coordination compounds: Classification and analysis of crystallographic and structural data II. Mononuclear-, hexa-, hepta- and octacoordinate compounds
  publication-title: JOURNAL OF COORDINATION CHEMISTRY
– volume: 4
  start-page: 510
  year: 2015
  ident: WOS:000355651000001
  article-title: Recent Advances in the Transition-Metal-Catalyzed Enantioselective Synthesis of Silicon-Stereogenic Organosilanes
  publication-title: ASIAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ajoc.201500066
– volume: 29
  start-page: 388
  year: 2018
  ident: WOS:000425173600008
  article-title: Recent Progress in Catalytic Enantioselective Desymmetrization of Prochiral Organosilanes for the Synthesis of Silicon-Stereogenic Compounds
  publication-title: SYNLETT
  doi: 10.1055/s-0036-1591839
– volume: 364
  start-page: 450
  year: 2019
  ident: WOS:000466809600022
  article-title: ORGANIC CHEMISTRY Copper's rapid ascent in visible-light photoredox catalysis
  publication-title: SCIENCE
  doi: 10.1126/science.aav9713
– start-page: 495
  year: 2019
  ident: 000834285800067.6
  publication-title: Organosilicon Chemistry: Novel Approaches and Reactions
– volume: 46
  start-page: 2037
  year: 2005
  ident: WOS:000227506100018
  article-title: Direct synthesis of Stryker's reagent from a Cu(II) salt
  publication-title: TETRAHEDRON LETTERS
  doi: 10.1016/j.tetlet.2005.01.127
– volume: 117
  start-page: 7793
  year: 2005
  ident: 000834285800067.55
  publication-title: Angew. Chem
– start-page: 2868
  year: 2016
  ident: WOS:000379751700001
  article-title: Recent Progress in Asymmetric Synthesis and Application of Difunctionalized Silicon-Stereogenic Silanes
  publication-title: EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
  doi: 10.1002/ejic.201600100
– volume: 25
  start-page: 1719
  year: 2021
  ident: WOS:000687904600001
  article-title: Organosilanes in Metal-Catalyzed, Enantioselective Reductions
  publication-title: ORGANIC PROCESS RESEARCH & DEVELOPMENT
  doi: 10.1021/acs.oprd.1c00073
– volume: 59
  start-page: 11927
  year: 2020
  ident: WOS:000533301400001
  article-title: Asymmetric Synthesis of Silicon-Stereogenic Silanes by Copper-Catalyzed Desymmetrizing Protoboration of Vinylsilanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202005341
– start-page: 2525
  year: 1994
  ident: WOS:A1994PQ83800048
  article-title: ASYMMETRIC-SYNTHESIS OF SILANES WITH A STEREOGENIC CENTER AT SILICON VIA HYDROSILYLATION OF SYMMETRICAL KETONES WITH PROCHIRAL DIARYL SILANES CATALYZED BY BINAP RH-I COMPLEXES
  publication-title: JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS
– volume: 124
  start-page: 12917
  year: 2012
  ident: 000834285800067.27
  publication-title: Angew. Chem
– volume: 11
  start-page: 10748
  year: 2021
  ident: WOS:000693621800005
  article-title: Synthesis of Silicon-Stereogenic Silanols Involving Iridium-Catalyzed Enantioselective C-H Silylation Leading to a New Ligand Scaffold
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.1c03112
– volume: 119
  start-page: 504
  year: 2007
  ident: 000834285800067.48
  publication-title: Angew. Chem
– volume: 64
  start-page: 761
  year: 2021
  ident: WOS:000623850700001
  article-title: Palladium-catalyzed hydrosilylation of ynones to access silicon-stereogenic silylenones by stereospecific aromatic interaction-assisted Si-H activation
  publication-title: SCIENCE CHINA-CHEMISTRY
  doi: 10.1007/s11426-020-9939-1
– volume: 125
  start-page: 1190
  year: 2003
  ident: WOS:000180713000041
  article-title: Catalytic asymmetric silane alcoholysis: Practical access to chiral silanes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja0283201
– volume: 2021
  start-page: 6006
  year: 2021
  ident: WOS:000705545500001
  article-title: Construction of Si-Stereogenic Silanes through C-H Activation Approach
  publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ejoc.202101084
– volume: 132
  start-page: 4510
  year: 2010
  ident: WOS:000276553600004
  article-title: Iridium(III)-Catalyzed Enantioselective Si-H Bond Insertion and Formation of an Enantioenriched Silicon Center
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja100833h
– volume: 56
  start-page: 7916
  year: 2017
  ident: WOS:000403839000041
  article-title: Iron-Catalyzed Intermolecular 1,2-Difunctionalization of Styrenes and Conjugated Alkenes with Silanes and Nucleophiles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201702349
– volume: 49
  start-page: 32
  year: 2020
  ident: WOS:000508005100002
  article-title: Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c9cs00681h
– volume: 8
  start-page: 2279
  year: 1989
  ident: WOS:A1989AQ32300033
  article-title: COPPER(II)-MEDIATED STEREOSELECTIVE REDUCTION OF ACETYLENIC SULFONES BY HYDROSILANES
  publication-title: ORGANOMETALLICS
– volume: 53
  start-page: 3753
  year: 2017
  ident: WOS:000399000900032
  article-title: Ru(II)-Pheox-catalyzed Si-H insertion reaction: construction of enantioenriched carbon and silicon centers
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c7cc01070b
– volume: 49
  start-page: 2223
  year: 2010
  ident: WOS:000276008000027
  article-title: Catalytic Asymmetric Si-O Coupling of Simple Achiral Silanes and Chiral Donor-Functionalized Alcohols
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200905561
– volume: 48
  start-page: 11564
  year: 2012
  ident: WOS:000310459400022
  article-title: Synthesis of optically active tertiary silanes via Pd-catalyzed enantioselective arylation of secondary silanes
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c2cc36238d
– volume: 13
  start-page: ARTN 847
  year: 2022
  ident: WOS:000755220500015
  article-title: Rhodium hydride enabled enantioselective intermolecular C-H silylation to access acyclic stereogenic Si-H
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-022-28439-w
– volume: 130
  start-page: 6427
  year: 2018
  ident: 000834285800067.30
  publication-title: Angew. Chem
– volume: 53
  start-page: 1229
  year: 2020
  ident: WOS:000542223900013
  article-title: CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.0c00164
– volume: 60
  start-page: 1714
  year: 2021
  ident: WOS:000564447000001
  article-title: Stereoinduction in Metallaphotoredox Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202007668
– volume: 119
  start-page: 9496
  year: 2007
  ident: 000834285800067.57
  publication-title: Angew. Chem
– volume: 130
  start-page: 12522
  year: 2018
  ident: 000834285800067.32
  publication-title: Angew. Chem
– volume: 20
  start-page: 6804
  year: 2018
  ident: WOS:000449443100041
  article-title: Metal-Free Catalytic Reductive Cleavage of Enol Ethers
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.8b02932
– volume: 60
  start-page: 26710
  year: 2021
  ident: WOS:000719143700001
  article-title: Copper-Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp3)-H/C(sp)-H Cross-Coupling with Rationally Designed Oxazoline-Derived N,N,P(O)-Ligands
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202110233
– volume: 123
  start-page: 11321
  year: 2011
  ident: 000834285800067.107
  publication-title: Angew. Chem
– volume: 341
  start-page: 624
  year: 2013
  ident: WOS:000322884800027
  article-title: Copper's Contribution to Amination Catalysis
  publication-title: SCIENCE
  doi: 10.1126/science.1237175
– start-page: 436
  year: 1993
  ident: WOS:A1993KT29900005
  article-title: KINETIC RESOLUTION OF (+/-)-CYCLOHEX-1-ENYLSILANOLS BY THE SHARPLESS ASYMMETRIC EPOXIDATION
  publication-title: JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS
– volume: 137
  start-page: 11838
  year: 2015
  ident: WOS:000361502800045
  article-title: Nickel(0)-Catalyzed Enantio- and Diastereoselective Synthesis of Benzoxasiloles: Ligand-Controlled Switching from Inter- to Intramolecular Aryl-Transfer Process
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.5b07827
– volume: 129
  start-page: 8024
  year: 2017
  ident: 000834285800067.102
  publication-title: Angew. Chem
– start-page: 1629
  year: 2007
  ident: WOS:000248768200001
  article-title: Silicon-stereogenic silanes in asymmetric catalysis
  publication-title: SYNLETT
  doi: 10.1055/s-2007-980385
– volume: 44
  start-page: 7620
  year: 2005
  ident: WOS:000233694800026
  article-title: Kinetic resolution of chiral secondary alcohols by dehydrogenative coupling with recyclable silicon-stereogenic silanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/ANIE.200502631
– volume: 356
  start-page: ARTN eaaf7230
  year: 2017
  ident: WOS:000399013800025
  article-title: Transition metal-catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry
  publication-title: SCIENCE
  doi: 10.1126/science.aaf7230
– volume: 46
  start-page: 498
  year: 2007
  ident: WOS:000243609200005
  article-title: Polishing a diamond in the rough: "Cu-H" catalysis with silanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200602668
– volume: 50
  start-page: 11125
  year: 2011
  ident: WOS:000297467100014
  article-title: Cobalt-Catalyzed Coupling of Alkyl Iodides with Alkenes: Deprotonation of Hydridocobalt Enables Turnover
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201105235
– volume: 46
  start-page: 3793
  year: 2013
  ident: WOS:000319795800010
  article-title: Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Comproportionation-Disproportionation Equilibria and Kinetics
  publication-title: MACROMOLECULES
  doi: 10.1021/ma400149t
– volume: 131
  start-page: 1991
  year: 2019
  ident: 000834285800067.62
  publication-title: Angew. Chem
– volume: 3
  start-page: 539
  year: 2020
  ident: WOS:000533815300002
  article-title: Cu-catalysed intramolecular radical enantioconvergent tertiary β-C(sp3)-H amination of racemic ketones
  publication-title: NATURE CATALYSIS
  doi: 10.1038/s41929-020-0460-y
– volume: 41
  start-page: 35
  year: 1997
  ident: WOS:A1997XA90900005
  article-title: Copper (II) coordination compounds: Classification and analysis of crystallographic and structural data .1. Mononuclear tetra- and pentacoordinate compounds
  publication-title: JOURNAL OF COORDINATION CHEMISTRY
– volume: 115
  start-page: 9587
  year: 2015
  ident: WOS:000361254500015
  article-title: Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents To Construct C-C Bonds
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.5b00162
– volume: 35
  start-page: 2286
  year: 2016
  ident: WOS:000379704300014
  article-title: SambVca 2. A Web Tool for Analyzing Catalytic Pockets with Topographic Steric Maps
  publication-title: ORGANOMETALLICS
  doi: 10.1021/acs.organomet.6b00371
– volume: 61
  year: 2022
  ident: 000834285800067.19
  publication-title: Angew. Chem. Int. Ed
– volume: 8
  start-page: ARTN 15547
  year: 2017
  ident: WOS:000402512900001
  article-title: Broad-spectrum kinetic resolution of alcohols enabled by Cu-H-catalysed dehydrogenative coupling with hydrosilanes
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms15547
– volume: 133
  start-page: 1738
  year: 2021
  ident: 000834285800067.87
  publication-title: Angew. Chem
– volume: 11
  start-page: 2708
  year: 1992
  ident: WOS:A1992JD62200068
  article-title: HIGHLY SELECTIVE SYNTHESIS OF CHLOROSILANES FROM HYDROSILANES
  publication-title: ORGANOMETALLICS
– volume: 55
  start-page: 9927
  year: 2016
  ident: WOS:000383373000018
  article-title: A Dinitrogen Dicopper(I) Complex via a Mixed-Valence Dicopper Hydride
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201603970
– volume: 14
  start-page: 11512
  year: 2008
  ident: WOS:000262002900030
  article-title: Stereoselective Alcohol Silylation by Dehydrogenative Si-O Coupling: Scope, Limitations, and Mechanism of the Cu-H-Catalyzed Non-Enzymatic Kinetic Resolution with Silicon-Stereogenic Silanes
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.200801377
– volume: 133
  start-page: 1710
  year: 2011
  ident: WOS:000287831800026
  article-title: A New Family of Cinchona-Derived Amino Phosphine Precatalysts: Application to the Highly Enantio- and Diastereoselective Silver-Catalyzed Isocyanoacetate Aldol Reaction
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja110534g
– volume: 143
  start-page: 5301
  year: 2021
  ident: WOS:000641160700003
  article-title: Catalytic Enantioselective Dehydrogenative Si-O Coupling to Access Chiroptical Silicon-Stereogenic Siloxanes and Alkoxysilanes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c01106
– start-page: 25
  year: 2022
  ident: 000834285800067.88
  publication-title: Transition Metal-Catalyzed Carbene Transformations
– volume: 133
  start-page: 26914
  year: 2021
  ident: 000834285800067.98
  publication-title: Angew. Chem
– volume: 128
  start-page: 10081
  year: 2016
  ident: 000834285800067.73
  publication-title: Angew. Chem
– volume: 11
  start-page: 7978
  year: 2021
  ident: WOS:000670659900028
  article-title: Ligand-Enabled Copper(I)-Catalyzed Asymmetric Radical C(sp(3))-C Cross-Coupling Reactions
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.1c01970
– volume: 122
  start-page: 2269
  year: 2010
  ident: 000834285800067.59
  publication-title: Angew. Chem
– volume: 133
  start-page: 25927
  year: 2021
  ident: 000834285800067.18
  publication-title: Angew. Chem
– start-page: 1743
  year: 1985
  ident: WOS:A1985AQR3300002
  article-title: SILA PHARMACA .32. CRYSTAL AND MOLECULAR-STRUCTURES OF THE (R)-ENANTIOMER AND THE RACEMATE OF THE ANTIMUSCARINIC AGENT (CYCLOHEXYL)-PHENYL[2-(PYRROLIDIN-1-YL)ETHYL]SILANOL (SILA-PROCYCLIDINE)
  publication-title: JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
– volume: 6
  start-page: 1692
  year: 2020
  ident: WOS:000558678900020
  article-title: Diastereo- and Enantioselective Catalytic Radical Oxysulfonylation of Alkenes in β,γ-Unsaturated Ketoximes
  publication-title: CHEM
  doi: 10.1016/j.chempr.2020.03.024
– volume: 118
  start-page: 12469
  year: 1996
  ident: WOS:A1996VX65400033
  article-title: Axially chiral spirosilanes via catalytic asymmetric intramolecular hydrosilation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 54
  start-page: 1939
  year: 2022
  ident: WOS:000774221200005
  article-title: Enantioselective C-H Functionalization toward Silicon-Stereogenic Silanes
  publication-title: SYNTHESIS-STUTTGART
  doi: 10.1055/a-1729-9664
– volume: 58
  start-page: 1970
  year: 2019
  ident: WOS:000458828000014
  article-title: Kinetic Resolution of Tertiary Propargylic Alcohols by Enantioselective Cu-H-Catalyzed Si-O Coupling
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201813229
– volume: 32
  start-page: 1575
  year: 2021
  ident: WOS:000658468700001
  article-title: Catalytic Enantioselective Synthesis of Silicon-Stereogenic Alkoxysilanes and Siloxanes
  publication-title: SYNLETT
  doi: 10.1055/a-1503-7976
SSID ssj0028806
Score 2.5545719
Snippet Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si‐chiral silanols, yet has...
Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si-chiral silanols, yet has...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202205743
SubjectTerms Asymmetric Catalysis
Catalysts
Chemistry
Chemistry, Multidisciplinary
Copper
Electron transfer
Enantiomers
Functional groups
Hydroxylation
Metathesis
Oxidants
Oxidizing agents
Physical Sciences
Science & Technology
Silanols
Silicon compounds
Single-Electron Transfer (SET) Oxidation
Species
Title Enantioselective Hydroxylation of Dihydrosilanes to Si‐Chiral Silanols Catalyzed by In Situ Generated Copper(II) Species
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202205743
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000834285800067
https://www.ncbi.nlm.nih.gov/pubmed/35652388
https://www.proquest.com/docview/2696820760
https://www.proquest.com/docview/2672706905
Volume 61
WOS 000834285800067
WOSCitedRecordID wos000834285800067
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXNpLoe8ArYyE1PYQ2Nh57XGVLtqtVA7dInGL4tgREWiz2mQPuyd-Ar-RX8JMnKS7oIoKbontPDweez4nM98AHGZuP-hnyrE91Qttl2thJ9rzbEerXiIcjTaNYod_nfqjM_fnuXe-FsVv-CG6D240M-r1miZ4Isvjv6ShFIGN-zsKFEUriIswOWwRKvrd8UdxVE4TXiSETVnoW9bGHj_evHzTKj2Amves0iaQrS3RyTYkbR-MA8rl0aKSR-nqHr3jczq5A68bmMoGRq_ewAs9fQsvozY73DtYDcmDJi_KOo8OLplstFT0Rsa3jhUZ-5FfUFGZkz9tyaqCTfLb65voIp_jrSdUXFyVLKIPSMuVVkwu2XiKFdWCGTZsRMMsKmYzPf82Hn9nk5lGyZTv4exk-Cca2U0eBztFuIOSV5nWwpOIJRUOQhrIzJfc8ZXnJrgZFjINQyIGVHjqh2nClaMC7mN56vpCcfEBtqbFVH8CppO-dNKeUiLQrq-kFKH2AzxIXBFkfdcCux3HOG1IzinXxlVs6Jl5TBKNO4la8LVrPzP0Hv9sud-qRdxM8zLmRC3E6eemBQddNY4E_XVB2RYLaoMQkfigPQs-GnXqHiUQTiNmCi04XNevrr5GyLhB9MIaVljg_E-zqOk4sRpUFvBawR7pXjw4HQ-7s92nXLQHr-i49o4M92Grmi_0Z0RslfxSz8o728Q3sQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLb0poKUaqBBzSbuy89lilW22g3QPbStyiOHbUiGqz2mQPuyd-Ar-RX9IZ5wFbhEBwS2zn4fE489mZ-QbgIHeHwTBXju2pQWi7XAs71Z5nO1oNUuFotGkUO3w-8ceX7ofPXudNSLEwDT9Ev-FGM8N8r2mC04b00Q_WUArBxgUeRYqiGbwL9yitt1lVfeoZpDiqZxNgJIRNeeg73sYBP9q8ftMu_QI2b9mlTShrbNHpQ5BdLxoXlC-Hy1oeZutbBI__1c1H8KBFquy4Ua3HcEfPnsB21CWIewrrETnRFGVlUungV5ONV4peqXGvY2XOToorKqoKcqmtWF2yafH967foqljgradUXF5XLKI9pNVaKyZXLJ5hRb1kDSE2AmIWlfO5XryL4_dsOtcomuoZXJ6OLqKx3aZysDNEPCh6lWstPIlwUuEoZIHMfckdX3luiuthIbMwJG5Ahad-mKVcOSrgPpZnri8UF89ha1bO9AtgOh1KJxsoJQLt-kpKEWo_wIPUFUE-dC2wu4FMspbnnNJtXCcNQzNPSKJJL1EL3vbt5w3Dx29b7nV6kbQzvUo4sQtx-r9pwZu-GkeCfrygbMsltUGUSJTQngU7jT71jxKIqBE2hRYc_Kxgfb0BybhG9EKDLCxw_qZZ1HaciA1qC7jRsD90LzmexKP-7OW_XPQatscX52fJWTz5uAv3qdw4S4Z7sFUvlvoVArha7pspegM-uTvM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BIgEX3o_AAkZaCThkN7Hz6nGVtmp4VIiy0t6iOHa0EasmatJDe-In8Bv5JczkxXYRAsEt8SOJx2PPZ8fzDcBB5oz8UaZs01VWYDpcCzPRrmvaWlmJsDXaNPId_jD3ZifO21P39IIXf8sPMWy40cho5msa4KXKjn6ShpIHNq7vyFEUreBVuOZ4VkB6Pf40EEhx1M7Wv0gIk8LQ97SNFj_arb9rln7BmpfM0i6SbUzR9DYkfSPaEyhfDte1PEy3l_gd_6eVd-BWh1PZcatYd-GKXt6DG2EfHu4-bCd0hCYvqiaQDs6ZbLZR9EXt4TpWZGycn1FSldOB2orVBVvk379-C8_yFT56QcnFecVC2kHabLVicsOiJWbUa9bSYSMcZmFRlnr1OoresEWpUTLVAziZTj6HM7ML5GCmiHdQ8irTWrgSwaTCTkh9mXmS255ynQRXw0KmQUDMgApvvSBNuLKVzz1MTx1PKC4ewt6yWOrHwHQyknZqKSV87XhKShFoz8eLxBF-NnIMMPt-jNOO5ZyCbZzHLT8zj0mi8SBRA14N5cuW3-O3Jfd7tYi7cV7FnLiFOP3dNODlkI09Qb9dULbFmsogRiRCaNeAR606Da8SiKcRNAUGHFzUryG_gci4QnSDBlcYYP9NsbBrONEa1AbwRsH-0Lz4eB5Nhrsn_1LpBVz_OJ7G76P5u6dwk5Jp890O9mGvXq31M0RvtXzeDNAfdc46hQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enantioselective+Hydroxylation+of+Dihydrosilanes+to+Si-Chiral+Silanols+Catalyzed+by+In+Situ+Generated+Copper%28II%29+Species&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yang%2C+Wu&rft.au=Liu%2C+Lin&rft.au=Guo%2C+Jiandong&rft.au=Wang%2C+Shou-Guo&rft.date=2022-08-08&rft.eissn=1521-3773&rft_id=info:doi/10.1002%2Fanie.202205743&rft_id=info%3Apmid%2F35652388&rft.externalDocID=35652388
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon