Laser Fabrication of Graphene‐Based Flexible Electronics

Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility, transparency, conductivity, and mechanical robustness, graphene has emerged as a versatile material for flexible electronics. In the past decade, facili...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 15; pp. e1901981 - n/a
Main Authors You, Rui, Liu, Yu‐Qing, Hao, Yi‐Long, Han, Dong‐Dong, Zhang, Yong‐Lai, You, Zheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility, transparency, conductivity, and mechanical robustness, graphene has emerged as a versatile material for flexible electronics. In the past decade, facilitated by various laser processing technologies, including the laser‐treatment‐induced photoreduction of graphene oxides, flexible patterning, hierarchical structuring, heteroatom doping, controllable thinning, etching, and shock of graphene, along with laser‐induced graphene on polyimide, graphene has found broad applications in a wide range of electronic devices, such as power generators, supercapacitors, optoelectronic devices, sensors, and actuators. Here, the recent advancements in the laser fabrication of graphene‐based flexible electronic devices are comprehensively summarized. The various laser fabrication technologies that have been employed for the preparation, processing, and modification of graphene and its derivatives are reviewed. A thorough overview of typical laser‐enabled flexible electronic devices that are based on various graphene sources is presented. With the rapid progress that has been made in the research on graphene preparation methodologies and laser micronanofabrication technologies, graphene‐based electronics may soon undergo fast development. Recent advancements in the laser fabrication of graphene‐based flexible electronic devices are comprehensively reviewed. Various laser processing technologies that enable preparation, processing, and modification of graphene and its derivatives are summarized. An overview of typical laser‐fabricated flexible electronic devices based on graphene‐related materials is presented.
AbstractList Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility, transparency, conductivity, and mechanical robustness, graphene has emerged as a versatile material for flexible electronics. In the past decade, facilitated by various laser processing technologies, including the laser-treatment-induced photoreduction of graphene oxides, flexible patterning, hierarchical structuring, heteroatom doping, controllable thinning, etching, and shock of graphene, along with laser-induced graphene on polyimide, graphene has found broad applications in a wide range of electronic devices, such as power generators, supercapacitors, optoelectronic devices, sensors, and actuators. Here, the recent advancements in the laser fabrication of graphene-based flexible electronic devices are comprehensively summarized. The various laser fabrication technologies that have been employed for the preparation, processing, and modification of graphene and its derivatives are reviewed. A thorough overview of typical laser-enabled flexible electronic devices that are based on various graphene sources is presented. With the rapid progress that has been made in the research on graphene preparation methodologies and laser micronanofabrication technologies, graphene-based electronics may soon undergo fast development.Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility, transparency, conductivity, and mechanical robustness, graphene has emerged as a versatile material for flexible electronics. In the past decade, facilitated by various laser processing technologies, including the laser-treatment-induced photoreduction of graphene oxides, flexible patterning, hierarchical structuring, heteroatom doping, controllable thinning, etching, and shock of graphene, along with laser-induced graphene on polyimide, graphene has found broad applications in a wide range of electronic devices, such as power generators, supercapacitors, optoelectronic devices, sensors, and actuators. Here, the recent advancements in the laser fabrication of graphene-based flexible electronic devices are comprehensively summarized. The various laser fabrication technologies that have been employed for the preparation, processing, and modification of graphene and its derivatives are reviewed. A thorough overview of typical laser-enabled flexible electronic devices that are based on various graphene sources is presented. With the rapid progress that has been made in the research on graphene preparation methodologies and laser micronanofabrication technologies, graphene-based electronics may soon undergo fast development.
Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility, transparency, conductivity, and mechanical robustness, graphene has emerged as a versatile material for flexible electronics. In the past decade, facilitated by various laser processing technologies, including the laser‐treatment‐induced photoreduction of graphene oxides, flexible patterning, hierarchical structuring, heteroatom doping, controllable thinning, etching, and shock of graphene, along with laser‐induced graphene on polyimide, graphene has found broad applications in a wide range of electronic devices, such as power generators, supercapacitors, optoelectronic devices, sensors, and actuators. Here, the recent advancements in the laser fabrication of graphene‐based flexible electronic devices are comprehensively summarized. The various laser fabrication technologies that have been employed for the preparation, processing, and modification of graphene and its derivatives are reviewed. A thorough overview of typical laser‐enabled flexible electronic devices that are based on various graphene sources is presented. With the rapid progress that has been made in the research on graphene preparation methodologies and laser micronanofabrication technologies, graphene‐based electronics may soon undergo fast development.
Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility, transparency, conductivity, and mechanical robustness, graphene has emerged as a versatile material for flexible electronics. In the past decade, facilitated by various laser processing technologies, including the laser‐treatment‐induced photoreduction of graphene oxides, flexible patterning, hierarchical structuring, heteroatom doping, controllable thinning, etching, and shock of graphene, along with laser‐induced graphene on polyimide, graphene has found broad applications in a wide range of electronic devices, such as power generators, supercapacitors, optoelectronic devices, sensors, and actuators. Here, the recent advancements in the laser fabrication of graphene‐based flexible electronic devices are comprehensively summarized. The various laser fabrication technologies that have been employed for the preparation, processing, and modification of graphene and its derivatives are reviewed. A thorough overview of typical laser‐enabled flexible electronic devices that are based on various graphene sources is presented. With the rapid progress that has been made in the research on graphene preparation methodologies and laser micronanofabrication technologies, graphene‐based electronics may soon undergo fast development. Recent advancements in the laser fabrication of graphene‐based flexible electronic devices are comprehensively reviewed. Various laser processing technologies that enable preparation, processing, and modification of graphene and its derivatives are summarized. An overview of typical laser‐fabricated flexible electronic devices based on graphene‐related materials is presented.
Author Zhang, Yong‐Lai
Liu, Yu‐Qing
You, Rui
Han, Dong‐Dong
You, Zheng
Hao, Yi‐Long
Author_xml – sequence: 1
  givenname: Rui
  surname: You
  fullname: You, Rui
  organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication
– sequence: 2
  givenname: Yu‐Qing
  surname: Liu
  fullname: Liu, Yu‐Qing
  organization: Jilin University
– sequence: 3
  givenname: Yi‐Long
  surname: Hao
  fullname: Hao, Yi‐Long
  organization: National Key Laboratory of Science and Technology on Micro/Nano Fabrication
– sequence: 4
  givenname: Dong‐Dong
  surname: Han
  fullname: Han, Dong‐Dong
  email: handongdong@jlu.edu.cn
  organization: Jilin University
– sequence: 5
  givenname: Yong‐Lai
  surname: Zhang
  fullname: Zhang, Yong‐Lai
  email: yonglaizhang@jlu.edu.cn
  organization: Jilin University
– sequence: 6
  givenname: Zheng
  orcidid: 0000-0002-3941-1371
  surname: You
  fullname: You, Zheng
  email: yz-dpi@mail.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31441164$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1LwzAYgIMobn5cPUrBi5fOvE2aJd7m3KYw8aLnkrRvMaNrZ9Khu_kT_I3-EqObCoIIITnkefKGZ49s102NhBwB7QGlyZku5rqXUFBhSdgiXUgTiDlV6TbpUsXSWAkuO2TP-xmlVAkqdkmHAecAgnfJ-VR7dNFYG2dz3dqmjpoymji9eMAa315eL8J9EY0rfLamwmhUYd66pra5PyA7pa48Hm7OfXI_Ht0Nr-Lp7eR6OJjGOWcK4pJqaQrJDGimRIEISSmMCXs_NagKLYThwoDhqVZKQYqGl6VUIpF9lEqyfXK6fnfhmscl-jabW59jVekam6XPEsZS6DMm04Ce_EJnzdLV4XeBkioBxYEG6nhDLc0ci2zh7Fy7VfZVJQC9NZC7xnuH5TcCNPvInn1kz76zB4H_EnLbftZsnbbV35paa0-2wtU_Q7LB5c3gx30H4CSV2A
CitedBy_id crossref_primary_10_1002_smtd_202101454
crossref_primary_10_1016_j_apsusc_2022_156032
crossref_primary_10_1016_j_apsusc_2024_159426
crossref_primary_10_1002_admt_202101530
crossref_primary_10_1002_admt_202201939
crossref_primary_10_1039_D1CC00902H
crossref_primary_10_1177_14759217211056831
crossref_primary_10_1016_j_polymer_2020_123019
crossref_primary_10_1109_LPT_2023_3307019
crossref_primary_10_3390_nano11030604
crossref_primary_10_1002_inf2_12218
crossref_primary_10_1016_j_carbon_2022_02_039
crossref_primary_10_26599_JAC_2023_9220761
crossref_primary_10_1016_j_flatc_2024_100659
crossref_primary_10_1021_acs_langmuir_3c03975
crossref_primary_10_29026_oea_2023_210163
crossref_primary_10_3389_fchem_2020_00692
crossref_primary_10_1016_j_mtcomm_2019_100795
crossref_primary_10_1109_LED_2020_2965585
crossref_primary_10_1021_acsami_2c13677
crossref_primary_10_1016_j_jeurceramsoc_2023_05_041
crossref_primary_10_1007_s12274_024_6555_z
crossref_primary_10_1007_s00604_021_05157_6
crossref_primary_10_1364_PRJ_496848
crossref_primary_10_3390_polym14204300
crossref_primary_10_1016_j_optlastec_2022_108436
crossref_primary_10_1002_er_7190
crossref_primary_10_3390_s25051377
crossref_primary_10_1016_j_jelechem_2024_118195
crossref_primary_10_1021_acsanm_3c00698
crossref_primary_10_1016_j_optlastec_2024_110998
crossref_primary_10_1039_D1CP02610K
crossref_primary_10_1007_s42823_022_00365_3
crossref_primary_10_1021_acsami_0c13909
crossref_primary_10_1002_ange_202314183
crossref_primary_10_26565_2312_4334_2022_3_12
crossref_primary_10_1002_adom_202100793
crossref_primary_10_1038_s41427_023_00513_9
crossref_primary_10_1088_1361_6463_ac4725
crossref_primary_10_1088_1361_6528_acf6c2
crossref_primary_10_1002_eem2_12881
crossref_primary_10_1007_s13369_024_09045_y
crossref_primary_10_20517_ss_2024_20
crossref_primary_10_3390_mi13071123
crossref_primary_10_1038_s41528_022_00151_1
crossref_primary_10_1002_smtd_202101435
crossref_primary_10_3390_s23239605
crossref_primary_10_1007_s10853_022_07794_5
crossref_primary_10_1039_D2TA08043E
crossref_primary_10_3390_photonics8120577
crossref_primary_10_1002_adma_202207774
crossref_primary_10_1016_j_pmatsci_2024_101283
crossref_primary_10_1109_LED_2023_3307028
crossref_primary_10_1002_adfm_202006179
crossref_primary_10_1016_j_cej_2024_156664
crossref_primary_10_1016_j_flatc_2020_100199
crossref_primary_10_1021_acsapm_3c02893
crossref_primary_10_1109_TNB_2021_3119996
crossref_primary_10_1080_08927022_2021_1991920
crossref_primary_10_1088_2631_7990_acded1
crossref_primary_10_1002_adfm_202301587
crossref_primary_10_1016_j_compositesa_2023_107946
crossref_primary_10_1021_acsami_0c05401
crossref_primary_10_1016_j_cej_2023_146330
crossref_primary_10_1002_adma_202005449
crossref_primary_10_1002_adfm_202316533
crossref_primary_10_3390_qubs6010005
crossref_primary_10_1186_s11671_023_03788_7
crossref_primary_10_1142_S0218625X25300084
crossref_primary_10_1016_j_nanoen_2021_106525
crossref_primary_10_1021_acs_chemrev_1c00924
crossref_primary_10_1063_5_0069203
crossref_primary_10_1016_j_mtnano_2022_100173
crossref_primary_10_1039_D3CP02115G
crossref_primary_10_1002_adem_202101558
crossref_primary_10_1002_adma_202306772
crossref_primary_10_1039_D1QM00233C
crossref_primary_10_3390_mi13050686
crossref_primary_10_1002_adom_202402794
crossref_primary_10_1021_acsami_4c07729
crossref_primary_10_34133_research_0305
crossref_primary_10_1016_j_optlastec_2021_107099
crossref_primary_10_1021_acsami_3c10729
crossref_primary_10_3390_biomimetics8010026
crossref_primary_10_1021_acsnano_4c09062
crossref_primary_10_1002_admt_202101052
crossref_primary_10_1002_adma_202008701
crossref_primary_10_1002_smll_202201861
crossref_primary_10_1021_acs_nanolett_4c04053
crossref_primary_10_1002_adfm_202300479
crossref_primary_10_1002_nano_202100343
crossref_primary_10_1080_10667857_2023_2262131
crossref_primary_10_1002_adfm_202102648
crossref_primary_10_3390_bios13090896
crossref_primary_10_3390_mi12121440
crossref_primary_10_1016_j_sse_2020_107901
crossref_primary_10_3390_ma17030557
crossref_primary_10_3390_surfaces5010006
crossref_primary_10_1021_acsami_4c15827
crossref_primary_10_1021_acsanm_1c01453
crossref_primary_10_1016_j_bmc_2021_116493
crossref_primary_10_1021_acs_langmuir_3c01470
crossref_primary_10_1039_D1TA07374E
crossref_primary_10_1021_acssensors_4c01717
crossref_primary_10_1002_smll_202305311
crossref_primary_10_1002_adsu_202000237
crossref_primary_10_1021_acsami_3c18576
crossref_primary_10_1021_acssuschemeng_3c06526
crossref_primary_10_1021_acsami_4c01438
crossref_primary_10_3389_fphot_2022_888486
crossref_primary_10_3390_coatings13030555
crossref_primary_10_1002_adma_202104060
crossref_primary_10_1002_adfm_202315162
crossref_primary_10_1016_j_carbon_2021_01_145
crossref_primary_10_1016_j_sna_2024_115529
crossref_primary_10_1002_admt_202401245
crossref_primary_10_1002_admi_202300842
crossref_primary_10_1016_j_colsurfa_2022_130233
crossref_primary_10_1039_D3CS00918A
crossref_primary_10_1021_acsami_4c21046
crossref_primary_10_1080_09506608_2022_2086388
crossref_primary_10_1021_acsami_3c07687
crossref_primary_10_1021_acsami_3c15849
crossref_primary_10_1016_j_pmatsci_2022_101052
crossref_primary_10_1002_jbio_202300205
crossref_primary_10_3390_s24237444
crossref_primary_10_3390_nano12183146
crossref_primary_10_1038_s41467_024_50069_7
crossref_primary_10_1007_s10853_022_08138_z
crossref_primary_10_1016_j_carbon_2021_05_037
crossref_primary_10_3389_fchem_2022_1073473
crossref_primary_10_1021_acsapm_4c03761
crossref_primary_10_1007_s10825_021_01773_w
crossref_primary_10_1002_adfm_202203164
crossref_primary_10_1016_j_inoche_2023_111957
crossref_primary_10_1016_j_carbon_2020_12_089
crossref_primary_10_1021_acs_jpcc_2c08038
crossref_primary_10_1088_1361_6463_ad0e95
crossref_primary_10_1016_j_matdes_2023_112529
crossref_primary_10_1002_slct_202101975
crossref_primary_10_1007_s11431_022_2408_3
crossref_primary_10_1002_dro2_133
crossref_primary_10_1007_s10854_021_06616_9
crossref_primary_10_1109_ACCESS_2020_3008945
crossref_primary_10_3390_cryst13020212
crossref_primary_10_1002_admi_202101502
crossref_primary_10_1007_s42823_025_00880_z
crossref_primary_10_3390_nano12162799
crossref_primary_10_1002_smsc_202300039
crossref_primary_10_1021_acsanm_3c01408
crossref_primary_10_1016_j_cej_2023_144908
crossref_primary_10_1021_acsami_1c22952
crossref_primary_10_1039_D3TA04872A
crossref_primary_10_1002_admt_202202123
crossref_primary_10_1016_j_apsusc_2020_148593
crossref_primary_10_1038_s41467_022_34173_0
crossref_primary_10_3390_app11052162
crossref_primary_10_1021_acsanm_3c00314
crossref_primary_10_1088_1361_6528_ac020c
crossref_primary_10_1364_OL_482397
crossref_primary_10_1016_j_apsusc_2022_153730
crossref_primary_10_3390_met13071253
crossref_primary_10_3390_nano12071181
crossref_primary_10_1038_s41928_023_01111_x
crossref_primary_10_31613_ceramist_2022_25_1_01
crossref_primary_10_1016_j_apsusc_2022_155591
crossref_primary_10_1016_j_scib_2021_11_015
crossref_primary_10_1021_acsami_0c13454
crossref_primary_10_1002_pssa_202000199
crossref_primary_10_1016_j_mseb_2022_116205
crossref_primary_10_1002_slct_202200181
crossref_primary_10_2174_1573413718666220329220551
crossref_primary_10_1016_j_colsurfa_2023_132178
crossref_primary_10_1016_j_cej_2022_139499
crossref_primary_10_1021_acsami_2c01454
crossref_primary_10_1088_1674_4926_40_12_120401
crossref_primary_10_1002_pat_6435
crossref_primary_10_1021_acsomega_0c01293
crossref_primary_10_3390_ma16206691
crossref_primary_10_3390_polym14051046
crossref_primary_10_1002_adma_202303065
crossref_primary_10_1002_advs_202404889
crossref_primary_10_1002_adem_202200368
crossref_primary_10_1002_adfm_202103255
crossref_primary_10_1186_s40486_023_00176_9
crossref_primary_10_1016_j_carbon_2021_09_027
crossref_primary_10_1016_j_cej_2023_141985
crossref_primary_10_1016_j_jechem_2020_12_002
crossref_primary_10_3390_polym14142800
crossref_primary_10_1039_D4NH00021H
crossref_primary_10_1002_smll_202300469
crossref_primary_10_1021_acssuschemeng_3c07259
crossref_primary_10_1063_5_0102864
crossref_primary_10_1080_02670844_2023_2189648
crossref_primary_10_1016_j_matt_2020_05_001
crossref_primary_10_1021_acs_chemrev_3c00392
crossref_primary_10_1063_5_0221553
crossref_primary_10_3390_ma15031037
crossref_primary_10_1016_j_microc_2020_105855
crossref_primary_10_34133_adi_0028
crossref_primary_10_1007_s40820_024_01635_7
crossref_primary_10_1016_j_scib_2020_08_037
crossref_primary_10_3390_app13084688
crossref_primary_10_1002_adfm_202201904
crossref_primary_10_1063_5_0134445
crossref_primary_10_1364_OL_483665
crossref_primary_10_1002_sstr_202300090
crossref_primary_10_1016_j_physe_2021_115119
crossref_primary_10_1016_j_jmapro_2021_11_045
crossref_primary_10_1021_acsanm_9b02614
crossref_primary_10_1016_j_mser_2024_100860
crossref_primary_10_1016_j_matlet_2022_132537
crossref_primary_10_1002_ente_202100454
crossref_primary_10_1021_acsami_4c12499
crossref_primary_10_1063_5_0114607
crossref_primary_10_1088_1674_4926_44_3_031701
crossref_primary_10_1021_acsami_0c04124
crossref_primary_10_1016_j_cej_2023_148245
crossref_primary_10_1016_j_jpowsour_2022_231418
crossref_primary_10_1103_PhysRevB_108_094303
crossref_primary_10_1007_s42765_022_00242_8
crossref_primary_10_1515_nanoph_2019_0557
crossref_primary_10_1002_app_56135
crossref_primary_10_1007_s40820_020_00577_0
crossref_primary_10_1016_j_ccr_2022_214559
crossref_primary_10_1515_ijmr_2021_8432
crossref_primary_10_1016_j_seta_2021_101176
crossref_primary_10_1002_adfm_202420677
crossref_primary_10_1002_adfm_202417184
crossref_primary_10_3390_mi13071084
crossref_primary_10_1016_j_matlet_2022_132567
crossref_primary_10_1021_acsanm_1c04469
crossref_primary_10_1002_jbio_202400224
crossref_primary_10_1016_j_cej_2022_137664
crossref_primary_10_1002_anie_202314183
crossref_primary_10_1021_acs_jpcc_3c08058
crossref_primary_10_1002_adma_202402014
crossref_primary_10_1007_s40820_022_00923_4
crossref_primary_10_1016_j_matdes_2023_112043
crossref_primary_10_1049_ell2_12001
crossref_primary_10_1007_s40820_024_01345_0
crossref_primary_10_1016_j_optlastec_2023_109524
crossref_primary_10_1039_D2CP05487F
crossref_primary_10_1007_s10404_021_02500_4
crossref_primary_10_1021_acs_macromol_4c02249
crossref_primary_10_1002_adfm_202211272
crossref_primary_10_3389_fchem_2021_823715
crossref_primary_10_1002_adfm_202106673
crossref_primary_10_1016_j_sse_2022_108259
crossref_primary_10_1016_j_jece_2021_106480
crossref_primary_10_1002_advs_202105084
crossref_primary_10_1016_j_cej_2023_147819
crossref_primary_10_1021_acsami_4c10059
crossref_primary_10_3390_mi11040399
crossref_primary_10_1016_j_molliq_2021_118428
crossref_primary_10_1002_adma_202307586
crossref_primary_10_1007_s12274_023_5778_8
crossref_primary_10_1080_17435390_2023_2183653
crossref_primary_10_1021_acsnano_1c05806
crossref_primary_10_3390_jfb14040180
crossref_primary_10_1002_admt_202101571
crossref_primary_10_3390_bios12020055
crossref_primary_10_1021_acs_chemrev_3c00502
crossref_primary_10_3389_fchem_2020_00525
crossref_primary_10_1109_JPHOT_2021_3069648
crossref_primary_10_1126_sciadv_abp9734
crossref_primary_10_1016_j_optlastec_2023_109431
crossref_primary_10_3390_bios12110936
crossref_primary_10_1364_PRJ_382401
crossref_primary_10_3390_nano12142336
crossref_primary_10_1021_acsami_1c03219
crossref_primary_10_3390_app13127201
crossref_primary_10_1002_admi_202102343
crossref_primary_10_1007_s12274_021_3505_x
crossref_primary_10_1021_acsaem_0c02096
crossref_primary_10_1002_aisy_202100056
crossref_primary_10_1063_5_0212594
crossref_primary_10_3390_s23249743
crossref_primary_10_1016_j_colsurfa_2024_133856
crossref_primary_10_1016_j_apsusc_2022_156067
crossref_primary_10_1021_acsnano_2c02812
crossref_primary_10_1021_acsanm_3c05387
crossref_primary_10_1038_s41377_020_0275_2
crossref_primary_10_1134_S1063782624700131
crossref_primary_10_1021_acs_langmuir_4c04568
crossref_primary_10_1039_D4SM00710G
crossref_primary_10_1109_JFLEX_2023_3329456
crossref_primary_10_1109_JSEN_2021_3092010
crossref_primary_10_1002_anie_202201169
crossref_primary_10_1002_smtd_202400118
crossref_primary_10_1021_acsanm_2c02912
crossref_primary_10_1063_5_0223490
crossref_primary_10_1515_ijmr_2021_8288
crossref_primary_10_1109_JSEN_2020_3034845
crossref_primary_10_1007_s42765_021_00129_0
crossref_primary_10_1007_s12274_021_3441_9
crossref_primary_10_1016_j_apsusc_2024_160230
crossref_primary_10_1016_j_mtadv_2020_100092
crossref_primary_10_3390_ma14164757
crossref_primary_10_1039_D0TC05540A
crossref_primary_10_1002_advs_202207683
crossref_primary_10_1063_5_0038508
crossref_primary_10_1002_admi_202200228
crossref_primary_10_1002_advs_202205381
crossref_primary_10_1140_epjp_s13360_022_03448_2
crossref_primary_10_3390_molecules28145339
crossref_primary_10_1016_j_xinn_2021_100168
crossref_primary_10_1002_admt_202101238
crossref_primary_10_1021_jacs_2c07280
crossref_primary_10_1002_admt_202301884
crossref_primary_10_1016_j_powtec_2024_120561
crossref_primary_10_1088_2058_8585_abb930
crossref_primary_10_1002_ange_202201169
crossref_primary_10_1002_admt_202302056
crossref_primary_10_1016_j_mtcomm_2022_104274
crossref_primary_10_1002_advs_202002464
crossref_primary_10_1021_acsanm_3c05607
crossref_primary_10_1088_2631_7990_acee2e
crossref_primary_10_3788_CJL231372
crossref_primary_10_1039_D2TA09985C
crossref_primary_10_1007_s40820_024_01597_w
crossref_primary_10_3390_app12020608
crossref_primary_10_1002_advs_202001938
crossref_primary_10_1016_j_eurpolymj_2022_111243
crossref_primary_10_1016_j_jmapro_2024_03_061
crossref_primary_10_1016_j_cej_2023_142209
crossref_primary_10_1038_s41467_023_39574_3
crossref_primary_10_1039_D1TA08892K
crossref_primary_10_1002_advs_202003681
crossref_primary_10_1021_acsami_5c01250
crossref_primary_10_1002_adma_202402907
crossref_primary_10_1016_j_porgcoat_2023_107859
crossref_primary_10_1002_adfm_202204555
crossref_primary_10_1021_acsami_0c15471
crossref_primary_10_1021_acsami_2c18838
crossref_primary_10_1007_s10854_023_11288_8
crossref_primary_10_1016_j_susmat_2024_e00962
crossref_primary_10_1002_adfm_202312383
crossref_primary_10_3390_mi13101653
crossref_primary_10_1002_adfm_202203101
Cites_doi 10.1039/C7MH00441A
10.1103/PhysRevLett.100.016602
10.1063/1.3622660
10.1021/nl4047784
10.1038/ncomms6714
10.1088/0957-4484/24/27/275302
10.1364/OL.44.001363
10.1021/acsnano.5b00436
10.1002/adma.201602211
10.1039/C8CC07725H
10.1038/ncomms2446
10.1021/jp309382w
10.1038/srep17557
10.1016/j.bios.2018.02.031
10.1021/nn1017389
10.1002/smll.201702249
10.1038/nmat1849
10.1002/adfm.201501511
10.1039/C8TA03830A
10.1021/acssensors.7b00066
10.1039/c4nr01220h
10.1021/acs.accounts.8b00084
10.1002/aelm.201800339
10.1002/adfm.201202460
10.1002/smll.201802350
10.1134/S0018143911010176
10.1002/admt.201800258
10.1063/1.4724213
10.1021/nn5009353
10.1021/acsnano.8b02162
10.1039/C5TA00252D
10.1021/la801744a
10.1038/nnano.2011.110
10.1002/adma.201403587
10.1039/C7NR04889K
10.1002/adma.201606586
10.1021/ph500106f
10.1063/1.4794901
10.1021/acs.nanolett.8b01651
10.1002/advs.201800496
10.1021/acsami.7b13741
10.1039/C6TA06846D
10.1002/adfm.201803990
10.1039/C5TA09450J
10.1021/acsnano.7b05877
10.1016/j.bios.2018.03.019
10.1016/j.carbon.2015.12.038
10.1109/LED.2014.2385701
10.1021/acsami.6b00808
10.1038/lsa.2017.134
10.1038/s41598-018-26503-4
10.1021/nl301817t
10.1002/adma.201603813
10.1021/jz100790y
10.1088/2053-1583/aa790e
10.1002/adfm.201400296
10.1016/j.nanoen.2017.12.033
10.1002/lpor.201500256
10.1002/adom.201300401
10.1021/nn1026438
10.1021/acsami.7b13701
10.1002/adma.200901942
10.1016/j.nanoen.2016.04.045
10.1021/ja01539a017
10.1002/adom.201300317
10.1038/srep11662
10.1063/1.5020918
10.1002/adfm.201404046
10.1039/C8TB01285G
10.1002/adma.201503333
10.1016/j.nantod.2009.12.009
10.1021/acsnano.6b04769
10.1126/science.1156965
10.1016/j.snb.2017.08.116
10.1126/science.1216744
10.1021/acsnano.7b08539
10.1063/1.4864616
10.1038/ncomms14579
10.1038/ncomms9433
10.1002/adma.201805705
10.1038/srep04892
10.1016/j.carbon.2012.10.034
10.1002/aenm.201801840
10.1063/1.4752752
10.1002/smll.201803143
10.1038/s41598-018-23091-1
10.1021/acsami.8b16692
10.1038/nature11458
10.1021/nl300346j
10.1016/j.carbon.2017.09.063
10.1364/OL.39.004263
10.1038/ncomms8157
10.1021/acsami.8b03738
10.1039/C6NR07620C
10.1002/aenm.201600050
10.1021/am1007326
10.1021/nl402057j
10.1126/science.1157996
10.1063/1.3569720
10.1039/C4NR07078J
10.1016/j.bios.2018.10.015
10.1126/science.aah3398
10.1126/science.1102896
10.1016/j.carbon.2018.05.031
10.1016/j.carbon.2017.11.014
10.1021/nl5005916
10.1016/j.carbon.2011.12.011
10.1021/ar300184v
10.1002/adfm.201805271
10.1016/j.carbon.2018.09.030
10.1039/C8TA08249A
10.1002/adma.201804327
10.1038/nnano.2008.215
10.1063/1.5003610
10.1039/C8AN00888D
10.1002/adma.201803621
10.1021/am509065d
10.1016/j.nanoen.2015.09.009
10.1364/OE.25.031025
10.1002/adma.201801384
10.1021/ar300203n
10.1039/C4NR05207B
10.1021/nn500283q
10.1021/jp209843m
10.1038/srep08603
10.1016/j.bios.2018.07.071
10.1002/adma.201707416
10.1038/nnano.2008.199
10.1002/asia.201100882
10.1002/adma.201700496
10.1002/admt.201700045
10.1021/nn504946k
10.1002/adma.201704449
10.1016/j.snb.2018.07.179
10.1002/adma.201800062
10.1038/ncomms14560
10.1021/nn204200w
10.1016/j.carbon.2014.03.058
10.1039/C5EE03637B
10.1007/s12274-017-1716-y
10.1038/s41377-018-0020-2
10.1002/adma.201702211
10.1021/acs.nanolett.7b03530
10.1002/tcr.201500306
10.1039/C3NR04521H
10.1021/acsami.7b15922
10.1021/acsanm.7b00225
10.1021/acsnano.7b01987
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201901981
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31441164
10_1002_adma_201901981
ADMA201901981
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Open Fund of the State Key Laboratory of Integrated Optoelectronics
  funderid: IOSKL2017KF09
– fundername: Scientific and Technological Developing Scheme of Jilin Province
  funderid: #20180101061JC
– fundername: National Key Research and Development Program of China
– fundername: National Natural Science Foundation of China
  funderid: #2017YFB1104300; #61775078; #61774096
– fundername: Open Fund of the State Key Laboratory of Integrated Optoelectronics
  grantid: IOSKL2017KF09
– fundername: National Natural Science Foundation of China
  grantid: #61775078
– fundername: National Natural Science Foundation of China
  grantid: #61774096
– fundername: Scientific and Technological Developing Scheme of Jilin Province
  grantid: #20180101061JC
– fundername: National Natural Science Foundation of China
  grantid: #2017YFB1104300
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4391-f0a8bd83b1a396dee12f6bb12f75be9da66b46b1b45a99915eb4ff896287e8983
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 00:07:04 EDT 2025
Sun Jul 13 04:18:24 EDT 2025
Wed Feb 19 02:31:16 EST 2025
Tue Jul 01 00:44:54 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Wed Jan 22 16:35:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords flexible electronics
electronic skin
graphene oxide
graphene
laser fabrication
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4391-f0a8bd83b1a396dee12f6bb12f75be9da66b46b1b45a99915eb4ff896287e8983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3941-1371
PMID 31441164
PQID 2389219410
PQPubID 2045203
PageCount 22
ParticipantIDs proquest_miscellaneous_2335173385
proquest_journals_2389219410
pubmed_primary_31441164
crossref_primary_10_1002_adma_201901981
crossref_citationtrail_10_1002_adma_201901981
wiley_primary_10_1002_adma_201901981_ADMA201901981
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 120
2017; 8
2015; 36
2017; 2
2017; 4
2018; 127
2013; 24
2017 2018 2018; 29 4 11
2013; 23
2017 2018 2017; 125 137 4
2019; 124
2011; 98
2018; 45
2017; 111
2016 2010 2013 2015; 99 1 13 6
2012; 12
2017; 9
2018; 7
2014; 1
2018; 6
2011 2018; 99 10
2012 2012 2012; 50 7 12
2018; 8
2010 2014 2015; 5 2 6
2018; 5
2014; 2
2007 2008 2008; 6 320 321
2013 2008; 46 3
2018; 1
2015 2016 2018; 25 4 14
2018; 255
2013; 53
2012; 490
2013; 117
2008 2008; 100 3
2008; 24
2018; 30
2016 2018; 353 3
2014; 8
2014; 6
2018; 28
2012; 100
2015; 5
2015; 4
2019; 31
2017; 25
2013; 46
2018; 107
2016; 10
2018 2018; 143 10
2013; 102
2012 2012 2013 2015 2014; 6 335 4 18 14
2017; 29
2019; 141
2016; 16
2011; 6
2011; 5
2015; 7
1958 2016; 80 28
2010 2017 2018 2010; 22 8 12 4
2016; 4
2014 2018; 24 10
2018; 110
2012; 112
2004 2015; 306 3
2017; 17
2019; 44
2017; 11
2018; 277
2018; 112
2016 2017 2017 2016 2018 2018 2010; 9 29 29 6 12 12 2
2014 2015 2016 2018; 5 9 28 14
2018; 51
2011; 45
2017 2015 2015; 2 25 27
2014; 39
2012; 116
2018; 10
2018; 54
2016; 26
2014 2018; 14 18
2016; 8
2014; 104
2018; 14
2014; 75
e_1_2_8_22_3
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_1_3
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_22_2
e_1_2_8_60_3
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_60_2
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_25_4
e_1_2_8_25_5
e_1_2_8_29_1
e_1_2_8_25_6
e_1_2_8_25_7
e_1_2_8_21_4
e_1_2_8_25_1
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_67_2
e_1_2_8_25_3
e_1_2_8_48_1
e_1_2_8_67_3
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_21_3
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_18_3
e_1_2_8_14_1
e_1_2_8_79_2
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_18_4
e_1_2_8_18_5
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_24_2
e_1_2_8_24_3
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_13_2
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_27_2
e_1_2_8_27_3
e_1_2_8_27_4
e_1_2_8_23_2
e_1_2_8_23_3
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_16_2
e_1_2_8_16_3
e_1_2_8_39_1
e_1_2_8_16_4
e_1_2_8_12_2
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_2
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_31_3
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 46 3
  start-page: 2329 563
  year: 2013 2008
  publication-title: Acc. Chem. Res. Nat. Nanotechnol.
– volume: 14 18
  start-page: 3214 7421
  year: 2014 2018
  publication-title: Nano Lett. Nano Lett.
– volume: 5 9 28 14
  start-page: 5714 5868 838
  year: 2014 2015 2016 2018
  publication-title: Nat. Commun. ACS Nano Adv. Mater. Small
– volume: 112
  year: 2012
  publication-title: J. Appl. Phys.
– volume: 112
  year: 2018
  publication-title: Appl. Phys. Lett.
– volume: 29 4 11
  start-page: 3096
  year: 2017 2018 2018
  publication-title: Adv. Mater. Adv. Electron. Mater. Nano Res.
– volume: 6
  start-page: 496
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 2
  start-page: 10
  year: 2014
  publication-title: Adv. Opt. Mater.
– volume: 99 1 13 6
  start-page: 423 2633 5777 8433
  year: 2016 2010 2013 2015
  publication-title: Carbon J. Phys. Chem. Lett. Nano Lett. Nat. Commun.
– volume: 8
  start-page: 4918
  year: 2018
  publication-title: Sci. Rep.
– volume: 22 8 12 4
  start-page: 67 8839 6146
  year: 2010 2017 2018 2010
  publication-title: Adv. Mater. Nat. Commun. ACS Nano ACS Nano
– volume: 6
  start-page: 6448
  year: 2014
  publication-title: Nanoscale
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 5 2 6
  start-page: 15 120 7157
  year: 2010 2014 2015
  publication-title: Nano Today Adv. Opt. Mater. Nat. Commun.
– volume: 4
  year: 2017
  publication-title: 2D Mater.
– volume: 353 3
  start-page: 1413
  year: 2016 2018
  publication-title: Science Adv. Mater. Technol.
– volume: 9 29 29 6 12 12 2
  start-page: 1458 2176 1083 3310
  year: 2016 2017 2017 2016 2018 2018 2010
  publication-title: Energy Environ. Sci. Adv. Mater. Adv. Mater. Adv. Energy Mater. ACS Nano ACS Nano ACS Appl. Mater. Interfaces
– volume: 490
  start-page: 192
  year: 2012
  publication-title: Nature
– volume: 7
  year: 2018
  publication-title: Light: Sci. Appl.
– volume: 306 3
  start-page: 666
  year: 2004 2015
  publication-title: Science J. Mater. Chem. A
– volume: 1
  start-page: 777
  year: 2018
  publication-title: ACS Appl. Nano Mater.
– volume: 6
  start-page: 699
  year: 2014
  publication-title: Nanoscale
– volume: 255
  start-page: 1262
  year: 2018
  publication-title: Sens. Actuators, B
– volume: 26
  start-page: 276
  year: 2016
  publication-title: Nano Energy
– volume: 53
  start-page: 81
  year: 2013
  publication-title: Carbon
– volume: 6 320 321
  start-page: 183 1308 385
  year: 2007 2008 2008
  publication-title: Nat. Mater. Science Science
– volume: 36
  start-page: 180
  year: 2015
  publication-title: IEEE Electron Device Lett.
– volume: 24
  year: 2008
  publication-title: Langmuir
– volume: 7
  start-page: 3651
  year: 2015
  publication-title: Nanoscale
– volume: 4
  start-page: 4892
  year: 2015
  publication-title: Sci. Rep.
– volume: 50 7 12
  start-page: 1667 301 4577
  year: 2012 2012 2012
  publication-title: Carbon Chem. ‐ Asian J. Nano Lett.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 8
  start-page: 5883
  year: 2014
  publication-title: ACS Nano
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 11
  start-page: 6860
  year: 2017
  publication-title: ACS Nano
– volume: 104
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2986
  year: 2014
  publication-title: ACS Nano
– volume: 8
  start-page: 8179
  year: 2018
  publication-title: Sci. Rep.
– volume: 125 137 4
  start-page: 308 136 1145
  year: 2017 2018 2017
  publication-title: Carbon Carbon Mater. Horiz.
– volume: 54
  year: 2018
  publication-title: Chem. Commun.
– volume: 24
  year: 2013
  publication-title: Nanotechnology
– volume: 110
  start-page: 89
  year: 2018
  publication-title: Biosens. Bioelectron.
– volume: 25 4 14
  start-page: 2213
  year: 2015 2016 2018
  publication-title: Adv. Funct. Mater. J. Mater. Chem. A Small
– volume: 120
  start-page: 160
  year: 2018
  publication-title: Biosens. Bioelectron.
– volume: 16
  start-page: 1244
  year: 2016
  publication-title: Chem. Rec.
– volume: 45
  start-page: 57
  year: 2011
  publication-title: High Energy Chem.
– volume: 7
  start-page: 3414
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 117
  start-page: 663
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 8725
  year: 2014
  publication-title: ACS Nano
– volume: 100
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 20
  year: 2018
  publication-title: Light: Sci. Appl.
– volume: 141
  start-page: 83
  year: 2019
  publication-title: Carbon
– volume: 2
  start-page: 616
  year: 2017
  publication-title: ACS Sens.
– volume: 143 10
  start-page: 3327
  year: 2018 2018
  publication-title: Analyst ACS Appl. Mater. Interfaces
– volume: 39
  start-page: 4263
  year: 2014
  publication-title: Opt. Lett.
– volume: 10
  start-page: 723
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 111
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 25
  year: 2017
  publication-title: Opt. Express
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 24 10
  start-page: 4595
  year: 2014 2018
  publication-title: Adv. Funct. Mater. ACS Appl. Mater. Interfaces
– volume: 51
  start-page: 1609
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 80 28
  start-page: 1339 8328
  year: 1958 2016
  publication-title: J. Am. Chem. Soc. Adv. Mater.
– volume: 107
  start-page: 184
  year: 2018
  publication-title: Biosens. Bioelectron.
– volume: 75
  start-page: 236
  year: 2014
  publication-title: Carbon
– volume: 44
  start-page: 1363
  year: 2019
  publication-title: Opt. Lett.
– volume: 1
  start-page: 690
  year: 2014
  publication-title: ACS Photonics
– volume: 6 335 4 18 14
  start-page: 1395 1326 1475 57 1938
  year: 2012 2012 2013 2015 2014
  publication-title: ACS Nano Science Nat. Commun. Nano Energy Nano Lett.
– volume: 4
  start-page: 1671
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 10
  start-page: 441
  year: 2016
  publication-title: Laser Photonics Rev.
– volume: 277
  start-page: 114
  year: 2018
  publication-title: Sens. Actuators, B
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 46
  start-page: 2244
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 5415
  year: 2018
  publication-title: J. Mater. Chem. B
– volume: 12
  start-page: 2374
  year: 2012
  publication-title: Nano Lett.
– volume: 100 3
  start-page: 491
  year: 2008 2008
  publication-title: Phys. Rev. Lett. Nat. Nanotechnol.
– volume: 17
  start-page: 6469
  year: 2017
  publication-title: Nano Lett.
– volume: 124
  start-page: 167
  year: 2019
  publication-title: Biosens. Bioelectron.
– volume: 127
  start-page: 287
  year: 2018
  publication-title: Carbon
– volume: 99 10
  start-page: 1033
  year: 2011 2018
  publication-title: Appl. Phys. Lett. ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 9529
  year: 2016
  publication-title: ACS Nano
– volume: 2 25 27
  start-page: 4548 332
  year: 2017 2015 2015
  publication-title: Adv. Mater. Technol. Adv. Funct. Mater. Adv. Mater.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 116
  start-page: 3594
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 45
  start-page: 37
  year: 2018
  publication-title: Nano Energy
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 263
  year: 2011
  publication-title: ACS Nano
– volume: 98
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 8603
  year: 2015
  publication-title: Sci. Rep.
– volume: 102
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 1984
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 2851
  year: 2015
  publication-title: Nanoscale
– ident: e_1_2_8_67_3
  doi: 10.1039/C7MH00441A
– ident: e_1_2_8_2_1
  doi: 10.1103/PhysRevLett.100.016602
– ident: e_1_2_8_44_1
  doi: 10.1063/1.3622660
– ident: e_1_2_8_18_5
  doi: 10.1021/nl4047784
– ident: e_1_2_8_21_1
  doi: 10.1038/ncomms6714
– ident: e_1_2_8_54_1
  doi: 10.1088/0957-4484/24/27/275302
– ident: e_1_2_8_89_1
  doi: 10.1364/OL.44.001363
– ident: e_1_2_8_21_2
  doi: 10.1021/acsnano.5b00436
– ident: e_1_2_8_8_2
  doi: 10.1002/adma.201602211
– ident: e_1_2_8_50_1
  doi: 10.1039/C8CC07725H
– ident: e_1_2_8_18_3
  doi: 10.1038/ncomms2446
– ident: e_1_2_8_98_1
  doi: 10.1021/jp309382w
– ident: e_1_2_8_47_1
  doi: 10.1038/srep17557
– ident: e_1_2_8_80_1
  doi: 10.1016/j.bios.2018.02.031
– ident: e_1_2_8_16_4
  doi: 10.1021/nn1017389
– ident: e_1_2_8_21_4
  doi: 10.1002/smll.201702249
– ident: e_1_2_8_1_1
  doi: 10.1038/nmat1849
– ident: e_1_2_8_31_2
  doi: 10.1002/adfm.201501511
– ident: e_1_2_8_63_1
  doi: 10.1039/C8TA03830A
– ident: e_1_2_8_77_1
  doi: 10.1021/acssensors.7b00066
– ident: e_1_2_8_61_1
  doi: 10.1039/c4nr01220h
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.accounts.8b00084
– ident: e_1_2_8_60_2
  doi: 10.1002/aelm.201800339
– ident: e_1_2_8_5_1
  doi: 10.1002/adfm.201202460
– ident: e_1_2_8_93_1
  doi: 10.1002/smll.201802350
– ident: e_1_2_8_29_1
  doi: 10.1134/S0018143911010176
– ident: e_1_2_8_12_2
  doi: 10.1002/admt.201800258
– ident: e_1_2_8_35_1
  doi: 10.1063/1.4724213
– ident: e_1_2_8_15_1
  doi: 10.1021/nn5009353
– ident: e_1_2_8_16_3
  doi: 10.1021/acsnano.8b02162
– ident: e_1_2_8_6_2
  doi: 10.1039/C5TA00252D
– ident: e_1_2_8_9_1
  doi: 10.1021/la801744a
– ident: e_1_2_8_32_1
  doi: 10.1038/nnano.2011.110
– ident: e_1_2_8_31_3
  doi: 10.1002/adma.201403587
– ident: e_1_2_8_104_1
  doi: 10.1039/C7NR04889K
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.201606586
– ident: e_1_2_8_84_1
  doi: 10.1021/ph500106f
– ident: e_1_2_8_99_1
  doi: 10.1063/1.4794901
– ident: e_1_2_8_13_2
  doi: 10.1021/acs.nanolett.8b01651
– ident: e_1_2_8_85_1
  doi: 10.1002/advs.201800496
– ident: e_1_2_8_44_2
  doi: 10.1021/acsami.7b13741
– ident: e_1_2_8_23_2
  doi: 10.1039/C6TA06846D
– ident: e_1_2_8_34_1
  doi: 10.1002/adfm.201803990
– ident: e_1_2_8_17_1
  doi: 10.1039/C5TA09450J
– ident: e_1_2_8_25_6
  doi: 10.1021/acsnano.7b05877
– ident: e_1_2_8_81_1
  doi: 10.1016/j.bios.2018.03.019
– ident: e_1_2_8_27_1
  doi: 10.1016/j.carbon.2015.12.038
– ident: e_1_2_8_106_1
  doi: 10.1109/LED.2014.2385701
– ident: e_1_2_8_65_1
  doi: 10.1021/acsami.6b00808
– ident: e_1_2_8_20_1
  doi: 10.1038/lsa.2017.134
– ident: e_1_2_8_64_1
  doi: 10.1038/s41598-018-26503-4
– ident: e_1_2_8_22_3
  doi: 10.1021/nl301817t
– ident: e_1_2_8_60_1
  doi: 10.1002/adma.201603813
– ident: e_1_2_8_27_2
  doi: 10.1021/jz100790y
– ident: e_1_2_8_37_1
  doi: 10.1088/2053-1583/aa790e
– ident: e_1_2_8_48_1
  doi: 10.1002/adfm.201400296
– ident: e_1_2_8_57_1
  doi: 10.1016/j.nanoen.2017.12.033
– ident: e_1_2_8_49_1
  doi: 10.1002/lpor.201500256
– ident: e_1_2_8_24_2
  doi: 10.1002/adom.201300401
– ident: e_1_2_8_53_1
  doi: 10.1021/nn1026438
– ident: e_1_2_8_69_1
  doi: 10.1021/acsami.7b13701
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.200901942
– ident: e_1_2_8_42_1
  doi: 10.1016/j.nanoen.2016.04.045
– ident: e_1_2_8_8_1
  doi: 10.1021/ja01539a017
– ident: e_1_2_8_11_1
  doi: 10.1002/adom.201300317
– ident: e_1_2_8_55_1
  doi: 10.1038/srep11662
– ident: e_1_2_8_88_1
  doi: 10.1063/1.5020918
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.201404046
– ident: e_1_2_8_90_1
  doi: 10.1039/C8TB01285G
– ident: e_1_2_8_21_3
  doi: 10.1002/adma.201503333
– ident: e_1_2_8_24_1
  doi: 10.1016/j.nantod.2009.12.009
– ident: e_1_2_8_91_1
  doi: 10.1021/acsnano.6b04769
– ident: e_1_2_8_1_2
  doi: 10.1126/science.1156965
– ident: e_1_2_8_75_1
  doi: 10.1016/j.snb.2017.08.116
– ident: e_1_2_8_18_2
  doi: 10.1126/science.1216744
– ident: e_1_2_8_25_5
  doi: 10.1021/acsnano.7b08539
– ident: e_1_2_8_103_1
  doi: 10.1063/1.4864616
– ident: e_1_2_8_16_2
  doi: 10.1038/ncomms14579
– ident: e_1_2_8_27_4
  doi: 10.1038/ncomms9433
– ident: e_1_2_8_58_1
  doi: 10.1002/adma.201805705
– ident: e_1_2_8_96_1
  doi: 10.1038/srep04892
– ident: e_1_2_8_100_1
  doi: 10.1016/j.carbon.2012.10.034
– ident: e_1_2_8_38_1
  doi: 10.1002/aenm.201801840
– ident: e_1_2_8_94_1
  doi: 10.1063/1.4752752
– ident: e_1_2_8_23_3
  doi: 10.1002/smll.201803143
– ident: e_1_2_8_70_1
  doi: 10.1038/s41598-018-23091-1
– ident: e_1_2_8_79_2
  doi: 10.1021/acsami.8b16692
– ident: e_1_2_8_4_1
  doi: 10.1038/nature11458
– ident: e_1_2_8_52_1
  doi: 10.1021/nl300346j
– ident: e_1_2_8_67_1
  doi: 10.1016/j.carbon.2017.09.063
– ident: e_1_2_8_97_1
  doi: 10.1364/OL.39.004263
– ident: e_1_2_8_24_3
  doi: 10.1038/ncomms8157
– ident: e_1_2_8_48_2
  doi: 10.1021/acsami.8b03738
– ident: e_1_2_8_73_1
  doi: 10.1039/C6NR07620C
– ident: e_1_2_8_25_4
  doi: 10.1002/aenm.201600050
– ident: e_1_2_8_25_7
  doi: 10.1021/am1007326
– ident: e_1_2_8_27_3
  doi: 10.1021/nl402057j
– ident: e_1_2_8_1_3
  doi: 10.1126/science.1157996
– ident: e_1_2_8_102_1
  doi: 10.1063/1.3569720
– ident: e_1_2_8_56_1
  doi: 10.1039/C4NR07078J
– ident: e_1_2_8_78_1
  doi: 10.1016/j.bios.2018.10.015
– ident: e_1_2_8_12_1
  doi: 10.1126/science.aah3398
– ident: e_1_2_8_6_1
  doi: 10.1126/science.1102896
– ident: e_1_2_8_67_2
  doi: 10.1016/j.carbon.2018.05.031
– ident: e_1_2_8_40_1
  doi: 10.1016/j.carbon.2017.11.014
– ident: e_1_2_8_13_1
  doi: 10.1021/nl5005916
– ident: e_1_2_8_22_1
  doi: 10.1016/j.carbon.2011.12.011
– ident: e_1_2_8_33_1
  doi: 10.1021/ar300184v
– ident: e_1_2_8_41_1
  doi: 10.1002/adfm.201805271
– ident: e_1_2_8_28_1
  doi: 10.1016/j.carbon.2018.09.030
– ident: e_1_2_8_62_1
  doi: 10.1039/C8TA08249A
– ident: e_1_2_8_76_1
  doi: 10.1002/adma.201804327
– ident: e_1_2_8_7_2
  doi: 10.1038/nnano.2008.215
– ident: e_1_2_8_87_1
  doi: 10.1063/1.5003610
– ident: e_1_2_8_79_1
  doi: 10.1039/C8AN00888D
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.201803621
– ident: e_1_2_8_105_1
  doi: 10.1021/am509065d
– ident: e_1_2_8_18_4
  doi: 10.1016/j.nanoen.2015.09.009
– ident: e_1_2_8_95_1
  doi: 10.1364/OE.25.031025
– ident: e_1_2_8_68_1
  doi: 10.1002/adma.201801384
– ident: e_1_2_8_7_1
  doi: 10.1021/ar300203n
– ident: e_1_2_8_92_1
  doi: 10.1039/C4NR05207B
– ident: e_1_2_8_86_1
  doi: 10.1021/nn500283q
– ident: e_1_2_8_30_1
  doi: 10.1021/jp209843m
– ident: e_1_2_8_74_1
  doi: 10.1038/srep08603
– ident: e_1_2_8_82_1
  doi: 10.1016/j.bios.2018.07.071
– ident: e_1_2_8_45_1
  doi: 10.1002/adma.201707416
– ident: e_1_2_8_2_2
  doi: 10.1038/nnano.2008.199
– ident: e_1_2_8_22_2
  doi: 10.1002/asia.201100882
– ident: e_1_2_8_25_2
  doi: 10.1002/adma.201700496
– ident: e_1_2_8_31_1
  doi: 10.1002/admt.201700045
– ident: e_1_2_8_10_1
  doi: 10.1021/nn504946k
– ident: e_1_2_8_39_1
  doi: 10.1002/adma.201704449
– ident: e_1_2_8_71_1
  doi: 10.1016/j.snb.2018.07.179
– ident: e_1_2_8_59_1
  doi: 10.1002/adma.201800062
– ident: e_1_2_8_3_1
  doi: 10.1038/ncomms14560
– ident: e_1_2_8_18_1
  doi: 10.1021/nn204200w
– ident: e_1_2_8_66_1
  doi: 10.1016/j.carbon.2014.03.058
– ident: e_1_2_8_25_1
  doi: 10.1039/C5EE03637B
– ident: e_1_2_8_60_3
  doi: 10.1007/s12274-017-1716-y
– ident: e_1_2_8_83_1
  doi: 10.1038/s41377-018-0020-2
– ident: e_1_2_8_25_3
  doi: 10.1002/adma.201702211
– ident: e_1_2_8_46_1
  doi: 10.1021/acs.nanolett.7b03530
– ident: e_1_2_8_26_1
  doi: 10.1002/tcr.201500306
– ident: e_1_2_8_72_1
  doi: 10.1039/C3NR04521H
– ident: e_1_2_8_43_1
  doi: 10.1021/acsami.7b15922
– ident: e_1_2_8_51_1
  doi: 10.1021/acsanm.7b00225
– ident: e_1_2_8_101_1
  doi: 10.1021/acsnano.7b01987
SSID ssj0009606
Score 2.704015
SecondaryResourceType review_article
Snippet Recent years have witnessed the rise of graphene and its applications in various electronic devices. Specifically, featuring excellent flexibility,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1901981
SubjectTerms Actuators
Electronic devices
electronic skin
Electronics
Flexible components
flexible electronics
Graphene
graphene oxide
laser fabrication
Laser processing
Lasers
Materials science
Optoelectronic devices
Title Laser Fabrication of Graphene‐Based Flexible Electronics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901981
https://www.ncbi.nlm.nih.gov/pubmed/31441164
https://www.proquest.com/docview/2389219410
https://www.proquest.com/docview/2335173385
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4hJhh4PwIFBQmJyaVxbCdmK49SIcqAQOoW-RJnoWpRHwsTP4HfyC_BdtKUghASLJEi24p9vvN95_g-AxynxmvKVGkSaR0SFvMGUZJRwkSWI6cYZC5DrnMn2o_spsu7n7L4C36IasPNWoZbr62BKxydzkhDVeZ4g6xDky732h7YsqjofsYfZeG5I9sLOZGCxVPWxgY9nW8-75W-Qc155OpcT2sV1LTTxYmTp_pkjPX05Quf439GtQYrJS71m4UircOC7m_A8ie2wk04uzUeb-i3FA7LjT5_kPvXlvHaLJjvr2_npjzzW5ZiE3vav6pu2BltwWPr6uGiTcqrF0hqU3FJ3lAxZnGIgQqlyLQOaC4QzTPiqGWmhEAmMEDGlYWYXCPL81gKE4DpWMbhNiz2B329C76maaQNaEGDBVnKpYojpFKnoeQG3YvcAzIVfZKWvOT2eoxeUjAq08TKJKlk4sFJVf-5YOT4sWZtOpNJaZmjxEAUaVZpFjQ8OKqKjU3ZHyWqrwcTWyfkQWSCd-7BTqEB1adCG4GaGNMD6ubxlz4kzctOs3rb-0ujfViiNsh3x4VqsDgeTvSBQUJjPHTa_gG95P3l
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hOAAHWqCUlC0NUqWeDBvHduLelsd2gV0OCCRukSdxLkW7aNm9cOpP6G_kl-DJa9lWCAkukSLbil_j-Wbi-Qbge-q0pk6NZZG1IROxbDOjBWdCZTlKjkFWRMgNLlTvWpzdyPo2IcXClPwQjcONJKM4r0nAySF9MGMNNVlBHEQaTVPw9RKl9Sb6_OPLGYMUAfSCbi-UTCsR17yNbX4w335eL_0HNuexa6F8uh8A626Xd05-708nuJ8-_MPo-K5xfYS1Cpr6nXIvrcOCHW7A6jPCwk342XdKb-x3DY4rX58_yv1fRHrtzszHP38PXXnmd4llE2-tf9Ik2bn_BNfdk6ujHquyL7CUonFZ3jYxZnGIgQm1yqwNeK4Q3TOSaHVmlEKhMEAhDaFMaVHkeayVs8FsrONwCxaHo6HdBt_yNLIOt6CDgyKV2sQRcm3TUEsH8FXuAavnPkkranLKkHGblKTKPKE5SZo58eBHU_-uJOV4sWarXsqkEs77xKEU7Q5qEbQ92GuKnVjRvxIztKMp1QllEDn7XXrwudwCzadCMkKdmekBLxbylT4kneNBp3n78pZG32C5dzXoJ_3Ti_MdWOFk8xe3h1qwOBlP7VcHjCa4W2z9J6nOAhA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EQfTg-1GfFQRP0TZN0sbb6lrfIqLgrWTa9OKyK-vuxZM_wd_oLzFpu9VVRNBLoSShySST-SbNfAOwnRqrKVOlSah1QFjEPaIko4SJLEdO0c-KCLnLK3Fyx87u-f2nKP6SH6I-cLOaUezXVsEfs3zvgzRUZQVvkDVo0sZejzHhSZu8oXnzQSBl8XnBthdwIgWLBrSNHt0bbj9slr5hzWHoWtieeBrUoNfllZOH3X4Pd9PnL4SO_xnWDExVwNRtlCtpFkZ0ew4mP9EVzsP-hTF5XTdW2K1O-txO7h5bymuzY769vB6Y8syNLccmtrR7VKfYeVqAu_jo9vCEVLkXSGpjcUnuqQizKEBfBVJkWvs0F4jmGXLUMlNCIBPoI-PKYkyukeV5JIXxwHQko2ARRtudtl4GV9M01Aa1oAGDLOVSRSFSqdNAcgPvRe4AGYg-SSticpsfo5WUlMo0sTJJapk4sFPXfywpOX6suTaYyaRSzafEYBRptmnmew5s1cVGqeyfEtXWnb6tE3A_NN47d2CpXAH1pwLrghon0wFazOMvfUgazctG_bbyl0abMH7djJOL06vzVZig1uEvrg6twWiv29frBhX1cKNY-O-YIQC_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+Fabrication+of+Graphene-Based+Flexible+Electronics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=You%2C+Rui&rft.au=Liu%2C+Yu-Qing&rft.au=Hao%2C+Yi-Long&rft.au=Han%2C+Dong-Dong&rft.date=2020-04-01&rft.eissn=1521-4095&rft.volume=32&rft.issue=15&rft.spage=e1901981&rft_id=info:doi/10.1002%2Fadma.201901981&rft_id=info%3Apmid%2F31441164&rft.externalDocID=31441164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon