Gold Nanoclusters for NIR‐II Fluorescence Imaging of Bones

Fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR‐II probes is crucial for realizing the medical applications of NIR‐II fluorescence imaging. Herein, the glutathione‐capped...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 43; pp. e2003851 - n/a
Main Authors Li, Deling, Liu, Qiang, Qi, Qingrong, Shi, Hui, Hsu, En‐Chi, Chen, Weiyu, Yuan, Wenli, Wu, Yifan, Lin, Sien, Zeng, Yitian, Xiao, Zunyu, Xu, Lingyun, Zhang, Yanrong, Stoyanova, Tanya, Jia, Wang, Cheng, Zhen
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR‐II probes is crucial for realizing the medical applications of NIR‐II fluorescence imaging. Herein, the glutathione‐capped gold nanoclusters (AuNCs, specifically Au25(SG)18) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR‐II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal‐background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR‐II imaging render their great potential for fluorescence‐guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR‐II imaging probe for visualizing bone and bone related abnormalities. The glutathione‐capped gold nanoclusters, Au25(SG)18, demonstrate highly efficient binding capability to hydroxyapatite for the first time. They can be utilized for bone imaging with NIR‐II fluorescence with high contrast and can be excreted through renal system. The deep tissue penetration capability and high resolution render their great potential for clinical translation.
AbstractList Fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR‐II probes is crucial for realizing the medical applications of NIR‐II fluorescence imaging. Herein, the glutathione‐capped gold nanoclusters (AuNCs, specifically Au25(SG)18) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR‐II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal‐background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR‐II imaging render their great potential for fluorescence‐guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR‐II imaging probe for visualizing bone and bone related abnormalities.
Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR-II probes is crucial for realizing the medical applications of NIR-II fluorescence imaging. Herein, the glutathione-capped gold nanoclusters (AuNCs, specifically Au25 (SG)18 ) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR-II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal-background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR-II imaging render their great potential for fluorescence-guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR-II imaging probe for visualizing bone and bone related abnormalities.Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR-II probes is crucial for realizing the medical applications of NIR-II fluorescence imaging. Herein, the glutathione-capped gold nanoclusters (AuNCs, specifically Au25 (SG)18 ) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR-II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal-background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR-II imaging render their great potential for fluorescence-guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR-II imaging probe for visualizing bone and bone related abnormalities.
Fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR‐II probes is crucial for realizing the medical applications of NIR‐II fluorescence imaging. Herein, the glutathione‐capped gold nanoclusters (AuNCs, specifically Au25(SG)18) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR‐II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal‐background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR‐II imaging render their great potential for fluorescence‐guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR‐II imaging probe for visualizing bone and bone related abnormalities. The glutathione‐capped gold nanoclusters, Au25(SG)18, demonstrate highly efficient binding capability to hydroxyapatite for the first time. They can be utilized for bone imaging with NIR‐II fluorescence with high contrast and can be excreted through renal system. The deep tissue penetration capability and high resolution render their great potential for clinical translation.
Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR-II probes is crucial for realizing the medical applications of NIR-II fluorescence imaging. Herein, the glutathione-capped gold nanoclusters (AuNCs, specifically Au (SG) ) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR-II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal-background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR-II imaging render their great potential for fluorescence-guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR-II imaging probe for visualizing bone and bone related abnormalities.
Fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR‐II probes is crucial for realizing the medical applications of NIR‐II fluorescence imaging. Herein, the glutathione‐capped gold nanoclusters (AuNCs, specifically Au 25 (SG) 18 ) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR‐II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal‐background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR‐II imaging render their great potential for fluorescence‐guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR‐II imaging probe for visualizing bone and bone related abnormalities.
Author Qi, Qingrong
Shi, Hui
Stoyanova, Tanya
Hsu, En‐Chi
Yuan, Wenli
Liu, Qiang
Li, Deling
Chen, Weiyu
Zhang, Yanrong
Cheng, Zhen
Zeng, Yitian
Xu, Lingyun
Jia, Wang
Xiao, Zunyu
Lin, Sien
Wu, Yifan
Author_xml – sequence: 1
  givenname: Deling
  surname: Li
  fullname: Li, Deling
  organization: Capital Medical University
– sequence: 2
  givenname: Qiang
  surname: Liu
  fullname: Liu, Qiang
  organization: Southwest Minzu University
– sequence: 3
  givenname: Qingrong
  surname: Qi
  fullname: Qi, Qingrong
  organization: Sichuan University
– sequence: 4
  givenname: Hui
  surname: Shi
  fullname: Shi, Hui
  organization: Stanford University
– sequence: 5
  givenname: En‐Chi
  surname: Hsu
  fullname: Hsu, En‐Chi
  organization: Stanford University
– sequence: 6
  givenname: Weiyu
  surname: Chen
  fullname: Chen, Weiyu
  organization: Stanford University
– sequence: 7
  givenname: Wenli
  surname: Yuan
  fullname: Yuan, Wenli
  organization: Stanford University
– sequence: 8
  givenname: Yifan
  surname: Wu
  fullname: Wu, Yifan
  organization: Stanford University
– sequence: 9
  givenname: Sien
  surname: Lin
  fullname: Lin, Sien
  organization: Stanford University School of Medicine
– sequence: 10
  givenname: Yitian
  surname: Zeng
  fullname: Zeng, Yitian
  organization: Stanford University School of Medicine
– sequence: 11
  givenname: Zunyu
  surname: Xiao
  fullname: Xiao, Zunyu
  organization: Stanford University
– sequence: 12
  givenname: Lingyun
  surname: Xu
  fullname: Xu, Lingyun
  organization: Stanford University
– sequence: 13
  givenname: Yanrong
  surname: Zhang
  fullname: Zhang, Yanrong
  organization: Stanford University
– sequence: 14
  givenname: Tanya
  surname: Stoyanova
  fullname: Stoyanova, Tanya
  organization: Stanford University
– sequence: 15
  givenname: Wang
  surname: Jia
  fullname: Jia, Wang
  email: jwttyy@126.com
  organization: Capital Medical University
– sequence: 16
  givenname: Zhen
  orcidid: 0000-0001-8177-9463
  surname: Cheng
  fullname: Cheng, Zhen
  email: zcheng@stanford.edu
  organization: Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33000882$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKw0AUhgdRtFa3LiXgxk3qmUtu4EaLl0BV8LIO0-SMpEwydSZB3PkIPqNP4pRqhYK4OrP4vjn_-XfJZmtaJOSAwogCsBPXaD1iwAB4GtENMqAx5WGcsmxz9aawQ3adm3mGMpFskx3OASBN2YCcXhldBbeyNaXuXYfWBcrY4Da__3z_yPPgUvfGoiuxLTHIG_lct8-BUcG5j-H2yJaS2uH-9xySp8uLx_F1OLm7ysdnk7AUPKNhIqmKkMVcZamPKlJIII5RZJhlUyoBMVEgoIxRxRBFU8pUxSESUEXJlCHyITle_ju35qVH1xVN7SNpLVs0vSuYEEnKE5pSjx6toTPT29an81QkOBf-cE8dflP9tMGqmNu6kfat-OnFA6MlUFrjnEW1QigUi-KLRfHFqngviDWhrDvZ1abtrKz131q21F5rjW__LCkebiaTX_cLEnaVUg
CitedBy_id crossref_primary_10_1038_s41467_024_49409_4
crossref_primary_10_3390_nano13030470
crossref_primary_10_1007_s10311_023_01581_7
crossref_primary_10_1186_s12951_024_02477_6
crossref_primary_10_1186_s40824_022_00294_2
crossref_primary_10_1002_adma_202304848
crossref_primary_10_1002_ppsc_202300084
crossref_primary_10_1002_adhm_202100993
crossref_primary_10_1021_acs_nanolett_1c04531
crossref_primary_10_1039_D4BM00455H
crossref_primary_10_1002_anie_202406016
crossref_primary_10_1039_D4NR03058C
crossref_primary_10_1002_smll_202007992
crossref_primary_10_1002_adom_202201067
crossref_primary_10_1039_D3NR06042J
crossref_primary_10_1007_s10895_022_03047_5
crossref_primary_10_1039_D2NA00044J
crossref_primary_10_1039_D4SC08599J
crossref_primary_10_1002_agt2_23
crossref_primary_10_1007_s11426_021_9990_x
crossref_primary_10_1039_D1TB00836F
crossref_primary_10_1021_acsami_1c14275
crossref_primary_10_1039_D2DT02766F
crossref_primary_10_1007_s40843_024_3187_8
crossref_primary_10_1007_s40846_022_00715_6
crossref_primary_10_1016_j_biomaterials_2023_122454
crossref_primary_10_1002_adma_202402966
crossref_primary_10_1039_D2TB00869F
crossref_primary_10_1021_acsmaterialslett_2c00237
crossref_primary_10_1021_jacs_3c02880
crossref_primary_10_3390_pharmaceutics14081645
crossref_primary_10_1039_D3SC02290K
crossref_primary_10_1002_adhm_202400715
crossref_primary_10_3389_fbioe_2021_647905
crossref_primary_10_1002_smtd_202301165
crossref_primary_10_1038_s41467_022_33341_6
crossref_primary_10_1002_smtd_202001066
crossref_primary_10_1016_j_cej_2024_155216
crossref_primary_10_1002_adma_202309073
crossref_primary_10_3389_fbioe_2021_771153
crossref_primary_10_1021_acs_molpharmaceut_4c00832
crossref_primary_10_3389_fbioe_2021_768927
crossref_primary_10_2174_0118744710283369240328082442
crossref_primary_10_1039_D4NR00282B
crossref_primary_10_3390_nano13040648
crossref_primary_10_3788_IRLA20220527
crossref_primary_10_1038_s41467_022_30969_2
crossref_primary_10_3390_nano15010039
crossref_primary_10_1038_s41467_024_53537_2
crossref_primary_10_1021_acsanm_2c01604
crossref_primary_10_1002_anbr_202300082
crossref_primary_10_1016_j_ijpharm_2022_122439
crossref_primary_10_3390_bioengineering10080954
crossref_primary_10_1126_science_adk6628
crossref_primary_10_1039_D2CS00142J
crossref_primary_10_1007_s00604_023_06156_5
crossref_primary_10_1039_D2SC05729H
crossref_primary_10_3788_CJL231341
crossref_primary_10_1002_cmdc_202100142
crossref_primary_10_1039_D2QM01125E
crossref_primary_10_1039_D2SC03271F
crossref_primary_10_1039_D4TB01957A
crossref_primary_10_1007_s40820_023_01266_4
crossref_primary_10_1021_acs_nanolett_2c02486
crossref_primary_10_1007_s00604_023_05955_0
crossref_primary_10_1002_agt2_381
crossref_primary_10_1039_D4NR03111C
crossref_primary_10_1016_j_pmatsci_2023_101229
crossref_primary_10_3390_pharmaceutics14112451
crossref_primary_10_1039_D3TB00651D
crossref_primary_10_3390_photochem5010003
crossref_primary_10_1021_acsami_3c18282
crossref_primary_10_1038_s41467_024_51642_w
crossref_primary_10_1002_EXP_20220011
crossref_primary_10_3389_fchem_2022_905475
crossref_primary_10_1002_ange_202406016
crossref_primary_10_1021_acscentsci_1c01066
crossref_primary_10_1021_acs_jmedchem_1c00839
crossref_primary_10_1021_acs_analchem_2c05612
crossref_primary_10_1002_adma_202303562
crossref_primary_10_1016_j_isci_2022_105022
crossref_primary_10_1039_D4TB02207F
crossref_primary_10_1002_adma_202310529
crossref_primary_10_1007_s00216_024_05303_y
crossref_primary_10_1021_acsnano_2c03752
crossref_primary_10_1039_D4AY01932F
crossref_primary_10_1002_agt2_435
crossref_primary_10_1016_j_cej_2024_148677
crossref_primary_10_1021_acsabm_4c00137
crossref_primary_10_1149_2162_8777_ac258c
crossref_primary_10_1002_smll_202102481
crossref_primary_10_1021_acs_jpclett_2c00905
crossref_primary_10_1002_adfm_202418867
crossref_primary_10_1021_cbmi_4c00021
crossref_primary_10_1039_D2TB02563A
crossref_primary_10_3389_fonc_2021_819329
crossref_primary_10_1021_acsami_2c10420
crossref_primary_10_1021_acs_nanolett_2c03759
crossref_primary_10_1073_pnas_2318265121
crossref_primary_10_1039_D2NR05773E
crossref_primary_10_1039_D5NR00054H
crossref_primary_10_1021_acsmaterialslett_3c00379
crossref_primary_10_1021_acsanm_3c00826
crossref_primary_10_1002_smtd_202001250
crossref_primary_10_1007_s12274_022_5145_1
crossref_primary_10_1039_D3MH01298K
Cites_doi 10.1021/acsnano.7b03197
10.1038/nature02079
10.1016/j.ctrv.2018.06.007
10.1530/EJE-17-1002
10.1038/s41598-020-59522-1
10.1039/B815983A
10.4236/aces.2018.84016
10.3109/17453674.2010.548032
10.1002/smll.201101353
10.1002/adma.201700131
10.1039/C8CS00234G
10.1155/2011/796025
10.1038/nrendo.2012.201
10.1002/adma.201901015
10.1016/j.wneu.2019.02.217
10.1038/s41551-019-0494-0
10.2217/nnm.15.97
10.1088/1361-6560/aacdd3
10.1038/s41467-017-00970-1
10.1021/ja2064582
10.1038/s41578-018-0038-3
10.1039/C9CP03982A
10.1021/acsami.9b22827
10.1021/acsami.7b12614
10.1126/sciadv.aar6280
10.1021/mp400357v
10.1016/j.biomaterials.2017.10.053
10.1038/ncomms15269
10.1001/jama.1977.03270500056025
10.1002/adma.201900321
10.1002/anie.201916675
10.1002/adma.201605754
10.1021/acsnano.9b00097
10.1038/nmat4476
10.1021/ja801173r
10.1038/s41467-018-04410-6
10.1002/anie.201901525
10.1021/ac503636j
10.1002/adma.201805730
10.1038/nbt1201-1148
10.1021/acs.nanolett.9b00140
10.18632/oncotarget.20187
10.1007/s13770-019-00208-9
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202003851
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 33000882
10_1002_smll_202003851
SMLL202003851
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 201808510023
– fundername: Natural Science Foundation of Beijing Municipality
  funderid: xx2017017
– fundername: Major Research Plan
  funderid: 81971668
– fundername: Beijing Talents foundation
– fundername: Clinical Scientist Supporting grant of Beijing Tiantan Hospital
  funderid: YSP201902
– fundername: Radiology Department at Stanford University
– fundername: Beijing Tian Tan Hospital, Capital Medical University
  funderid: YSP201902
– fundername: National Natural Science Foundation of China
  funderid: 81971668; 21708032
– fundername: Beijing Nova Program
  funderid: xx2017017
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4391-7a1f5e263f982024807066e49e99b1a0ee7f040c6ef6055b12fd30540d57b2ee3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 09:22:55 EDT 2025
Fri Jul 25 12:19:19 EDT 2025
Thu Apr 03 07:03:35 EDT 2025
Tue Jul 01 02:10:56 EDT 2025
Thu Apr 24 23:10:39 EDT 2025
Wed Jan 22 16:33:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Keywords renal excretable nanoparticles
NIR-II imaging
bone targeting
gold nanoclusters
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4391-7a1f5e263f982024807066e49e99b1a0ee7f040c6ef6055b12fd30540d57b2ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8177-9463
PMID 33000882
PQID 2454334008
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2447837181
proquest_journals_2454334008
pubmed_primary_33000882
crossref_primary_10_1002_smll_202003851
crossref_citationtrail_10_1002_smll_202003851
wiley_primary_10_1002_smll_202003851_SMLL202003851
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 08
2019; 31
2015 2019 2015 2019; 87 58 10 31
2011; 82
2019; 126
2019; 16
2019; 19
2017 2018 2020 2018; 8 4 59 10
2018; 63
2017; 29
2020; 12
2011; 2011
2018; 9
2018; 154
2020; 4
2018; 3
2003 2013; 425 9
2018 2019 2017 2016; 47 31 8 15
2001 2017 2020; 19 8 10
2013; 10
2019; 21
2018 2018; 69 178
1977; 237
2017 2011 2019 2017; 29 133 13 11
2009; 19
2008; 130
2012; 8
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
Pokhrel S. (e_1_2_5_22_1) 2018; 08
e_1_2_5_24_1
e_1_2_5_20_2
e_1_2_5_21_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_5_4
e_1_2_5_8_1
e_1_2_5_10_2
e_1_2_5_11_1
e_1_2_5_5_3
e_1_2_5_6_2
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_5_2
e_1_2_5_6_1
e_1_2_5_10_4
a. J. Z. Bujie Du M. Y. (e_1_2_5_12_1) 2018; 3
e_1_2_5_13_1
e_1_2_5_3_3
e_1_2_5_5_1
e_1_2_5_10_3
e_1_2_5_1_4
e_1_2_5_3_2
e_1_2_5_4_1
e_1_2_5_1_3
e_1_2_5_3_1
e_1_2_5_1_2
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_17_3
e_1_2_5_19_1
e_1_2_5_17_2
e_1_2_5_17_4
Zhikun Wu J. S. (e_1_2_5_18_1) 2009; 19
Krishnamurthy G. T. (e_1_2_5_27_1) 1977; 237
References_xml – volume: 237
  start-page: 2504
  year: 1977
  publication-title: JAMA, J. Am. Med. Assoc.
– volume: 126
  start-page: 664
  year: 2019
  publication-title: World Neurosurg.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4263
  year: 2013
  publication-title: Mol. Pharmaceutics
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 69 178
  start-page: 177 R81
  year: 2018 2018
  publication-title: Cancer Treat. Rev. Eur. J. Endocrinol.
– volume: 87 58 10 31
  start-page: 216 5994 2781
  year: 2015 2019 2015 2019
  publication-title: Anal. Chem. Angew. Chem. Int. Ed. Engl. Nanomedicine Adv. Mater.
– volume: 9
  start-page: 1979
  year: 2018
  publication-title: Nat. Commun.
– volume: 08
  start-page: 225
  year: 2018
  publication-title: Adv. Chem. Eng. Sci.
– volume: 29 133 13 11
  start-page: 7556 7259
  year: 2017 2011 2019 2017
  publication-title: Adv. Mater. J. Am. Chem. Soc. ACS Nano ACS Nano
– volume: 8
  start-page: 661
  year: 2012
  publication-title: Small
– volume: 19 8 10
  start-page: 1148 2580
  year: 2001 2017 2020
  publication-title: Nat. Biotechnol. Oncotarget Sci. Rep.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 154
  start-page: 74
  year: 2018
  publication-title: Biomaterials
– volume: 8 4 59 10
  start-page: 927 9934 75
  year: 2017 2018 2020 2018
  publication-title: Nat. Commun. Sci. Adv. Angew. Chem. Int. Ed. Engl. ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 622
  year: 2009
  publication-title: J. Mater. Chem.
– volume: 21
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 16
  start-page: 443
  year: 2019
  publication-title: Tissue Eng. Regen. Med.
– volume: 2011
  year: 2011
  publication-title: Int. J. Mol. Imaging
– volume: 63
  year: 2018
  publication-title: Phys. Med. Biol.
– volume: 425 9
  start-page: 977 43
  year: 2003 2013
  publication-title: Nature Nat. Rev. Endocrinol.
– volume: 82
  start-page: 50
  year: 2011
  publication-title: Acta Orthop.
– volume: 19
  start-page: 2985
  year: 2019
  publication-title: Nano Lett.
– volume: 3
  start-page: 358
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 130
  start-page: 5883
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 259
  year: 2020
  publication-title: Nat. Biomed. Eng.
– volume: 47 31 8 15
  start-page: 4258 235
  year: 2018 2019 2017 2016
  publication-title: Chem. Soc. Rev. Adv. Mater. Nat. Commun. Nat. Mater.
– ident: e_1_2_5_5_4
  doi: 10.1021/acsnano.7b03197
– ident: e_1_2_5_20_1
  doi: 10.1038/nature02079
– ident: e_1_2_5_6_1
  doi: 10.1016/j.ctrv.2018.06.007
– ident: e_1_2_5_6_2
  doi: 10.1530/EJE-17-1002
– ident: e_1_2_5_3_3
  doi: 10.1038/s41598-020-59522-1
– volume: 19
  start-page: 622
  year: 2009
  ident: e_1_2_5_18_1
  publication-title: J. Mater. Chem.
  doi: 10.1039/B815983A
– volume: 08
  start-page: 225
  year: 2018
  ident: e_1_2_5_22_1
  publication-title: Adv. Chem. Eng. Sci.
  doi: 10.4236/aces.2018.84016
– ident: e_1_2_5_25_1
  doi: 10.3109/17453674.2010.548032
– ident: e_1_2_5_19_1
  doi: 10.1002/smll.201101353
– ident: e_1_2_5_5_1
  doi: 10.1002/adma.201700131
– ident: e_1_2_5_1_1
  doi: 10.1039/C8CS00234G
– ident: e_1_2_5_23_1
  doi: 10.1155/2011/796025
– ident: e_1_2_5_20_2
  doi: 10.1038/nrendo.2012.201
– ident: e_1_2_5_13_1
  doi: 10.1002/adma.201901015
– ident: e_1_2_5_24_1
  doi: 10.1016/j.wneu.2019.02.217
– ident: e_1_2_5_2_1
  doi: 10.1038/s41551-019-0494-0
– ident: e_1_2_5_17_3
  doi: 10.2217/nnm.15.97
– ident: e_1_2_5_26_1
  doi: 10.1088/1361-6560/aacdd3
– ident: e_1_2_5_10_1
  doi: 10.1038/s41467-017-00970-1
– ident: e_1_2_5_5_2
  doi: 10.1021/ja2064582
– volume: 3
  start-page: 358
  year: 2018
  ident: e_1_2_5_12_1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-018-0038-3
– ident: e_1_2_5_15_1
  doi: 10.1039/C9CP03982A
– ident: e_1_2_5_21_1
  doi: 10.1021/acsami.9b22827
– ident: e_1_2_5_10_4
  doi: 10.1021/acsami.7b12614
– ident: e_1_2_5_10_2
  doi: 10.1126/sciadv.aar6280
– ident: e_1_2_5_7_1
  doi: 10.1021/mp400357v
– ident: e_1_2_5_8_1
  doi: 10.1016/j.biomaterials.2017.10.053
– ident: e_1_2_5_1_3
  doi: 10.1038/ncomms15269
– volume: 237
  start-page: 2504
  year: 1977
  ident: e_1_2_5_27_1
  publication-title: JAMA, J. Am. Med. Assoc.
  doi: 10.1001/jama.1977.03270500056025
– ident: e_1_2_5_1_2
  doi: 10.1002/adma.201900321
– ident: e_1_2_5_10_3
  doi: 10.1002/anie.201916675
– ident: e_1_2_5_4_1
  doi: 10.1002/adma.201605754
– ident: e_1_2_5_5_3
  doi: 10.1021/acsnano.9b00097
– ident: e_1_2_5_1_4
  doi: 10.1038/nmat4476
– ident: e_1_2_5_14_1
  doi: 10.1021/ja801173r
– ident: e_1_2_5_11_1
  doi: 10.1038/s41467-018-04410-6
– ident: e_1_2_5_17_2
  doi: 10.1002/anie.201901525
– ident: e_1_2_5_17_1
  doi: 10.1021/ac503636j
– ident: e_1_2_5_17_4
  doi: 10.1002/adma.201805730
– ident: e_1_2_5_3_1
  doi: 10.1038/nbt1201-1148
– ident: e_1_2_5_9_1
  doi: 10.1021/acs.nanolett.9b00140
– ident: e_1_2_5_3_2
  doi: 10.18632/oncotarget.20187
– ident: e_1_2_5_16_1
  doi: 10.1007/s13770-019-00208-9
SSID ssj0031247
Score 2.6285472
Snippet Fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) holds great promise for deep tissue visualization. Development of novel clinical...
Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for deep tissue visualization. Development of novel clinical...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2003851
SubjectTerms Abnormalities
Bioaccumulation
bone targeting
Bones
Fluorescence
Glutathione
Gold
gold nanoclusters
Hydroxyapatite
Imaging
Infrared windows
Nanoclusters
Nanotechnology
NIR‐II imaging
Pedicle screws
renal excretable nanoparticles
Spleen
Surgical implants
Vertebrae
Title Gold Nanoclusters for NIR‐II Fluorescence Imaging of Bones
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202003851
https://www.ncbi.nlm.nih.gov/pubmed/33000882
https://www.proquest.com/docview/2454334008
https://www.proquest.com/docview/2447837181
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hTnBgX8ImIyFxCrS2s0lcAFEoKhxYJG6RndgX0gbR5sKJT-Ab-RJmkja0IIQEt0QZO47tmXkT228A9pJABVqmoauV9FwphXEjrTFUicJQ2jCNlKVA8erav7iXlw_ew9gp_oofov7hRppR2mtScKX7h5-kof1uRksHvFzboviHNmwRKrqp-aMEOq8yuwr6LJeIt0asjQ1-OFl80it9g5qTyLV0Pa15UKNGVztOHg-KgT5IXr7wOf7nqxZgbohL2XE1kRZhyvSWYHaMrXAZjs7zLGVojvMkK4hfoc8Q8bLr9s3761u7zVpZkT-X7FCJYe1umf6I5ZadUDqAFbhvnd2dXrjD5AtuQodx3UA1rWe4L2yEIIHTyXNEJ0ZGJop0UzWMCSwagMQ3FiMiTze5TQXhv9QLNDdGrMJ0D-tfB5Zw3tSptkYpX_rKhI0Ug0KDWItrrFE44I46P06GzOSUICOLK05lHlOvxHWvOLBfyz9VnBw_Sm6NxjIe6mY_5tKTQqDtCh3YrR-jVtFSieqZvCAZGWDojvDHgbVqDtSvEoKAU8gd4OVI_tKG-Paq06nvNv5SaBNm6LraQ7gF04PnwmwjFhronXK-fwCVEP6T
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcoAeChTaGgpdJKSe3Ca765fEBRAhLkkOaSpxs3bt3UuduGriS0_8hP7G_hJm1rFLQAgJjrZ31_uamW_28Q3AuzxSkZZF7GslA19KYfxEa3RVkjiWNi4SZclRHE_C4YU8-xa0pwnpLkzDD9EtuJFkOH1NAk4L0qf3rKHLeUl7B9xtbqED9JDCejuvatoxSAk0Xy6-Clotn6i3Wt7GHj_dzL9pl34Dm5vY1RmfwRPQbbWbMyeXJ_VKn-Q3vzA6_le7nsLOGpqyD81cegYPzGIXtn8iLHwO779UZcFQI1d5WRPFwpIh6GWTdHr3_TZN2aCsq2tHEJUbls5dBCRWWfaRIgK8gIvB59mnob-Ov-DndB_Xj1TfBoaHwiaIEzhdPkeAYmRikkT3Vc-YyKIOyENj0SkKdJ_bQhAELIJIc2PEHmwtsPwDYDnnfV1oa5QKZahM3CvQLzQIt7jGEoUHftv7Wb4mJ6cYGWXW0CrzjHol63rFg-Mu_VVDy_HHlIftYGZr8VxmXAZSCFRfsQdvu88oWLRbohamqimNjNB7RwTkwX4zCbpfCUHYKeYecDeUf6lDdj4ejbqnl_-S6QgeDWfjUTZKJ19fwWN63xwpPISt1XVtXiM0Wuk3bvL_AImMAr0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5CnYTYwwYbYxkdM9KkPQVa27lJvMBKaUapJjakvkV2Yr8sbaq2eeGJn7DfuF_CsdOGlgkhbY9RbMexz-U7vnwH4HMaiEDyLHSl4J7LOVNuJCWGKlEYch1mkdAmULwa-L0b_m3oDVdu8Vf8EPWCm9EMa6-Ngk8yffxAGjob5WbrgNq9LYx_XnC_FRq57lzXBFIMvZdNr4JOyzXMW0vaxhY9Xq-_7pb-wprr0NX6nu5rEMteV0dOfh2Vc3mU3j4idPyf39qGVwtgSk4rSdqBDTV-Ay9X6ArfwslFkWcE7XGR5qUhWJgRhLxkEF__ufsdx6Sbl8XU0kOlisQjm_-IFJqcmXwAu3DTPf_5tecusi-4qbmN6wairT1FfaYjRAnUXD1HeKJ4pKJItkVLqUCjBUh9pTEk8mSb6owZAJh5gaRKsXfQGGP774GklLZlJrUSwue-UGErw6hQIdiiEltkDrjLwU_SBTW5yZCRJxWpMk3MqCT1qDjwpS4_qUg5nizZXM5lslDOWUK5xxlD4xU6cFi_RrUyeyVirIrSlOEBxu6IfxzYq2Sg_hRjBjmF1AFqZ_KZPiQ_rvr9-unDv1T6BJvfO92kHw8u92ELMRu3ZxD9JjTm01J9RFw0lwdW9O8BkRYBhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gold+Nanoclusters+for+NIR-II+Fluorescence+Imaging+of+Bones&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Deling&rft.au=Liu%2C+Qiang&rft.au=Qi%2C+Qingrong&rft.au=Shi%2C+Hui&rft.date=2020-10-01&rft.eissn=1613-6829&rft.volume=16&rft.issue=43&rft.spage=e2003851&rft_id=info:doi/10.1002%2Fsmll.202003851&rft_id=info%3Apmid%2F33000882&rft.externalDocID=33000882
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon