Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals
Compared to modern fossil‐fuel‐based refineries, the emerging electrocatalytic refinery (e‐refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value‐added chemicals. A crucial step in conducting e‐refiner...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 36; pp. 19572 - 19590 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Compared to modern fossil‐fuel‐based refineries, the emerging electrocatalytic refinery (e‐refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value‐added chemicals. A crucial step in conducting e‐refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well‐studied primary reactions (e.g., O2 reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e‐refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways.
The concept of the electrocatalytic refinery (e‐refinery) is an intrinsically sustainable strategy to convert renewable feedstocks and energy sources to transportable fuels and value‐added chemicals. This Review describes the concept, fundamentals, and framework of e‐refinery processes with some game‐changing reactions and innovative catalyst design strategies. |
---|---|
AbstractList | Compared to modern fossil‐fuel‐based refineries, the emerging electrocatalytic refinery (e‐refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value‐added chemicals. A crucial step in conducting e‐refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well‐studied primary reactions (e.g., O2 reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e‐refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways.
The concept of the electrocatalytic refinery (e‐refinery) is an intrinsically sustainable strategy to convert renewable feedstocks and energy sources to transportable fuels and value‐added chemicals. This Review describes the concept, fundamentals, and framework of e‐refinery processes with some game‐changing reactions and innovative catalyst design strategies. Compared to modern fossil-fuel-based refineries, the emerging electrocatalytic refinery (e-refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value-added chemicals. A crucial step in conducting e-refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well-studied primary reactions (e.g., O2 reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e-refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways.Compared to modern fossil-fuel-based refineries, the emerging electrocatalytic refinery (e-refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value-added chemicals. A crucial step in conducting e-refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well-studied primary reactions (e.g., O2 reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e-refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways. Compared to modern fossil-fuel-based refineries, the emerging electrocatalytic refinery (e-refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value-added chemicals. A crucial step in conducting e-refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well-studied primary reactions (e.g., O reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e-refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways. Compared to modern fossil‐fuel‐based refineries, the emerging electrocatalytic refinery (e‐refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value‐added chemicals. A crucial step in conducting e‐refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well‐studied primary reactions (e.g., O 2 reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e‐refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways. Compared to modern fossil‐fuel‐based refineries, the emerging electrocatalytic refinery (e‐refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value‐added chemicals. A crucial step in conducting e‐refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well‐studied primary reactions (e.g., O2 reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e‐refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways. |
Author | Zheng, Yao Jaroniec, Mietek Tang, Cheng Qiao, Shi‐Zhang |
Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0002-5167-1192 surname: Tang fullname: Tang, Cheng organization: The University of Adelaide – sequence: 2 givenname: Yao orcidid: 0000-0002-2411-8041 surname: Zheng fullname: Zheng, Yao organization: The University of Adelaide – sequence: 3 givenname: Mietek orcidid: 0000-0002-1178-5611 surname: Jaroniec fullname: Jaroniec, Mietek organization: Kent State University – sequence: 4 givenname: Shi‐Zhang orcidid: 0000-0002-4568-8422 surname: Qiao fullname: Qiao, Shi‐Zhang email: s.qiao@adelaide.edu.au organization: The University of Adelaide |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33606339$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtrGzEURkVJqRO32y7DQDfZjKvXSJplMM6DmCb0sRYazR0iI0upNEPwv4-MkwYCoavvIs65iPudoKMQAyD0leAFwZh-N8HBgmJKMGko_YCOS5CaScmOyswZq6VqyAyd5LwpvFJYfEIzxgQWjLXH6GblwY4pWjMavxudrX7C4AKkXTXEVP2a8mhcMJ2H6i7FfrKji6GKQ3Uxgc-VCX21vIets8bnz-jjUAK-POcc_blY_V5e1evby-vl-bq2nLW0lox1kgpQPZNYDQ2YVvaCyrZXnPcCjCGtYBIMoU15VdwUjHPZUdqwATo2R2eHvQ8p_p0gj3rrsgXvTYA4ZU15S1ouiRIF_fYG3cQphfI7TRvBOVa0IYU6faambgu9fkhua9JOv5ypAPwA2BRzTjBo60azP8WYjPOaYL1vQ-_b0P_aKNrijfay-V2hPQiPzsPuP7Q-_3G9enWfAOy2mmc |
CitedBy_id | crossref_primary_10_1039_D3MA00104K crossref_primary_10_1007_s12274_023_6043_x crossref_primary_10_1016_j_electacta_2023_143001 crossref_primary_10_1002_anie_202219048 crossref_primary_10_1016_j_cej_2023_141344 crossref_primary_10_1002_sstr_202400548 crossref_primary_10_1016_j_ccr_2024_216111 crossref_primary_10_1021_acs_jpcc_1c10686 crossref_primary_10_1039_D3TA02813E crossref_primary_10_1016_j_jechem_2021_12_008 crossref_primary_10_1021_acssuschemeng_3c04020 crossref_primary_10_1021_jacs_1c02328 crossref_primary_10_1007_s11426_023_1524_4 crossref_primary_10_1021_acssuschemeng_1c07482 crossref_primary_10_1016_j_molliq_2022_120407 crossref_primary_10_1002_ange_202415438 crossref_primary_10_1002_adma_202405029 crossref_primary_10_1002_anie_202300387 crossref_primary_10_1007_s12274_022_5329_8 crossref_primary_10_1002_cplu_202400422 crossref_primary_10_1021_acscatal_2c05315 crossref_primary_10_1021_acs_jpcc_4c01336 crossref_primary_10_1002_anie_202209014 crossref_primary_10_1002_ange_202301435 crossref_primary_10_1021_jacsau_2c00031 crossref_primary_10_1038_s41467_022_35463_3 crossref_primary_10_1002_anie_202108666 crossref_primary_10_1038_s41467_024_51951_0 crossref_primary_10_53941_see_2024_1000010 crossref_primary_10_1021_acsami_4c21239 crossref_primary_10_1007_s40843_022_2382_0 crossref_primary_10_1021_acsnano_4c17546 crossref_primary_10_1016_j_apsusc_2022_155283 crossref_primary_10_1038_s44160_023_00336_0 crossref_primary_10_1039_D5GC00572H crossref_primary_10_1016_j_colsurfa_2023_131452 crossref_primary_10_1016_j_jechem_2021_12_026 crossref_primary_10_1016_j_jechem_2021_12_028 crossref_primary_10_1021_acscatal_2c00099 crossref_primary_10_1016_j_apcatb_2023_123216 crossref_primary_10_1016_j_jcis_2024_01_040 crossref_primary_10_1016_j_enchem_2025_100146 crossref_primary_10_1016_S1872_5805_24_60861_9 crossref_primary_10_1021_jacs_4c16344 crossref_primary_10_1039_D3TA01931D crossref_primary_10_1016_j_cej_2024_152626 crossref_primary_10_1039_D3EE03761D crossref_primary_10_1002_aenm_202303027 crossref_primary_10_1016_j_ccr_2024_216248 crossref_primary_10_1021_acs_inorgchem_4c02799 crossref_primary_10_1002_smtd_202300003 crossref_primary_10_1021_acscatal_1c03763 crossref_primary_10_1039_D3EE02467A crossref_primary_10_1016_j_ijhydene_2024_11_210 crossref_primary_10_1016_j_watres_2024_122914 crossref_primary_10_1021_acs_accounts_3c00633 crossref_primary_10_1021_acscatal_1c02316 crossref_primary_10_1002_anie_202316772 crossref_primary_10_1039_D2GC01510B crossref_primary_10_1016_j_jcis_2022_04_013 crossref_primary_10_1002_anie_202408846 crossref_primary_10_1016_j_apcato_2025_207036 crossref_primary_10_1016_j_ces_2024_119937 crossref_primary_10_1021_acs_jpclett_1c03658 crossref_primary_10_1038_s41467_022_32933_6 crossref_primary_10_1039_D3TA01920A crossref_primary_10_1002_smll_202307349 crossref_primary_10_1021_acs_jpclett_3c00103 crossref_primary_10_1039_D3TA03813K crossref_primary_10_1021_acsestengg_3c00179 crossref_primary_10_1039_D3GC01406A crossref_primary_10_1016_j_seppur_2025_132574 crossref_primary_10_1002_anie_202313028 crossref_primary_10_1016_j_jece_2024_114959 crossref_primary_10_1021_acscatal_5c00623 crossref_primary_10_1002_ange_202300533 crossref_primary_10_70749_ijbr_v3i1_479 crossref_primary_10_1002_ange_202405553 crossref_primary_10_1016_j_cej_2022_136995 crossref_primary_10_1038_s41467_024_50499_3 crossref_primary_10_1002_aenm_202302073 crossref_primary_10_3390_nano14211732 crossref_primary_10_1016_j_jcat_2022_09_014 crossref_primary_10_1002_adfm_202210837 crossref_primary_10_1039_D5MH00285K crossref_primary_10_1002_anie_202301435 crossref_primary_10_1021_acs_est_2c09669 crossref_primary_10_1002_smtd_202200561 crossref_primary_10_1016_j_fuel_2024_131250 crossref_primary_10_1149_2754_2734_acf0d5 crossref_primary_10_1038_s41467_022_33779_8 crossref_primary_10_1016_j_apsusc_2025_162865 crossref_primary_10_1039_D2GC03405K crossref_primary_10_1002_ange_202207677 crossref_primary_10_1007_s11426_024_2314_9 crossref_primary_10_1016_j_chempr_2024_03_004 crossref_primary_10_1021_acs_inorgchem_4c05510 crossref_primary_10_1016_j_apcatb_2023_122590 crossref_primary_10_1016_j_nanoms_2022_01_003 crossref_primary_10_1002_ange_202209849 crossref_primary_10_1002_cssc_202101924 crossref_primary_10_1039_D4SC00175C crossref_primary_10_1002_anie_202415438 crossref_primary_10_1039_D2GC02426H crossref_primary_10_1002_adfm_202304380 crossref_primary_10_1002_anie_202405553 crossref_primary_10_1002_anie_202312076 crossref_primary_10_1002_ange_202406750 crossref_primary_10_1002_ange_202311696 crossref_primary_10_1016_j_apcatb_2022_121198 crossref_primary_10_1021_acs_iecr_1c04902 crossref_primary_10_1021_acs_joc_4c01719 crossref_primary_10_1002_advs_202411964 crossref_primary_10_1002_aenm_202203891 crossref_primary_10_1016_j_apcatb_2022_121072 crossref_primary_10_1002_ange_202108666 crossref_primary_10_1021_jacsau_1c00574 crossref_primary_10_1021_acscatal_4c03356 crossref_primary_10_1038_s42004_022_00645_z crossref_primary_10_1039_D3TA01600E crossref_primary_10_1007_s12274_022_5307_1 crossref_primary_10_3390_ijms22179442 crossref_primary_10_1039_D4CC02025A crossref_primary_10_1038_s41467_023_38603_5 crossref_primary_10_26599_CF_2023_9200002 crossref_primary_10_1126_sciadv_adh9487 crossref_primary_10_1039_D4TA02707H crossref_primary_10_1039_D2CS00381C crossref_primary_10_1002_anie_202406750 crossref_primary_10_1002_inf2_12608 crossref_primary_10_1002_cplu_202100327 crossref_primary_10_1039_D2CC05132J crossref_primary_10_1002_anie_202214977 crossref_primary_10_1002_adfm_202214075 crossref_primary_10_1016_j_cej_2024_149774 crossref_primary_10_1093_nsr_nwae218 crossref_primary_10_1002_adma_202413073 crossref_primary_10_1038_s41467_023_38888_6 crossref_primary_10_1021_acs_energyfuels_2c01871 crossref_primary_10_1002_adfm_202415660 crossref_primary_10_20517_cs_2024_32 crossref_primary_10_1021_acssuschemeng_4c04754 crossref_primary_10_1039_D3CS00557G crossref_primary_10_1039_D4CS00563E crossref_primary_10_1039_D4EY00170B crossref_primary_10_1002_smll_202301438 crossref_primary_10_1016_j_apcatb_2022_121173 crossref_primary_10_1016_j_apcatb_2022_122149 crossref_primary_10_1002_anie_202309930 crossref_primary_10_1002_ange_202214977 crossref_primary_10_1002_sus2_175 crossref_primary_10_1021_acs_jpcc_1c07689 crossref_primary_10_1002_smll_202207236 crossref_primary_10_1016_j_eng_2023_04_018 crossref_primary_10_1002_adma_202300935 crossref_primary_10_1021_acscatal_2c05270 crossref_primary_10_1039_D2EE00686C crossref_primary_10_1007_s40820_024_01347_y crossref_primary_10_1016_j_jechem_2023_06_024 crossref_primary_10_1021_acscatal_2c05155 crossref_primary_10_1002_smll_202402492 crossref_primary_10_1021_acssuschemeng_4c06920 crossref_primary_10_1002_adfm_202411284 crossref_primary_10_1002_adfm_202107196 crossref_primary_10_1021_jacs_4c00818 crossref_primary_10_1002_ange_202306726 crossref_primary_10_1016_S1872_2067_22_64103_2 crossref_primary_10_1021_acs_jpcc_2c08514 crossref_primary_10_1002_anie_202300533 crossref_primary_10_1016_j_ces_2023_118729 crossref_primary_10_1021_acs_chemrev_3c00723 crossref_primary_10_1039_D3GC00588G crossref_primary_10_1021_acs_energyfuels_3c00732 crossref_primary_10_26599_NRE_2022_9120001 crossref_primary_10_1149_1945_7111_ad576d crossref_primary_10_1002_adma_202202479 crossref_primary_10_1021_acscatal_2c05144 crossref_primary_10_1021_acsenergylett_4c02344 crossref_primary_10_1002_ange_202209014 crossref_primary_10_1002_ange_202219048 crossref_primary_10_1002_ange_202408846 crossref_primary_10_1002_ange_202313028 crossref_primary_10_1038_s41929_022_00826_y crossref_primary_10_1016_j_checat_2023_100751 crossref_primary_10_1002_adfm_202212483 crossref_primary_10_1002_ange_202316772 crossref_primary_10_1016_j_checat_2023_100514 crossref_primary_10_1039_D1CC06254A crossref_primary_10_1002_anie_202216837 crossref_primary_10_1038_s41467_023_37441_9 crossref_primary_10_1016_j_jechem_2024_08_008 crossref_primary_10_1021_acsnano_3c08450 crossref_primary_10_1016_j_esci_2022_11_002 crossref_primary_10_1021_acsmaterialsau_4c00092 crossref_primary_10_1002_adfm_202204755 crossref_primary_10_1007_s40843_022_2076_y crossref_primary_10_1002_anie_202415975 crossref_primary_10_1016_S1872_5805_22_60582_1 crossref_primary_10_1016_j_checat_2023_100762 crossref_primary_10_1016_j_ccr_2024_216399 crossref_primary_10_1002_tcr_202400259 crossref_primary_10_1016_j_apsusc_2021_151853 crossref_primary_10_1016_j_apcatb_2023_122744 crossref_primary_10_1016_j_seppur_2024_127416 crossref_primary_10_1021_jacs_2c04911 crossref_primary_10_1039_D2TA09987J crossref_primary_10_1002_ange_202312239 crossref_primary_10_1016_j_scib_2023_07_036 crossref_primary_10_1016_S1872_2067_22_64136_6 crossref_primary_10_1016_j_checat_2024_100997 crossref_primary_10_1007_s12274_022_4858_5 crossref_primary_10_1021_acs_jpcc_4c05583 crossref_primary_10_1016_j_mcat_2022_112568 crossref_primary_10_1002_ange_202420661 crossref_primary_10_1002_anie_202403980 crossref_primary_10_1007_s11426_024_2552_2 crossref_primary_10_1016_j_fmre_2023_03_019 crossref_primary_10_1016_j_jechem_2022_05_001 crossref_primary_10_1002_ange_202407589 crossref_primary_10_1021_acscatal_4c04190 crossref_primary_10_1039_D3CS00445G crossref_primary_10_1002_aenm_202303451 crossref_primary_10_1002_aenm_202301276 crossref_primary_10_1039_D1QM00546D crossref_primary_10_1039_D4EE03156C crossref_primary_10_1002_ange_202300387 crossref_primary_10_1021_acscatal_1c05174 crossref_primary_10_1088_2515_7639_ad0561 crossref_primary_10_1002_aenm_202302008 crossref_primary_10_1016_j_jechem_2021_10_013 crossref_primary_10_1021_acsenergylett_1c02471 crossref_primary_10_1002_anie_202305184 crossref_primary_10_1039_D4GC00227J crossref_primary_10_1038_s41467_023_36688_6 crossref_primary_10_1021_jacs_3c10585 crossref_primary_10_1002_smll_202308084 crossref_primary_10_1016_j_apcatb_2023_122962 crossref_primary_10_1016_j_scib_2024_08_011 crossref_primary_10_1039_D3GC01540H crossref_primary_10_1016_j_jechem_2024_09_011 crossref_primary_10_1016_j_chempr_2021_10_008 crossref_primary_10_1002_ange_202419550 crossref_primary_10_1016_j_apcatb_2022_121357 crossref_primary_10_1039_D2DT02450K crossref_primary_10_1039_D2CY00055E crossref_primary_10_1016_j_isci_2024_108781 crossref_primary_10_1007_s42864_024_00286_w crossref_primary_10_1016_j_matt_2023_12_014 crossref_primary_10_1021_acsnano_2c01748 crossref_primary_10_1039_D2TA00744D crossref_primary_10_1016_j_checat_2023_100794 crossref_primary_10_1002_cssc_202401261 crossref_primary_10_1016_j_jechem_2025_02_010 crossref_primary_10_1002_adfm_202311611 crossref_primary_10_1016_j_cej_2022_135853 crossref_primary_10_1021_acsnano_3c01862 crossref_primary_10_1360_nso_20240047 crossref_primary_10_1002_anie_202213009 crossref_primary_10_1002_cssc_202200068 crossref_primary_10_1016_j_apcatb_2022_121209 crossref_primary_10_1002_adma_202104791 crossref_primary_10_1021_jacs_4c09107 crossref_primary_10_1021_acs_inorgchem_2c00862 crossref_primary_10_1007_s43938_023_00019_4 crossref_primary_10_1021_jacs_4c02835 crossref_primary_10_1016_j_coelec_2023_101409 crossref_primary_10_1002_aenm_202402429 crossref_primary_10_1149_1945_7111_acbc9d crossref_primary_10_1002_ange_202213009 crossref_primary_10_1021_acs_chemrev_1c00236 crossref_primary_10_1016_S1872_2067_23_64551_6 crossref_primary_10_1039_D2CY00281G crossref_primary_10_1002_anie_202111265 crossref_primary_10_1002_anie_202216581 crossref_primary_10_1016_j_jechem_2025_01_048 crossref_primary_10_1016_j_apcatb_2024_124270 crossref_primary_10_1002_ange_202409693 crossref_primary_10_1021_acscatal_3c02272 crossref_primary_10_1002_smll_202405008 crossref_primary_10_1016_j_ijhydene_2023_06_008 crossref_primary_10_1039_D3CS00857F crossref_primary_10_1038_s41467_023_40892_9 crossref_primary_10_1002_anie_202318248 crossref_primary_10_1007_s11426_024_2113_7 crossref_primary_10_1039_D3EY00191A crossref_primary_10_1016_j_cej_2024_155109 crossref_primary_10_1002_cssc_202401601 crossref_primary_10_1002_smll_202208044 crossref_primary_10_1039_D3SC06010A crossref_primary_10_1002_anie_202104747 crossref_primary_10_1002_anie_202500389 crossref_primary_10_1016_j_jechem_2022_12_062 crossref_primary_10_1063_5_0144635 crossref_primary_10_1007_s11426_021_1173_8 crossref_primary_10_1016_j_mcat_2022_112638 crossref_primary_10_1016_j_joule_2024_06_002 crossref_primary_10_1016_j_mattod_2024_12_007 crossref_primary_10_1002_cssc_202401751 crossref_primary_10_1002_chem_202400352 crossref_primary_10_1039_D4EE00087K crossref_primary_10_1016_j_jece_2025_115359 crossref_primary_10_1002_ange_202401943 crossref_primary_10_1002_ange_202500389 crossref_primary_10_1021_jacs_1c10714 crossref_primary_10_1002_anie_202311752 crossref_primary_10_1002_eem2_12192 crossref_primary_10_1039_D2SC03585E crossref_primary_10_1039_D1QI00428J crossref_primary_10_1002_adma_202312645 crossref_primary_10_1007_s11426_024_2039_0 crossref_primary_10_1002_cctc_202301420 crossref_primary_10_1021_acsmaterialslett_2c01046 crossref_primary_10_1002_cssc_202401865 crossref_primary_10_1039_D3CY01338C crossref_primary_10_1021_acsami_4c16120 crossref_primary_10_1016_j_jechem_2023_12_041 crossref_primary_10_1016_S1872_2067_23_64588_7 crossref_primary_10_1039_D4GC03829K crossref_primary_10_1016_j_scib_2023_09_033 crossref_primary_10_1002_cssc_202300703 crossref_primary_10_1002_anie_202409693 crossref_primary_10_1098_rsta_2023_0259 crossref_primary_10_1021_acs_accounts_3c00192 crossref_primary_10_3390_pr11092647 crossref_primary_10_1002_adsu_202400272 crossref_primary_10_1002_cctc_202301650 crossref_primary_10_1002_smll_202307975 crossref_primary_10_1002_ange_202216837 crossref_primary_10_1002_cctc_202301534 crossref_primary_10_1039_D4SC01752H crossref_primary_10_1002_aic_18515 crossref_primary_10_1002_cctc_202401138 crossref_primary_10_1002_ange_202312076 crossref_primary_10_1007_s12274_023_5752_5 crossref_primary_10_1002_anie_202209849 crossref_primary_10_1002_adma_202207466 crossref_primary_10_1016_j_cej_2022_139232 crossref_primary_10_1039_D3CS00756A crossref_primary_10_1021_acscatal_3c05691 crossref_primary_10_3866_PKU_WHXB202307049 crossref_primary_10_1039_D2EE01036D crossref_primary_10_1063_5_0201751 crossref_primary_10_1002_smll_202305666 crossref_primary_10_1016_j_ces_2022_117735 crossref_primary_10_26599_NR_2025_94907018 crossref_primary_10_1016_j_cej_2023_147862 crossref_primary_10_1002_adma_202104891 crossref_primary_10_3389_fchem_2022_861604 crossref_primary_10_1007_s40820_023_01169_4 crossref_primary_10_1021_jacsau_4c01183 crossref_primary_10_1002_smll_202200436 crossref_primary_10_1016_j_mcat_2022_112831 crossref_primary_10_1021_acscatal_3c03491 crossref_primary_10_1021_acsmaterialslett_3c00524 crossref_primary_10_1039_D1CC04004A crossref_primary_10_1021_acs_energyfuels_4c05088 crossref_primary_10_1016_j_coelec_2023_101224 crossref_primary_10_1016_j_molstruc_2025_142048 crossref_primary_10_1002_anie_202304007 crossref_primary_10_1002_anie_202216347 crossref_primary_10_1016_j_jcis_2023_11_140 crossref_primary_10_1039_D4SC05936K crossref_primary_10_1016_j_cej_2023_146528 crossref_primary_10_1016_j_cej_2022_139494 crossref_primary_10_1038_s41467_023_43897_6 crossref_primary_10_1016_j_checat_2022_05_009 crossref_primary_10_1039_D1TA09989B crossref_primary_10_1002_anie_202203170 crossref_primary_10_1016_j_envpol_2023_122835 crossref_primary_10_1002_ange_202111265 crossref_primary_10_1002_ange_202304007 crossref_primary_10_1016_j_cattod_2022_10_017 crossref_primary_10_1039_D3CC02531D crossref_primary_10_1002_ange_202309930 crossref_primary_10_1002_ange_202311752 crossref_primary_10_1007_s12598_024_02954_9 crossref_primary_10_1007_s10008_023_05444_7 crossref_primary_10_1002_adfm_202423960 crossref_primary_10_1002_adfm_202407236 crossref_primary_10_1016_j_checat_2022_10_018 crossref_primary_10_1021_acs_inorgchem_2c02888 crossref_primary_10_1038_s41467_022_31484_0 crossref_primary_10_1002_smsc_202100043 crossref_primary_10_1007_s10311_023_01608_z crossref_primary_10_1016_j_fuel_2023_129406 crossref_primary_10_1021_jacsau_3c00537 crossref_primary_10_1002_anie_202407589 crossref_primary_10_1021_jacs_1c03135 crossref_primary_10_1039_D4EY00259H crossref_primary_10_1002_ange_202203170 crossref_primary_10_1016_j_surfin_2023_103360 crossref_primary_10_1021_acs_inorgchem_3c01774 crossref_primary_10_1021_acscentsci_3c01277 crossref_primary_10_1002_aenm_202103872 crossref_primary_10_1007_s40242_024_4121_6 crossref_primary_10_1016_j_ccr_2023_215273 crossref_primary_10_1016_j_cej_2022_135473 crossref_primary_10_1039_D4CC05117C crossref_primary_10_1021_acsami_4c12925 crossref_primary_10_1039_D4EE04511D crossref_primary_10_1002_anie_202311696 crossref_primary_10_1002_ange_202403980 crossref_primary_10_1016_j_cej_2022_139836 crossref_primary_10_1039_D1TA09608G crossref_primary_10_1002_ange_202216347 crossref_primary_10_1039_D4RE00519H crossref_primary_10_1021_jacs_4c09079 crossref_primary_10_1002_adfm_202410755 crossref_primary_10_1021_jacs_3c02570 crossref_primary_10_1016_j_apcatb_2023_123292 crossref_primary_10_1002_anie_202207677 crossref_primary_10_1002_anie_202420661 crossref_primary_10_1002_ange_202216581 crossref_primary_10_1039_D4NJ05141F crossref_primary_10_1021_jacs_4c14320 crossref_primary_10_1002_anie_202401943 crossref_primary_10_1039_D3GC02398B crossref_primary_10_1002_adfm_202207110 crossref_primary_10_1016_j_apcatb_2022_121819 crossref_primary_10_1021_jacs_3c01142 crossref_primary_10_1039_D5TA00403A crossref_primary_10_12677_AAC_2024_141004 crossref_primary_10_1002_smll_202408243 crossref_primary_10_1016_j_cej_2022_135375 crossref_primary_10_1149_1945_7111_ad6a97 crossref_primary_10_1016_j_mser_2024_100881 crossref_primary_10_1039_D2CC06943A crossref_primary_10_1002_advs_202205605 crossref_primary_10_1002_smll_202107799 crossref_primary_10_1016_j_cej_2022_138885 crossref_primary_10_1039_D4GC00930D crossref_primary_10_1021_acsami_2c13864 crossref_primary_10_1002_adfm_202314247 crossref_primary_10_1038_s41467_024_52830_4 crossref_primary_10_1149_1945_7111_ad8d7d crossref_primary_10_1021_acs_inorgchem_3c00234 crossref_primary_10_1002_adma_202307913 crossref_primary_10_1021_jacs_2c07742 crossref_primary_10_1016_j_electacta_2024_144495 crossref_primary_10_1016_j_ijhydene_2022_08_200 crossref_primary_10_1021_acscatal_4c02799 crossref_primary_10_1021_jacs_3c05898 crossref_primary_10_1016_j_jechem_2022_02_036 crossref_primary_10_1007_s12274_023_6153_5 crossref_primary_10_1016_j_joule_2022_04_014 crossref_primary_10_1016_S1872_2067_23_64392_X crossref_primary_10_1002_anie_202306726 crossref_primary_10_1021_acscatal_4c01596 crossref_primary_10_1002_adma_202103266 crossref_primary_10_1002_smll_202306488 crossref_primary_10_1016_j_joule_2023_06_022 crossref_primary_10_1021_acsami_1c11765 crossref_primary_10_1021_acscatal_2c05512 crossref_primary_10_1016_j_nxener_2023_100027 crossref_primary_10_1021_acs_energyfuels_3c03896 crossref_primary_10_1002_adma_202104341 crossref_primary_10_1021_jacs_2c01098 crossref_primary_10_1002_smll_202409471 crossref_primary_10_1016_j_jechem_2022_02_024 crossref_primary_10_1016_j_mser_2024_100829 crossref_primary_10_1039_D2SC03527H crossref_primary_10_1039_D3QM00433C crossref_primary_10_1007_s12598_021_01824_y crossref_primary_10_1021_acsnano_2c01177 crossref_primary_10_1021_jacs_3c03340 crossref_primary_10_1002_anie_202419550 crossref_primary_10_1021_jacs_2c05660 crossref_primary_10_1002_cplu_202400317 crossref_primary_10_1002_anie_202312239 crossref_primary_10_1002_ange_202318248 crossref_primary_10_1039_D3CS00822C crossref_primary_10_1002_adma_202209233 crossref_primary_10_1038_s41570_024_00589_z crossref_primary_10_1021_acscatal_2c00174 crossref_primary_10_1016_j_mtphys_2023_101191 crossref_primary_10_1002_admi_202101478 crossref_primary_10_1039_D4CP01235F crossref_primary_10_1039_D4SC01613K crossref_primary_10_1021_acssuschemeng_2c06381 crossref_primary_10_1002_cctc_202301593 crossref_primary_10_1039_D4SC00842A crossref_primary_10_1002_ange_202415975 crossref_primary_10_1039_D2TA09278F crossref_primary_10_1002_ange_202305184 crossref_primary_10_1021_acscatal_3c04977 crossref_primary_10_1039_D4DT01078G crossref_primary_10_1002_cssc_202400723 crossref_primary_10_1002_eem2_12551 crossref_primary_10_1021_acscatal_2c02346 crossref_primary_10_1039_D3EE04543A crossref_primary_10_1016_j_nantod_2024_102315 crossref_primary_10_1016_j_cej_2024_157783 crossref_primary_10_1039_D4QI00519H crossref_primary_10_1002_chem_202402207 crossref_primary_10_1002_gch2_202200242 crossref_primary_10_1021_acscatal_2c01128 crossref_primary_10_1016_j_apcatb_2023_123265 crossref_primary_10_1038_s44160_024_00603_8 |
Cites_doi | 10.1039/C9SE00912D 10.31635/ccschem.020.202000218 10.1038/s41929-019-0306-7 10.1021/jz201461p 10.1002/adfm.201807651 10.1002/cssc.201500322 10.1006/jcat.1995.1310 10.1038/s41929-019-0402-8 10.1038/s41467-020-19369-6 10.1002/ange.202003842 10.1149/1.2100791 10.1002/ange.201806298 10.1002/adma.202002189 10.1002/anie.202002923 10.1038/s41929-018-0182-6 10.1126/science.aay4217 10.1149/1.3330704 10.1021/jacs.9b12377 10.1021/acs.accounts.9b00529 10.1002/aenm.202000659 10.1016/j.joule.2019.09.007 10.1038/s41467-019-13052-1 10.1016/j.jcat.2010.12.020 10.1038/s41929-018-0211-5 10.1021/acscatal.0c03034 10.1021/acscatal.6b03035 10.1016/j.jechem.2018.03.015 10.1021/jacs.0c00199 10.1038/s41467-019-09788-5 10.1021/jacs.6b07127 10.1038/s41560-019-0451-x 10.1021/acs.accounts.7b00616 10.1038/s41563-019-0445-x 10.1002/smtd.201800121 10.1016/j.jcat.2014.12.033 10.1002/ange.202002337 10.1021/acs.chemrev.9b00659 10.1038/s41557-020-0481-9 10.1002/ange.202005489 10.1016/j.apcatb.2016.05.081 10.1021/acscatal.9b04302 10.1039/C8CP01476K 10.1039/C1CP22271F 10.1002/anie.201807717 10.1126/science.aav3506 10.1021/acsami.0c05094 10.1002/anie.201814339 10.1039/C9CS00607A 10.1126/science.aaz8459 10.1039/C5EE03694A 10.1002/anie.202003842 10.1021/acs.accounts.8b00010 10.1002/cssc.201200335 10.1039/c2ee23062c 10.1002/cssc.201701448 10.1038/s41467-019-11292-9 10.1002/adma.201901996 10.1002/ange.201814339 10.1021/acscatal.0c01641 10.1038/s41467-019-14272-1 10.1126/science.aad4998 10.1021/acs.oprd.8b00236 10.1021/jacs.8b11237 10.1021/acscatal.8b00217 10.1016/j.joule.2017.09.003 10.1039/C7CY01067B 10.1002/anie.201100353 10.1002/smtd.202001010 10.1021/cs200599g 10.1149/1.1782971 10.1021/acscatal.9b01207 10.1039/C9CS00280D 10.1039/C4CS00470A 10.1016/j.coelec.2018.10.011 10.1021/acscatal.9b00532 10.1021/acscatal.9b01159 10.1039/C8EE03426E 10.1021/acs.chemrev.8b00705 10.1016/j.apcatb.2020.118888 10.1016/S0013-4686(03)00534-6 10.1021/jacs.9b05397 10.1039/C4GC01632G 10.1021/jacs.9b02345 10.1039/C8GC02680G 10.1002/ange.201807717 10.1038/s41467-017-00585-6 10.1021/acsomega.7b01060 10.1038/s41929-018-0139-9 10.1093/nsr/nwz146 10.1002/advs.201700379 10.1038/s41929-019-0386-4 10.1038/s41560-019-0374-6 10.1016/j.jcis.2020.05.014 10.1002/anie.201903327 10.1038/s41560-019-0450-y 10.1016/j.cattod.2014.03.054 10.1016/j.apcatb.2018.01.052 10.1039/C9EE02783A 10.1039/D0CS00134A 10.1038/nchem.2194 10.1038/s41929-019-0229-3 10.1021/acs.est.6b00730 10.1038/s41570-019-0128-9 10.1002/ange.201603798 10.1021/jacs.0c01699 10.1016/0021-9517(91)90262-3 10.1016/j.apcatb.2018.05.041 10.1038/s41563-020-0610-2 10.1038/s41929-020-0481-6 10.1021/acs.iecr.7b03514 10.1021/acs.accounts.8b00002 10.1016/j.jcat.2016.09.030 10.1038/s41929-020-00563-0 10.1021/jacs.9b11790 10.1016/j.chempr.2016.05.002 10.1038/s41570-017-0087 10.1126/science.aay1844 10.1023/A:1018463131891 10.1002/anie.202005489 10.1016/j.chempr.2019.05.008 10.1002/ange.201100353 10.1134/S1023193520050067 10.1016/j.chempr.2020.08.025 10.1038/s41467-019-08805-x 10.1038/nmat4778 10.1016/j.nanoen.2020.104601 10.1002/adma.202007056 10.1016/j.cattod.2010.05.025 10.1002/sstr.202000033 10.1021/jacs.9b02124 10.1021/ja3085912 10.1038/s41467-020-19571-6 10.1016/j.coche.2018.05.003 10.1021/acs.chemrev.6b00715 10.1021/acs.chemrev.0c00594 10.1126/science.aay3060 10.1126/science.aar6611 10.1038/nchem.121 10.1021/acs.chemrev.7b00689 10.1073/pnas.1006652108 10.1126/sciadv.aar3208 10.1039/D0CS00030B 10.1038/s41586-019-1782-2 10.1038/s41929-018-0168-4 10.1038/s41467-019-12851-w 10.1038/s41570-019-0110-6 10.1039/C8CS00398J 10.1021/acscatal.0c04283 10.1002/cctc.201402669 10.1038/nmat4738 10.1038/s41560-019-0407-1 10.1002/anie.201806298 10.1039/c2cs35381d 10.1002/cssc.202000339 10.1002/anie.201603798 10.1002/anie.202005574 10.1016/S0022-0728(01)00363-1 10.1038/nmat4834 10.1021/jacs.9b03811 10.1002/anie.201710556 10.1038/ncomms12123 10.1002/ange.201903327 10.1038/s41929-020-0450-0 10.1002/cssc.202000987 10.1002/adma.202002435 10.1038/s41578-019-0152-x 10.1002/adma.201808066 10.1039/C9CS00869A 10.1016/j.joule.2019.10.004 10.1021/acs.accounts.0c00194 10.1021/acs.chemrev.7b00488 10.1021/acs.accounts.8b00266 10.1038/s41557-019-0312-z 10.1093/nsr/nwaa142 10.1016/j.jechem.2015.08.005 10.1002/smtd.202000063 10.1021/jacs.9b13347 10.1021/acs.accounts.8b00070 10.1002/cctc.201801435 10.1021/acsomega.9b03515 10.1016/j.chempr.2018.05.001 10.1016/j.joule.2018.12.015 10.1021/acscentsci.0c01486 10.1002/ange.202005574 10.1021/acs.accounts.6b00635 10.1103/PhysRevLett.99.016105 10.1038/s41929-019-0235-5 10.1002/anie.202002337 10.1038/s41586-019-1760-8 10.1038/s41565-019-0551-6 10.1039/D0CS00130A 10.1002/9781118892114.ch11 10.1002/ange.202002923 10.1038/ncomms12697 10.1021/acs.chemrev.7b00459 10.3389/fchem.2019.00100 10.1021/ja109955w 10.1002/9783527680603.ch59 10.1002/ange.201710556 10.1021/acssuschemeng.9b05983 10.1038/s41929-018-0200-8 10.1002/cssc.201701802 10.1016/j.joule.2018.10.027 10.1093/nsr/nwv024 10.1002/nano.202000001 10.1016/0022-0728(95)03992-P 10.1038/nmat2878 10.1021/jacs.0c00418 10.1039/C8EE01501E 10.1021/acscatal.6b03632 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202101522 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 19590 |
ExternalDocumentID | 33606339 10_1002_anie_202101522 ANIE202101522 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: australia research council funderid: DP160104866, DP170104464, FL170100154 – fundername: australia research council grantid: DP160104866, DP170104464, FL170100154 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 9M8 AANHP AASGY AAYJJ AAYOK AAYXX ABDBF ABDPE ABEFU ABJNI ACBWZ ACRPL ACYXJ ADNMO ADXHL AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF H~9 LW6 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4392-733b726e8d3708f5ea97d6279d844d6eaa19637ea12527984a708447b2253feb3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 01:35:37 EDT 2025 Sun Jul 13 04:09:50 EDT 2025 Thu Apr 03 07:04:02 EDT 2025 Tue Jul 01 01:17:57 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Wed Jan 22 16:29:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Keywords | chemical synthesis refinery reaction intermediates electrocatalysis catalyst design |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4392-733b726e8d3708f5ea97d6279d844d6eaa19637ea12527984a708447b2253feb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4568-8422 0000-0002-1178-5611 0000-0002-5167-1192 0000-0002-2411-8041 |
PMID | 33606339 |
PQID | 2564408251 |
PQPubID | 946352 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2491947186 proquest_journals_2564408251 pubmed_primary_33606339 crossref_citationtrail_10_1002_anie_202101522 crossref_primary_10_1002_anie_202101522 wiley_primary_10_1002_anie_202101522_ANIE202101522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 1, 2021 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 1, 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 11 2019; 10 2019; 13 2019; 12 2019; 14 2019; 18 2020; 13 2020; 12 2020; 11 2020; 10 2012; 14 2020; 19 2018; 47 2018; 8 2018; 2 2012; 134 2018; 4 2018; 1 2020; 577 2003; 48 2019; 29 2010; 9 2019; 7 2019; 9 2019; 4 2019; 3 2019; 5 2019; 31 2018; 227 2015; 248 2019; 2 2020; 142 1997; 27 1995; 157 2020; 32 2018; 22 2007; 99 2018; 20 2018; 27 2011; 133 2017; 50 2016; 7 2016; 1 2018; 118 2004; 151 2019; 48 2018; 236 2020; 270 2019; 575 2011 2011; 50 123 1995; 387 2018; 11 2016; 9 2012; 41 2017; 7 2011; 279 2017; 8 2017; 1 2017; 2 2018; 360 2017; 4 2020; 120 2020 2020; 59 132 2016; 344 2020; 368 2019; 366 2001; 507 2020; 56 2020; 367 2017; 355 2019; 364 2017; 117 2020; 8 2020; 7 2020; 6 2020; 5 2020; 4 2020; 3 2020; 2 2020; 1 2021; 33 2020; 53 2018 2018; 57 130 2010; 158 2015; 44 2010; 157 2020; 49 2016; 198 2019; 119 1991; 132 2015; 2 2021; 7 2015; 17 2021; 5 2021; 4 2016; 50 2015; 328 2019; 141 2015; 8 2015; 7 2019 2019; 58 131 2015; 24 1987; 134 2012; 2 2011; 108 2012; 3 2016 2016; 55 128 2021; 11 2017; 16 2020 2020; 71 2017; 10 2018; 51 2016; 138 2014 2009; 1 2012; 5 2018; 57 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_158_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 Duca M. (e_1_2_10_13_1) 2020 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_51_1 e_1_2_10_147_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_41_1 e_1_2_10_90_2 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_75_2 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_91_1 e_1_2_10_4_1 e_1_2_10_137_2 e_1_2_10_39_2 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_76_2 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_175_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_149_1 Nørskov J. K. (e_1_2_10_27_1) 2014 e_1_2_10_126_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_130_2 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_31_1 e_1_2_10_188_1 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_131_2 e_1_2_10_154_2 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_192_2 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_32_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_129_2 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_133_2 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_108_1 e_1_2_10_157_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_134_2 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
References_xml | – volume: 50 start-page: 5234 year: 2016 end-page: 5242 publication-title: Environ. Sci. Technol. – volume: 134 start-page: 20226 year: 2012 end-page: 20229 publication-title: J. Am. Chem. Soc. – volume: 367 start-page: 661 year: 2020 end-page: 666 publication-title: Science – volume: 59 132 start-page: 9418 9504 year: 2020 2020 end-page: 9422 9508 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 279 start-page: 233 year: 2011 end-page: 240 publication-title: J. Catal. – volume: 3 start-page: 570 year: 2019 end-page: 583 publication-title: Joule – volume: 2 start-page: 198 year: 2019 end-page: 210 publication-title: Nat. Catal. – volume: 157 start-page: 450 year: 1995 end-page: 460 publication-title: J. Catal. – volume: 328 start-page: 36 year: 2015 end-page: 42 publication-title: J. Catal. – volume: 27 start-page: 605 year: 1997 end-page: 611 publication-title: J. Appl. Electrochem. – volume: 577 start-page: 509 year: 2020 end-page: 513 publication-title: Nature – volume: 57 start-page: 2165 year: 2018 end-page: 2177 publication-title: Ind. Eng. Chem. Res. – volume: 3 start-page: 125 year: 2020 end-page: 134 publication-title: Nat. Catal. – volume: 364 year: 2019 publication-title: Science – volume: 270 year: 2020 publication-title: Appl. Catal. B – volume: 142 start-page: 6400 year: 2020 end-page: 6408 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 442 year: 2019 end-page: 458 publication-title: Nat. Rev. Chem. – volume: 71 year: 2020 publication-title: Nano Energy – volume: 4 start-page: 792 year: 2019 end-page: 804 publication-title: Nat. Rev. Mater. – volume: 198 start-page: 525 year: 2016 end-page: 547 publication-title: Appl. Catal. B – volume: 13 start-page: 47 year: 2019 end-page: 54 publication-title: Curr. Opin. Electrochem. – volume: 7 start-page: 12123 year: 2016 publication-title: Nat. Commun. – volume: 10 start-page: 5074 year: 2019 publication-title: Nat. Commun. – volume: 12 start-page: 1055 year: 2019 end-page: 1067 publication-title: Energy Environ. Sci. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 2106 year: 2012 end-page: 2124 publication-title: ChemSusChem – volume: 4 start-page: 776 year: 2019 end-page: 785 publication-title: Nat. Energy – volume: 1 start-page: 37 year: 2009 end-page: 46 publication-title: Nat. Chem. – volume: 355 year: 2017 publication-title: Science – volume: 108 start-page: 937 year: 2011 end-page: 943 publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 11152 year: 2018 end-page: 11159 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 55 year: 2019 end-page: 61 publication-title: Nat. Catal. – volume: 3 start-page: 14 year: 2020 end-page: 22 publication-title: Nat. Catal. – volume: 5 start-page: 2296 year: 2019 end-page: 2325 publication-title: Chem – volume: 132 start-page: 257 year: 1991 end-page: 262 publication-title: J. Catal. – volume: 22 start-page: 1590 year: 2018 end-page: 1598 publication-title: Org. Process Res. Dev. – volume: 53 start-page: 547 year: 2020 end-page: 560 publication-title: Acc. Chem. Res. – volume: 27 start-page: 1629 year: 2018 end-page: 1636 publication-title: J. Energy Chem. – volume: 49 start-page: 2215 year: 2020 end-page: 2264 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 183 year: 2015 end-page: 201 publication-title: Natl. Sci. Rev. – volume: 3 start-page: 478 year: 2020 end-page: 487 publication-title: Nat. Catal. – volume: 134 start-page: 1925 year: 1987 end-page: 1929 publication-title: J. Electrochem. Soc. – volume: 49 start-page: 5510 year: 2020 end-page: 5560 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 466 year: 2019 end-page: 474 publication-title: Nat. Energy – volume: 141 start-page: 6413 year: 2019 end-page: 6418 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 4214 year: 2020 end-page: 4237 publication-title: ChemSusChem – volume: 10 start-page: 3340 year: 2019 publication-title: Nat. Commun. – volume: 58 131 start-page: 4504 4552 year: 2019 2019 end-page: 4509 4557 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 9726 year: 2012 end-page: 9742 publication-title: Energy Environ. Sci. – volume: 507 start-page: 177 year: 2001 end-page: 184 publication-title: J. Electroanal. Chem. – volume: 9 start-page: 904 year: 2010 end-page: 907 publication-title: Nat. Mater. – volume: 24 start-page: 535 year: 2015 end-page: 547 publication-title: J. Energy Chem. – volume: 49 start-page: 6632 year: 2020 end-page: 6665 publication-title: Chem. Soc. Rev. – volume: 575 start-page: 639 year: 2019 end-page: 642 publication-title: Nature – volume: 5 year: 2021 publication-title: Small Methods – volume: 12 start-page: 24786 year: 2020 end-page: 24795 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 1063 year: 2019 end-page: 1070 publication-title: Nat. Nanotechnol. – volume: 142 start-page: 7036 year: 2020 end-page: 7046 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 6691 year: 2017 end-page: 6698 publication-title: ACS Catal. – volume: 133 start-page: 5882 year: 2011 end-page: 5892 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 846 year: 2019 end-page: 851 publication-title: Nat. Chem. – volume: 13 start-page: 2513 year: 2020 end-page: 2521 publication-title: ChemSusChem – volume: 10 start-page: 4812 year: 2017 end-page: 4816 publication-title: ChemSusChem – volume: 119 start-page: 7610 year: 2019 end-page: 7672 publication-title: Chem. Rev. – volume: 51 start-page: 1571 year: 2018 end-page: 1580 publication-title: Acc. Chem. Res. – volume: 9 start-page: 8561 year: 2019 end-page: 8574 publication-title: ACS Catal. – volume: 2 start-page: 243 year: 2019 end-page: 250 publication-title: Nat. Catal. – volume: 20 start-page: 151 year: 2018 end-page: 158 publication-title: Curr. Opin. Chem. Eng. – volume: 3 start-page: 2602 year: 2019 end-page: 2621 publication-title: Joule – volume: 57 130 start-page: 7568 7690 year: 2018 2018 end-page: 7579 7702 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 19 start-page: 266 year: 2020 end-page: 276 publication-title: Nat. Mater. – volume: 7 start-page: 706 year: 2017 end-page: 709 publication-title: ACS Catal. – volume: 58 131 start-page: 12014 12142 year: 2019 2019 end-page: 12017 12145 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 118 start-page: 2302 year: 2018 end-page: 2312 publication-title: Chem. Rev. – volume: 7 start-page: 12697 year: 2016 publication-title: Nat. Commun. – volume: 7 start-page: 100 year: 2019 publication-title: Front. Chem. – volume: 151 start-page: D93 year: 2004 end-page: D97 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 285 year: 2020 end-page: 295 publication-title: Natl. Sci. Rev. – volume: 2 start-page: 648 year: 2019 end-page: 658 publication-title: Nat. Catal. – volume: 2 start-page: 507 year: 2020 end-page: 515 publication-title: CCS Chem. – volume: 53 start-page: 1488 year: 2020 end-page: 1497 publication-title: Acc. Chem. Res. – volume: 142 start-page: 4037 year: 2020 end-page: 4050 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 8307 year: 2018 end-page: 8348 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 5884 year: 2020 publication-title: Nat. Commun. – volume: 7 start-page: 38 year: 2015 end-page: 47 publication-title: ChemCatChem – volume: 57 130 start-page: 11460 11631 year: 2018 2018 end-page: 11464 11636 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 825 year: 2018 end-page: 832 publication-title: Joule – volume: 1 start-page: 922 year: 2018 end-page: 934 publication-title: Nat. Catal. – volume: 59 132 start-page: 16974 17122 year: 2020 2020 end-page: 16981 17129 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 50 start-page: 915 year: 2017 end-page: 923 publication-title: Acc. Chem. Res. – volume: 387 start-page: 143 year: 1995 end-page: 145 publication-title: J. Electroanal. Chem. – volume: 4 start-page: 1340 year: 2020 end-page: 1350 publication-title: Sustainable Energy Fuels – volume: 4 start-page: 1809 year: 2018 end-page: 1831 publication-title: Chem – volume: 118 start-page: 6337 year: 2018 end-page: 6408 publication-title: Chem. Rev. – volume: 11 start-page: 298 year: 2019 end-page: 308 publication-title: ChemCatChem – volume: 4 year: 2020 publication-title: Small Methods – volume: 577 start-page: 109 year: 2020 end-page: 114 publication-title: J. Colloid Interface Sci. – volume: 12 start-page: 717 year: 2020 end-page: 724 publication-title: Nat. Chem. – volume: 3 start-page: 703 year: 2020 end-page: 709 publication-title: Nat. Catal. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 59 132 start-page: 15487 15615 year: 2020 2020 end-page: 15491 15620 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 9171 9256 year: 2020 2020 end-page: 9176 9261 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 9913 10067 year: 2016 2016 end-page: 9917 10071 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 117 start-page: 8497 year: 2017 end-page: 8520 publication-title: Chem. Rev. – volume: 142 start-page: 5702 year: 2020 end-page: 5708 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 701 year: 2017 publication-title: Nat. Commun. – volume: 1 start-page: 946 year: 2018 end-page: 951 publication-title: Nat. Catal. – volume: 5 start-page: 1287 year: 2020 end-page: 1295 publication-title: ACS Omega – volume: 56 start-page: 405 year: 2020 end-page: 417 publication-title: Russ. J. Electrochem. – volume: 10 start-page: 1779 year: 2019 publication-title: Nat. Commun. – volume: 4 start-page: 732 year: 2019 end-page: 745 publication-title: Nat. Energy – volume: 1 start-page: 0087 year: 2017 publication-title: Nat. Rev. Chem. – volume: 11 start-page: 2935 year: 2018 end-page: 2944 publication-title: Energy Environ. Sci. – volume: 10 start-page: 4977 year: 2019 publication-title: Nat. Commun. – volume: 6 start-page: 2484 year: 2020 end-page: 2496 publication-title: Chem – volume: 120 start-page: 12217 year: 2020 end-page: 12314 publication-title: Chem. Rev. – volume: 8 start-page: 4064 year: 2018 end-page: 4081 publication-title: ACS Catal. – volume: 141 start-page: 12071 year: 2019 end-page: 12078 publication-title: J. Am. Chem. Soc. – start-page: 155 year: 2014 end-page: 174 – volume: 344 start-page: 263 year: 2016 end-page: 272 publication-title: J. Catal. – volume: 41 start-page: 8195 year: 2012 end-page: 8209 publication-title: Chem. Soc. Rev. – volume: 158 start-page: 29 year: 2010 end-page: 34 publication-title: Catal. Today – volume: 17 start-page: 601 year: 2015 end-page: 609 publication-title: Green Chem. – volume: 120 start-page: 5437 year: 2020 end-page: 5516 publication-title: Chem. Rev. – volume: 8 start-page: 2672 year: 2020 end-page: 2681 publication-title: ACS Sustainable Chem. Eng. – volume: 51 start-page: 2857 year: 2018 end-page: 2866 publication-title: Acc. Chem. Res. – volume: 1 start-page: 32 year: 2016 end-page: 58 publication-title: Chem – volume: 4 start-page: 430 year: 2019 end-page: 433 publication-title: Nat. Energy – volume: 50 123 start-page: 4601 4697 year: 2011 2011 end-page: 4605 4701 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 328 year: 2015 end-page: 333 publication-title: Nat. Chem. – volume: 16 start-page: 16 year: 2017 end-page: 22 publication-title: Nat. Mater. – volume: 157 start-page: B719 year: 2010 end-page: B725 publication-title: J. Electrochem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 368 start-page: 1228 year: 2020 end-page: 1233 publication-title: Science – volume: 99 year: 2007 publication-title: Phys. Rev. Lett. – volume: 49 start-page: 2196 year: 2020 end-page: 2214 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 5954 year: 2020 publication-title: Nat. Commun. – volume: 48 start-page: 3953 year: 2003 end-page: 3958 publication-title: Electrochim. Acta – volume: 49 start-page: 3764 year: 2020 end-page: 3782 publication-title: Chem. Soc. Rev. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 360 year: 2018 publication-title: Science – volume: 138 start-page: 13639 year: 2016 end-page: 13646 publication-title: J. Am. Chem. Soc. – volume: 227 start-page: 386 year: 2018 end-page: 408 publication-title: Appl. Catal. B – volume: 118 start-page: 4631 year: 2018 end-page: 4701 publication-title: Chem. Rev. – volume: 44 start-page: 2060 year: 2015 end-page: 2086 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 4218 year: 2019 end-page: 4225 publication-title: ACS Catal. – volume: 10 start-page: 7495 year: 2020 end-page: 7511 publication-title: ACS Catal. – volume: 16 start-page: 57 year: 2017 end-page: 69 publication-title: Nat. Mater. – volume: 10 start-page: 3658 year: 2020 end-page: 3663 publication-title: ACS Catal. – volume: 10 start-page: 11082 year: 2020 end-page: 11098 publication-title: ACS Catal. – volume: 1 year: 2020 publication-title: Small Struct. – volume: 51 start-page: 881 year: 2018 end-page: 889 publication-title: Acc. Chem. Res. – volume: 3 start-page: 251 year: 2012 end-page: 258 publication-title: J. Phys. Chem. Lett. – volume: 2 year: 2018 publication-title: Small Methods – volume: 14 start-page: 1235 year: 2012 end-page: 1245 publication-title: Phys. Chem. Chem. Phys. – volume: 51 start-page: 910 year: 2018 end-page: 918 publication-title: Acc. Chem. Res. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 142 start-page: 4550 year: 2020 end-page: 4554 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 7578 year: 2019 end-page: 7587 publication-title: ACS Catal. – volume: 9 start-page: 1687 year: 2016 end-page: 1695 publication-title: Energy Environ. Sci. – volume: 57 130 start-page: 13163 13347 year: 2018 2018 end-page: 13166 13350 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 4624 year: 2019 end-page: 4633 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 5182 year: 2017 end-page: 5194 publication-title: Catal. Sci. Technol. – volume: 1 start-page: 764 year: 2018 end-page: 771 publication-title: Nat. Catal. – volume: 367 start-page: 397 year: 2020 end-page: 400 publication-title: Science – start-page: 773 year: 2020 end-page: 890 – volume: 236 start-page: 546 year: 2018 end-page: 568 publication-title: Appl. Catal. B – volume: 3 start-page: 638 year: 2019 end-page: 649 publication-title: Nat. Rev. Chem. – volume: 18 start-page: 1222 year: 2019 end-page: 1227 publication-title: Nat. Mater. – volume: 16 start-page: 70 year: 2017 end-page: 81 publication-title: Nat. Mater. – volume: 7 start-page: 1564 year: 2020 end-page: 1583 publication-title: Natl. Sci. Rev. – volume: 11 start-page: 412 year: 2020 publication-title: Nat. Commun. – volume: 4 start-page: 134 year: 2021 end-page: 143 publication-title: Nat. Catal. – volume: 1 start-page: 135 year: 2020 end-page: 151 publication-title: Nano Select – volume: 248 start-page: 115 year: 2015 end-page: 127 publication-title: Catal. Today – volume: 10 start-page: 892 year: 2019 publication-title: Nat. Commun. – volume: 48 start-page: 3166 year: 2019 end-page: 3180 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 2180 year: 2015 end-page: 2186 publication-title: ChemSusChem – volume: 142 start-page: 4213 year: 2020 end-page: 4222 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 759 year: 2012 end-page: 764 publication-title: ACS Catal. – volume: 3 start-page: 2589 year: 2019 end-page: 2593 publication-title: Joule – volume: 2 start-page: 10 year: 2019 end-page: 17 publication-title: Nat. Catal. – volume: 10 start-page: 3999 year: 2017 end-page: 4003 publication-title: ChemSusChem – volume: 2 start-page: 9199 year: 2017 end-page: 9210 publication-title: ACS Omega – volume: 3 start-page: 834 year: 2019 end-page: 845 publication-title: Joule – volume: 141 start-page: 7646 year: 2019 end-page: 7659 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 9711 9798 year: 2020 2020 end-page: 9718 9805 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 5427 year: 2018 end-page: 5453 publication-title: Green Chem. – volume: 13 start-page: 917 year: 2020 end-page: 927 publication-title: Energy Environ. Sci. – volume: 141 start-page: 9664 year: 2019 end-page: 9672 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 1590 year: 2018 end-page: 1598 publication-title: Acc. Chem. Res. – volume: 11 start-page: 1392 year: 2021 end-page: 1405 publication-title: ACS Catal. – volume: 366 start-page: 226 year: 2019 end-page: 231 publication-title: Science – volume: 7 start-page: 262 year: 2021 end-page: 273 publication-title: ACS Cent. Sci. – ident: e_1_2_10_108_1 doi: 10.1039/C9SE00912D – ident: e_1_2_10_98_1 doi: 10.31635/ccschem.020.202000218 – ident: e_1_2_10_35_1 doi: 10.1038/s41929-019-0306-7 – ident: e_1_2_10_36_1 doi: 10.1021/jz201461p – ident: e_1_2_10_110_1 doi: 10.1002/adfm.201807651 – ident: e_1_2_10_72_1 doi: 10.1002/cssc.201500322 – ident: e_1_2_10_155_1 doi: 10.1006/jcat.1995.1310 – ident: e_1_2_10_42_1 doi: 10.1038/s41929-019-0402-8 – ident: e_1_2_10_47_1 doi: 10.1038/s41467-020-19369-6 – ident: e_1_2_10_154_2 doi: 10.1002/ange.202003842 – ident: e_1_2_10_94_1 doi: 10.1149/1.2100791 – ident: e_1_2_10_129_2 doi: 10.1002/ange.201806298 – ident: e_1_2_10_74_1 doi: 10.1002/adma.202002189 – ident: e_1_2_10_75_1 doi: 10.1002/anie.202002923 – ident: e_1_2_10_29_1 doi: 10.1038/s41929-018-0182-6 – ident: e_1_2_10_195_1 doi: 10.1126/science.aay4217 – ident: e_1_2_10_95_1 doi: 10.1149/1.3330704 – ident: e_1_2_10_190_1 doi: 10.1021/jacs.9b12377 – ident: e_1_2_10_23_1 doi: 10.1021/acs.accounts.9b00529 – ident: e_1_2_10_79_1 doi: 10.1002/aenm.202000659 – ident: e_1_2_10_7_1 doi: 10.1016/j.joule.2019.09.007 – ident: e_1_2_10_176_1 doi: 10.1038/s41467-019-13052-1 – ident: e_1_2_10_64_1 doi: 10.1016/j.jcat.2010.12.020 – ident: e_1_2_10_81_1 doi: 10.1038/s41929-018-0211-5 – ident: e_1_2_10_159_1 doi: 10.1021/acscatal.0c03034 – ident: e_1_2_10_73_1 doi: 10.1021/acscatal.6b03035 – ident: e_1_2_10_63_1 doi: 10.1016/j.jechem.2018.03.015 – ident: e_1_2_10_109_1 doi: 10.1021/jacs.0c00199 – ident: e_1_2_10_126_1 doi: 10.1038/s41467-019-09788-5 – ident: e_1_2_10_117_1 doi: 10.1021/jacs.6b07127 – ident: e_1_2_10_196_1 doi: 10.1038/s41560-019-0451-x – ident: e_1_2_10_15_1 doi: 10.1021/acs.accounts.7b00616 – ident: e_1_2_10_187_1 doi: 10.1038/s41563-019-0445-x – ident: e_1_2_10_50_1 doi: 10.1002/smtd.201800121 – ident: e_1_2_10_32_1 doi: 10.1016/j.jcat.2014.12.033 – ident: e_1_2_10_76_2 doi: 10.1002/ange.202002337 – ident: e_1_2_10_18_1 doi: 10.1021/acs.chemrev.9b00659 – ident: e_1_2_10_84_1 doi: 10.1038/s41557-020-0481-9 – ident: e_1_2_10_131_2 doi: 10.1002/ange.202005489 – ident: e_1_2_10_92_1 doi: 10.1016/j.apcatb.2016.05.081 – ident: e_1_2_10_189_1 doi: 10.1021/acscatal.9b04302 – ident: e_1_2_10_66_1 doi: 10.1039/C8CP01476K – ident: e_1_2_10_71_1 doi: 10.1039/C1CP22271F – ident: e_1_2_10_133_1 doi: 10.1002/anie.201807717 – ident: e_1_2_10_9_1 doi: 10.1126/science.aav3506 – ident: e_1_2_10_136_1 doi: 10.1021/acsami.0c05094 – ident: e_1_2_10_192_1 doi: 10.1002/anie.201814339 – ident: e_1_2_10_40_1 doi: 10.1039/C9CS00607A – ident: e_1_2_10_144_1 doi: 10.1126/science.aaz8459 – ident: e_1_2_10_59_1 doi: 10.1039/C5EE03694A – ident: e_1_2_10_154_1 doi: 10.1002/anie.202003842 – ident: e_1_2_10_194_1 doi: 10.1021/acs.accounts.8b00010 – ident: e_1_2_10_124_1 doi: 10.1002/cssc.201200335 – ident: e_1_2_10_146_1 doi: 10.1039/c2ee23062c – ident: e_1_2_10_89_1 doi: 10.1002/cssc.201701448 – ident: e_1_2_10_139_1 doi: 10.1038/s41467-019-11292-9 – ident: e_1_2_10_181_1 doi: 10.1002/adma.201901996 – ident: e_1_2_10_192_2 doi: 10.1002/ange.201814339 – ident: e_1_2_10_41_1 doi: 10.1021/acscatal.0c01641 – ident: e_1_2_10_148_1 doi: 10.1038/s41467-019-14272-1 – ident: e_1_2_10_1_1 doi: 10.1126/science.aad4998 – ident: e_1_2_10_103_1 doi: 10.1021/acs.oprd.8b00236 – ident: e_1_2_10_51_1 doi: 10.1021/jacs.8b11237 – ident: e_1_2_10_149_1 doi: 10.1021/acscatal.8b00217 – ident: e_1_2_10_199_1 doi: 10.1016/j.joule.2017.09.003 – ident: e_1_2_10_2_1 doi: 10.1039/C7CY01067B – ident: e_1_2_10_90_1 doi: 10.1002/anie.201100353 – ident: e_1_2_10_160_1 doi: 10.1002/smtd.202001010 – ident: e_1_2_10_127_1 doi: 10.1021/cs200599g – ident: e_1_2_10_156_1 doi: 10.1149/1.1782971 – ident: e_1_2_10_68_1 doi: 10.1021/acscatal.9b01207 – ident: e_1_2_10_10_1 doi: 10.1039/C9CS00280D – ident: e_1_2_10_16_1 doi: 10.1039/C4CS00470A – ident: e_1_2_10_177_1 doi: 10.1016/j.coelec.2018.10.011 – ident: e_1_2_10_33_1 doi: 10.1021/acscatal.9b00532 – ident: e_1_2_10_147_1 doi: 10.1021/acscatal.9b01159 – ident: e_1_2_10_11_1 doi: 10.1039/C8EE03426E – ident: e_1_2_10_17_1 doi: 10.1021/acs.chemrev.8b00705 – ident: e_1_2_10_67_1 doi: 10.1016/j.apcatb.2020.118888 – ident: e_1_2_10_87_1 doi: 10.1016/S0013-4686(03)00534-6 – ident: e_1_2_10_105_1 doi: 10.1021/jacs.9b05397 – ident: e_1_2_10_111_1 doi: 10.1039/C4GC01632G – ident: e_1_2_10_122_1 doi: 10.1021/jacs.9b02345 – ident: e_1_2_10_128_1 doi: 10.1039/C8GC02680G – ident: e_1_2_10_133_2 doi: 10.1002/ange.201807717 – ident: e_1_2_10_44_1 doi: 10.1038/s41467-017-00585-6 – ident: e_1_2_10_91_1 doi: 10.1021/acsomega.7b01060 – ident: e_1_2_10_57_1 doi: 10.1038/s41929-018-0139-9 – ident: e_1_2_10_115_1 doi: 10.1093/nsr/nwz146 – ident: e_1_2_10_69_1 doi: 10.1002/advs.201700379 – ident: e_1_2_10_12_1 doi: 10.1038/s41929-019-0386-4 – ident: e_1_2_10_120_1 doi: 10.1038/s41560-019-0374-6 – ident: e_1_2_10_85_1 doi: 10.1016/j.jcis.2020.05.014 – ident: e_1_2_10_137_1 doi: 10.1002/anie.201903327 – ident: e_1_2_10_19_1 doi: 10.1038/s41560-019-0450-y – ident: e_1_2_10_150_1 doi: 10.1016/j.cattod.2014.03.054 – ident: e_1_2_10_96_1 doi: 10.1016/j.apcatb.2018.01.052 – ident: e_1_2_10_102_1 doi: 10.1039/C9EE02783A – ident: e_1_2_10_106_1 doi: 10.1039/D0CS00134A – ident: e_1_2_10_118_1 doi: 10.1038/nchem.2194 – ident: e_1_2_10_104_1 doi: 10.1038/s41929-019-0229-3 – ident: e_1_2_10_116_1 doi: 10.1021/acs.est.6b00730 – ident: e_1_2_10_141_1 doi: 10.1038/s41570-019-0128-9 – ident: e_1_2_10_130_2 doi: 10.1002/ange.201603798 – ident: e_1_2_10_179_1 doi: 10.1021/jacs.0c01699 – ident: e_1_2_10_93_1 doi: 10.1016/0021-9517(91)90262-3 – ident: e_1_2_10_145_1 doi: 10.1016/j.apcatb.2018.05.041 – ident: e_1_2_10_58_1 doi: 10.1038/s41563-020-0610-2 – ident: e_1_2_10_97_1 doi: 10.1038/s41929-020-0481-6 – ident: e_1_2_10_198_1 doi: 10.1021/acs.iecr.7b03514 – ident: e_1_2_10_37_1 doi: 10.1021/acs.accounts.8b00002 – ident: e_1_2_10_112_1 doi: 10.1016/j.jcat.2016.09.030 – ident: e_1_2_10_166_1 doi: 10.1038/s41929-020-00563-0 – ident: e_1_2_10_52_1 doi: 10.1021/jacs.9b11790 – ident: e_1_2_10_101_1 doi: 10.1016/j.chempr.2016.05.002 – ident: e_1_2_10_174_1 doi: 10.1038/s41570-017-0087 – ident: e_1_2_10_197_1 doi: 10.1126/science.aay1844 – ident: e_1_2_10_113_1 doi: 10.1023/A:1018463131891 – ident: e_1_2_10_131_1 doi: 10.1002/anie.202005489 – ident: e_1_2_10_61_1 doi: 10.1016/j.chempr.2019.05.008 – ident: e_1_2_10_90_2 doi: 10.1002/ange.201100353 – ident: e_1_2_10_152_1 doi: 10.1134/S1023193520050067 – ident: e_1_2_10_24_1 doi: 10.1016/j.chempr.2020.08.025 – ident: e_1_2_10_169_1 doi: 10.1038/s41467-019-08805-x – ident: e_1_2_10_8_1 doi: 10.1038/nmat4778 – ident: e_1_2_10_54_1 doi: 10.1016/j.nanoen.2020.104601 – ident: e_1_2_10_132_1 doi: 10.1002/adma.202007056 – ident: e_1_2_10_121_1 doi: 10.1016/j.cattod.2010.05.025 – ident: e_1_2_10_165_1 doi: 10.1002/sstr.202000033 – ident: e_1_2_10_46_1 doi: 10.1021/jacs.9b02124 – ident: e_1_2_10_114_1 doi: 10.1021/ja3085912 – ident: e_1_2_10_173_1 doi: 10.1038/s41467-020-19571-6 – ident: e_1_2_10_183_1 doi: 10.1016/j.coche.2018.05.003 – ident: e_1_2_10_60_1 doi: 10.1021/acs.chemrev.6b00715 – ident: e_1_2_10_162_1 doi: 10.1021/acs.chemrev.0c00594 – ident: e_1_2_10_188_1 doi: 10.1126/science.aay3060 – ident: e_1_2_10_6_1 doi: 10.1126/science.aar6611 – ident: e_1_2_10_31_1 doi: 10.1038/nchem.121 – ident: e_1_2_10_21_1 doi: 10.1021/acs.chemrev.7b00689 – ident: e_1_2_10_30_1 doi: 10.1073/pnas.1006652108 – ident: e_1_2_10_186_1 doi: 10.1126/sciadv.aar3208 – ident: e_1_2_10_182_1 doi: 10.1039/D0CS00030B – ident: e_1_2_10_175_1 doi: 10.1038/s41586-019-1782-2 – ident: e_1_2_10_48_1 doi: 10.1038/s41929-018-0168-4 – ident: e_1_2_10_172_1 doi: 10.1038/s41467-019-12851-w – ident: e_1_2_10_43_1 doi: 10.1038/s41570-019-0110-6 – ident: e_1_2_10_193_1 doi: 10.1039/C8CS00398J – ident: e_1_2_10_170_1 doi: 10.1021/acscatal.0c04283 – ident: e_1_2_10_49_1 doi: 10.1002/cctc.201402669 – ident: e_1_2_10_14_1 doi: 10.1038/nmat4738 – ident: e_1_2_10_20_1 doi: 10.1038/s41560-019-0407-1 – ident: e_1_2_10_129_1 doi: 10.1002/anie.201806298 – ident: e_1_2_10_167_1 doi: 10.1039/c2cs35381d – ident: e_1_2_10_119_1 doi: 10.1002/cssc.202000339 – ident: e_1_2_10_130_1 doi: 10.1002/anie.201603798 – ident: e_1_2_10_134_1 doi: 10.1002/anie.202005574 – ident: e_1_2_10_88_1 doi: 10.1016/S0022-0728(01)00363-1 – ident: e_1_2_10_5_1 doi: 10.1038/nmat4834 – ident: e_1_2_10_70_1 doi: 10.1021/jacs.9b03811 – ident: e_1_2_10_39_1 doi: 10.1002/anie.201710556 – ident: e_1_2_10_53_1 doi: 10.1038/ncomms12123 – ident: e_1_2_10_3_1 – ident: e_1_2_10_137_2 doi: 10.1002/ange.201903327 – ident: e_1_2_10_168_1 doi: 10.1038/s41929-020-0450-0 – ident: e_1_2_10_107_1 doi: 10.1002/cssc.202000987 – ident: e_1_2_10_191_1 doi: 10.1002/adma.202002435 – ident: e_1_2_10_28_1 doi: 10.1038/s41578-019-0152-x – ident: e_1_2_10_38_1 doi: 10.1002/adma.201808066 – ident: e_1_2_10_163_1 doi: 10.1039/C9CS00869A – ident: e_1_2_10_62_1 doi: 10.1016/j.joule.2019.10.004 – ident: e_1_2_10_65_1 doi: 10.1021/acs.accounts.0c00194 – ident: e_1_2_10_22_1 doi: 10.1021/acs.chemrev.7b00488 – ident: e_1_2_10_158_1 doi: 10.1021/acs.accounts.8b00266 – ident: e_1_2_10_82_1 doi: 10.1038/s41557-019-0312-z – ident: e_1_2_10_83_1 doi: 10.1093/nsr/nwaa142 – ident: e_1_2_10_4_1 doi: 10.1016/j.jechem.2015.08.005 – ident: e_1_2_10_100_1 doi: 10.1002/smtd.202000063 – ident: e_1_2_10_78_1 doi: 10.1021/jacs.9b13347 – ident: e_1_2_10_184_1 doi: 10.1021/acs.accounts.8b00070 – ident: e_1_2_10_151_1 doi: 10.1002/cctc.201801435 – ident: e_1_2_10_161_1 doi: 10.1021/acsomega.9b03515 – ident: e_1_2_10_55_1 doi: 10.1016/j.chempr.2018.05.001 – ident: e_1_2_10_164_1 doi: 10.1016/j.joule.2018.12.015 – ident: e_1_2_10_171_1 doi: 10.1021/acscentsci.0c01486 – ident: e_1_2_10_134_2 doi: 10.1002/ange.202005574 – ident: e_1_2_10_157_1 doi: 10.1021/acs.accounts.6b00635 – ident: e_1_2_10_34_1 doi: 10.1103/PhysRevLett.99.016105 – ident: e_1_2_10_45_1 doi: 10.1038/s41929-019-0235-5 – ident: e_1_2_10_76_1 doi: 10.1002/anie.202002337 – ident: e_1_2_10_138_1 doi: 10.1038/s41586-019-1760-8 – ident: e_1_2_10_140_1 doi: 10.1038/s41565-019-0551-6 – ident: e_1_2_10_99_1 doi: 10.1039/D0CS00130A – start-page: 155 volume-title: Fundamental Concepts in Heterogeneous Catalysis year: 2014 ident: e_1_2_10_27_1 doi: 10.1002/9781118892114.ch11 – ident: e_1_2_10_75_2 doi: 10.1002/ange.202002923 – ident: e_1_2_10_180_1 doi: 10.1038/ncomms12697 – ident: e_1_2_10_25_1 doi: 10.1021/acs.chemrev.7b00459 – ident: e_1_2_10_125_1 doi: 10.3389/fchem.2019.00100 – ident: e_1_2_10_123_1 doi: 10.1021/ja109955w – start-page: 773 volume-title: Surface and Interface Science, Vol. 8 year: 2020 ident: e_1_2_10_13_1 doi: 10.1002/9783527680603.ch59 – ident: e_1_2_10_39_2 doi: 10.1002/ange.201710556 – ident: e_1_2_10_80_1 doi: 10.1021/acssuschemeng.9b05983 – ident: e_1_2_10_56_1 doi: 10.1038/s41929-018-0200-8 – ident: e_1_2_10_135_1 doi: 10.1002/cssc.201701802 – ident: e_1_2_10_142_1 doi: 10.1016/j.joule.2018.10.027 – ident: e_1_2_10_178_1 doi: 10.1093/nsr/nwv024 – ident: e_1_2_10_26_1 doi: 10.1002/nano.202000001 – ident: e_1_2_10_86_1 doi: 10.1016/0022-0728(95)03992-P – ident: e_1_2_10_185_1 doi: 10.1038/nmat2878 – ident: e_1_2_10_77_1 doi: 10.1021/jacs.0c00418 – ident: e_1_2_10_143_1 doi: 10.1039/C8EE01501E – ident: e_1_2_10_153_1 doi: 10.1021/acscatal.6b03632 |
SSID | ssj0028806 |
Score | 2.724551 |
SecondaryResourceType | review_article |
Snippet | Compared to modern fossil‐fuel‐based refineries, the emerging electrocatalytic refinery (e‐refinery) is a more sustainable and environmentally benign strategy... Compared to modern fossil-fuel-based refineries, the emerging electrocatalytic refinery (e-refinery) is a more sustainable and environmentally benign strategy... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19572 |
SubjectTerms | Cascade chemical reactions catalyst design Chemical bonds Chemical reactions chemical synthesis electrocatalysis Electrocatalysts Energy sources Fossil fuels Fuels Intermediates Reaction intermediates Refineries refinery Sustainable production Water splitting |
Title | Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202101522 https://www.ncbi.nlm.nih.gov/pubmed/33606339 https://www.proquest.com/docview/2564408251 https://www.proquest.com/docview/2491947186 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_ILnrx-6M6JYLgqdvapE17HGNjKg6ZDnYrSZNelE7cdph_vS_N2jlFBL3145Wmyfv4Jc37PYArdLupCLTv6tRjLvOkcGORpa7iKuBpllEemHzn-0HYH7HbcTD-lMVv-SGqBTdjGYW_NgYu5LS5Ig01Gdg4v8MpC4Yg44TNhi2DioYVf5SPymnTiyh1TRX6krWx5TfXH1-PSt-g5jpyLUJPbwdE2Wi74-S5MZ_JRvr-hc_xP1-1C9tLXEraVpH2YEPn-7DZKcvBHcBd1xbMKdZ7FihFhjozmYMLgriXPK4SsciDZZHFESeTjPTmGH6JyBUpyQmmhzDqdZ86fXdZicFNEbAgBKdUcj_UkaK8FWWBFjFXoc9jFTGmQi2EMWSuBcIlvBoxgWKMcYnegmY4Xz-CWj7J9QkQ9AdKUSY9pUIW6lhI449VGMtMRZwyB9xyJJJ0SVNuqmW8JJZg2U9MFyVVFzlwXcm_WoKOHyXr5cAmS0OdJoj4iprbgefAZXUbu9b8NxG5nsxRhsVebIJ46MCxVYjqVZTiDJDS2AG_GNZf2pC0Bzfd6uz0Lw-dwZY5tvvc6lCbvc31OQKjmbwolP8D8G0DWw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4tcFgulN82LVAjgTgFiO3EyYEDYne1y8IK8SNxC07sXFplUXdX1fat-ip9IsZxktW2QkiVOHBMMkkce8bzjeP5BmAfp91U-pq6OvW4y71EupHMUlcJ5Ys0y5jwTb7z1SDo3vOLB_-hAb-rXBjLD1EvuBnLKOZrY-BmQfp4xhpqUrAxwMOYBX0QLfdV9vX0J0Zto9NeC4f4gNJO--6865aFBdwU_S8iSsYSQQMdKiZOwszXMhIqoCJSIecq0FIavRRaovfHsyGXKMa5SFD5WYbhJz53AZZMGXFD19-6qRmrKJqDTWhizDV17yueyBN6PN_eeT_4D7idx8qFs-t8gD9VN9k9Lt-OJuPkKP31F4Pku-rHVVgpoTc5s7ayBg2dr0PzvKp4twH9tq0JVCxpTVGK3OjMJEdOCUJ7cjvLNSPXligXlZoMM9KZIMIgMlek4l8YbcL9m3zLFizmw1x_AoJTnlKMJ55SAQ90JBPjclQQJZkKBeMOuNXQx2nJxG4KgnyPLYc0jc2QxPWQOHBYyz9ZDpIXJbcrTYrLuWgUI6gtyor7ngN79WXsWvNrSOZ6OEEZHnmRwSmBAx-tBtavYgyDXMYiB2ihR6-0IT4b9Nr10ef_uekrNLt3V5fxZW_Q_wLL5rzd1rcNi-MfE72DOHCc7BaWR-DxrVX0Ge-3Xig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEXaPlNacFIIE5pN7Zjx4cequ6uul1YVYVKvaVObF9A2YrdFVqeqq_CGzGOk1RbhJCQeuCYZJI49oznG8fzDcBbnHZLnVoa2zLhMU8KHSvtythIk8rSOSZTn-_8cSKOzvjxeXq-BldtLkzgh-gW3Lxl1PO1N_BL4_auSUN9BjbGdxiyoAuizbbKsV1-x6Bttj_q4wi_o3Q4-Hx4FDd1BeIS3S8CSsYKSYXNDJO9zKVWK2kElcpknBthtfZqKa1G549nM65RjHNZoO4zh9EnPvcO3OWip3yxiP5pR1hF0RpCPhNjsS9739JE9ujeantX3eBv2HYVKte-bvgIfra9FLa4fNldzIvd8scNAsn_qRs34GEDvMlBsJRNWLPVY7h_2Na7ewLjQagIVC9oLVGKnFrnUyOXBIE9-XSdaUZOAk0uqjSZOjJcIL4gujKkZV-YPYWzW_mWZ7BeTSv7AghOeMYwXiTGCC6s0oV3OEaowplMMh5B3I58XjY87L4cyNc8MEjT3A9J3g1JBO87-cvAQPJHye1WkfJmJprlCGnrouJpEsGb7jJ2rf8xpCs7XaAMV4nyKEVE8DwoYPcqxjDEZUxFQGs1-ksb8oPJaNAdbf3LTa_h3kl_mH8YTcYv4YE_Hfb0bcP6_NvC7iAInBevarsjcHHbGvoLRxJc1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+Refinery+for+Sustainable+Production+of+Fuels+and+Chemicals&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Tang%2C+Cheng&rft.au=Zheng%2C+Yao&rft.au=Jaroniec%2C+Mietek&rft.au=Qiao%2C+Shi%E2%80%90Zhang&rft.date=2021-09-01&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=36&rft.spage=19572&rft.epage=19590&rft_id=info:doi/10.1002%2Fanie.202101522&rft.externalDBID=10.1002%252Fanie.202101522&rft.externalDocID=ANIE202101522 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |