Dopant‐Free Organic Hole‐Transporting Material for Efficient and Stable Inverted All‐Inorganic and Hybrid Perovskite Solar Cells

Designing new hole‐transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p–i–n structure. Herein, the synthesis of a novel 3D small molecule named TPE‐S and its application...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 16; pp. e1908011 - n/a
Main Authors Jiang, Kui, Wang, Jing, Wu, Fei, Xue, Qifan, Yao, Qin, Zhang, Jianquan, Chen, Yihuang, Zhang, Guangye, Zhu, Zonglong, Yan, He, Zhu, Linna, Yip, Hin‐Lap
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing new hole‐transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p–i–n structure. Herein, the synthesis of a novel 3D small molecule named TPE‐S and its application as an HTM in PVSCs are shown. The all‐inorganic inverted PVSCs made using TPE‐S, processed without any dopant or post‐treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE‐S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all‐inorganic CsPbI2Br PVSCs based on TPE‐S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all‐inorganic PVSCs. Meanwhile, the TPE‐S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE‐S as a simple and general dopant‐free HTM for different types of high‐performance PVSCs. A new S‐atom‐containing small molecule (TPE‐S) is introduced as a dopant‐free hole‐transporting layer in all‐inorganic and organic/inorganic hybrid perovskite solar cells (PVSCs) with a p–i–n inverted structure, leading to improved power conversion efficiencies of 15.4% and 21%, respectively. In addition, these devices also show enhanced photostability, with performance comparable to state‐of‐the‐art PVSCs based on the conventional n–i–p structure.
AbstractList Designing new hole-transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p-i-n structure. Herein, the synthesis of a novel 3D small molecule named TPE-S and its application as an HTM in PVSCs are shown. The all-inorganic inverted PVSCs made using TPE-S, processed without any dopant or post-treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE-S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all-inorganic CsPbI2 Br PVSCs based on TPE-S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all-inorganic PVSCs. Meanwhile, the TPE-S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE-S as a simple and general dopant-free HTM for different types of high-performance PVSCs.Designing new hole-transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p-i-n structure. Herein, the synthesis of a novel 3D small molecule named TPE-S and its application as an HTM in PVSCs are shown. The all-inorganic inverted PVSCs made using TPE-S, processed without any dopant or post-treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE-S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all-inorganic CsPbI2 Br PVSCs based on TPE-S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all-inorganic PVSCs. Meanwhile, the TPE-S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE-S as a simple and general dopant-free HTM for different types of high-performance PVSCs.
Designing new hole-transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p-i-n structure. Herein, the synthesis of a novel 3D small molecule named TPE-S and its application as an HTM in PVSCs are shown. The all-inorganic inverted PVSCs made using TPE-S, processed without any dopant or post-treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE-S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all-inorganic CsPbI Br PVSCs based on TPE-S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all-inorganic PVSCs. Meanwhile, the TPE-S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE-S as a simple and general dopant-free HTM for different types of high-performance PVSCs.
Designing new hole‐transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p–i–n structure. Herein, the synthesis of a novel 3D small molecule named TPE‐S and its application as an HTM in PVSCs are shown. The all‐inorganic inverted PVSCs made using TPE‐S, processed without any dopant or post‐treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE‐S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all‐inorganic CsPbI2Br PVSCs based on TPE‐S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all‐inorganic PVSCs. Meanwhile, the TPE‐S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE‐S as a simple and general dopant‐free HTM for different types of high‐performance PVSCs. A new S‐atom‐containing small molecule (TPE‐S) is introduced as a dopant‐free hole‐transporting layer in all‐inorganic and organic/inorganic hybrid perovskite solar cells (PVSCs) with a p–i–n inverted structure, leading to improved power conversion efficiencies of 15.4% and 21%, respectively. In addition, these devices also show enhanced photostability, with performance comparable to state‐of‐the‐art PVSCs based on the conventional n–i–p structure.
Designing new hole‐transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p–i–n structure. Herein, the synthesis of a novel 3D small molecule named TPE‐S and its application as an HTM in PVSCs are shown. The all‐inorganic inverted PVSCs made using TPE‐S, processed without any dopant or post‐treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE‐S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all‐inorganic CsPbI 2 Br PVSCs based on TPE‐S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all‐inorganic PVSCs. Meanwhile, the TPE‐S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE‐S as a simple and general dopant‐free HTM for different types of high‐performance PVSCs.
Designing new hole‐transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p–i–n structure. Herein, the synthesis of a novel 3D small molecule named TPE‐S and its application as an HTM in PVSCs are shown. The all‐inorganic inverted PVSCs made using TPE‐S, processed without any dopant or post‐treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE‐S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all‐inorganic CsPbI2Br PVSCs based on TPE‐S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all‐inorganic PVSCs. Meanwhile, the TPE‐S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE‐S as a simple and general dopant‐free HTM for different types of high‐performance PVSCs.
Author Yao, Qin
Zhang, Guangye
Chen, Yihuang
Yan, He
Wu, Fei
Jiang, Kui
Zhang, Jianquan
Zhu, Zonglong
Wang, Jing
Yip, Hin‐Lap
Xue, Qifan
Zhu, Linna
Author_xml – sequence: 1
  givenname: Kui
  surname: Jiang
  fullname: Jiang, Kui
  organization: The Hong Kong University of Science and Technology
– sequence: 2
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: City University of Hong Kong
– sequence: 3
  givenname: Fei
  surname: Wu
  fullname: Wu, Fei
  organization: Southwest University
– sequence: 4
  givenname: Qifan
  surname: Xue
  fullname: Xue, Qifan
  email: qfxue@scut.edu.cn
  organization: South China University of Technology
– sequence: 5
  givenname: Qin
  surname: Yao
  fullname: Yao, Qin
  organization: South China University of Technology
– sequence: 6
  givenname: Jianquan
  surname: Zhang
  fullname: Zhang, Jianquan
  organization: The Hong Kong University of Science and Technology
– sequence: 7
  givenname: Yihuang
  surname: Chen
  fullname: Chen, Yihuang
  organization: Wenzhou University
– sequence: 8
  givenname: Guangye
  surname: Zhang
  fullname: Zhang, Guangye
  organization: eFlexPV Limited (China)
– sequence: 9
  givenname: Zonglong
  surname: Zhu
  fullname: Zhu, Zonglong
  organization: City University of Hong Kong
– sequence: 10
  givenname: He
  surname: Yan
  fullname: Yan, He
  organization: The Hong Kong University of Science and Technology
– sequence: 11
  givenname: Linna
  surname: Zhu
  fullname: Zhu, Linna
  email: lnzhu@swu.edu.cn
  organization: Southwest University
– sequence: 12
  givenname: Hin‐Lap
  orcidid: 0000-0002-5750-9751
  surname: Yip
  fullname: Yip, Hin‐Lap
  email: msangusyip@scut.edu.cn
  organization: South China University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32115824$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rVDEUhoNU7LS6dSkBN27umI_7kSyHaesMtFRoXV9yc09KaiYZk0zL7Fy59jf6S8wwY4WCuDoQnuc9h7wn6MgHDwi9pWRKCWEf1bhSU0aoJIJQ-gJNaMNoVRPZHKEJkbypZFuLY3SS0j0hRLakfYWOOaO0EayeoB9nYa18_vX950UEwNfxTnmr8SI4KG-3Ufm0DjFbf4evVIZolcMmRHxujNUWfMbKj_gmq8EBXvoHiBlGPHOu2EsfDnE7ZrEdoh3xZ4jhIX21GfBNcCriOTiXXqOXRrkEbw7zFH25OL-dL6rL60_L-eyy0jWXtBIahm40RCtNatJ0RAjdMt62WigCUlIJBljTdYpx09VMG-jIKMRQj6YbNOen6MM-dx3Dtw2k3K9s0uUC5SFsUl-ypOjariEFff8MvQ-b6Mt1hZKM85YzUah3B2ozrGDs19GuVNz2f364ANM9oGNIKYJ5QijpdxX2uwr7pwqLUD8TtM0q2-BzVNb9W5N77dE62P5nST87u5r9dX8DiGqzmg
CitedBy_id crossref_primary_10_1007_s40820_020_00509_y
crossref_primary_10_1039_D2TC03631B
crossref_primary_10_1016_j_solmat_2020_110862
crossref_primary_10_1039_D1QM00190F
crossref_primary_10_1002_adma_202102811
crossref_primary_10_1021_acsami_0c20584
crossref_primary_10_1021_acsenergylett_4c00585
crossref_primary_10_1021_acsaem_1c00598
crossref_primary_10_1002_sstr_202000089
crossref_primary_10_1039_D1SE01251G
crossref_primary_10_1002_solr_202100663
crossref_primary_10_1021_acsmaterialslett_0c00320
crossref_primary_10_1063_5_0073363
crossref_primary_10_1016_j_orgel_2023_106936
crossref_primary_10_1039_D2NR06230E
crossref_primary_10_1039_D1EE00890K
crossref_primary_10_1002_admi_202100920
crossref_primary_10_1002_ange_202113749
crossref_primary_10_1002_ange_202016085
crossref_primary_10_1002_admi_202101463
crossref_primary_10_1002_cjoc_202100022
crossref_primary_10_1016_j_inoche_2024_113555
crossref_primary_10_1002_anie_202218752
crossref_primary_10_1007_s11426_022_1445_2
crossref_primary_10_1002_adfm_202200651
crossref_primary_10_1021_acsenergylett_2c00977
crossref_primary_10_1021_acs_chemmater_0c03038
crossref_primary_10_1016_j_jiec_2022_11_013
crossref_primary_10_1039_D1TA03718H
crossref_primary_10_1007_s12598_020_01696_8
crossref_primary_10_1016_j_cej_2021_131675
crossref_primary_10_1002_smll_202205926
crossref_primary_10_1002_anie_202105176
crossref_primary_10_1021_acsaem_0c02306
crossref_primary_10_1002_adfm_202103316
crossref_primary_10_1016_j_mattod_2023_06_009
crossref_primary_10_1016_j_dyepig_2022_110102
crossref_primary_10_1021_acssuschemeng_4c07524
crossref_primary_10_1016_j_nanoen_2020_105701
crossref_primary_10_1134_S1070363222060251
crossref_primary_10_1021_acsaem_2c00223
crossref_primary_10_1039_D1SC01416A
crossref_primary_10_1016_j_orgel_2021_106102
crossref_primary_10_1002_smll_202101902
crossref_primary_10_1063_5_0051254
crossref_primary_10_1002_advs_202400117
crossref_primary_10_1021_acsaem_0c02531
crossref_primary_10_1002_cjoc_202300635
crossref_primary_10_1016_j_dyepig_2021_109506
crossref_primary_10_1039_D3TC02929H
crossref_primary_10_1002_adma_202302298
crossref_primary_10_1002_aenm_202004002
crossref_primary_10_1002_adfm_202314086
crossref_primary_10_1039_D0SE01062F
crossref_primary_10_1016_j_mattod_2021_11_017
crossref_primary_10_1002_solr_202000344
crossref_primary_10_1039_D1TC05351E
crossref_primary_10_1021_acsami_2c13072
crossref_primary_10_1002_anie_202016085
crossref_primary_10_1002_adfm_202315604
crossref_primary_10_1021_acsami_1c21041
crossref_primary_10_1039_D0CC04485G
crossref_primary_10_1016_j_cej_2021_129823
crossref_primary_10_1021_acsami_2c16591
crossref_primary_10_1016_j_mattod_2022_11_002
crossref_primary_10_1002_adma_202203794
crossref_primary_10_1039_D1TA11039J
crossref_primary_10_1002_solr_202000461
crossref_primary_10_1002_adfm_202206311
crossref_primary_10_2139_ssrn_4145274
crossref_primary_10_1021_acsapm_3c01396
crossref_primary_10_1002_aenm_202002940
crossref_primary_10_1007_s12598_020_01691_z
crossref_primary_10_1002_EXP_20220027
crossref_primary_10_1021_jacs_0c06373
crossref_primary_10_1016_j_xcrp_2023_101726
crossref_primary_10_1039_D2TA08443K
crossref_primary_10_1039_D1TC01367J
crossref_primary_10_1021_acsami_1c13792
crossref_primary_10_1002_er_8586
crossref_primary_10_1016_j_solener_2022_10_040
crossref_primary_10_1016_j_jallcom_2023_170478
crossref_primary_10_1039_D1TC01258D
crossref_primary_10_1002_adfm_202203873
crossref_primary_10_1016_j_nanoen_2020_105462
crossref_primary_10_1039_D1TC02053F
crossref_primary_10_1002_aenm_202100967
crossref_primary_10_1002_solr_202300070
crossref_primary_10_1016_j_cjche_2022_07_027
crossref_primary_10_1002_adma_202107111
crossref_primary_10_1002_cssc_202201485
crossref_primary_10_1021_acs_chemrev_2c00166
crossref_primary_10_1039_D4TC03250K
crossref_primary_10_3389_fchem_2021_724188
crossref_primary_10_3389_fchem_2021_677821
crossref_primary_10_1021_acsami_2c06903
crossref_primary_10_1016_j_cej_2021_130396
crossref_primary_10_1016_j_dyepig_2022_110671
crossref_primary_10_1021_acsaem_0c01491
crossref_primary_10_1039_D2EE01256A
crossref_primary_10_1002_ente_202100952
crossref_primary_10_1039_D0EE02337J
crossref_primary_10_1039_D1TA10388A
crossref_primary_10_1002_ente_202200488
crossref_primary_10_1021_acsami_1c22020
crossref_primary_10_1016_j_nanoen_2021_105751
crossref_primary_10_1016_j_orgel_2022_106697
crossref_primary_10_1007_s40243_024_00275_6
crossref_primary_10_1002_aenm_202301218
crossref_primary_10_1021_acsenergylett_2c00684
crossref_primary_10_1039_D2EE00663D
crossref_primary_10_1016_j_xcrp_2024_102034
crossref_primary_10_1002_ange_202105176
crossref_primary_10_1016_j_cej_2022_135107
crossref_primary_10_3390_ijms231911792
crossref_primary_10_1016_j_jechem_2021_06_005
crossref_primary_10_1002_aenm_202003585
crossref_primary_10_3390_ijms252313117
crossref_primary_10_1016_j_jallcom_2024_174374
crossref_primary_10_1007_s40820_024_01613_z
crossref_primary_10_1002_aenm_202201854
crossref_primary_10_1039_D0TA07663E
crossref_primary_10_1016_j_cej_2024_150861
crossref_primary_10_1016_j_solener_2021_11_074
crossref_primary_10_1002_solr_202200690
crossref_primary_10_1007_s11467_020_1026_9
crossref_primary_10_1039_D1TA03024H
crossref_primary_10_1246_bcsj_20200331
crossref_primary_10_1002_adfm_202005155
crossref_primary_10_1002_aenm_202401721
crossref_primary_10_1039_D1TA09705A
crossref_primary_10_1021_acsami_2c06163
crossref_primary_10_1002_adfm_202011270
crossref_primary_10_1016_j_dyepig_2022_110170
crossref_primary_10_1039_D0NR03408H
crossref_primary_10_1002_adfm_202206030
crossref_primary_10_1021_acsmaterialslett_0c00134
crossref_primary_10_1039_D0CP02643C
crossref_primary_10_1002_tcr_202100330
crossref_primary_10_1021_acsami_1c18522
crossref_primary_10_1039_D3TA06808K
crossref_primary_10_1016_j_dyepig_2023_111635
crossref_primary_10_1021_acsami_2c19954
crossref_primary_10_1021_jacs_4c13356
crossref_primary_10_1002_ange_202218752
crossref_primary_10_1002_smtd_202000254
crossref_primary_10_1039_D1TC04014F
crossref_primary_10_1002_adfm_202201933
crossref_primary_10_1002_anie_202413582
crossref_primary_10_1002_adfm_202100332
crossref_primary_10_1002_aenm_202300694
crossref_primary_10_1021_acs_jpcc_1c10934
crossref_primary_10_3390_nano15070483
crossref_primary_10_1021_acsami_2c00841
crossref_primary_10_1002_anie_202113749
crossref_primary_10_1039_D2TA02574D
crossref_primary_10_1002_solr_202200590
crossref_primary_10_1016_j_dyepig_2021_109340
crossref_primary_10_1039_D4TA01453G
crossref_primary_10_1039_D3MH00219E
crossref_primary_10_1016_j_joule_2020_12_003
crossref_primary_10_1016_j_nanoen_2025_110859
crossref_primary_10_1002_aenm_202202491
crossref_primary_10_1039_D3TA05069F
crossref_primary_10_1016_j_apsusc_2023_157901
crossref_primary_10_1021_acsami_2c13746
crossref_primary_10_1002_solr_202000629
crossref_primary_10_1021_acsaem_4c02332
crossref_primary_10_1016_j_jpowsour_2020_229149
crossref_primary_10_2139_ssrn_4103222
crossref_primary_10_1021_acsenergylett_1c01126
crossref_primary_10_1021_acsmaterialslett_3c00225
crossref_primary_10_1002_solr_202300252
crossref_primary_10_1021_acs_jpclett_1c00954
crossref_primary_10_1016_j_nantod_2022_101586
crossref_primary_10_1039_D4CC04000G
crossref_primary_10_1002_ange_202108800
crossref_primary_10_1016_j_jechem_2021_11_001
crossref_primary_10_1002_aenm_202100784
crossref_primary_10_1039_D2TA09866K
crossref_primary_10_1039_D3NR01390A
crossref_primary_10_1016_j_dyepig_2021_109657
crossref_primary_10_1002_solr_202100880
crossref_primary_10_1021_acsenergylett_4c00140
crossref_primary_10_1016_j_solener_2022_01_023
crossref_primary_10_1002_ejic_202100267
crossref_primary_10_1155_2023_1844719
crossref_primary_10_1016_j_jcis_2021_07_122
crossref_primary_10_1016_j_orgel_2022_106719
crossref_primary_10_1039_D3TA06427A
crossref_primary_10_1002_ange_202413582
crossref_primary_10_1016_j_jechem_2021_04_021
crossref_primary_10_1021_acsaem_2c03260
crossref_primary_10_6023_cjoc202009033
crossref_primary_10_1021_acsenergylett_1c00291
crossref_primary_10_1016_j_cej_2021_133265
crossref_primary_10_1016_j_cej_2022_136136
crossref_primary_10_1039_D1EE01562A
crossref_primary_10_1016_j_synthmet_2020_116631
crossref_primary_10_1021_acsami_4c08445
crossref_primary_10_1002_adma_202407349
crossref_primary_10_1002_smll_202202690
crossref_primary_10_1002_cphc_202200919
crossref_primary_10_1016_j_xcrp_2021_100662
crossref_primary_10_1021_acsami_5c01802
crossref_primary_10_1002_aenm_202301607
crossref_primary_10_1016_j_cej_2021_133371
crossref_primary_10_1016_j_ijleo_2023_171501
crossref_primary_10_1021_acs_jpcc_4c03059
crossref_primary_10_1039_D0QM00728E
crossref_primary_10_1002_anie_202108800
crossref_primary_10_1021_acsami_4c14579
crossref_primary_10_1039_D0TA11564A
crossref_primary_10_1002_adom_202301052
crossref_primary_10_1016_j_jechem_2021_11_039
crossref_primary_10_1007_s12598_023_02320_1
Cites_doi 10.1038/s41563-017-0006-0
10.1039/C4EE03824J
10.1038/s41467-019-12513-x
10.1021/ja411014k
10.1002/aenm.201870067
10.1039/C8TA06081A
10.1021/jacs.7b13229
10.1038/ncomms15330
10.1002/chem.201404427
10.1002/solr.201700188
10.1021/acs.jpclett.6b00002
10.1002/adma.201900605
10.1021/acs.accounts.7b00597
10.1039/C5CC05236J
10.1038/nenergy.2017.9
10.1038/nphoton.2014.134
10.1002/solr.201800239
10.1002/adma.201604545
10.1021/jacs.8b01783
10.1038/s41467-018-04636-4
10.1126/science.aad1015
10.1002/aenm.201701883
10.1039/C8EE03559H
10.1002/adma.201902543
10.1021/acs.jpclett.6b00963
10.1002/aenm.201501066
10.1126/science.aat8235
10.1016/j.nanoen.2016.11.022
10.1002/adma.201901152
10.1038/s41560-018-0219-8
10.1126/science.aap9282
10.1002/aenm.201502458
10.1038/nmat4014
10.1002/aenm.201803140
10.1002/anie.201910800
10.1039/C6EE00612D
10.1038/s41560-018-0278-x
10.1038/nnano.2015.230
10.1016/j.joule.2017.09.017
10.1002/anie.201901081
10.1039/C9TA08995K
10.1002/adma.201800515
10.1039/C5TA06398A
10.1002/aenm.201870091
10.1021/acs.chemmater.9b03277
10.1126/science.aan2301
10.1038/s41586-019-1036-3
10.1002/aenm.201502101
10.1002/solr.201700086
10.1038/s41560-019-0466-3
10.1002/adma.201603850
10.1002/adma.201902781
10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201908011
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32115824
10_1002_adma_201908011
ADMA201908011
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21761132001; 51803060; 51573057
– fundername: ShenZhen Technology and Innovation Commission
  funderid: JCYJ20170413173814007
– fundername: Science and Technology Program of Guangzhou
  funderid: 201607020010; 2017A050503002
– fundername: Research Grants Council of Hong Kong
  funderid: T23–407/13 N; N_HKUST623/13; 16305915; 16322416; 606012; 16303917
– fundername: Fundamental Research Funds for the Central Universities
  funderid: XDJK2017A002
– fundername: Science and Technology Program of Guangdong Province, China
  funderid: 2018A030313045
– fundername: National Natural Science Foundation of China
  funderid: 51703183
– fundername: Innovation and Technology Commission
  funderid: ITC‐CNERC14SC01
– fundername: Ministry of Science and Technology
  funderid: 2017YF0206600
– fundername: Science and Technology Program of Guangdong Province, China
  grantid: 2018A030313045
– fundername: Research Grants Council of Hong Kong
  grantid: T23-407/13 N
– fundername: Research Grants Council of Hong Kong
  grantid: 606012
– fundername: Science and Technology Program of Guangzhou
  grantid: 201607020010
– fundername: Research Grants Council of Hong Kong
  grantid: 16303917
– fundername: Science and Technology Program of Guangzhou
  grantid: 2017A050503002
– fundername: Research Grants Council of Hong Kong
  grantid: N_HKUST623/13
– fundername: National Natural Science Foundation of China
  grantid: 51803060
– fundername: National Natural Science Foundation of China
  grantid: 51573057
– fundername: National Natural Science Foundation of China
  grantid: 21761132001
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4391-8ceb7df0cac04057088c62366c8a0e9919efe2577a23f742cfe70d88b4df7bc33
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:22:08 EDT 2025
Mon Jul 14 10:25:18 EDT 2025
Wed Feb 19 02:30:06 EST 2025
Tue Jul 01 02:32:45 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Wed Jan 22 16:33:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords device stability
all-inorganic perovskites
hole-transporting materials
passivation effect
inverted perovskite solar cells
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4391-8ceb7df0cac04057088c62366c8a0e9919efe2577a23f742cfe70d88b4df7bc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5750-9751
PMID 32115824
PQID 2392336328
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2369876750
proquest_journals_2392336328
pubmed_primary_32115824
crossref_primary_10_1002_adma_201908011
crossref_citationtrail_10_1002_adma_201908011
wiley_primary_10_1002_adma_201908011_ADMA201908011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 361
2019; 7
2017; 8
2019; 9
2017; 1
2019; 4
2019; 3
2015; 5
2017; 2
2018; 140
2018; 360
2015; 3
2019; 31
2015; 51
2019; 10
2019; 12
2019; 58
2019; 567
2017; 29
2015; 8
2017; 356
2014; 136
2016; 11
2015; 350
2018; 6
2016; 6
2018; 9
2017; 31
2016; 7
2018; 17
2018; 8
2018; 3
2018; 2
2000; 12
2015; 21
2014; 13
2018; 30
2018; 51
2014; 8
2016; 28
2016; 9
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_52_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_54_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_53_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 4
  start-page: 864
  year: 2019
  publication-title: Nat. Energy
– volume: 136
  start-page: 758
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 21
  start-page: 434
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 9648
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 360
  start-page: 1442
  year: 2018
  publication-title: Science
– volume: 356
  start-page: 1376
  year: 2017
  publication-title: Science
– volume: 567
  start-page: 511
  year: 2019
  publication-title: Nature
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 31
  start-page: 9032
  year: 2019
  publication-title: Chem. Mater.
– volume: 10
  start-page: 4498
  year: 2019
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1093
  year: 2018
  publication-title: Nat. Energy
– volume: 3
  start-page: 847
  year: 2018
  publication-title: Nat. Energy
– volume: 7
  start-page: 2356
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 8
  start-page: 1160
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 17
  start-page: 261
  year: 2018
  publication-title: Nat. Mater.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 8
  start-page: 506
  year: 2014
  publication-title: Nat. Photonics
– volume: 2
  year: 2018
  publication-title: Sol. RRL
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 140
  start-page: 5018
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1495
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 140
  start-page: 3825
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1258
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 350
  start-page: 944
  year: 2015
  publication-title: Science
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 361
  year: 2018
  publication-title: Science
– volume: 1
  start-page: 769
  year: 2017
  publication-title: Joule
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 481
  year: 2000
  publication-title: Adv. Mater.
– volume: 7
  start-page: 746
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 31
  start-page: 210
  year: 2017
  publication-title: Nano Energy
– volume: 1
  year: 2017
  publication-title: Sol. RRL
– volume: 51
  start-page: 869
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 3
  year: 2019
  publication-title: Sol. RRL
– volume: 11
  start-page: 75
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 2225
  year: 2018
  publication-title: Nat. Commun.
– ident: e_1_2_4_13_1
  doi: 10.1038/s41563-017-0006-0
– ident: e_1_2_4_30_1
  doi: 10.1039/C4EE03824J
– ident: e_1_2_4_27_1
  doi: 10.1038/s41467-019-12513-x
– ident: e_1_2_4_52_1
  doi: 10.1021/ja411014k
– ident: e_1_2_4_15_1
  doi: 10.1002/aenm.201870067
– ident: e_1_2_4_43_1
  doi: 10.1039/C8TA06081A
– ident: e_1_2_4_35_1
  doi: 10.1021/jacs.7b13229
– ident: e_1_2_4_4_1
  doi: 10.1038/ncomms15330
– ident: e_1_2_4_19_1
  doi: 10.1002/chem.201404427
– ident: e_1_2_4_9_1
  doi: 10.1002/solr.201700188
– ident: e_1_2_4_10_1
  doi: 10.1021/acs.jpclett.6b00002
– ident: e_1_2_4_41_1
  doi: 10.1002/adma.201900605
– ident: e_1_2_4_45_1
  doi: 10.1021/acs.accounts.7b00597
– ident: e_1_2_4_48_1
  doi: 10.1039/C5CC05236J
– ident: e_1_2_4_24_1
  doi: 10.1038/nenergy.2017.9
– ident: e_1_2_4_1_1
  doi: 10.1038/nphoton.2014.134
– ident: e_1_2_4_8_1
  doi: 10.1002/solr.201800239
– ident: e_1_2_4_51_1
  doi: 10.1002/adma.201604545
– ident: e_1_2_4_44_1
  doi: 10.1021/jacs.8b01783
– ident: e_1_2_4_16_1
  doi: 10.1038/s41467-018-04636-4
– ident: e_1_2_4_34_1
  doi: 10.1126/science.aad1015
– ident: e_1_2_4_28_1
  doi: 10.1002/aenm.201701883
– ident: e_1_2_4_6_1
  doi: 10.1039/C8EE03559H
– ident: e_1_2_4_54_1
  doi: 10.1002/adma.201902543
– ident: e_1_2_4_5_1
  doi: 10.1021/acs.jpclett.6b00963
– ident: e_1_2_4_20_1
  doi: 10.1002/aenm.201501066
– ident: e_1_2_4_22_1
  doi: 10.1126/science.aat8235
– ident: e_1_2_4_21_1
  doi: 10.1016/j.nanoen.2016.11.022
– ident: e_1_2_4_53_1
  doi: 10.1002/adma.201901152
– ident: e_1_2_4_49_1
  doi: 10.1038/s41560-018-0219-8
– ident: e_1_2_4_50_1
  doi: 10.1126/science.aap9282
– ident: e_1_2_4_14_1
  doi: 10.1002/aenm.201502458
– ident: e_1_2_4_39_1
  doi: 10.1038/nmat4014
– ident: e_1_2_4_31_1
  doi: 10.1002/aenm.201803140
– ident: e_1_2_4_18_1
  doi: 10.1002/anie.201910800
– ident: e_1_2_4_3_1
  doi: 10.1039/C6EE00612D
– ident: e_1_2_4_26_1
  doi: 10.1038/s41560-018-0278-x
– ident: e_1_2_4_32_1
  doi: 10.1038/nnano.2015.230
– ident: e_1_2_4_11_1
  doi: 10.1016/j.joule.2017.09.017
– ident: e_1_2_4_7_1
  doi: 10.1002/anie.201901081
– ident: e_1_2_4_29_1
  doi: 10.1039/C9TA08995K
– ident: e_1_2_4_33_1
  doi: 10.1002/adma.201800515
– ident: e_1_2_4_12_1
  doi: 10.1039/C5TA06398A
– ident: e_1_2_4_42_1
  doi: 10.1002/aenm.201870091
– ident: e_1_2_4_23_1
  doi: 10.1021/acs.chemmater.9b03277
– ident: e_1_2_4_40_1
  doi: 10.1126/science.aan2301
– ident: e_1_2_4_38_1
  doi: 10.1038/s41586-019-1036-3
– ident: e_1_2_4_47_1
  doi: 10.1002/aenm.201502101
– ident: e_1_2_4_17_1
  doi: 10.1002/solr.201700086
– ident: e_1_2_4_2_1
– ident: e_1_2_4_25_1
  doi: 10.1038/s41560-019-0466-3
– ident: e_1_2_4_36_1
  doi: 10.1002/adma.201603850
– ident: e_1_2_4_46_1
  doi: 10.1002/adma.201902781
– ident: e_1_2_4_37_1
  doi: 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
SSID ssj0009606
Score 2.6625156
Snippet Designing new hole‐transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable...
Designing new hole-transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1908011
SubjectTerms all‐inorganic perovskites
Chemical synthesis
device stability
Dopants
Efficiency
Energy conversion efficiency
hole‐transporting materials
inverted perovskite solar cells
Optoelectronic devices
passivation effect
Performance enhancement
Perovskites
Photovoltaic cells
Solar cells
Title Dopant‐Free Organic Hole‐Transporting Material for Efficient and Stable Inverted All‐Inorganic and Hybrid Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201908011
https://www.ncbi.nlm.nih.gov/pubmed/32115824
https://www.proquest.com/docview/2392336328
https://www.proquest.com/docview/2369876750
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqntoDUJ6hBRkJiVNaY-fhPa7arpZKixBQqbfIj8mFKEG7WaT21FPP_Y39JZ1xsmkXhJDoMcnYceyZ8TeO5zNj7xPnhfeZi62GPE6USWPt3McYMpBaeAAwlDs8-5xNT5OTs_TsXhZ_xw8xLLiRZQR_TQZu7OLgjjTU-MAbhBMaOlmKf2jDFqGir3f8UQTPA9meSuNRlugVa6OQB-vF12elP6DmOnINU8_kMTOrRnc7Tn7sL1u77y5-43N8yFc9YY96XMrHnSLtsA2on7Lte2yFz9jVEQbYdXtzeT2ZA_Aui9PxaVMB3htY0lGWz0wbNJsjJObHgaUCJzduas8R3doKOPF7zBHt8nFVYelPddNXRzLTc8oj419g3vxa0PIy_0YROD-Eqlo8Z6eT4--H07g_xiF2lNaLYw8296VwxgmCh-jXHIKuLHPaCEB8OoIS0HPkRqoSI3VXQi681jbxZW6dUi_YZt3U8IpxLyXWkjo6wDFReWpSYXOM8EsLZSmUjFi8GsbC9RzndNRGVXTszLKg_i2G_o3Yh0H-Z8fu8VfJvZVWFL2VLwqJ4FKpTEkdsXfDY7RP-uliamiWJJONNDHmiIi97LRpeJXC6DvVMomYDDrxjzYU46PZeLh6_T-FdtmWpAWDsPVoj2228yW8QVTV2rfBcm4BLiMc5A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5QAceD8CBYwE4pTWdV7eA4dVt6td2q0QtFJvIbEnF6Kk2s0WlRMnzvwV_go_gV_CTF5lQQgJqQeOScaJZc-Mv5l4PgM8842V1obGTTVGru8lgauN2XYxRKWlRcSEa4dnB-HkyH91HByvwdeuFqbhh-gTbmwZtb9mA-eE9NY5a2hia-IgWtHIy263-yr38OwDRW2Ll9MRTfFzpca7hzsTtz1YwDVcaEq9wTSymTSJkQxYyNIMwYAwNDqRSIhpgBmSLkeJ8jKKHU2GkbRap77NotRwDpS8_iU-Rpzp-kdvzhmrOCCo6f28wB2Evu54IqXaWu3v6jr4G7hdxcr1Yje-Dt-6YWr2uLzfXFbppvn4C4PkfzWON-BaC73FsLGVm7CGxS24-hMh4234PCrJO1bfP30ZzxFFU6hqxKTMke71RPAkK2ZJVRuvINQvdmsiDlq_RVJYQQA-zVEwhcmcAL0Y5jm1nhZl-zqWmZxxqZx4jfPydMEZdPGWkwxiB_N8cQeOLmQg7sJ6URZ4H4RVit4SGD6j0veiIAlkGkk_zFLMMukpB9xOb2LT0rjzaSJ53BBQq5jnM-7n04EXvfxJQ2DyR8mNTg3j1pEtYkX42fNCT2kHnvaPyQXxf6WkwHLJMuFAMymQdOBeo779pzxFIYdWvgOqVsK_9CEejmbD_urBvzR6Apcnh7P9eH96sPcQrijOj9Q7rTZgvZov8RGByCp9XJutgHcXrd8_AHxke3o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqIiE48P-TUsBIIE5pXSdxvAcOq6arXcpWFVCpt-DYkwtRUu1mi8qJE2cehVfhFXgSZpJsyoIQElIPHJOME8ueGX8z8Xxm7GlonXBOWT_TEPthYCJfW7vjgwKphQMAQ7XD0wM1PgpfHkfHa-zrsham5YfoE25kGY2_JgM_cfn2OWmocQ1vEC5o6GR3um2V-3D2AYO2-YtJgjP8TMrR3tvdsd-dK-BbqjPFzkAWu1xYYwXhFTQ0iyhAKauNAARMA8gBVTk2MsgxdLQ5xMJpnYUujzNLKVB0-pdCJQZ0WETy-pywiuKBht0viPyBCvWSJlLI7dX-ri6Dv2HbVajcrHWj6-zbcpTaLS7vtxZ1tmU__kIg-T8N4w12rQPefNhayk22BuUtdvUnOsbb7HNSoW-sv3_6MpoB8LZM1fJxVQDe62ngUZZPTd2YLkfMz_caGg5cvbkpHUf4nhXAicBkhnCeD4sCW0_KqnsdyYzPqFCOH8KsOp1T_py_oRQD34WimN9hRxcyEHfZelmVcJ9xJyW-JbJ0QmUYxJGJRBaLUOUZ5LkIpMf8pdqktiNxp7NEirSln5YpzWfaz6fHnvfyJy19yR8lN5damHZubJ5KRM9BoAKpPfakf4wOiP4qmRKqBcmogSZKIOGxe6329p8KJAYcWoYek40O_qUP6TCZDvurjX9p9JhdPkxG6avJwf4DdkVScqTZZrXJ1uvZAh4igqyzR43RcvbuotX7B3xgeik
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dopant%E2%80%90Free+Organic+Hole%E2%80%90Transporting+Material+for+Efficient+and+Stable+Inverted+All%E2%80%90Inorganic+and+Hybrid+Perovskite+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jiang%2C+Kui&rft.au=Wang%2C+Jing&rft.au=Wu%2C+Fei&rft.au=Xue%2C+Qifan&rft.date=2020-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=16&rft_id=info:doi/10.1002%2Fadma.201908011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201908011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon