A multiple imputation‐based sensitivity analysis approach for data subject to missing not at random
Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random, researchers often perform a sensitivity analysis to evaluate the impact of various missingness mechanisms. In general, sensitivity analysis approaches require a full specifi...
Saved in:
Published in | Statistics in medicine Vol. 39; no. 26; pp. 3756 - 3771 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
20.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random, researchers often perform a sensitivity analysis to evaluate the impact of various missingness mechanisms. In general, sensitivity analysis approaches require a full specification of the relationship between missing values and missingness probabilities. Such relationship can be specified based on a selection model, a pattern‐mixture model or a shared parameter model. Under the selection modeling framework, we propose a sensitivity analysis approach using a nonparametric multiple imputation strategy. The proposed approach only requires specifying the correlation coefficient between missing values and selection (response) probabilities under a selection model. The correlation coefficient is a standardized measure and can be used as a natural sensitivity analysis parameter. The sensitivity analysis involves multiple imputations of missing values, yet the sensitivity parameter is only used to select imputing/donor sets. Hence, the proposed approach might be more robust against misspecifications of the sensitivity parameter. For illustration, the proposed approach is applied to incomplete measurements of level of preoperative Hemoglobin A1c, for patients who had high‐grade carotid artery stenosisa and were scheduled for surgery. A simulation study is conducted to evaluate the performance of the proposed approach. |
---|---|
AbstractList | Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random, researchers often perform a sensitivity analysis to evaluate the impact of various missingness mechanisms. In general, sensitivity analysis approaches require a full specification of the relationship between missing values and missingness probabilities. Such relationship can be specified based on a selection model, a pattern‐mixture model or a shared parameter model. Under the selection modeling framework, we propose a sensitivity analysis approach using a nonparametric multiple imputation strategy. The proposed approach only requires specifying the correlation coefficient between missing values and selection (response) probabilities under a selection model. The correlation coefficient is a standardized measure and can be used as a natural sensitivity analysis parameter. The sensitivity analysis involves multiple imputations of missing values, yet the sensitivity parameter is only used to select imputing/donor sets. Hence, the proposed approach might be more robust against misspecifications of the sensitivity parameter. For illustration, the proposed approach is applied to incomplete measurements of level of preoperative Hemoglobin A1c, for patients who had high‐grade carotid artery stenosisa and were scheduled for surgery. A simulation study is conducted to evaluate the performance of the proposed approach. Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random (MNAR), researchers often perform a sensitivity analysis to evaluate the impact of various missingness mechanisms. In general, sensitivity analysis approaches require a full specification of the relationship between missing values and missingness probabilities. Such relationship can be specified based on a selection model, a pattern-mixture model or a shared parameter model. Under the selection modeling framework, we propose a sensitivity analysis approach using a nonparametric multiple imputation strategy. The proposed approach only requires specifying the correlation coefficient between missing values and selection (response) probabilities under a selection model. The correlation coefficient is a standardized measure and can be used as a natural sensitivity analysis parameter. The sensitivity analysis involves multiple imputations of missing values, yet the sensitivity parameter is only used to select imputing/donor sets. Hence, the proposed approach might be more robust against misspecifications of the sensitivity parameter. For illustration, the proposed approach is applied to incomplete measurements of level of pre-operative Hemoglobin A1c, for patients who had high-grade carotid artery stenosisa and were scheduled for surgery. A simulation study is conducted to evaluate the performance of the proposed approach. Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random, researchers often perform a sensitivity analysis to evaluate the impact of various missingness mechanisms. In general, sensitivity analysis approaches require a full specification of the relationship between missing values and missingness probabilities. Such relationship can be specified based on a selection model, a pattern-mixture model or a shared parameter model. Under the selection modeling framework, we propose a sensitivity analysis approach using a nonparametric multiple imputation strategy. The proposed approach only requires specifying the correlation coefficient between missing values and selection (response) probabilities under a selection model. The correlation coefficient is a standardized measure and can be used as a natural sensitivity analysis parameter. The sensitivity analysis involves multiple imputations of missing values, yet the sensitivity parameter is only used to select imputing/donor sets. Hence, the proposed approach might be more robust against misspecifications of the sensitivity parameter. For illustration, the proposed approach is applied to incomplete measurements of level of preoperative Hemoglobin A1c, for patients who had high-grade carotid artery stenosisa and were scheduled for surgery. A simulation study is conducted to evaluate the performance of the proposed approach.Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random, researchers often perform a sensitivity analysis to evaluate the impact of various missingness mechanisms. In general, sensitivity analysis approaches require a full specification of the relationship between missing values and missingness probabilities. Such relationship can be specified based on a selection model, a pattern-mixture model or a shared parameter model. Under the selection modeling framework, we propose a sensitivity analysis approach using a nonparametric multiple imputation strategy. The proposed approach only requires specifying the correlation coefficient between missing values and selection (response) probabilities under a selection model. The correlation coefficient is a standardized measure and can be used as a natural sensitivity analysis parameter. The sensitivity analysis involves multiple imputations of missing values, yet the sensitivity parameter is only used to select imputing/donor sets. Hence, the proposed approach might be more robust against misspecifications of the sensitivity parameter. For illustration, the proposed approach is applied to incomplete measurements of level of preoperative Hemoglobin A1c, for patients who had high-grade carotid artery stenosisa and were scheduled for surgery. A simulation study is conducted to evaluate the performance of the proposed approach. |
Author | Hsu, Chiu‐Hsieh He, Yulei Hu, Chengcheng Zhou, Wei |
AuthorAffiliation | 2 National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, MD, USA 3 Department of Surgery, University of Arizona, Tucson, MI, USA 1 Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA |
AuthorAffiliation_xml | – name: 3 Department of Surgery, University of Arizona, Tucson, MI, USA – name: 1 Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA – name: 2 National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, MD, USA |
Author_xml | – sequence: 1 givenname: Chiu‐Hsieh orcidid: 0000-0002-7451-4018 surname: Hsu fullname: Hsu, Chiu‐Hsieh email: pchhsu@email.arizona.edu organization: University of Arizona – sequence: 2 givenname: Yulei orcidid: 0000-0002-8451-5452 surname: He fullname: He, Yulei organization: Centers for Disease Control and Prevention – sequence: 3 givenname: Chengcheng surname: Hu fullname: Hu, Chengcheng organization: University of Arizona – sequence: 4 givenname: Wei surname: Zhou fullname: Zhou, Wei organization: University of Arizona |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32717095$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1uFSEYhompsafVxCswJG7czBGYYRhWpmmsNqlxoa7JxwzTcsLACEybs_MSvMZeiRxPW3-iG74Fz_fmgfcIHfjgDULPKVlTQtjrZKd110r6CK0okaIijHcHaEWYEFUrKD9ERyltCKGUM_EEHdZMUEEkXyFzgqfFZTs7g-00LxmyDf7223cNyQw4GZ9sttc2bzF4cNtkE4Z5jgH6KzyGiAfIgNOiN6bPOAc82ZSsv8Q-ZAwZR_BDmJ6ixyO4ZJ7dzWP05ezt59P31cXHd-enJxdV39SSVkM5G8Mlr3U7kmEANgjRSdCGaD7CSEXTaiCipkSMPZP9IDjjUooWjNag62P0Zp87L3oyQ298juDUHO0EcasCWPXnjbdX6jJcK0qajnZcloRXdwkxfF1Myqo8qDfOgTdhSYo1rCMtpYIX9OVf6CYssXzSjuKEiq7pmkK9-F3pweW-ggKs90AfQ0rRjKq3-xaKoXVFTe06VqVjtev4l-LDwn3mP9Bqj95YZ7b_5dSn8w8_-R9DkLhS |
CitedBy_id | crossref_primary_10_1007_s11136_022_03299_5 crossref_primary_10_1155_2022_5001467 crossref_primary_10_1200_CCI_23_00097 crossref_primary_10_2196_48898 crossref_primary_10_1002_sim_9723 crossref_primary_10_20982_tqmp_19_4_p347 crossref_primary_10_1016_j_socscimed_2023_115926 crossref_primary_10_1186_s12874_022_01727_1 crossref_primary_10_1186_s13063_023_07777_0 crossref_primary_10_1016_j_jclinepi_2022_08_016 crossref_primary_10_1111_1475_6773_14376 |
Cites_doi | 10.5705/ss.2010.069 10.1002/sim.6902 10.1002/9781119013563 10.1177/0962280213490014 10.1023/A:1008749011772 10.2307/1912352 10.1111/1467-9868.00055 10.1201/b11826 10.1080/01621459.1977.10480610 10.1016/j.jvs.2012.05.092 10.1016/0167-9473(95)00057-7 10.2307/1913937 10.1177/0962280217715663 10.1080/10543400903243009 10.1002/sim.3001 10.1080/01621459.1993.10594302 10.1002/bimj.201400256 10.1002/9780470316696 10.1002/sim.6197 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION NPM K9. 7X8 5PM |
DOI | 10.1002/sim.8691 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 3771 |
ExternalDocumentID | PMC10481859 32717095 10_1002_sim_8691 SIM8691 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: P30 CA023074; R01NS070308 – fundername: NIH HHS grantid: P30 CA023074 – fundername: NIH HHS grantid: R01NS070308 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4391-d4394e5953b6f0dda2d7789abe0b5faf1746ba073107fc29cd75259976aebbab3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 18:36:42 EDT 2025 Thu Jul 10 23:55:51 EDT 2025 Fri Jul 25 05:11:28 EDT 2025 Thu Apr 03 07:00:42 EDT 2025 Thu Apr 24 22:58:24 EDT 2025 Tue Jul 01 03:28:16 EDT 2025 Wed Jan 22 16:32:17 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | missing not at random multiple imputation selection model sensitivity analysis correlation coefficient |
Language | English |
License | 2020 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4391-d4394e5953b6f0dda2d7789abe0b5faf1746ba073107fc29cd75259976aebbab3 |
Notes | Funding information National Institutes of Health, P30 CA023074; R01NS070308 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7451-4018 0000-0002-8451-5452 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10481859 |
PMID | 32717095 |
PQID | 2450178484 |
PQPubID | 48361 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10481859 proquest_miscellaneous_2428061175 proquest_journals_2450178484 pubmed_primary_32717095 crossref_citationtrail_10_1002_sim_8691 crossref_primary_10_1002_sim_8691 wiley_primary_10_1002_sim_8691_SIM8691 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20 November 2020 |
PublicationDateYYYYMMDD | 2020-11-20 |
PublicationDate_xml | – month: 11 year: 2020 text: 20 November 2020 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 25 1974; 42 1979; 47 2012 2000; 15 1993; 88 1997; 59 2008; 27 1987 2019; 28 1977; 72 2014 2002 2009; 19 2012; 56 2012; 22 2016; 58 2016; 35 2014; 33 1996; 22 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 Yuan Y (e_1_2_7_14_1) 2014 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_22_1 e_1_2_7_10_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 42 start-page: 679 year: 1974 end-page: 694 article-title: Shadow prices, market wages, and labor supply publication-title: Econometrica – volume: 19 start-page: 1085 issue: 6 year: 2009 end-page: 1098 article-title: Missing data handling methods in medical device clinical trials publication-title: J Biopharm Stat – volume: 88 start-page: 125 year: 1993 end-page: 134 article-title: Pattern‐mixture models for multivariate incomplete data publication-title: J Am Stat Assoc – volume: 28 start-page: 102 year: 2019 end-page: 116 article-title: A robust imputation method for missing responses and covariates in sample selection models publication-title: Stat Methods Med Res – volume: 25 start-page: 1471 year: 2013 end-page: 1489 article-title: Sensitivity analysis of incomplete longitudinal data departing from the missing at random assumption: methodology and application in a clinical trial with drop‐outs publication-title: Stat Methods Med Res – volume: 15 start-page: 173 year: 2000 end-page: 199 article-title: Collinearity and two‐step estimation of sample selection models: problems, origins and remedies publication-title: Comput Econ – year: 2002 – year: 1987 – volume: 22 start-page: 425 year: 1996 end-page: 446 article-title: Partially parametric techniques for multiple imputation publication-title: Comput Stat Data Anal – volume: 47 start-page: 153 year: 1979 end-page: 161 article-title: Sample selection bias as a specification error publication-title: Econometrica – volume: 35 start-page: 2907 year: 2016 end-page: 2920 article-title: A multiple imputation approach for MNAR mechanisms compatible with Heckman's model publication-title: Stat Med – volume: 33 start-page: 4170 year: 2014 end-page: 4185 article-title: Sensitivity analysis for a partially missing binary outcome in a two‐arm randomized clinical trial publication-title: Stat Med – volume: 59 start-page: 55 year: 1997 end-page: 95 article-title: Inference for non‐random samples publication-title: J Royal Stat Soc Ser B (Stat Methodol) – volume: 27 start-page: 83 year: 2008 end-page: 102 article-title: Multiple imputation using an iterative hot‐deck with distance‐based donor selection publication-title: Stat Med – year: 2014 – volume: 56 start-page: 1571 year: 2012 end-page: 1578 article-title: Prospective neurocognitive evaluation of patients undergoing carotid interventions publication-title: J Vasc Surg – volume: 72 start-page: 538 issue: 359 year: 1977 end-page: 543 article-title: Formalizing subjective notions about the effect of nonrespondents in sample surveys publication-title: J Am Stat Assoc – volume: 22 start-page: 149 year: 2012 end-page: 172 article-title: Doubly robust nonparametric multiple imputation for ignorable missing data publication-title: Stat Sin – volume: 58 start-page: 588 year: 2016 end-page: 606 article-title: Doubly robust multiple imputation using kernel‐based techniques publication-title: Biom J – year: 2012 – volume-title: Sensitivity Analysis in Multiple Imputation for Missing Data year: 2014 ident: e_1_2_7_14_1 – ident: e_1_2_7_8_1 doi: 10.5705/ss.2010.069 – ident: e_1_2_7_15_1 doi: 10.1002/sim.6902 – ident: e_1_2_7_18_1 doi: 10.1002/9781119013563 – ident: e_1_2_7_20_1 doi: 10.1177/0962280213490014 – ident: e_1_2_7_22_1 doi: 10.1023/A:1008749011772 – ident: e_1_2_7_6_1 doi: 10.2307/1912352 – ident: e_1_2_7_7_1 doi: 10.1111/1467-9868.00055 – ident: e_1_2_7_13_1 doi: 10.1201/b11826 – ident: e_1_2_7_2_1 doi: 10.1080/01621459.1977.10480610 – ident: e_1_2_7_19_1 doi: 10.1016/j.jvs.2012.05.092 – ident: e_1_2_7_10_1 doi: 10.1016/0167-9473(95)00057-7 – ident: e_1_2_7_5_1 doi: 10.2307/1913937 – ident: e_1_2_7_16_1 doi: 10.1177/0962280217715663 – ident: e_1_2_7_4_1 doi: 10.1080/10543400903243009 – ident: e_1_2_7_11_1 doi: 10.1002/sim.3001 – ident: e_1_2_7_17_1 – ident: e_1_2_7_3_1 doi: 10.1080/01621459.1993.10594302 – ident: e_1_2_7_9_1 doi: 10.1002/bimj.201400256 – ident: e_1_2_7_12_1 doi: 10.1002/9780470316696 – ident: e_1_2_7_21_1 doi: 10.1002/sim.6197 |
SSID | ssj0011527 |
Score | 2.414561 |
Snippet | Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random, researchers often perform a... Missingness mechanism is in theory unverifiable based only on observed data. If there is a suspicion of missing not at random (MNAR), researchers often perform... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3756 |
SubjectTerms | correlation coefficient missing not at random multiple imputation selection model Sensitivity analysis |
Title | A multiple imputation‐based sensitivity analysis approach for data subject to missing not at random |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8691 https://www.ncbi.nlm.nih.gov/pubmed/32717095 https://www.proquest.com/docview/2450178484 https://www.proquest.com/docview/2428061175 https://pubmed.ncbi.nlm.nih.gov/PMC10481859 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NattAEB6CD8EQ2sZJW7Vp2EJoT7IleVeWjiHUOAHn0NZg6EHsalfUtJFKJV966iP0GfMkmdFKahwnEHLSQaO_1czOt7Mz3wCc-IhhJfoBlyuTuTyWaFLGeK7JYp7qSaR1XfU-vwxnC36xFMsmq5JqYSw_RBdwI8uo52sycKnK0X_S0HJ1NYzCunCdUrUID33umKP8tlsr7VCGE1-0vLNeMGov3PREW_ByO0vyNnqt3c_0OXxrX9xmnfwYris1TP_c4XR82pe9gGcNKmWnVo32YcfkA9idN_vuA9iz0T1mi5YG0CeMaimeD8CcsjYtka2oR0T9s6___iMPqVlJKfK2RwWTDQUKa6nMGWJmRlmqrFwrCgmxqmCoehTBYHlRMVkx9Ka6uDqExfTT17OZ23RvcFOq5nU11dwaEYuxCjNPaxnoySSKpTKeEpnMcCkUKokzDC5AszSIUTMErsUQHkmjlFTjl9DLi9y8BkaoToQRN7FWXAklJeI06WVoBWO6qwMf2z-ZpA21OXXY-JlYUuYgwSFNaEgdeN9J_rJ0HvfIHLXKkDQGXSYBFzh3RTzieIvuNI4H7a_I3BRrkqFtauI-deCV1Z3uIeMA180IZx2INrSqEyCa780z-ep7TfftE6VPJGIHPtRa8-CLJ1_O53R881jBt9APKHzg-zhZHkGv-r027xBjVeq4tqYbOHknwQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRaKVEI9tgUAprlS1p2yTrJ1NxKkCqu1je-hD6qFSZMeOWLVNEJu9cOIn8Bv5JczEcWBbKlWccsjk5cx4Po9nvgHYDBHDSvQDPlem8Hkq0aSMCXxTpDzXw0Trpup9fByPzvnBhbhYgA-uFsbyQ3QBN7KMZr4mA6eA9M4f1tDp5KafxFS5_ogaehNx_qeTjjsqdP1aaY8yHobCMc8G0Y67ct4X3QGYd_Mk_8avjQPaewaX7tVt3slVf1arfv79Fqvjf37bc3jaAlO2azXpBSyYsgePx-3Wew-e2AAfs3VLPVgmmGpZnlfA7DKXmcgm1Cai-d-_fvwkJ6nZlLLkbZsKJlsWFObYzBnCZkaJqmw6UxQVYnXFUPsoiMHKqmayZuhQdXWzCud7n88-jvy2gYOfU0Gvr6ns1ohUDFRcBFrLSA-HSSqVCZQoZIGroVhJnGRwDVrkUYrKIXA5hghJGqWkGryExbIqzWtgBOxEnHCTasWVUFIiVJNBgYYwoLt6sO1-ZZa37ObUZOM6s7zMUYZDmtGQerDRSX61jB7_kFlz2pC1Nj3NIi5w-kp4wvEW3WkcD9pikaWpZiRDO9VEf-rBK6s83UMGES6dEdF6kMypVSdATN_zZ8rJl4bxOyRWn0SkHmw1anPvi2en-2M6vnmo4HtYGp2Nj7Kj_ePDt7AcUTQhDHHuXIPF-tvMvEPIVav1xrR-A4dnK90 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hKiEkBO22QOi2GAm1pyxJ1s4mR1RYQcsi1IKExCGyY0ddFZIVm7301EfoM_ZJOhMnKcuPhHrKIZM_Z8bzeTzzDcCujxhWoh9wuTKZy2OJJmWM55os5qkeRFpXVe-j0_Dogn--FJd1ViXVwlh-iDbgRpZRzddk4BOd7f0jDZ2Ob3pRSIXrL3joxdS24eBrSx3lN-1aaYsyHPiiIZ71gr3mynlX9ABfPkyTvAtfK_8zXIOr5s1t2smP3qxUvfTnPVLH__u0l7Baw1K2b_XoFSyYvANLo3rjvQMrNrzHbNVSB5YJpFqO59dg9lmTl8jG1CSi-tt_fv0mF6nZlHLkbZMKJmsOFNZwmTMEzYzSVNl0pigmxMqCoe5RCIPlRclkydCd6uLmDVwMD88_Hbl1-wY3pXJeV1PRrRGx6Ksw87SWgR4Molgq4ymRyQzXQqGSOMXgCjRLgxhVQ-BiDPGRNEpJ1V-HxbzIzSYwgnUijLiJteJKKCkRqEkvQzPo010d-Nj8ySStuc2pxcZ1YlmZgwSHNKEhdWCnlZxYPo9HZLqNMiS1RU-TgAucvCIecbxFexrHgzZYZG6KGcnQPjWRnzqwYXWnfUg_wIUz4lkHojmtagWI53v-TD7-XvF9-8TpE4nYgQ-V1jz54sm34xEdt54ruA1LZwfD5OT49MtbWA4olOD7OHF2YbG8nZl3iLdK9b4yrL_0PSqM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiple+imputation%E2%80%90based+sensitivity+analysis+approach+for+data+subject+to+missing+not+at+random&rft.jtitle=Statistics+in+medicine&rft.au=Chiu%E2%80%90Hsieh+Hsu&rft.au=He%2C+Yulei&rft.au=Hu%2C+Chengcheng&rft.au=Zhou%2C+Wei&rft.date=2020-11-20&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=39&rft.issue=26&rft.spage=3756&rft.epage=3771&rft_id=info:doi/10.1002%2Fsim.8691&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |