Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals

Compared to modern fossil‐fuel‐based refineries, the emerging electrocatalytic refinery (e‐refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value‐added chemicals. A crucial step in conducting e‐refiner...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 36; pp. 19572 - 19590
Main Authors Tang, Cheng, Zheng, Yao, Jaroniec, Mietek, Qiao, Shi‐Zhang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.09.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Compared to modern fossil‐fuel‐based refineries, the emerging electrocatalytic refinery (e‐refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value‐added chemicals. A crucial step in conducting e‐refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well‐studied primary reactions (e.g., O2 reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e‐refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways. The concept of the electrocatalytic refinery (e‐refinery) is an intrinsically sustainable strategy to convert renewable feedstocks and energy sources to transportable fuels and value‐added chemicals. This Review describes the concept, fundamentals, and framework of e‐refinery processes with some game‐changing reactions and innovative catalyst design strategies.
AbstractList Compared to modern fossil‐fuel‐based refineries, the emerging electrocatalytic refinery (e‐refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value‐added chemicals. A crucial step in conducting e‐refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well‐studied primary reactions (e.g., O2 reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e‐refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways. The concept of the electrocatalytic refinery (e‐refinery) is an intrinsically sustainable strategy to convert renewable feedstocks and energy sources to transportable fuels and value‐added chemicals. This Review describes the concept, fundamentals, and framework of e‐refinery processes with some game‐changing reactions and innovative catalyst design strategies.
Compared to modern fossil-fuel-based refineries, the emerging electrocatalytic refinery (e-refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value-added chemicals. A crucial step in conducting e-refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well-studied primary reactions (e.g., O2 reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e-refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways.Compared to modern fossil-fuel-based refineries, the emerging electrocatalytic refinery (e-refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value-added chemicals. A crucial step in conducting e-refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well-studied primary reactions (e.g., O2 reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e-refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways.
Compared to modern fossil-fuel-based refineries, the emerging electrocatalytic refinery (e-refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value-added chemicals. A crucial step in conducting e-refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well-studied primary reactions (e.g., O reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e-refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways.
Compared to modern fossil‐fuel‐based refineries, the emerging electrocatalytic refinery (e‐refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value‐added chemicals. A crucial step in conducting e‐refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well‐studied primary reactions (e.g., O 2 reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e‐refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways.
Compared to modern fossil‐fuel‐based refineries, the emerging electrocatalytic refinery (e‐refinery) is a more sustainable and environmentally benign strategy to convert renewable feedstocks and energy sources into transportable fuels and value‐added chemicals. A crucial step in conducting e‐refinery processes is the development of appropriate reactions and optimal electrocatalysts for efficient cleavage and formation of chemical bonds. However, compared to well‐studied primary reactions (e.g., O2 reduction, water splitting), the mechanistic aspects and materials design for emerging complex reactions are yet to be settled. To address this challenge, herein, we first present fundamentals of heterogeneous electrocatalysis and some primary reactions, and then implement these to establish the framework of e‐refinery by coupling in situ generated intermediates (integrated reactions) or products (tandem reactions). We also present a set of materials design principles and strategies to efficiently manipulate the reaction intermediates and pathways.
Author Zheng, Yao
Jaroniec, Mietek
Tang, Cheng
Qiao, Shi‐Zhang
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0002-5167-1192
  surname: Tang
  fullname: Tang, Cheng
  organization: The University of Adelaide
– sequence: 2
  givenname: Yao
  orcidid: 0000-0002-2411-8041
  surname: Zheng
  fullname: Zheng, Yao
  organization: The University of Adelaide
– sequence: 3
  givenname: Mietek
  orcidid: 0000-0002-1178-5611
  surname: Jaroniec
  fullname: Jaroniec, Mietek
  organization: Kent State University
– sequence: 4
  givenname: Shi‐Zhang
  orcidid: 0000-0002-4568-8422
  surname: Qiao
  fullname: Qiao, Shi‐Zhang
  email: s.qiao@adelaide.edu.au
  organization: The University of Adelaide
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33606339$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrGzEURkVJqRO32y7DQDfZjKvXSJplMM6DmCb0sRYazR0iI0upNEPwv4-MkwYCoavvIs65iPudoKMQAyD0leAFwZh-N8HBgmJKMGko_YCOS5CaScmOyswZq6VqyAyd5LwpvFJYfEIzxgQWjLXH6GblwY4pWjMavxudrX7C4AKkXTXEVP2a8mhcMJ2H6i7FfrKji6GKQ3Uxgc-VCX21vIets8bnz-jjUAK-POcc_blY_V5e1evby-vl-bq2nLW0lox1kgpQPZNYDQ2YVvaCyrZXnPcCjCGtYBIMoU15VdwUjHPZUdqwATo2R2eHvQ8p_p0gj3rrsgXvTYA4ZU15S1ouiRIF_fYG3cQphfI7TRvBOVa0IYU6faambgu9fkhua9JOv5ypAPwA2BRzTjBo60azP8WYjPOaYL1vQ-_b0P_aKNrijfay-V2hPQiPzsPuP7Q-_3G9enWfAOy2mmc
CitedBy_id crossref_primary_10_1039_D3MA00104K
crossref_primary_10_1007_s12274_023_6043_x
crossref_primary_10_1016_j_electacta_2023_143001
crossref_primary_10_1002_anie_202219048
crossref_primary_10_1016_j_cej_2023_141344
crossref_primary_10_1002_sstr_202400548
crossref_primary_10_1016_j_ccr_2024_216111
crossref_primary_10_1021_acs_jpcc_1c10686
crossref_primary_10_1039_D3TA02813E
crossref_primary_10_1016_j_jechem_2021_12_008
crossref_primary_10_1021_acssuschemeng_3c04020
crossref_primary_10_1021_jacs_1c02328
crossref_primary_10_1007_s11426_023_1524_4
crossref_primary_10_1021_acssuschemeng_1c07482
crossref_primary_10_1016_j_molliq_2022_120407
crossref_primary_10_1002_ange_202415438
crossref_primary_10_1002_adma_202405029
crossref_primary_10_1002_anie_202300387
crossref_primary_10_1007_s12274_022_5329_8
crossref_primary_10_1002_cplu_202400422
crossref_primary_10_1021_acscatal_2c05315
crossref_primary_10_1021_acs_jpcc_4c01336
crossref_primary_10_1002_anie_202209014
crossref_primary_10_1002_ange_202301435
crossref_primary_10_1021_jacsau_2c00031
crossref_primary_10_1038_s41467_022_35463_3
crossref_primary_10_1002_anie_202108666
crossref_primary_10_1038_s41467_024_51951_0
crossref_primary_10_53941_see_2024_1000010
crossref_primary_10_1021_acsami_4c21239
crossref_primary_10_1007_s40843_022_2382_0
crossref_primary_10_1021_acsnano_4c17546
crossref_primary_10_1016_j_apsusc_2022_155283
crossref_primary_10_1038_s44160_023_00336_0
crossref_primary_10_1039_D5GC00572H
crossref_primary_10_1016_j_colsurfa_2023_131452
crossref_primary_10_1016_j_jechem_2021_12_026
crossref_primary_10_1016_j_jechem_2021_12_028
crossref_primary_10_1021_acscatal_2c00099
crossref_primary_10_1016_j_apcatb_2023_123216
crossref_primary_10_1016_j_jcis_2024_01_040
crossref_primary_10_1016_j_enchem_2025_100146
crossref_primary_10_1016_S1872_5805_24_60861_9
crossref_primary_10_1021_jacs_4c16344
crossref_primary_10_1039_D3TA01931D
crossref_primary_10_1016_j_cej_2024_152626
crossref_primary_10_1039_D3EE03761D
crossref_primary_10_1002_aenm_202303027
crossref_primary_10_1016_j_ccr_2024_216248
crossref_primary_10_1021_acs_inorgchem_4c02799
crossref_primary_10_1002_smtd_202300003
crossref_primary_10_1021_acscatal_1c03763
crossref_primary_10_1039_D3EE02467A
crossref_primary_10_1016_j_ijhydene_2024_11_210
crossref_primary_10_1016_j_watres_2024_122914
crossref_primary_10_1021_acs_accounts_3c00633
crossref_primary_10_1021_acscatal_1c02316
crossref_primary_10_1002_anie_202316772
crossref_primary_10_1039_D2GC01510B
crossref_primary_10_1016_j_jcis_2022_04_013
crossref_primary_10_1002_anie_202408846
crossref_primary_10_1016_j_apcato_2025_207036
crossref_primary_10_1016_j_ces_2024_119937
crossref_primary_10_1021_acs_jpclett_1c03658
crossref_primary_10_1038_s41467_022_32933_6
crossref_primary_10_1039_D3TA01920A
crossref_primary_10_1002_smll_202307349
crossref_primary_10_1021_acs_jpclett_3c00103
crossref_primary_10_1039_D3TA03813K
crossref_primary_10_1021_acsestengg_3c00179
crossref_primary_10_1039_D3GC01406A
crossref_primary_10_1016_j_seppur_2025_132574
crossref_primary_10_1002_anie_202313028
crossref_primary_10_1016_j_jece_2024_114959
crossref_primary_10_1021_acscatal_5c00623
crossref_primary_10_1002_ange_202300533
crossref_primary_10_70749_ijbr_v3i1_479
crossref_primary_10_1002_ange_202405553
crossref_primary_10_1016_j_cej_2022_136995
crossref_primary_10_1038_s41467_024_50499_3
crossref_primary_10_1002_aenm_202302073
crossref_primary_10_3390_nano14211732
crossref_primary_10_1016_j_jcat_2022_09_014
crossref_primary_10_1002_adfm_202210837
crossref_primary_10_1039_D5MH00285K
crossref_primary_10_1002_anie_202301435
crossref_primary_10_1021_acs_est_2c09669
crossref_primary_10_1002_smtd_202200561
crossref_primary_10_1016_j_fuel_2024_131250
crossref_primary_10_1149_2754_2734_acf0d5
crossref_primary_10_1038_s41467_022_33779_8
crossref_primary_10_1016_j_apsusc_2025_162865
crossref_primary_10_1039_D2GC03405K
crossref_primary_10_1002_ange_202207677
crossref_primary_10_1007_s11426_024_2314_9
crossref_primary_10_1016_j_chempr_2024_03_004
crossref_primary_10_1021_acs_inorgchem_4c05510
crossref_primary_10_1016_j_apcatb_2023_122590
crossref_primary_10_1016_j_nanoms_2022_01_003
crossref_primary_10_1002_ange_202209849
crossref_primary_10_1002_cssc_202101924
crossref_primary_10_1039_D4SC00175C
crossref_primary_10_1002_anie_202415438
crossref_primary_10_1039_D2GC02426H
crossref_primary_10_1002_adfm_202304380
crossref_primary_10_1002_anie_202405553
crossref_primary_10_1002_anie_202312076
crossref_primary_10_1002_ange_202406750
crossref_primary_10_1002_ange_202311696
crossref_primary_10_1016_j_apcatb_2022_121198
crossref_primary_10_1021_acs_iecr_1c04902
crossref_primary_10_1021_acs_joc_4c01719
crossref_primary_10_1002_advs_202411964
crossref_primary_10_1002_aenm_202203891
crossref_primary_10_1016_j_apcatb_2022_121072
crossref_primary_10_1002_ange_202108666
crossref_primary_10_1021_jacsau_1c00574
crossref_primary_10_1021_acscatal_4c03356
crossref_primary_10_1038_s42004_022_00645_z
crossref_primary_10_1039_D3TA01600E
crossref_primary_10_1007_s12274_022_5307_1
crossref_primary_10_3390_ijms22179442
crossref_primary_10_1039_D4CC02025A
crossref_primary_10_1038_s41467_023_38603_5
crossref_primary_10_26599_CF_2023_9200002
crossref_primary_10_1126_sciadv_adh9487
crossref_primary_10_1039_D4TA02707H
crossref_primary_10_1039_D2CS00381C
crossref_primary_10_1002_anie_202406750
crossref_primary_10_1002_inf2_12608
crossref_primary_10_1002_cplu_202100327
crossref_primary_10_1039_D2CC05132J
crossref_primary_10_1002_anie_202214977
crossref_primary_10_1002_adfm_202214075
crossref_primary_10_1016_j_cej_2024_149774
crossref_primary_10_1093_nsr_nwae218
crossref_primary_10_1002_adma_202413073
crossref_primary_10_1038_s41467_023_38888_6
crossref_primary_10_1021_acs_energyfuels_2c01871
crossref_primary_10_1002_adfm_202415660
crossref_primary_10_20517_cs_2024_32
crossref_primary_10_1021_acssuschemeng_4c04754
crossref_primary_10_1039_D3CS00557G
crossref_primary_10_1039_D4CS00563E
crossref_primary_10_1039_D4EY00170B
crossref_primary_10_1002_smll_202301438
crossref_primary_10_1016_j_apcatb_2022_121173
crossref_primary_10_1016_j_apcatb_2022_122149
crossref_primary_10_1002_anie_202309930
crossref_primary_10_1002_ange_202214977
crossref_primary_10_1002_sus2_175
crossref_primary_10_1021_acs_jpcc_1c07689
crossref_primary_10_1002_smll_202207236
crossref_primary_10_1016_j_eng_2023_04_018
crossref_primary_10_1002_adma_202300935
crossref_primary_10_1021_acscatal_2c05270
crossref_primary_10_1039_D2EE00686C
crossref_primary_10_1007_s40820_024_01347_y
crossref_primary_10_1016_j_jechem_2023_06_024
crossref_primary_10_1021_acscatal_2c05155
crossref_primary_10_1002_smll_202402492
crossref_primary_10_1021_acssuschemeng_4c06920
crossref_primary_10_1002_adfm_202411284
crossref_primary_10_1002_adfm_202107196
crossref_primary_10_1021_jacs_4c00818
crossref_primary_10_1002_ange_202306726
crossref_primary_10_1016_S1872_2067_22_64103_2
crossref_primary_10_1021_acs_jpcc_2c08514
crossref_primary_10_1002_anie_202300533
crossref_primary_10_1016_j_ces_2023_118729
crossref_primary_10_1021_acs_chemrev_3c00723
crossref_primary_10_1039_D3GC00588G
crossref_primary_10_1021_acs_energyfuels_3c00732
crossref_primary_10_26599_NRE_2022_9120001
crossref_primary_10_1149_1945_7111_ad576d
crossref_primary_10_1002_adma_202202479
crossref_primary_10_1021_acscatal_2c05144
crossref_primary_10_1021_acsenergylett_4c02344
crossref_primary_10_1002_ange_202209014
crossref_primary_10_1002_ange_202219048
crossref_primary_10_1002_ange_202408846
crossref_primary_10_1002_ange_202313028
crossref_primary_10_1038_s41929_022_00826_y
crossref_primary_10_1016_j_checat_2023_100751
crossref_primary_10_1002_adfm_202212483
crossref_primary_10_1002_ange_202316772
crossref_primary_10_1016_j_checat_2023_100514
crossref_primary_10_1039_D1CC06254A
crossref_primary_10_1002_anie_202216837
crossref_primary_10_1038_s41467_023_37441_9
crossref_primary_10_1016_j_jechem_2024_08_008
crossref_primary_10_1021_acsnano_3c08450
crossref_primary_10_1016_j_esci_2022_11_002
crossref_primary_10_1021_acsmaterialsau_4c00092
crossref_primary_10_1002_adfm_202204755
crossref_primary_10_1007_s40843_022_2076_y
crossref_primary_10_1002_anie_202415975
crossref_primary_10_1016_S1872_5805_22_60582_1
crossref_primary_10_1016_j_checat_2023_100762
crossref_primary_10_1016_j_ccr_2024_216399
crossref_primary_10_1002_tcr_202400259
crossref_primary_10_1016_j_apsusc_2021_151853
crossref_primary_10_1016_j_apcatb_2023_122744
crossref_primary_10_1016_j_seppur_2024_127416
crossref_primary_10_1021_jacs_2c04911
crossref_primary_10_1039_D2TA09987J
crossref_primary_10_1002_ange_202312239
crossref_primary_10_1016_j_scib_2023_07_036
crossref_primary_10_1016_S1872_2067_22_64136_6
crossref_primary_10_1016_j_checat_2024_100997
crossref_primary_10_1007_s12274_022_4858_5
crossref_primary_10_1021_acs_jpcc_4c05583
crossref_primary_10_1016_j_mcat_2022_112568
crossref_primary_10_1002_ange_202420661
crossref_primary_10_1002_anie_202403980
crossref_primary_10_1007_s11426_024_2552_2
crossref_primary_10_1016_j_fmre_2023_03_019
crossref_primary_10_1016_j_jechem_2022_05_001
crossref_primary_10_1002_ange_202407589
crossref_primary_10_1021_acscatal_4c04190
crossref_primary_10_1039_D3CS00445G
crossref_primary_10_1002_aenm_202303451
crossref_primary_10_1002_aenm_202301276
crossref_primary_10_1039_D1QM00546D
crossref_primary_10_1039_D4EE03156C
crossref_primary_10_1002_ange_202300387
crossref_primary_10_1021_acscatal_1c05174
crossref_primary_10_1088_2515_7639_ad0561
crossref_primary_10_1002_aenm_202302008
crossref_primary_10_1016_j_jechem_2021_10_013
crossref_primary_10_1021_acsenergylett_1c02471
crossref_primary_10_1002_anie_202305184
crossref_primary_10_1039_D4GC00227J
crossref_primary_10_1038_s41467_023_36688_6
crossref_primary_10_1021_jacs_3c10585
crossref_primary_10_1002_smll_202308084
crossref_primary_10_1016_j_apcatb_2023_122962
crossref_primary_10_1016_j_scib_2024_08_011
crossref_primary_10_1039_D3GC01540H
crossref_primary_10_1016_j_jechem_2024_09_011
crossref_primary_10_1016_j_chempr_2021_10_008
crossref_primary_10_1002_ange_202419550
crossref_primary_10_1016_j_apcatb_2022_121357
crossref_primary_10_1039_D2DT02450K
crossref_primary_10_1039_D2CY00055E
crossref_primary_10_1016_j_isci_2024_108781
crossref_primary_10_1007_s42864_024_00286_w
crossref_primary_10_1016_j_matt_2023_12_014
crossref_primary_10_1021_acsnano_2c01748
crossref_primary_10_1039_D2TA00744D
crossref_primary_10_1016_j_checat_2023_100794
crossref_primary_10_1002_cssc_202401261
crossref_primary_10_1016_j_jechem_2025_02_010
crossref_primary_10_1002_adfm_202311611
crossref_primary_10_1016_j_cej_2022_135853
crossref_primary_10_1021_acsnano_3c01862
crossref_primary_10_1360_nso_20240047
crossref_primary_10_1002_anie_202213009
crossref_primary_10_1002_cssc_202200068
crossref_primary_10_1016_j_apcatb_2022_121209
crossref_primary_10_1002_adma_202104791
crossref_primary_10_1021_jacs_4c09107
crossref_primary_10_1021_acs_inorgchem_2c00862
crossref_primary_10_1007_s43938_023_00019_4
crossref_primary_10_1021_jacs_4c02835
crossref_primary_10_1016_j_coelec_2023_101409
crossref_primary_10_1002_aenm_202402429
crossref_primary_10_1149_1945_7111_acbc9d
crossref_primary_10_1002_ange_202213009
crossref_primary_10_1021_acs_chemrev_1c00236
crossref_primary_10_1016_S1872_2067_23_64551_6
crossref_primary_10_1039_D2CY00281G
crossref_primary_10_1002_anie_202111265
crossref_primary_10_1002_anie_202216581
crossref_primary_10_1016_j_jechem_2025_01_048
crossref_primary_10_1016_j_apcatb_2024_124270
crossref_primary_10_1002_ange_202409693
crossref_primary_10_1021_acscatal_3c02272
crossref_primary_10_1002_smll_202405008
crossref_primary_10_1016_j_ijhydene_2023_06_008
crossref_primary_10_1039_D3CS00857F
crossref_primary_10_1038_s41467_023_40892_9
crossref_primary_10_1002_anie_202318248
crossref_primary_10_1007_s11426_024_2113_7
crossref_primary_10_1039_D3EY00191A
crossref_primary_10_1016_j_cej_2024_155109
crossref_primary_10_1002_cssc_202401601
crossref_primary_10_1002_smll_202208044
crossref_primary_10_1039_D3SC06010A
crossref_primary_10_1002_anie_202104747
crossref_primary_10_1002_anie_202500389
crossref_primary_10_1016_j_jechem_2022_12_062
crossref_primary_10_1063_5_0144635
crossref_primary_10_1007_s11426_021_1173_8
crossref_primary_10_1016_j_mcat_2022_112638
crossref_primary_10_1016_j_joule_2024_06_002
crossref_primary_10_1016_j_mattod_2024_12_007
crossref_primary_10_1002_cssc_202401751
crossref_primary_10_1002_chem_202400352
crossref_primary_10_1039_D4EE00087K
crossref_primary_10_1016_j_jece_2025_115359
crossref_primary_10_1002_ange_202401943
crossref_primary_10_1002_ange_202500389
crossref_primary_10_1021_jacs_1c10714
crossref_primary_10_1002_anie_202311752
crossref_primary_10_1002_eem2_12192
crossref_primary_10_1039_D2SC03585E
crossref_primary_10_1039_D1QI00428J
crossref_primary_10_1002_adma_202312645
crossref_primary_10_1007_s11426_024_2039_0
crossref_primary_10_1002_cctc_202301420
crossref_primary_10_1021_acsmaterialslett_2c01046
crossref_primary_10_1002_cssc_202401865
crossref_primary_10_1039_D3CY01338C
crossref_primary_10_1021_acsami_4c16120
crossref_primary_10_1016_j_jechem_2023_12_041
crossref_primary_10_1016_S1872_2067_23_64588_7
crossref_primary_10_1039_D4GC03829K
crossref_primary_10_1016_j_scib_2023_09_033
crossref_primary_10_1002_cssc_202300703
crossref_primary_10_1002_anie_202409693
crossref_primary_10_1098_rsta_2023_0259
crossref_primary_10_1021_acs_accounts_3c00192
crossref_primary_10_3390_pr11092647
crossref_primary_10_1002_adsu_202400272
crossref_primary_10_1002_cctc_202301650
crossref_primary_10_1002_smll_202307975
crossref_primary_10_1002_ange_202216837
crossref_primary_10_1002_cctc_202301534
crossref_primary_10_1039_D4SC01752H
crossref_primary_10_1002_aic_18515
crossref_primary_10_1002_cctc_202401138
crossref_primary_10_1002_ange_202312076
crossref_primary_10_1007_s12274_023_5752_5
crossref_primary_10_1002_anie_202209849
crossref_primary_10_1002_adma_202207466
crossref_primary_10_1016_j_cej_2022_139232
crossref_primary_10_1039_D3CS00756A
crossref_primary_10_1021_acscatal_3c05691
crossref_primary_10_3866_PKU_WHXB202307049
crossref_primary_10_1039_D2EE01036D
crossref_primary_10_1063_5_0201751
crossref_primary_10_1002_smll_202305666
crossref_primary_10_1016_j_ces_2022_117735
crossref_primary_10_26599_NR_2025_94907018
crossref_primary_10_1016_j_cej_2023_147862
crossref_primary_10_1002_adma_202104891
crossref_primary_10_3389_fchem_2022_861604
crossref_primary_10_1007_s40820_023_01169_4
crossref_primary_10_1021_jacsau_4c01183
crossref_primary_10_1002_smll_202200436
crossref_primary_10_1016_j_mcat_2022_112831
crossref_primary_10_1021_acscatal_3c03491
crossref_primary_10_1021_acsmaterialslett_3c00524
crossref_primary_10_1039_D1CC04004A
crossref_primary_10_1021_acs_energyfuels_4c05088
crossref_primary_10_1016_j_coelec_2023_101224
crossref_primary_10_1016_j_molstruc_2025_142048
crossref_primary_10_1002_anie_202304007
crossref_primary_10_1002_anie_202216347
crossref_primary_10_1016_j_jcis_2023_11_140
crossref_primary_10_1039_D4SC05936K
crossref_primary_10_1016_j_cej_2023_146528
crossref_primary_10_1016_j_cej_2022_139494
crossref_primary_10_1038_s41467_023_43897_6
crossref_primary_10_1016_j_checat_2022_05_009
crossref_primary_10_1039_D1TA09989B
crossref_primary_10_1002_anie_202203170
crossref_primary_10_1016_j_envpol_2023_122835
crossref_primary_10_1002_ange_202111265
crossref_primary_10_1002_ange_202304007
crossref_primary_10_1016_j_cattod_2022_10_017
crossref_primary_10_1039_D3CC02531D
crossref_primary_10_1002_ange_202309930
crossref_primary_10_1002_ange_202311752
crossref_primary_10_1007_s12598_024_02954_9
crossref_primary_10_1007_s10008_023_05444_7
crossref_primary_10_1002_adfm_202423960
crossref_primary_10_1002_adfm_202407236
crossref_primary_10_1016_j_checat_2022_10_018
crossref_primary_10_1021_acs_inorgchem_2c02888
crossref_primary_10_1038_s41467_022_31484_0
crossref_primary_10_1002_smsc_202100043
crossref_primary_10_1007_s10311_023_01608_z
crossref_primary_10_1016_j_fuel_2023_129406
crossref_primary_10_1021_jacsau_3c00537
crossref_primary_10_1002_anie_202407589
crossref_primary_10_1021_jacs_1c03135
crossref_primary_10_1039_D4EY00259H
crossref_primary_10_1002_ange_202203170
crossref_primary_10_1016_j_surfin_2023_103360
crossref_primary_10_1021_acs_inorgchem_3c01774
crossref_primary_10_1021_acscentsci_3c01277
crossref_primary_10_1002_aenm_202103872
crossref_primary_10_1007_s40242_024_4121_6
crossref_primary_10_1016_j_ccr_2023_215273
crossref_primary_10_1016_j_cej_2022_135473
crossref_primary_10_1039_D4CC05117C
crossref_primary_10_1021_acsami_4c12925
crossref_primary_10_1039_D4EE04511D
crossref_primary_10_1002_anie_202311696
crossref_primary_10_1002_ange_202403980
crossref_primary_10_1016_j_cej_2022_139836
crossref_primary_10_1039_D1TA09608G
crossref_primary_10_1002_ange_202216347
crossref_primary_10_1039_D4RE00519H
crossref_primary_10_1021_jacs_4c09079
crossref_primary_10_1002_adfm_202410755
crossref_primary_10_1021_jacs_3c02570
crossref_primary_10_1016_j_apcatb_2023_123292
crossref_primary_10_1002_anie_202207677
crossref_primary_10_1002_anie_202420661
crossref_primary_10_1002_ange_202216581
crossref_primary_10_1039_D4NJ05141F
crossref_primary_10_1021_jacs_4c14320
crossref_primary_10_1002_anie_202401943
crossref_primary_10_1039_D3GC02398B
crossref_primary_10_1002_adfm_202207110
crossref_primary_10_1016_j_apcatb_2022_121819
crossref_primary_10_1021_jacs_3c01142
crossref_primary_10_1039_D5TA00403A
crossref_primary_10_12677_AAC_2024_141004
crossref_primary_10_1002_smll_202408243
crossref_primary_10_1016_j_cej_2022_135375
crossref_primary_10_1149_1945_7111_ad6a97
crossref_primary_10_1016_j_mser_2024_100881
crossref_primary_10_1039_D2CC06943A
crossref_primary_10_1002_advs_202205605
crossref_primary_10_1002_smll_202107799
crossref_primary_10_1016_j_cej_2022_138885
crossref_primary_10_1039_D4GC00930D
crossref_primary_10_1021_acsami_2c13864
crossref_primary_10_1002_adfm_202314247
crossref_primary_10_1038_s41467_024_52830_4
crossref_primary_10_1149_1945_7111_ad8d7d
crossref_primary_10_1021_acs_inorgchem_3c00234
crossref_primary_10_1002_adma_202307913
crossref_primary_10_1021_jacs_2c07742
crossref_primary_10_1016_j_electacta_2024_144495
crossref_primary_10_1016_j_ijhydene_2022_08_200
crossref_primary_10_1021_acscatal_4c02799
crossref_primary_10_1021_jacs_3c05898
crossref_primary_10_1016_j_jechem_2022_02_036
crossref_primary_10_1007_s12274_023_6153_5
crossref_primary_10_1016_j_joule_2022_04_014
crossref_primary_10_1016_S1872_2067_23_64392_X
crossref_primary_10_1002_anie_202306726
crossref_primary_10_1021_acscatal_4c01596
crossref_primary_10_1002_adma_202103266
crossref_primary_10_1002_smll_202306488
crossref_primary_10_1016_j_joule_2023_06_022
crossref_primary_10_1021_acsami_1c11765
crossref_primary_10_1021_acscatal_2c05512
crossref_primary_10_1016_j_nxener_2023_100027
crossref_primary_10_1021_acs_energyfuels_3c03896
crossref_primary_10_1002_adma_202104341
crossref_primary_10_1021_jacs_2c01098
crossref_primary_10_1002_smll_202409471
crossref_primary_10_1016_j_jechem_2022_02_024
crossref_primary_10_1016_j_mser_2024_100829
crossref_primary_10_1039_D2SC03527H
crossref_primary_10_1039_D3QM00433C
crossref_primary_10_1007_s12598_021_01824_y
crossref_primary_10_1021_acsnano_2c01177
crossref_primary_10_1021_jacs_3c03340
crossref_primary_10_1002_anie_202419550
crossref_primary_10_1021_jacs_2c05660
crossref_primary_10_1002_cplu_202400317
crossref_primary_10_1002_anie_202312239
crossref_primary_10_1002_ange_202318248
crossref_primary_10_1039_D3CS00822C
crossref_primary_10_1002_adma_202209233
crossref_primary_10_1038_s41570_024_00589_z
crossref_primary_10_1021_acscatal_2c00174
crossref_primary_10_1016_j_mtphys_2023_101191
crossref_primary_10_1002_admi_202101478
crossref_primary_10_1039_D4CP01235F
crossref_primary_10_1039_D4SC01613K
crossref_primary_10_1021_acssuschemeng_2c06381
crossref_primary_10_1002_cctc_202301593
crossref_primary_10_1039_D4SC00842A
crossref_primary_10_1002_ange_202415975
crossref_primary_10_1039_D2TA09278F
crossref_primary_10_1002_ange_202305184
crossref_primary_10_1021_acscatal_3c04977
crossref_primary_10_1039_D4DT01078G
crossref_primary_10_1002_cssc_202400723
crossref_primary_10_1002_eem2_12551
crossref_primary_10_1021_acscatal_2c02346
crossref_primary_10_1039_D3EE04543A
crossref_primary_10_1016_j_nantod_2024_102315
crossref_primary_10_1016_j_cej_2024_157783
crossref_primary_10_1039_D4QI00519H
crossref_primary_10_1002_chem_202402207
crossref_primary_10_1002_gch2_202200242
crossref_primary_10_1021_acscatal_2c01128
crossref_primary_10_1016_j_apcatb_2023_123265
crossref_primary_10_1038_s44160_024_00603_8
Cites_doi 10.1039/C9SE00912D
10.31635/ccschem.020.202000218
10.1038/s41929-019-0306-7
10.1021/jz201461p
10.1002/adfm.201807651
10.1002/cssc.201500322
10.1006/jcat.1995.1310
10.1038/s41929-019-0402-8
10.1038/s41467-020-19369-6
10.1002/ange.202003842
10.1149/1.2100791
10.1002/ange.201806298
10.1002/adma.202002189
10.1002/anie.202002923
10.1038/s41929-018-0182-6
10.1126/science.aay4217
10.1149/1.3330704
10.1021/jacs.9b12377
10.1021/acs.accounts.9b00529
10.1002/aenm.202000659
10.1016/j.joule.2019.09.007
10.1038/s41467-019-13052-1
10.1016/j.jcat.2010.12.020
10.1038/s41929-018-0211-5
10.1021/acscatal.0c03034
10.1021/acscatal.6b03035
10.1016/j.jechem.2018.03.015
10.1021/jacs.0c00199
10.1038/s41467-019-09788-5
10.1021/jacs.6b07127
10.1038/s41560-019-0451-x
10.1021/acs.accounts.7b00616
10.1038/s41563-019-0445-x
10.1002/smtd.201800121
10.1016/j.jcat.2014.12.033
10.1002/ange.202002337
10.1021/acs.chemrev.9b00659
10.1038/s41557-020-0481-9
10.1002/ange.202005489
10.1016/j.apcatb.2016.05.081
10.1021/acscatal.9b04302
10.1039/C8CP01476K
10.1039/C1CP22271F
10.1002/anie.201807717
10.1126/science.aav3506
10.1021/acsami.0c05094
10.1002/anie.201814339
10.1039/C9CS00607A
10.1126/science.aaz8459
10.1039/C5EE03694A
10.1002/anie.202003842
10.1021/acs.accounts.8b00010
10.1002/cssc.201200335
10.1039/c2ee23062c
10.1002/cssc.201701448
10.1038/s41467-019-11292-9
10.1002/adma.201901996
10.1002/ange.201814339
10.1021/acscatal.0c01641
10.1038/s41467-019-14272-1
10.1126/science.aad4998
10.1021/acs.oprd.8b00236
10.1021/jacs.8b11237
10.1021/acscatal.8b00217
10.1016/j.joule.2017.09.003
10.1039/C7CY01067B
10.1002/anie.201100353
10.1002/smtd.202001010
10.1021/cs200599g
10.1149/1.1782971
10.1021/acscatal.9b01207
10.1039/C9CS00280D
10.1039/C4CS00470A
10.1016/j.coelec.2018.10.011
10.1021/acscatal.9b00532
10.1021/acscatal.9b01159
10.1039/C8EE03426E
10.1021/acs.chemrev.8b00705
10.1016/j.apcatb.2020.118888
10.1016/S0013-4686(03)00534-6
10.1021/jacs.9b05397
10.1039/C4GC01632G
10.1021/jacs.9b02345
10.1039/C8GC02680G
10.1002/ange.201807717
10.1038/s41467-017-00585-6
10.1021/acsomega.7b01060
10.1038/s41929-018-0139-9
10.1093/nsr/nwz146
10.1002/advs.201700379
10.1038/s41929-019-0386-4
10.1038/s41560-019-0374-6
10.1016/j.jcis.2020.05.014
10.1002/anie.201903327
10.1038/s41560-019-0450-y
10.1016/j.cattod.2014.03.054
10.1016/j.apcatb.2018.01.052
10.1039/C9EE02783A
10.1039/D0CS00134A
10.1038/nchem.2194
10.1038/s41929-019-0229-3
10.1021/acs.est.6b00730
10.1038/s41570-019-0128-9
10.1002/ange.201603798
10.1021/jacs.0c01699
10.1016/0021-9517(91)90262-3
10.1016/j.apcatb.2018.05.041
10.1038/s41563-020-0610-2
10.1038/s41929-020-0481-6
10.1021/acs.iecr.7b03514
10.1021/acs.accounts.8b00002
10.1016/j.jcat.2016.09.030
10.1038/s41929-020-00563-0
10.1021/jacs.9b11790
10.1016/j.chempr.2016.05.002
10.1038/s41570-017-0087
10.1126/science.aay1844
10.1023/A:1018463131891
10.1002/anie.202005489
10.1016/j.chempr.2019.05.008
10.1002/ange.201100353
10.1134/S1023193520050067
10.1016/j.chempr.2020.08.025
10.1038/s41467-019-08805-x
10.1038/nmat4778
10.1016/j.nanoen.2020.104601
10.1002/adma.202007056
10.1016/j.cattod.2010.05.025
10.1002/sstr.202000033
10.1021/jacs.9b02124
10.1021/ja3085912
10.1038/s41467-020-19571-6
10.1016/j.coche.2018.05.003
10.1021/acs.chemrev.6b00715
10.1021/acs.chemrev.0c00594
10.1126/science.aay3060
10.1126/science.aar6611
10.1038/nchem.121
10.1021/acs.chemrev.7b00689
10.1073/pnas.1006652108
10.1126/sciadv.aar3208
10.1039/D0CS00030B
10.1038/s41586-019-1782-2
10.1038/s41929-018-0168-4
10.1038/s41467-019-12851-w
10.1038/s41570-019-0110-6
10.1039/C8CS00398J
10.1021/acscatal.0c04283
10.1002/cctc.201402669
10.1038/nmat4738
10.1038/s41560-019-0407-1
10.1002/anie.201806298
10.1039/c2cs35381d
10.1002/cssc.202000339
10.1002/anie.201603798
10.1002/anie.202005574
10.1016/S0022-0728(01)00363-1
10.1038/nmat4834
10.1021/jacs.9b03811
10.1002/anie.201710556
10.1038/ncomms12123
10.1002/ange.201903327
10.1038/s41929-020-0450-0
10.1002/cssc.202000987
10.1002/adma.202002435
10.1038/s41578-019-0152-x
10.1002/adma.201808066
10.1039/C9CS00869A
10.1016/j.joule.2019.10.004
10.1021/acs.accounts.0c00194
10.1021/acs.chemrev.7b00488
10.1021/acs.accounts.8b00266
10.1038/s41557-019-0312-z
10.1093/nsr/nwaa142
10.1016/j.jechem.2015.08.005
10.1002/smtd.202000063
10.1021/jacs.9b13347
10.1021/acs.accounts.8b00070
10.1002/cctc.201801435
10.1021/acsomega.9b03515
10.1016/j.chempr.2018.05.001
10.1016/j.joule.2018.12.015
10.1021/acscentsci.0c01486
10.1002/ange.202005574
10.1021/acs.accounts.6b00635
10.1103/PhysRevLett.99.016105
10.1038/s41929-019-0235-5
10.1002/anie.202002337
10.1038/s41586-019-1760-8
10.1038/s41565-019-0551-6
10.1039/D0CS00130A
10.1002/9781118892114.ch11
10.1002/ange.202002923
10.1038/ncomms12697
10.1021/acs.chemrev.7b00459
10.3389/fchem.2019.00100
10.1021/ja109955w
10.1002/9783527680603.ch59
10.1002/ange.201710556
10.1021/acssuschemeng.9b05983
10.1038/s41929-018-0200-8
10.1002/cssc.201701802
10.1016/j.joule.2018.10.027
10.1093/nsr/nwv024
10.1002/nano.202000001
10.1016/0022-0728(95)03992-P
10.1038/nmat2878
10.1021/jacs.0c00418
10.1039/C8EE01501E
10.1021/acscatal.6b03632
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202101522
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 19590
ExternalDocumentID 33606339
10_1002_anie_202101522
ANIE202101522
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: australia research council
  funderid: DP160104866, DP170104464, FL170100154
– fundername: australia research council
  grantid: DP160104866, DP170104464, FL170100154
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AANHP
AASGY
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4392-733b726e8d3708f5ea97d6279d844d6eaa19637ea12527984a708447b2253feb3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 01:35:37 EDT 2025
Sun Jul 13 04:09:50 EDT 2025
Thu Apr 03 07:04:02 EDT 2025
Tue Jul 01 01:17:57 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Wed Jan 22 16:29:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords chemical synthesis
refinery
reaction intermediates
electrocatalysis
catalyst design
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4392-733b726e8d3708f5ea97d6279d844d6eaa19637ea12527984a708447b2253feb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4568-8422
0000-0002-1178-5611
0000-0002-5167-1192
0000-0002-2411-8041
PMID 33606339
PQID 2564408251
PQPubID 946352
PageCount 19
ParticipantIDs proquest_miscellaneous_2491947186
proquest_journals_2564408251
pubmed_primary_33606339
crossref_citationtrail_10_1002_anie_202101522
crossref_primary_10_1002_anie_202101522
wiley_primary_10_1002_anie_202101522_ANIE202101522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 1, 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 11
2019; 10
2019; 13
2019; 12
2019; 14
2019; 18
2020; 13
2020; 12
2020; 11
2020; 10
2012; 14
2020; 19
2018; 47
2018; 8
2018; 2
2012; 134
2018; 4
2018; 1
2020; 577
2003; 48
2019; 29
2010; 9
2019; 7
2019; 9
2019; 4
2019; 3
2019; 5
2019; 31
2018; 227
2015; 248
2019; 2
2020; 142
1997; 27
1995; 157
2020; 32
2018; 22
2007; 99
2018; 20
2018; 27
2011; 133
2017; 50
2016; 7
2016; 1
2018; 118
2004; 151
2019; 48
2018; 236
2020; 270
2019; 575
2011 2011; 50 123
1995; 387
2018; 11
2016; 9
2012; 41
2017; 7
2011; 279
2017; 8
2017; 1
2017; 2
2018; 360
2017; 4
2020; 120
2020 2020; 59 132
2016; 344
2020; 368
2019; 366
2001; 507
2020; 56
2020; 367
2017; 355
2019; 364
2017; 117
2020; 8
2020; 7
2020; 6
2020; 5
2020; 4
2020; 3
2020; 2
2020; 1
2021; 33
2020; 53
2018 2018; 57 130
2010; 158
2015; 44
2010; 157
2020; 49
2016; 198
2019; 119
1991; 132
2015; 2
2021; 7
2015; 17
2021; 5
2021; 4
2016; 50
2015; 328
2019; 141
2015; 8
2015; 7
2019 2019; 58 131
2015; 24
1987; 134
2012; 2
2011; 108
2012; 3
2016 2016; 55 128
2021; 11
2017; 16
2020
2020; 71
2017; 10
2018; 51
2016; 138
2014
2009; 1
2012; 5
2018; 57
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_158_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
Duca M. (e_1_2_10_13_1) 2020
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_51_1
e_1_2_10_147_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_41_1
e_1_2_10_90_2
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_75_2
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_148_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_91_1
e_1_2_10_4_1
e_1_2_10_137_2
e_1_2_10_39_2
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_76_2
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_175_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_149_1
Nørskov J. K. (e_1_2_10_27_1) 2014
e_1_2_10_126_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_130_2
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_31_1
e_1_2_10_188_1
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_131_2
e_1_2_10_154_2
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_192_2
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_32_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_129_2
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_133_2
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_108_1
e_1_2_10_157_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_134_2
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 50
  start-page: 5234
  year: 2016
  end-page: 5242
  publication-title: Environ. Sci. Technol.
– volume: 134
  start-page: 20226
  year: 2012
  end-page: 20229
  publication-title: J. Am. Chem. Soc.
– volume: 367
  start-page: 661
  year: 2020
  end-page: 666
  publication-title: Science
– volume: 59 132
  start-page: 9418 9504
  year: 2020 2020
  end-page: 9422 9508
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 279
  start-page: 233
  year: 2011
  end-page: 240
  publication-title: J. Catal.
– volume: 3
  start-page: 570
  year: 2019
  end-page: 583
  publication-title: Joule
– volume: 2
  start-page: 198
  year: 2019
  end-page: 210
  publication-title: Nat. Catal.
– volume: 157
  start-page: 450
  year: 1995
  end-page: 460
  publication-title: J. Catal.
– volume: 328
  start-page: 36
  year: 2015
  end-page: 42
  publication-title: J. Catal.
– volume: 27
  start-page: 605
  year: 1997
  end-page: 611
  publication-title: J. Appl. Electrochem.
– volume: 577
  start-page: 509
  year: 2020
  end-page: 513
  publication-title: Nature
– volume: 57
  start-page: 2165
  year: 2018
  end-page: 2177
  publication-title: Ind. Eng. Chem. Res.
– volume: 3
  start-page: 125
  year: 2020
  end-page: 134
  publication-title: Nat. Catal.
– volume: 364
  year: 2019
  publication-title: Science
– volume: 270
  year: 2020
  publication-title: Appl. Catal. B
– volume: 142
  start-page: 6400
  year: 2020
  end-page: 6408
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 442
  year: 2019
  end-page: 458
  publication-title: Nat. Rev. Chem.
– volume: 71
  year: 2020
  publication-title: Nano Energy
– volume: 4
  start-page: 792
  year: 2019
  end-page: 804
  publication-title: Nat. Rev. Mater.
– volume: 198
  start-page: 525
  year: 2016
  end-page: 547
  publication-title: Appl. Catal. B
– volume: 13
  start-page: 47
  year: 2019
  end-page: 54
  publication-title: Curr. Opin. Electrochem.
– volume: 7
  start-page: 12123
  year: 2016
  publication-title: Nat. Commun.
– volume: 10
  start-page: 5074
  year: 2019
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1055
  year: 2019
  end-page: 1067
  publication-title: Energy Environ. Sci.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 2106
  year: 2012
  end-page: 2124
  publication-title: ChemSusChem
– volume: 4
  start-page: 776
  year: 2019
  end-page: 785
  publication-title: Nat. Energy
– volume: 1
  start-page: 37
  year: 2009
  end-page: 46
  publication-title: Nat. Chem.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 108
  start-page: 937
  year: 2011
  end-page: 943
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: 11152
  year: 2018
  end-page: 11159
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 55
  year: 2019
  end-page: 61
  publication-title: Nat. Catal.
– volume: 3
  start-page: 14
  year: 2020
  end-page: 22
  publication-title: Nat. Catal.
– volume: 5
  start-page: 2296
  year: 2019
  end-page: 2325
  publication-title: Chem
– volume: 132
  start-page: 257
  year: 1991
  end-page: 262
  publication-title: J. Catal.
– volume: 22
  start-page: 1590
  year: 2018
  end-page: 1598
  publication-title: Org. Process Res. Dev.
– volume: 53
  start-page: 547
  year: 2020
  end-page: 560
  publication-title: Acc. Chem. Res.
– volume: 27
  start-page: 1629
  year: 2018
  end-page: 1636
  publication-title: J. Energy Chem.
– volume: 49
  start-page: 2215
  year: 2020
  end-page: 2264
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 183
  year: 2015
  end-page: 201
  publication-title: Natl. Sci. Rev.
– volume: 3
  start-page: 478
  year: 2020
  end-page: 487
  publication-title: Nat. Catal.
– volume: 134
  start-page: 1925
  year: 1987
  end-page: 1929
  publication-title: J. Electrochem. Soc.
– volume: 49
  start-page: 5510
  year: 2020
  end-page: 5560
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 466
  year: 2019
  end-page: 474
  publication-title: Nat. Energy
– volume: 141
  start-page: 6413
  year: 2019
  end-page: 6418
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 4214
  year: 2020
  end-page: 4237
  publication-title: ChemSusChem
– volume: 10
  start-page: 3340
  year: 2019
  publication-title: Nat. Commun.
– volume: 58 131
  start-page: 4504 4552
  year: 2019 2019
  end-page: 4509 4557
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 9726
  year: 2012
  end-page: 9742
  publication-title: Energy Environ. Sci.
– volume: 507
  start-page: 177
  year: 2001
  end-page: 184
  publication-title: J. Electroanal. Chem.
– volume: 9
  start-page: 904
  year: 2010
  end-page: 907
  publication-title: Nat. Mater.
– volume: 24
  start-page: 535
  year: 2015
  end-page: 547
  publication-title: J. Energy Chem.
– volume: 49
  start-page: 6632
  year: 2020
  end-page: 6665
  publication-title: Chem. Soc. Rev.
– volume: 575
  start-page: 639
  year: 2019
  end-page: 642
  publication-title: Nature
– volume: 5
  year: 2021
  publication-title: Small Methods
– volume: 12
  start-page: 24786
  year: 2020
  end-page: 24795
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 1063
  year: 2019
  end-page: 1070
  publication-title: Nat. Nanotechnol.
– volume: 142
  start-page: 7036
  year: 2020
  end-page: 7046
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 6691
  year: 2017
  end-page: 6698
  publication-title: ACS Catal.
– volume: 133
  start-page: 5882
  year: 2011
  end-page: 5892
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 846
  year: 2019
  end-page: 851
  publication-title: Nat. Chem.
– volume: 13
  start-page: 2513
  year: 2020
  end-page: 2521
  publication-title: ChemSusChem
– volume: 10
  start-page: 4812
  year: 2017
  end-page: 4816
  publication-title: ChemSusChem
– volume: 119
  start-page: 7610
  year: 2019
  end-page: 7672
  publication-title: Chem. Rev.
– volume: 51
  start-page: 1571
  year: 2018
  end-page: 1580
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 8561
  year: 2019
  end-page: 8574
  publication-title: ACS Catal.
– volume: 2
  start-page: 243
  year: 2019
  end-page: 250
  publication-title: Nat. Catal.
– volume: 20
  start-page: 151
  year: 2018
  end-page: 158
  publication-title: Curr. Opin. Chem. Eng.
– volume: 3
  start-page: 2602
  year: 2019
  end-page: 2621
  publication-title: Joule
– volume: 57 130
  start-page: 7568 7690
  year: 2018 2018
  end-page: 7579 7702
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 19
  start-page: 266
  year: 2020
  end-page: 276
  publication-title: Nat. Mater.
– volume: 7
  start-page: 706
  year: 2017
  end-page: 709
  publication-title: ACS Catal.
– volume: 58 131
  start-page: 12014 12142
  year: 2019 2019
  end-page: 12017 12145
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 118
  start-page: 2302
  year: 2018
  end-page: 2312
  publication-title: Chem. Rev.
– volume: 7
  start-page: 12697
  year: 2016
  publication-title: Nat. Commun.
– volume: 7
  start-page: 100
  year: 2019
  publication-title: Front. Chem.
– volume: 151
  start-page: D93
  year: 2004
  end-page: D97
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 285
  year: 2020
  end-page: 295
  publication-title: Natl. Sci. Rev.
– volume: 2
  start-page: 648
  year: 2019
  end-page: 658
  publication-title: Nat. Catal.
– volume: 2
  start-page: 507
  year: 2020
  end-page: 515
  publication-title: CCS Chem.
– volume: 53
  start-page: 1488
  year: 2020
  end-page: 1497
  publication-title: Acc. Chem. Res.
– volume: 142
  start-page: 4037
  year: 2020
  end-page: 4050
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 8307
  year: 2018
  end-page: 8348
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 5884
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  start-page: 38
  year: 2015
  end-page: 47
  publication-title: ChemCatChem
– volume: 57 130
  start-page: 11460 11631
  year: 2018 2018
  end-page: 11464 11636
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 825
  year: 2018
  end-page: 832
  publication-title: Joule
– volume: 1
  start-page: 922
  year: 2018
  end-page: 934
  publication-title: Nat. Catal.
– volume: 59 132
  start-page: 16974 17122
  year: 2020 2020
  end-page: 16981 17129
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 50
  start-page: 915
  year: 2017
  end-page: 923
  publication-title: Acc. Chem. Res.
– volume: 387
  start-page: 143
  year: 1995
  end-page: 145
  publication-title: J. Electroanal. Chem.
– volume: 4
  start-page: 1340
  year: 2020
  end-page: 1350
  publication-title: Sustainable Energy Fuels
– volume: 4
  start-page: 1809
  year: 2018
  end-page: 1831
  publication-title: Chem
– volume: 118
  start-page: 6337
  year: 2018
  end-page: 6408
  publication-title: Chem. Rev.
– volume: 11
  start-page: 298
  year: 2019
  end-page: 308
  publication-title: ChemCatChem
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 577
  start-page: 109
  year: 2020
  end-page: 114
  publication-title: J. Colloid Interface Sci.
– volume: 12
  start-page: 717
  year: 2020
  end-page: 724
  publication-title: Nat. Chem.
– volume: 3
  start-page: 703
  year: 2020
  end-page: 709
  publication-title: Nat. Catal.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 59 132
  start-page: 15487 15615
  year: 2020 2020
  end-page: 15491 15620
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 9171 9256
  year: 2020 2020
  end-page: 9176 9261
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 9913 10067
  year: 2016 2016
  end-page: 9917 10071
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 117
  start-page: 8497
  year: 2017
  end-page: 8520
  publication-title: Chem. Rev.
– volume: 142
  start-page: 5702
  year: 2020
  end-page: 5708
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 701
  year: 2017
  publication-title: Nat. Commun.
– volume: 1
  start-page: 946
  year: 2018
  end-page: 951
  publication-title: Nat. Catal.
– volume: 5
  start-page: 1287
  year: 2020
  end-page: 1295
  publication-title: ACS Omega
– volume: 56
  start-page: 405
  year: 2020
  end-page: 417
  publication-title: Russ. J. Electrochem.
– volume: 10
  start-page: 1779
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  start-page: 732
  year: 2019
  end-page: 745
  publication-title: Nat. Energy
– volume: 1
  start-page: 0087
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 11
  start-page: 2935
  year: 2018
  end-page: 2944
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 4977
  year: 2019
  publication-title: Nat. Commun.
– volume: 6
  start-page: 2484
  year: 2020
  end-page: 2496
  publication-title: Chem
– volume: 120
  start-page: 12217
  year: 2020
  end-page: 12314
  publication-title: Chem. Rev.
– volume: 8
  start-page: 4064
  year: 2018
  end-page: 4081
  publication-title: ACS Catal.
– volume: 141
  start-page: 12071
  year: 2019
  end-page: 12078
  publication-title: J. Am. Chem. Soc.
– start-page: 155
  year: 2014
  end-page: 174
– volume: 344
  start-page: 263
  year: 2016
  end-page: 272
  publication-title: J. Catal.
– volume: 41
  start-page: 8195
  year: 2012
  end-page: 8209
  publication-title: Chem. Soc. Rev.
– volume: 158
  start-page: 29
  year: 2010
  end-page: 34
  publication-title: Catal. Today
– volume: 17
  start-page: 601
  year: 2015
  end-page: 609
  publication-title: Green Chem.
– volume: 120
  start-page: 5437
  year: 2020
  end-page: 5516
  publication-title: Chem. Rev.
– volume: 8
  start-page: 2672
  year: 2020
  end-page: 2681
  publication-title: ACS Sustainable Chem. Eng.
– volume: 51
  start-page: 2857
  year: 2018
  end-page: 2866
  publication-title: Acc. Chem. Res.
– volume: 1
  start-page: 32
  year: 2016
  end-page: 58
  publication-title: Chem
– volume: 4
  start-page: 430
  year: 2019
  end-page: 433
  publication-title: Nat. Energy
– volume: 50 123
  start-page: 4601 4697
  year: 2011 2011
  end-page: 4605 4701
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 328
  year: 2015
  end-page: 333
  publication-title: Nat. Chem.
– volume: 16
  start-page: 16
  year: 2017
  end-page: 22
  publication-title: Nat. Mater.
– volume: 157
  start-page: B719
  year: 2010
  end-page: B725
  publication-title: J. Electrochem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 368
  start-page: 1228
  year: 2020
  end-page: 1233
  publication-title: Science
– volume: 99
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 49
  start-page: 2196
  year: 2020
  end-page: 2214
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 5954
  year: 2020
  publication-title: Nat. Commun.
– volume: 48
  start-page: 3953
  year: 2003
  end-page: 3958
  publication-title: Electrochim. Acta
– volume: 49
  start-page: 3764
  year: 2020
  end-page: 3782
  publication-title: Chem. Soc. Rev.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 360
  year: 2018
  publication-title: Science
– volume: 138
  start-page: 13639
  year: 2016
  end-page: 13646
  publication-title: J. Am. Chem. Soc.
– volume: 227
  start-page: 386
  year: 2018
  end-page: 408
  publication-title: Appl. Catal. B
– volume: 118
  start-page: 4631
  year: 2018
  end-page: 4701
  publication-title: Chem. Rev.
– volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 4218
  year: 2019
  end-page: 4225
  publication-title: ACS Catal.
– volume: 10
  start-page: 7495
  year: 2020
  end-page: 7511
  publication-title: ACS Catal.
– volume: 16
  start-page: 57
  year: 2017
  end-page: 69
  publication-title: Nat. Mater.
– volume: 10
  start-page: 3658
  year: 2020
  end-page: 3663
  publication-title: ACS Catal.
– volume: 10
  start-page: 11082
  year: 2020
  end-page: 11098
  publication-title: ACS Catal.
– volume: 1
  year: 2020
  publication-title: Small Struct.
– volume: 51
  start-page: 881
  year: 2018
  end-page: 889
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 251
  year: 2012
  end-page: 258
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 14
  start-page: 1235
  year: 2012
  end-page: 1245
  publication-title: Phys. Chem. Chem. Phys.
– volume: 51
  start-page: 910
  year: 2018
  end-page: 918
  publication-title: Acc. Chem. Res.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 142
  start-page: 4550
  year: 2020
  end-page: 4554
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 7578
  year: 2019
  end-page: 7587
  publication-title: ACS Catal.
– volume: 9
  start-page: 1687
  year: 2016
  end-page: 1695
  publication-title: Energy Environ. Sci.
– volume: 57 130
  start-page: 13163 13347
  year: 2018 2018
  end-page: 13166 13350
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 4624
  year: 2019
  end-page: 4633
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 5182
  year: 2017
  end-page: 5194
  publication-title: Catal. Sci. Technol.
– volume: 1
  start-page: 764
  year: 2018
  end-page: 771
  publication-title: Nat. Catal.
– volume: 367
  start-page: 397
  year: 2020
  end-page: 400
  publication-title: Science
– start-page: 773
  year: 2020
  end-page: 890
– volume: 236
  start-page: 546
  year: 2018
  end-page: 568
  publication-title: Appl. Catal. B
– volume: 3
  start-page: 638
  year: 2019
  end-page: 649
  publication-title: Nat. Rev. Chem.
– volume: 18
  start-page: 1222
  year: 2019
  end-page: 1227
  publication-title: Nat. Mater.
– volume: 16
  start-page: 70
  year: 2017
  end-page: 81
  publication-title: Nat. Mater.
– volume: 7
  start-page: 1564
  year: 2020
  end-page: 1583
  publication-title: Natl. Sci. Rev.
– volume: 11
  start-page: 412
  year: 2020
  publication-title: Nat. Commun.
– volume: 4
  start-page: 134
  year: 2021
  end-page: 143
  publication-title: Nat. Catal.
– volume: 1
  start-page: 135
  year: 2020
  end-page: 151
  publication-title: Nano Select
– volume: 248
  start-page: 115
  year: 2015
  end-page: 127
  publication-title: Catal. Today
– volume: 10
  start-page: 892
  year: 2019
  publication-title: Nat. Commun.
– volume: 48
  start-page: 3166
  year: 2019
  end-page: 3180
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 2180
  year: 2015
  end-page: 2186
  publication-title: ChemSusChem
– volume: 142
  start-page: 4213
  year: 2020
  end-page: 4222
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 759
  year: 2012
  end-page: 764
  publication-title: ACS Catal.
– volume: 3
  start-page: 2589
  year: 2019
  end-page: 2593
  publication-title: Joule
– volume: 2
  start-page: 10
  year: 2019
  end-page: 17
  publication-title: Nat. Catal.
– volume: 10
  start-page: 3999
  year: 2017
  end-page: 4003
  publication-title: ChemSusChem
– volume: 2
  start-page: 9199
  year: 2017
  end-page: 9210
  publication-title: ACS Omega
– volume: 3
  start-page: 834
  year: 2019
  end-page: 845
  publication-title: Joule
– volume: 141
  start-page: 7646
  year: 2019
  end-page: 7659
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 9711 9798
  year: 2020 2020
  end-page: 9718 9805
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 5427
  year: 2018
  end-page: 5453
  publication-title: Green Chem.
– volume: 13
  start-page: 917
  year: 2020
  end-page: 927
  publication-title: Energy Environ. Sci.
– volume: 141
  start-page: 9664
  year: 2019
  end-page: 9672
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 1590
  year: 2018
  end-page: 1598
  publication-title: Acc. Chem. Res.
– volume: 11
  start-page: 1392
  year: 2021
  end-page: 1405
  publication-title: ACS Catal.
– volume: 366
  start-page: 226
  year: 2019
  end-page: 231
  publication-title: Science
– volume: 7
  start-page: 262
  year: 2021
  end-page: 273
  publication-title: ACS Cent. Sci.
– ident: e_1_2_10_108_1
  doi: 10.1039/C9SE00912D
– ident: e_1_2_10_98_1
  doi: 10.31635/ccschem.020.202000218
– ident: e_1_2_10_35_1
  doi: 10.1038/s41929-019-0306-7
– ident: e_1_2_10_36_1
  doi: 10.1021/jz201461p
– ident: e_1_2_10_110_1
  doi: 10.1002/adfm.201807651
– ident: e_1_2_10_72_1
  doi: 10.1002/cssc.201500322
– ident: e_1_2_10_155_1
  doi: 10.1006/jcat.1995.1310
– ident: e_1_2_10_42_1
  doi: 10.1038/s41929-019-0402-8
– ident: e_1_2_10_47_1
  doi: 10.1038/s41467-020-19369-6
– ident: e_1_2_10_154_2
  doi: 10.1002/ange.202003842
– ident: e_1_2_10_94_1
  doi: 10.1149/1.2100791
– ident: e_1_2_10_129_2
  doi: 10.1002/ange.201806298
– ident: e_1_2_10_74_1
  doi: 10.1002/adma.202002189
– ident: e_1_2_10_75_1
  doi: 10.1002/anie.202002923
– ident: e_1_2_10_29_1
  doi: 10.1038/s41929-018-0182-6
– ident: e_1_2_10_195_1
  doi: 10.1126/science.aay4217
– ident: e_1_2_10_95_1
  doi: 10.1149/1.3330704
– ident: e_1_2_10_190_1
  doi: 10.1021/jacs.9b12377
– ident: e_1_2_10_23_1
  doi: 10.1021/acs.accounts.9b00529
– ident: e_1_2_10_79_1
  doi: 10.1002/aenm.202000659
– ident: e_1_2_10_7_1
  doi: 10.1016/j.joule.2019.09.007
– ident: e_1_2_10_176_1
  doi: 10.1038/s41467-019-13052-1
– ident: e_1_2_10_64_1
  doi: 10.1016/j.jcat.2010.12.020
– ident: e_1_2_10_81_1
  doi: 10.1038/s41929-018-0211-5
– ident: e_1_2_10_159_1
  doi: 10.1021/acscatal.0c03034
– ident: e_1_2_10_73_1
  doi: 10.1021/acscatal.6b03035
– ident: e_1_2_10_63_1
  doi: 10.1016/j.jechem.2018.03.015
– ident: e_1_2_10_109_1
  doi: 10.1021/jacs.0c00199
– ident: e_1_2_10_126_1
  doi: 10.1038/s41467-019-09788-5
– ident: e_1_2_10_117_1
  doi: 10.1021/jacs.6b07127
– ident: e_1_2_10_196_1
  doi: 10.1038/s41560-019-0451-x
– ident: e_1_2_10_15_1
  doi: 10.1021/acs.accounts.7b00616
– ident: e_1_2_10_187_1
  doi: 10.1038/s41563-019-0445-x
– ident: e_1_2_10_50_1
  doi: 10.1002/smtd.201800121
– ident: e_1_2_10_32_1
  doi: 10.1016/j.jcat.2014.12.033
– ident: e_1_2_10_76_2
  doi: 10.1002/ange.202002337
– ident: e_1_2_10_18_1
  doi: 10.1021/acs.chemrev.9b00659
– ident: e_1_2_10_84_1
  doi: 10.1038/s41557-020-0481-9
– ident: e_1_2_10_131_2
  doi: 10.1002/ange.202005489
– ident: e_1_2_10_92_1
  doi: 10.1016/j.apcatb.2016.05.081
– ident: e_1_2_10_189_1
  doi: 10.1021/acscatal.9b04302
– ident: e_1_2_10_66_1
  doi: 10.1039/C8CP01476K
– ident: e_1_2_10_71_1
  doi: 10.1039/C1CP22271F
– ident: e_1_2_10_133_1
  doi: 10.1002/anie.201807717
– ident: e_1_2_10_9_1
  doi: 10.1126/science.aav3506
– ident: e_1_2_10_136_1
  doi: 10.1021/acsami.0c05094
– ident: e_1_2_10_192_1
  doi: 10.1002/anie.201814339
– ident: e_1_2_10_40_1
  doi: 10.1039/C9CS00607A
– ident: e_1_2_10_144_1
  doi: 10.1126/science.aaz8459
– ident: e_1_2_10_59_1
  doi: 10.1039/C5EE03694A
– ident: e_1_2_10_154_1
  doi: 10.1002/anie.202003842
– ident: e_1_2_10_194_1
  doi: 10.1021/acs.accounts.8b00010
– ident: e_1_2_10_124_1
  doi: 10.1002/cssc.201200335
– ident: e_1_2_10_146_1
  doi: 10.1039/c2ee23062c
– ident: e_1_2_10_89_1
  doi: 10.1002/cssc.201701448
– ident: e_1_2_10_139_1
  doi: 10.1038/s41467-019-11292-9
– ident: e_1_2_10_181_1
  doi: 10.1002/adma.201901996
– ident: e_1_2_10_192_2
  doi: 10.1002/ange.201814339
– ident: e_1_2_10_41_1
  doi: 10.1021/acscatal.0c01641
– ident: e_1_2_10_148_1
  doi: 10.1038/s41467-019-14272-1
– ident: e_1_2_10_1_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_10_103_1
  doi: 10.1021/acs.oprd.8b00236
– ident: e_1_2_10_51_1
  doi: 10.1021/jacs.8b11237
– ident: e_1_2_10_149_1
  doi: 10.1021/acscatal.8b00217
– ident: e_1_2_10_199_1
  doi: 10.1016/j.joule.2017.09.003
– ident: e_1_2_10_2_1
  doi: 10.1039/C7CY01067B
– ident: e_1_2_10_90_1
  doi: 10.1002/anie.201100353
– ident: e_1_2_10_160_1
  doi: 10.1002/smtd.202001010
– ident: e_1_2_10_127_1
  doi: 10.1021/cs200599g
– ident: e_1_2_10_156_1
  doi: 10.1149/1.1782971
– ident: e_1_2_10_68_1
  doi: 10.1021/acscatal.9b01207
– ident: e_1_2_10_10_1
  doi: 10.1039/C9CS00280D
– ident: e_1_2_10_16_1
  doi: 10.1039/C4CS00470A
– ident: e_1_2_10_177_1
  doi: 10.1016/j.coelec.2018.10.011
– ident: e_1_2_10_33_1
  doi: 10.1021/acscatal.9b00532
– ident: e_1_2_10_147_1
  doi: 10.1021/acscatal.9b01159
– ident: e_1_2_10_11_1
  doi: 10.1039/C8EE03426E
– ident: e_1_2_10_17_1
  doi: 10.1021/acs.chemrev.8b00705
– ident: e_1_2_10_67_1
  doi: 10.1016/j.apcatb.2020.118888
– ident: e_1_2_10_87_1
  doi: 10.1016/S0013-4686(03)00534-6
– ident: e_1_2_10_105_1
  doi: 10.1021/jacs.9b05397
– ident: e_1_2_10_111_1
  doi: 10.1039/C4GC01632G
– ident: e_1_2_10_122_1
  doi: 10.1021/jacs.9b02345
– ident: e_1_2_10_128_1
  doi: 10.1039/C8GC02680G
– ident: e_1_2_10_133_2
  doi: 10.1002/ange.201807717
– ident: e_1_2_10_44_1
  doi: 10.1038/s41467-017-00585-6
– ident: e_1_2_10_91_1
  doi: 10.1021/acsomega.7b01060
– ident: e_1_2_10_57_1
  doi: 10.1038/s41929-018-0139-9
– ident: e_1_2_10_115_1
  doi: 10.1093/nsr/nwz146
– ident: e_1_2_10_69_1
  doi: 10.1002/advs.201700379
– ident: e_1_2_10_12_1
  doi: 10.1038/s41929-019-0386-4
– ident: e_1_2_10_120_1
  doi: 10.1038/s41560-019-0374-6
– ident: e_1_2_10_85_1
  doi: 10.1016/j.jcis.2020.05.014
– ident: e_1_2_10_137_1
  doi: 10.1002/anie.201903327
– ident: e_1_2_10_19_1
  doi: 10.1038/s41560-019-0450-y
– ident: e_1_2_10_150_1
  doi: 10.1016/j.cattod.2014.03.054
– ident: e_1_2_10_96_1
  doi: 10.1016/j.apcatb.2018.01.052
– ident: e_1_2_10_102_1
  doi: 10.1039/C9EE02783A
– ident: e_1_2_10_106_1
  doi: 10.1039/D0CS00134A
– ident: e_1_2_10_118_1
  doi: 10.1038/nchem.2194
– ident: e_1_2_10_104_1
  doi: 10.1038/s41929-019-0229-3
– ident: e_1_2_10_116_1
  doi: 10.1021/acs.est.6b00730
– ident: e_1_2_10_141_1
  doi: 10.1038/s41570-019-0128-9
– ident: e_1_2_10_130_2
  doi: 10.1002/ange.201603798
– ident: e_1_2_10_179_1
  doi: 10.1021/jacs.0c01699
– ident: e_1_2_10_93_1
  doi: 10.1016/0021-9517(91)90262-3
– ident: e_1_2_10_145_1
  doi: 10.1016/j.apcatb.2018.05.041
– ident: e_1_2_10_58_1
  doi: 10.1038/s41563-020-0610-2
– ident: e_1_2_10_97_1
  doi: 10.1038/s41929-020-0481-6
– ident: e_1_2_10_198_1
  doi: 10.1021/acs.iecr.7b03514
– ident: e_1_2_10_37_1
  doi: 10.1021/acs.accounts.8b00002
– ident: e_1_2_10_112_1
  doi: 10.1016/j.jcat.2016.09.030
– ident: e_1_2_10_166_1
  doi: 10.1038/s41929-020-00563-0
– ident: e_1_2_10_52_1
  doi: 10.1021/jacs.9b11790
– ident: e_1_2_10_101_1
  doi: 10.1016/j.chempr.2016.05.002
– ident: e_1_2_10_174_1
  doi: 10.1038/s41570-017-0087
– ident: e_1_2_10_197_1
  doi: 10.1126/science.aay1844
– ident: e_1_2_10_113_1
  doi: 10.1023/A:1018463131891
– ident: e_1_2_10_131_1
  doi: 10.1002/anie.202005489
– ident: e_1_2_10_61_1
  doi: 10.1016/j.chempr.2019.05.008
– ident: e_1_2_10_90_2
  doi: 10.1002/ange.201100353
– ident: e_1_2_10_152_1
  doi: 10.1134/S1023193520050067
– ident: e_1_2_10_24_1
  doi: 10.1016/j.chempr.2020.08.025
– ident: e_1_2_10_169_1
  doi: 10.1038/s41467-019-08805-x
– ident: e_1_2_10_8_1
  doi: 10.1038/nmat4778
– ident: e_1_2_10_54_1
  doi: 10.1016/j.nanoen.2020.104601
– ident: e_1_2_10_132_1
  doi: 10.1002/adma.202007056
– ident: e_1_2_10_121_1
  doi: 10.1016/j.cattod.2010.05.025
– ident: e_1_2_10_165_1
  doi: 10.1002/sstr.202000033
– ident: e_1_2_10_46_1
  doi: 10.1021/jacs.9b02124
– ident: e_1_2_10_114_1
  doi: 10.1021/ja3085912
– ident: e_1_2_10_173_1
  doi: 10.1038/s41467-020-19571-6
– ident: e_1_2_10_183_1
  doi: 10.1016/j.coche.2018.05.003
– ident: e_1_2_10_60_1
  doi: 10.1021/acs.chemrev.6b00715
– ident: e_1_2_10_162_1
  doi: 10.1021/acs.chemrev.0c00594
– ident: e_1_2_10_188_1
  doi: 10.1126/science.aay3060
– ident: e_1_2_10_6_1
  doi: 10.1126/science.aar6611
– ident: e_1_2_10_31_1
  doi: 10.1038/nchem.121
– ident: e_1_2_10_21_1
  doi: 10.1021/acs.chemrev.7b00689
– ident: e_1_2_10_30_1
  doi: 10.1073/pnas.1006652108
– ident: e_1_2_10_186_1
  doi: 10.1126/sciadv.aar3208
– ident: e_1_2_10_182_1
  doi: 10.1039/D0CS00030B
– ident: e_1_2_10_175_1
  doi: 10.1038/s41586-019-1782-2
– ident: e_1_2_10_48_1
  doi: 10.1038/s41929-018-0168-4
– ident: e_1_2_10_172_1
  doi: 10.1038/s41467-019-12851-w
– ident: e_1_2_10_43_1
  doi: 10.1038/s41570-019-0110-6
– ident: e_1_2_10_193_1
  doi: 10.1039/C8CS00398J
– ident: e_1_2_10_170_1
  doi: 10.1021/acscatal.0c04283
– ident: e_1_2_10_49_1
  doi: 10.1002/cctc.201402669
– ident: e_1_2_10_14_1
  doi: 10.1038/nmat4738
– ident: e_1_2_10_20_1
  doi: 10.1038/s41560-019-0407-1
– ident: e_1_2_10_129_1
  doi: 10.1002/anie.201806298
– ident: e_1_2_10_167_1
  doi: 10.1039/c2cs35381d
– ident: e_1_2_10_119_1
  doi: 10.1002/cssc.202000339
– ident: e_1_2_10_130_1
  doi: 10.1002/anie.201603798
– ident: e_1_2_10_134_1
  doi: 10.1002/anie.202005574
– ident: e_1_2_10_88_1
  doi: 10.1016/S0022-0728(01)00363-1
– ident: e_1_2_10_5_1
  doi: 10.1038/nmat4834
– ident: e_1_2_10_70_1
  doi: 10.1021/jacs.9b03811
– ident: e_1_2_10_39_1
  doi: 10.1002/anie.201710556
– ident: e_1_2_10_53_1
  doi: 10.1038/ncomms12123
– ident: e_1_2_10_3_1
– ident: e_1_2_10_137_2
  doi: 10.1002/ange.201903327
– ident: e_1_2_10_168_1
  doi: 10.1038/s41929-020-0450-0
– ident: e_1_2_10_107_1
  doi: 10.1002/cssc.202000987
– ident: e_1_2_10_191_1
  doi: 10.1002/adma.202002435
– ident: e_1_2_10_28_1
  doi: 10.1038/s41578-019-0152-x
– ident: e_1_2_10_38_1
  doi: 10.1002/adma.201808066
– ident: e_1_2_10_163_1
  doi: 10.1039/C9CS00869A
– ident: e_1_2_10_62_1
  doi: 10.1016/j.joule.2019.10.004
– ident: e_1_2_10_65_1
  doi: 10.1021/acs.accounts.0c00194
– ident: e_1_2_10_22_1
  doi: 10.1021/acs.chemrev.7b00488
– ident: e_1_2_10_158_1
  doi: 10.1021/acs.accounts.8b00266
– ident: e_1_2_10_82_1
  doi: 10.1038/s41557-019-0312-z
– ident: e_1_2_10_83_1
  doi: 10.1093/nsr/nwaa142
– ident: e_1_2_10_4_1
  doi: 10.1016/j.jechem.2015.08.005
– ident: e_1_2_10_100_1
  doi: 10.1002/smtd.202000063
– ident: e_1_2_10_78_1
  doi: 10.1021/jacs.9b13347
– ident: e_1_2_10_184_1
  doi: 10.1021/acs.accounts.8b00070
– ident: e_1_2_10_151_1
  doi: 10.1002/cctc.201801435
– ident: e_1_2_10_161_1
  doi: 10.1021/acsomega.9b03515
– ident: e_1_2_10_55_1
  doi: 10.1016/j.chempr.2018.05.001
– ident: e_1_2_10_164_1
  doi: 10.1016/j.joule.2018.12.015
– ident: e_1_2_10_171_1
  doi: 10.1021/acscentsci.0c01486
– ident: e_1_2_10_134_2
  doi: 10.1002/ange.202005574
– ident: e_1_2_10_157_1
  doi: 10.1021/acs.accounts.6b00635
– ident: e_1_2_10_34_1
  doi: 10.1103/PhysRevLett.99.016105
– ident: e_1_2_10_45_1
  doi: 10.1038/s41929-019-0235-5
– ident: e_1_2_10_76_1
  doi: 10.1002/anie.202002337
– ident: e_1_2_10_138_1
  doi: 10.1038/s41586-019-1760-8
– ident: e_1_2_10_140_1
  doi: 10.1038/s41565-019-0551-6
– ident: e_1_2_10_99_1
  doi: 10.1039/D0CS00130A
– start-page: 155
  volume-title: Fundamental Concepts in Heterogeneous Catalysis
  year: 2014
  ident: e_1_2_10_27_1
  doi: 10.1002/9781118892114.ch11
– ident: e_1_2_10_75_2
  doi: 10.1002/ange.202002923
– ident: e_1_2_10_180_1
  doi: 10.1038/ncomms12697
– ident: e_1_2_10_25_1
  doi: 10.1021/acs.chemrev.7b00459
– ident: e_1_2_10_125_1
  doi: 10.3389/fchem.2019.00100
– ident: e_1_2_10_123_1
  doi: 10.1021/ja109955w
– start-page: 773
  volume-title: Surface and Interface Science, Vol. 8
  year: 2020
  ident: e_1_2_10_13_1
  doi: 10.1002/9783527680603.ch59
– ident: e_1_2_10_39_2
  doi: 10.1002/ange.201710556
– ident: e_1_2_10_80_1
  doi: 10.1021/acssuschemeng.9b05983
– ident: e_1_2_10_56_1
  doi: 10.1038/s41929-018-0200-8
– ident: e_1_2_10_135_1
  doi: 10.1002/cssc.201701802
– ident: e_1_2_10_142_1
  doi: 10.1016/j.joule.2018.10.027
– ident: e_1_2_10_178_1
  doi: 10.1093/nsr/nwv024
– ident: e_1_2_10_26_1
  doi: 10.1002/nano.202000001
– ident: e_1_2_10_86_1
  doi: 10.1016/0022-0728(95)03992-P
– ident: e_1_2_10_185_1
  doi: 10.1038/nmat2878
– ident: e_1_2_10_77_1
  doi: 10.1021/jacs.0c00418
– ident: e_1_2_10_143_1
  doi: 10.1039/C8EE01501E
– ident: e_1_2_10_153_1
  doi: 10.1021/acscatal.6b03632
SSID ssj0028806
Score 2.724551
SecondaryResourceType review_article
Snippet Compared to modern fossil‐fuel‐based refineries, the emerging electrocatalytic refinery (e‐refinery) is a more sustainable and environmentally benign strategy...
Compared to modern fossil-fuel-based refineries, the emerging electrocatalytic refinery (e-refinery) is a more sustainable and environmentally benign strategy...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19572
SubjectTerms Cascade chemical reactions
catalyst design
Chemical bonds
Chemical reactions
chemical synthesis
electrocatalysis
Electrocatalysts
Energy sources
Fossil fuels
Fuels
Intermediates
Reaction intermediates
Refineries
refinery
Sustainable production
Water splitting
Title Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202101522
https://www.ncbi.nlm.nih.gov/pubmed/33606339
https://www.proquest.com/docview/2564408251
https://www.proquest.com/docview/2491947186
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_ILnrx-6M6JYLgqdvapE17HGNjKg6ZDnYrSZNelE7cdph_vS_N2jlFBL3145Wmyfv4Jc37PYArdLupCLTv6tRjLvOkcGORpa7iKuBpllEemHzn-0HYH7HbcTD-lMVv-SGqBTdjGYW_NgYu5LS5Ig01Gdg4v8MpC4Yg44TNhi2DioYVf5SPymnTiyh1TRX6krWx5TfXH1-PSt-g5jpyLUJPbwdE2Wi74-S5MZ_JRvr-hc_xP1-1C9tLXEraVpH2YEPn-7DZKcvBHcBd1xbMKdZ7FihFhjozmYMLgriXPK4SsciDZZHFESeTjPTmGH6JyBUpyQmmhzDqdZ86fXdZicFNEbAgBKdUcj_UkaK8FWWBFjFXoc9jFTGmQi2EMWSuBcIlvBoxgWKMcYnegmY4Xz-CWj7J9QkQ9AdKUSY9pUIW6lhI449VGMtMRZwyB9xyJJJ0SVNuqmW8JJZg2U9MFyVVFzlwXcm_WoKOHyXr5cAmS0OdJoj4iprbgefAZXUbu9b8NxG5nsxRhsVebIJ46MCxVYjqVZTiDJDS2AG_GNZf2pC0Bzfd6uz0Lw-dwZY5tvvc6lCbvc31OQKjmbwolP8D8G0DWw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4tcFgulN82LVAjgTgFiO3EyYEDYne1y8IK8SNxC07sXFplUXdX1fat-ip9IsZxktW2QkiVOHBMMkkce8bzjeP5BmAfp91U-pq6OvW4y71EupHMUlcJ5Ys0y5jwTb7z1SDo3vOLB_-hAb-rXBjLD1EvuBnLKOZrY-BmQfp4xhpqUrAxwMOYBX0QLfdV9vX0J0Zto9NeC4f4gNJO--6865aFBdwU_S8iSsYSQQMdKiZOwszXMhIqoCJSIecq0FIavRRaovfHsyGXKMa5SFD5WYbhJz53AZZMGXFD19-6qRmrKJqDTWhizDV17yueyBN6PN_eeT_4D7idx8qFs-t8gD9VN9k9Lt-OJuPkKP31F4Pku-rHVVgpoTc5s7ayBg2dr0PzvKp4twH9tq0JVCxpTVGK3OjMJEdOCUJ7cjvLNSPXligXlZoMM9KZIMIgMlek4l8YbcL9m3zLFizmw1x_AoJTnlKMJ55SAQ90JBPjclQQJZkKBeMOuNXQx2nJxG4KgnyPLYc0jc2QxPWQOHBYyz9ZDpIXJbcrTYrLuWgUI6gtyor7ngN79WXsWvNrSOZ6OEEZHnmRwSmBAx-tBtavYgyDXMYiB2ihR6-0IT4b9Nr10ef_uekrNLt3V5fxZW_Q_wLL5rzd1rcNi-MfE72DOHCc7BaWR-DxrVX0Ge-3Xig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEXaPlNacFIIE5pN7Zjx4cequ6uul1YVYVKvaVObF9A2YrdFVqeqq_CGzGOk1RbhJCQeuCYZJI49oznG8fzDcBbnHZLnVoa2zLhMU8KHSvtythIk8rSOSZTn-_8cSKOzvjxeXq-BldtLkzgh-gW3Lxl1PO1N_BL4_auSUN9BjbGdxiyoAuizbbKsV1-x6Bttj_q4wi_o3Q4-Hx4FDd1BeIS3S8CSsYKSYXNDJO9zKVWK2kElcpknBthtfZqKa1G549nM65RjHNZoO4zh9EnPvcO3OWip3yxiP5pR1hF0RpCPhNjsS9739JE9ujeantX3eBv2HYVKte-bvgIfra9FLa4fNldzIvd8scNAsn_qRs34GEDvMlBsJRNWLPVY7h_2Na7ewLjQagIVC9oLVGKnFrnUyOXBIE9-XSdaUZOAk0uqjSZOjJcIL4gujKkZV-YPYWzW_mWZ7BeTSv7AghOeMYwXiTGCC6s0oV3OEaowplMMh5B3I58XjY87L4cyNc8MEjT3A9J3g1JBO87-cvAQPJHye1WkfJmJprlCGnrouJpEsGb7jJ2rf8xpCs7XaAMV4nyKEVE8DwoYPcqxjDEZUxFQGs1-ksb8oPJaNAdbf3LTa_h3kl_mH8YTcYv4YE_Hfb0bcP6_NvC7iAInBevarsjcHHbGvoLRxJc1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+Refinery+for+Sustainable+Production+of+Fuels+and+Chemicals&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Tang%2C+Cheng&rft.au=Zheng%2C+Yao&rft.au=Jaroniec%2C+Mietek&rft.au=Qiao%2C+Shi%E2%80%90Zhang&rft.date=2021-09-01&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=36&rft.spage=19572&rft.epage=19590&rft_id=info:doi/10.1002%2Fanie.202101522&rft.externalDBID=10.1002%252Fanie.202101522&rft.externalDocID=ANIE202101522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon