Free‐Standing Molecularly Thin Amorphous Silica Nanosheets
Recent progress in 2D materials has initiated new fields of molecularly thin amorphous materials with mysterious properties and structures. However, designed synthesis of molecularly thin amorphous silica still remains a challenge; whether free‐standing molecularly thin amorphous silica nanosheets c...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 22; pp. e2300022 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent progress in 2D materials has initiated new fields of molecularly thin amorphous materials with mysterious properties and structures. However, designed synthesis of molecularly thin amorphous silica still remains a challenge; whether free‐standing molecularly thin amorphous silica nanosheets can exist is unclear. Here, this issue is addressed by using a new chemical protocol; solid‐state surfactant lamellae with ordered alkyl‐chain arrangements can serve as superior templates guiding free‐standing amorphous silica nanosheets. Simple sonication of the lamellar hybrids allows exfoliation into monolayer amorphous silica nanosheets with 0.9 nm thickness. In addition, the nanosheets show the distinctive feature of high colloidal stability that enables atomic layer engineering of silica nanocoatings and dielectric nanofilms. The approach may shed new light on the properties and applications of old silica.
A chemical protocol is established for free‐standing molecularly thin nanosheets; solid‐state surfactant lamellae can serve as templates guiding amorphous silica nanosheets. Delamination of the lamellar hybrids with ordered alkyl‐chain arrangement allows for free‐standing amorphous silica nanosheets with 0.9 nm in thickness. The nanosheets show high colloidal stability that enables atomic layer engineering of film with a highly insulating property. |
---|---|
AbstractList | Recent progress in 2D materials has initiated new fields of molecularly thin amorphous materials with mysterious properties and structures. However, designed synthesis of molecularly thin amorphous silica still remains a challenge; whether free-standing molecularly thin amorphous silica nanosheets can exist is unclear. Here, this issue is addressed by using a new chemical protocol; solid-state surfactant lamellae with ordered alkyl-chain arrangements can serve as superior templates guiding free-standing amorphous silica nanosheets. Simple sonication of the lamellar hybrids allows exfoliation into monolayer amorphous silica nanosheets with 0.9 nm thickness. In addition, the nanosheets show the distinctive feature of high colloidal stability that enables atomic layer engineering of silica nanocoatings and dielectric nanofilms. The approach may shed new light on the properties and applications of old silica. Recent progress in 2D materials has initiated new fields of molecularly thin amorphous materials with mysterious properties and structures. However, designed synthesis of molecularly thin amorphous silica still remains a challenge; whether free‐standing molecularly thin amorphous silica nanosheets can exist is unclear. Here, this issue is addressed by using a new chemical protocol; solid‐state surfactant lamellae with ordered alkyl‐chain arrangements can serve as superior templates guiding free‐standing amorphous silica nanosheets. Simple sonication of the lamellar hybrids allows exfoliation into monolayer amorphous silica nanosheets with 0.9 nm thickness. In addition, the nanosheets show the distinctive feature of high colloidal stability that enables atomic layer engineering of silica nanocoatings and dielectric nanofilms. The approach may shed new light on the properties and applications of old silica. Abstract Recent progress in 2D materials has initiated new fields of molecularly thin amorphous materials with mysterious properties and structures. However, designed synthesis of molecularly thin amorphous silica still remains a challenge; whether free‐standing molecularly thin amorphous silica nanosheets can exist is unclear. Here, this issue is addressed by using a new chemical protocol; solid‐state surfactant lamellae with ordered alkyl‐chain arrangements can serve as superior templates guiding free‐standing amorphous silica nanosheets. Simple sonication of the lamellar hybrids allows exfoliation into monolayer amorphous silica nanosheets with 0.9 nm thickness. In addition, the nanosheets show the distinctive feature of high colloidal stability that enables atomic layer engineering of silica nanocoatings and dielectric nanofilms. The approach may shed new light on the properties and applications of old silica. Recent progress in 2D materials has initiated new fields of molecularly thin amorphous materials with mysterious properties and structures. However, designed synthesis of molecularly thin amorphous silica still remains a challenge; whether free‐standing molecularly thin amorphous silica nanosheets can exist is unclear. Here, this issue is addressed by using a new chemical protocol; solid‐state surfactant lamellae with ordered alkyl‐chain arrangements can serve as superior templates guiding free‐standing amorphous silica nanosheets. Simple sonication of the lamellar hybrids allows exfoliation into monolayer amorphous silica nanosheets with 0.9 nm thickness. In addition, the nanosheets show the distinctive feature of high colloidal stability that enables atomic layer engineering of silica nanocoatings and dielectric nanofilms. The approach may shed new light on the properties and applications of old silica. A chemical protocol is established for free‐standing molecularly thin nanosheets; solid‐state surfactant lamellae can serve as templates guiding amorphous silica nanosheets. Delamination of the lamellar hybrids with ordered alkyl‐chain arrangement allows for free‐standing amorphous silica nanosheets with 0.9 nm in thickness. The nanosheets show high colloidal stability that enables atomic layer engineering of film with a highly insulating property. |
Author | Fujihara, Kosuke Takezaki, Yuma Shi, Yue Osada, Minoru Kobayashi, Makoto Yamamoto, Eisuke Ito, Kentaro |
Author_xml | – sequence: 1 givenname: Eisuke orcidid: 0000-0001-5470-3826 surname: Yamamoto fullname: Yamamoto, Eisuke email: e-yamamoto@imass.nagoya-u.ac.jp organization: Japan Science and Technology Agency (JST) – sequence: 2 givenname: Kosuke surname: Fujihara fullname: Fujihara, Kosuke organization: Nagoya University – sequence: 3 givenname: Yuma surname: Takezaki fullname: Takezaki, Yuma organization: Nagoya University – sequence: 4 givenname: Kentaro surname: Ito fullname: Ito, Kentaro organization: Nagoya University – sequence: 5 givenname: Yue surname: Shi fullname: Shi, Yue organization: Nagoya University – sequence: 6 givenname: Makoto orcidid: 0000-0002-6554-8400 surname: Kobayashi fullname: Kobayashi, Makoto organization: Nagoya University – sequence: 7 givenname: Minoru orcidid: 0000-0002-6439-8068 surname: Osada fullname: Osada, Minoru email: mosada@imass.nagoya-u.ac.jp organization: National Institute for Materials Science (NIMS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36855026$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1Lw0AQhhepaK1ePUrAi5fW3dmPJOBFxC9o9dB6XjabiY1skrrbIL35E_yN_hJTqhW8eJoZeObl5TkgvbqpkZBjRkeMUjgPlXMjoMBpd8EO6TPF-FAlkPa2O6P75CCEF0o5AxHvkX2uEikpqD65uPGIn-8f06Wp87J-jiaNQ9s6490qms3LOrqsGr-YN22IpqUrrYkeTN2EOeIyHJLdwriAR99zQJ5urmdXd8Px4-391eV4aAVPYRijAWt5LEXM0SgbY8FlWmQ5pVKApEJykTErFM-ENFgkKucZNZIWKs2UzfmAnG1yF755bTEsdVUGi86ZGrtiGuKEAeOQqA49_YO-NK2vu3YaEmCgRAyyo0YbyvomBI-FXviyMn6lGdVrr3rtVW-9dg8n37FtVmG-xX9EdkC6Ad5Kh6t_4vR0Mh7_hn8Br8yFqQ |
CitedBy_id | crossref_primary_10_2109_jcersj2_23126 crossref_primary_10_1007_s10971_023_06184_w |
Cites_doi | 10.1002/adma.201001722 10.1039/C5TB00589B 10.1021/acs.langmuir.9b01199 10.1038/s41467-019-12859-2 10.1103/PhysRevB.27.6199 10.1002/chem.202001806 10.1063/1.1618351 10.1021/jp031187u 10.1021/jp801670n 10.1002/admi.201500282 10.1021/ja984389q 10.1002/anie.201007519 10.1016/0021-9797(68)90272-5 10.1038/nchem.446 10.1038/s41586-019-1871-2 10.1002/smll.201603369 10.1002/jrs.4292 10.1021/la1043798 10.1126/science.279.5350.548 10.1038/ncomms12543 10.1021/ja974025i 10.1039/c2cc34289h 10.1039/c2cc38293h 10.1039/c39900000504 10.1063/1.4939279 10.1021/jp408041p 10.1088/0953-8984/11/47/311 10.1021/acsnano.6b03929 10.1002/adma.201103241 10.1039/C8NR10119A 10.1246/bcsj.63.988 10.1021/jacs.9b00029 10.1038/359710a0 10.1111/j.1551-2916.2005.00618.x |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202300022 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202300022 36855026 SMLL202300022 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: PRESTO funderid: JPMJPR19TA – fundername: Grant‐in‐Aid for Scientific Research for young scientists funderid: 19K15656 – fundername: Grant‐in‐Aid for Scientific Research funderid: 21H05015; 21H04617; 19K22104; 22H02166 – fundername: Grant-in-Aid for Scientific Research grantid: 21H05015 – fundername: Grant-in-Aid for Scientific Research grantid: 22H02166 – fundername: PRESTO grantid: JPMJPR19TA – fundername: Grant-in-Aid for Scientific Research grantid: 19K22104 – fundername: Grant-in-Aid for Scientific Research for young scientists grantid: 19K15656 – fundername: Grant-in-Aid for Scientific Research grantid: 21H04617 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AASGY AAYOK ACBWZ ASPBG AVWKF AZFZN BDRZF EJD FEDTE GODZA HVGLF NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4392-7ea2cc375473ea6c7ef359fbd00542504534b1c463b45aef86d3b0a50f69b6cd3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Fri Aug 16 05:36:44 EDT 2024 Thu Oct 10 19:29:25 EDT 2024 Fri Aug 23 03:48:58 EDT 2024 Sat Sep 28 08:16:35 EDT 2024 Sat Aug 24 00:46:22 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | amorphous silica 2D assembly bottom-up synthesis solid surfactants nanosheets |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4392-7ea2cc375473ea6c7ef359fbd00542504534b1c463b45aef86d3b0a50f69b6cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6439-8068 0000-0001-5470-3826 0000-0002-6554-8400 |
PMID | 36855026 |
PQID | 2821264725 |
PQPubID | 1046358 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2781213286 proquest_journals_2821264725 crossref_primary_10_1002_smll_202300022 pubmed_primary_36855026 wiley_primary_10_1002_smll_202300022_SMLL202300022 |
PublicationCentury | 2000 |
PublicationDate | June 1, 2023 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 1, 2023 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2014; 118 1968; 26 2021; 27 2015; 3 2013; 44 2019; 11 2019; 10 2019; 35 2016; 10 1999; 121 1998; 279 2019; 141 2003; 94 2004; 108 2005; 88 1979 1990; 63 2010; 22 2016; 7 1982; 27 2020; 1 1990 2016; 119 2017; 13 2011; 50 1992; 359 2020; 577 1999; 11 2012; 49 2012; 48 2008; 112 2010; 2 2012; 24 2011; 27 1998; 120 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 Iler R. K. (e_1_2_7_1_1) 1979 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Sun R. (e_1_2_7_15_1) 2020; 1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 |
References_xml | – volume: 141 start-page: 5856 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 5786 year: 2015 publication-title: J. Mater. Chem. B – volume: 27 start-page: 1870 year: 2021 publication-title: Chem. ‐ Eur. J. – volume: 359 start-page: 710 year: 1992 publication-title: Nature – volume: 11 start-page: 5365 year: 2019 publication-title: Nanoscale – volume: 112 year: 2008 publication-title: J. Phys. Chem. C – volume: 63 start-page: 988 year: 1990 publication-title: Bull. Chem. Soc. Jpn. – volume: 24 start-page: 210 year: 2012 publication-title: Adv. Mater. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 88 start-page: 3522 year: 2005 publication-title: J. Am. Ceram. Soc. – volume: 35 start-page: 9011 year: 2019 publication-title: Langmuir – volume: 119 year: 2016 publication-title: J. Appl. Phys. – volume: 27 start-page: 7121 year: 2011 publication-title: Langmuir – year: 1979 – volume: 10 start-page: 7982 year: 2016 publication-title: ACS Nano – volume: 22 start-page: 5082 year: 2010 publication-title: Adv. Mater. – volume: 94 start-page: 6243 year: 2003 publication-title: J. Appl. Phys. – volume: 1 year: 2020 publication-title: Cell Rep. – volume: 577 start-page: 199 year: 2020 publication-title: Nature – volume: 120 start-page: 6024 year: 1998 publication-title: J. Am. Chem. Soc. – start-page: 504 year: 1990 publication-title: J. Chem. Soc., Chem. Commun. – volume: 11 start-page: 9263 year: 1999 publication-title: J. Phys.: Condens. Matter – volume: 118 start-page: 1022 year: 2014 publication-title: J. Phys. Chem. B – volume: 50 start-page: 2379 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 121 start-page: 5727 year: 1999 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 4855 year: 2019 publication-title: Nat. Commun. – volume: 48 start-page: 8496 year: 2012 publication-title: Chem. Commun. – volume: 26 start-page: 62 year: 1968 publication-title: J. Colloid Interface Sci. – volume: 27 start-page: 6199 year: 1982 publication-title: Phys. Rev. B – volume: 2 year: 2015 publication-title: Adv. Mater. Interfaces – volume: 2 start-page: 25 year: 2010 publication-title: Nat. Chem. – volume: 49 start-page: 1300 year: 2012 publication-title: Chem. Commun. – volume: 44 start-page: 810 year: 2013 publication-title: J. Raman Spectrosc. – volume: 279 start-page: 548 year: 1998 publication-title: Science – volume: 13 year: 2017 publication-title: Small – volume: 108 start-page: 3728 year: 2004 publication-title: J. Phys. Chem. B – ident: e_1_2_7_12_1 doi: 10.1002/adma.201001722 – ident: e_1_2_7_24_1 doi: 10.1039/C5TB00589B – ident: e_1_2_7_32_1 doi: 10.1021/acs.langmuir.9b01199 – ident: e_1_2_7_14_1 doi: 10.1038/s41467-019-12859-2 – ident: e_1_2_7_31_1 doi: 10.1103/PhysRevB.27.6199 – ident: e_1_2_7_11_1 doi: 10.1002/chem.202001806 – ident: e_1_2_7_29_1 doi: 10.1063/1.1618351 – ident: e_1_2_7_34_1 doi: 10.1021/jp031187u – ident: e_1_2_7_25_1 doi: 10.1021/jp801670n – ident: e_1_2_7_18_1 doi: 10.1002/admi.201500282 – ident: e_1_2_7_33_1 doi: 10.1021/ja984389q – ident: e_1_2_7_20_1 doi: 10.1002/anie.201007519 – ident: e_1_2_7_2_1 doi: 10.1016/0021-9797(68)90272-5 – volume-title: Solubility, The Chemistry of Silica;Polymerization, Colloid and Surface Properties and Biochemistry of Silica year: 1979 ident: e_1_2_7_1_1 contributor: fullname: Iler R. K. – ident: e_1_2_7_6_1 doi: 10.1038/nchem.446 – ident: e_1_2_7_9_1 doi: 10.1038/s41586-019-1871-2 – ident: e_1_2_7_19_1 doi: 10.1002/smll.201603369 – volume: 1 year: 2020 ident: e_1_2_7_15_1 publication-title: Cell Rep. contributor: fullname: Sun R. – ident: e_1_2_7_30_1 doi: 10.1002/jrs.4292 – ident: e_1_2_7_35_1 doi: 10.1021/la1043798 – ident: e_1_2_7_4_1 doi: 10.1126/science.279.5350.548 – ident: e_1_2_7_16_1 doi: 10.1038/ncomms12543 – ident: e_1_2_7_26_1 doi: 10.1021/ja974025i – ident: e_1_2_7_17_1 doi: 10.1039/c2cc34289h – ident: e_1_2_7_23_1 doi: 10.1039/c2cc38293h – ident: e_1_2_7_27_1 doi: 10.1039/c39900000504 – ident: e_1_2_7_7_1 doi: 10.1063/1.4939279 – ident: e_1_2_7_36_1 doi: 10.1021/jp408041p – ident: e_1_2_7_28_1 doi: 10.1088/0953-8984/11/47/311 – ident: e_1_2_7_8_1 doi: 10.1021/acsnano.6b03929 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201103241 – ident: e_1_2_7_22_1 doi: 10.1039/C8NR10119A – ident: e_1_2_7_5_1 doi: 10.1246/bcsj.63.988 – ident: e_1_2_7_10_1 doi: 10.1021/jacs.9b00029 – ident: e_1_2_7_3_1 doi: 10.1038/359710a0 – ident: e_1_2_7_21_1 doi: 10.1111/j.1551-2916.2005.00618.x |
SSID | ssj0031247 |
Score | 2.473819 |
Snippet | Recent progress in 2D materials has initiated new fields of molecularly thin amorphous materials with mysterious properties and structures. However, designed... Abstract Recent progress in 2D materials has initiated new fields of molecularly thin amorphous materials with mysterious properties and structures. However,... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2300022 |
SubjectTerms | 2D assembly Amorphous materials amorphous silica bottom‐up synthesis Nanosheets Nanotechnology Silicon dioxide solid surfactants Thickness Two dimensional materials |
Title | Free‐Standing Molecularly Thin Amorphous Silica Nanosheets |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202300022 https://www.ncbi.nlm.nih.gov/pubmed/36855026 https://www.proquest.com/docview/2821264725 https://search.proquest.com/docview/2781213286 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB4hTuVQ2gLFbVoZqRInh-yuvbYlLqgQIUQ4NETKzdrdjNWK_KA4ObSnPgLPyJMwY8eGwKFSudmy1vbu7Ox8szP7DcA3LUbO2TwNhEAZhI78lFQKQ64KR6lMLBDLLN8rfT4IL4bR8Mkp_oofotlwY80o12tWcGOLo0fS0GIy5tABQWi2Q7QICxVzTtfpj4Y_SpHxKqurkM0KmHirZm3syKP15utW6QXUXEeupenpboOpf7rKOLlpLxe27f4843N8Ta_ewdsVLvVPqon0HjZw-gG2nrAV7sBxd454__euvzoK4_fq0rrj3z7X__RPJjMS22xZ-P1fvBno09o9K34iLopdGHTPrr-fB6viC4EjjEKoG410jgvkxgqNdjHmKkpzO2KQx7xnkQqtcKFWNowM5okeKdsxUSfXqdVupPZgczqb4j74HKwV5DklOeZhHAtCQCZNjEbdcTpS6MFhPfjZbcWxkVVsyjLj8cia8fCgVcsmW-lakdHrhWQW_MiDg-YxaQmHPswUqdeZjBPmrpOJ9uBjJdPmU0zBH5Er6oEsJfOPf8j6vcvL5u7T_zT6DG_4uso4a8HmYr7EL4RtFvZrOX8fAIE17x0 |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4Vemh7oL-0KbQEqVJPgbWdOInEBRVWW7rLoQtSb5btnQgE7FZk9wAnHqHPyJMwk2xCtz1UKsckchJ7PJ5vPONvAD5pMfLeFXkkBMoo9uSn5FJYclU4SmVTgVhl-R7q3nF88CNpsgn5LEzND9FuuLFmVOs1KzhvSG_fs4aWF-ccOyAMzYZoCR6TzisuYrD3vWWQUmS-qvoqZLUipt5qeBs7cnux_aJd-gtsLmLXyvh0n4NrfrvOOTnbmk3dlr_-g9HxQf16AStzaBru1nPpJTzC8St49hth4WvY6V4i3t78Gs5Pw4SDprru-VXIJUDD3YsJSW4yK8PhKe8HhrR8T8oTxGn5Bo67-0dfetG8_kLkCaYQ8EYrvecaualCq32KhUrywo0Y5zH1WaJiJ3yslYsTi0WmR8p1bNIpdO60H6lVWB5PxvgOQo7XCnKesgKLOE0FgSCbZ1aj7nidKAzgczP65mdNs2FqQmVpeDxMOx4BrDfCMXN1Kw29Xkgmwk8C2Gwfk6Jw9MOOkXptZJoxfZ3MdABva6G2n2IW_oS80QBkJZp__IMZDvr99ur9_zTagCe9o0Hf9L8efluDp3y_TkBbh-Xp5Qw_ENSZuo_VZL4Dfj_zNw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkCp6aKHPtAukUqWeArGTOInEZQWseCwIsUXiZjnORK0Ku4jsHtpTfwK_kV_CTLJJWXpAgmMSOYnHHs83nvE3AF-VyK3NitQTAqUXWvJTUikMuSocpTKxQKyyfI_V3ll4cB6d3zvFX_NDtBturBnVes0KfpUXm_9IQ8vLCw4dEIRmOzQPi6EKfE7q2jltCaQCsl5VeRUyWh4zbzW0jb7cnG0_a5b-w5qz0LWyPb3XYJq_rlNOfm1MxtmG_fOA0PE53VqGV1Ng6nbrmbQCczh8Ay_v0RW-ha3eNeLt35vB9CyMe9TU1r347XIBULd7OaJxG01Kd_CTdwNdWrxH5Q_EcfkOznq737f3vGn1Bc8SSCHYjUZayxVy4wCNsjEWQZQWWc4oj4nPoiDMhCWpZ2FksEhUHmS-ifxCpZmyefAeFoajIX4El6O1glynpMAijGNBEMikiVGofKuiAB341ghfX9UkG7qmU5aa5aFbeTjQacZGT5Wt1PR6IZkGP3LgS_uY1IRjH2aI1Gst44TJ62SiHPhQj2n7Kebgj8gXdUBWI_PIP-jBUb_fXn16SqN1eHGy09P9_ePDz7DEt-vssw4sjK8nuEo4Z5ytVVP5DqfK8eY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free-Standing+Molecularly+Thin+Amorphous+Silica+Nanosheets&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yamamoto%2C+Eisuke&rft.au=Fujihara%2C+Kosuke&rft.au=Takezaki%2C+Yuma&rft.au=Ito%2C+Kentaro&rft.date=2023-06-01&rft.eissn=1613-6829&rft.volume=19&rft.issue=22&rft.spage=e2300022&rft.epage=e2300022&rft_id=info:doi/10.1002%2Fsmll.202300022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |