Proximity‐Coupling‐Induced Significant Enhancement of Coercive Field and Curie Temperature in 2D van der Waals Heterostructures

Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the disc...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 38; pp. e2002032 - n/a
Main Authors Zhang, Luman, Huang, Xinyu, Dai, Hongwei, Wang, Mingshan, Cheng, Hui, Tong, Lei, Li, Zheng, Han, Xiaotao, Wang, Xia, Ye, Lei, Han, Junbo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI3 and Cr2Ge2Te6 insulators, itinerant ferromagnetic Fe3GeTe2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (TC), and relatively better stability, is a promising candidate for achieving permanent room‐temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS3. The magneto‐optical Kerr effect results show that the TC of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices. Significant enhancements of Curie temperature (TC) and coercive field (HC) are achieved in ultrathin Fe3GeTe2 (FGT) flakes by using the proximity effect between FGT and FePS3 (FPS). The TC is improved by more than 30 K and the HC is increased by ≈100%, which makes 2D FPS/FGT heterostructures promising candidates for applications in magnetic sensors and storage devices.
AbstractList Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI and Cr Ge Te insulators, itinerant ferromagnetic Fe GeTe (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (T ), and relatively better stability, is a promising candidate for achieving permanent room-temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS . The magneto-optical Kerr effect results show that the T of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices.
Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI3 and Cr2 Ge2 Te6 insulators, itinerant ferromagnetic Fe3 GeTe2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (TC ), and relatively better stability, is a promising candidate for achieving permanent room-temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS3 . The magneto-optical Kerr effect results show that the TC of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices.Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI3 and Cr2 Ge2 Te6 insulators, itinerant ferromagnetic Fe3 GeTe2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (TC ), and relatively better stability, is a promising candidate for achieving permanent room-temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS3 . The magneto-optical Kerr effect results show that the TC of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices.
Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI3 and Cr2Ge2Te6 insulators, itinerant ferromagnetic Fe3GeTe2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (TC), and relatively better stability, is a promising candidate for achieving permanent room‐temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS3. The magneto‐optical Kerr effect results show that the TC of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices. Significant enhancements of Curie temperature (TC) and coercive field (HC) are achieved in ultrathin Fe3GeTe2 (FGT) flakes by using the proximity effect between FGT and FePS3 (FPS). The TC is improved by more than 30 K and the HC is increased by ≈100%, which makes 2D FPS/FGT heterostructures promising candidates for applications in magnetic sensors and storage devices.
Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI3 and Cr2Ge2Te6 insulators, itinerant ferromagnetic Fe3GeTe2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (TC), and relatively better stability, is a promising candidate for achieving permanent room‐temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS3. The magneto‐optical Kerr effect results show that the TC of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices.
Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI 3 and Cr 2 Ge 2 Te 6 insulators, itinerant ferromagnetic Fe 3 GeTe 2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature ( T C ), and relatively better stability, is a promising candidate for achieving permanent room‐temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS 3 . The magneto‐optical Kerr effect results show that the T C of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices.
Author Li, Zheng
Dai, Hongwei
Wang, Mingshan
Zhang, Luman
Cheng, Hui
Wang, Xia
Han, Junbo
Tong, Lei
Han, Xiaotao
Huang, Xinyu
Ye, Lei
Author_xml – sequence: 1
  givenname: Luman
  surname: Zhang
  fullname: Zhang, Luman
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 2
  givenname: Xinyu
  surname: Huang
  fullname: Huang, Xinyu
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Hongwei
  surname: Dai
  fullname: Dai, Hongwei
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 4
  givenname: Mingshan
  surname: Wang
  fullname: Wang, Mingshan
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 5
  givenname: Hui
  surname: Cheng
  fullname: Cheng, Hui
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 6
  givenname: Lei
  surname: Tong
  fullname: Tong, Lei
  organization: Huazhong University of Science and Technology
– sequence: 7
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: Huazhong University of Science and Technology
– sequence: 8
  givenname: Xiaotao
  surname: Han
  fullname: Han, Xiaotao
  organization: Huazhong University of Science and Technology (HUST)
– sequence: 9
  givenname: Xia
  surname: Wang
  fullname: Wang, Xia
  organization: Wenhua College
– sequence: 10
  givenname: Lei
  surname: Ye
  fullname: Ye, Lei
  email: leiye@hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 11
  givenname: Junbo
  orcidid: 0000-0002-5072-4897
  surname: Han
  fullname: Han, Junbo
  email: junbo.han@mail.hust.edu.cn
  organization: Huazhong University of Science and Technology (HUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32803805$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9qFDEUxoNU7LZ666UEvPFm15N_M5PLZdraQkXBipdDNjlbU2aSNTOp7p3gC_iMPolZtlYoiDfJx-H35ZyT74gchBiQkOcMFgyAvzZuMAsOvGgQ_BGZMcXZXIJWB2QGWqi5rmRzSI7G8QYAdAXVE3IoeAOiATUjP96n-M0Pftr--v6zjXnT-3Bd5EVw2aKjH_x18GtvTZjoafhsgsUBi45r2kZM1t8iPfPYO2qCo21OHukVDhtMZsoJqQ-Un9BbE6jDRD8Z04_0HCdMcZxStjtmfEoer0sdn93dx-Tj2elVez6_fPfmol1ezq0Umu9OycAypyVjq8bUrma6Fo1QBmElVF2ZugYBKG3NhISmYbUUlamkEsYCiGPyav_uJsUvGcepG_xose9NwJjHjpcGtao00wV9-QC9iTmFMl2hpBRKcsUK9eKOyqsBXbdJfjBp2_353gIs9oAt-44J1_cIg26XX7fLr7vPrxjkA4P1k5l8DFMyvv-3Te9tX32P2_806ZYnb5d_vb8BpOGvkg
CitedBy_id crossref_primary_10_1039_D4RA04463K
crossref_primary_10_1021_acsanm_3c06286
crossref_primary_10_1063_5_0080505
crossref_primary_10_1002_adma_202207276
crossref_primary_10_1021_acsami_3c09932
crossref_primary_10_1021_acsnano_4c07128
crossref_primary_10_1038_s41467_023_37918_7
crossref_primary_10_1021_acsaelm_4c02156
crossref_primary_10_7498_aps_71_20212033
crossref_primary_10_1002_adma_202200474
crossref_primary_10_1039_D3CP01731A
crossref_primary_10_1088_1361_6463_ad32ec
crossref_primary_10_1002_adfm_202418006
crossref_primary_10_1021_acs_nanolett_3c04799
crossref_primary_10_1063_5_0078814
crossref_primary_10_1002_admi_202200098
crossref_primary_10_1002_aenm_202303001
crossref_primary_10_1021_acsami_3c10376
crossref_primary_10_1002_sstr_202100077
crossref_primary_10_1038_s41699_023_00404_1
crossref_primary_10_1103_PhysRevB_108_L140412
crossref_primary_10_1039_D1TC00415H
crossref_primary_10_1103_PhysRevLett_134_116702
crossref_primary_10_1021_acs_nanolett_4c01031
crossref_primary_10_1007_s12274_023_5609_y
crossref_primary_10_1038_s41565_021_00936_x
crossref_primary_10_1016_j_jallcom_2022_168375
crossref_primary_10_1088_1361_6641_ad22fd
crossref_primary_10_1039_D4MH00941J
crossref_primary_10_1021_acsanm_3c03958
crossref_primary_10_1039_D1NR02480A
crossref_primary_10_1103_PhysRevB_108_094408
crossref_primary_10_1021_acsnano_4c14733
crossref_primary_10_1088_1361_6463_ad865f
crossref_primary_10_1103_PhysRevMaterials_7_014008
crossref_primary_10_1080_14686996_2022_2030652
crossref_primary_10_1088_1361_6463_ac18eb
crossref_primary_10_1016_j_isci_2023_107584
crossref_primary_10_1021_acsami_4c15691
crossref_primary_10_1039_D2CP05228H
crossref_primary_10_1063_9_0000413
crossref_primary_10_1039_D3CP05525F
crossref_primary_10_1021_acsnano_2c04132
crossref_primary_10_1021_acsnano_2c09143
crossref_primary_10_1002_smtd_202001068
crossref_primary_10_1021_acsnano_3c02764
crossref_primary_10_1021_acs_nanolett_2c01370
crossref_primary_10_1007_s11432_023_3744_2
crossref_primary_10_1021_acsaelm_2c01256
crossref_primary_10_1088_0256_307X_41_6_067503
crossref_primary_10_1021_acs_chemrev_3c00170
crossref_primary_10_1103_PhysRevB_109_L060404
crossref_primary_10_7498_aps_70_20202204
crossref_primary_10_1002_adom_202402549
crossref_primary_10_3390_molecules28217244
crossref_primary_10_1039_D1NR07730A
crossref_primary_10_1103_PhysRevB_109_245432
crossref_primary_10_1103_PhysRevB_110_184427
crossref_primary_10_1007_s40843_020_1616_4
crossref_primary_10_1016_j_jmmm_2023_171052
crossref_primary_10_1002_advs_202413892
crossref_primary_10_1007_s12274_021_3633_3
crossref_primary_10_1038_s41467_023_42844_9
crossref_primary_10_1002_apxr_202200106
crossref_primary_10_1038_s41699_022_00315_7
crossref_primary_10_1002_adma_202305044
crossref_primary_10_7498_aps_70_20202136
crossref_primary_10_3390_mi13020319
crossref_primary_10_1002_adfm_202309335
crossref_primary_10_1002_adma_202305739
crossref_primary_10_1007_s11432_021_3432_6
crossref_primary_10_1002_advs_202409210
crossref_primary_10_3390_coatings12020122
crossref_primary_10_1021_acsnano_3c09654
crossref_primary_10_1007_s40843_022_2298_0
crossref_primary_10_1088_1674_1056_ac6eed
crossref_primary_10_1103_PhysRevApplied_17_L051001
crossref_primary_10_1002_advs_202307034
crossref_primary_10_1021_acsnano_2c03626
crossref_primary_10_1039_D1NR03342E
crossref_primary_10_7498_aps_70_20202146
crossref_primary_10_1039_D0NR07290G
crossref_primary_10_1002_advs_202200186
crossref_primary_10_1002_adfm_202309046
crossref_primary_10_1039_D3NH00009E
crossref_primary_10_1039_D1MH01439K
crossref_primary_10_1063_5_0130037
crossref_primary_10_1021_acsnano_2c09452
crossref_primary_10_1103_PhysRevB_108_184423
crossref_primary_10_1002_advs_202100847
crossref_primary_10_1103_PhysRevB_107_184403
crossref_primary_10_1063_5_0083272
crossref_primary_10_1021_acsnano_3c07462
crossref_primary_10_1021_jacs_4c13391
crossref_primary_10_3390_nano13162378
crossref_primary_10_1021_acs_chemmater_3c00172
crossref_primary_10_1088_2053_1583_ac456f
crossref_primary_10_1021_acsami_1c11132
crossref_primary_10_1103_PhysRevB_106_035137
crossref_primary_10_1021_acsami_2c18028
crossref_primary_10_1109_TMAG_2024_3426954
crossref_primary_10_1002_inf2_12397
crossref_primary_10_1002_adfm_202106592
crossref_primary_10_1103_PhysRevLett_134_106301
crossref_primary_10_1021_acs_chemrev_3c00132
crossref_primary_10_1002_adfm_202409085
crossref_primary_10_1063_5_0160253
crossref_primary_10_1063_5_0050483
crossref_primary_10_1021_acsami_2c22494
crossref_primary_10_1039_D3NR04977A
crossref_primary_10_1016_j_ssc_2024_115584
crossref_primary_10_1016_j_pmatsci_2022_101036
crossref_primary_10_1002_admi_202400678
crossref_primary_10_1088_1361_6463_acbcdf
crossref_primary_10_1002_aelm_202200164
crossref_primary_10_1002_adfm_202501047
crossref_primary_10_1063_5_0135908
Cites_doi 10.1038/s41565-018-0063-9
10.1103/PhysRevApplied.13.014059
10.1103/PhysRevLett.118.187201
10.1021/acs.nanolett.8b01278
10.1021/acs.nanolett.7b02511
10.1038/nnano.2016.84
10.1126/sciadv.1603113
10.1038/s41928-019-0302-6
10.1038/s41565-018-0121-3
10.1103/PhysRevLett.111.027203
10.1038/s41565-018-0186-z
10.1021/acs.nanolett.8b00683
10.1038/s41563-018-0149-7
10.1103/PhysRevB.77.115406
10.1038/s41467-018-04953-8
10.1038/s41586-018-0626-9
10.1021/acs.nanolett.0c01176
10.1103/PhysRevLett.114.016603
10.1103/PhysRevB.101.024415
10.1038/s41563-019-0506-1
10.1038/s41928-018-0087-z
10.1103/PhysRevB.93.241401
10.1038/nature17635
10.1103/PhysRevLett.109.107204
10.1038/nature22391
10.1038/s41699-017-0033-3
10.1103/PhysRevLett.117.166806
10.1021/acs.nanolett.9b04556
10.1002/adma.200500544
10.1021/acs.nanolett.9b01043
10.1038/nmat4783
10.1126/science.aar4851
10.1088/2053-1583/aa7034
10.1103/PhysRevLett.101.267201
10.1063/1.2798596
10.1038/s41563-019-0505-2
10.1038/nmat4603
10.1063/1.5142077
10.1038/nature22060
10.1088/2053-1583/ab5915
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202002032
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32803805
10_1002_adma_202002032
ADMA202002032
Genre article
Journal Article
GrantInformation_xml – fundername: Innovation team of Wenhua University
  funderid: 2019T02
– fundername: Huazhong University of Science and Technology
– fundername: National Scientific Foundation of China
  funderid: 11704138; 61704061; 11404124
– fundername: National Scientific Foundation of China
  grantid: 11704138
– fundername: Innovation team of Wenhua University
  grantid: 2019T02
– fundername: National Scientific Foundation of China
  grantid: 11404124
– fundername: National Scientific Foundation of China
  grantid: 61704061
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4392-c43410c1d9411b8a7d71973835ae0b3576a77030e4c713408817436a6453ac003
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:00:21 EDT 2025
Sun Jul 13 05:26:10 EDT 2025
Wed Feb 19 02:29:01 EST 2025
Tue Jul 01 02:32:51 EDT 2025
Thu Apr 24 22:54:00 EDT 2025
Wed Jan 22 16:32:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords van der Waals heterostructures
improved Curie temperature
enhanced coercive field
2D magnetic materials
proximity coupling
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4392-c43410c1d9411b8a7d71973835ae0b3576a77030e4c713408817436a6453ac003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5072-4897
PMID 32803805
PQID 2444354251
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2434756919
proquest_journals_2444354251
pubmed_primary_32803805
crossref_primary_10_1002_adma_202002032
crossref_citationtrail_10_1002_adma_202002032
wiley_primary_10_1002_adma_202002032_ADMA202002032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2017; 1
2017; 3
2018; 360
2017; 4
2020; 20
2019; 2
2018; 563
2019; 19
2007; 91
2019; 18
2020; 13
2008; 77
2016; 93
2020; 101
2008; 101
2016; 15
2012; 109
2017; 118
2016; 11
2018; 18
2018; 9
2018; 17
2018; 1
2017; 17
2015; 114
2017; 16
2013; 111
2020; 116
2016; 117
2016; 533
2005; 17
2017; 546
2018; 13
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 563
  start-page: 94
  year: 2018
  publication-title: Nature
– volume: 91
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 546
  start-page: 270
  year: 2017
  publication-title: Nature
– volume: 16
  start-page: 94
  year: 2017
  publication-title: Nat. Mater.
– volume: 19
  start-page: 4400
  year: 2019
  publication-title: Nano Lett.
– volume: 111
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 116
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 4303
  year: 2018
  publication-title: Nano Lett.
– volume: 360
  start-page: 1214
  year: 2018
  publication-title: Science
– volume: 13
  start-page: 289
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 17
  start-page: 2978
  year: 2005
  publication-title: Adv. Mater.
– volume: 18
  start-page: 1303
  year: 2019
  publication-title: Nat. Mater.
– volume: 7
  year: 2019
  publication-title: 2D Mater.
– volume: 4
  year: 2017
  publication-title: 2d Mater.
– volume: 20
  start-page: 3978
  year: 2020
  publication-title: Nano Lett.
– volume: 117
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 101
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 544
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 13
  year: 2020
  publication-title: Phys. Rev. Appl.
– volume: 17
  start-page: 778
  year: 2018
  publication-title: Nat. Mater.
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 546
  start-page: 265
  year: 2017
  publication-title: Nature
– volume: 18
  start-page: 3125
  year: 2018
  publication-title: Nano Lett.
– volume: 2
  start-page: 457
  year: 2019
  publication-title: Nat. Electron.
– volume: 13
  start-page: 554
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 758
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 30
  year: 2017
  publication-title: npj 2D Mater. Appl.
– volume: 15
  start-page: 711
  year: 2016
  publication-title: Nat. Mater.
– volume: 77
  year: 2008
  publication-title: Phys. Rev. B
– volume: 18
  start-page: 1298
  year: 2019
  publication-title: Nat. Mater.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 1
  start-page: 344
  year: 2018
  publication-title: Nat. Electron.
– volume: 533
  start-page: 513
  year: 2016
  publication-title: Nature
– volume: 20
  start-page: 2288
  year: 2020
  publication-title: Nano Lett.
– volume: 9
  start-page: 2516
  year: 2018
  publication-title: Nat. Commun.
– volume: 101
  year: 2020
  publication-title: Phys. Rev. B
– volume: 118
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 5626
  year: 2017
  publication-title: Nano Lett.
– ident: e_1_2_5_5_1
  doi: 10.1038/s41565-018-0063-9
– ident: e_1_2_5_40_1
  doi: 10.1103/PhysRevApplied.13.014059
– ident: e_1_2_5_24_1
  doi: 10.1103/PhysRevLett.118.187201
– ident: e_1_2_5_8_1
  doi: 10.1021/acs.nanolett.8b01278
– ident: e_1_2_5_34_1
  doi: 10.1021/acs.nanolett.7b02511
– ident: e_1_2_5_26_1
  doi: 10.1038/nnano.2016.84
– ident: e_1_2_5_10_1
  doi: 10.1126/sciadv.1603113
– ident: e_1_2_5_33_1
  doi: 10.1038/s41928-019-0302-6
– ident: e_1_2_5_12_1
  doi: 10.1038/s41565-018-0121-3
– ident: e_1_2_5_28_1
  doi: 10.1103/PhysRevLett.111.027203
– ident: e_1_2_5_15_1
  doi: 10.1038/s41565-018-0186-z
– ident: e_1_2_5_3_1
  doi: 10.1021/acs.nanolett.8b00683
– ident: e_1_2_5_6_1
  doi: 10.1038/s41563-018-0149-7
– ident: e_1_2_5_7_1
  doi: 10.1103/PhysRevB.77.115406
– ident: e_1_2_5_13_1
  doi: 10.1038/s41467-018-04953-8
– ident: e_1_2_5_16_1
  doi: 10.1038/s41586-018-0626-9
– ident: e_1_2_5_38_1
  doi: 10.1021/acs.nanolett.0c01176
– ident: e_1_2_5_23_1
  doi: 10.1103/PhysRevLett.114.016603
– ident: e_1_2_5_37_1
  doi: 10.1103/PhysRevB.101.024415
– ident: e_1_2_5_18_1
  doi: 10.1038/s41563-019-0506-1
– ident: e_1_2_5_31_1
  doi: 10.1038/s41928-018-0087-z
– ident: e_1_2_5_19_1
  doi: 10.1103/PhysRevB.93.241401
– ident: e_1_2_5_29_1
  doi: 10.1038/nature17635
– ident: e_1_2_5_25_1
  doi: 10.1103/PhysRevLett.109.107204
– ident: e_1_2_5_1_1
  doi: 10.1038/nature22391
– ident: e_1_2_5_4_1
  doi: 10.1038/s41699-017-0033-3
– ident: e_1_2_5_21_1
  doi: 10.1103/PhysRevLett.117.166806
– ident: e_1_2_5_35_1
  doi: 10.1021/acs.nanolett.9b04556
– ident: e_1_2_5_39_1
  doi: 10.1002/adma.200500544
– ident: e_1_2_5_9_1
  doi: 10.1021/acs.nanolett.9b01043
– ident: e_1_2_5_30_1
  doi: 10.1038/nmat4783
– ident: e_1_2_5_11_1
  doi: 10.1126/science.aar4851
– ident: e_1_2_5_14_1
  doi: 10.1088/2053-1583/aa7034
– ident: e_1_2_5_27_1
  doi: 10.1103/PhysRevLett.101.267201
– ident: e_1_2_5_20_1
  doi: 10.1063/1.2798596
– ident: e_1_2_5_17_1
  doi: 10.1038/s41563-019-0505-2
– ident: e_1_2_5_22_1
  doi: 10.1038/nmat4603
– ident: e_1_2_5_36_1
  doi: 10.1063/1.5142077
– ident: e_1_2_5_2_1
  doi: 10.1038/nature22060
– ident: e_1_2_5_32_1
  doi: 10.1088/2053-1583/ab5915
SSID ssj0009606
Score 2.6312983
Snippet Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2002032
SubjectTerms 2D magnetic materials
Anisotropy
Antiferromagnetism
Coercivity
Condensed matter physics
Coupling
Curie temperature
enhanced coercive field
Ferromagnetism
Heterostructures
improved Curie temperature
Insulators
Kerr effects
Magnetic properties
Magnetism
Materials science
Memory devices
Optical properties
proximity coupling
van der Waals heterostructures
Title Proximity‐Coupling‐Induced Significant Enhancement of Coercive Field and Curie Temperature in 2D van der Waals Heterostructures
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202002032
https://www.ncbi.nlm.nih.gov/pubmed/32803805
https://www.proquest.com/docview/2444354251
https://www.proquest.com/docview/2434756919
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYlp_TQNkl_3CZBgUJPTixbP9Zx2WRZAikhTWhuRpZm05Bil2620J4KfYE-Y54kM9auk20phfZiZCxjWZoZfZJmvmHstYUglKtNakC4VLoyS20JZVoW0shggnCSgpOP3urxmTw8V-f3ovgjP0S_4Uaa0dlrUnBXT_fuSENd6HiD8u4sjYwwOWwRKjq5448ieN6R7RUqtVqWC9bGLN9bfn15VvoNai4j127qGT1mbtHo6HFytTu7rnf9t1_4HP_nr56wR3NcygdRkNbYA2jW2cN7bIUb7McxNoDiob7efP85bGcUy3uBRcr-4SHwd5cXDTke4Vjxg-YDiRNtPfJ2woctJXb6AnxEDnPcNYEPKVcePwWE7ZHWmV82PN_niOx5gM_8vUPF4GPy1mkjyS3WmT5lZ6OD0-E4nedwSD1CnZyuUmReBCuFqEtnghHW4LJYOcjqAlc7zpDRAekpqhVtHi2RtNNSFc6jyXnGVpq2gReMqwBCT6yAkE1kraCUHidTD9pqozMbEpYuxrDyc4JzyrPxsYrUzHlFnVv1nZuwN339T5Ha4481NxciUc1VfFohLkKoiSZPJGynf4zKSScuroF2RnVQ5JW2wibseRSl_lMF5QUrM5WwvBOIv7ShGuwfDfq7l__y0iu2SuXoIbfJVnDsYAsh1XW93anNLQUEF8E
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6h9gAcWn7bQAEjIXFKGyd2HB9Xu10t0K0QbAW3yLG9pQIliHYrlRMSL8Az8iTMxJuUBSEkuET5cRTHnhl_tme-AXiivePSVCpWnptYmCKJdeGLuMiEEk45bgQFJ08P88mReP5Wdt6EFAsT-CH6BTfSjNZek4LTgvTeJWuocS1xUNpupqEVXqe03kSfP3p1ySBFAL2l28tkrHNRdLyNSbq3-v7quPQb2FzFru3gM96Eqqt28Dl5v7s4q3bt518YHf_rv27AxhKaskGQpZtwxde34PpPhIW34etLrAGFRF18__Jt2CwonPcYTykBiPWOvT45rsn3CLuL7dfvSKJo9ZE1czZsKLfTuWdj8pljpnZsSOny2Mwjcg_MzuykZumIIbhnzn9ibwzqBpuQw04TeG6xzOkdOBrvz4aTeJnGIbaIdlI6Cp5Y7rTgvCqMcoprhTNjaXxSZTjhMYrsjheWAlvR7NEsKTe5kJmxaHXuwlrd1H4bmHSe53PNvUvmopK-EBbHU-tznas80S6CuOvE0i45zinVxocysDOnJTVu2TduBE_78h8Du8cfS-50MlEutfy0RGiEaBOtHo_gcf8Y9ZM2XUztmwWVQamXueY6gq0gS_2nMkoNViQygrSViL_UoRyMpoP-6t6_vPQIrk5m04Py4Nnhi_twje4Hh7kdWMN-9A8QYZ1VD1sd-gF9bxvd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hIiE48IYGChgJiVPaOPEjPq52u1oerSpoRW-RY3tLVZRUtIsEJyT-QH9jfwkz8W7aBSEkuER5OIpjz4w_2zPfALwwwXNpa53qwG0qbJmlpgxlWhZCC689t4KCk7e21WRPvN6X-5ei-CM_RL_gRprR2WtS8GM_3bggDbW-4w3Ku700NMJXhcoMJW8YvbsgkCJ83rHtFTI1SpQL2sYs31h-f3lY-g1rLkPXbuwZ3wK7qHV0OTlan53W6-7bL4SO__Nbt-HmHJiyQZSkO3AlNHfhxiW6wnvwYwcrQAFRX8-_nw3bGQXzHuAppf9wwbP3hwcNeR5hZ7HN5iPJE609snbKhi1ldvoS2Jg85phtPBtSsjy2GxC3R15ndtiwfMQQ2jMfPrMPFjWDTchdp40st1jm5D7sjTd3h5N0nsQhdYh1cjoKnjnujeC8Lq32mhuN82JpQ1YXON2xmqxOEI7CWtHo0RxJWSVkYR3anAew0rRNWAUmfeBqanjw2VTUMpTC4WjqgjJKY9_7BNJFH1ZuznBOiTY-VZGbOa-ocau-cRN42Zc_jtwefyy5thCJaq7jJxUCI8SaaPN4As_7x6idtOVim9DOqAzKvFSGmwQeRlHqP1VQYrAykwnknUD8pQ7VYLQ16K8e_ctLz-DazmhcvX21_eYxXKfb0VtuDVawG8MThFen9dNOg34CDD0ajA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximity-Coupling-Induced+Significant+Enhancement+of+Coercive+Field+and+Curie+Temperature+in+2D+van+der+Waals+Heterostructures&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Luman&rft.au=Huang%2C+Xinyu&rft.au=Dai%2C+Hongwei&rft.au=Wang%2C+Mingshan&rft.date=2020-09-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=32&rft.issue=38&rft.spage=e2002032&rft_id=info:doi/10.1002%2Fadma.202002032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon