Dopant‐Free Organic Hole‐Transporting Material for Efficient and Stable Inverted All‐Inorganic and Hybrid Perovskite Solar Cells
Designing new hole‐transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p–i–n structure. Herein, the synthesis of a novel 3D small molecule named TPE‐S and its application...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 16; pp. e1908011 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing new hole‐transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p–i–n structure. Herein, the synthesis of a novel 3D small molecule named TPE‐S and its application as an HTM in PVSCs are shown. The all‐inorganic inverted PVSCs made using TPE‐S, processed without any dopant or post‐treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE‐S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all‐inorganic CsPbI2Br PVSCs based on TPE‐S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all‐inorganic PVSCs. Meanwhile, the TPE‐S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE‐S as a simple and general dopant‐free HTM for different types of high‐performance PVSCs.
A new S‐atom‐containing small molecule (TPE‐S) is introduced as a dopant‐free hole‐transporting layer in all‐inorganic and organic/inorganic hybrid perovskite solar cells (PVSCs) with a p–i–n inverted structure, leading to improved power conversion efficiencies of 15.4% and 21%, respectively. In addition, these devices also show enhanced photostability, with performance comparable to state‐of‐the‐art PVSCs based on the conventional n–i–p structure. |
---|---|
AbstractList | Designing new hole-transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p-i-n structure. Herein, the synthesis of a novel 3D small molecule named TPE-S and its application as an HTM in PVSCs are shown. The all-inorganic inverted PVSCs made using TPE-S, processed without any dopant or post-treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE-S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all-inorganic CsPbI2 Br PVSCs based on TPE-S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all-inorganic PVSCs. Meanwhile, the TPE-S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE-S as a simple and general dopant-free HTM for different types of high-performance PVSCs.Designing new hole-transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p-i-n structure. Herein, the synthesis of a novel 3D small molecule named TPE-S and its application as an HTM in PVSCs are shown. The all-inorganic inverted PVSCs made using TPE-S, processed without any dopant or post-treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE-S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all-inorganic CsPbI2 Br PVSCs based on TPE-S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all-inorganic PVSCs. Meanwhile, the TPE-S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE-S as a simple and general dopant-free HTM for different types of high-performance PVSCs. Designing new hole-transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p-i-n structure. Herein, the synthesis of a novel 3D small molecule named TPE-S and its application as an HTM in PVSCs are shown. The all-inorganic inverted PVSCs made using TPE-S, processed without any dopant or post-treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE-S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all-inorganic CsPbI Br PVSCs based on TPE-S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all-inorganic PVSCs. Meanwhile, the TPE-S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE-S as a simple and general dopant-free HTM for different types of high-performance PVSCs. Designing new hole‐transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p–i–n structure. Herein, the synthesis of a novel 3D small molecule named TPE‐S and its application as an HTM in PVSCs are shown. The all‐inorganic inverted PVSCs made using TPE‐S, processed without any dopant or post‐treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE‐S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all‐inorganic CsPbI2Br PVSCs based on TPE‐S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all‐inorganic PVSCs. Meanwhile, the TPE‐S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE‐S as a simple and general dopant‐free HTM for different types of high‐performance PVSCs. A new S‐atom‐containing small molecule (TPE‐S) is introduced as a dopant‐free hole‐transporting layer in all‐inorganic and organic/inorganic hybrid perovskite solar cells (PVSCs) with a p–i–n inverted structure, leading to improved power conversion efficiencies of 15.4% and 21%, respectively. In addition, these devices also show enhanced photostability, with performance comparable to state‐of‐the‐art PVSCs based on the conventional n–i–p structure. Designing new hole‐transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p–i–n structure. Herein, the synthesis of a novel 3D small molecule named TPE‐S and its application as an HTM in PVSCs are shown. The all‐inorganic inverted PVSCs made using TPE‐S, processed without any dopant or post‐treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE‐S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all‐inorganic CsPbI 2 Br PVSCs based on TPE‐S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all‐inorganic PVSCs. Meanwhile, the TPE‐S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE‐S as a simple and general dopant‐free HTM for different types of high‐performance PVSCs. Designing new hole‐transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable inverted perovskite solar cells (PVSCs) with a p–i–n structure. Herein, the synthesis of a novel 3D small molecule named TPE‐S and its application as an HTM in PVSCs are shown. The all‐inorganic inverted PVSCs made using TPE‐S, processed without any dopant or post‐treatment, are highly efficient and stable. Compared to control devices based on the commonly used HTM, PEDOT:PSS, devices based on TPE‐S exhibit improved optoelectronic properties, more favorable interfacial energetics, and reduced recombination due to an improved trap passivation effect. As a result, the all‐inorganic CsPbI2Br PVSCs based on TPE‐S demonstrate a remarkable efficiency of 15.4% along with excellent stability, which is the one of the highest reported values for inverted all‐inorganic PVSCs. Meanwhile, the TPE‐S layer can also be generally used to improve the performance of organic/inorganic hybrid inverted PVSCs, which show an outstanding power conversation efficiency of 21.0%, approaching the highest reported efficiency for inverted PVSCs. This work highlights the great potential of TPE‐S as a simple and general dopant‐free HTM for different types of high‐performance PVSCs. |
Author | Yao, Qin Zhang, Guangye Chen, Yihuang Yan, He Wu, Fei Jiang, Kui Zhang, Jianquan Zhu, Zonglong Wang, Jing Yip, Hin‐Lap Xue, Qifan Zhu, Linna |
Author_xml | – sequence: 1 givenname: Kui surname: Jiang fullname: Jiang, Kui organization: The Hong Kong University of Science and Technology – sequence: 2 givenname: Jing surname: Wang fullname: Wang, Jing organization: City University of Hong Kong – sequence: 3 givenname: Fei surname: Wu fullname: Wu, Fei organization: Southwest University – sequence: 4 givenname: Qifan surname: Xue fullname: Xue, Qifan email: qfxue@scut.edu.cn organization: South China University of Technology – sequence: 5 givenname: Qin surname: Yao fullname: Yao, Qin organization: South China University of Technology – sequence: 6 givenname: Jianquan surname: Zhang fullname: Zhang, Jianquan organization: The Hong Kong University of Science and Technology – sequence: 7 givenname: Yihuang surname: Chen fullname: Chen, Yihuang organization: Wenzhou University – sequence: 8 givenname: Guangye surname: Zhang fullname: Zhang, Guangye organization: eFlexPV Limited (China) – sequence: 9 givenname: Zonglong surname: Zhu fullname: Zhu, Zonglong organization: City University of Hong Kong – sequence: 10 givenname: He surname: Yan fullname: Yan, He organization: The Hong Kong University of Science and Technology – sequence: 11 givenname: Linna surname: Zhu fullname: Zhu, Linna email: lnzhu@swu.edu.cn organization: Southwest University – sequence: 12 givenname: Hin‐Lap orcidid: 0000-0002-5750-9751 surname: Yip fullname: Yip, Hin‐Lap email: msangusyip@scut.edu.cn organization: South China University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32115824$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rVDEUhoNU7LS6dSkBN27umI_7kSyHaesMtFRoXV9yc09KaiYZk0zL7Fy59jf6S8wwY4WCuDoQnuc9h7wn6MgHDwi9pWRKCWEf1bhSU0aoJIJQ-gJNaMNoVRPZHKEJkbypZFuLY3SS0j0hRLakfYWOOaO0EayeoB9nYa18_vX950UEwNfxTnmr8SI4KG-3Ufm0DjFbf4evVIZolcMmRHxujNUWfMbKj_gmq8EBXvoHiBlGPHOu2EsfDnE7ZrEdoh3xZ4jhIX21GfBNcCriOTiXXqOXRrkEbw7zFH25OL-dL6rL60_L-eyy0jWXtBIahm40RCtNatJ0RAjdMt62WigCUlIJBljTdYpx09VMG-jIKMRQj6YbNOen6MM-dx3Dtw2k3K9s0uUC5SFsUl-ypOjariEFff8MvQ-b6Mt1hZKM85YzUah3B2ozrGDs19GuVNz2f364ANM9oGNIKYJ5QijpdxX2uwr7pwqLUD8TtM0q2-BzVNb9W5N77dE62P5nST87u5r9dX8DiGqzmg |
CitedBy_id | crossref_primary_10_1007_s40820_020_00509_y crossref_primary_10_1039_D2TC03631B crossref_primary_10_1016_j_solmat_2020_110862 crossref_primary_10_1039_D1QM00190F crossref_primary_10_1002_adma_202102811 crossref_primary_10_1021_acsami_0c20584 crossref_primary_10_1021_acsenergylett_4c00585 crossref_primary_10_1021_acsaem_1c00598 crossref_primary_10_1002_sstr_202000089 crossref_primary_10_1039_D1SE01251G crossref_primary_10_1002_solr_202100663 crossref_primary_10_1021_acsmaterialslett_0c00320 crossref_primary_10_1063_5_0073363 crossref_primary_10_1016_j_orgel_2023_106936 crossref_primary_10_1039_D2NR06230E crossref_primary_10_1039_D1EE00890K crossref_primary_10_1002_admi_202100920 crossref_primary_10_1002_ange_202113749 crossref_primary_10_1002_ange_202016085 crossref_primary_10_1002_admi_202101463 crossref_primary_10_1002_cjoc_202100022 crossref_primary_10_1016_j_inoche_2024_113555 crossref_primary_10_1002_anie_202218752 crossref_primary_10_1007_s11426_022_1445_2 crossref_primary_10_1002_adfm_202200651 crossref_primary_10_1021_acsenergylett_2c00977 crossref_primary_10_1021_acs_chemmater_0c03038 crossref_primary_10_1016_j_jiec_2022_11_013 crossref_primary_10_1039_D1TA03718H crossref_primary_10_1007_s12598_020_01696_8 crossref_primary_10_1016_j_cej_2021_131675 crossref_primary_10_1002_smll_202205926 crossref_primary_10_1002_anie_202105176 crossref_primary_10_1021_acsaem_0c02306 crossref_primary_10_1002_adfm_202103316 crossref_primary_10_1016_j_mattod_2023_06_009 crossref_primary_10_1016_j_dyepig_2022_110102 crossref_primary_10_1021_acssuschemeng_4c07524 crossref_primary_10_1016_j_nanoen_2020_105701 crossref_primary_10_1134_S1070363222060251 crossref_primary_10_1021_acsaem_2c00223 crossref_primary_10_1039_D1SC01416A crossref_primary_10_1016_j_orgel_2021_106102 crossref_primary_10_1002_smll_202101902 crossref_primary_10_1063_5_0051254 crossref_primary_10_1002_advs_202400117 crossref_primary_10_1021_acsaem_0c02531 crossref_primary_10_1002_cjoc_202300635 crossref_primary_10_1016_j_dyepig_2021_109506 crossref_primary_10_1039_D3TC02929H crossref_primary_10_1002_adma_202302298 crossref_primary_10_1002_aenm_202004002 crossref_primary_10_1002_adfm_202314086 crossref_primary_10_1039_D0SE01062F crossref_primary_10_1016_j_mattod_2021_11_017 crossref_primary_10_1002_solr_202000344 crossref_primary_10_1039_D1TC05351E crossref_primary_10_1021_acsami_2c13072 crossref_primary_10_1002_anie_202016085 crossref_primary_10_1002_adfm_202315604 crossref_primary_10_1021_acsami_1c21041 crossref_primary_10_1039_D0CC04485G crossref_primary_10_1016_j_cej_2021_129823 crossref_primary_10_1021_acsami_2c16591 crossref_primary_10_1016_j_mattod_2022_11_002 crossref_primary_10_1002_adma_202203794 crossref_primary_10_1039_D1TA11039J crossref_primary_10_1002_solr_202000461 crossref_primary_10_1002_adfm_202206311 crossref_primary_10_2139_ssrn_4145274 crossref_primary_10_1021_acsapm_3c01396 crossref_primary_10_1002_aenm_202002940 crossref_primary_10_1007_s12598_020_01691_z crossref_primary_10_1002_EXP_20220027 crossref_primary_10_1021_jacs_0c06373 crossref_primary_10_1016_j_xcrp_2023_101726 crossref_primary_10_1039_D2TA08443K crossref_primary_10_1039_D1TC01367J crossref_primary_10_1021_acsami_1c13792 crossref_primary_10_1002_er_8586 crossref_primary_10_1016_j_solener_2022_10_040 crossref_primary_10_1016_j_jallcom_2023_170478 crossref_primary_10_1039_D1TC01258D crossref_primary_10_1002_adfm_202203873 crossref_primary_10_1016_j_nanoen_2020_105462 crossref_primary_10_1039_D1TC02053F crossref_primary_10_1002_aenm_202100967 crossref_primary_10_1002_solr_202300070 crossref_primary_10_1016_j_cjche_2022_07_027 crossref_primary_10_1002_adma_202107111 crossref_primary_10_1002_cssc_202201485 crossref_primary_10_1021_acs_chemrev_2c00166 crossref_primary_10_1039_D4TC03250K crossref_primary_10_3389_fchem_2021_724188 crossref_primary_10_3389_fchem_2021_677821 crossref_primary_10_1021_acsami_2c06903 crossref_primary_10_1016_j_cej_2021_130396 crossref_primary_10_1016_j_dyepig_2022_110671 crossref_primary_10_1021_acsaem_0c01491 crossref_primary_10_1039_D2EE01256A crossref_primary_10_1002_ente_202100952 crossref_primary_10_1039_D0EE02337J crossref_primary_10_1039_D1TA10388A crossref_primary_10_1002_ente_202200488 crossref_primary_10_1021_acsami_1c22020 crossref_primary_10_1016_j_nanoen_2021_105751 crossref_primary_10_1016_j_orgel_2022_106697 crossref_primary_10_1007_s40243_024_00275_6 crossref_primary_10_1002_aenm_202301218 crossref_primary_10_1021_acsenergylett_2c00684 crossref_primary_10_1039_D2EE00663D crossref_primary_10_1016_j_xcrp_2024_102034 crossref_primary_10_1002_ange_202105176 crossref_primary_10_1016_j_cej_2022_135107 crossref_primary_10_3390_ijms231911792 crossref_primary_10_1016_j_jechem_2021_06_005 crossref_primary_10_1002_aenm_202003585 crossref_primary_10_3390_ijms252313117 crossref_primary_10_1016_j_jallcom_2024_174374 crossref_primary_10_1007_s40820_024_01613_z crossref_primary_10_1002_aenm_202201854 crossref_primary_10_1039_D0TA07663E crossref_primary_10_1016_j_cej_2024_150861 crossref_primary_10_1016_j_solener_2021_11_074 crossref_primary_10_1002_solr_202200690 crossref_primary_10_1007_s11467_020_1026_9 crossref_primary_10_1039_D1TA03024H crossref_primary_10_1246_bcsj_20200331 crossref_primary_10_1002_adfm_202005155 crossref_primary_10_1002_aenm_202401721 crossref_primary_10_1039_D1TA09705A crossref_primary_10_1021_acsami_2c06163 crossref_primary_10_1002_adfm_202011270 crossref_primary_10_1016_j_dyepig_2022_110170 crossref_primary_10_1039_D0NR03408H crossref_primary_10_1002_adfm_202206030 crossref_primary_10_1021_acsmaterialslett_0c00134 crossref_primary_10_1039_D0CP02643C crossref_primary_10_1002_tcr_202100330 crossref_primary_10_1021_acsami_1c18522 crossref_primary_10_1039_D3TA06808K crossref_primary_10_1016_j_dyepig_2023_111635 crossref_primary_10_1021_acsami_2c19954 crossref_primary_10_1021_jacs_4c13356 crossref_primary_10_1002_ange_202218752 crossref_primary_10_1002_smtd_202000254 crossref_primary_10_1039_D1TC04014F crossref_primary_10_1002_adfm_202201933 crossref_primary_10_1002_anie_202413582 crossref_primary_10_1002_adfm_202100332 crossref_primary_10_1002_aenm_202300694 crossref_primary_10_1021_acs_jpcc_1c10934 crossref_primary_10_3390_nano15070483 crossref_primary_10_1021_acsami_2c00841 crossref_primary_10_1002_anie_202113749 crossref_primary_10_1039_D2TA02574D crossref_primary_10_1002_solr_202200590 crossref_primary_10_1016_j_dyepig_2021_109340 crossref_primary_10_1039_D4TA01453G crossref_primary_10_1039_D3MH00219E crossref_primary_10_1016_j_joule_2020_12_003 crossref_primary_10_1016_j_nanoen_2025_110859 crossref_primary_10_1002_aenm_202202491 crossref_primary_10_1039_D3TA05069F crossref_primary_10_1016_j_apsusc_2023_157901 crossref_primary_10_1021_acsami_2c13746 crossref_primary_10_1002_solr_202000629 crossref_primary_10_1021_acsaem_4c02332 crossref_primary_10_1016_j_jpowsour_2020_229149 crossref_primary_10_2139_ssrn_4103222 crossref_primary_10_1021_acsenergylett_1c01126 crossref_primary_10_1021_acsmaterialslett_3c00225 crossref_primary_10_1002_solr_202300252 crossref_primary_10_1021_acs_jpclett_1c00954 crossref_primary_10_1016_j_nantod_2022_101586 crossref_primary_10_1039_D4CC04000G crossref_primary_10_1002_ange_202108800 crossref_primary_10_1016_j_jechem_2021_11_001 crossref_primary_10_1002_aenm_202100784 crossref_primary_10_1039_D2TA09866K crossref_primary_10_1039_D3NR01390A crossref_primary_10_1016_j_dyepig_2021_109657 crossref_primary_10_1002_solr_202100880 crossref_primary_10_1021_acsenergylett_4c00140 crossref_primary_10_1016_j_solener_2022_01_023 crossref_primary_10_1002_ejic_202100267 crossref_primary_10_1155_2023_1844719 crossref_primary_10_1016_j_jcis_2021_07_122 crossref_primary_10_1016_j_orgel_2022_106719 crossref_primary_10_1039_D3TA06427A crossref_primary_10_1002_ange_202413582 crossref_primary_10_1016_j_jechem_2021_04_021 crossref_primary_10_1021_acsaem_2c03260 crossref_primary_10_6023_cjoc202009033 crossref_primary_10_1021_acsenergylett_1c00291 crossref_primary_10_1016_j_cej_2021_133265 crossref_primary_10_1016_j_cej_2022_136136 crossref_primary_10_1039_D1EE01562A crossref_primary_10_1016_j_synthmet_2020_116631 crossref_primary_10_1021_acsami_4c08445 crossref_primary_10_1002_adma_202407349 crossref_primary_10_1002_smll_202202690 crossref_primary_10_1002_cphc_202200919 crossref_primary_10_1016_j_xcrp_2021_100662 crossref_primary_10_1021_acsami_5c01802 crossref_primary_10_1002_aenm_202301607 crossref_primary_10_1016_j_cej_2021_133371 crossref_primary_10_1016_j_ijleo_2023_171501 crossref_primary_10_1021_acs_jpcc_4c03059 crossref_primary_10_1039_D0QM00728E crossref_primary_10_1002_anie_202108800 crossref_primary_10_1021_acsami_4c14579 crossref_primary_10_1039_D0TA11564A crossref_primary_10_1002_adom_202301052 crossref_primary_10_1016_j_jechem_2021_11_039 crossref_primary_10_1007_s12598_023_02320_1 |
Cites_doi | 10.1038/s41563-017-0006-0 10.1039/C4EE03824J 10.1038/s41467-019-12513-x 10.1021/ja411014k 10.1002/aenm.201870067 10.1039/C8TA06081A 10.1021/jacs.7b13229 10.1038/ncomms15330 10.1002/chem.201404427 10.1002/solr.201700188 10.1021/acs.jpclett.6b00002 10.1002/adma.201900605 10.1021/acs.accounts.7b00597 10.1039/C5CC05236J 10.1038/nenergy.2017.9 10.1038/nphoton.2014.134 10.1002/solr.201800239 10.1002/adma.201604545 10.1021/jacs.8b01783 10.1038/s41467-018-04636-4 10.1126/science.aad1015 10.1002/aenm.201701883 10.1039/C8EE03559H 10.1002/adma.201902543 10.1021/acs.jpclett.6b00963 10.1002/aenm.201501066 10.1126/science.aat8235 10.1016/j.nanoen.2016.11.022 10.1002/adma.201901152 10.1038/s41560-018-0219-8 10.1126/science.aap9282 10.1002/aenm.201502458 10.1038/nmat4014 10.1002/aenm.201803140 10.1002/anie.201910800 10.1039/C6EE00612D 10.1038/s41560-018-0278-x 10.1038/nnano.2015.230 10.1016/j.joule.2017.09.017 10.1002/anie.201901081 10.1039/C9TA08995K 10.1002/adma.201800515 10.1039/C5TA06398A 10.1002/aenm.201870091 10.1021/acs.chemmater.9b03277 10.1126/science.aan2301 10.1038/s41586-019-1036-3 10.1002/aenm.201502101 10.1002/solr.201700086 10.1038/s41560-019-0466-3 10.1002/adma.201603850 10.1002/adma.201902781 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201908011 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 32115824 10_1002_adma_201908011 ADMA201908011 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21761132001; 51803060; 51573057 – fundername: ShenZhen Technology and Innovation Commission funderid: JCYJ20170413173814007 – fundername: Science and Technology Program of Guangzhou funderid: 201607020010; 2017A050503002 – fundername: Research Grants Council of Hong Kong funderid: T23–407/13 N; N_HKUST623/13; 16305915; 16322416; 606012; 16303917 – fundername: Fundamental Research Funds for the Central Universities funderid: XDJK2017A002 – fundername: Science and Technology Program of Guangdong Province, China funderid: 2018A030313045 – fundername: National Natural Science Foundation of China funderid: 51703183 – fundername: Innovation and Technology Commission funderid: ITC‐CNERC14SC01 – fundername: Ministry of Science and Technology funderid: 2017YF0206600 – fundername: Science and Technology Program of Guangdong Province, China grantid: 2018A030313045 – fundername: Research Grants Council of Hong Kong grantid: T23-407/13 N – fundername: Research Grants Council of Hong Kong grantid: 606012 – fundername: Science and Technology Program of Guangzhou grantid: 201607020010 – fundername: Research Grants Council of Hong Kong grantid: 16303917 – fundername: Science and Technology Program of Guangzhou grantid: 2017A050503002 – fundername: Research Grants Council of Hong Kong grantid: N_HKUST623/13 – fundername: National Natural Science Foundation of China grantid: 51803060 – fundername: National Natural Science Foundation of China grantid: 51573057 – fundername: National Natural Science Foundation of China grantid: 21761132001 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4391-8ceb7df0cac04057088c62366c8a0e9919efe2577a23f742cfe70d88b4df7bc33 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:22:08 EDT 2025 Mon Jul 14 10:25:18 EDT 2025 Wed Feb 19 02:30:06 EST 2025 Tue Jul 01 02:32:45 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Wed Jan 22 16:33:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | device stability all-inorganic perovskites hole-transporting materials passivation effect inverted perovskite solar cells |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4391-8ceb7df0cac04057088c62366c8a0e9919efe2577a23f742cfe70d88b4df7bc33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5750-9751 |
PMID | 32115824 |
PQID | 2392336328 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2369876750 proquest_journals_2392336328 pubmed_primary_32115824 crossref_primary_10_1002_adma_201908011 crossref_citationtrail_10_1002_adma_201908011 wiley_primary_10_1002_adma_201908011_ADMA201908011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 361 2019; 7 2017; 8 2019; 9 2017; 1 2019; 4 2019; 3 2015; 5 2017; 2 2018; 140 2018; 360 2015; 3 2019; 31 2015; 51 2019; 10 2019; 12 2019; 58 2019; 567 2017; 29 2015; 8 2017; 356 2014; 136 2016; 11 2015; 350 2018; 6 2016; 6 2018; 9 2017; 31 2016; 7 2018; 17 2018; 8 2018; 3 2018; 2 2000; 12 2015; 21 2014; 13 2018; 30 2018; 51 2014; 8 2016; 28 2016; 9 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_52_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_54_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 4 start-page: 864 year: 2019 publication-title: Nat. Energy – volume: 136 start-page: 758 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 21 start-page: 434 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 28 start-page: 9648 year: 2016 publication-title: Adv. Mater. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 360 start-page: 1442 year: 2018 publication-title: Science – volume: 356 start-page: 1376 year: 2017 publication-title: Science – volume: 567 start-page: 511 year: 2019 publication-title: Nature – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 31 start-page: 9032 year: 2019 publication-title: Chem. Mater. – volume: 10 start-page: 4498 year: 2019 publication-title: Nat. Commun. – volume: 3 start-page: 1093 year: 2018 publication-title: Nat. Energy – volume: 3 start-page: 847 year: 2018 publication-title: Nat. Energy – volume: 7 start-page: 2356 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 8 start-page: 1160 year: 2015 publication-title: Energy Environ. Sci. – volume: 17 start-page: 261 year: 2018 publication-title: Nat. Mater. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 8 start-page: 506 year: 2014 publication-title: Nat. Photonics – volume: 2 year: 2018 publication-title: Sol. RRL – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 140 start-page: 5018 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1495 year: 2019 publication-title: Energy Environ. Sci. – volume: 140 start-page: 3825 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1258 year: 2016 publication-title: Energy Environ. Sci. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 350 start-page: 944 year: 2015 publication-title: Science – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 361 year: 2018 publication-title: Science – volume: 1 start-page: 769 year: 2017 publication-title: Joule – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 481 year: 2000 publication-title: Adv. Mater. – volume: 7 start-page: 746 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 31 start-page: 210 year: 2017 publication-title: Nano Energy – volume: 1 year: 2017 publication-title: Sol. RRL – volume: 51 start-page: 869 year: 2018 publication-title: Acc. Chem. Res. – volume: 3 year: 2019 publication-title: Sol. RRL – volume: 11 start-page: 75 year: 2016 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 2225 year: 2018 publication-title: Nat. Commun. – ident: e_1_2_4_13_1 doi: 10.1038/s41563-017-0006-0 – ident: e_1_2_4_30_1 doi: 10.1039/C4EE03824J – ident: e_1_2_4_27_1 doi: 10.1038/s41467-019-12513-x – ident: e_1_2_4_52_1 doi: 10.1021/ja411014k – ident: e_1_2_4_15_1 doi: 10.1002/aenm.201870067 – ident: e_1_2_4_43_1 doi: 10.1039/C8TA06081A – ident: e_1_2_4_35_1 doi: 10.1021/jacs.7b13229 – ident: e_1_2_4_4_1 doi: 10.1038/ncomms15330 – ident: e_1_2_4_19_1 doi: 10.1002/chem.201404427 – ident: e_1_2_4_9_1 doi: 10.1002/solr.201700188 – ident: e_1_2_4_10_1 doi: 10.1021/acs.jpclett.6b00002 – ident: e_1_2_4_41_1 doi: 10.1002/adma.201900605 – ident: e_1_2_4_45_1 doi: 10.1021/acs.accounts.7b00597 – ident: e_1_2_4_48_1 doi: 10.1039/C5CC05236J – ident: e_1_2_4_24_1 doi: 10.1038/nenergy.2017.9 – ident: e_1_2_4_1_1 doi: 10.1038/nphoton.2014.134 – ident: e_1_2_4_8_1 doi: 10.1002/solr.201800239 – ident: e_1_2_4_51_1 doi: 10.1002/adma.201604545 – ident: e_1_2_4_44_1 doi: 10.1021/jacs.8b01783 – ident: e_1_2_4_16_1 doi: 10.1038/s41467-018-04636-4 – ident: e_1_2_4_34_1 doi: 10.1126/science.aad1015 – ident: e_1_2_4_28_1 doi: 10.1002/aenm.201701883 – ident: e_1_2_4_6_1 doi: 10.1039/C8EE03559H – ident: e_1_2_4_54_1 doi: 10.1002/adma.201902543 – ident: e_1_2_4_5_1 doi: 10.1021/acs.jpclett.6b00963 – ident: e_1_2_4_20_1 doi: 10.1002/aenm.201501066 – ident: e_1_2_4_22_1 doi: 10.1126/science.aat8235 – ident: e_1_2_4_21_1 doi: 10.1016/j.nanoen.2016.11.022 – ident: e_1_2_4_53_1 doi: 10.1002/adma.201901152 – ident: e_1_2_4_49_1 doi: 10.1038/s41560-018-0219-8 – ident: e_1_2_4_50_1 doi: 10.1126/science.aap9282 – ident: e_1_2_4_14_1 doi: 10.1002/aenm.201502458 – ident: e_1_2_4_39_1 doi: 10.1038/nmat4014 – ident: e_1_2_4_31_1 doi: 10.1002/aenm.201803140 – ident: e_1_2_4_18_1 doi: 10.1002/anie.201910800 – ident: e_1_2_4_3_1 doi: 10.1039/C6EE00612D – ident: e_1_2_4_26_1 doi: 10.1038/s41560-018-0278-x – ident: e_1_2_4_32_1 doi: 10.1038/nnano.2015.230 – ident: e_1_2_4_11_1 doi: 10.1016/j.joule.2017.09.017 – ident: e_1_2_4_7_1 doi: 10.1002/anie.201901081 – ident: e_1_2_4_29_1 doi: 10.1039/C9TA08995K – ident: e_1_2_4_33_1 doi: 10.1002/adma.201800515 – ident: e_1_2_4_12_1 doi: 10.1039/C5TA06398A – ident: e_1_2_4_42_1 doi: 10.1002/aenm.201870091 – ident: e_1_2_4_23_1 doi: 10.1021/acs.chemmater.9b03277 – ident: e_1_2_4_40_1 doi: 10.1126/science.aan2301 – ident: e_1_2_4_38_1 doi: 10.1038/s41586-019-1036-3 – ident: e_1_2_4_47_1 doi: 10.1002/aenm.201502101 – ident: e_1_2_4_17_1 doi: 10.1002/solr.201700086 – ident: e_1_2_4_2_1 – ident: e_1_2_4_25_1 doi: 10.1038/s41560-019-0466-3 – ident: e_1_2_4_36_1 doi: 10.1002/adma.201603850 – ident: e_1_2_4_46_1 doi: 10.1002/adma.201902781 – ident: e_1_2_4_37_1 doi: 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C |
SSID | ssj0009606 |
Score | 2.6625156 |
Snippet | Designing new hole‐transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable... Designing new hole-transporting materials (HTMs) with desired chemical, electrical, and electronic properties is critical to realize efficient and stable... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1908011 |
SubjectTerms | all‐inorganic perovskites Chemical synthesis device stability Dopants Efficiency Energy conversion efficiency hole‐transporting materials inverted perovskite solar cells Optoelectronic devices passivation effect Performance enhancement Perovskites Photovoltaic cells Solar cells |
Title | Dopant‐Free Organic Hole‐Transporting Material for Efficient and Stable Inverted All‐Inorganic and Hybrid Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201908011 https://www.ncbi.nlm.nih.gov/pubmed/32115824 https://www.proquest.com/docview/2392336328 https://www.proquest.com/docview/2369876750 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqntoDUJ6hBRkJiVNaY-fhPa7arpZKixBQqbfIj8mFKEG7WaT21FPP_Y39JZ1xsmkXhJDoMcnYceyZ8TeO5zNj7xPnhfeZi62GPE6USWPt3McYMpBaeAAwlDs8-5xNT5OTs_TsXhZ_xw8xLLiRZQR_TQZu7OLgjjTU-MAbhBMaOlmKf2jDFqGir3f8UQTPA9meSuNRlugVa6OQB-vF12elP6DmOnINU8_kMTOrRnc7Tn7sL1u77y5-43N8yFc9YY96XMrHnSLtsA2on7Lte2yFz9jVEQbYdXtzeT2ZA_Aui9PxaVMB3htY0lGWz0wbNJsjJObHgaUCJzduas8R3doKOPF7zBHt8nFVYelPddNXRzLTc8oj419g3vxa0PIy_0YROD-Eqlo8Z6eT4--H07g_xiF2lNaLYw8296VwxgmCh-jXHIKuLHPaCEB8OoIS0HPkRqoSI3VXQi681jbxZW6dUi_YZt3U8IpxLyXWkjo6wDFReWpSYXOM8EsLZSmUjFi8GsbC9RzndNRGVXTszLKg_i2G_o3Yh0H-Z8fu8VfJvZVWFL2VLwqJ4FKpTEkdsXfDY7RP-uliamiWJJONNDHmiIi97LRpeJXC6DvVMomYDDrxjzYU46PZeLh6_T-FdtmWpAWDsPVoj2228yW8QVTV2rfBcm4BLiMc5A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5QAceD8CBYwE4pTWdV7eA4dVt6td2q0QtFJvIbEnF6Kk2s0WlRMnzvwV_go_gV_CTF5lQQgJqQeOScaJZc-Mv5l4PgM8842V1obGTTVGru8lgauN2XYxRKWlRcSEa4dnB-HkyH91HByvwdeuFqbhh-gTbmwZtb9mA-eE9NY5a2hia-IgWtHIy263-yr38OwDRW2Ll9MRTfFzpca7hzsTtz1YwDVcaEq9wTSymTSJkQxYyNIMwYAwNDqRSIhpgBmSLkeJ8jKKHU2GkbRap77NotRwDpS8_iU-Rpzp-kdvzhmrOCCo6f28wB2Evu54IqXaWu3v6jr4G7hdxcr1Yje-Dt-6YWr2uLzfXFbppvn4C4PkfzWON-BaC73FsLGVm7CGxS24-hMh4234PCrJO1bfP30ZzxFFU6hqxKTMke71RPAkK2ZJVRuvINQvdmsiDlq_RVJYQQA-zVEwhcmcAL0Y5jm1nhZl-zqWmZxxqZx4jfPydMEZdPGWkwxiB_N8cQeOLmQg7sJ6URZ4H4RVit4SGD6j0veiIAlkGkk_zFLMMukpB9xOb2LT0rjzaSJ53BBQq5jnM-7n04EXvfxJQ2DyR8mNTg3j1pEtYkX42fNCT2kHnvaPyQXxf6WkwHLJMuFAMymQdOBeo779pzxFIYdWvgOqVsK_9CEejmbD_urBvzR6Apcnh7P9eH96sPcQrijOj9Q7rTZgvZov8RGByCp9XJutgHcXrd8_AHxke3o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELaqIiE48P-TUsBIIE5pXSdxvAcOq6arXcpWFVCpt-DYkwtRUu1mi8qJE2cehVfhFXgSZpJsyoIQElIPHJOME8ueGX8z8Xxm7GlonXBOWT_TEPthYCJfW7vjgwKphQMAQ7XD0wM1PgpfHkfHa-zrsham5YfoE25kGY2_JgM_cfn2OWmocQ1vEC5o6GR3um2V-3D2AYO2-YtJgjP8TMrR3tvdsd-dK-BbqjPFzkAWu1xYYwXhFTQ0iyhAKauNAARMA8gBVTk2MsgxdLQ5xMJpnYUujzNLKVB0-pdCJQZ0WETy-pywiuKBht0viPyBCvWSJlLI7dX-ri6Dv2HbVajcrHWj6-zbcpTaLS7vtxZ1tmU__kIg-T8N4w12rQPefNhayk22BuUtdvUnOsbb7HNSoW-sv3_6MpoB8LZM1fJxVQDe62ngUZZPTd2YLkfMz_caGg5cvbkpHUf4nhXAicBkhnCeD4sCW0_KqnsdyYzPqFCOH8KsOp1T_py_oRQD34WimN9hRxcyEHfZelmVcJ9xJyW-JbJ0QmUYxJGJRBaLUOUZ5LkIpMf8pdqktiNxp7NEirSln5YpzWfaz6fHnvfyJy19yR8lN5damHZubJ5KRM9BoAKpPfakf4wOiP4qmRKqBcmogSZKIOGxe6329p8KJAYcWoYek40O_qUP6TCZDvurjX9p9JhdPkxG6avJwf4DdkVScqTZZrXJ1uvZAh4igqyzR43RcvbuotX7B3xgeik |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dopant%E2%80%90Free+Organic+Hole%E2%80%90Transporting+Material+for+Efficient+and+Stable+Inverted+All%E2%80%90Inorganic+and+Hybrid+Perovskite+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jiang%2C+Kui&rft.au=Wang%2C+Jing&rft.au=Wu%2C+Fei&rft.au=Xue%2C+Qifan&rft.date=2020-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=16&rft_id=info:doi/10.1002%2Fadma.201908011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201908011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |