Proximity‐Coupling‐Induced Significant Enhancement of Coercive Field and Curie Temperature in 2D van der Waals Heterostructures
Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the disc...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 38; pp. e2002032 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI3 and Cr2Ge2Te6 insulators, itinerant ferromagnetic Fe3GeTe2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (TC), and relatively better stability, is a promising candidate for achieving permanent room‐temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS3. The magneto‐optical Kerr effect results show that the TC of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices.
Significant enhancements of Curie temperature (TC) and coercive field (HC) are achieved in ultrathin Fe3GeTe2 (FGT) flakes by using the proximity effect between FGT and FePS3 (FPS). The TC is improved by more than 30 K and the HC is increased by ≈100%, which makes 2D FPS/FGT heterostructures promising candidates for applications in magnetic sensors and storage devices. |
---|---|
AbstractList | Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI
and Cr
Ge
Te
insulators, itinerant ferromagnetic Fe
GeTe
(FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (T
), and relatively better stability, is a promising candidate for achieving permanent room-temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS
. The magneto-optical Kerr effect results show that the T
of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices. Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI3 and Cr2 Ge2 Te6 insulators, itinerant ferromagnetic Fe3 GeTe2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (TC ), and relatively better stability, is a promising candidate for achieving permanent room-temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS3 . The magneto-optical Kerr effect results show that the TC of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices.Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI3 and Cr2 Ge2 Te6 insulators, itinerant ferromagnetic Fe3 GeTe2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (TC ), and relatively better stability, is a promising candidate for achieving permanent room-temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS3 . The magneto-optical Kerr effect results show that the TC of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices. Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI3 and Cr2Ge2Te6 insulators, itinerant ferromagnetic Fe3GeTe2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (TC), and relatively better stability, is a promising candidate for achieving permanent room‐temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS3. The magneto‐optical Kerr effect results show that the TC of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices. Significant enhancements of Curie temperature (TC) and coercive field (HC) are achieved in ultrathin Fe3GeTe2 (FGT) flakes by using the proximity effect between FGT and FePS3 (FPS). The TC is improved by more than 30 K and the HC is increased by ≈100%, which makes 2D FPS/FGT heterostructures promising candidates for applications in magnetic sensors and storage devices. Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI3 and Cr2Ge2Te6 insulators, itinerant ferromagnetic Fe3GeTe2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (TC), and relatively better stability, is a promising candidate for achieving permanent room‐temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS3. The magneto‐optical Kerr effect results show that the TC of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices. Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI 3 and Cr 2 Ge 2 Te 6 insulators, itinerant ferromagnetic Fe 3 GeTe 2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature ( T C ), and relatively better stability, is a promising candidate for achieving permanent room‐temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS 3 . The magneto‐optical Kerr effect results show that the T C of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices. |
Author | Li, Zheng Dai, Hongwei Wang, Mingshan Zhang, Luman Cheng, Hui Wang, Xia Han, Junbo Tong, Lei Han, Xiaotao Huang, Xinyu Ye, Lei |
Author_xml | – sequence: 1 givenname: Luman surname: Zhang fullname: Zhang, Luman organization: Huazhong University of Science and Technology (HUST) – sequence: 2 givenname: Xinyu surname: Huang fullname: Huang, Xinyu organization: Huazhong University of Science and Technology – sequence: 3 givenname: Hongwei surname: Dai fullname: Dai, Hongwei organization: Huazhong University of Science and Technology (HUST) – sequence: 4 givenname: Mingshan surname: Wang fullname: Wang, Mingshan organization: Huazhong University of Science and Technology (HUST) – sequence: 5 givenname: Hui surname: Cheng fullname: Cheng, Hui organization: Huazhong University of Science and Technology (HUST) – sequence: 6 givenname: Lei surname: Tong fullname: Tong, Lei organization: Huazhong University of Science and Technology – sequence: 7 givenname: Zheng surname: Li fullname: Li, Zheng organization: Huazhong University of Science and Technology – sequence: 8 givenname: Xiaotao surname: Han fullname: Han, Xiaotao organization: Huazhong University of Science and Technology (HUST) – sequence: 9 givenname: Xia surname: Wang fullname: Wang, Xia organization: Wenhua College – sequence: 10 givenname: Lei surname: Ye fullname: Ye, Lei email: leiye@hust.edu.cn organization: Huazhong University of Science and Technology – sequence: 11 givenname: Junbo orcidid: 0000-0002-5072-4897 surname: Han fullname: Han, Junbo email: junbo.han@mail.hust.edu.cn organization: Huazhong University of Science and Technology (HUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32803805$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd9qFDEUxoNU7LZ666UEvPFm15N_M5PLZdraQkXBipdDNjlbU2aSNTOp7p3gC_iMPolZtlYoiDfJx-H35ZyT74gchBiQkOcMFgyAvzZuMAsOvGgQ_BGZMcXZXIJWB2QGWqi5rmRzSI7G8QYAdAXVE3IoeAOiATUjP96n-M0Pftr--v6zjXnT-3Bd5EVw2aKjH_x18GtvTZjoafhsgsUBi45r2kZM1t8iPfPYO2qCo21OHukVDhtMZsoJqQ-Un9BbE6jDRD8Z04_0HCdMcZxStjtmfEoer0sdn93dx-Tj2elVez6_fPfmol1ezq0Umu9OycAypyVjq8bUrma6Fo1QBmElVF2ZugYBKG3NhISmYbUUlamkEsYCiGPyav_uJsUvGcepG_xose9NwJjHjpcGtao00wV9-QC9iTmFMl2hpBRKcsUK9eKOyqsBXbdJfjBp2_353gIs9oAt-44J1_cIg26XX7fLr7vPrxjkA4P1k5l8DFMyvv-3Te9tX32P2_806ZYnb5d_vb8BpOGvkg |
CitedBy_id | crossref_primary_10_1039_D4RA04463K crossref_primary_10_1021_acsanm_3c06286 crossref_primary_10_1063_5_0080505 crossref_primary_10_1002_adma_202207276 crossref_primary_10_1021_acsami_3c09932 crossref_primary_10_1021_acsnano_4c07128 crossref_primary_10_1038_s41467_023_37918_7 crossref_primary_10_1021_acsaelm_4c02156 crossref_primary_10_7498_aps_71_20212033 crossref_primary_10_1002_adma_202200474 crossref_primary_10_1039_D3CP01731A crossref_primary_10_1088_1361_6463_ad32ec crossref_primary_10_1002_adfm_202418006 crossref_primary_10_1021_acs_nanolett_3c04799 crossref_primary_10_1063_5_0078814 crossref_primary_10_1002_admi_202200098 crossref_primary_10_1002_aenm_202303001 crossref_primary_10_1021_acsami_3c10376 crossref_primary_10_1002_sstr_202100077 crossref_primary_10_1038_s41699_023_00404_1 crossref_primary_10_1103_PhysRevB_108_L140412 crossref_primary_10_1039_D1TC00415H crossref_primary_10_1103_PhysRevLett_134_116702 crossref_primary_10_1021_acs_nanolett_4c01031 crossref_primary_10_1007_s12274_023_5609_y crossref_primary_10_1038_s41565_021_00936_x crossref_primary_10_1016_j_jallcom_2022_168375 crossref_primary_10_1088_1361_6641_ad22fd crossref_primary_10_1039_D4MH00941J crossref_primary_10_1021_acsanm_3c03958 crossref_primary_10_1039_D1NR02480A crossref_primary_10_1103_PhysRevB_108_094408 crossref_primary_10_1021_acsnano_4c14733 crossref_primary_10_1088_1361_6463_ad865f crossref_primary_10_1103_PhysRevMaterials_7_014008 crossref_primary_10_1080_14686996_2022_2030652 crossref_primary_10_1088_1361_6463_ac18eb crossref_primary_10_1016_j_isci_2023_107584 crossref_primary_10_1021_acsami_4c15691 crossref_primary_10_1039_D2CP05228H crossref_primary_10_1063_9_0000413 crossref_primary_10_1039_D3CP05525F crossref_primary_10_1021_acsnano_2c04132 crossref_primary_10_1021_acsnano_2c09143 crossref_primary_10_1002_smtd_202001068 crossref_primary_10_1021_acsnano_3c02764 crossref_primary_10_1021_acs_nanolett_2c01370 crossref_primary_10_1007_s11432_023_3744_2 crossref_primary_10_1021_acsaelm_2c01256 crossref_primary_10_1088_0256_307X_41_6_067503 crossref_primary_10_1021_acs_chemrev_3c00170 crossref_primary_10_1103_PhysRevB_109_L060404 crossref_primary_10_7498_aps_70_20202204 crossref_primary_10_1002_adom_202402549 crossref_primary_10_3390_molecules28217244 crossref_primary_10_1039_D1NR07730A crossref_primary_10_1103_PhysRevB_109_245432 crossref_primary_10_1103_PhysRevB_110_184427 crossref_primary_10_1007_s40843_020_1616_4 crossref_primary_10_1016_j_jmmm_2023_171052 crossref_primary_10_1002_advs_202413892 crossref_primary_10_1007_s12274_021_3633_3 crossref_primary_10_1038_s41467_023_42844_9 crossref_primary_10_1002_apxr_202200106 crossref_primary_10_1038_s41699_022_00315_7 crossref_primary_10_1002_adma_202305044 crossref_primary_10_7498_aps_70_20202136 crossref_primary_10_3390_mi13020319 crossref_primary_10_1002_adfm_202309335 crossref_primary_10_1002_adma_202305739 crossref_primary_10_1007_s11432_021_3432_6 crossref_primary_10_1002_advs_202409210 crossref_primary_10_3390_coatings12020122 crossref_primary_10_1021_acsnano_3c09654 crossref_primary_10_1007_s40843_022_2298_0 crossref_primary_10_1088_1674_1056_ac6eed crossref_primary_10_1103_PhysRevApplied_17_L051001 crossref_primary_10_1002_advs_202307034 crossref_primary_10_1021_acsnano_2c03626 crossref_primary_10_1039_D1NR03342E crossref_primary_10_7498_aps_70_20202146 crossref_primary_10_1039_D0NR07290G crossref_primary_10_1002_advs_202200186 crossref_primary_10_1002_adfm_202309046 crossref_primary_10_1039_D3NH00009E crossref_primary_10_1039_D1MH01439K crossref_primary_10_1063_5_0130037 crossref_primary_10_1021_acsnano_2c09452 crossref_primary_10_1103_PhysRevB_108_184423 crossref_primary_10_1002_advs_202100847 crossref_primary_10_1103_PhysRevB_107_184403 crossref_primary_10_1063_5_0083272 crossref_primary_10_1021_acsnano_3c07462 crossref_primary_10_1021_jacs_4c13391 crossref_primary_10_3390_nano13162378 crossref_primary_10_1021_acs_chemmater_3c00172 crossref_primary_10_1088_2053_1583_ac456f crossref_primary_10_1021_acsami_1c11132 crossref_primary_10_1103_PhysRevB_106_035137 crossref_primary_10_1021_acsami_2c18028 crossref_primary_10_1109_TMAG_2024_3426954 crossref_primary_10_1002_inf2_12397 crossref_primary_10_1002_adfm_202106592 crossref_primary_10_1103_PhysRevLett_134_106301 crossref_primary_10_1021_acs_chemrev_3c00132 crossref_primary_10_1002_adfm_202409085 crossref_primary_10_1063_5_0160253 crossref_primary_10_1063_5_0050483 crossref_primary_10_1021_acsami_2c22494 crossref_primary_10_1039_D3NR04977A crossref_primary_10_1016_j_ssc_2024_115584 crossref_primary_10_1016_j_pmatsci_2022_101036 crossref_primary_10_1002_admi_202400678 crossref_primary_10_1088_1361_6463_acbcdf crossref_primary_10_1002_aelm_202200164 crossref_primary_10_1002_adfm_202501047 crossref_primary_10_1063_5_0135908 |
Cites_doi | 10.1038/s41565-018-0063-9 10.1103/PhysRevApplied.13.014059 10.1103/PhysRevLett.118.187201 10.1021/acs.nanolett.8b01278 10.1021/acs.nanolett.7b02511 10.1038/nnano.2016.84 10.1126/sciadv.1603113 10.1038/s41928-019-0302-6 10.1038/s41565-018-0121-3 10.1103/PhysRevLett.111.027203 10.1038/s41565-018-0186-z 10.1021/acs.nanolett.8b00683 10.1038/s41563-018-0149-7 10.1103/PhysRevB.77.115406 10.1038/s41467-018-04953-8 10.1038/s41586-018-0626-9 10.1021/acs.nanolett.0c01176 10.1103/PhysRevLett.114.016603 10.1103/PhysRevB.101.024415 10.1038/s41563-019-0506-1 10.1038/s41928-018-0087-z 10.1103/PhysRevB.93.241401 10.1038/nature17635 10.1103/PhysRevLett.109.107204 10.1038/nature22391 10.1038/s41699-017-0033-3 10.1103/PhysRevLett.117.166806 10.1021/acs.nanolett.9b04556 10.1002/adma.200500544 10.1021/acs.nanolett.9b01043 10.1038/nmat4783 10.1126/science.aar4851 10.1088/2053-1583/aa7034 10.1103/PhysRevLett.101.267201 10.1063/1.2798596 10.1038/s41563-019-0505-2 10.1038/nmat4603 10.1063/1.5142077 10.1038/nature22060 10.1088/2053-1583/ab5915 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202002032 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 32803805 10_1002_adma_202002032 ADMA202002032 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Innovation team of Wenhua University funderid: 2019T02 – fundername: Huazhong University of Science and Technology – fundername: National Scientific Foundation of China funderid: 11704138; 61704061; 11404124 – fundername: National Scientific Foundation of China grantid: 11704138 – fundername: Innovation team of Wenhua University grantid: 2019T02 – fundername: National Scientific Foundation of China grantid: 11404124 – fundername: National Scientific Foundation of China grantid: 61704061 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4392-c43410c1d9411b8a7d71973835ae0b3576a77030e4c713408817436a6453ac003 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:00:21 EDT 2025 Sun Jul 13 05:26:10 EDT 2025 Wed Feb 19 02:29:01 EST 2025 Tue Jul 01 02:32:51 EDT 2025 Thu Apr 24 22:54:00 EDT 2025 Wed Jan 22 16:32:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | van der Waals heterostructures improved Curie temperature enhanced coercive field 2D magnetic materials proximity coupling |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4392-c43410c1d9411b8a7d71973835ae0b3576a77030e4c713408817436a6453ac003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5072-4897 |
PMID | 32803805 |
PQID | 2444354251 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2434756919 proquest_journals_2444354251 pubmed_primary_32803805 crossref_primary_10_1002_adma_202002032 crossref_citationtrail_10_1002_adma_202002032 wiley_primary_10_1002_adma_202002032_ADMA202002032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2017; 1 2017; 3 2018; 360 2017; 4 2020; 20 2019; 2 2018; 563 2019; 19 2007; 91 2019; 18 2020; 13 2008; 77 2016; 93 2020; 101 2008; 101 2016; 15 2012; 109 2017; 118 2016; 11 2018; 18 2018; 9 2018; 17 2018; 1 2017; 17 2015; 114 2017; 16 2013; 111 2020; 116 2016; 117 2016; 533 2005; 17 2017; 546 2018; 13 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 109 year: 2012 publication-title: Phys. Rev. Lett. – volume: 563 start-page: 94 year: 2018 publication-title: Nature – volume: 91 year: 2007 publication-title: Appl. Phys. Lett. – volume: 546 start-page: 270 year: 2017 publication-title: Nature – volume: 16 start-page: 94 year: 2017 publication-title: Nat. Mater. – volume: 19 start-page: 4400 year: 2019 publication-title: Nano Lett. – volume: 111 year: 2013 publication-title: Phys. Rev. Lett. – volume: 116 year: 2020 publication-title: Appl. Phys. Lett. – volume: 18 start-page: 4303 year: 2018 publication-title: Nano Lett. – volume: 360 start-page: 1214 year: 2018 publication-title: Science – volume: 13 start-page: 289 year: 2018 publication-title: Nat. Nanotechnol. – volume: 17 start-page: 2978 year: 2005 publication-title: Adv. Mater. – volume: 18 start-page: 1303 year: 2019 publication-title: Nat. Mater. – volume: 7 year: 2019 publication-title: 2D Mater. – volume: 4 year: 2017 publication-title: 2d Mater. – volume: 20 start-page: 3978 year: 2020 publication-title: Nano Lett. – volume: 117 year: 2016 publication-title: Phys. Rev. Lett. – volume: 101 year: 2008 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 544 year: 2018 publication-title: Nat. Nanotechnol. – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 13 year: 2020 publication-title: Phys. Rev. Appl. – volume: 17 start-page: 778 year: 2018 publication-title: Nat. Mater. – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 546 start-page: 265 year: 2017 publication-title: Nature – volume: 18 start-page: 3125 year: 2018 publication-title: Nano Lett. – volume: 2 start-page: 457 year: 2019 publication-title: Nat. Electron. – volume: 13 start-page: 554 year: 2018 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 758 year: 2016 publication-title: Nat. Nanotechnol. – volume: 1 start-page: 30 year: 2017 publication-title: npj 2D Mater. Appl. – volume: 15 start-page: 711 year: 2016 publication-title: Nat. Mater. – volume: 77 year: 2008 publication-title: Phys. Rev. B – volume: 18 start-page: 1298 year: 2019 publication-title: Nat. Mater. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 1 start-page: 344 year: 2018 publication-title: Nat. Electron. – volume: 533 start-page: 513 year: 2016 publication-title: Nature – volume: 20 start-page: 2288 year: 2020 publication-title: Nano Lett. – volume: 9 start-page: 2516 year: 2018 publication-title: Nat. Commun. – volume: 101 year: 2020 publication-title: Phys. Rev. B – volume: 118 year: 2017 publication-title: Phys. Rev. Lett. – volume: 17 start-page: 5626 year: 2017 publication-title: Nano Lett. – ident: e_1_2_5_5_1 doi: 10.1038/s41565-018-0063-9 – ident: e_1_2_5_40_1 doi: 10.1103/PhysRevApplied.13.014059 – ident: e_1_2_5_24_1 doi: 10.1103/PhysRevLett.118.187201 – ident: e_1_2_5_8_1 doi: 10.1021/acs.nanolett.8b01278 – ident: e_1_2_5_34_1 doi: 10.1021/acs.nanolett.7b02511 – ident: e_1_2_5_26_1 doi: 10.1038/nnano.2016.84 – ident: e_1_2_5_10_1 doi: 10.1126/sciadv.1603113 – ident: e_1_2_5_33_1 doi: 10.1038/s41928-019-0302-6 – ident: e_1_2_5_12_1 doi: 10.1038/s41565-018-0121-3 – ident: e_1_2_5_28_1 doi: 10.1103/PhysRevLett.111.027203 – ident: e_1_2_5_15_1 doi: 10.1038/s41565-018-0186-z – ident: e_1_2_5_3_1 doi: 10.1021/acs.nanolett.8b00683 – ident: e_1_2_5_6_1 doi: 10.1038/s41563-018-0149-7 – ident: e_1_2_5_7_1 doi: 10.1103/PhysRevB.77.115406 – ident: e_1_2_5_13_1 doi: 10.1038/s41467-018-04953-8 – ident: e_1_2_5_16_1 doi: 10.1038/s41586-018-0626-9 – ident: e_1_2_5_38_1 doi: 10.1021/acs.nanolett.0c01176 – ident: e_1_2_5_23_1 doi: 10.1103/PhysRevLett.114.016603 – ident: e_1_2_5_37_1 doi: 10.1103/PhysRevB.101.024415 – ident: e_1_2_5_18_1 doi: 10.1038/s41563-019-0506-1 – ident: e_1_2_5_31_1 doi: 10.1038/s41928-018-0087-z – ident: e_1_2_5_19_1 doi: 10.1103/PhysRevB.93.241401 – ident: e_1_2_5_29_1 doi: 10.1038/nature17635 – ident: e_1_2_5_25_1 doi: 10.1103/PhysRevLett.109.107204 – ident: e_1_2_5_1_1 doi: 10.1038/nature22391 – ident: e_1_2_5_4_1 doi: 10.1038/s41699-017-0033-3 – ident: e_1_2_5_21_1 doi: 10.1103/PhysRevLett.117.166806 – ident: e_1_2_5_35_1 doi: 10.1021/acs.nanolett.9b04556 – ident: e_1_2_5_39_1 doi: 10.1002/adma.200500544 – ident: e_1_2_5_9_1 doi: 10.1021/acs.nanolett.9b01043 – ident: e_1_2_5_30_1 doi: 10.1038/nmat4783 – ident: e_1_2_5_11_1 doi: 10.1126/science.aar4851 – ident: e_1_2_5_14_1 doi: 10.1088/2053-1583/aa7034 – ident: e_1_2_5_27_1 doi: 10.1103/PhysRevLett.101.267201 – ident: e_1_2_5_20_1 doi: 10.1063/1.2798596 – ident: e_1_2_5_17_1 doi: 10.1038/s41563-019-0505-2 – ident: e_1_2_5_22_1 doi: 10.1038/nmat4603 – ident: e_1_2_5_36_1 doi: 10.1063/1.5142077 – ident: e_1_2_5_2_1 doi: 10.1038/nature22060 – ident: e_1_2_5_32_1 doi: 10.1088/2053-1583/ab5915 |
SSID | ssj0009606 |
Score | 2.6312983 |
Snippet | Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2002032 |
SubjectTerms | 2D magnetic materials Anisotropy Antiferromagnetism Coercivity Condensed matter physics Coupling Curie temperature enhanced coercive field Ferromagnetism Heterostructures improved Curie temperature Insulators Kerr effects Magnetic properties Magnetism Materials science Memory devices Optical properties proximity coupling van der Waals heterostructures |
Title | Proximity‐Coupling‐Induced Significant Enhancement of Coercive Field and Curie Temperature in 2D van der Waals Heterostructures |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202002032 https://www.ncbi.nlm.nih.gov/pubmed/32803805 https://www.proquest.com/docview/2444354251 https://www.proquest.com/docview/2434756919 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYlp_TQNkl_3CZBgUJPTixbP9Zx2WRZAikhTWhuRpZm05Bil2620J4KfYE-Y54kM9auk20phfZiZCxjWZoZfZJmvmHstYUglKtNakC4VLoyS20JZVoW0shggnCSgpOP3urxmTw8V-f3ovgjP0S_4Uaa0dlrUnBXT_fuSENd6HiD8u4sjYwwOWwRKjq5448ieN6R7RUqtVqWC9bGLN9bfn15VvoNai4j127qGT1mbtHo6HFytTu7rnf9t1_4HP_nr56wR3NcygdRkNbYA2jW2cN7bIUb7McxNoDiob7efP85bGcUy3uBRcr-4SHwd5cXDTke4Vjxg-YDiRNtPfJ2woctJXb6AnxEDnPcNYEPKVcePwWE7ZHWmV82PN_niOx5gM_8vUPF4GPy1mkjyS3WmT5lZ6OD0-E4nedwSD1CnZyuUmReBCuFqEtnghHW4LJYOcjqAlc7zpDRAekpqhVtHi2RtNNSFc6jyXnGVpq2gReMqwBCT6yAkE1kraCUHidTD9pqozMbEpYuxrDyc4JzyrPxsYrUzHlFnVv1nZuwN339T5Ha4481NxciUc1VfFohLkKoiSZPJGynf4zKSScuroF2RnVQ5JW2wibseRSl_lMF5QUrM5WwvBOIv7ShGuwfDfq7l__y0iu2SuXoIbfJVnDsYAsh1XW93anNLQUEF8E |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6h9gAcWn7bQAEjIXFKGyd2HB9Xu10t0K0QbAW3yLG9pQIliHYrlRMSL8Az8iTMxJuUBSEkuET5cRTHnhl_tme-AXiivePSVCpWnptYmCKJdeGLuMiEEk45bgQFJ08P88mReP5Wdt6EFAsT-CH6BTfSjNZek4LTgvTeJWuocS1xUNpupqEVXqe03kSfP3p1ySBFAL2l28tkrHNRdLyNSbq3-v7quPQb2FzFru3gM96Eqqt28Dl5v7s4q3bt518YHf_rv27AxhKaskGQpZtwxde34PpPhIW34etLrAGFRF18__Jt2CwonPcYTykBiPWOvT45rsn3CLuL7dfvSKJo9ZE1czZsKLfTuWdj8pljpnZsSOny2Mwjcg_MzuykZumIIbhnzn9ibwzqBpuQw04TeG6xzOkdOBrvz4aTeJnGIbaIdlI6Cp5Y7rTgvCqMcoprhTNjaXxSZTjhMYrsjheWAlvR7NEsKTe5kJmxaHXuwlrd1H4bmHSe53PNvUvmopK-EBbHU-tznas80S6CuOvE0i45zinVxocysDOnJTVu2TduBE_78h8Du8cfS-50MlEutfy0RGiEaBOtHo_gcf8Y9ZM2XUztmwWVQamXueY6gq0gS_2nMkoNViQygrSViL_UoRyMpoP-6t6_vPQIrk5m04Py4Nnhi_twje4Hh7kdWMN-9A8QYZ1VD1sd-gF9bxvd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIiE48IYGChgJiVPaOPEjPq52u1oerSpoRW-RY3tLVZRUtIsEJyT-QH9jfwkz8W7aBSEkuER5OIpjz4w_2zPfALwwwXNpa53qwG0qbJmlpgxlWhZCC689t4KCk7e21WRPvN6X-5ei-CM_RL_gRprR2WtS8GM_3bggDbW-4w3Ku700NMJXhcoMJW8YvbsgkCJ83rHtFTI1SpQL2sYs31h-f3lY-g1rLkPXbuwZ3wK7qHV0OTlan53W6-7bL4SO__Nbt-HmHJiyQZSkO3AlNHfhxiW6wnvwYwcrQAFRX8-_nw3bGQXzHuAppf9wwbP3hwcNeR5hZ7HN5iPJE609snbKhi1ldvoS2Jg85phtPBtSsjy2GxC3R15ndtiwfMQQ2jMfPrMPFjWDTchdp40st1jm5D7sjTd3h5N0nsQhdYh1cjoKnjnujeC8Lq32mhuN82JpQ1YXON2xmqxOEI7CWtHo0RxJWSVkYR3anAew0rRNWAUmfeBqanjw2VTUMpTC4WjqgjJKY9_7BNJFH1ZuznBOiTY-VZGbOa-ocau-cRN42Zc_jtwefyy5thCJaq7jJxUCI8SaaPN4As_7x6idtOVim9DOqAzKvFSGmwQeRlHqP1VQYrAykwnknUD8pQ7VYLQ16K8e_ctLz-DazmhcvX21_eYxXKfb0VtuDVawG8MThFen9dNOg34CDD0ajA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximity-Coupling-Induced+Significant+Enhancement+of+Coercive+Field+and+Curie+Temperature+in+2D+van+der+Waals+Heterostructures&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Luman&rft.au=Huang%2C+Xinyu&rft.au=Dai%2C+Hongwei&rft.au=Wang%2C+Mingshan&rft.date=2020-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=32&rft.issue=38&rft.spage=e2002032&rft_id=info:doi/10.1002%2Fadma.202002032&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |