A multiple imputation‐based sensitivity analysis approach for data subject to missing not at random

Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random, researchers often perform a sensitivity analysis to evaluate the impact of various missingness mechanisms. In general, sensitivity analysis approaches require a full specifi...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 39; no. 26; pp. 3756 - 3771
Main Authors Hsu, Chiu‐Hsieh, He, Yulei, Hu, Chengcheng, Zhou, Wei
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 20.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random, researchers often perform a sensitivity analysis to evaluate the impact of various missingness mechanisms. In general, sensitivity analysis approaches require a full specification of the relationship between missing values and missingness probabilities. Such relationship can be specified based on a selection model, a pattern‐mixture model or a shared parameter model. Under the selection modeling framework, we propose a sensitivity analysis approach using a nonparametric multiple imputation strategy. The proposed approach only requires specifying the correlation coefficient between missing values and selection (response) probabilities under a selection model. The correlation coefficient is a standardized measure and can be used as a natural sensitivity analysis parameter. The sensitivity analysis involves multiple imputations of missing values, yet the sensitivity parameter is only used to select imputing/donor sets. Hence, the proposed approach might be more robust against misspecifications of the sensitivity parameter. For illustration, the proposed approach is applied to incomplete measurements of level of preoperative Hemoglobin A1c, for patients who had high‐grade carotid artery stenosisa and were scheduled for surgery. A simulation study is conducted to evaluate the performance of the proposed approach.
AbstractList Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random, researchers often perform a sensitivity analysis to evaluate the impact of various missingness mechanisms. In general, sensitivity analysis approaches require a full specification of the relationship between missing values and missingness probabilities. Such relationship can be specified based on a selection model, a pattern‐mixture model or a shared parameter model. Under the selection modeling framework, we propose a sensitivity analysis approach using a nonparametric multiple imputation strategy. The proposed approach only requires specifying the correlation coefficient between missing values and selection (response) probabilities under a selection model. The correlation coefficient is a standardized measure and can be used as a natural sensitivity analysis parameter. The sensitivity analysis involves multiple imputations of missing values, yet the sensitivity parameter is only used to select imputing/donor sets. Hence, the proposed approach might be more robust against misspecifications of the sensitivity parameter. For illustration, the proposed approach is applied to incomplete measurements of level of preoperative Hemoglobin A1c, for patients who had high‐grade carotid artery stenosisa and were scheduled for surgery. A simulation study is conducted to evaluate the performance of the proposed approach.
Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random (MNAR), researchers often perform a sensitivity analysis to evaluate the impact of various missingness mechanisms. In general, sensitivity analysis approaches require a full specification of the relationship between missing values and missingness probabilities. Such relationship can be specified based on a selection model, a pattern-mixture model or a shared parameter model. Under the selection modeling framework, we propose a sensitivity analysis approach using a nonparametric multiple imputation strategy. The proposed approach only requires specifying the correlation coefficient between missing values and selection (response) probabilities under a selection model. The correlation coefficient is a standardized measure and can be used as a natural sensitivity analysis parameter. The sensitivity analysis involves multiple imputations of missing values, yet the sensitivity parameter is only used to select imputing/donor sets. Hence, the proposed approach might be more robust against misspecifications of the sensitivity parameter. For illustration, the proposed approach is applied to incomplete measurements of level of pre-operative Hemoglobin A1c, for patients who had high-grade carotid artery stenosisa and were scheduled for surgery. A simulation study is conducted to evaluate the performance of the proposed approach.
Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random, researchers often perform a sensitivity analysis to evaluate the impact of various missingness mechanisms. In general, sensitivity analysis approaches require a full specification of the relationship between missing values and missingness probabilities. Such relationship can be specified based on a selection model, a pattern-mixture model or a shared parameter model. Under the selection modeling framework, we propose a sensitivity analysis approach using a nonparametric multiple imputation strategy. The proposed approach only requires specifying the correlation coefficient between missing values and selection (response) probabilities under a selection model. The correlation coefficient is a standardized measure and can be used as a natural sensitivity analysis parameter. The sensitivity analysis involves multiple imputations of missing values, yet the sensitivity parameter is only used to select imputing/donor sets. Hence, the proposed approach might be more robust against misspecifications of the sensitivity parameter. For illustration, the proposed approach is applied to incomplete measurements of level of preoperative Hemoglobin A1c, for patients who had high-grade carotid artery stenosisa and were scheduled for surgery. A simulation study is conducted to evaluate the performance of the proposed approach.Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random, researchers often perform a sensitivity analysis to evaluate the impact of various missingness mechanisms. In general, sensitivity analysis approaches require a full specification of the relationship between missing values and missingness probabilities. Such relationship can be specified based on a selection model, a pattern-mixture model or a shared parameter model. Under the selection modeling framework, we propose a sensitivity analysis approach using a nonparametric multiple imputation strategy. The proposed approach only requires specifying the correlation coefficient between missing values and selection (response) probabilities under a selection model. The correlation coefficient is a standardized measure and can be used as a natural sensitivity analysis parameter. The sensitivity analysis involves multiple imputations of missing values, yet the sensitivity parameter is only used to select imputing/donor sets. Hence, the proposed approach might be more robust against misspecifications of the sensitivity parameter. For illustration, the proposed approach is applied to incomplete measurements of level of preoperative Hemoglobin A1c, for patients who had high-grade carotid artery stenosisa and were scheduled for surgery. A simulation study is conducted to evaluate the performance of the proposed approach.
Author Hsu, Chiu‐Hsieh
He, Yulei
Hu, Chengcheng
Zhou, Wei
AuthorAffiliation 2 National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, MD, USA
3 Department of Surgery, University of Arizona, Tucson, MI, USA
1 Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
AuthorAffiliation_xml – name: 3 Department of Surgery, University of Arizona, Tucson, MI, USA
– name: 1 Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA
– name: 2 National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, MD, USA
Author_xml – sequence: 1
  givenname: Chiu‐Hsieh
  orcidid: 0000-0002-7451-4018
  surname: Hsu
  fullname: Hsu, Chiu‐Hsieh
  email: pchhsu@email.arizona.edu
  organization: University of Arizona
– sequence: 2
  givenname: Yulei
  orcidid: 0000-0002-8451-5452
  surname: He
  fullname: He, Yulei
  organization: Centers for Disease Control and Prevention
– sequence: 3
  givenname: Chengcheng
  surname: Hu
  fullname: Hu, Chengcheng
  organization: University of Arizona
– sequence: 4
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
  organization: University of Arizona
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32717095$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1uFSEYhompsafVxCswJG7czBGYYRhWpmmsNqlxoa7JxwzTcsLACEybs_MSvMZeiRxPW3-iG74Fz_fmgfcIHfjgDULPKVlTQtjrZKd110r6CK0okaIijHcHaEWYEFUrKD9ERyltCKGUM_EEHdZMUEEkXyFzgqfFZTs7g-00LxmyDf7223cNyQw4GZ9sttc2bzF4cNtkE4Z5jgH6KzyGiAfIgNOiN6bPOAc82ZSsv8Q-ZAwZR_BDmJ6ixyO4ZJ7dzWP05ezt59P31cXHd-enJxdV39SSVkM5G8Mlr3U7kmEANgjRSdCGaD7CSEXTaiCipkSMPZP9IDjjUooWjNag62P0Zp87L3oyQ298juDUHO0EcasCWPXnjbdX6jJcK0qajnZcloRXdwkxfF1Myqo8qDfOgTdhSYo1rCMtpYIX9OVf6CYssXzSjuKEiq7pmkK9-F3pweW-ggKs90AfQ0rRjKq3-xaKoXVFTe06VqVjtev4l-LDwn3mP9Bqj95YZ7b_5dSn8w8_-R9DkLhS
CitedBy_id crossref_primary_10_1007_s11136_022_03299_5
crossref_primary_10_1155_2022_5001467
crossref_primary_10_1200_CCI_23_00097
crossref_primary_10_2196_48898
crossref_primary_10_1002_sim_9723
crossref_primary_10_20982_tqmp_19_4_p347
crossref_primary_10_1016_j_socscimed_2023_115926
crossref_primary_10_1186_s12874_022_01727_1
crossref_primary_10_1186_s13063_023_07777_0
crossref_primary_10_1016_j_jclinepi_2022_08_016
crossref_primary_10_1111_1475_6773_14376
Cites_doi 10.5705/ss.2010.069
10.1002/sim.6902
10.1002/9781119013563
10.1177/0962280213490014
10.1023/A:1008749011772
10.2307/1912352
10.1111/1467-9868.00055
10.1201/b11826
10.1080/01621459.1977.10480610
10.1016/j.jvs.2012.05.092
10.1016/0167-9473(95)00057-7
10.2307/1913937
10.1177/0962280217715663
10.1080/10543400903243009
10.1002/sim.3001
10.1080/01621459.1993.10594302
10.1002/bimj.201400256
10.1002/9780470316696
10.1002/sim.6197
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
K9.
7X8
5PM
DOI 10.1002/sim.8691
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
PubMed

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3771
ExternalDocumentID PMC10481859
32717095
10_1002_sim_8691
SIM8691
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: P30 CA023074; R01NS070308
– fundername: NIH HHS
  grantid: P30 CA023074
– fundername: NIH HHS
  grantid: R01NS070308
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
5PM
ID FETCH-LOGICAL-c4391-d4394e5953b6f0dda2d7789abe0b5faf1746ba073107fc29cd75259976aebbab3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 18:36:42 EDT 2025
Thu Jul 10 23:55:51 EDT 2025
Fri Jul 25 05:11:28 EDT 2025
Thu Apr 03 07:00:42 EDT 2025
Thu Apr 24 22:58:24 EDT 2025
Tue Jul 01 03:28:16 EDT 2025
Wed Jan 22 16:32:17 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords missing not at random
multiple imputation
selection model
sensitivity analysis
correlation coefficient
Language English
License 2020 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4391-d4394e5953b6f0dda2d7789abe0b5faf1746ba073107fc29cd75259976aebbab3
Notes Funding information
National Institutes of Health, P30 CA023074; R01NS070308
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7451-4018
0000-0002-8451-5452
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10481859
PMID 32717095
PQID 2450178484
PQPubID 48361
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10481859
proquest_miscellaneous_2428061175
proquest_journals_2450178484
pubmed_primary_32717095
crossref_citationtrail_10_1002_sim_8691
crossref_primary_10_1002_sim_8691
wiley_primary_10_1002_sim_8691_SIM8691
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20 November 2020
PublicationDateYYYYMMDD 2020-11-20
PublicationDate_xml – month: 11
  year: 2020
  text: 20 November 2020
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 25
1974; 42
1979; 47
2012
2000; 15
1993; 88
1997; 59
2008; 27
1987
2019; 28
1977; 72
2014
2002
2009; 19
2012; 56
2012; 22
2016; 58
2016; 35
2014; 33
1996; 22
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Yuan Y (e_1_2_7_14_1) 2014
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 42
  start-page: 679
  year: 1974
  end-page: 694
  article-title: Shadow prices, market wages, and labor supply
  publication-title: Econometrica
– volume: 19
  start-page: 1085
  issue: 6
  year: 2009
  end-page: 1098
  article-title: Missing data handling methods in medical device clinical trials
  publication-title: J Biopharm Stat
– volume: 88
  start-page: 125
  year: 1993
  end-page: 134
  article-title: Pattern‐mixture models for multivariate incomplete data
  publication-title: J Am Stat Assoc
– volume: 28
  start-page: 102
  year: 2019
  end-page: 116
  article-title: A robust imputation method for missing responses and covariates in sample selection models
  publication-title: Stat Methods Med Res
– volume: 25
  start-page: 1471
  year: 2013
  end-page: 1489
  article-title: Sensitivity analysis of incomplete longitudinal data departing from the missing at random assumption: methodology and application in a clinical trial with drop‐outs
  publication-title: Stat Methods Med Res
– volume: 15
  start-page: 173
  year: 2000
  end-page: 199
  article-title: Collinearity and two‐step estimation of sample selection models: problems, origins and remedies
  publication-title: Comput Econ
– year: 2002
– year: 1987
– volume: 22
  start-page: 425
  year: 1996
  end-page: 446
  article-title: Partially parametric techniques for multiple imputation
  publication-title: Comput Stat Data Anal
– volume: 47
  start-page: 153
  year: 1979
  end-page: 161
  article-title: Sample selection bias as a specification error
  publication-title: Econometrica
– volume: 35
  start-page: 2907
  year: 2016
  end-page: 2920
  article-title: A multiple imputation approach for MNAR mechanisms compatible with Heckman's model
  publication-title: Stat Med
– volume: 33
  start-page: 4170
  year: 2014
  end-page: 4185
  article-title: Sensitivity analysis for a partially missing binary outcome in a two‐arm randomized clinical trial
  publication-title: Stat Med
– volume: 59
  start-page: 55
  year: 1997
  end-page: 95
  article-title: Inference for non‐random samples
  publication-title: J Royal Stat Soc Ser B (Stat Methodol)
– volume: 27
  start-page: 83
  year: 2008
  end-page: 102
  article-title: Multiple imputation using an iterative hot‐deck with distance‐based donor selection
  publication-title: Stat Med
– year: 2014
– volume: 56
  start-page: 1571
  year: 2012
  end-page: 1578
  article-title: Prospective neurocognitive evaluation of patients undergoing carotid interventions
  publication-title: J Vasc Surg
– volume: 72
  start-page: 538
  issue: 359
  year: 1977
  end-page: 543
  article-title: Formalizing subjective notions about the effect of nonrespondents in sample surveys
  publication-title: J Am Stat Assoc
– volume: 22
  start-page: 149
  year: 2012
  end-page: 172
  article-title: Doubly robust nonparametric multiple imputation for ignorable missing data
  publication-title: Stat Sin
– volume: 58
  start-page: 588
  year: 2016
  end-page: 606
  article-title: Doubly robust multiple imputation using kernel‐based techniques
  publication-title: Biom J
– year: 2012
– volume-title: Sensitivity Analysis in Multiple Imputation for Missing Data
  year: 2014
  ident: e_1_2_7_14_1
– ident: e_1_2_7_8_1
  doi: 10.5705/ss.2010.069
– ident: e_1_2_7_15_1
  doi: 10.1002/sim.6902
– ident: e_1_2_7_18_1
  doi: 10.1002/9781119013563
– ident: e_1_2_7_20_1
  doi: 10.1177/0962280213490014
– ident: e_1_2_7_22_1
  doi: 10.1023/A:1008749011772
– ident: e_1_2_7_6_1
  doi: 10.2307/1912352
– ident: e_1_2_7_7_1
  doi: 10.1111/1467-9868.00055
– ident: e_1_2_7_13_1
  doi: 10.1201/b11826
– ident: e_1_2_7_2_1
  doi: 10.1080/01621459.1977.10480610
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jvs.2012.05.092
– ident: e_1_2_7_10_1
  doi: 10.1016/0167-9473(95)00057-7
– ident: e_1_2_7_5_1
  doi: 10.2307/1913937
– ident: e_1_2_7_16_1
  doi: 10.1177/0962280217715663
– ident: e_1_2_7_4_1
  doi: 10.1080/10543400903243009
– ident: e_1_2_7_11_1
  doi: 10.1002/sim.3001
– ident: e_1_2_7_17_1
– ident: e_1_2_7_3_1
  doi: 10.1080/01621459.1993.10594302
– ident: e_1_2_7_9_1
  doi: 10.1002/bimj.201400256
– ident: e_1_2_7_12_1
  doi: 10.1002/9780470316696
– ident: e_1_2_7_21_1
  doi: 10.1002/sim.6197
SSID ssj0011527
Score 2.414561
Snippet Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random, researchers often perform a...
Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random (MNAR), researchers often perform...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3756
SubjectTerms correlation coefficient
missing not at random
multiple imputation
selection model
Sensitivity analysis
Title A multiple imputation‐based sensitivity analysis approach for data subject to missing not at random
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8691
https://www.ncbi.nlm.nih.gov/pubmed/32717095
https://www.proquest.com/docview/2450178484
https://www.proquest.com/docview/2428061175
https://pubmed.ncbi.nlm.nih.gov/PMC10481859
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NattAEB6CD8EQ2sZJW7Vp2EJoT7IleVeWjiHUOAHn0NZg6EHsalfUtJFKJV966iP0GfMkmdFKahwnEHLSQaO_1czOt7Mz3wCc-IhhJfoBlyuTuTyWaFLGeK7JYp7qSaR1XfU-vwxnC36xFMsmq5JqYSw_RBdwI8uo52sycKnK0X_S0HJ1NYzCunCdUrUID33umKP8tlsr7VCGE1-0vLNeMGov3PREW_ByO0vyNnqt3c_0OXxrX9xmnfwYris1TP_c4XR82pe9gGcNKmWnVo32YcfkA9idN_vuA9iz0T1mi5YG0CeMaimeD8CcsjYtka2oR0T9s6___iMPqVlJKfK2RwWTDQUKa6nMGWJmRlmqrFwrCgmxqmCoehTBYHlRMVkx9Ka6uDqExfTT17OZ23RvcFOq5nU11dwaEYuxCjNPaxnoySSKpTKeEpnMcCkUKokzDC5AszSIUTMErsUQHkmjlFTjl9DLi9y8BkaoToQRN7FWXAklJeI06WVoBWO6qwMf2z-ZpA21OXXY-JlYUuYgwSFNaEgdeN9J_rJ0HvfIHLXKkDQGXSYBFzh3RTzieIvuNI4H7a_I3BRrkqFtauI-deCV1Z3uIeMA180IZx2INrSqEyCa780z-ep7TfftE6VPJGIHPtRa8-CLJ1_O53R881jBt9APKHzg-zhZHkGv-r027xBjVeq4tqYbOHknwQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRaKVEI9tgUAprlS1p2yTrJ1NxKkCqu1je-hD6qFSZMeOWLVNEJu9cOIn8Bv5JczEcWBbKlWccsjk5cx4Po9nvgHYDBHDSvQDPlem8Hkq0aSMCXxTpDzXw0Trpup9fByPzvnBhbhYgA-uFsbyQ3QBN7KMZr4mA6eA9M4f1tDp5KafxFS5_ogaehNx_qeTjjsqdP1aaY8yHobCMc8G0Y67ct4X3QGYd_Mk_8avjQPaewaX7tVt3slVf1arfv79Fqvjf37bc3jaAlO2azXpBSyYsgePx-3Wew-e2AAfs3VLPVgmmGpZnlfA7DKXmcgm1Cai-d-_fvwkJ6nZlLLkbZsKJlsWFObYzBnCZkaJqmw6UxQVYnXFUPsoiMHKqmayZuhQdXWzCud7n88-jvy2gYOfU0Gvr6ns1ohUDFRcBFrLSA-HSSqVCZQoZIGroVhJnGRwDVrkUYrKIXA5hghJGqWkGryExbIqzWtgBOxEnHCTasWVUFIiVJNBgYYwoLt6sO1-ZZa37ObUZOM6s7zMUYZDmtGQerDRSX61jB7_kFlz2pC1Nj3NIi5w-kp4wvEW3WkcD9pikaWpZiRDO9VEf-rBK6s83UMGES6dEdF6kMypVSdATN_zZ8rJl4bxOyRWn0SkHmw1anPvi2en-2M6vnmo4HtYGp2Nj7Kj_ePDt7AcUTQhDHHuXIPF-tvMvEPIVav1xrR-A4dnK90
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hKiEkBO22QOi2GAm1pyxJ1s4mR1RYQcsi1IKExCGyY0ddFZIVm7301EfoM_ZJOhMnKcuPhHrKIZM_Z8bzeTzzDcCujxhWoh9wuTKZy2OJJmWM55os5qkeRFpXVe-j0_Dogn--FJd1ViXVwlh-iDbgRpZRzddk4BOd7f0jDZ2Ob3pRSIXrL3joxdS24eBrSx3lN-1aaYsyHPiiIZ71gr3mynlX9ABfPkyTvAtfK_8zXIOr5s1t2smP3qxUvfTnPVLH__u0l7Baw1K2b_XoFSyYvANLo3rjvQMrNrzHbNVSB5YJpFqO59dg9lmTl8jG1CSi-tt_fv0mF6nZlHLkbZMKJmsOFNZwmTMEzYzSVNl0pigmxMqCoe5RCIPlRclkydCd6uLmDVwMD88_Hbl1-wY3pXJeV1PRrRGx6Ksw87SWgR4Molgq4ymRyQzXQqGSOMXgCjRLgxhVQ-BiDPGRNEpJ1V-HxbzIzSYwgnUijLiJteJKKCkRqEkvQzPo010d-Nj8ySStuc2pxcZ1YlmZgwSHNKEhdWCnlZxYPo9HZLqNMiS1RU-TgAucvCIecbxFexrHgzZYZG6KGcnQPjWRnzqwYXWnfUg_wIUz4lkHojmtagWI53v-TD7-XvF9-8TpE4nYgQ-V1jz54sm34xEdt54ruA1LZwfD5OT49MtbWA4olOD7OHF2YbG8nZl3iLdK9b4yrL_0PSqM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiple+imputation%E2%80%90based+sensitivity+analysis+approach+for+data+subject+to+missing+not+at+random&rft.jtitle=Statistics+in+medicine&rft.au=Chiu%E2%80%90Hsieh+Hsu&rft.au=He%2C+Yulei&rft.au=Hu%2C+Chengcheng&rft.au=Zhou%2C+Wei&rft.date=2020-11-20&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=39&rft.issue=26&rft.spage=3756&rft.epage=3771&rft_id=info:doi/10.1002%2Fsim.8691&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon