Piezoelectric Dynamics of Arterial Pulse for Wearable Continuous Blood Pressure Monitoring

Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate continuous blood pressure wave monitoring based on arterial pulse waves remains challenging, because the correlation between piezoelectric pulse...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 16; pp. e2110291 - n/a
Main Authors Yi, Zhiran, Liu, Zhaoxu, Li, Wenbo, Ruan, Tao, Chen, Xiang, Liu, Jingquan, Yang, Bin, Zhang, Wenming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate continuous blood pressure wave monitoring based on arterial pulse waves remains challenging, because the correlation between piezoelectric pulse waves and their related blood pressure waves is unclear. To address this, the correlation between piezoelectric pulse waves and blood pressure waves is first elucidated via theoretical, simulation, and experimental analysis of these dynamics. Based on this correlation, the authors develop a wireless wearable continuous blood pressure monitoring system, with better portability than conventional systems that are based on the pulse wave velocity between multiple sensors. They explore the feasibility of achieving wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. These findings eliminate the controversy over the arterial pulse wave piezoelectric response, and can potentially be used to develop a portable wearable continuous blood pressure monitoring device for the early prevention and daily control of hypertension. Piezoelectric dynamics of arterial pulse first elucidate the correlation between piezoelectric pulse waves and blood pressure waves. It is feasible to achieve wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. This strategy may provide new insights on the development for wearable continuous blood pressure monitoring.
AbstractList Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate continuous blood pressure wave monitoring based on arterial pulse waves remains challenging, because the correlation between piezoelectric pulse waves and their related blood pressure waves is unclear. To address this, the correlation between piezoelectric pulse waves and blood pressure waves is first elucidated via theoretical, simulation, and experimental analysis of these dynamics. Based on this correlation, the authors develop a wireless wearable continuous blood pressure monitoring system, with better portability than conventional systems that are based on the pulse wave velocity between multiple sensors. They explore the feasibility of achieving wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. These findings eliminate the controversy over the arterial pulse wave piezoelectric response, and can potentially be used to develop a portable wearable continuous blood pressure monitoring device for the early prevention and daily control of hypertension.
Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate continuous blood pressure wave monitoring based on arterial pulse waves remains challenging, because the correlation between piezoelectric pulse waves and their related blood pressure waves is unclear. To address this, the correlation between piezoelectric pulse waves and blood pressure waves is first elucidated via theoretical, simulation, and experimental analysis of these dynamics. Based on this correlation, the authors develop a wireless wearable continuous blood pressure monitoring system, with better portability than conventional systems that are based on the pulse wave velocity between multiple sensors. They explore the feasibility of achieving wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. These findings eliminate the controversy over the arterial pulse wave piezoelectric response, and can potentially be used to develop a portable wearable continuous blood pressure monitoring device for the early prevention and daily control of hypertension. Piezoelectric dynamics of arterial pulse first elucidate the correlation between piezoelectric pulse waves and blood pressure waves. It is feasible to achieve wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. This strategy may provide new insights on the development for wearable continuous blood pressure monitoring.
Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate continuous blood pressure wave monitoring based on arterial pulse waves remains challenging, because the correlation between piezoelectric pulse waves and their related blood pressure waves is unclear. To address this, the correlation between piezoelectric pulse waves and blood pressure waves is first elucidated via theoretical, simulation, and experimental analysis of these dynamics. Based on this correlation, the authors develop a wireless wearable continuous blood pressure monitoring system, with better portability than conventional systems that are based on the pulse wave velocity between multiple sensors. They explore the feasibility of achieving wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. These findings eliminate the controversy over the arterial pulse wave piezoelectric response, and can potentially be used to develop a portable wearable continuous blood pressure monitoring device for the early prevention and daily control of hypertension.Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate continuous blood pressure wave monitoring based on arterial pulse waves remains challenging, because the correlation between piezoelectric pulse waves and their related blood pressure waves is unclear. To address this, the correlation between piezoelectric pulse waves and blood pressure waves is first elucidated via theoretical, simulation, and experimental analysis of these dynamics. Based on this correlation, the authors develop a wireless wearable continuous blood pressure monitoring system, with better portability than conventional systems that are based on the pulse wave velocity between multiple sensors. They explore the feasibility of achieving wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. These findings eliminate the controversy over the arterial pulse wave piezoelectric response, and can potentially be used to develop a portable wearable continuous blood pressure monitoring device for the early prevention and daily control of hypertension.
Author Zhang, Wenming
Liu, Zhaoxu
Liu, Jingquan
Yang, Bin
Yi, Zhiran
Ruan, Tao
Li, Wenbo
Chen, Xiang
Author_xml – sequence: 1
  givenname: Zhiran
  orcidid: 0000-0002-8679-8302
  surname: Yi
  fullname: Yi, Zhiran
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Zhaoxu
  surname: Liu
  fullname: Liu, Zhaoxu
  organization: Shanghai Jiao Tong University
– sequence: 3
  givenname: Wenbo
  surname: Li
  fullname: Li, Wenbo
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Tao
  surname: Ruan
  fullname: Ruan, Tao
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
  organization: Shanghai Jiao Tong University
– sequence: 6
  givenname: Jingquan
  surname: Liu
  fullname: Liu, Jingquan
  organization: Shanghai Jiao Tong University
– sequence: 7
  givenname: Bin
  surname: Yang
  fullname: Yang, Bin
  email: binyang@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 8
  givenname: Wenming
  surname: Zhang
  fullname: Zhang, Wenming
  email: wenmingz@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35285098$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LHTEQx0Ox6NN69VgCvfSyz_zYZDfH16f9AYrvYBG8LNnsRCLZxCa7lOdf38izFgTpaWD4fGaG-R6ivRADIHRCyZISwk71MOolI4xSwhR9hxZUMFrVRIk9tCCKi0rJuj1AhznfE0KUJHIfHXDBWkFUu0C3GwePETyYKTmDz7ZBj85kHC1epQmS0x5vZp8B25jwDeikew94HcPkwhznjL_4GAe8SZDznABfxuCmmFy4-4DeW13M4-d6hH5-Pb9ef68urr79WK8uKlNzRSstB2tka5WlwLmwrbaguQbe9wOtibSNor0witSWkqa0Qcl-0JbaFhrWGH6EPu_mPqT4a4Y8daPLBrzXAcqBHZO8VTXlnBX00yv0Ps4plOsKJVgjqaCkUB-fqbkfYegekht12nZ_v1aA5Q4wKeacwL4glHRPsXRPsXQvsRShfiUYN-nJlS8m7fzbmtppv52H7X-WdKuzy9U_9w-fBaIr
CitedBy_id crossref_primary_10_1145_3643516
crossref_primary_10_1109_ACCESS_2025_3532492
crossref_primary_10_1063_5_0159073
crossref_primary_10_1039_D3SD00201B
crossref_primary_10_3390_mi13091390
crossref_primary_10_1007_s12274_024_6969_7
crossref_primary_10_1016_j_cej_2024_151660
crossref_primary_10_1109_LED_2022_3195349
crossref_primary_10_1016_j_apm_2023_10_010
crossref_primary_10_1155_2023_2213988
crossref_primary_10_1021_acsaelm_5c00221
crossref_primary_10_1016_j_mtbio_2023_100787
crossref_primary_10_12677_JSTA_2023_116051
crossref_primary_10_1002_adem_202301292
crossref_primary_10_1002_app_55312
crossref_primary_10_1007_s42114_022_00581_5
crossref_primary_10_1007_s42765_024_00406_8
crossref_primary_10_1002_adma_202301627
crossref_primary_10_1016_j_applthermaleng_2024_123659
crossref_primary_10_1016_j_enconman_2023_116863
crossref_primary_10_1109_TUFFC_2022_3217512
crossref_primary_10_1038_s41467_024_46836_1
crossref_primary_10_1002_admi_202300240
crossref_primary_10_1002_adfm_202308426
crossref_primary_10_1002_admt_202301280
crossref_primary_10_1016_j_nanoms_2023_06_001
crossref_primary_10_1016_j_jeurceramsoc_2024_02_003
crossref_primary_10_3390_mi16010092
crossref_primary_10_1016_j_cej_2025_161521
crossref_primary_10_1002_admi_202202446
crossref_primary_10_1021_acsami_2c17805
crossref_primary_10_1007_s10854_024_12808_w
crossref_primary_10_1186_s12951_024_02774_0
crossref_primary_10_1002_adfm_202406022
crossref_primary_10_1016_j_biosx_2023_100332
crossref_primary_10_1039_D4TA07129H
crossref_primary_10_1007_s10409_023_23093_x
crossref_primary_10_3390_mi14010111
crossref_primary_10_1002_adma_202407859
crossref_primary_10_1038_s41467_023_40763_3
crossref_primary_10_1039_D3RA05932D
crossref_primary_10_1007_s10853_024_10509_7
crossref_primary_10_1002_adma_202410312
crossref_primary_10_1016_j_nanoen_2024_109341
crossref_primary_10_1002_adfm_202422733
crossref_primary_10_3390_bios13110964
crossref_primary_10_1016_j_mser_2024_100892
crossref_primary_10_3390_bios12080651
crossref_primary_10_1063_5_0233358
crossref_primary_10_1002_adfm_202212083
crossref_primary_10_1007_s10570_022_05023_5
crossref_primary_10_1016_j_sna_2025_116461
crossref_primary_10_1016_j_bios_2024_116790
crossref_primary_10_3390_s24134198
crossref_primary_10_1002_adhm_202301838
crossref_primary_10_1002_advs_202413141
crossref_primary_10_1007_s42114_024_00906_6
crossref_primary_10_1016_j_nanoen_2023_108730
crossref_primary_10_1021_acssensors_3c02180
crossref_primary_10_1016_j_nanoen_2023_109151
crossref_primary_10_1016_j_sna_2024_115629
crossref_primary_10_1109_JSEN_2023_3236969
crossref_primary_10_3390_s24092721
crossref_primary_10_1002_adfm_202419110
crossref_primary_10_1039_D4TC02494J
crossref_primary_10_1021_acsanm_2c01968
crossref_primary_10_3389_fbioe_2023_1303142
crossref_primary_10_1016_j_cej_2024_157066
crossref_primary_10_1016_j_cmpb_2022_107198
crossref_primary_10_1021_acsami_2c21885
crossref_primary_10_1021_acsnano_3c11578
crossref_primary_10_1016_j_pmatsci_2023_101139
crossref_primary_10_1360_SSC_2023_0009
crossref_primary_10_3390_s23052479
crossref_primary_10_1002_adma_202313612
crossref_primary_10_1002_advs_202301180
crossref_primary_10_1002_adma_202402542
crossref_primary_10_1021_acsaelm_2c01760
crossref_primary_10_1016_j_compscitech_2024_110628
crossref_primary_10_1021_acsami_2c21241
crossref_primary_10_1002_smll_202304752
crossref_primary_10_1021_acsami_3c17132
crossref_primary_10_1088_2752_5724_ad305e
crossref_primary_10_1038_s44222_024_00175_4
crossref_primary_10_1155_2022_8312564
crossref_primary_10_1007_s12274_024_6522_8
crossref_primary_10_1016_j_xcrp_2024_101789
crossref_primary_10_1021_acsnano_4c04291
crossref_primary_10_1002_adma_202405981
crossref_primary_10_1016_j_bea_2023_100100
crossref_primary_10_1039_D4TC01914H
crossref_primary_10_1016_j_measurement_2023_113856
crossref_primary_10_1021_acs_chemrev_3c00626
crossref_primary_10_1088_1361_6439_ac87ba
crossref_primary_10_1002_admt_202302162
crossref_primary_10_1016_j_cej_2024_154069
crossref_primary_10_1049_nde2_12061
crossref_primary_10_1002_adma_202400333
crossref_primary_10_1002_admt_202202021
crossref_primary_10_1021_acsnano_2c08110
crossref_primary_10_1126_sciadv_adh0615
crossref_primary_10_3390_bios12080630
crossref_primary_10_1021_acsami_4c22118
crossref_primary_10_1002_advs_202303114
crossref_primary_10_1039_D2SD00227B
crossref_primary_10_1016_j_nanoen_2024_110544
crossref_primary_10_1039_D4SC05166A
crossref_primary_10_1016_j_ceramint_2024_01_377
crossref_primary_10_15541_jim20220549
crossref_primary_10_1016_j_measurement_2024_114818
crossref_primary_10_1021_acsami_3c09065
crossref_primary_10_1038_s41467_024_47810_7
crossref_primary_10_1002_admt_202301480
crossref_primary_10_1002_aisy_202300337
crossref_primary_10_1002_adfm_202418318
crossref_primary_10_1021_acs_analchem_2c02587
crossref_primary_10_1021_acsnano_3c09766
crossref_primary_10_1002_adma_202313518
crossref_primary_10_1038_s41569_025_01127_0
crossref_primary_10_1002_adem_202201678
crossref_primary_10_1002_adsr_202200080
crossref_primary_10_1016_j_nantod_2024_102544
crossref_primary_10_1021_acssensors_4c02395
crossref_primary_10_1002_EXP_20230109
crossref_primary_10_1039_D3TC02970K
crossref_primary_10_1109_LSENS_2023_3308120
crossref_primary_10_1088_1361_6439_ace268
crossref_primary_10_1002_aelm_202400456
crossref_primary_10_1002_aelm_202400852
crossref_primary_10_1016_j_nanoen_2022_107844
crossref_primary_10_1039_D3MH00325F
crossref_primary_10_1115_1_4068063
crossref_primary_10_12677_SEA_2023_125070
crossref_primary_10_1002_VIW_20220027
crossref_primary_10_1002_inf2_12552
crossref_primary_10_1016_j_nanoen_2024_109701
crossref_primary_10_1002_adfm_202314298
crossref_primary_10_1002_apxr_202400182
crossref_primary_10_1002_advs_202401800
crossref_primary_10_1038_s41467_024_54707_y
crossref_primary_10_1007_s10462_022_10353_8
crossref_primary_10_1021_acsaelm_3c00344
crossref_primary_10_1002_admt_202301895
crossref_primary_10_1016_j_xcrp_2024_102389
crossref_primary_10_1002_adfm_202416163
crossref_primary_10_1002_adhm_202302460
crossref_primary_10_1016_j_sna_2025_116370
crossref_primary_10_1016_j_cej_2024_154553
crossref_primary_10_3389_fphy_2024_1529500
crossref_primary_10_1038_s41528_023_00244_5
crossref_primary_10_1016_j_renene_2023_119742
crossref_primary_10_3390_cryst14080708
crossref_primary_10_1016_j_cej_2025_161142
crossref_primary_10_1021_acsanm_4c03803
Cites_doi 10.1253/circj.CJ-88-0020
10.4037/ccn2002.22.2.60
10.1038/s41467-020-17619-1
10.3389/fphys.2019.01179
10.1016/0895-4356(96)00111-4
10.1038/s41467-021-22663-6
10.1021/acsnano.8b07567
10.1002/adfm.202000477
10.3389/fphys.2019.01563
10.1109/JBHI.2016.2620995
10.1038/s41551-018-0336-5
10.1016/j.medengphy.2014.02.024
10.1016/j.irbm.2014.07.002
10.1007/s13246-020-00923-x
10.1021/acsnano.8b08567
10.1371/journal.pcbi.1007259
10.1038/s41551-018-0287-x
10.1002/adfm.201903162
10.1007/s13534-019-00096-x
10.1088/0967-3334/31/1/R01
10.1166/jmihi.2018.2474
10.1002/adma.201702308
10.1007/s13246-019-00813-x
10.1007/s10854-010-0207-7
10.1016/j.sna.2018.12.019
10.1016/S0002-8703(41)90651-8
10.1093/nsr/nwaa022
10.1109/TIE.2020.2978727
10.1038/ncomms5496
10.1109/LED.2018.2846184
10.3390/s20030851
10.1007/s10439-013-0854-y
10.1002/adem.202100341
10.1063/1.4991368
10.1073/pnas.1814392115
10.1109/LED.2019.2954878
10.1109/ULTSYM.2006.164
10.1109/TBME.2016.2580904
10.3390/technologies5020021
10.3390/s19112585
10.2215/CJN.03680320
10.3390/s20164484
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202110291
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35285098
10_1002_adma_202110291
ADMA202110291
Genre article
Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2020TQ0190; 2020M681290
– fundername: National Natural Science Foundation of China
  funderid: 12032015; 12072189; 12102250
– fundername: Science and Technology Innovation Action Plan of Shanghai
  funderid: 21190760100
– fundername: National Natural Science Foundation of China
  grantid: 12032015
– fundername: National Natural Science Foundation of China
  grantid: 12102250
– fundername: National Natural Science Foundation of China
  grantid: 12072189
– fundername: China Postdoctoral Science Foundation
  grantid: 2020TQ0190
– fundername: Science and Technology Innovation Action Plan of Shanghai
  grantid: 21190760100
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M681290
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4391-a6dfc68f9f1e335f8afea3ae3bbd1406f791b5c904f107e3be96bdaf1f8e727c3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 16:13:43 EDT 2025
Fri Jul 25 04:14:00 EDT 2025
Wed Feb 19 02:25:58 EST 2025
Tue Jul 01 02:33:15 EDT 2025
Thu Apr 24 22:59:27 EDT 2025
Wed Jan 22 16:24:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords wearables
piezoelectric dynamics
flexible piezo-MEMS sensors
arterial pulses
blood pressure monitoring
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4391-a6dfc68f9f1e335f8afea3ae3bbd1406f791b5c904f107e3be96bdaf1f8e727c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8679-8302
PMID 35285098
PQID 2652761510
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2638941332
proquest_journals_2652761510
pubmed_primary_35285098
crossref_primary_10_1002_adma_202110291
crossref_citationtrail_10_1002_adma_202110291
wiley_primary_10_1002_adma_202110291_ADMA202110291
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 64
2010; 31
2019; 9
2019; 3
2021; 23
2020; 20
2012
2020; 41
2019; 10
2019; 13
2019; 15
1941; 21
2013; 41
2019; 19
2020; 15
2006
2017; 29
2020; 11
2020; 10
2017; 111
2012; 76
2019; 286
2020; 7
2010; 22
2018; 8
2018; 39
2014; 5
2018; 2
2021; 12
2020; 30
2019; 43
2018; 115
2002; 22
2019
2016; 20
2014; 36
2014; 35
2019; 29
2020; 68
2014
2020; 43
1996; 49
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
Beer F. P. (e_1_2_8_45_1) 2012
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Buxi D. (e_1_2_8_33_1) 2014
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
(e_1_2_8_1_1) 2014
e_1_2_8_19_1
e_1_2_8_13_1
Ono Y. (e_1_2_8_32_1) 2006
e_1_2_8_36_1
e_1_2_8_35_1
Argha A. (e_1_2_8_14_1) 2019
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 41
  start-page: 183
  year: 2020
  publication-title: IEEE Electron Device Lett.
– volume: 2
  start-page: 687
  year: 2018
  publication-title: Nat. Biomed. Eng.
– volume: 13
  start-page: 1940
  year: 2019
  publication-title: ACS Nano
– volume: 49
  start-page: 869
  year: 1996
  publication-title: J. Clin. Epidemiol.
– volume: 11
  start-page: 3823
  year: 2020
  publication-title: Nat. Commun.
– volume: 39
  start-page: 1226
  year: 2018
  publication-title: IEEE Electron Device Lett.
– volume: 35
  start-page: 271
  year: 2014
  publication-title: IRBM
– volume: 43
  start-page: 1207
  year: 2020
  publication-title: Phys. Eng. Sci. Med.
– volume: 41
  start-page: 2617
  year: 2013
  publication-title: Ann. Biomed. Eng.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 3
  start-page: 47
  year: 2019
  publication-title: Nat. Biomed. Eng.
– volume: 20
  start-page: 1455
  year: 2016
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 76
  start-page: 508
  year: 2012
  publication-title: Circ. J.
– start-page: 1821
  year: 2019
  end-page: 1824
– volume: 21
  start-page: 504
  year: 1941
  publication-title: Am. Heart J.
– start-page: 800
  year: 2006
  end-page: 803
– volume: 286
  start-page: 146
  year: 2019
  publication-title: Sens. Actuators, A
– volume: 9
  start-page: 37
  year: 2019
  publication-title: Biomed. Eng. Lett.
– start-page: 1420
  year: 2014
  end-page: 1423
– volume: 20
  start-page: 851
  year: 2020
  publication-title: Sensors
– volume: 15
  year: 2019
  publication-title: PLoS Comput. Biol.
– volume: 7
  start-page: 849
  year: 2020
  publication-title: Natl. Sci. Rev.
– year: 2014
– volume: 20
  start-page: 4484
  year: 2020
  publication-title: Sensors
– volume: 22
  start-page: 757
  year: 2010
  publication-title: J. Mater. Sci.: Mater. Electron.
– year: 2012
– volume: 5
  start-page: 4496
  year: 2014
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1290
  year: 2018
  publication-title: J. Med. Imaging Health Inf.
– volume: 115
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 111
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 23
  year: 2021
  publication-title: Adv. Eng. Mater.
– volume: 15
  start-page: 1531
  year: 2020
  publication-title: Clin. J. Am. Soc. Nephrol.
– volume: 43
  start-page: 11
  year: 2019
  publication-title: Phys. Eng. Sci. Med.
– volume: 22
  start-page: 60
  year: 2002
  publication-title: Crit. Care Nurse
– volume: 10
  start-page: 1563
  year: 2020
  publication-title: Front. Physiol.
– volume: 68
  start-page: 3192
  year: 2020
  publication-title: IEEE Trans. Ind. Electron.
– volume: 10
  start-page: 1179
  year: 2019
  publication-title: Front. Physiol.
– volume: 5
  start-page: 21
  year: 2017
  publication-title: Technologies
– volume: 31
  start-page: R1
  year: 2010
  publication-title: Physiol. Meas
– volume: 13
  start-page: 2822
  year: 2019
  publication-title: ACS Nano
– volume: 64
  start-page: 859
  year: 2017
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 36
  start-page: 927
  year: 2014
  publication-title: Med. Eng. Phys.
– volume: 19
  start-page: 2585
  year: 2019
  publication-title: Sensors
– volume: 12
  start-page: 2399
  year: 2021
  publication-title: Nat. Commun.
– ident: e_1_2_8_5_1
  doi: 10.1253/circj.CJ-88-0020
– ident: e_1_2_8_2_1
  doi: 10.4037/ccn2002.22.2.60
– ident: e_1_2_8_24_1
  doi: 10.1038/s41467-020-17619-1
– ident: e_1_2_8_43_1
  doi: 10.3389/fphys.2019.01179
– ident: e_1_2_8_44_1
  doi: 10.1016/0895-4356(96)00111-4
– ident: e_1_2_8_30_1
  doi: 10.1038/s41467-021-22663-6
– ident: e_1_2_8_37_1
  doi: 10.1021/acsnano.8b07567
– ident: e_1_2_8_40_1
  doi: 10.1002/adfm.202000477
– ident: e_1_2_8_26_1
  doi: 10.3389/fphys.2019.01563
– ident: e_1_2_8_16_1
  doi: 10.1109/JBHI.2016.2620995
– ident: e_1_2_8_9_1
  doi: 10.1038/s41551-018-0336-5
– ident: e_1_2_8_35_1
  doi: 10.1016/j.medengphy.2014.02.024
– start-page: 1821
  volume-title: 2019 41st Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2019
  ident: e_1_2_8_14_1
– ident: e_1_2_8_20_1
  doi: 10.1016/j.irbm.2014.07.002
– ident: e_1_2_8_27_1
  doi: 10.1007/s13246-020-00923-x
– ident: e_1_2_8_38_1
  doi: 10.1021/acsnano.8b08567
– ident: e_1_2_8_17_1
  doi: 10.1371/journal.pcbi.1007259
– ident: e_1_2_8_25_1
  doi: 10.1038/s41551-018-0287-x
– ident: e_1_2_8_31_1
  doi: 10.1002/adfm.201903162
– ident: e_1_2_8_41_1
  doi: 10.1007/s13534-019-00096-x
– ident: e_1_2_8_4_1
  doi: 10.1088/0967-3334/31/1/R01
– volume-title: Global Status Report on Noncommunicable Diseases
  year: 2014
  ident: e_1_2_8_1_1
– ident: e_1_2_8_10_1
  doi: 10.1166/jmihi.2018.2474
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.201702308
– ident: e_1_2_8_6_1
  doi: 10.1007/s13246-019-00813-x
– ident: e_1_2_8_46_1
  doi: 10.1007/s10854-010-0207-7
– ident: e_1_2_8_28_1
  doi: 10.1016/j.sna.2018.12.019
– ident: e_1_2_8_21_1
  doi: 10.1016/S0002-8703(41)90651-8
– ident: e_1_2_8_11_1
  doi: 10.1093/nsr/nwaa022
– ident: e_1_2_8_39_1
  doi: 10.1109/TIE.2020.2978727
– ident: e_1_2_8_8_1
  doi: 10.1038/ncomms5496
– ident: e_1_2_8_23_1
  doi: 10.1109/LED.2018.2846184
– ident: e_1_2_8_7_1
  doi: 10.3390/s20030851
– start-page: 1420
  volume-title: 2014 36th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society
  year: 2014
  ident: e_1_2_8_33_1
– ident: e_1_2_8_42_1
  doi: 10.1007/s10439-013-0854-y
– ident: e_1_2_8_34_1
  doi: 10.1002/adem.202100341
– ident: e_1_2_8_36_1
  doi: 10.1063/1.4991368
– ident: e_1_2_8_12_1
  doi: 10.1073/pnas.1814392115
– ident: e_1_2_8_22_1
  doi: 10.1109/LED.2019.2954878
– start-page: 800
  volume-title: 2006 IEEE Ultrasonics Symp.
  year: 2006
  ident: e_1_2_8_32_1
  doi: 10.1109/ULTSYM.2006.164
– ident: e_1_2_8_18_1
  doi: 10.1109/TBME.2016.2580904
– ident: e_1_2_8_3_1
  doi: 10.3390/technologies5020021
– volume-title: Mechanics of Materials
  year: 2012
  ident: e_1_2_8_45_1
– ident: e_1_2_8_15_1
  doi: 10.3390/s19112585
– ident: e_1_2_8_19_1
  doi: 10.2215/CJN.03680320
– ident: e_1_2_8_13_1
  doi: 10.3390/s20164484
SSID ssj0009606
Score 2.6849098
Snippet Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2110291
SubjectTerms arterial pulses
Blood Pressure
blood pressure monitoring
Elastic waves
flexible piezo‐MEMS sensors
Heart Rate - physiology
Hypertension
Materials science
Monitoring
Monitoring, Physiologic
piezoelectric dynamics
Piezoelectricity
Portable equipment
Pulse Wave Analysis
Wave velocity
Wearable Electronic Devices
Wearable technology
wearables
Title Piezoelectric Dynamics of Arterial Pulse for Wearable Continuous Blood Pressure Monitoring
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202110291
https://www.ncbi.nlm.nih.gov/pubmed/35285098
https://www.proquest.com/docview/2652761510
https://www.proquest.com/docview/2638941332
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_EJ33w-6N-EUHwqXNN2q59nE4RYTJEcfhS0jSBoXTi1hf_eu-SrXOKCPrYNmnTJJf7XXL3O4CTCPWKUkL7RLzih0kQ-jKMyacBsb5BU07brezubXz9EN70o_6nKH7HD1FvuJFk2PWaBFzmo7MZaagsLG8QGTDchq-TwxahorsZfxTBc0u2JyI_jcNkytrY5Gfz1ee10jeoOY9creq5WgU5bbTzOHluVOO8od6_8Dn-56_WYGWCS1nbTaR1WNDlBix_YivchKfeQL8PXd6cgWIdl8t-xIaGqtmZzHoVqlqGQJg9oghRWBYj_qtBWQ2rETsnL3nmIhLfNHPrCb18Cx6uLu8vrv1JagZfUaiuL-PCqDgxqQm0EJFJpNFSSC3yvECTLTatNMgjlTZDg_Yl3tZpnBfSBCbRiJiU2IbFcljqXWBRQja6KVTRQmwWFmlLpjIRRcQNwdHAA386NJma8JZT-oyXzDEu84z6LKv7zIPTuvyrY-z4seTBdKSzieSOMh5HvEUwr-nBcf0YZY4OUmSpsbewDMI81P6Ce7DjZkj9KWLLQRCWeMDtOP_Shqzd6bbrq72_VNqHJU4xGdad6AAWx2-VPkSkNM6PrDR8ANa8CS0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1PT9RAFH9BOKAHRRSogo4JxlNhO9N224OHlZUswhJiIBIvdTqdSTZCl7DbGPhWfhU_ke_NtMXVEBMTDh7bzrTz5_35vem83wBsRuhXlBLaJ-IVP0yC0JdhTHsaEOsbDOW0XcoeHsaDk_DDaXQ6B9-bXBjHD9EuuJFmWHtNCk4L0ts3rKGysMRBFMHwNKj3Ve7rq28YtU3e7vVxil9zvvv-eGfg1wcL-IoSTX0ZF0bFiUlNoIWITCKNlkJqkecFBhyx6aZBHqm0ExqMjvC2TuO8kCYwiUZ_rwS-9x4s0DHiRNff_3jDWEUBgaX3E5GfxmHS8ER2-PZse2f94B_gdhYrW2e3-wh-NMPk9rh83aqm-Za6_o1B8r8axyV4WENv1nO68hjmdLkMD34hZHwCn49G-nrsjgYaKda_KuX5SE3Y2FA1q6zsqEI0wRDrs0_YB8o8Y0TxNSqrcTVh7ygRgLmky0vNnMmklz-Fkzvp3ArMl-NSrwGLElqGMIUqugg_wyLtylQmooi4IcQdeOA3spCpmpqdTgg5yxypNM9ojrJ2jjx405a_cKQkt5Zcb0Qrq43TJONxxLuEZDsevGofo1mhf0Wy1DhaWAaRLAIcwT1YdSLZfooIgRBnJh5wK1h_aUPW6w977dWzf6n0EhYHx8OD7GDvcP853OeUgmJ3T63D_PSy0hsIDKf5C6uKDL7ctcz-BGzUan4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48H4EChgJxCntxk68yYHDQli1lFYrREXVS3D8kFYt2aq7EWp_FX-Ff8SM8ygLQkhIPXBMYid-zIy_cWY-AzxPcF3RWtiQiFfCOI3iUMWSYhoQ6zt05azfyt7ZlZt78bv9ZH8FvnW5MA0_RL_hRprh7TUp-LFxG-ekocp43iByYHgWtWGV2_b0Kzpt81dbOc7wC87Hbz--2QzbcwVCTXmmoZLGaZm6zEVWiMSlylkllBVladDfkG6YRWWis0Hs0DnC2zaTpVEucqnF5V4LfO8luBzLQUaHReQfzgmryB_w7H4iCTMZpx1N5IBvLLd3eRn8DdsuQ2W_1o1vwPdulJoQl8P1elGu67NfCCT_p2G8Cddb4M1GjabcghVb3YZrP9Ex3oGDydSezZqDgaaa5aeV-jLVczZzVM2rKpvUiCUYIn32CftAeWeMCL6mVT2r5-w1pQGwJuXyxLLGYNLL78LehXTuHqxWs8o-AJaktAnhjDZDBJ-xyYYqU6kwCXeEt6MAwk4UCt0Ss9P5IEdFQynNC5qjop-jAF725Y8bSpI_llzrJKtoTdO84DLhQ8KxgwCe9Y_RqNCfIlVZHC0sgzgW4Y3gAdxvJLL_FNEBIcpMA-Berv7ShmKU74z6q4f_UukpXJnk4-L91u72I7jKKf_Eh06tweripLaPERUuyideERl8vmiR_QGrQGkt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+Dynamics+of+Arterial+Pulse+for+Wearable+Continuous+Blood+Pressure+Monitoring&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhiran+Yi&rft.au=Liu%2C+Zhaoxu&rft.au=Li%2C+Wenbo&rft.au=Ruan%2C+Tao&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=16&rft_id=info:doi/10.1002%2Fadma.202110291&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon