Piezoelectric Dynamics of Arterial Pulse for Wearable Continuous Blood Pressure Monitoring
Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate continuous blood pressure wave monitoring based on arterial pulse waves remains challenging, because the correlation between piezoelectric pulse...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 16; pp. e2110291 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate continuous blood pressure wave monitoring based on arterial pulse waves remains challenging, because the correlation between piezoelectric pulse waves and their related blood pressure waves is unclear. To address this, the correlation between piezoelectric pulse waves and blood pressure waves is first elucidated via theoretical, simulation, and experimental analysis of these dynamics. Based on this correlation, the authors develop a wireless wearable continuous blood pressure monitoring system, with better portability than conventional systems that are based on the pulse wave velocity between multiple sensors. They explore the feasibility of achieving wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. These findings eliminate the controversy over the arterial pulse wave piezoelectric response, and can potentially be used to develop a portable wearable continuous blood pressure monitoring device for the early prevention and daily control of hypertension.
Piezoelectric dynamics of arterial pulse first elucidate the correlation between piezoelectric pulse waves and blood pressure waves. It is feasible to achieve wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. This strategy may provide new insights on the development for wearable continuous blood pressure monitoring. |
---|---|
AbstractList | Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate continuous blood pressure wave monitoring based on arterial pulse waves remains challenging, because the correlation between piezoelectric pulse waves and their related blood pressure waves is unclear. To address this, the correlation between piezoelectric pulse waves and blood pressure waves is first elucidated via theoretical, simulation, and experimental analysis of these dynamics. Based on this correlation, the authors develop a wireless wearable continuous blood pressure monitoring system, with better portability than conventional systems that are based on the pulse wave velocity between multiple sensors. They explore the feasibility of achieving wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. These findings eliminate the controversy over the arterial pulse wave piezoelectric response, and can potentially be used to develop a portable wearable continuous blood pressure monitoring device for the early prevention and daily control of hypertension. Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate continuous blood pressure wave monitoring based on arterial pulse waves remains challenging, because the correlation between piezoelectric pulse waves and their related blood pressure waves is unclear. To address this, the correlation between piezoelectric pulse waves and blood pressure waves is first elucidated via theoretical, simulation, and experimental analysis of these dynamics. Based on this correlation, the authors develop a wireless wearable continuous blood pressure monitoring system, with better portability than conventional systems that are based on the pulse wave velocity between multiple sensors. They explore the feasibility of achieving wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. These findings eliminate the controversy over the arterial pulse wave piezoelectric response, and can potentially be used to develop a portable wearable continuous blood pressure monitoring device for the early prevention and daily control of hypertension. Piezoelectric dynamics of arterial pulse first elucidate the correlation between piezoelectric pulse waves and blood pressure waves. It is feasible to achieve wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. This strategy may provide new insights on the development for wearable continuous blood pressure monitoring. Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate continuous blood pressure wave monitoring based on arterial pulse waves remains challenging, because the correlation between piezoelectric pulse waves and their related blood pressure waves is unclear. To address this, the correlation between piezoelectric pulse waves and blood pressure waves is first elucidated via theoretical, simulation, and experimental analysis of these dynamics. Based on this correlation, the authors develop a wireless wearable continuous blood pressure monitoring system, with better portability than conventional systems that are based on the pulse wave velocity between multiple sensors. They explore the feasibility of achieving wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. These findings eliminate the controversy over the arterial pulse wave piezoelectric response, and can potentially be used to develop a portable wearable continuous blood pressure monitoring device for the early prevention and daily control of hypertension.Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate continuous blood pressure wave monitoring based on arterial pulse waves remains challenging, because the correlation between piezoelectric pulse waves and their related blood pressure waves is unclear. To address this, the correlation between piezoelectric pulse waves and blood pressure waves is first elucidated via theoretical, simulation, and experimental analysis of these dynamics. Based on this correlation, the authors develop a wireless wearable continuous blood pressure monitoring system, with better portability than conventional systems that are based on the pulse wave velocity between multiple sensors. They explore the feasibility of achieving wearable continuous blood pressure monitoring without motion artifacts, using a single piezoelectric sensor. These findings eliminate the controversy over the arterial pulse wave piezoelectric response, and can potentially be used to develop a portable wearable continuous blood pressure monitoring device for the early prevention and daily control of hypertension. |
Author | Zhang, Wenming Liu, Zhaoxu Liu, Jingquan Yang, Bin Yi, Zhiran Ruan, Tao Li, Wenbo Chen, Xiang |
Author_xml | – sequence: 1 givenname: Zhiran orcidid: 0000-0002-8679-8302 surname: Yi fullname: Yi, Zhiran organization: Shanghai Jiao Tong University – sequence: 2 givenname: Zhaoxu surname: Liu fullname: Liu, Zhaoxu organization: Shanghai Jiao Tong University – sequence: 3 givenname: Wenbo surname: Li fullname: Li, Wenbo organization: Shanghai Jiao Tong University – sequence: 4 givenname: Tao surname: Ruan fullname: Ruan, Tao organization: Shanghai Jiao Tong University – sequence: 5 givenname: Xiang surname: Chen fullname: Chen, Xiang organization: Shanghai Jiao Tong University – sequence: 6 givenname: Jingquan surname: Liu fullname: Liu, Jingquan organization: Shanghai Jiao Tong University – sequence: 7 givenname: Bin surname: Yang fullname: Yang, Bin email: binyang@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 8 givenname: Wenming surname: Zhang fullname: Zhang, Wenming email: wenmingz@sjtu.edu.cn organization: Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35285098$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9LHTEQx0Ox6NN69VgCvfSyz_zYZDfH16f9AYrvYBG8LNnsRCLZxCa7lOdf38izFgTpaWD4fGaG-R6ivRADIHRCyZISwk71MOolI4xSwhR9hxZUMFrVRIk9tCCKi0rJuj1AhznfE0KUJHIfHXDBWkFUu0C3GwePETyYKTmDz7ZBj85kHC1epQmS0x5vZp8B25jwDeikew94HcPkwhznjL_4GAe8SZDznABfxuCmmFy4-4DeW13M4-d6hH5-Pb9ef68urr79WK8uKlNzRSstB2tka5WlwLmwrbaguQbe9wOtibSNor0witSWkqa0Qcl-0JbaFhrWGH6EPu_mPqT4a4Y8daPLBrzXAcqBHZO8VTXlnBX00yv0Ps4plOsKJVgjqaCkUB-fqbkfYegekht12nZ_v1aA5Q4wKeacwL4glHRPsXRPsXQvsRShfiUYN-nJlS8m7fzbmtppv52H7X-WdKuzy9U_9w-fBaIr |
CitedBy_id | crossref_primary_10_1145_3643516 crossref_primary_10_1109_ACCESS_2025_3532492 crossref_primary_10_1063_5_0159073 crossref_primary_10_1039_D3SD00201B crossref_primary_10_3390_mi13091390 crossref_primary_10_1007_s12274_024_6969_7 crossref_primary_10_1016_j_cej_2024_151660 crossref_primary_10_1109_LED_2022_3195349 crossref_primary_10_1016_j_apm_2023_10_010 crossref_primary_10_1155_2023_2213988 crossref_primary_10_1021_acsaelm_5c00221 crossref_primary_10_1016_j_mtbio_2023_100787 crossref_primary_10_12677_JSTA_2023_116051 crossref_primary_10_1002_adem_202301292 crossref_primary_10_1002_app_55312 crossref_primary_10_1007_s42114_022_00581_5 crossref_primary_10_1007_s42765_024_00406_8 crossref_primary_10_1002_adma_202301627 crossref_primary_10_1016_j_applthermaleng_2024_123659 crossref_primary_10_1016_j_enconman_2023_116863 crossref_primary_10_1109_TUFFC_2022_3217512 crossref_primary_10_1038_s41467_024_46836_1 crossref_primary_10_1002_admi_202300240 crossref_primary_10_1002_adfm_202308426 crossref_primary_10_1002_admt_202301280 crossref_primary_10_1016_j_nanoms_2023_06_001 crossref_primary_10_1016_j_jeurceramsoc_2024_02_003 crossref_primary_10_3390_mi16010092 crossref_primary_10_1016_j_cej_2025_161521 crossref_primary_10_1002_admi_202202446 crossref_primary_10_1021_acsami_2c17805 crossref_primary_10_1007_s10854_024_12808_w crossref_primary_10_1186_s12951_024_02774_0 crossref_primary_10_1002_adfm_202406022 crossref_primary_10_1016_j_biosx_2023_100332 crossref_primary_10_1039_D4TA07129H crossref_primary_10_1007_s10409_023_23093_x crossref_primary_10_3390_mi14010111 crossref_primary_10_1002_adma_202407859 crossref_primary_10_1038_s41467_023_40763_3 crossref_primary_10_1039_D3RA05932D crossref_primary_10_1007_s10853_024_10509_7 crossref_primary_10_1002_adma_202410312 crossref_primary_10_1016_j_nanoen_2024_109341 crossref_primary_10_1002_adfm_202422733 crossref_primary_10_3390_bios13110964 crossref_primary_10_1016_j_mser_2024_100892 crossref_primary_10_3390_bios12080651 crossref_primary_10_1063_5_0233358 crossref_primary_10_1002_adfm_202212083 crossref_primary_10_1007_s10570_022_05023_5 crossref_primary_10_1016_j_sna_2025_116461 crossref_primary_10_1016_j_bios_2024_116790 crossref_primary_10_3390_s24134198 crossref_primary_10_1002_adhm_202301838 crossref_primary_10_1002_advs_202413141 crossref_primary_10_1007_s42114_024_00906_6 crossref_primary_10_1016_j_nanoen_2023_108730 crossref_primary_10_1021_acssensors_3c02180 crossref_primary_10_1016_j_nanoen_2023_109151 crossref_primary_10_1016_j_sna_2024_115629 crossref_primary_10_1109_JSEN_2023_3236969 crossref_primary_10_3390_s24092721 crossref_primary_10_1002_adfm_202419110 crossref_primary_10_1039_D4TC02494J crossref_primary_10_1021_acsanm_2c01968 crossref_primary_10_3389_fbioe_2023_1303142 crossref_primary_10_1016_j_cej_2024_157066 crossref_primary_10_1016_j_cmpb_2022_107198 crossref_primary_10_1021_acsami_2c21885 crossref_primary_10_1021_acsnano_3c11578 crossref_primary_10_1016_j_pmatsci_2023_101139 crossref_primary_10_1360_SSC_2023_0009 crossref_primary_10_3390_s23052479 crossref_primary_10_1002_adma_202313612 crossref_primary_10_1002_advs_202301180 crossref_primary_10_1002_adma_202402542 crossref_primary_10_1021_acsaelm_2c01760 crossref_primary_10_1016_j_compscitech_2024_110628 crossref_primary_10_1021_acsami_2c21241 crossref_primary_10_1002_smll_202304752 crossref_primary_10_1021_acsami_3c17132 crossref_primary_10_1088_2752_5724_ad305e crossref_primary_10_1038_s44222_024_00175_4 crossref_primary_10_1155_2022_8312564 crossref_primary_10_1007_s12274_024_6522_8 crossref_primary_10_1016_j_xcrp_2024_101789 crossref_primary_10_1021_acsnano_4c04291 crossref_primary_10_1002_adma_202405981 crossref_primary_10_1016_j_bea_2023_100100 crossref_primary_10_1039_D4TC01914H crossref_primary_10_1016_j_measurement_2023_113856 crossref_primary_10_1021_acs_chemrev_3c00626 crossref_primary_10_1088_1361_6439_ac87ba crossref_primary_10_1002_admt_202302162 crossref_primary_10_1016_j_cej_2024_154069 crossref_primary_10_1049_nde2_12061 crossref_primary_10_1002_adma_202400333 crossref_primary_10_1002_admt_202202021 crossref_primary_10_1021_acsnano_2c08110 crossref_primary_10_1126_sciadv_adh0615 crossref_primary_10_3390_bios12080630 crossref_primary_10_1021_acsami_4c22118 crossref_primary_10_1002_advs_202303114 crossref_primary_10_1039_D2SD00227B crossref_primary_10_1016_j_nanoen_2024_110544 crossref_primary_10_1039_D4SC05166A crossref_primary_10_1016_j_ceramint_2024_01_377 crossref_primary_10_15541_jim20220549 crossref_primary_10_1016_j_measurement_2024_114818 crossref_primary_10_1021_acsami_3c09065 crossref_primary_10_1038_s41467_024_47810_7 crossref_primary_10_1002_admt_202301480 crossref_primary_10_1002_aisy_202300337 crossref_primary_10_1002_adfm_202418318 crossref_primary_10_1021_acs_analchem_2c02587 crossref_primary_10_1021_acsnano_3c09766 crossref_primary_10_1002_adma_202313518 crossref_primary_10_1038_s41569_025_01127_0 crossref_primary_10_1002_adem_202201678 crossref_primary_10_1002_adsr_202200080 crossref_primary_10_1016_j_nantod_2024_102544 crossref_primary_10_1021_acssensors_4c02395 crossref_primary_10_1002_EXP_20230109 crossref_primary_10_1039_D3TC02970K crossref_primary_10_1109_LSENS_2023_3308120 crossref_primary_10_1088_1361_6439_ace268 crossref_primary_10_1002_aelm_202400456 crossref_primary_10_1002_aelm_202400852 crossref_primary_10_1016_j_nanoen_2022_107844 crossref_primary_10_1039_D3MH00325F crossref_primary_10_1115_1_4068063 crossref_primary_10_12677_SEA_2023_125070 crossref_primary_10_1002_VIW_20220027 crossref_primary_10_1002_inf2_12552 crossref_primary_10_1016_j_nanoen_2024_109701 crossref_primary_10_1002_adfm_202314298 crossref_primary_10_1002_apxr_202400182 crossref_primary_10_1002_advs_202401800 crossref_primary_10_1038_s41467_024_54707_y crossref_primary_10_1007_s10462_022_10353_8 crossref_primary_10_1021_acsaelm_3c00344 crossref_primary_10_1002_admt_202301895 crossref_primary_10_1016_j_xcrp_2024_102389 crossref_primary_10_1002_adfm_202416163 crossref_primary_10_1002_adhm_202302460 crossref_primary_10_1016_j_sna_2025_116370 crossref_primary_10_1016_j_cej_2024_154553 crossref_primary_10_3389_fphy_2024_1529500 crossref_primary_10_1038_s41528_023_00244_5 crossref_primary_10_1016_j_renene_2023_119742 crossref_primary_10_3390_cryst14080708 crossref_primary_10_1016_j_cej_2025_161142 crossref_primary_10_1021_acsanm_4c03803 |
Cites_doi | 10.1253/circj.CJ-88-0020 10.4037/ccn2002.22.2.60 10.1038/s41467-020-17619-1 10.3389/fphys.2019.01179 10.1016/0895-4356(96)00111-4 10.1038/s41467-021-22663-6 10.1021/acsnano.8b07567 10.1002/adfm.202000477 10.3389/fphys.2019.01563 10.1109/JBHI.2016.2620995 10.1038/s41551-018-0336-5 10.1016/j.medengphy.2014.02.024 10.1016/j.irbm.2014.07.002 10.1007/s13246-020-00923-x 10.1021/acsnano.8b08567 10.1371/journal.pcbi.1007259 10.1038/s41551-018-0287-x 10.1002/adfm.201903162 10.1007/s13534-019-00096-x 10.1088/0967-3334/31/1/R01 10.1166/jmihi.2018.2474 10.1002/adma.201702308 10.1007/s13246-019-00813-x 10.1007/s10854-010-0207-7 10.1016/j.sna.2018.12.019 10.1016/S0002-8703(41)90651-8 10.1093/nsr/nwaa022 10.1109/TIE.2020.2978727 10.1038/ncomms5496 10.1109/LED.2018.2846184 10.3390/s20030851 10.1007/s10439-013-0854-y 10.1002/adem.202100341 10.1063/1.4991368 10.1073/pnas.1814392115 10.1109/LED.2019.2954878 10.1109/ULTSYM.2006.164 10.1109/TBME.2016.2580904 10.3390/technologies5020021 10.3390/s19112585 10.2215/CJN.03680320 10.3390/s20164484 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202110291 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 35285098 10_1002_adma_202110291 ADMA202110291 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2020TQ0190; 2020M681290 – fundername: National Natural Science Foundation of China funderid: 12032015; 12072189; 12102250 – fundername: Science and Technology Innovation Action Plan of Shanghai funderid: 21190760100 – fundername: National Natural Science Foundation of China grantid: 12032015 – fundername: National Natural Science Foundation of China grantid: 12102250 – fundername: National Natural Science Foundation of China grantid: 12072189 – fundername: China Postdoctoral Science Foundation grantid: 2020TQ0190 – fundername: Science and Technology Innovation Action Plan of Shanghai grantid: 21190760100 – fundername: China Postdoctoral Science Foundation grantid: 2020M681290 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4391-a6dfc68f9f1e335f8afea3ae3bbd1406f791b5c904f107e3be96bdaf1f8e727c3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 16:13:43 EDT 2025 Fri Jul 25 04:14:00 EDT 2025 Wed Feb 19 02:25:58 EST 2025 Tue Jul 01 02:33:15 EDT 2025 Thu Apr 24 22:59:27 EDT 2025 Wed Jan 22 16:24:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | wearables piezoelectric dynamics flexible piezo-MEMS sensors arterial pulses blood pressure monitoring |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4391-a6dfc68f9f1e335f8afea3ae3bbd1406f791b5c904f107e3be96bdaf1f8e727c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8679-8302 |
PMID | 35285098 |
PQID | 2652761510 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2638941332 proquest_journals_2652761510 pubmed_primary_35285098 crossref_primary_10_1002_adma_202110291 crossref_citationtrail_10_1002_adma_202110291 wiley_primary_10_1002_adma_202110291_ADMA202110291 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 64 2010; 31 2019; 9 2019; 3 2021; 23 2020; 20 2012 2020; 41 2019; 10 2019; 13 2019; 15 1941; 21 2013; 41 2019; 19 2020; 15 2006 2017; 29 2020; 11 2020; 10 2017; 111 2012; 76 2019; 286 2020; 7 2010; 22 2018; 8 2018; 39 2014; 5 2018; 2 2021; 12 2020; 30 2019; 43 2018; 115 2002; 22 2019 2016; 20 2014; 36 2014; 35 2019; 29 2020; 68 2014 2020; 43 1996; 49 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 Beer F. P. (e_1_2_8_45_1) 2012 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 Buxi D. (e_1_2_8_33_1) 2014 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 (e_1_2_8_1_1) 2014 e_1_2_8_19_1 e_1_2_8_13_1 Ono Y. (e_1_2_8_32_1) 2006 e_1_2_8_36_1 e_1_2_8_35_1 Argha A. (e_1_2_8_14_1) 2019 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – volume: 41 start-page: 183 year: 2020 publication-title: IEEE Electron Device Lett. – volume: 2 start-page: 687 year: 2018 publication-title: Nat. Biomed. Eng. – volume: 13 start-page: 1940 year: 2019 publication-title: ACS Nano – volume: 49 start-page: 869 year: 1996 publication-title: J. Clin. Epidemiol. – volume: 11 start-page: 3823 year: 2020 publication-title: Nat. Commun. – volume: 39 start-page: 1226 year: 2018 publication-title: IEEE Electron Device Lett. – volume: 35 start-page: 271 year: 2014 publication-title: IRBM – volume: 43 start-page: 1207 year: 2020 publication-title: Phys. Eng. Sci. Med. – volume: 41 start-page: 2617 year: 2013 publication-title: Ann. Biomed. Eng. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 3 start-page: 47 year: 2019 publication-title: Nat. Biomed. Eng. – volume: 20 start-page: 1455 year: 2016 publication-title: IEEE J. Biomed. Health Inf. – volume: 76 start-page: 508 year: 2012 publication-title: Circ. J. – start-page: 1821 year: 2019 end-page: 1824 – volume: 21 start-page: 504 year: 1941 publication-title: Am. Heart J. – start-page: 800 year: 2006 end-page: 803 – volume: 286 start-page: 146 year: 2019 publication-title: Sens. Actuators, A – volume: 9 start-page: 37 year: 2019 publication-title: Biomed. Eng. Lett. – start-page: 1420 year: 2014 end-page: 1423 – volume: 20 start-page: 851 year: 2020 publication-title: Sensors – volume: 15 year: 2019 publication-title: PLoS Comput. Biol. – volume: 7 start-page: 849 year: 2020 publication-title: Natl. Sci. Rev. – year: 2014 – volume: 20 start-page: 4484 year: 2020 publication-title: Sensors – volume: 22 start-page: 757 year: 2010 publication-title: J. Mater. Sci.: Mater. Electron. – year: 2012 – volume: 5 start-page: 4496 year: 2014 publication-title: Nat. Commun. – volume: 8 start-page: 1290 year: 2018 publication-title: J. Med. Imaging Health Inf. – volume: 115 year: 2018 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 111 year: 2017 publication-title: Appl. Phys. Lett. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 23 year: 2021 publication-title: Adv. Eng. Mater. – volume: 15 start-page: 1531 year: 2020 publication-title: Clin. J. Am. Soc. Nephrol. – volume: 43 start-page: 11 year: 2019 publication-title: Phys. Eng. Sci. Med. – volume: 22 start-page: 60 year: 2002 publication-title: Crit. Care Nurse – volume: 10 start-page: 1563 year: 2020 publication-title: Front. Physiol. – volume: 68 start-page: 3192 year: 2020 publication-title: IEEE Trans. Ind. Electron. – volume: 10 start-page: 1179 year: 2019 publication-title: Front. Physiol. – volume: 5 start-page: 21 year: 2017 publication-title: Technologies – volume: 31 start-page: R1 year: 2010 publication-title: Physiol. Meas – volume: 13 start-page: 2822 year: 2019 publication-title: ACS Nano – volume: 64 start-page: 859 year: 2017 publication-title: IEEE Trans. Biomed. Eng. – volume: 36 start-page: 927 year: 2014 publication-title: Med. Eng. Phys. – volume: 19 start-page: 2585 year: 2019 publication-title: Sensors – volume: 12 start-page: 2399 year: 2021 publication-title: Nat. Commun. – ident: e_1_2_8_5_1 doi: 10.1253/circj.CJ-88-0020 – ident: e_1_2_8_2_1 doi: 10.4037/ccn2002.22.2.60 – ident: e_1_2_8_24_1 doi: 10.1038/s41467-020-17619-1 – ident: e_1_2_8_43_1 doi: 10.3389/fphys.2019.01179 – ident: e_1_2_8_44_1 doi: 10.1016/0895-4356(96)00111-4 – ident: e_1_2_8_30_1 doi: 10.1038/s41467-021-22663-6 – ident: e_1_2_8_37_1 doi: 10.1021/acsnano.8b07567 – ident: e_1_2_8_40_1 doi: 10.1002/adfm.202000477 – ident: e_1_2_8_26_1 doi: 10.3389/fphys.2019.01563 – ident: e_1_2_8_16_1 doi: 10.1109/JBHI.2016.2620995 – ident: e_1_2_8_9_1 doi: 10.1038/s41551-018-0336-5 – ident: e_1_2_8_35_1 doi: 10.1016/j.medengphy.2014.02.024 – start-page: 1821 volume-title: 2019 41st Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC) year: 2019 ident: e_1_2_8_14_1 – ident: e_1_2_8_20_1 doi: 10.1016/j.irbm.2014.07.002 – ident: e_1_2_8_27_1 doi: 10.1007/s13246-020-00923-x – ident: e_1_2_8_38_1 doi: 10.1021/acsnano.8b08567 – ident: e_1_2_8_17_1 doi: 10.1371/journal.pcbi.1007259 – ident: e_1_2_8_25_1 doi: 10.1038/s41551-018-0287-x – ident: e_1_2_8_31_1 doi: 10.1002/adfm.201903162 – ident: e_1_2_8_41_1 doi: 10.1007/s13534-019-00096-x – ident: e_1_2_8_4_1 doi: 10.1088/0967-3334/31/1/R01 – volume-title: Global Status Report on Noncommunicable Diseases year: 2014 ident: e_1_2_8_1_1 – ident: e_1_2_8_10_1 doi: 10.1166/jmihi.2018.2474 – ident: e_1_2_8_29_1 doi: 10.1002/adma.201702308 – ident: e_1_2_8_6_1 doi: 10.1007/s13246-019-00813-x – ident: e_1_2_8_46_1 doi: 10.1007/s10854-010-0207-7 – ident: e_1_2_8_28_1 doi: 10.1016/j.sna.2018.12.019 – ident: e_1_2_8_21_1 doi: 10.1016/S0002-8703(41)90651-8 – ident: e_1_2_8_11_1 doi: 10.1093/nsr/nwaa022 – ident: e_1_2_8_39_1 doi: 10.1109/TIE.2020.2978727 – ident: e_1_2_8_8_1 doi: 10.1038/ncomms5496 – ident: e_1_2_8_23_1 doi: 10.1109/LED.2018.2846184 – ident: e_1_2_8_7_1 doi: 10.3390/s20030851 – start-page: 1420 volume-title: 2014 36th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society year: 2014 ident: e_1_2_8_33_1 – ident: e_1_2_8_42_1 doi: 10.1007/s10439-013-0854-y – ident: e_1_2_8_34_1 doi: 10.1002/adem.202100341 – ident: e_1_2_8_36_1 doi: 10.1063/1.4991368 – ident: e_1_2_8_12_1 doi: 10.1073/pnas.1814392115 – ident: e_1_2_8_22_1 doi: 10.1109/LED.2019.2954878 – start-page: 800 volume-title: 2006 IEEE Ultrasonics Symp. year: 2006 ident: e_1_2_8_32_1 doi: 10.1109/ULTSYM.2006.164 – ident: e_1_2_8_18_1 doi: 10.1109/TBME.2016.2580904 – ident: e_1_2_8_3_1 doi: 10.3390/technologies5020021 – volume-title: Mechanics of Materials year: 2012 ident: e_1_2_8_45_1 – ident: e_1_2_8_15_1 doi: 10.3390/s19112585 – ident: e_1_2_8_19_1 doi: 10.2215/CJN.03680320 – ident: e_1_2_8_13_1 doi: 10.3390/s20164484 |
SSID | ssj0009606 |
Score | 2.6849098 |
Snippet | Piezoelectric arterial pulse wave dynamics are traditionally considered to be similar to those of typical blood pressure waves. However, achieving accurate... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2110291 |
SubjectTerms | arterial pulses Blood Pressure blood pressure monitoring Elastic waves flexible piezo‐MEMS sensors Heart Rate - physiology Hypertension Materials science Monitoring Monitoring, Physiologic piezoelectric dynamics Piezoelectricity Portable equipment Pulse Wave Analysis Wave velocity Wearable Electronic Devices Wearable technology wearables |
Title | Piezoelectric Dynamics of Arterial Pulse for Wearable Continuous Blood Pressure Monitoring |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202110291 https://www.ncbi.nlm.nih.gov/pubmed/35285098 https://www.proquest.com/docview/2652761510 https://www.proquest.com/docview/2638941332 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_EJ33w-6N-EUHwqXNN2q59nE4RYTJEcfhS0jSBoXTi1hf_eu-SrXOKCPrYNmnTJJf7XXL3O4CTCPWKUkL7RLzih0kQ-jKMyacBsb5BU07brezubXz9EN70o_6nKH7HD1FvuJFk2PWaBFzmo7MZaagsLG8QGTDchq-TwxahorsZfxTBc0u2JyI_jcNkytrY5Gfz1ee10jeoOY9creq5WgU5bbTzOHluVOO8od6_8Dn-56_WYGWCS1nbTaR1WNDlBix_YivchKfeQL8PXd6cgWIdl8t-xIaGqtmZzHoVqlqGQJg9oghRWBYj_qtBWQ2rETsnL3nmIhLfNHPrCb18Cx6uLu8vrv1JagZfUaiuL-PCqDgxqQm0EJFJpNFSSC3yvECTLTatNMgjlTZDg_Yl3tZpnBfSBCbRiJiU2IbFcljqXWBRQja6KVTRQmwWFmlLpjIRRcQNwdHAA386NJma8JZT-oyXzDEu84z6LKv7zIPTuvyrY-z4seTBdKSzieSOMh5HvEUwr-nBcf0YZY4OUmSpsbewDMI81P6Ce7DjZkj9KWLLQRCWeMDtOP_Shqzd6bbrq72_VNqHJU4xGdad6AAWx2-VPkSkNM6PrDR8ANa8CS0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1PT9RAFH9BOKAHRRSogo4JxlNhO9N224OHlZUswhJiIBIvdTqdSTZCl7DbGPhWfhU_ke_NtMXVEBMTDh7bzrTz5_35vem83wBsRuhXlBLaJ-IVP0yC0JdhTHsaEOsbDOW0XcoeHsaDk_DDaXQ6B9-bXBjHD9EuuJFmWHtNCk4L0ts3rKGysMRBFMHwNKj3Ve7rq28YtU3e7vVxil9zvvv-eGfg1wcL-IoSTX0ZF0bFiUlNoIWITCKNlkJqkecFBhyx6aZBHqm0ExqMjvC2TuO8kCYwiUZ_rwS-9x4s0DHiRNff_3jDWEUBgaX3E5GfxmHS8ER2-PZse2f94B_gdhYrW2e3-wh-NMPk9rh83aqm-Za6_o1B8r8axyV4WENv1nO68hjmdLkMD34hZHwCn49G-nrsjgYaKda_KuX5SE3Y2FA1q6zsqEI0wRDrs0_YB8o8Y0TxNSqrcTVh7ygRgLmky0vNnMmklz-Fkzvp3ArMl-NSrwGLElqGMIUqugg_wyLtylQmooi4IcQdeOA3spCpmpqdTgg5yxypNM9ojrJ2jjx405a_cKQkt5Zcb0Qrq43TJONxxLuEZDsevGofo1mhf0Wy1DhaWAaRLAIcwT1YdSLZfooIgRBnJh5wK1h_aUPW6w977dWzf6n0EhYHx8OD7GDvcP853OeUgmJ3T63D_PSy0hsIDKf5C6uKDL7ctcz-BGzUan4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE48H4EChgJxCntxk68yYHDQli1lFYrREXVS3D8kFYt2aq7EWp_FX-Ff8SM8ygLQkhIPXBMYid-zIy_cWY-AzxPcF3RWtiQiFfCOI3iUMWSYhoQ6zt05azfyt7ZlZt78bv9ZH8FvnW5MA0_RL_hRprh7TUp-LFxG-ekocp43iByYHgWtWGV2_b0Kzpt81dbOc7wC87Hbz--2QzbcwVCTXmmoZLGaZm6zEVWiMSlylkllBVladDfkG6YRWWis0Hs0DnC2zaTpVEucqnF5V4LfO8luBzLQUaHReQfzgmryB_w7H4iCTMZpx1N5IBvLLd3eRn8DdsuQ2W_1o1vwPdulJoQl8P1elGu67NfCCT_p2G8Cddb4M1GjabcghVb3YZrP9Ex3oGDydSezZqDgaaa5aeV-jLVczZzVM2rKpvUiCUYIn32CftAeWeMCL6mVT2r5-w1pQGwJuXyxLLGYNLL78LehXTuHqxWs8o-AJaktAnhjDZDBJ-xyYYqU6kwCXeEt6MAwk4UCt0Ss9P5IEdFQynNC5qjop-jAF725Y8bSpI_llzrJKtoTdO84DLhQ8KxgwCe9Y_RqNCfIlVZHC0sgzgW4Y3gAdxvJLL_FNEBIcpMA-Berv7ShmKU74z6q4f_UukpXJnk4-L91u72I7jKKf_Eh06tweripLaPERUuyideERl8vmiR_QGrQGkt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+Dynamics+of+Arterial+Pulse+for+Wearable+Continuous+Blood+Pressure+Monitoring&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhiran+Yi&rft.au=Liu%2C+Zhaoxu&rft.au=Li%2C+Wenbo&rft.au=Ruan%2C+Tao&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=16&rft_id=info:doi/10.1002%2Fadma.202110291&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |