Enantioselective Hydroxylation of Dihydrosilanes to Si‐Chiral Silanols Catalyzed by In Situ Generated Copper(II) Species
Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si‐chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single‐electron transfer...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 32; pp. e202205743 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
08.08.2022
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si‐chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single‐electron transfer (SET) oxidant for invoking CuII species and chiral multidentate anionic N,N,P‐ligands for effective enantiocontrol. The reaction readily provides a broad range of Si‐chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si‐chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral CuII species as the active catalyst and its subsequent σ‐metathesis with dihydrosilanes.
Copper(II)‐mediated σ‐metathesis with prochiral dihydrosilanes has been successfully leveraged to efficiently synthesize Si‐chiral silanols as well as many other related Si‐chiral skeletons. The reaction hinges on the continuous generation of catalytically active copper(II) species via single‐electron transfer oxidation of copper(I) by alkyl halides and the efficient stereocontrol with multidentate anionic N,N,P‐ligands. |
---|---|
AbstractList | Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si‐chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single‐electron transfer (SET) oxidant for invoking Cu
II
species and chiral multidentate anionic N,N,P‐ligands for effective enantiocontrol. The reaction readily provides a broad range of Si‐chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si‐chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral Cu
II
species as the active catalyst and its subsequent
σ
‐metathesis with dihydrosilanes. Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si‐chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single‐electron transfer (SET) oxidant for invoking CuII species and chiral multidentate anionic N,N,P‐ligands for effective enantiocontrol. The reaction readily provides a broad range of Si‐chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si‐chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral CuII species as the active catalyst and its subsequent σ‐metathesis with dihydrosilanes.Dedicated to Prof. Chi-Ming Che on the occasion of his 65th birthday. Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si‐chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single‐electron transfer (SET) oxidant for invoking CuII species and chiral multidentate anionic N,N,P‐ligands for effective enantiocontrol. The reaction readily provides a broad range of Si‐chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si‐chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral CuII species as the active catalyst and its subsequent σ‐metathesis with dihydrosilanes. Copper(II)‐mediated σ‐metathesis with prochiral dihydrosilanes has been successfully leveraged to efficiently synthesize Si‐chiral silanols as well as many other related Si‐chiral skeletons. The reaction hinges on the continuous generation of catalytically active copper(II) species via single‐electron transfer oxidation of copper(I) by alkyl halides and the efficient stereocontrol with multidentate anionic N,N,P‐ligands. Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si-chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single-electron transfer (SET) oxidant for invoking Cu-II species and chiral multidentate anionic N,N,P-ligands for effective enantiocontrol. The reaction readily provides a broad range of Si-chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si-chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral Cu-II species as the active catalyst and its subsequent sigma-metathesis with dihydrosilanes. Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si-chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single-electron transfer (SET) oxidant for invoking CuII species and chiral multidentate anionic N,N,P-ligands for effective enantiocontrol. The reaction readily provides a broad range of Si-chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si-chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral CuII species as the active catalyst and its subsequent σ-metathesis with dihydrosilanes. Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si-chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single-electron transfer (SET) oxidant for invoking CuII species and chiral multidentate anionic N,N,P-ligands for effective enantiocontrol. The reaction readily provides a broad range of Si-chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si-chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral CuII species as the active catalyst and its subsequent σ-metathesis with dihydrosilanes.Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si-chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single-electron transfer (SET) oxidant for invoking CuII species and chiral multidentate anionic N,N,P-ligands for effective enantiocontrol. The reaction readily provides a broad range of Si-chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si-chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral CuII species as the active catalyst and its subsequent σ-metathesis with dihydrosilanes. |
ArticleNumber | 202205743 |
Author | Wang, Shou‐Guo Guo, Jiandong He, Chuan Yang, Wu Tian, Yu Wang, Xiaotai Zhang, Jia‐Yong Liu, Lin Wang, Li‐Lei Li, Zhong‐Liang Liu, Xin‐Yuan Gu, Qiang‐Shuai Luan, Cheng Fan, Li‐Wen |
Author_xml | – sequence: 1 givenname: Wu surname: Yang fullname: Yang, Wu organization: Chinese Academy of Sciences – sequence: 2 givenname: Lin surname: Liu fullname: Liu, Lin organization: Great Bay University – sequence: 3 givenname: Jiandong surname: Guo fullname: Guo, Jiandong organization: Hoffmann Institute of Advanced Materials – sequence: 4 givenname: Shou‐Guo surname: Wang fullname: Wang, Shou‐Guo organization: Chinese Academy of Sciences – sequence: 5 givenname: Jia‐Yong surname: Zhang fullname: Zhang, Jia‐Yong organization: Southern University of Science and Technology – sequence: 6 givenname: Li‐Wen surname: Fan fullname: Fan, Li‐Wen organization: Southern University of Science and Technology – sequence: 7 givenname: Yu surname: Tian fullname: Tian, Yu organization: Southern University of Science and Technology – sequence: 8 givenname: Li‐Lei surname: Wang fullname: Wang, Li‐Lei organization: Southern University of Science and Technology – sequence: 9 givenname: Cheng surname: Luan fullname: Luan, Cheng organization: Southern University of Science and Technology – sequence: 10 givenname: Zhong‐Liang surname: Li fullname: Li, Zhong‐Liang organization: Southern University of Science and Technology – sequence: 11 givenname: Chuan surname: He fullname: He, Chuan organization: Southern University of Science and Technology – sequence: 12 givenname: Xiaotai orcidid: 0000-0003-3310-3308 surname: Wang fullname: Wang, Xiaotai email: xiaotai.wang@ucdenver.edu organization: University of Colorado Denver – sequence: 13 givenname: Qiang‐Shuai surname: Gu fullname: Gu, Qiang‐Shuai email: guqs@sustech.edu.cn organization: Southern University of Science and Technology – sequence: 14 givenname: Xin‐Yuan orcidid: 0000-0002-6978-6465 surname: Liu fullname: Liu, Xin‐Yuan email: liuxy3@sustech.edu.cn organization: Southern University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35652388$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9u1DAQxiNURP_AlSOKxKUI7eLYie09VmFpI1VwKJwtx5morrJ2sB0gPfEIPCNPwiy7LVIlBCePP_--8Yw9x9mB8w6y7HlBlgUh9I12FpaUUEoqUbJH2VFR0WLBhGAHGJeMLYSsisPsOMYb5KUk_El2yCpeUSblUXa7dtol6yMMYJL9AvnF3AX_bR40qi73ff7WXm-laAftIObJ51f25_cf9bUNesAYZT_EvNZJD_MtdHk7543DgzTl5-Ag6IRi7ccRwmnTvMqvRjAW4tPsca-HCM_260n26d36Y32xuPxw3tRnlwtTshXW3_UArGpXlHXYihFtz1ta8K4qdcEoa42UJaNlh1sujaZd0QnKUTclZx1lJ9npLu8Y_OcJYlIbGw0M23b8FBXlggrCV6RC9OUD9MZPwWF1SK24pERwgtSLPTW1G-jUGOxGh1ndvSoCcgd8hdb3EZt1Bu4xQohkJZWVxIiL2qbfT137ySW0vv5_K9Lljjb4PzFAr8w-WwraDqogajslajsl6n5K0LZ8YLu74K-G1b4qO8D8D1qdvW_Wf7y_AIYwzfY |
CitedBy_id | crossref_primary_10_1039_D2SC06181C crossref_primary_10_1021_acs_orglett_3c00946 crossref_primary_10_1039_D2QO01294D crossref_primary_10_1021_acscatal_3c02682 crossref_primary_10_1021_acscatal_4c02438 crossref_primary_10_1039_D4QO01698J crossref_primary_10_6023_cjoc202306027 crossref_primary_10_1002_chem_202302458 crossref_primary_10_1002_anie_202404732 crossref_primary_10_1038_s41467_024_49988_2 crossref_primary_10_1039_D4GC00725E crossref_primary_10_1002_anie_202402612 crossref_primary_10_1038_s41467_023_41113_z crossref_primary_10_1021_acscatal_4c07799 crossref_primary_10_1021_acs_oprd_3c00310 crossref_primary_10_1039_D2SC05959B crossref_primary_10_1002_ange_202217724 crossref_primary_10_1021_jacs_3c00671 crossref_primary_10_1007_s11426_023_1643_7 crossref_primary_10_1002_ange_202402612 crossref_primary_10_6023_cjoc202305001 crossref_primary_10_1021_acs_accounts_4c00667 crossref_primary_10_1039_D4CS00417E crossref_primary_10_1002_anie_202405520 crossref_primary_10_1016_j_checat_2022_07_009 crossref_primary_10_1021_acscatal_4c06672 crossref_primary_10_1002_ange_202405520 crossref_primary_10_1002_ange_202404732 crossref_primary_10_1038_s41929_024_01182_9 crossref_primary_10_1039_D3QO00846K crossref_primary_10_1021_acs_orglett_3c02611 crossref_primary_10_1002_anie_202217724 |
Cites_doi | 10.1055/a-1503-7976 10.1038/s41557-019-0346-2 10.1039/D1QO01386F 10.1002/ange.200502631 10.1002/ajoc.201500066 10.1038/s41557-020-00561-6 10.1016/S0040-4039(01)87251-8 10.1021/ja3076555 10.1002/ange.201813229 10.1002/ange.202113052 10.1021/acs.accounts.0c00740 10.1002/pi.2524 10.1002/anie.202010484 10.1055/a-1729-9664 10.1002/anie.200905561 10.1021/ja0283201 10.1039/C7CC01070B 10.1021/jacs.1c07726 10.1021/ja100833h 10.1002/anie.201702349 10.1021/jacs.5b07827 10.1038/s41467-022-28439-w 10.1055/s-2007-980385 10.1038/ncomms15547 10.1039/C6QO00691D 10.1002/ange.202007668 10.1021/jacs.6b04077 10.1038/s41929-020-0439-8 10.4155/fmc-2016-0193 10.1002/ange.201105235 10.1039/C9CS00681H 10.1021/acs.chemrev.5b00162 10.1021/acs.chemrev.1c00582 10.1002/ejic.201600100 10.1021/jacs.0c09125 10.1126/science.aav9713 10.1002/9783527814787.ch14 10.1002/ange.201807493 10.1002/ange.201911742 10.1021/ja962754c 10.1002/ange.200602668 10.1002/ange.200703847 10.1021/om00043a068 10.1021/acs.orglett.8b02932 10.1021/acscatal.1c01970 10.1021/ma991510k 10.1021/om00111a033 10.1016/j.tetlet.2005.01.127 10.1021/acs.orglett.1c00935 10.1002/ange.202111025 10.1002/chem.202003506 10.1002/anie.202005341 10.1080/00958979708027956 10.1002/anie.202110233 10.1039/c2cc36238d 10.1002/anie.201813229 10.1002/adsc.200606071 10.1126/science.aaf7230 10.1021/acs.accounts.8b00265 10.1021/jacs.9b02158 10.1002/anie.201603970 10.1021/acscatal.1c03112 10.1021/jacs.0c03130 10.1021/acs.chemrev.5b00695 10.1002/ange.202110233 10.1002/anie.201105235 10.1039/D0CC05509C 10.1080/00958979808027143 10.1002/9783527829170.ch2 10.1080/00945717408069627 10.1002/ange.202010484 10.1002/anie.201802806 10.1002/anie.200502631 10.1039/C39940002525 10.1021/jacs.1c01106 10.1021/acs.accounts.9b00381 10.1002/ange.201207361 10.1021/ma400149t 10.1021/ja110534g 10.1039/DT9850001743 10.1002/ange.201702349 10.1021/acs.accounts.0c00164 10.1021/acs.oprd.1c00073 10.1002/ange.201802806 10.1007/s11426-020-9939-1 10.1002/ange.202005341 10.1126/science.1237175 10.1055/s-0036-1591839 10.1021/ja038416a 10.1002/anie.202111025 10.1002/anie.202007668 10.1002/anie.201207361 10.1002/ejoc.202101084 10.1002/ange.201603970 10.1021/acs.organomet.6b00371 10.1016/j.chempr.2020.03.024 10.1002/anie.201911742 10.1002/anie.201807493 10.1039/C0CS00037J 10.1002/chem.201900792 10.1002/anie.200703847 10.1038/s41929-020-0460-y 10.1002/anie.202113052 10.1002/anie.200602668 10.1039/C39930000436 10.1002/ange.200905561 10.1002/chem.200801377 10.1039/d0cc05509c 10.1039/c0cs00037j 10.1039/c6qo00691d 10.1039/d1qo01386f 10.1039/c9cs00681h 10.1039/c7cc01070b 10.1002/ANIE.200502631 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM 1KN AHQBO BLEPL DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202205743 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) Web of Science PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 35652388 000834285800067 10_1002_anie_202205743 ANIE202205743 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22025103; 22001109; 21831002 – fundername: Guangdong Innovative Program funderid: 2019BT02Y335 – fundername: Shenzhen Special Funds funderid: JCYJ20200109141001789 – fundername: Guangdong Provincial Key Laboratory of Catalysis funderid: 2020B121201002 – fundername: Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis funderid: ZDSYS20190902093215877 – fundername: Guangdong Innovative Program grantid: 2019BT02Y335 – fundername: Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis grantid: ZDSYS20190902093215877 – fundername: Guangdong Provincial Key Laboratory of Catalysis grantid: 2020B121201002 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 22025103; 22001109; 21831002 – fundername: Shenzhen Special Funds grantid: JCYJ20200109141001789 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4393-7dfee35b923d851c7bf6b216d54a1323bc884324d4a168ca2d1d7263bcc463d23 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 38 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000834285800067 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 15:39:39 EDT 2025 Sun Jul 13 05:29:44 EDT 2025 Wed Feb 19 02:26:37 EST 2025 Fri Aug 22 19:27:16 EDT 2025 Wed Jul 09 18:32:17 EDT 2025 Tue Jul 01 01:18:23 EDT 2025 Thu Apr 24 23:03:06 EDT 2025 Wed Jan 22 16:25:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | Single-Electron Transfer (SET) Oxidation ASYMMETRIC-SYNTHESIS Metathesis CLASSIFICATION C-H SILYLATION SILICON-STEREOGENIC SILANES COORDINATION-COMPOUNDS ALKENES Asymmetric Catalysis Silanols KINETIC RESOLUTION Copper ACCESS STRUCTURAL DATA 1,2-DIFUNCTIONALIZATION silanols single-electron transfer (SET) oxidation copper asymmetric catalysis metathesis |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c4393-7dfee35b923d851c7bf6b216d54a1323bc884324d4a168ca2d1d7263bcc463d23 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6978-6465 0000-0003-3310-3308 0000-0001-6937-7250 0000-0001-8168-2928 0000-0002-2043-5701 0009-0004-9601-2563 |
PMID | 35652388 |
PQID | 2696820760 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | pubmed_primary_35652388 proquest_miscellaneous_2672706905 webofscience_primary_000834285800067CitationCount wiley_primary_10_1002_anie_202205743_ANIE202205743 crossref_citationtrail_10_1002_anie_202205743 webofscience_primary_000834285800067 proquest_journals_2696820760 crossref_primary_10_1002_anie_202205743 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 8, 2022 |
PublicationDateYYYYMMDD | 2022-08-08 |
PublicationDate_xml | – month: 08 year: 2022 text: August 8, 2022 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2021; 25 2017; 8 2021; 64 2004; 126 2021; 23 2017; 4 2019; 11 1997; 41 1973; 14 2020 2020; 59 132 2020; 56 2020; 12 1992; 11 2017; 356 2017; 9 2019; 364 1998; 45 2016; 35 1974; 4 2022; 122 2009; 58 2020; 6 2022 2022; 61 134 2021; 32 2020; 3 2012; 134 2015; 137 2020; 53 2012 2012; 51 124 2018 2018; 57 130 2019; 25 2020; 49 1985 2005 2005; 44 117 2016; 116 2003; 125 2021; 8 2018; 29 2015; 4 2020; 142 2013; 46 2011; 40 1989; 8 2008; 14 2007 1994 2010 2010; 49 122 1993 2013; 341 2021; 143 2017 2017; 56 129 2019; 141 2018; 20 2019 2019; 58 131 2011; 133 2005; 46 2017; 53 2021; 54 2016 2016; 55 128 2021; 11 2015; 115 2022 2021 2000; 33 2007 2007; 46 119 2010; 132 2019 2021 2021; 60 133 2022; 13 2020; 26 2016 2016; 138 2018; 51 2011 2011; 50 123 2022; 54 2012; 48 2006; 348 1996; 118 e_1_2_3_50_2 e_1_2_3_92_2 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_58_3 e_1_2_3_39_2 e_1_2_3_35_1 e_1_2_3_12_2 e_1_2_3_58_2 e_1_2_3_8_1 e_1_2_3_77_2 e_1_2_3_31_1 e_1_2_3_73_2 e_1_2_3_96_2 e_1_2_3_54_1 e_1_2_3_96_1 e_1_2_3_62_1 e_1_2_3_81_2 e_1_2_3_102_1 e_1_2_3_28_2 e_1_2_3_24_2 e_1_2_3_47_2 e_1_2_3_66_2 e_1_2_3_89_2 e_1_2_3_106_2 e_1_2_3_85_3 e_1_2_3_20_2 e_1_2_3_43_2 e_1_2_3_85_2 e_1_2_3_20_3 e_1_2_3_72_1 e_1_2_3_95_1 e_1_2_3_91_2 e_1_2_3_19_2 e_1_2_3_19_3 e_1_2_3_15_2 e_1_2_3_38_2 e_1_2_3_3_2 e_1_2_3_34_2 e_1_2_3_57_3 e_1_2_3_57_2 e_1_2_3_53_1 e_1_2_3_99_1 e_1_2_3_30_2 e_1_2_3_76_2 e_1_2_3_30_3 e_1_2_3_11_1 e_1_2_3_61_2 e_1_2_3_80_2 e_1_2_3_103_2 e_1_2_3_27_2 e_1_2_3_27_3 e_1_2_3_23_2 e_1_2_3_69_2 e_1_2_3_46_2 e_1_2_3_88_1 e_1_2_3_107_1 e_1_2_3_65_2 e_1_2_3_61_3 e_1_2_3_42_2 e_1_2_3_84_2 e_1_2_3_71_2 e_1_2_3_71_3 e_1_2_3_94_1 e_1_2_3_90_2 e_1_2_3_6_1 e_1_2_3_37_2 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_56_2 e_1_2_3_33_2 e_1_2_3_14_2 e_1_2_3_56_3 e_1_2_3_79_1 e_1_2_3_75_2 e_1_2_3_52_1 e_1_2_3_98_1 e_1_2_3_10_1 e_1_2_3_60_2 e_1_2_3_83_2 e_1_2_3_60_3 Wang X. (e_1_2_3_86_2) 2022 e_1_2_3_100_3 e_1_2_3_104_2 e_1_2_3_26_2 e_1_2_3_49_2 e_1_2_3_100_2 e_1_2_3_49_3 e_1_2_3_45_1 e_1_2_3_68_1 e_1_2_3_87_2 e_1_2_3_41_1 e_1_2_3_22_1 e_1_2_3_64_1 e_1_2_3_93_1 e_1_2_3_70_2 Igawa K. (e_1_2_3_7_1) 2019 e_1_2_3_1_1 e_1_2_3_5_1 e_1_2_3_17_2 e_1_2_3_59_2 e_1_2_3_78_3 e_1_2_3_9_1 e_1_2_3_55_2 e_1_2_3_13_2 e_1_2_3_36_1 e_1_2_3_78_2 e_1_2_3_51_2 e_1_2_3_32_2 e_1_2_3_97_1 e_1_2_3_74_2 e_1_2_3_82_2 e_1_2_3_29_3 e_1_2_3_101_2 e_1_2_3_29_2 e_1_2_3_44_2 e_1_2_3_48_1 e_1_2_3_67_1 e_1_2_3_25_2 e_1_2_3_40_3 e_1_2_3_105_3 e_1_2_3_40_2 e_1_2_3_105_2 e_1_2_3_63_1 e_1_2_3_21_2 Shintani, R (WOS:000309854700010) 2012; 134 Dong, XY (WOS:000498875700019) 2019; 11 Kumar, R (WOS:000361502800045) 2015; 137 (000834285800067.80) 2020; 132 Ye, L (WOS:000499021600001) 2020; 59 Wang, F (WOS:000445441200016) 2018; 51 Sladojevich, F (WOS:000287831800026) 2011; 133 Choi, J (WOS:000399013800025) 2017; 356 He, T (WOS:000590177800001) 2020; 26 Melnik, M (WOS:000076138200004) 1998; 45 Zhang, YF (WOS:000700883200054) 2021; 143 SHELDRICK, WS (WOS:A1985AQR3300002) 1985 Liu, L (000834285800067.98) 2021; 133 Lipp, A (WOS:000564447000001) 2021; 60 Zheng, L (WOS:000705545500001) 2021; 2021 Dong, XC (WOS:000402512900001) 2017; 8 Rendler, S (WOS:000233694800026) 2005; 44 Rendler, S (000834285800067.55) 2005; 117 Yasutomi, Y (WOS:000276553600004) 2010; 132 (000834285800067.27) 2012; 124 Zhu, JF (WOS:000658468700001) 2021; 32 Seliger, J (WOS:000583742700001) 2021; 60 (000834285800067.48) 2007; 119 Kurihara, Y (WOS:000310459400022) 2012; 48 Dong, XY (WOS:000537415600047) 2020; 142 Seliger, J (000834285800067.62) 2019; 131 RYU, I (WOS:A1989AQ32300033) 1989; 8 Proctor, RSJ (WOS:000579693400002) 2020; 12 Weiss, ME (WOS:000297467100014) 2011; 50 Lee, DW (WOS:000227506100018) 2005; 46 Xu, LW (WOS:000287585000034) 2011; 40 Liu, RY (WOS:000542223900013) 2020; 53 Liu, L (WOS:000719143700001) 2021; 60 Nakagawa, Y (WOS:000399000900032) 2017; 53 Morris, RH (WOS:000381332000008) 2016; 116 Weickgenannt, A (000834285800067.59) 2010; 122 (000834285800067.107) 2011; 123 Weickgenannt, A (WOS:000276008000027) 2010; 49 Ye, F (WOS:000612345900019) 2021; 54 Kawakami, Y (WOS:000263771500009) 2009; 58 Yang, Y (000834285800067.102) 2017; 129 Shintani, R (WOS:000355651000001) 2015; 4 Wang, Y (WOS:000319795800010) 2013; 46 An, K (WOS:000755220500015) 2022; 13 (000834285800067.87) 2021; 133 Zhu, JF (WOS:000641160700003) 2021; 143 Yang, CJ (WOS:000533815300002) 2020; 3 Wang, X (WOS:000707138200001) 2021; 8 Zhang, G (000834285800067.41) 2020; 132 KUNAI, A (WOS:A1992JD62200068) 1992; 11 Fujii, S (WOS:000400521500004) 2017; 9 Huang, Y.-H. (000834285800067.19) 2022; 61 Wu, LJ (WOS:000395904900004) 2017; 4 Zhang, JY (WOS:000713741200001) 2021; 60 Zhang, J (000834285800067.18) 2021; 133 Bauer, JO (WOS:000379751700001) 2016 Cherney, AH (WOS:000361254500015) 2015; 115 Mondal, S (WOS:000781225500009) 2022; 122 CUNICO, RF (WOS:A1974S440600003) 1974; 4 Zhou, H (WOS:000670659900028) 2021; 11 Seliger, J (WOS:000458828000014) 2019; 58 Tamao, K (WOS:A1996VX65400033) 1996; 118 Schmidt, DR (WOS:000180713000041) 2003; 125 Seliger, J (000834285800067.64) 2021; 133 Klare, HFT (WOS:000251761500043) 2007; 46 Oishi, M (WOS:000086073300010) 2000; 33 YAMAMOTO, K (WOS:A1993KT29900005) 1993 Rendler, S (WOS:000239412400007) 2006; 348 Chemler, SR (WOS:000322884800027) 2013; 341 Hossain, A (WOS:000466809600022) 2019; 364 Chulsky, K (WOS:000449443100041) 2018; 20 Zhang, G (WOS:000533301400001) 2020; 59 Rendler, S (WOS:000243609200005) 2007; 46 Seliger, J (WOS:000482329000004) 2019; 25 CORRIU, RJP (WOS:A1973R056200011) 1973 Zhang, HP (WOS:000693621800005) 2021; 11 Murata, R (WOS:000579572200035) 2020; 56 Wen, H (000834285800067.30) 2018; 130 Lin, JS (WOS:000381062600006) 2016; 138 Yuan, W (WOS:000774221200005) 2022; 54 Wang, X. (000834285800067.88) 2022 Li, XT (WOS:000558678900020) 2020; 6 Wen, HA (WOS:000432710100062) 2018; 57 Zhang, SY (WOS:000383373000018) 2016; 55 Cheng, YF (WOS:000519840000002) 2020; 3 Carvajal, MA (WOS:000188834900042) 2004; 126 Larson, GL (WOS:000687904600001) 2021; 25 Oestreich, M (WOS:000248768200001) 2007 Bi, XF (WOS:000641296000067) 2021; 23 Rendler, S (WOS:000262002900030) 2008; 14 Falivene, L (WOS:000379704300014) 2016; 35 Zhang, S (000834285800067.73) 2016; 128 OHTA, T (WOS:A1994PQ83800048) 1994 Zhan, G (WOS:000444225100020) 2018; 57 Melnik, M (WOS:A1997XA90900005) 1997; 41 (000834285800067.32) 2018; 130 Yang, Y (WOS:000403839000041) 2017; 56 Fang, C (WOS:000467781600033) 2019; 141 Xie, JL (WOS:000623850700001) 2021; 64 Li, ZL (WOS:000508005100002) 2020; 49 Igawa, K. (000834285800067.6) 2019 Igawa, K (WOS:000312305400017) 2012; 51 Klare, HFT (000834285800067.57) 2007; 119 Jiang, SP (WOS:000592911000027) 2020; 142 Shintani, R (WOS:000425173600008) 2018; 29 Gu, QS (WOS:000509420300015) 2020; 53 |
References_xml | – volume: 132 start-page: 4510 year: 2010 end-page: 4511 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 3753 year: 2017 end-page: 3756 publication-title: Chem. Commun. – volume: 14 start-page: 4469 year: 1973 end-page: 4472 publication-title: Tetrahedron Lett. – volume: 35 start-page: 2286 year: 2016 end-page: 2293 publication-title: Organometallics – volume: 141 start-page: 7486 year: 2019 end-page: 7497 publication-title: J. Am. Chem. Soc. – volume: 356 year: 2017 publication-title: Science – volume: 126 start-page: 1465 year: 2004 end-page: 1477 publication-title: J. Am. Chem. Soc. – volume: 46 119 start-page: 498 504 year: 2007 2007 end-page: 504 510 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 26710 26914 year: 2021 2021 end-page: 26717 26921 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 122 start-page: 5842 year: 2022 end-page: 5976 publication-title: Chem. Rev. – start-page: 1629 year: 2007 end-page: 1643 publication-title: Synlett – volume: 51 124 start-page: 12745 12917 year: 2012 2012 end-page: 12748 12920 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 6804 year: 2018 end-page: 6807 publication-title: Org. Lett. – volume: 25 start-page: 1719 year: 2021 end-page: 1787 publication-title: Org. Process Res. Dev. – volume: 33 start-page: 1960 year: 2000 end-page: 1963 publication-title: Macromolecules – start-page: 2525 year: 1994 end-page: 2526 publication-title: J. Chem. Soc., Chem. Commun. – volume: 64 start-page: 761 year: 2021 end-page: 769 publication-title: Sci. China Chem. – volume: 341 start-page: 624 year: 2013 end-page: 626 publication-title: Science – volume: 364 year: 2019 publication-title: Science – volume: 116 start-page: 8588 year: 2016 end-page: 8654 publication-title: Chem. Rev. – volume: 142 start-page: 19652 year: 2020 end-page: 19659 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 7916 8024 year: 2017 2017 end-page: 7919 8027 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 6577 year: 2021 end-page: 6584 publication-title: Org. Chem. Front. – volume: 56 start-page: 12335 year: 2020 end-page: 12338 publication-title: Chem. Commun. – start-page: 6006 year: 2021 end-page: 6014 publication-title: Eur. J. Org. Chem. – volume: 118 start-page: 12469 year: 1996 end-page: 12470 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 1575 year: 2021 end-page: 1580 publication-title: Synlett – volume: 4 start-page: 350 year: 2017 end-page: 353 publication-title: Org. Chem. Front. – volume: 3 start-page: 539 year: 2020 end-page: 546 publication-title: Nat. Catal. – volume: 115 start-page: 9587 year: 2015 end-page: 9652 publication-title: Chem. Rev. – volume: 46 start-page: 3793 year: 2013 end-page: 3802 publication-title: Macromolecules – volume: 143 start-page: 5301 year: 2021 end-page: 5307 publication-title: J. Am. Chem. Soc. – volume: 46 119 start-page: 9335 9496 year: 2007 2007 end-page: 9338 9499 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 15547 year: 2017 publication-title: Nat. Commun. – volume: 58 131 start-page: 1970 1991 year: 2019 2019 end-page: 1974 1996 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 2708 year: 1992 end-page: 2711 publication-title: Organometallics – volume: 54 start-page: 1939 year: 2022 end-page: 1950 publication-title: Synthesis – volume: 23 start-page: 3201 year: 2021 end-page: 3206 publication-title: Org. Lett. – volume: 125 start-page: 1190 year: 2003 end-page: 1191 publication-title: J. Am. Chem. Soc. – volume: 348 start-page: 1171 year: 2006 end-page: 1182 publication-title: Adv. Synth. Catal. – volume: 8 start-page: 2279 year: 1989 end-page: 2281 publication-title: Organometallics – volume: 25 start-page: 9358 year: 2019 end-page: 9365 publication-title: Chem. Eur. J. – volume: 11 start-page: 7978 year: 2021 end-page: 7986 publication-title: ACS Catal. – volume: 143 start-page: 15413 year: 2021 end-page: 15419 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 452 year: 2021 end-page: 470 publication-title: Acc. Chem. Res. – volume: 26 start-page: 17011 year: 2020 end-page: 17015 publication-title: Chem. Eur. J. – start-page: 1743 year: 1985 end-page: 1746 publication-title: J. Chem. Soc. Dalton Trans. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 1129 1145 year: 2020 2020 end-page: 1133 1149 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 847 year: 2022 publication-title: Nat. Commun. – start-page: 495 year: 2019 end-page: 532 – volume: 57 130 start-page: 12342 12522 year: 2018 2018 end-page: 12346 12526 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 1714 1738 year: 2021 2021 end-page: 1726 1750 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 510 year: 2015 end-page: 514 publication-title: Asian J. Org. Chem. – volume: 138 start-page: 9357 year: 2016 end-page: 9360 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 1710 year: 2011 end-page: 1713 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 485 year: 2017 end-page: 505 publication-title: Future Med. Chem. – volume: 142 start-page: 9501 year: 2020 end-page: 9509 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 1229 year: 2020 end-page: 1243 publication-title: Acc. Chem. Res. – volume: 53 start-page: 170 year: 2020 end-page: 181 publication-title: Acc. Chem. Res. – volume: 51 start-page: 2036 year: 2018 end-page: 2046 publication-title: Acc. Chem. Res. – volume: 49 start-page: 32 year: 2020 end-page: 48 publication-title: Chem. Soc. Rev. – volume: 49 122 start-page: 2223 2269 year: 2010 2010 end-page: 2226 2272 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 40 start-page: 1777 year: 2011 end-page: 1790 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 401 year: 2020 end-page: 410 publication-title: Nat. Catal. – volume: 11 start-page: 10748 year: 2021 end-page: 10753 publication-title: ACS Catal. – volume: 60 133 start-page: 247 251 year: 2021 2021 end-page: 251 255 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 117 start-page: 7620 7793 year: 2005 2005 end-page: 7624 7797 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 6319 6427 year: 2018 2018 end-page: 6323 6431 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 11927 12025 year: 2020 2020 end-page: 11931 12029 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 41 start-page: 35 year: 1997 end-page: 182 publication-title: J. Coord. Chem. – volume: 58 start-page: 279 year: 2009 end-page: 284 publication-title: Polym. Int. – volume: 50 123 start-page: 11125 11321 year: 2011 2011 end-page: 11128 11324 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 11564 year: 2012 end-page: 11566 publication-title: Chem. Commun. – volume: 4 start-page: 23 year: 1974 end-page: 26 publication-title: Synth. React. Inorg. Met.-Org. Chem. – start-page: 25 year: 2022 end-page: 66 – volume: 14 start-page: 11512 year: 2008 end-page: 11528 publication-title: Chem. Eur. J. – volume: 12 start-page: 990 year: 2020 end-page: 1004 publication-title: Nat. Chem. – start-page: 436 year: 1993 end-page: 437 publication-title: J. Chem. Soc. Chem., Commun. – start-page: 2868 year: 2016 end-page: 2881 publication-title: Eur. J. Inorg. Chem. – volume: 134 start-page: 16955 year: 2012 end-page: 16958 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 11838 year: 2015 end-page: 11845 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 9927 10081 year: 2016 2016 end-page: 9931 10085 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 1158 year: 2019 end-page: 1166 publication-title: Nat. Chem. – volume: 46 start-page: 2037 year: 2005 end-page: 2039 publication-title: Tetrahedron Lett. – volume: 6 start-page: 1692 year: 2020 end-page: 1706 publication-title: Chem – volume: 29 start-page: 388 year: 2018 end-page: 396 publication-title: Synlett – volume: 45 start-page: 31 year: 1998 end-page: 145 publication-title: J. Coord. Chem. – volume: 60 133 start-page: 25723 25927 year: 2021 2021 end-page: 25728 25932 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_3_34_2 doi: 10.1055/a-1503-7976 – ident: e_1_2_3_90_2 doi: 10.1038/s41557-019-0346-2 – ident: e_1_2_3_17_2 doi: 10.1039/D1QO01386F – ident: e_1_2_3_88_1 – ident: e_1_2_3_56_3 doi: 10.1002/ange.200502631 – ident: e_1_2_3_12_2 doi: 10.1002/ajoc.201500066 – ident: e_1_2_3_83_2 doi: 10.1038/s41557-020-00561-6 – ident: e_1_2_3_32_2 doi: 10.1016/S0040-4039(01)87251-8 – ident: e_1_2_3_38_2 doi: 10.1021/ja3076555 – ident: e_1_2_3_60_3 doi: 10.1002/ange.201813229 – ident: e_1_2_3_20_3 doi: 10.1002/ange.202113052 – ident: e_1_2_3_14_2 doi: 10.1021/acs.accounts.0c00740 – ident: e_1_2_3_6_1 doi: 10.1002/pi.2524 – ident: e_1_2_3_61_2 doi: 10.1002/anie.202010484 – ident: e_1_2_3_15_2 doi: 10.1055/a-1729-9664 – ident: e_1_2_3_58_2 doi: 10.1002/anie.200905561 – ident: e_1_2_3_52_1 doi: 10.1021/ja0283201 – ident: e_1_2_3_11_1 – ident: e_1_2_3_28_2 doi: 10.1039/C7CC01070B – ident: e_1_2_3_92_2 doi: 10.1021/jacs.1c07726 – ident: e_1_2_3_25_2 doi: 10.1021/ja100833h – ident: e_1_2_3_100_2 doi: 10.1002/anie.201702349 – ident: e_1_2_3_39_2 doi: 10.1021/jacs.5b07827 – ident: e_1_2_3_21_2 doi: 10.1038/s41467-022-28439-w – ident: e_1_2_3_2_2 doi: 10.1055/s-2007-980385 – ident: e_1_2_3_72_1 – ident: e_1_2_3_59_2 doi: 10.1038/ncomms15547 – ident: e_1_2_3_101_2 doi: 10.1039/C6QO00691D – ident: e_1_2_3_85_3 doi: 10.1002/ange.202007668 – ident: e_1_2_3_74_2 doi: 10.1021/jacs.6b04077 – ident: e_1_2_3_76_2 doi: 10.1038/s41929-020-0439-8 – ident: e_1_2_3_5_1 doi: 10.4155/fmc-2016-0193 – ident: e_1_2_3_105_3 doi: 10.1002/ange.201105235 – ident: e_1_2_3_84_2 doi: 10.1039/C9CS00681H – ident: e_1_2_3_80_2 doi: 10.1021/acs.chemrev.5b00162 – ident: e_1_2_3_87_2 doi: 10.1021/acs.chemrev.1c00582 – ident: e_1_2_3_4_2 doi: 10.1002/ejic.201600100 – ident: e_1_2_3_91_2 doi: 10.1021/jacs.0c09125 – ident: e_1_2_3_99_1 – ident: e_1_2_3_47_2 doi: 10.1126/science.aav9713 – start-page: 495 volume-title: Organosilicon Chemistry: Novel Approaches and Reactions year: 2019 ident: e_1_2_3_7_1 doi: 10.1002/9783527814787.ch14 – ident: e_1_2_3_30_3 doi: 10.1002/ange.201807493 – ident: e_1_2_3_78_3 doi: 10.1002/ange.201911742 – ident: e_1_2_3_24_2 doi: 10.1021/ja962754c – ident: e_1_2_3_68_1 – ident: e_1_2_3_49_3 doi: 10.1002/ange.200602668 – ident: e_1_2_3_57_3 doi: 10.1002/ange.200703847 – ident: e_1_2_3_104_2 doi: 10.1021/om00043a068 – ident: e_1_2_3_98_1 doi: 10.1021/acs.orglett.8b02932 – ident: e_1_2_3_89_2 doi: 10.1021/acscatal.1c01970 – ident: e_1_2_3_9_1 doi: 10.1021/ma991510k – ident: e_1_2_3_69_2 doi: 10.1021/om00111a033 – ident: e_1_2_3_70_2 doi: 10.1016/j.tetlet.2005.01.127 – ident: e_1_2_3_45_1 – ident: e_1_2_3_36_1 – ident: e_1_2_3_44_2 doi: 10.1021/acs.orglett.1c00935 – ident: e_1_2_3_19_3 doi: 10.1002/ange.202111025 – ident: e_1_2_3_16_2 doi: 10.1002/chem.202003506 – ident: e_1_2_3_40_2 doi: 10.1002/anie.202005341 – ident: e_1_2_3_65_2 doi: 10.1080/00958979708027956 – ident: e_1_2_3_96_1 doi: 10.1002/anie.202110233 – ident: e_1_2_3_26_2 doi: 10.1039/c2cc36238d – ident: e_1_2_3_60_2 doi: 10.1002/anie.201813229 – ident: e_1_2_3_53_1 doi: 10.1002/adsc.200606071 – ident: e_1_2_3_81_2 doi: 10.1126/science.aaf7230 – ident: e_1_2_3_82_2 doi: 10.1021/acs.accounts.8b00265 – ident: e_1_2_3_93_1 doi: 10.1021/jacs.9b02158 – ident: e_1_2_3_35_1 – ident: e_1_2_3_71_2 doi: 10.1002/anie.201603970 – ident: e_1_2_3_10_1 doi: 10.1021/acscatal.1c03112 – ident: e_1_2_3_95_1 doi: 10.1021/jacs.0c03130 – ident: e_1_2_3_106_2 doi: 10.1021/acs.chemrev.5b00695 – ident: e_1_2_3_48_1 – ident: e_1_2_3_96_2 doi: 10.1002/ange.202110233 – ident: e_1_2_3_79_1 – ident: e_1_2_3_105_2 doi: 10.1002/anie.201105235 – ident: e_1_2_3_43_2 doi: 10.1039/D0CC05509C – ident: e_1_2_3_66_2 doi: 10.1080/00958979808027143 – ident: e_1_2_3_64_1 – start-page: 25 volume-title: Transition Metal-Catalyzed Carbene Transformations year: 2022 ident: e_1_2_3_86_2 doi: 10.1002/9783527829170.ch2 – ident: e_1_2_3_103_2 doi: 10.1080/00945717408069627 – ident: e_1_2_3_61_3 doi: 10.1002/ange.202010484 – ident: e_1_2_3_29_2 doi: 10.1002/anie.201802806 – ident: e_1_2_3_56_2 doi: 10.1002/anie.200502631 – ident: e_1_2_3_37_2 doi: 10.1039/C39940002525 – ident: e_1_2_3_33_2 doi: 10.1021/jacs.1c01106 – ident: e_1_2_3_73_2 doi: 10.1021/acs.accounts.9b00381 – ident: e_1_2_3_27_3 doi: 10.1002/ange.201207361 – ident: e_1_2_3_97_1 – ident: e_1_2_3_102_1 – ident: e_1_2_3_107_1 doi: 10.1021/ma400149t – ident: e_1_2_3_94_1 doi: 10.1021/ja110534g – ident: e_1_2_3_8_1 doi: 10.1039/DT9850001743 – ident: e_1_2_3_100_3 doi: 10.1002/ange.201702349 – ident: e_1_2_3_50_2 doi: 10.1021/acs.accounts.0c00164 – ident: e_1_2_3_51_2 doi: 10.1021/acs.oprd.1c00073 – ident: e_1_2_3_1_1 – ident: e_1_2_3_29_3 doi: 10.1002/ange.201802806 – ident: e_1_2_3_18_2 doi: 10.1007/s11426-020-9939-1 – ident: e_1_2_3_40_3 doi: 10.1002/ange.202005341 – ident: e_1_2_3_46_2 doi: 10.1126/science.1237175 – ident: e_1_2_3_23_2 doi: 10.1055/s-0036-1591839 – ident: e_1_2_3_54_1 – ident: e_1_2_3_63_1 doi: 10.1021/ja038416a – ident: e_1_2_3_19_2 doi: 10.1002/anie.202111025 – ident: e_1_2_3_31_1 – ident: e_1_2_3_85_2 doi: 10.1002/anie.202007668 – ident: e_1_2_3_27_2 doi: 10.1002/anie.201207361 – ident: e_1_2_3_13_2 doi: 10.1002/ejoc.202101084 – ident: e_1_2_3_71_3 doi: 10.1002/ange.201603970 – ident: e_1_2_3_67_1 doi: 10.1021/acs.organomet.6b00371 – ident: e_1_2_3_77_2 doi: 10.1016/j.chempr.2020.03.024 – ident: e_1_2_3_78_2 doi: 10.1002/anie.201911742 – ident: e_1_2_3_22_1 – ident: e_1_2_3_30_2 doi: 10.1002/anie.201807493 – ident: e_1_2_3_3_2 doi: 10.1039/C0CS00037J – ident: e_1_2_3_55_2 doi: 10.1002/chem.201900792 – ident: e_1_2_3_57_2 doi: 10.1002/anie.200703847 – ident: e_1_2_3_75_2 doi: 10.1038/s41929-020-0460-y – ident: e_1_2_3_41_1 – ident: e_1_2_3_20_2 doi: 10.1002/anie.202113052 – ident: e_1_2_3_49_2 doi: 10.1002/anie.200602668 – ident: e_1_2_3_42_2 doi: 10.1039/C39930000436 – ident: e_1_2_3_58_3 doi: 10.1002/ange.200905561 – ident: e_1_2_3_62_1 doi: 10.1002/chem.200801377 – volume: 56 start-page: 12335 year: 2020 ident: WOS:000579572200035 article-title: Desymmetrization of gem-diols via water-assisted organocatalytic enantio- and diastereoselective cycloetherification publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/d0cc05509c – volume: 51 start-page: 12745 year: 2012 ident: WOS:000312305400017 article-title: Catalytic Enantioselective Synthesis of Alkenylhydrosilanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201207361 – volume: 11 start-page: 1158 year: 2019 ident: WOS:000498875700019 article-title: A general asymmetric copper-catalysed Sonogashira C(sp3)-C(sp) coupling publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-019-0346-2 – volume: 40 start-page: 1777 year: 2011 ident: WOS:000287585000034 article-title: The recent synthesis and application of silicon-stereogenic silanes: A renewed and significant challenge in asymmetric synthesis publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c0cs00037j – volume: 134 start-page: 16955 year: 2012 ident: WOS:000309854700010 article-title: Rhodium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Dibenzooxasilines via Enantioselective Transmetalation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja3076555 – volume: 132 start-page: 1145 year: 2020 ident: 000834285800067.80 publication-title: Angew. Chem – volume: 33 start-page: 1960 year: 2000 ident: WOS:000086073300010 article-title: Synthesis of stereoregular and optically active polysiloxanes containing 1,3-dimethyl-1,3-diphenyldisiloxane as a constitutional unit publication-title: MACROMOLECULES – volume: 122 start-page: 5842 year: 2022 ident: WOS:000781225500009 article-title: Enantioselective Radical Reactions Using Chiral Catalysts publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.1c00582 – volume: 142 start-page: 19652 year: 2020 ident: WOS:000592911000027 article-title: Copper-Catalyzed Enantioconvergent Radical Suzuki-Miyaura C(sp3)-C(sp2) Cross-Coupling publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c09125 – volume: 141 start-page: 7486 year: 2019 ident: WOS:000467781600033 article-title: Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP) publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b02158 – volume: 143 start-page: 15413 year: 2021 ident: WOS:000700883200054 article-title: Enantioconvergent Cu-Catalyzed Radical C-N Coupling of Racemic Secondary Alkyl Halides to Access α-Chiral Primary Amines publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c07726 – volume: 126 start-page: 1465 year: 2004 ident: WOS:000188834900042 article-title: Choice of coordination number in d10 complexes of group 11 metals publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja038416a – volume: 54 start-page: 452 year: 2021 ident: WOS:000612345900019 article-title: The Discovery of Multifunctional Chiral P Ligands for the Catalytic Construction of Quaternary Carbon/Silicon and Multiple Stereogenic Centers publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.0c00740 – volume: 138 start-page: 9357 year: 2016 ident: WOS:000381062600006 article-title: A Dual-Catalytic Strategy To Direct Asymmetric Radical Aminotrifluoromethylation of Alkenes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b04077 – volume: 3 start-page: 401 year: 2020 ident: WOS:000519840000002 article-title: Catalytic enantioselective desymmetrizing functionalization of alkyl radicals via Cu(i)/CPA cooperative catalysis publication-title: NATURE CATALYSIS doi: 10.1038/s41929-020-0439-8 – volume: 116 start-page: 8588 year: 2016 ident: WOS:000381332000008 article-title: Bronsted-Lowry Acid Strength of Metal Hydride and Dihydrogen Complexes publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.5b00695 – volume: 51 start-page: 2036 year: 2018 ident: WOS:000445441200016 article-title: Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.8b00265 – volume: 59 start-page: 1129 year: 2020 ident: WOS:000499021600001 article-title: Enantioselective Copper(I)/Chiral Phosphoric Acid Catalyzed Intramolecular Amination of Allylic and Benzylic C-H Bonds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201911742 – volume: 4 start-page: 350 year: 2017 ident: WOS:000395904900004 article-title: Fe-Catalyzed oxidative spirocyclization of N-arylpropiolamides with silanes and TBHP involving the formation of C-Si bonds publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/c6qo00691d – volume: 53 start-page: 170 year: 2020 ident: WOS:000509420300015 article-title: Copper(I)-Catalyzed Asymmetric Reactions Involving Radicals publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.9b00381 – volume: 8 start-page: 6577 year: 2021 ident: WOS:000707138200001 article-title: Multifunctional P-ligand-controlled "silicon-centered" selectivity in Rh/Cu-catalyzed Si-C bond cleavage of silacyclobutanes publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/d1qo01386f – volume: 142 start-page: 9501 year: 2020 ident: WOS:000537415600047 article-title: Copper-Catalyzed Asymmetric Radical 1,2-Carboalkynylation of Alkenes with Alkyl Halides and Terminal Alkynes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c03130 – volume: 46 start-page: 9335 year: 2007 ident: WOS:000251761500043 article-title: Chiral recognition with silicon-stereogenic silanes: Remarkable selectivity factors in the kinetic resolution of donor-functionalized alcohols publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200703847 – volume: 133 start-page: 251 year: 2021 ident: 000834285800067.64 publication-title: Angew. Chem – volume: 23 start-page: 3201 year: 2021 ident: WOS:000641296000067 article-title: Construction of Axial Chirality and Silicon-Stereogenic Center via Rh-Catalyzed Asymmetric Ring-Opening of Silafluorenes publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.1c00935 – volume: 9 start-page: 485 year: 2017 ident: WOS:000400521500004 article-title: Progress in the medicinal chemistry of silicon: C/Si exchange and beyond publication-title: FUTURE MEDICINAL CHEMISTRY doi: 10.4155/fmc-2016-0193 – volume: 58 start-page: 279 year: 2009 ident: WOS:000263771500009 article-title: Control of stereochemical structures of silicon-containing polymeric systems publication-title: POLYMER INTERNATIONAL doi: 10.1002/pi.2524 – volume: 4 start-page: 23 year: 1974 ident: WOS:A1974S440600003 article-title: IMPROVED METHOD FOR PREPARATION OF TRIALKYLCHLOROSILANES FROM TRIALKYLSILANES USING CUPRIC CHLORIDE publication-title: SYNTHESIS AND REACTIVITY IN INORGANIC AND METAL-ORGANIC CHEMISTRY – volume: 26 start-page: 17011 year: 2020 ident: WOS:000590177800001 article-title: Enantioselective Construction of Si-Stereogenic Center via Rhodium-Catalyzed Intermolecular Hydrosilylation of Alkene publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.202003506 – volume: 348 start-page: 1171 year: 2006 ident: WOS:000239412400007 article-title: Preparation of a privileged silicon-stereogenic silane:: Classical versus kinetic resolution publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.200606071 – start-page: 4469 year: 1973 ident: WOS:A1973R056200011 article-title: ASYMMETRICAL SYNTHESIS OF ALKOXYSILANES CATALYZED BY RHODIUM COMPLEXES publication-title: TETRAHEDRON LETTERS – volume: 12 start-page: 990 year: 2020 ident: WOS:000579693400002 article-title: Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-020-00561-6 – volume: 25 start-page: 9358 year: 2019 ident: WOS:000482329000004 article-title: Making the Silylation of Alcohols Chiral: Asymmetric Protection of Hydroxy Groups publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201900792 – volume: 60 start-page: 25723 year: 2021 ident: WOS:000713741200001 article-title: Nickel(0)-Catalyzed Asymmetric Ring Expansion Toward Enantioenriched Silicon-Stereogenic Benzosiloles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202111025 – volume: 132 start-page: 12025 year: 2020 ident: 000834285800067.41 publication-title: Angew. Chem – volume: 57 start-page: 12342 year: 2018 ident: WOS:000444225100020 article-title: Enantioselective Construction of Silicon-Stereogenic Silanes by Scandium-Catalyzed Intermolecular Alkene Hydrosilylation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201807493 – volume: 60 start-page: 247 year: 2021 ident: WOS:000583742700001 article-title: Dynamic Kinetic Resolution of Alcohols by Enantioselective Silylation Enabled by Two Orthogonal Transition-Metal Catalysts publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202010484 – volume: 57 start-page: 6319 year: 2018 ident: WOS:000432710100062 article-title: Asymmetric Synthesis of Silicon-Stereogenic Vinylhydrosilanes by Cobalt-Catalyzed Regio- and Enantioselective Alkyne Hydrosilylation with Dihydrosilanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201802806 – volume: 45 start-page: 31 year: 1998 ident: WOS:000076138200004 article-title: Copper(II) coordination compounds: Classification and analysis of crystallographic and structural data II. Mononuclear-, hexa-, hepta- and octacoordinate compounds publication-title: JOURNAL OF COORDINATION CHEMISTRY – volume: 4 start-page: 510 year: 2015 ident: WOS:000355651000001 article-title: Recent Advances in the Transition-Metal-Catalyzed Enantioselective Synthesis of Silicon-Stereogenic Organosilanes publication-title: ASIAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ajoc.201500066 – volume: 29 start-page: 388 year: 2018 ident: WOS:000425173600008 article-title: Recent Progress in Catalytic Enantioselective Desymmetrization of Prochiral Organosilanes for the Synthesis of Silicon-Stereogenic Compounds publication-title: SYNLETT doi: 10.1055/s-0036-1591839 – volume: 364 start-page: 450 year: 2019 ident: WOS:000466809600022 article-title: ORGANIC CHEMISTRY Copper's rapid ascent in visible-light photoredox catalysis publication-title: SCIENCE doi: 10.1126/science.aav9713 – start-page: 495 year: 2019 ident: 000834285800067.6 publication-title: Organosilicon Chemistry: Novel Approaches and Reactions – volume: 46 start-page: 2037 year: 2005 ident: WOS:000227506100018 article-title: Direct synthesis of Stryker's reagent from a Cu(II) salt publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2005.01.127 – volume: 117 start-page: 7793 year: 2005 ident: 000834285800067.55 publication-title: Angew. Chem – start-page: 2868 year: 2016 ident: WOS:000379751700001 article-title: Recent Progress in Asymmetric Synthesis and Application of Difunctionalized Silicon-Stereogenic Silanes publication-title: EUROPEAN JOURNAL OF INORGANIC CHEMISTRY doi: 10.1002/ejic.201600100 – volume: 25 start-page: 1719 year: 2021 ident: WOS:000687904600001 article-title: Organosilanes in Metal-Catalyzed, Enantioselective Reductions publication-title: ORGANIC PROCESS RESEARCH & DEVELOPMENT doi: 10.1021/acs.oprd.1c00073 – volume: 59 start-page: 11927 year: 2020 ident: WOS:000533301400001 article-title: Asymmetric Synthesis of Silicon-Stereogenic Silanes by Copper-Catalyzed Desymmetrizing Protoboration of Vinylsilanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202005341 – start-page: 2525 year: 1994 ident: WOS:A1994PQ83800048 article-title: ASYMMETRIC-SYNTHESIS OF SILANES WITH A STEREOGENIC CENTER AT SILICON VIA HYDROSILYLATION OF SYMMETRICAL KETONES WITH PROCHIRAL DIARYL SILANES CATALYZED BY BINAP RH-I COMPLEXES publication-title: JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS – volume: 124 start-page: 12917 year: 2012 ident: 000834285800067.27 publication-title: Angew. Chem – volume: 11 start-page: 10748 year: 2021 ident: WOS:000693621800005 article-title: Synthesis of Silicon-Stereogenic Silanols Involving Iridium-Catalyzed Enantioselective C-H Silylation Leading to a New Ligand Scaffold publication-title: ACS CATALYSIS doi: 10.1021/acscatal.1c03112 – volume: 119 start-page: 504 year: 2007 ident: 000834285800067.48 publication-title: Angew. Chem – volume: 64 start-page: 761 year: 2021 ident: WOS:000623850700001 article-title: Palladium-catalyzed hydrosilylation of ynones to access silicon-stereogenic silylenones by stereospecific aromatic interaction-assisted Si-H activation publication-title: SCIENCE CHINA-CHEMISTRY doi: 10.1007/s11426-020-9939-1 – volume: 125 start-page: 1190 year: 2003 ident: WOS:000180713000041 article-title: Catalytic asymmetric silane alcoholysis: Practical access to chiral silanes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0283201 – volume: 2021 start-page: 6006 year: 2021 ident: WOS:000705545500001 article-title: Construction of Si-Stereogenic Silanes through C-H Activation Approach publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ejoc.202101084 – volume: 132 start-page: 4510 year: 2010 ident: WOS:000276553600004 article-title: Iridium(III)-Catalyzed Enantioselective Si-H Bond Insertion and Formation of an Enantioenriched Silicon Center publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja100833h – volume: 56 start-page: 7916 year: 2017 ident: WOS:000403839000041 article-title: Iron-Catalyzed Intermolecular 1,2-Difunctionalization of Styrenes and Conjugated Alkenes with Silanes and Nucleophiles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201702349 – volume: 49 start-page: 32 year: 2020 ident: WOS:000508005100002 article-title: Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c9cs00681h – volume: 8 start-page: 2279 year: 1989 ident: WOS:A1989AQ32300033 article-title: COPPER(II)-MEDIATED STEREOSELECTIVE REDUCTION OF ACETYLENIC SULFONES BY HYDROSILANES publication-title: ORGANOMETALLICS – volume: 53 start-page: 3753 year: 2017 ident: WOS:000399000900032 article-title: Ru(II)-Pheox-catalyzed Si-H insertion reaction: construction of enantioenriched carbon and silicon centers publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c7cc01070b – volume: 49 start-page: 2223 year: 2010 ident: WOS:000276008000027 article-title: Catalytic Asymmetric Si-O Coupling of Simple Achiral Silanes and Chiral Donor-Functionalized Alcohols publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200905561 – volume: 48 start-page: 11564 year: 2012 ident: WOS:000310459400022 article-title: Synthesis of optically active tertiary silanes via Pd-catalyzed enantioselective arylation of secondary silanes publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c2cc36238d – volume: 13 start-page: ARTN 847 year: 2022 ident: WOS:000755220500015 article-title: Rhodium hydride enabled enantioselective intermolecular C-H silylation to access acyclic stereogenic Si-H publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-022-28439-w – volume: 130 start-page: 6427 year: 2018 ident: 000834285800067.30 publication-title: Angew. Chem – volume: 53 start-page: 1229 year: 2020 ident: WOS:000542223900013 article-title: CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.0c00164 – volume: 60 start-page: 1714 year: 2021 ident: WOS:000564447000001 article-title: Stereoinduction in Metallaphotoredox Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202007668 – volume: 119 start-page: 9496 year: 2007 ident: 000834285800067.57 publication-title: Angew. Chem – volume: 130 start-page: 12522 year: 2018 ident: 000834285800067.32 publication-title: Angew. Chem – volume: 20 start-page: 6804 year: 2018 ident: WOS:000449443100041 article-title: Metal-Free Catalytic Reductive Cleavage of Enol Ethers publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.8b02932 – volume: 60 start-page: 26710 year: 2021 ident: WOS:000719143700001 article-title: Copper-Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp3)-H/C(sp)-H Cross-Coupling with Rationally Designed Oxazoline-Derived N,N,P(O)-Ligands publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202110233 – volume: 123 start-page: 11321 year: 2011 ident: 000834285800067.107 publication-title: Angew. Chem – volume: 341 start-page: 624 year: 2013 ident: WOS:000322884800027 article-title: Copper's Contribution to Amination Catalysis publication-title: SCIENCE doi: 10.1126/science.1237175 – start-page: 436 year: 1993 ident: WOS:A1993KT29900005 article-title: KINETIC RESOLUTION OF (+/-)-CYCLOHEX-1-ENYLSILANOLS BY THE SHARPLESS ASYMMETRIC EPOXIDATION publication-title: JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS – volume: 137 start-page: 11838 year: 2015 ident: WOS:000361502800045 article-title: Nickel(0)-Catalyzed Enantio- and Diastereoselective Synthesis of Benzoxasiloles: Ligand-Controlled Switching from Inter- to Intramolecular Aryl-Transfer Process publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b07827 – volume: 129 start-page: 8024 year: 2017 ident: 000834285800067.102 publication-title: Angew. Chem – start-page: 1629 year: 2007 ident: WOS:000248768200001 article-title: Silicon-stereogenic silanes in asymmetric catalysis publication-title: SYNLETT doi: 10.1055/s-2007-980385 – volume: 44 start-page: 7620 year: 2005 ident: WOS:000233694800026 article-title: Kinetic resolution of chiral secondary alcohols by dehydrogenative coupling with recyclable silicon-stereogenic silanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/ANIE.200502631 – volume: 356 start-page: ARTN eaaf7230 year: 2017 ident: WOS:000399013800025 article-title: Transition metal-catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry publication-title: SCIENCE doi: 10.1126/science.aaf7230 – volume: 46 start-page: 498 year: 2007 ident: WOS:000243609200005 article-title: Polishing a diamond in the rough: "Cu-H" catalysis with silanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200602668 – volume: 50 start-page: 11125 year: 2011 ident: WOS:000297467100014 article-title: Cobalt-Catalyzed Coupling of Alkyl Iodides with Alkenes: Deprotonation of Hydridocobalt Enables Turnover publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201105235 – volume: 46 start-page: 3793 year: 2013 ident: WOS:000319795800010 article-title: Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Comproportionation-Disproportionation Equilibria and Kinetics publication-title: MACROMOLECULES doi: 10.1021/ma400149t – volume: 131 start-page: 1991 year: 2019 ident: 000834285800067.62 publication-title: Angew. Chem – volume: 3 start-page: 539 year: 2020 ident: WOS:000533815300002 article-title: Cu-catalysed intramolecular radical enantioconvergent tertiary β-C(sp3)-H amination of racemic ketones publication-title: NATURE CATALYSIS doi: 10.1038/s41929-020-0460-y – volume: 41 start-page: 35 year: 1997 ident: WOS:A1997XA90900005 article-title: Copper (II) coordination compounds: Classification and analysis of crystallographic and structural data .1. Mononuclear tetra- and pentacoordinate compounds publication-title: JOURNAL OF COORDINATION CHEMISTRY – volume: 115 start-page: 9587 year: 2015 ident: WOS:000361254500015 article-title: Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents To Construct C-C Bonds publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.5b00162 – volume: 35 start-page: 2286 year: 2016 ident: WOS:000379704300014 article-title: SambVca 2. A Web Tool for Analyzing Catalytic Pockets with Topographic Steric Maps publication-title: ORGANOMETALLICS doi: 10.1021/acs.organomet.6b00371 – volume: 61 year: 2022 ident: 000834285800067.19 publication-title: Angew. Chem. Int. Ed – volume: 8 start-page: ARTN 15547 year: 2017 ident: WOS:000402512900001 article-title: Broad-spectrum kinetic resolution of alcohols enabled by Cu-H-catalysed dehydrogenative coupling with hydrosilanes publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms15547 – volume: 133 start-page: 1738 year: 2021 ident: 000834285800067.87 publication-title: Angew. Chem – volume: 11 start-page: 2708 year: 1992 ident: WOS:A1992JD62200068 article-title: HIGHLY SELECTIVE SYNTHESIS OF CHLOROSILANES FROM HYDROSILANES publication-title: ORGANOMETALLICS – volume: 55 start-page: 9927 year: 2016 ident: WOS:000383373000018 article-title: A Dinitrogen Dicopper(I) Complex via a Mixed-Valence Dicopper Hydride publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201603970 – volume: 14 start-page: 11512 year: 2008 ident: WOS:000262002900030 article-title: Stereoselective Alcohol Silylation by Dehydrogenative Si-O Coupling: Scope, Limitations, and Mechanism of the Cu-H-Catalyzed Non-Enzymatic Kinetic Resolution with Silicon-Stereogenic Silanes publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.200801377 – volume: 133 start-page: 1710 year: 2011 ident: WOS:000287831800026 article-title: A New Family of Cinchona-Derived Amino Phosphine Precatalysts: Application to the Highly Enantio- and Diastereoselective Silver-Catalyzed Isocyanoacetate Aldol Reaction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja110534g – volume: 143 start-page: 5301 year: 2021 ident: WOS:000641160700003 article-title: Catalytic Enantioselective Dehydrogenative Si-O Coupling to Access Chiroptical Silicon-Stereogenic Siloxanes and Alkoxysilanes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c01106 – start-page: 25 year: 2022 ident: 000834285800067.88 publication-title: Transition Metal-Catalyzed Carbene Transformations – volume: 133 start-page: 26914 year: 2021 ident: 000834285800067.98 publication-title: Angew. Chem – volume: 128 start-page: 10081 year: 2016 ident: 000834285800067.73 publication-title: Angew. Chem – volume: 11 start-page: 7978 year: 2021 ident: WOS:000670659900028 article-title: Ligand-Enabled Copper(I)-Catalyzed Asymmetric Radical C(sp(3))-C Cross-Coupling Reactions publication-title: ACS CATALYSIS doi: 10.1021/acscatal.1c01970 – volume: 122 start-page: 2269 year: 2010 ident: 000834285800067.59 publication-title: Angew. Chem – volume: 133 start-page: 25927 year: 2021 ident: 000834285800067.18 publication-title: Angew. Chem – start-page: 1743 year: 1985 ident: WOS:A1985AQR3300002 article-title: SILA PHARMACA .32. CRYSTAL AND MOLECULAR-STRUCTURES OF THE (R)-ENANTIOMER AND THE RACEMATE OF THE ANTIMUSCARINIC AGENT (CYCLOHEXYL)-PHENYL[2-(PYRROLIDIN-1-YL)ETHYL]SILANOL (SILA-PROCYCLIDINE) publication-title: JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS – volume: 6 start-page: 1692 year: 2020 ident: WOS:000558678900020 article-title: Diastereo- and Enantioselective Catalytic Radical Oxysulfonylation of Alkenes in β,γ-Unsaturated Ketoximes publication-title: CHEM doi: 10.1016/j.chempr.2020.03.024 – volume: 118 start-page: 12469 year: 1996 ident: WOS:A1996VX65400033 article-title: Axially chiral spirosilanes via catalytic asymmetric intramolecular hydrosilation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 54 start-page: 1939 year: 2022 ident: WOS:000774221200005 article-title: Enantioselective C-H Functionalization toward Silicon-Stereogenic Silanes publication-title: SYNTHESIS-STUTTGART doi: 10.1055/a-1729-9664 – volume: 58 start-page: 1970 year: 2019 ident: WOS:000458828000014 article-title: Kinetic Resolution of Tertiary Propargylic Alcohols by Enantioselective Cu-H-Catalyzed Si-O Coupling publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201813229 – volume: 32 start-page: 1575 year: 2021 ident: WOS:000658468700001 article-title: Catalytic Enantioselective Synthesis of Silicon-Stereogenic Alkoxysilanes and Siloxanes publication-title: SYNLETT doi: 10.1055/a-1503-7976 |
SSID | ssj0028806 |
Score | 2.5545719 |
Snippet | Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si‐chiral silanols, yet has... Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si-chiral silanols, yet has... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202205743 |
SubjectTerms | Asymmetric Catalysis Catalysts Chemistry Chemistry, Multidisciplinary Copper Electron transfer Enantiomers Functional groups Hydroxylation Metathesis Oxidants Oxidizing agents Physical Sciences Science & Technology Silanols Silicon compounds Single-Electron Transfer (SET) Oxidation Species |
Title | Enantioselective Hydroxylation of Dihydrosilanes to Si‐Chiral Silanols Catalyzed by In Situ Generated Copper(II) Species |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202205743 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000834285800067 https://www.ncbi.nlm.nih.gov/pubmed/35652388 https://www.proquest.com/docview/2696820760 https://www.proquest.com/docview/2672706905 |
Volume | 61 |
WOS | 000834285800067 |
WOSCitedRecordID | wos000834285800067 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXNpLoe8ArYyE1PYQ2Nh57XGVLtqtVA7dInGL4tgREWiz2mQPuyd-Ar-RX8JMnKS7oIoKbontPDweez4nM98AHGZuP-hnyrE91Qttl2thJ9rzbEerXiIcjTaNYod_nfqjM_fnuXe-FsVv-CG6D240M-r1miZ4Isvjv6ShFIGN-zsKFEUriIswOWwRKvrd8UdxVE4TXiSETVnoW9bGHj_evHzTKj2Amves0iaQrS3RyTYkbR-MA8rl0aKSR-nqHr3jczq5A68bmMoGRq_ewAs9fQsvozY73DtYDcmDJi_KOo8OLplstFT0Rsa3jhUZ-5FfUFGZkz9tyaqCTfLb65voIp_jrSdUXFyVLKIPSMuVVkwu2XiKFdWCGTZsRMMsKmYzPf82Hn9nk5lGyZTv4exk-Cca2U0eBztFuIOSV5nWwpOIJRUOQhrIzJfc8ZXnJrgZFjINQyIGVHjqh2nClaMC7mN56vpCcfEBtqbFVH8CppO-dNKeUiLQrq-kFKH2AzxIXBFkfdcCux3HOG1IzinXxlVs6Jl5TBKNO4la8LVrPzP0Hv9sud-qRdxM8zLmRC3E6eemBQddNY4E_XVB2RYLaoMQkfigPQs-GnXqHiUQTiNmCi04XNevrr5GyLhB9MIaVljg_E-zqOk4sRpUFvBawR7pXjw4HQ-7s92nXLQHr-i49o4M92Grmi_0Z0RslfxSz8o728Q3sQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLb0poKUaqBBzSbuy89lilW22g3QPbStyiOHbUiGqz2mQPuyd-Ar-RX9IZ5wFbhEBwS2zn4fE489mZ-QbgIHeHwTBXju2pQWi7XAs71Z5nO1oNUuFotGkUO3w-8ceX7ofPXudNSLEwDT9Ev-FGM8N8r2mC04b00Q_WUArBxgUeRYqiGbwL9yitt1lVfeoZpDiqZxNgJIRNeeg73sYBP9q8ftMu_QI2b9mlTShrbNHpQ5BdLxoXlC-Hy1oeZutbBI__1c1H8KBFquy4Ua3HcEfPnsB21CWIewrrETnRFGVlUungV5ONV4peqXGvY2XOToorKqoKcqmtWF2yafH967foqljgradUXF5XLKI9pNVaKyZXLJ5hRb1kDSE2AmIWlfO5XryL4_dsOtcomuoZXJ6OLqKx3aZysDNEPCh6lWstPIlwUuEoZIHMfckdX3luiuthIbMwJG5Ahad-mKVcOSrgPpZnri8UF89ha1bO9AtgOh1KJxsoJQLt-kpKEWo_wIPUFUE-dC2wu4FMspbnnNJtXCcNQzNPSKJJL1EL3vbt5w3Dx29b7nV6kbQzvUo4sQtx-r9pwZu-GkeCfrygbMsltUGUSJTQngU7jT71jxKIqBE2hRYc_Kxgfb0BybhG9EKDLCxw_qZZ1HaciA1qC7jRsD90LzmexKP-7OW_XPQatscX52fJWTz5uAv3qdw4S4Z7sFUvlvoVArha7pspegM-uTvM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BIgEX3o_AAkZaCThkN7Hz6nGVtmp4VIiy0t6iOHa0EasmatJDe-In8Bv5JczkxXYRAsEt8SOJx2PPZ8fzDcBB5oz8UaZs01VWYDpcCzPRrmvaWlmJsDXaNPId_jD3ZifO21P39IIXf8sPMWy40cho5msa4KXKjn6ShpIHNq7vyFEUreBVuOZ4VkB6Pf40EEhx1M7Wv0gIk8LQ97SNFj_arb9rln7BmpfM0i6SbUzR9DYkfSPaEyhfDte1PEy3l_gd_6eVd-BWh1PZcatYd-GKXt6DG2EfHu4-bCd0hCYvqiaQDs6ZbLZR9EXt4TpWZGycn1FSldOB2orVBVvk379-C8_yFT56QcnFecVC2kHabLVicsOiJWbUa9bSYSMcZmFRlnr1OoresEWpUTLVAziZTj6HM7ML5GCmiHdQ8irTWrgSwaTCTkh9mXmS255ynQRXw0KmQUDMgApvvSBNuLKVzz1MTx1PKC4ewt6yWOrHwHQyknZqKSV87XhKShFoz8eLxBF-NnIMMPt-jNOO5ZyCbZzHLT8zj0mi8SBRA14N5cuW3-O3Jfd7tYi7cV7FnLiFOP3dNODlkI09Qb9dULbFmsogRiRCaNeAR606Da8SiKcRNAUGHFzUryG_gci4QnSDBlcYYP9NsbBrONEa1AbwRsH-0Lz4eB5Nhrsn_1LpBVz_OJ7G76P5u6dwk5Jp890O9mGvXq31M0RvtXzeDNAfdc46hQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enantioselective+Hydroxylation+of+Dihydrosilanes+to+Si-Chiral+Silanols+Catalyzed+by+In+Situ+Generated+Copper%28II%29+Species&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yang%2C+Wu&rft.au=Liu%2C+Lin&rft.au=Guo%2C+Jiandong&rft.au=Wang%2C+Shou-Guo&rft.date=2022-08-08&rft.eissn=1521-3773&rft_id=info:doi/10.1002%2Fanie.202205743&rft_id=info%3Apmid%2F35652388&rft.externalDocID=35652388 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |