Laser Fabrication of Graphene‐Based Flexible Electronics
Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility, transparency, conductivity, and mechanical robustness, graphene has emerged as a versatile material for flexible electronics. In the past decade, facili...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 15; pp. e1901981 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility, transparency, conductivity, and mechanical robustness, graphene has emerged as a versatile material for flexible electronics. In the past decade, facilitated by various laser processing technologies, including the laser‐treatment‐induced photoreduction of graphene oxides, flexible patterning, hierarchical structuring, heteroatom doping, controllable thinning, etching, and shock of graphene, along with laser‐induced graphene on polyimide, graphene has found broad applications in a wide range of electronic devices, such as power generators, supercapacitors, optoelectronic devices, sensors, and actuators. Here, the recent advancements in the laser fabrication of graphene‐based flexible electronic devices are comprehensively summarized. The various laser fabrication technologies that have been employed for the preparation, processing, and modification of graphene and its derivatives are reviewed. A thorough overview of typical laser‐enabled flexible electronic devices that are based on various graphene sources is presented. With the rapid progress that has been made in the research on graphene preparation methodologies and laser micronanofabrication technologies, graphene‐based electronics may soon undergo fast development.
Recent advancements in the laser fabrication of graphene‐based flexible electronic devices are comprehensively reviewed. Various laser processing technologies that enable preparation, processing, and modification of graphene and its derivatives are summarized. An overview of typical laser‐fabricated flexible electronic devices based on graphene‐related materials is presented. |
---|---|
AbstractList | Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility, transparency, conductivity, and mechanical robustness, graphene has emerged as a versatile material for flexible electronics. In the past decade, facilitated by various laser processing technologies, including the laser-treatment-induced photoreduction of graphene oxides, flexible patterning, hierarchical structuring, heteroatom doping, controllable thinning, etching, and shock of graphene, along with laser-induced graphene on polyimide, graphene has found broad applications in a wide range of electronic devices, such as power generators, supercapacitors, optoelectronic devices, sensors, and actuators. Here, the recent advancements in the laser fabrication of graphene-based flexible electronic devices are comprehensively summarized. The various laser fabrication technologies that have been employed for the preparation, processing, and modification of graphene and its derivatives are reviewed. A thorough overview of typical laser-enabled flexible electronic devices that are based on various graphene sources is presented. With the rapid progress that has been made in the research on graphene preparation methodologies and laser micronanofabrication technologies, graphene-based electronics may soon undergo fast development.Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility, transparency, conductivity, and mechanical robustness, graphene has emerged as a versatile material for flexible electronics. In the past decade, facilitated by various laser processing technologies, including the laser-treatment-induced photoreduction of graphene oxides, flexible patterning, hierarchical structuring, heteroatom doping, controllable thinning, etching, and shock of graphene, along with laser-induced graphene on polyimide, graphene has found broad applications in a wide range of electronic devices, such as power generators, supercapacitors, optoelectronic devices, sensors, and actuators. Here, the recent advancements in the laser fabrication of graphene-based flexible electronic devices are comprehensively summarized. The various laser fabrication technologies that have been employed for the preparation, processing, and modification of graphene and its derivatives are reviewed. A thorough overview of typical laser-enabled flexible electronic devices that are based on various graphene sources is presented. With the rapid progress that has been made in the research on graphene preparation methodologies and laser micronanofabrication technologies, graphene-based electronics may soon undergo fast development. Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility, transparency, conductivity, and mechanical robustness, graphene has emerged as a versatile material for flexible electronics. In the past decade, facilitated by various laser processing technologies, including the laser‐treatment‐induced photoreduction of graphene oxides, flexible patterning, hierarchical structuring, heteroatom doping, controllable thinning, etching, and shock of graphene, along with laser‐induced graphene on polyimide, graphene has found broad applications in a wide range of electronic devices, such as power generators, supercapacitors, optoelectronic devices, sensors, and actuators. Here, the recent advancements in the laser fabrication of graphene‐based flexible electronic devices are comprehensively summarized. The various laser fabrication technologies that have been employed for the preparation, processing, and modification of graphene and its derivatives are reviewed. A thorough overview of typical laser‐enabled flexible electronic devices that are based on various graphene sources is presented. With the rapid progress that has been made in the research on graphene preparation methodologies and laser micronanofabrication technologies, graphene‐based electronics may soon undergo fast development. Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility, transparency, conductivity, and mechanical robustness, graphene has emerged as a versatile material for flexible electronics. In the past decade, facilitated by various laser processing technologies, including the laser‐treatment‐induced photoreduction of graphene oxides, flexible patterning, hierarchical structuring, heteroatom doping, controllable thinning, etching, and shock of graphene, along with laser‐induced graphene on polyimide, graphene has found broad applications in a wide range of electronic devices, such as power generators, supercapacitors, optoelectronic devices, sensors, and actuators. Here, the recent advancements in the laser fabrication of graphene‐based flexible electronic devices are comprehensively summarized. The various laser fabrication technologies that have been employed for the preparation, processing, and modification of graphene and its derivatives are reviewed. A thorough overview of typical laser‐enabled flexible electronic devices that are based on various graphene sources is presented. With the rapid progress that has been made in the research on graphene preparation methodologies and laser micronanofabrication technologies, graphene‐based electronics may soon undergo fast development. Recent advancements in the laser fabrication of graphene‐based flexible electronic devices are comprehensively reviewed. Various laser processing technologies that enable preparation, processing, and modification of graphene and its derivatives are summarized. An overview of typical laser‐fabricated flexible electronic devices based on graphene‐related materials is presented. |
Author | Zhang, Yong‐Lai Liu, Yu‐Qing You, Rui Han, Dong‐Dong You, Zheng Hao, Yi‐Long |
Author_xml | – sequence: 1 givenname: Rui surname: You fullname: You, Rui organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication – sequence: 2 givenname: Yu‐Qing surname: Liu fullname: Liu, Yu‐Qing organization: Jilin University – sequence: 3 givenname: Yi‐Long surname: Hao fullname: Hao, Yi‐Long organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication – sequence: 4 givenname: Dong‐Dong surname: Han fullname: Han, Dong‐Dong email: handongdong@jlu.edu.cn organization: Jilin University – sequence: 5 givenname: Yong‐Lai surname: Zhang fullname: Zhang, Yong‐Lai email: yonglaizhang@jlu.edu.cn organization: Jilin University – sequence: 6 givenname: Zheng orcidid: 0000-0002-3941-1371 surname: You fullname: You, Zheng email: yz-dpi@mail.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31441164$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1LwzAYgIMobn5cPUrBi5fOvE2aJd7m3KYw8aLnkrRvMaNrZ9Khu_kT_I3-EqObCoIIITnkefKGZ49s102NhBwB7QGlyZku5rqXUFBhSdgiXUgTiDlV6TbpUsXSWAkuO2TP-xmlVAkqdkmHAecAgnfJ-VR7dNFYG2dz3dqmjpoymji9eMAa315eL8J9EY0rfLamwmhUYd66pra5PyA7pa48Hm7OfXI_Ht0Nr-Lp7eR6OJjGOWcK4pJqaQrJDGimRIEISSmMCXs_NagKLYThwoDhqVZKQYqGl6VUIpF9lEqyfXK6fnfhmscl-jabW59jVekam6XPEsZS6DMm04Ce_EJnzdLV4XeBkioBxYEG6nhDLc0ci2zh7Fy7VfZVJQC9NZC7xnuH5TcCNPvInn1kz76zB4H_EnLbftZsnbbV35paa0-2wtU_Q7LB5c3gx30H4CSV2A |
CitedBy_id | crossref_primary_10_1002_smtd_202101454 crossref_primary_10_1016_j_apsusc_2022_156032 crossref_primary_10_1016_j_apsusc_2024_159426 crossref_primary_10_1002_admt_202101530 crossref_primary_10_1002_admt_202201939 crossref_primary_10_1039_D1CC00902H crossref_primary_10_1177_14759217211056831 crossref_primary_10_1016_j_polymer_2020_123019 crossref_primary_10_1109_LPT_2023_3307019 crossref_primary_10_3390_nano11030604 crossref_primary_10_1002_inf2_12218 crossref_primary_10_1016_j_carbon_2022_02_039 crossref_primary_10_26599_JAC_2023_9220761 crossref_primary_10_1016_j_flatc_2024_100659 crossref_primary_10_1021_acs_langmuir_3c03975 crossref_primary_10_29026_oea_2023_210163 crossref_primary_10_3389_fchem_2020_00692 crossref_primary_10_1016_j_mtcomm_2019_100795 crossref_primary_10_1109_LED_2020_2965585 crossref_primary_10_1021_acsami_2c13677 crossref_primary_10_1016_j_jeurceramsoc_2023_05_041 crossref_primary_10_1007_s12274_024_6555_z crossref_primary_10_1007_s00604_021_05157_6 crossref_primary_10_1364_PRJ_496848 crossref_primary_10_3390_polym14204300 crossref_primary_10_1016_j_optlastec_2022_108436 crossref_primary_10_1002_er_7190 crossref_primary_10_3390_s25051377 crossref_primary_10_1016_j_jelechem_2024_118195 crossref_primary_10_1021_acsanm_3c00698 crossref_primary_10_1016_j_optlastec_2024_110998 crossref_primary_10_1039_D1CP02610K crossref_primary_10_1007_s42823_022_00365_3 crossref_primary_10_1021_acsami_0c13909 crossref_primary_10_1002_ange_202314183 crossref_primary_10_26565_2312_4334_2022_3_12 crossref_primary_10_1002_adom_202100793 crossref_primary_10_1038_s41427_023_00513_9 crossref_primary_10_1088_1361_6463_ac4725 crossref_primary_10_1088_1361_6528_acf6c2 crossref_primary_10_1002_eem2_12881 crossref_primary_10_1007_s13369_024_09045_y crossref_primary_10_20517_ss_2024_20 crossref_primary_10_3390_mi13071123 crossref_primary_10_1038_s41528_022_00151_1 crossref_primary_10_1002_smtd_202101435 crossref_primary_10_3390_s23239605 crossref_primary_10_1007_s10853_022_07794_5 crossref_primary_10_1039_D2TA08043E crossref_primary_10_3390_photonics8120577 crossref_primary_10_1002_adma_202207774 crossref_primary_10_1016_j_pmatsci_2024_101283 crossref_primary_10_1109_LED_2023_3307028 crossref_primary_10_1002_adfm_202006179 crossref_primary_10_1016_j_cej_2024_156664 crossref_primary_10_1016_j_flatc_2020_100199 crossref_primary_10_1021_acsapm_3c02893 crossref_primary_10_1109_TNB_2021_3119996 crossref_primary_10_1080_08927022_2021_1991920 crossref_primary_10_1088_2631_7990_acded1 crossref_primary_10_1002_adfm_202301587 crossref_primary_10_1016_j_compositesa_2023_107946 crossref_primary_10_1021_acsami_0c05401 crossref_primary_10_1016_j_cej_2023_146330 crossref_primary_10_1002_adma_202005449 crossref_primary_10_1002_adfm_202316533 crossref_primary_10_3390_qubs6010005 crossref_primary_10_1186_s11671_023_03788_7 crossref_primary_10_1142_S0218625X25300084 crossref_primary_10_1016_j_nanoen_2021_106525 crossref_primary_10_1021_acs_chemrev_1c00924 crossref_primary_10_1063_5_0069203 crossref_primary_10_1016_j_mtnano_2022_100173 crossref_primary_10_1039_D3CP02115G crossref_primary_10_1002_adem_202101558 crossref_primary_10_1002_adma_202306772 crossref_primary_10_1039_D1QM00233C crossref_primary_10_3390_mi13050686 crossref_primary_10_1002_adom_202402794 crossref_primary_10_1021_acsami_4c07729 crossref_primary_10_34133_research_0305 crossref_primary_10_1016_j_optlastec_2021_107099 crossref_primary_10_1021_acsami_3c10729 crossref_primary_10_3390_biomimetics8010026 crossref_primary_10_1021_acsnano_4c09062 crossref_primary_10_1002_admt_202101052 crossref_primary_10_1002_adma_202008701 crossref_primary_10_1002_smll_202201861 crossref_primary_10_1021_acs_nanolett_4c04053 crossref_primary_10_1002_adfm_202300479 crossref_primary_10_1002_nano_202100343 crossref_primary_10_1080_10667857_2023_2262131 crossref_primary_10_1002_adfm_202102648 crossref_primary_10_3390_bios13090896 crossref_primary_10_3390_mi12121440 crossref_primary_10_1016_j_sse_2020_107901 crossref_primary_10_3390_ma17030557 crossref_primary_10_3390_surfaces5010006 crossref_primary_10_1021_acsami_4c15827 crossref_primary_10_1021_acsanm_1c01453 crossref_primary_10_1016_j_bmc_2021_116493 crossref_primary_10_1021_acs_langmuir_3c01470 crossref_primary_10_1039_D1TA07374E crossref_primary_10_1021_acssensors_4c01717 crossref_primary_10_1002_smll_202305311 crossref_primary_10_1002_adsu_202000237 crossref_primary_10_1021_acsami_3c18576 crossref_primary_10_1021_acssuschemeng_3c06526 crossref_primary_10_1021_acsami_4c01438 crossref_primary_10_3389_fphot_2022_888486 crossref_primary_10_3390_coatings13030555 crossref_primary_10_1002_adma_202104060 crossref_primary_10_1002_adfm_202315162 crossref_primary_10_1016_j_carbon_2021_01_145 crossref_primary_10_1016_j_sna_2024_115529 crossref_primary_10_1002_admt_202401245 crossref_primary_10_1002_admi_202300842 crossref_primary_10_1016_j_colsurfa_2022_130233 crossref_primary_10_1039_D3CS00918A crossref_primary_10_1021_acsami_4c21046 crossref_primary_10_1080_09506608_2022_2086388 crossref_primary_10_1021_acsami_3c07687 crossref_primary_10_1021_acsami_3c15849 crossref_primary_10_1016_j_pmatsci_2022_101052 crossref_primary_10_1002_jbio_202300205 crossref_primary_10_3390_s24237444 crossref_primary_10_3390_nano12183146 crossref_primary_10_1038_s41467_024_50069_7 crossref_primary_10_1007_s10853_022_08138_z crossref_primary_10_1016_j_carbon_2021_05_037 crossref_primary_10_3389_fchem_2022_1073473 crossref_primary_10_1021_acsapm_4c03761 crossref_primary_10_1007_s10825_021_01773_w crossref_primary_10_1002_adfm_202203164 crossref_primary_10_1016_j_inoche_2023_111957 crossref_primary_10_1016_j_carbon_2020_12_089 crossref_primary_10_1021_acs_jpcc_2c08038 crossref_primary_10_1088_1361_6463_ad0e95 crossref_primary_10_1016_j_matdes_2023_112529 crossref_primary_10_1002_slct_202101975 crossref_primary_10_1007_s11431_022_2408_3 crossref_primary_10_1002_dro2_133 crossref_primary_10_1007_s10854_021_06616_9 crossref_primary_10_1109_ACCESS_2020_3008945 crossref_primary_10_3390_cryst13020212 crossref_primary_10_1002_admi_202101502 crossref_primary_10_1007_s42823_025_00880_z crossref_primary_10_3390_nano12162799 crossref_primary_10_1002_smsc_202300039 crossref_primary_10_1021_acsanm_3c01408 crossref_primary_10_1016_j_cej_2023_144908 crossref_primary_10_1021_acsami_1c22952 crossref_primary_10_1039_D3TA04872A crossref_primary_10_1002_admt_202202123 crossref_primary_10_1016_j_apsusc_2020_148593 crossref_primary_10_1038_s41467_022_34173_0 crossref_primary_10_3390_app11052162 crossref_primary_10_1021_acsanm_3c00314 crossref_primary_10_1088_1361_6528_ac020c crossref_primary_10_1364_OL_482397 crossref_primary_10_1016_j_apsusc_2022_153730 crossref_primary_10_3390_met13071253 crossref_primary_10_3390_nano12071181 crossref_primary_10_1038_s41928_023_01111_x crossref_primary_10_31613_ceramist_2022_25_1_01 crossref_primary_10_1016_j_apsusc_2022_155591 crossref_primary_10_1016_j_scib_2021_11_015 crossref_primary_10_1021_acsami_0c13454 crossref_primary_10_1002_pssa_202000199 crossref_primary_10_1016_j_mseb_2022_116205 crossref_primary_10_1002_slct_202200181 crossref_primary_10_2174_1573413718666220329220551 crossref_primary_10_1016_j_colsurfa_2023_132178 crossref_primary_10_1016_j_cej_2022_139499 crossref_primary_10_1021_acsami_2c01454 crossref_primary_10_1088_1674_4926_40_12_120401 crossref_primary_10_1002_pat_6435 crossref_primary_10_1021_acsomega_0c01293 crossref_primary_10_3390_ma16206691 crossref_primary_10_3390_polym14051046 crossref_primary_10_1002_adma_202303065 crossref_primary_10_1002_advs_202404889 crossref_primary_10_1002_adem_202200368 crossref_primary_10_1002_adfm_202103255 crossref_primary_10_1186_s40486_023_00176_9 crossref_primary_10_1016_j_carbon_2021_09_027 crossref_primary_10_1016_j_cej_2023_141985 crossref_primary_10_1016_j_jechem_2020_12_002 crossref_primary_10_3390_polym14142800 crossref_primary_10_1039_D4NH00021H crossref_primary_10_1002_smll_202300469 crossref_primary_10_1021_acssuschemeng_3c07259 crossref_primary_10_1063_5_0102864 crossref_primary_10_1080_02670844_2023_2189648 crossref_primary_10_1016_j_matt_2020_05_001 crossref_primary_10_1021_acs_chemrev_3c00392 crossref_primary_10_1063_5_0221553 crossref_primary_10_3390_ma15031037 crossref_primary_10_1016_j_microc_2020_105855 crossref_primary_10_34133_adi_0028 crossref_primary_10_1007_s40820_024_01635_7 crossref_primary_10_1016_j_scib_2020_08_037 crossref_primary_10_3390_app13084688 crossref_primary_10_1002_adfm_202201904 crossref_primary_10_1063_5_0134445 crossref_primary_10_1364_OL_483665 crossref_primary_10_1002_sstr_202300090 crossref_primary_10_1016_j_physe_2021_115119 crossref_primary_10_1016_j_jmapro_2021_11_045 crossref_primary_10_1021_acsanm_9b02614 crossref_primary_10_1016_j_mser_2024_100860 crossref_primary_10_1016_j_matlet_2022_132537 crossref_primary_10_1002_ente_202100454 crossref_primary_10_1021_acsami_4c12499 crossref_primary_10_1063_5_0114607 crossref_primary_10_1088_1674_4926_44_3_031701 crossref_primary_10_1021_acsami_0c04124 crossref_primary_10_1016_j_cej_2023_148245 crossref_primary_10_1016_j_jpowsour_2022_231418 crossref_primary_10_1103_PhysRevB_108_094303 crossref_primary_10_1007_s42765_022_00242_8 crossref_primary_10_1515_nanoph_2019_0557 crossref_primary_10_1002_app_56135 crossref_primary_10_1007_s40820_020_00577_0 crossref_primary_10_1016_j_ccr_2022_214559 crossref_primary_10_1515_ijmr_2021_8432 crossref_primary_10_1016_j_seta_2021_101176 crossref_primary_10_1002_adfm_202420677 crossref_primary_10_1002_adfm_202417184 crossref_primary_10_3390_mi13071084 crossref_primary_10_1016_j_matlet_2022_132567 crossref_primary_10_1021_acsanm_1c04469 crossref_primary_10_1002_jbio_202400224 crossref_primary_10_1016_j_cej_2022_137664 crossref_primary_10_1002_anie_202314183 crossref_primary_10_1021_acs_jpcc_3c08058 crossref_primary_10_1002_adma_202402014 crossref_primary_10_1007_s40820_022_00923_4 crossref_primary_10_1016_j_matdes_2023_112043 crossref_primary_10_1049_ell2_12001 crossref_primary_10_1007_s40820_024_01345_0 crossref_primary_10_1016_j_optlastec_2023_109524 crossref_primary_10_1039_D2CP05487F crossref_primary_10_1007_s10404_021_02500_4 crossref_primary_10_1021_acs_macromol_4c02249 crossref_primary_10_1002_adfm_202211272 crossref_primary_10_3389_fchem_2021_823715 crossref_primary_10_1002_adfm_202106673 crossref_primary_10_1016_j_sse_2022_108259 crossref_primary_10_1016_j_jece_2021_106480 crossref_primary_10_1002_advs_202105084 crossref_primary_10_1016_j_cej_2023_147819 crossref_primary_10_1021_acsami_4c10059 crossref_primary_10_3390_mi11040399 crossref_primary_10_1016_j_molliq_2021_118428 crossref_primary_10_1002_adma_202307586 crossref_primary_10_1007_s12274_023_5778_8 crossref_primary_10_1080_17435390_2023_2183653 crossref_primary_10_1021_acsnano_1c05806 crossref_primary_10_3390_jfb14040180 crossref_primary_10_1002_admt_202101571 crossref_primary_10_3390_bios12020055 crossref_primary_10_1021_acs_chemrev_3c00502 crossref_primary_10_3389_fchem_2020_00525 crossref_primary_10_1109_JPHOT_2021_3069648 crossref_primary_10_1126_sciadv_abp9734 crossref_primary_10_1016_j_optlastec_2023_109431 crossref_primary_10_3390_bios12110936 crossref_primary_10_1364_PRJ_382401 crossref_primary_10_3390_nano12142336 crossref_primary_10_1021_acsami_1c03219 crossref_primary_10_3390_app13127201 crossref_primary_10_1002_admi_202102343 crossref_primary_10_1007_s12274_021_3505_x crossref_primary_10_1021_acsaem_0c02096 crossref_primary_10_1002_aisy_202100056 crossref_primary_10_1063_5_0212594 crossref_primary_10_3390_s23249743 crossref_primary_10_1016_j_colsurfa_2024_133856 crossref_primary_10_1016_j_apsusc_2022_156067 crossref_primary_10_1021_acsnano_2c02812 crossref_primary_10_1021_acsanm_3c05387 crossref_primary_10_1038_s41377_020_0275_2 crossref_primary_10_1134_S1063782624700131 crossref_primary_10_1021_acs_langmuir_4c04568 crossref_primary_10_1039_D4SM00710G crossref_primary_10_1109_JFLEX_2023_3329456 crossref_primary_10_1109_JSEN_2021_3092010 crossref_primary_10_1002_anie_202201169 crossref_primary_10_1002_smtd_202400118 crossref_primary_10_1021_acsanm_2c02912 crossref_primary_10_1063_5_0223490 crossref_primary_10_1515_ijmr_2021_8288 crossref_primary_10_1109_JSEN_2020_3034845 crossref_primary_10_1007_s42765_021_00129_0 crossref_primary_10_1007_s12274_021_3441_9 crossref_primary_10_1016_j_apsusc_2024_160230 crossref_primary_10_1016_j_mtadv_2020_100092 crossref_primary_10_3390_ma14164757 crossref_primary_10_1039_D0TC05540A crossref_primary_10_1002_advs_202207683 crossref_primary_10_1063_5_0038508 crossref_primary_10_1002_admi_202200228 crossref_primary_10_1002_advs_202205381 crossref_primary_10_1140_epjp_s13360_022_03448_2 crossref_primary_10_3390_molecules28145339 crossref_primary_10_1016_j_xinn_2021_100168 crossref_primary_10_1002_admt_202101238 crossref_primary_10_1021_jacs_2c07280 crossref_primary_10_1002_admt_202301884 crossref_primary_10_1016_j_powtec_2024_120561 crossref_primary_10_1088_2058_8585_abb930 crossref_primary_10_1002_ange_202201169 crossref_primary_10_1002_admt_202302056 crossref_primary_10_1016_j_mtcomm_2022_104274 crossref_primary_10_1002_advs_202002464 crossref_primary_10_1021_acsanm_3c05607 crossref_primary_10_1088_2631_7990_acee2e crossref_primary_10_3788_CJL231372 crossref_primary_10_1039_D2TA09985C crossref_primary_10_1007_s40820_024_01597_w crossref_primary_10_3390_app12020608 crossref_primary_10_1002_advs_202001938 crossref_primary_10_1016_j_eurpolymj_2022_111243 crossref_primary_10_1016_j_jmapro_2024_03_061 crossref_primary_10_1016_j_cej_2023_142209 crossref_primary_10_1038_s41467_023_39574_3 crossref_primary_10_1039_D1TA08892K crossref_primary_10_1002_advs_202003681 crossref_primary_10_1021_acsami_5c01250 crossref_primary_10_1002_adma_202402907 crossref_primary_10_1016_j_porgcoat_2023_107859 crossref_primary_10_1002_adfm_202204555 crossref_primary_10_1021_acsami_0c15471 crossref_primary_10_1021_acsami_2c18838 crossref_primary_10_1007_s10854_023_11288_8 crossref_primary_10_1016_j_susmat_2024_e00962 crossref_primary_10_1002_adfm_202312383 crossref_primary_10_3390_mi13101653 crossref_primary_10_1002_adfm_202203101 |
Cites_doi | 10.1039/C7MH00441A 10.1103/PhysRevLett.100.016602 10.1063/1.3622660 10.1021/nl4047784 10.1038/ncomms6714 10.1088/0957-4484/24/27/275302 10.1364/OL.44.001363 10.1021/acsnano.5b00436 10.1002/adma.201602211 10.1039/C8CC07725H 10.1038/ncomms2446 10.1021/jp309382w 10.1038/srep17557 10.1016/j.bios.2018.02.031 10.1021/nn1017389 10.1002/smll.201702249 10.1038/nmat1849 10.1002/adfm.201501511 10.1039/C8TA03830A 10.1021/acssensors.7b00066 10.1039/c4nr01220h 10.1021/acs.accounts.8b00084 10.1002/aelm.201800339 10.1002/adfm.201202460 10.1002/smll.201802350 10.1134/S0018143911010176 10.1002/admt.201800258 10.1063/1.4724213 10.1021/nn5009353 10.1021/acsnano.8b02162 10.1039/C5TA00252D 10.1021/la801744a 10.1038/nnano.2011.110 10.1002/adma.201403587 10.1039/C7NR04889K 10.1002/adma.201606586 10.1021/ph500106f 10.1063/1.4794901 10.1021/acs.nanolett.8b01651 10.1002/advs.201800496 10.1021/acsami.7b13741 10.1039/C6TA06846D 10.1002/adfm.201803990 10.1039/C5TA09450J 10.1021/acsnano.7b05877 10.1016/j.bios.2018.03.019 10.1016/j.carbon.2015.12.038 10.1109/LED.2014.2385701 10.1021/acsami.6b00808 10.1038/lsa.2017.134 10.1038/s41598-018-26503-4 10.1021/nl301817t 10.1002/adma.201603813 10.1021/jz100790y 10.1088/2053-1583/aa790e 10.1002/adfm.201400296 10.1016/j.nanoen.2017.12.033 10.1002/lpor.201500256 10.1002/adom.201300401 10.1021/nn1026438 10.1021/acsami.7b13701 10.1002/adma.200901942 10.1016/j.nanoen.2016.04.045 10.1021/ja01539a017 10.1002/adom.201300317 10.1038/srep11662 10.1063/1.5020918 10.1002/adfm.201404046 10.1039/C8TB01285G 10.1002/adma.201503333 10.1016/j.nantod.2009.12.009 10.1021/acsnano.6b04769 10.1126/science.1156965 10.1016/j.snb.2017.08.116 10.1126/science.1216744 10.1021/acsnano.7b08539 10.1063/1.4864616 10.1038/ncomms14579 10.1038/ncomms9433 10.1002/adma.201805705 10.1038/srep04892 10.1016/j.carbon.2012.10.034 10.1002/aenm.201801840 10.1063/1.4752752 10.1002/smll.201803143 10.1038/s41598-018-23091-1 10.1021/acsami.8b16692 10.1038/nature11458 10.1021/nl300346j 10.1016/j.carbon.2017.09.063 10.1364/OL.39.004263 10.1038/ncomms8157 10.1021/acsami.8b03738 10.1039/C6NR07620C 10.1002/aenm.201600050 10.1021/am1007326 10.1021/nl402057j 10.1126/science.1157996 10.1063/1.3569720 10.1039/C4NR07078J 10.1016/j.bios.2018.10.015 10.1126/science.aah3398 10.1126/science.1102896 10.1016/j.carbon.2018.05.031 10.1016/j.carbon.2017.11.014 10.1021/nl5005916 10.1016/j.carbon.2011.12.011 10.1021/ar300184v 10.1002/adfm.201805271 10.1016/j.carbon.2018.09.030 10.1039/C8TA08249A 10.1002/adma.201804327 10.1038/nnano.2008.215 10.1063/1.5003610 10.1039/C8AN00888D 10.1002/adma.201803621 10.1021/am509065d 10.1016/j.nanoen.2015.09.009 10.1364/OE.25.031025 10.1002/adma.201801384 10.1021/ar300203n 10.1039/C4NR05207B 10.1021/nn500283q 10.1021/jp209843m 10.1038/srep08603 10.1016/j.bios.2018.07.071 10.1002/adma.201707416 10.1038/nnano.2008.199 10.1002/asia.201100882 10.1002/adma.201700496 10.1002/admt.201700045 10.1021/nn504946k 10.1002/adma.201704449 10.1016/j.snb.2018.07.179 10.1002/adma.201800062 10.1038/ncomms14560 10.1021/nn204200w 10.1016/j.carbon.2014.03.058 10.1039/C5EE03637B 10.1007/s12274-017-1716-y 10.1038/s41377-018-0020-2 10.1002/adma.201702211 10.1021/acs.nanolett.7b03530 10.1002/tcr.201500306 10.1039/C3NR04521H 10.1021/acsami.7b15922 10.1021/acsanm.7b00225 10.1021/acsnano.7b01987 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201901981 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 31441164 10_1002_adma_201901981 ADMA201901981 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Open Fund of the State Key Laboratory of Integrated Optoelectronics funderid: IOSKL2017KF09 – fundername: Scientific and Technological Developing Scheme of Jilin Province funderid: #20180101061JC – fundername: National Key Research and Development Program of China – fundername: National Natural Science Foundation of China funderid: #2017YFB1104300; #61775078; #61774096 – fundername: Open Fund of the State Key Laboratory of Integrated Optoelectronics grantid: IOSKL2017KF09 – fundername: National Natural Science Foundation of China grantid: #61775078 – fundername: National Natural Science Foundation of China grantid: #61774096 – fundername: Scientific and Technological Developing Scheme of Jilin Province grantid: #20180101061JC – fundername: National Natural Science Foundation of China grantid: #2017YFB1104300 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4391-f0a8bd83b1a396dee12f6bb12f75be9da66b46b1b45a99915eb4ff896287e8983 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 00:07:04 EDT 2025 Sun Jul 13 04:18:24 EDT 2025 Wed Feb 19 02:31:16 EST 2025 Tue Jul 01 00:44:54 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Wed Jan 22 16:35:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | flexible electronics electronic skin graphene oxide graphene laser fabrication |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4391-f0a8bd83b1a396dee12f6bb12f75be9da66b46b1b45a99915eb4ff896287e8983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3941-1371 |
PMID | 31441164 |
PQID | 2389219410 |
PQPubID | 2045203 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2335173385 proquest_journals_2389219410 pubmed_primary_31441164 crossref_primary_10_1002_adma_201901981 crossref_citationtrail_10_1002_adma_201901981 wiley_primary_10_1002_adma_201901981_ADMA201901981 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 120 2017; 8 2015; 36 2017; 2 2017; 4 2018; 127 2013; 24 2017 2018 2018; 29 4 11 2013; 23 2017 2018 2017; 125 137 4 2019; 124 2011; 98 2018; 45 2017; 111 2016 2010 2013 2015; 99 1 13 6 2012; 12 2017; 9 2018; 7 2014; 1 2018; 6 2011 2018; 99 10 2012 2012 2012; 50 7 12 2018; 8 2010 2014 2015; 5 2 6 2018; 5 2014; 2 2007 2008 2008; 6 320 321 2013 2008; 46 3 2018; 1 2015 2016 2018; 25 4 14 2018; 255 2013; 53 2012; 490 2013; 117 2008 2008; 100 3 2008; 24 2018; 30 2016 2018; 353 3 2014; 8 2014; 6 2018; 28 2012; 100 2015; 5 2015; 4 2019; 31 2017; 25 2013; 46 2018; 107 2016; 10 2018 2018; 143 10 2013; 102 2012 2012 2013 2015 2014; 6 335 4 18 14 2017; 29 2019; 141 2016; 16 2011; 6 2011; 5 2015; 7 1958 2016; 80 28 2010 2017 2018 2010; 22 8 12 4 2016; 4 2014 2018; 24 10 2018; 110 2012; 112 2004 2015; 306 3 2017; 17 2019; 44 2017; 11 2018; 277 2018; 112 2016 2017 2017 2016 2018 2018 2010; 9 29 29 6 12 12 2 2014 2015 2016 2018; 5 9 28 14 2018; 51 2011; 45 2017 2015 2015; 2 25 27 2014; 39 2012; 116 2018; 10 2018; 54 2016; 26 2014 2018; 14 18 2016; 8 2014; 104 2018; 14 2014; 75 e_1_2_8_22_3 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_1_3 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_22_2 e_1_2_8_60_3 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_60_2 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_25_4 e_1_2_8_25_5 e_1_2_8_29_1 e_1_2_8_25_6 e_1_2_8_25_7 e_1_2_8_21_4 e_1_2_8_25_1 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_67_2 e_1_2_8_25_3 e_1_2_8_48_1 e_1_2_8_67_3 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_21_3 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_18_3 e_1_2_8_14_1 e_1_2_8_79_2 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_18_4 e_1_2_8_18_5 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_24_3 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_13_2 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_27_2 e_1_2_8_27_3 e_1_2_8_27_4 e_1_2_8_23_2 e_1_2_8_23_3 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_39_1 e_1_2_8_16_4 e_1_2_8_12_2 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_2 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_31_3 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 46 3 start-page: 2329 563 year: 2013 2008 publication-title: Acc. Chem. Res. Nat. Nanotechnol. – volume: 14 18 start-page: 3214 7421 year: 2014 2018 publication-title: Nano Lett. Nano Lett. – volume: 5 9 28 14 start-page: 5714 5868 838 year: 2014 2015 2016 2018 publication-title: Nat. Commun. ACS Nano Adv. Mater. Small – volume: 112 year: 2012 publication-title: J. Appl. Phys. – volume: 112 year: 2018 publication-title: Appl. Phys. Lett. – volume: 29 4 11 start-page: 3096 year: 2017 2018 2018 publication-title: Adv. Mater. Adv. Electron. Mater. Nano Res. – volume: 6 start-page: 496 year: 2011 publication-title: Nat. Nanotechnol. – volume: 14 year: 2018 publication-title: Small – volume: 2 start-page: 10 year: 2014 publication-title: Adv. Opt. Mater. – volume: 99 1 13 6 start-page: 423 2633 5777 8433 year: 2016 2010 2013 2015 publication-title: Carbon J. Phys. Chem. Lett. Nano Lett. Nat. Commun. – volume: 8 start-page: 4918 year: 2018 publication-title: Sci. Rep. – volume: 22 8 12 4 start-page: 67 8839 6146 year: 2010 2017 2018 2010 publication-title: Adv. Mater. Nat. Commun. ACS Nano ACS Nano – volume: 6 start-page: 6448 year: 2014 publication-title: Nanoscale – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 5 2 6 start-page: 15 120 7157 year: 2010 2014 2015 publication-title: Nano Today Adv. Opt. Mater. Nat. Commun. – volume: 4 year: 2017 publication-title: 2D Mater. – volume: 353 3 start-page: 1413 year: 2016 2018 publication-title: Science Adv. Mater. Technol. – volume: 9 29 29 6 12 12 2 start-page: 1458 2176 1083 3310 year: 2016 2017 2017 2016 2018 2018 2010 publication-title: Energy Environ. Sci. Adv. Mater. Adv. Mater. Adv. Energy Mater. ACS Nano ACS Nano ACS Appl. Mater. Interfaces – volume: 490 start-page: 192 year: 2012 publication-title: Nature – volume: 7 year: 2018 publication-title: Light: Sci. Appl. – volume: 306 3 start-page: 666 year: 2004 2015 publication-title: Science J. Mater. Chem. A – volume: 1 start-page: 777 year: 2018 publication-title: ACS Appl. Nano Mater. – volume: 6 start-page: 699 year: 2014 publication-title: Nanoscale – volume: 255 start-page: 1262 year: 2018 publication-title: Sens. Actuators, B – volume: 26 start-page: 276 year: 2016 publication-title: Nano Energy – volume: 53 start-page: 81 year: 2013 publication-title: Carbon – volume: 6 320 321 start-page: 183 1308 385 year: 2007 2008 2008 publication-title: Nat. Mater. Science Science – volume: 36 start-page: 180 year: 2015 publication-title: IEEE Electron Device Lett. – volume: 24 year: 2008 publication-title: Langmuir – volume: 7 start-page: 3651 year: 2015 publication-title: Nanoscale – volume: 4 start-page: 4892 year: 2015 publication-title: Sci. Rep. – volume: 50 7 12 start-page: 1667 301 4577 year: 2012 2012 2012 publication-title: Carbon Chem. ‐ Asian J. Nano Lett. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 8 start-page: 5883 year: 2014 publication-title: ACS Nano – volume: 8 year: 2016 publication-title: Nanoscale – volume: 11 start-page: 6860 year: 2017 publication-title: ACS Nano – volume: 104 year: 2014 publication-title: Appl. Phys. Lett. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 8 start-page: 2986 year: 2014 publication-title: ACS Nano – volume: 8 start-page: 8179 year: 2018 publication-title: Sci. Rep. – volume: 125 137 4 start-page: 308 136 1145 year: 2017 2018 2017 publication-title: Carbon Carbon Mater. Horiz. – volume: 54 year: 2018 publication-title: Chem. Commun. – volume: 24 year: 2013 publication-title: Nanotechnology – volume: 110 start-page: 89 year: 2018 publication-title: Biosens. Bioelectron. – volume: 25 4 14 start-page: 2213 year: 2015 2016 2018 publication-title: Adv. Funct. Mater. J. Mater. Chem. A Small – volume: 120 start-page: 160 year: 2018 publication-title: Biosens. Bioelectron. – volume: 16 start-page: 1244 year: 2016 publication-title: Chem. Rec. – volume: 45 start-page: 57 year: 2011 publication-title: High Energy Chem. – volume: 7 start-page: 3414 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 117 start-page: 663 year: 2013 publication-title: J. Phys. Chem. C – volume: 8 start-page: 8725 year: 2014 publication-title: ACS Nano – volume: 100 year: 2012 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 20 year: 2018 publication-title: Light: Sci. Appl. – volume: 141 start-page: 83 year: 2019 publication-title: Carbon – volume: 2 start-page: 616 year: 2017 publication-title: ACS Sens. – volume: 143 10 start-page: 3327 year: 2018 2018 publication-title: Analyst ACS Appl. Mater. Interfaces – volume: 39 start-page: 4263 year: 2014 publication-title: Opt. Lett. – volume: 10 start-page: 723 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 111 year: 2017 publication-title: Appl. Phys. Lett. – volume: 25 year: 2017 publication-title: Opt. Express – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 24 10 start-page: 4595 year: 2014 2018 publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interfaces – volume: 51 start-page: 1609 year: 2018 publication-title: Acc. Chem. Res. – volume: 80 28 start-page: 1339 8328 year: 1958 2016 publication-title: J. Am. Chem. Soc. Adv. Mater. – volume: 107 start-page: 184 year: 2018 publication-title: Biosens. Bioelectron. – volume: 75 start-page: 236 year: 2014 publication-title: Carbon – volume: 44 start-page: 1363 year: 2019 publication-title: Opt. Lett. – volume: 1 start-page: 690 year: 2014 publication-title: ACS Photonics – volume: 6 335 4 18 14 start-page: 1395 1326 1475 57 1938 year: 2012 2012 2013 2015 2014 publication-title: ACS Nano Science Nat. Commun. Nano Energy Nano Lett. – volume: 4 start-page: 1671 year: 2016 publication-title: J. Mater. Chem. A – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 9 year: 2017 publication-title: Nanoscale – volume: 10 start-page: 441 year: 2016 publication-title: Laser Photonics Rev. – volume: 277 start-page: 114 year: 2018 publication-title: Sens. Actuators, B – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 46 start-page: 2244 year: 2013 publication-title: Acc. Chem. Res. – volume: 6 start-page: 5415 year: 2018 publication-title: J. Mater. Chem. B – volume: 12 start-page: 2374 year: 2012 publication-title: Nano Lett. – volume: 100 3 start-page: 491 year: 2008 2008 publication-title: Phys. Rev. Lett. Nat. Nanotechnol. – volume: 17 start-page: 6469 year: 2017 publication-title: Nano Lett. – volume: 124 start-page: 167 year: 2019 publication-title: Biosens. Bioelectron. – volume: 127 start-page: 287 year: 2018 publication-title: Carbon – volume: 99 10 start-page: 1033 year: 2011 2018 publication-title: Appl. Phys. Lett. ACS Appl. Mater. Interfaces – volume: 10 start-page: 9529 year: 2016 publication-title: ACS Nano – volume: 2 25 27 start-page: 4548 332 year: 2017 2015 2015 publication-title: Adv. Mater. Technol. Adv. Funct. Mater. Adv. Mater. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 116 start-page: 3594 year: 2012 publication-title: J. Phys. Chem. C – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 45 start-page: 37 year: 2018 publication-title: Nano Energy – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 263 year: 2011 publication-title: ACS Nano – volume: 98 year: 2011 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 8603 year: 2015 publication-title: Sci. Rep. – volume: 102 year: 2013 publication-title: Appl. Phys. Lett. – volume: 23 start-page: 1984 year: 2013 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 2851 year: 2015 publication-title: Nanoscale – ident: e_1_2_8_67_3 doi: 10.1039/C7MH00441A – ident: e_1_2_8_2_1 doi: 10.1103/PhysRevLett.100.016602 – ident: e_1_2_8_44_1 doi: 10.1063/1.3622660 – ident: e_1_2_8_18_5 doi: 10.1021/nl4047784 – ident: e_1_2_8_21_1 doi: 10.1038/ncomms6714 – ident: e_1_2_8_54_1 doi: 10.1088/0957-4484/24/27/275302 – ident: e_1_2_8_89_1 doi: 10.1364/OL.44.001363 – ident: e_1_2_8_21_2 doi: 10.1021/acsnano.5b00436 – ident: e_1_2_8_8_2 doi: 10.1002/adma.201602211 – ident: e_1_2_8_50_1 doi: 10.1039/C8CC07725H – ident: e_1_2_8_18_3 doi: 10.1038/ncomms2446 – ident: e_1_2_8_98_1 doi: 10.1021/jp309382w – ident: e_1_2_8_47_1 doi: 10.1038/srep17557 – ident: e_1_2_8_80_1 doi: 10.1016/j.bios.2018.02.031 – ident: e_1_2_8_16_4 doi: 10.1021/nn1017389 – ident: e_1_2_8_21_4 doi: 10.1002/smll.201702249 – ident: e_1_2_8_1_1 doi: 10.1038/nmat1849 – ident: e_1_2_8_31_2 doi: 10.1002/adfm.201501511 – ident: e_1_2_8_63_1 doi: 10.1039/C8TA03830A – ident: e_1_2_8_77_1 doi: 10.1021/acssensors.7b00066 – ident: e_1_2_8_61_1 doi: 10.1039/c4nr01220h – ident: e_1_2_8_14_1 doi: 10.1021/acs.accounts.8b00084 – ident: e_1_2_8_60_2 doi: 10.1002/aelm.201800339 – ident: e_1_2_8_5_1 doi: 10.1002/adfm.201202460 – ident: e_1_2_8_93_1 doi: 10.1002/smll.201802350 – ident: e_1_2_8_29_1 doi: 10.1134/S0018143911010176 – ident: e_1_2_8_12_2 doi: 10.1002/admt.201800258 – ident: e_1_2_8_35_1 doi: 10.1063/1.4724213 – ident: e_1_2_8_15_1 doi: 10.1021/nn5009353 – ident: e_1_2_8_16_3 doi: 10.1021/acsnano.8b02162 – ident: e_1_2_8_6_2 doi: 10.1039/C5TA00252D – ident: e_1_2_8_9_1 doi: 10.1021/la801744a – ident: e_1_2_8_32_1 doi: 10.1038/nnano.2011.110 – ident: e_1_2_8_31_3 doi: 10.1002/adma.201403587 – ident: e_1_2_8_104_1 doi: 10.1039/C7NR04889K – ident: e_1_2_8_19_1 doi: 10.1002/adma.201606586 – ident: e_1_2_8_84_1 doi: 10.1021/ph500106f – ident: e_1_2_8_99_1 doi: 10.1063/1.4794901 – ident: e_1_2_8_13_2 doi: 10.1021/acs.nanolett.8b01651 – ident: e_1_2_8_85_1 doi: 10.1002/advs.201800496 – ident: e_1_2_8_44_2 doi: 10.1021/acsami.7b13741 – ident: e_1_2_8_23_2 doi: 10.1039/C6TA06846D – ident: e_1_2_8_34_1 doi: 10.1002/adfm.201803990 – ident: e_1_2_8_17_1 doi: 10.1039/C5TA09450J – ident: e_1_2_8_25_6 doi: 10.1021/acsnano.7b05877 – ident: e_1_2_8_81_1 doi: 10.1016/j.bios.2018.03.019 – ident: e_1_2_8_27_1 doi: 10.1016/j.carbon.2015.12.038 – ident: e_1_2_8_106_1 doi: 10.1109/LED.2014.2385701 – ident: e_1_2_8_65_1 doi: 10.1021/acsami.6b00808 – ident: e_1_2_8_20_1 doi: 10.1038/lsa.2017.134 – ident: e_1_2_8_64_1 doi: 10.1038/s41598-018-26503-4 – ident: e_1_2_8_22_3 doi: 10.1021/nl301817t – ident: e_1_2_8_60_1 doi: 10.1002/adma.201603813 – ident: e_1_2_8_27_2 doi: 10.1021/jz100790y – ident: e_1_2_8_37_1 doi: 10.1088/2053-1583/aa790e – ident: e_1_2_8_48_1 doi: 10.1002/adfm.201400296 – ident: e_1_2_8_57_1 doi: 10.1016/j.nanoen.2017.12.033 – ident: e_1_2_8_49_1 doi: 10.1002/lpor.201500256 – ident: e_1_2_8_24_2 doi: 10.1002/adom.201300401 – ident: e_1_2_8_53_1 doi: 10.1021/nn1026438 – ident: e_1_2_8_69_1 doi: 10.1021/acsami.7b13701 – ident: e_1_2_8_16_1 doi: 10.1002/adma.200901942 – ident: e_1_2_8_42_1 doi: 10.1016/j.nanoen.2016.04.045 – ident: e_1_2_8_8_1 doi: 10.1021/ja01539a017 – ident: e_1_2_8_11_1 doi: 10.1002/adom.201300317 – ident: e_1_2_8_55_1 doi: 10.1038/srep11662 – ident: e_1_2_8_88_1 doi: 10.1063/1.5020918 – ident: e_1_2_8_23_1 doi: 10.1002/adfm.201404046 – ident: e_1_2_8_90_1 doi: 10.1039/C8TB01285G – ident: e_1_2_8_21_3 doi: 10.1002/adma.201503333 – ident: e_1_2_8_24_1 doi: 10.1016/j.nantod.2009.12.009 – ident: e_1_2_8_91_1 doi: 10.1021/acsnano.6b04769 – ident: e_1_2_8_1_2 doi: 10.1126/science.1156965 – ident: e_1_2_8_75_1 doi: 10.1016/j.snb.2017.08.116 – ident: e_1_2_8_18_2 doi: 10.1126/science.1216744 – ident: e_1_2_8_25_5 doi: 10.1021/acsnano.7b08539 – ident: e_1_2_8_103_1 doi: 10.1063/1.4864616 – ident: e_1_2_8_16_2 doi: 10.1038/ncomms14579 – ident: e_1_2_8_27_4 doi: 10.1038/ncomms9433 – ident: e_1_2_8_58_1 doi: 10.1002/adma.201805705 – ident: e_1_2_8_96_1 doi: 10.1038/srep04892 – ident: e_1_2_8_100_1 doi: 10.1016/j.carbon.2012.10.034 – ident: e_1_2_8_38_1 doi: 10.1002/aenm.201801840 – ident: e_1_2_8_94_1 doi: 10.1063/1.4752752 – ident: e_1_2_8_23_3 doi: 10.1002/smll.201803143 – ident: e_1_2_8_70_1 doi: 10.1038/s41598-018-23091-1 – ident: e_1_2_8_79_2 doi: 10.1021/acsami.8b16692 – ident: e_1_2_8_4_1 doi: 10.1038/nature11458 – ident: e_1_2_8_52_1 doi: 10.1021/nl300346j – ident: e_1_2_8_67_1 doi: 10.1016/j.carbon.2017.09.063 – ident: e_1_2_8_97_1 doi: 10.1364/OL.39.004263 – ident: e_1_2_8_24_3 doi: 10.1038/ncomms8157 – ident: e_1_2_8_48_2 doi: 10.1021/acsami.8b03738 – ident: e_1_2_8_73_1 doi: 10.1039/C6NR07620C – ident: e_1_2_8_25_4 doi: 10.1002/aenm.201600050 – ident: e_1_2_8_25_7 doi: 10.1021/am1007326 – ident: e_1_2_8_27_3 doi: 10.1021/nl402057j – ident: e_1_2_8_1_3 doi: 10.1126/science.1157996 – ident: e_1_2_8_102_1 doi: 10.1063/1.3569720 – ident: e_1_2_8_56_1 doi: 10.1039/C4NR07078J – ident: e_1_2_8_78_1 doi: 10.1016/j.bios.2018.10.015 – ident: e_1_2_8_12_1 doi: 10.1126/science.aah3398 – ident: e_1_2_8_6_1 doi: 10.1126/science.1102896 – ident: e_1_2_8_67_2 doi: 10.1016/j.carbon.2018.05.031 – ident: e_1_2_8_40_1 doi: 10.1016/j.carbon.2017.11.014 – ident: e_1_2_8_13_1 doi: 10.1021/nl5005916 – ident: e_1_2_8_22_1 doi: 10.1016/j.carbon.2011.12.011 – ident: e_1_2_8_33_1 doi: 10.1021/ar300184v – ident: e_1_2_8_41_1 doi: 10.1002/adfm.201805271 – ident: e_1_2_8_28_1 doi: 10.1016/j.carbon.2018.09.030 – ident: e_1_2_8_62_1 doi: 10.1039/C8TA08249A – ident: e_1_2_8_76_1 doi: 10.1002/adma.201804327 – ident: e_1_2_8_7_2 doi: 10.1038/nnano.2008.215 – ident: e_1_2_8_87_1 doi: 10.1063/1.5003610 – ident: e_1_2_8_79_1 doi: 10.1039/C8AN00888D – ident: e_1_2_8_36_1 doi: 10.1002/adma.201803621 – ident: e_1_2_8_105_1 doi: 10.1021/am509065d – ident: e_1_2_8_18_4 doi: 10.1016/j.nanoen.2015.09.009 – ident: e_1_2_8_95_1 doi: 10.1364/OE.25.031025 – ident: e_1_2_8_68_1 doi: 10.1002/adma.201801384 – ident: e_1_2_8_7_1 doi: 10.1021/ar300203n – ident: e_1_2_8_92_1 doi: 10.1039/C4NR05207B – ident: e_1_2_8_86_1 doi: 10.1021/nn500283q – ident: e_1_2_8_30_1 doi: 10.1021/jp209843m – ident: e_1_2_8_74_1 doi: 10.1038/srep08603 – ident: e_1_2_8_82_1 doi: 10.1016/j.bios.2018.07.071 – ident: e_1_2_8_45_1 doi: 10.1002/adma.201707416 – ident: e_1_2_8_2_2 doi: 10.1038/nnano.2008.199 – ident: e_1_2_8_22_2 doi: 10.1002/asia.201100882 – ident: e_1_2_8_25_2 doi: 10.1002/adma.201700496 – ident: e_1_2_8_31_1 doi: 10.1002/admt.201700045 – ident: e_1_2_8_10_1 doi: 10.1021/nn504946k – ident: e_1_2_8_39_1 doi: 10.1002/adma.201704449 – ident: e_1_2_8_71_1 doi: 10.1016/j.snb.2018.07.179 – ident: e_1_2_8_59_1 doi: 10.1002/adma.201800062 – ident: e_1_2_8_3_1 doi: 10.1038/ncomms14560 – ident: e_1_2_8_18_1 doi: 10.1021/nn204200w – ident: e_1_2_8_66_1 doi: 10.1016/j.carbon.2014.03.058 – ident: e_1_2_8_25_1 doi: 10.1039/C5EE03637B – ident: e_1_2_8_60_3 doi: 10.1007/s12274-017-1716-y – ident: e_1_2_8_83_1 doi: 10.1038/s41377-018-0020-2 – ident: e_1_2_8_25_3 doi: 10.1002/adma.201702211 – ident: e_1_2_8_46_1 doi: 10.1021/acs.nanolett.7b03530 – ident: e_1_2_8_26_1 doi: 10.1002/tcr.201500306 – ident: e_1_2_8_72_1 doi: 10.1039/C3NR04521H – ident: e_1_2_8_43_1 doi: 10.1021/acsami.7b15922 – ident: e_1_2_8_51_1 doi: 10.1021/acsanm.7b00225 – ident: e_1_2_8_101_1 doi: 10.1021/acsnano.7b01987 |
SSID | ssj0009606 |
Score | 2.704015 |
SecondaryResourceType | review_article |
Snippet | Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1901981 |
SubjectTerms | Actuators Electronic devices electronic skin Electronics Flexible components flexible electronics Graphene graphene oxide laser fabrication Laser processing Lasers Materials science Optoelectronic devices |
Title | Laser Fabrication of Graphene‐Based Flexible Electronics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901981 https://www.ncbi.nlm.nih.gov/pubmed/31441164 https://www.proquest.com/docview/2389219410 https://www.proquest.com/docview/2335173385 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4hJhh4PwIFBQmJyaVxbCdmK49SIcqAQOoW-RJnoWpRHwsTP4HfyC_BdtKUghASLJEi24p9vvN95_g-AxynxmvKVGkSaR0SFvMGUZJRwkSWI6cYZC5DrnMn2o_spsu7n7L4C36IasPNWoZbr62BKxydzkhDVeZ4g6xDky732h7YsqjofsYfZeG5I9sLOZGCxVPWxgY9nW8-75W-Qc155OpcT2sV1LTTxYmTp_pkjPX05Quf439GtQYrJS71m4UircOC7m_A8ie2wk04uzUeb-i3FA7LjT5_kPvXlvHaLJjvr2_npjzzW5ZiE3vav6pu2BltwWPr6uGiTcqrF0hqU3FJ3lAxZnGIgQqlyLQOaC4QzTPiqGWmhEAmMEDGlYWYXCPL81gKE4DpWMbhNiz2B329C76maaQNaEGDBVnKpYojpFKnoeQG3YvcAzIVfZKWvOT2eoxeUjAq08TKJKlk4sFJVf-5YOT4sWZtOpNJaZmjxEAUaVZpFjQ8OKqKjU3ZHyWqrwcTWyfkQWSCd-7BTqEB1adCG4GaGNMD6ubxlz4kzctOs3rb-0ujfViiNsh3x4VqsDgeTvSBQUJjPHTa_gG95P3l |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hOAAHWqCUlC0NUqWeDBvHduLelsd2gV0OCCRukSdxLkW7aNm9cOpP6G_kl-DJa9lWCAkukSLbil_j-Wbi-Qbge-q0pk6NZZG1IROxbDOjBWdCZTlKjkFWRMgNLlTvWpzdyPo2IcXClPwQjcONJKM4r0nAySF9MGMNNVlBHEQaTVPw9RKl9Sb6_OPLGYMUAfSCbi-UTCsR17yNbX4w335eL_0HNuexa6F8uh8A626Xd05-708nuJ8-_MPo-K5xfYS1Cpr6nXIvrcOCHW7A6jPCwk342XdKb-x3DY4rX58_yv1fRHrtzszHP38PXXnmd4llE2-tf9Ik2bn_BNfdk6ujHquyL7CUonFZ3jYxZnGIgQm1yqwNeK4Q3TOSaHVmlEKhMEAhDaFMaVHkeayVs8FsrONwCxaHo6HdBt_yNLIOt6CDgyKV2sQRcm3TUEsH8FXuAavnPkkranLKkHGblKTKPKE5SZo58eBHU_-uJOV4sWarXsqkEs77xKEU7Q5qEbQ92GuKnVjRvxIztKMp1QllEDn7XXrwudwCzadCMkKdmekBLxbylT4kneNBp3n78pZG32C5dzXoJ_3Ti_MdWOFk8xe3h1qwOBlP7VcHjCa4W2z9J6nOAhA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EQfTg-1GfFQRP0TZN0sbb6lrfIqLgrWTa9OKyK-vuxZM_wd_oLzFpu9VVRNBLoSShySST-SbNfAOwnRqrKVOlSah1QFjEPaIko4SJLEdO0c-KCLnLK3Fyx87u-f2nKP6SH6I-cLOaUezXVsEfs3zvgzRUZQVvkDVo0sZejzHhSZu8oXnzQSBl8XnBthdwIgWLBrSNHt0bbj9slr5hzWHoWtieeBrUoNfllZOH3X4Pd9PnL4SO_xnWDExVwNRtlCtpFkZ0ew4mP9EVzsP-hTF5XTdW2K1O-txO7h5bymuzY769vB6Y8syNLccmtrR7VKfYeVqAu_jo9vCEVLkXSGpjcUnuqQizKEBfBVJkWvs0F4jmGXLUMlNCIBPoI-PKYkyukeV5JIXxwHQko2ARRtudtl4GV9M01Aa1oAGDLOVSRSFSqdNAcgPvRe4AGYg-SSticpsfo5WUlMo0sTJJapk4sFPXfywpOX6suTaYyaRSzafEYBRptmnmew5s1cVGqeyfEtXWnb6tE3A_NN47d2CpXAH1pwLrghon0wFazOMvfUgazctG_bbyl0abMH7djJOL06vzVZig1uEvrg6twWiv29frBhX1cKNY-O-YIQC_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+Fabrication+of+Graphene-Based+Flexible+Electronics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=You%2C+Rui&rft.au=Liu%2C+Yu-Qing&rft.au=Hao%2C+Yi-Long&rft.au=Han%2C+Dong-Dong&rft.date=2020-04-01&rft.eissn=1521-4095&rft.volume=32&rft.issue=15&rft.spage=e1901981&rft_id=info:doi/10.1002%2Fadma.201901981&rft_id=info%3Apmid%2F31441164&rft.externalDocID=31441164 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |