Gold Nanoclusters for NIR‐II Fluorescence Imaging of Bones
Fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR‐II probes is crucial for realizing the medical applications of NIR‐II fluorescence imaging. Herein, the glutathione‐capped...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 16; no. 43; pp. e2003851 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR‐II probes is crucial for realizing the medical applications of NIR‐II fluorescence imaging. Herein, the glutathione‐capped gold nanoclusters (AuNCs, specifically Au25(SG)18) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR‐II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal‐background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR‐II imaging render their great potential for fluorescence‐guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR‐II imaging probe for visualizing bone and bone related abnormalities.
The glutathione‐capped gold nanoclusters, Au25(SG)18, demonstrate highly efficient binding capability to hydroxyapatite for the first time. They can be utilized for bone imaging with NIR‐II fluorescence with high contrast and can be excreted through renal system. The deep tissue penetration capability and high resolution render their great potential for clinical translation. |
---|---|
AbstractList | Fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR‐II probes is crucial for realizing the medical applications of NIR‐II fluorescence imaging. Herein, the glutathione‐capped gold nanoclusters (AuNCs, specifically Au25(SG)18) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR‐II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal‐background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR‐II imaging render their great potential for fluorescence‐guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR‐II imaging probe for visualizing bone and bone related abnormalities. Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR-II probes is crucial for realizing the medical applications of NIR-II fluorescence imaging. Herein, the glutathione-capped gold nanoclusters (AuNCs, specifically Au25 (SG)18 ) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR-II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal-background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR-II imaging render their great potential for fluorescence-guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR-II imaging probe for visualizing bone and bone related abnormalities.Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR-II probes is crucial for realizing the medical applications of NIR-II fluorescence imaging. Herein, the glutathione-capped gold nanoclusters (AuNCs, specifically Au25 (SG)18 ) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR-II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal-background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR-II imaging render their great potential for fluorescence-guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR-II imaging probe for visualizing bone and bone related abnormalities. Fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR‐II probes is crucial for realizing the medical applications of NIR‐II fluorescence imaging. Herein, the glutathione‐capped gold nanoclusters (AuNCs, specifically Au25(SG)18) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR‐II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal‐background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR‐II imaging render their great potential for fluorescence‐guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR‐II imaging probe for visualizing bone and bone related abnormalities. The glutathione‐capped gold nanoclusters, Au25(SG)18, demonstrate highly efficient binding capability to hydroxyapatite for the first time. They can be utilized for bone imaging with NIR‐II fluorescence with high contrast and can be excreted through renal system. The deep tissue penetration capability and high resolution render their great potential for clinical translation. Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR-II probes is crucial for realizing the medical applications of NIR-II fluorescence imaging. Herein, the glutathione-capped gold nanoclusters (AuNCs, specifically Au (SG) ) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR-II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal-background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR-II imaging render their great potential for fluorescence-guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR-II imaging probe for visualizing bone and bone related abnormalities. Fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) holds great promise for deep tissue visualization. Development of novel clinical translatable NIR‐II probes is crucial for realizing the medical applications of NIR‐II fluorescence imaging. Herein, the glutathione‐capped gold nanoclusters (AuNCs, specifically Au 25 (SG) 18 ) demonstrate highly efficient binding capability to hydroxyapatite in vitro for the first time. Further in vivo NIR‐II fluorescence imaging of AuNCs indicate that they accumulate in bone tissues with high contrast and signal‐background ratio. AuNCs are also mainly and quickly excreted from body through renal system, showing excellent ribs and thoracic vertebra imaging because of no background signal in liver and spleen. The deep tissue penetration capability and high resolution of AuNCs in NIR‐II imaging render their great potential for fluorescence‐guided surgery like spinal pedicle screw implantation. Overall, AuNCs are highly promising and clinical translatable NIR‐II imaging probe for visualizing bone and bone related abnormalities. |
Author | Qi, Qingrong Shi, Hui Stoyanova, Tanya Hsu, En‐Chi Yuan, Wenli Liu, Qiang Li, Deling Chen, Weiyu Zhang, Yanrong Cheng, Zhen Zeng, Yitian Xu, Lingyun Jia, Wang Xiao, Zunyu Lin, Sien Wu, Yifan |
Author_xml | – sequence: 1 givenname: Deling surname: Li fullname: Li, Deling organization: Capital Medical University – sequence: 2 givenname: Qiang surname: Liu fullname: Liu, Qiang organization: Southwest Minzu University – sequence: 3 givenname: Qingrong surname: Qi fullname: Qi, Qingrong organization: Sichuan University – sequence: 4 givenname: Hui surname: Shi fullname: Shi, Hui organization: Stanford University – sequence: 5 givenname: En‐Chi surname: Hsu fullname: Hsu, En‐Chi organization: Stanford University – sequence: 6 givenname: Weiyu surname: Chen fullname: Chen, Weiyu organization: Stanford University – sequence: 7 givenname: Wenli surname: Yuan fullname: Yuan, Wenli organization: Stanford University – sequence: 8 givenname: Yifan surname: Wu fullname: Wu, Yifan organization: Stanford University – sequence: 9 givenname: Sien surname: Lin fullname: Lin, Sien organization: Stanford University School of Medicine – sequence: 10 givenname: Yitian surname: Zeng fullname: Zeng, Yitian organization: Stanford University School of Medicine – sequence: 11 givenname: Zunyu surname: Xiao fullname: Xiao, Zunyu organization: Stanford University – sequence: 12 givenname: Lingyun surname: Xu fullname: Xu, Lingyun organization: Stanford University – sequence: 13 givenname: Yanrong surname: Zhang fullname: Zhang, Yanrong organization: Stanford University – sequence: 14 givenname: Tanya surname: Stoyanova fullname: Stoyanova, Tanya organization: Stanford University – sequence: 15 givenname: Wang surname: Jia fullname: Jia, Wang email: jwttyy@126.com organization: Capital Medical University – sequence: 16 givenname: Zhen orcidid: 0000-0001-8177-9463 surname: Cheng fullname: Cheng, Zhen email: zcheng@stanford.edu organization: Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33000882$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtKw0AUhgdRtFa3LiXgxk3qmUtu4EaLl0BV8LIO0-SMpEwydSZB3PkIPqNP4pRqhYK4OrP4vjn_-XfJZmtaJOSAwogCsBPXaD1iwAB4GtENMqAx5WGcsmxz9aawQ3adm3mGMpFskx3OASBN2YCcXhldBbeyNaXuXYfWBcrY4Da__3z_yPPgUvfGoiuxLTHIG_lct8-BUcG5j-H2yJaS2uH-9xySp8uLx_F1OLm7ysdnk7AUPKNhIqmKkMVcZamPKlJIII5RZJhlUyoBMVEgoIxRxRBFU8pUxSESUEXJlCHyITle_ju35qVH1xVN7SNpLVs0vSuYEEnKE5pSjx6toTPT29an81QkOBf-cE8dflP9tMGqmNu6kfat-OnFA6MlUFrjnEW1QigUi-KLRfHFqngviDWhrDvZ1abtrKz131q21F5rjW__LCkebiaTX_cLEnaVUg |
CitedBy_id | crossref_primary_10_1038_s41467_024_49409_4 crossref_primary_10_3390_nano13030470 crossref_primary_10_1007_s10311_023_01581_7 crossref_primary_10_1186_s12951_024_02477_6 crossref_primary_10_1186_s40824_022_00294_2 crossref_primary_10_1002_adma_202304848 crossref_primary_10_1002_ppsc_202300084 crossref_primary_10_1002_adhm_202100993 crossref_primary_10_1021_acs_nanolett_1c04531 crossref_primary_10_1039_D4BM00455H crossref_primary_10_1002_anie_202406016 crossref_primary_10_1039_D4NR03058C crossref_primary_10_1002_smll_202007992 crossref_primary_10_1002_adom_202201067 crossref_primary_10_1039_D3NR06042J crossref_primary_10_1007_s10895_022_03047_5 crossref_primary_10_1039_D2NA00044J crossref_primary_10_1039_D4SC08599J crossref_primary_10_1002_agt2_23 crossref_primary_10_1007_s11426_021_9990_x crossref_primary_10_1039_D1TB00836F crossref_primary_10_1021_acsami_1c14275 crossref_primary_10_1039_D2DT02766F crossref_primary_10_1007_s40843_024_3187_8 crossref_primary_10_1007_s40846_022_00715_6 crossref_primary_10_1016_j_biomaterials_2023_122454 crossref_primary_10_1002_adma_202402966 crossref_primary_10_1039_D2TB00869F crossref_primary_10_1021_acsmaterialslett_2c00237 crossref_primary_10_1021_jacs_3c02880 crossref_primary_10_3390_pharmaceutics14081645 crossref_primary_10_1039_D3SC02290K crossref_primary_10_1002_adhm_202400715 crossref_primary_10_3389_fbioe_2021_647905 crossref_primary_10_1002_smtd_202301165 crossref_primary_10_1038_s41467_022_33341_6 crossref_primary_10_1002_smtd_202001066 crossref_primary_10_1016_j_cej_2024_155216 crossref_primary_10_1002_adma_202309073 crossref_primary_10_3389_fbioe_2021_771153 crossref_primary_10_1021_acs_molpharmaceut_4c00832 crossref_primary_10_3389_fbioe_2021_768927 crossref_primary_10_2174_0118744710283369240328082442 crossref_primary_10_1039_D4NR00282B crossref_primary_10_3390_nano13040648 crossref_primary_10_3788_IRLA20220527 crossref_primary_10_1038_s41467_022_30969_2 crossref_primary_10_3390_nano15010039 crossref_primary_10_1038_s41467_024_53537_2 crossref_primary_10_1021_acsanm_2c01604 crossref_primary_10_1002_anbr_202300082 crossref_primary_10_1016_j_ijpharm_2022_122439 crossref_primary_10_3390_bioengineering10080954 crossref_primary_10_1126_science_adk6628 crossref_primary_10_1039_D2CS00142J crossref_primary_10_1007_s00604_023_06156_5 crossref_primary_10_1039_D2SC05729H crossref_primary_10_3788_CJL231341 crossref_primary_10_1002_cmdc_202100142 crossref_primary_10_1039_D2QM01125E crossref_primary_10_1039_D2SC03271F crossref_primary_10_1039_D4TB01957A crossref_primary_10_1007_s40820_023_01266_4 crossref_primary_10_1021_acs_nanolett_2c02486 crossref_primary_10_1007_s00604_023_05955_0 crossref_primary_10_1002_agt2_381 crossref_primary_10_1039_D4NR03111C crossref_primary_10_1016_j_pmatsci_2023_101229 crossref_primary_10_3390_pharmaceutics14112451 crossref_primary_10_1039_D3TB00651D crossref_primary_10_3390_photochem5010003 crossref_primary_10_1021_acsami_3c18282 crossref_primary_10_1038_s41467_024_51642_w crossref_primary_10_1002_EXP_20220011 crossref_primary_10_3389_fchem_2022_905475 crossref_primary_10_1002_ange_202406016 crossref_primary_10_1021_acscentsci_1c01066 crossref_primary_10_1021_acs_jmedchem_1c00839 crossref_primary_10_1021_acs_analchem_2c05612 crossref_primary_10_1002_adma_202303562 crossref_primary_10_1016_j_isci_2022_105022 crossref_primary_10_1039_D4TB02207F crossref_primary_10_1002_adma_202310529 crossref_primary_10_1007_s00216_024_05303_y crossref_primary_10_1021_acsnano_2c03752 crossref_primary_10_1039_D4AY01932F crossref_primary_10_1002_agt2_435 crossref_primary_10_1016_j_cej_2024_148677 crossref_primary_10_1021_acsabm_4c00137 crossref_primary_10_1149_2162_8777_ac258c crossref_primary_10_1002_smll_202102481 crossref_primary_10_1021_acs_jpclett_2c00905 crossref_primary_10_1002_adfm_202418867 crossref_primary_10_1021_cbmi_4c00021 crossref_primary_10_1039_D2TB02563A crossref_primary_10_3389_fonc_2021_819329 crossref_primary_10_1021_acsami_2c10420 crossref_primary_10_1021_acs_nanolett_2c03759 crossref_primary_10_1073_pnas_2318265121 crossref_primary_10_1039_D2NR05773E crossref_primary_10_1039_D5NR00054H crossref_primary_10_1021_acsmaterialslett_3c00379 crossref_primary_10_1021_acsanm_3c00826 crossref_primary_10_1002_smtd_202001250 crossref_primary_10_1007_s12274_022_5145_1 crossref_primary_10_1039_D3MH01298K |
Cites_doi | 10.1021/acsnano.7b03197 10.1038/nature02079 10.1016/j.ctrv.2018.06.007 10.1530/EJE-17-1002 10.1038/s41598-020-59522-1 10.1039/B815983A 10.4236/aces.2018.84016 10.3109/17453674.2010.548032 10.1002/smll.201101353 10.1002/adma.201700131 10.1039/C8CS00234G 10.1155/2011/796025 10.1038/nrendo.2012.201 10.1002/adma.201901015 10.1016/j.wneu.2019.02.217 10.1038/s41551-019-0494-0 10.2217/nnm.15.97 10.1088/1361-6560/aacdd3 10.1038/s41467-017-00970-1 10.1021/ja2064582 10.1038/s41578-018-0038-3 10.1039/C9CP03982A 10.1021/acsami.9b22827 10.1021/acsami.7b12614 10.1126/sciadv.aar6280 10.1021/mp400357v 10.1016/j.biomaterials.2017.10.053 10.1038/ncomms15269 10.1001/jama.1977.03270500056025 10.1002/adma.201900321 10.1002/anie.201916675 10.1002/adma.201605754 10.1021/acsnano.9b00097 10.1038/nmat4476 10.1021/ja801173r 10.1038/s41467-018-04410-6 10.1002/anie.201901525 10.1021/ac503636j 10.1002/adma.201805730 10.1038/nbt1201-1148 10.1021/acs.nanolett.9b00140 10.18632/oncotarget.20187 10.1007/s13770-019-00208-9 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202003851 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 33000882 10_1002_smll_202003851 SMLL202003851 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: China Scholarship Council funderid: 201808510023 – fundername: Natural Science Foundation of Beijing Municipality funderid: xx2017017 – fundername: Major Research Plan funderid: 81971668 – fundername: Beijing Talents foundation – fundername: Clinical Scientist Supporting grant of Beijing Tiantan Hospital funderid: YSP201902 – fundername: Radiology Department at Stanford University – fundername: Beijing Tian Tan Hospital, Capital Medical University funderid: YSP201902 – fundername: National Natural Science Foundation of China funderid: 81971668; 21708032 – fundername: Beijing Nova Program funderid: xx2017017 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4391-7a1f5e263f982024807066e49e99b1a0ee7f040c6ef6055b12fd30540d57b2ee3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 09:22:55 EDT 2025 Fri Jul 25 12:19:19 EDT 2025 Thu Apr 03 07:03:35 EDT 2025 Tue Jul 01 02:10:56 EDT 2025 Thu Apr 24 23:10:39 EDT 2025 Wed Jan 22 16:33:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Keywords | renal excretable nanoparticles NIR-II imaging bone targeting gold nanoclusters |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4391-7a1f5e263f982024807066e49e99b1a0ee7f040c6ef6055b12fd30540d57b2ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8177-9463 |
PMID | 33000882 |
PQID | 2454334008 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2447837181 proquest_journals_2454334008 pubmed_primary_33000882 crossref_primary_10_1002_smll_202003851 crossref_citationtrail_10_1002_smll_202003851 wiley_primary_10_1002_smll_202003851_SMLL202003851 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 08 2019; 31 2015 2019 2015 2019; 87 58 10 31 2011; 82 2019; 126 2019; 16 2019; 19 2017 2018 2020 2018; 8 4 59 10 2018; 63 2017; 29 2020; 12 2011; 2011 2018; 9 2018; 154 2020; 4 2018; 3 2003 2013; 425 9 2018 2019 2017 2016; 47 31 8 15 2001 2017 2020; 19 8 10 2013; 10 2019; 21 2018 2018; 69 178 1977; 237 2017 2011 2019 2017; 29 133 13 11 2009; 19 2008; 130 2012; 8 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 Pokhrel S. (e_1_2_5_22_1) 2018; 08 e_1_2_5_24_1 e_1_2_5_20_2 e_1_2_5_21_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_5_4 e_1_2_5_8_1 e_1_2_5_10_2 e_1_2_5_11_1 e_1_2_5_5_3 e_1_2_5_6_2 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_5_2 e_1_2_5_6_1 e_1_2_5_10_4 a. J. Z. Bujie Du M. Y. (e_1_2_5_12_1) 2018; 3 e_1_2_5_13_1 e_1_2_5_3_3 e_1_2_5_5_1 e_1_2_5_10_3 e_1_2_5_1_4 e_1_2_5_3_2 e_1_2_5_4_1 e_1_2_5_1_3 e_1_2_5_3_1 e_1_2_5_1_2 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_17_3 e_1_2_5_19_1 e_1_2_5_17_2 e_1_2_5_17_4 Zhikun Wu J. S. (e_1_2_5_18_1) 2009; 19 Krishnamurthy G. T. (e_1_2_5_27_1) 1977; 237 |
References_xml | – volume: 237 start-page: 2504 year: 1977 publication-title: JAMA, J. Am. Med. Assoc. – volume: 126 start-page: 664 year: 2019 publication-title: World Neurosurg. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 10 start-page: 4263 year: 2013 publication-title: Mol. Pharmaceutics – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 69 178 start-page: 177 R81 year: 2018 2018 publication-title: Cancer Treat. Rev. Eur. J. Endocrinol. – volume: 87 58 10 31 start-page: 216 5994 2781 year: 2015 2019 2015 2019 publication-title: Anal. Chem. Angew. Chem. Int. Ed. Engl. Nanomedicine Adv. Mater. – volume: 9 start-page: 1979 year: 2018 publication-title: Nat. Commun. – volume: 08 start-page: 225 year: 2018 publication-title: Adv. Chem. Eng. Sci. – volume: 29 133 13 11 start-page: 7556 7259 year: 2017 2011 2019 2017 publication-title: Adv. Mater. J. Am. Chem. Soc. ACS Nano ACS Nano – volume: 8 start-page: 661 year: 2012 publication-title: Small – volume: 19 8 10 start-page: 1148 2580 year: 2001 2017 2020 publication-title: Nat. Biotechnol. Oncotarget Sci. Rep. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 154 start-page: 74 year: 2018 publication-title: Biomaterials – volume: 8 4 59 10 start-page: 927 9934 75 year: 2017 2018 2020 2018 publication-title: Nat. Commun. Sci. Adv. Angew. Chem. Int. Ed. Engl. ACS Appl. Mater. Interfaces – volume: 19 start-page: 622 year: 2009 publication-title: J. Mater. Chem. – volume: 21 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 16 start-page: 443 year: 2019 publication-title: Tissue Eng. Regen. Med. – volume: 2011 year: 2011 publication-title: Int. J. Mol. Imaging – volume: 63 year: 2018 publication-title: Phys. Med. Biol. – volume: 425 9 start-page: 977 43 year: 2003 2013 publication-title: Nature Nat. Rev. Endocrinol. – volume: 82 start-page: 50 year: 2011 publication-title: Acta Orthop. – volume: 19 start-page: 2985 year: 2019 publication-title: Nano Lett. – volume: 3 start-page: 358 year: 2018 publication-title: Nat. Rev. Mater. – volume: 130 start-page: 5883 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 259 year: 2020 publication-title: Nat. Biomed. Eng. – volume: 47 31 8 15 start-page: 4258 235 year: 2018 2019 2017 2016 publication-title: Chem. Soc. Rev. Adv. Mater. Nat. Commun. Nat. Mater. – ident: e_1_2_5_5_4 doi: 10.1021/acsnano.7b03197 – ident: e_1_2_5_20_1 doi: 10.1038/nature02079 – ident: e_1_2_5_6_1 doi: 10.1016/j.ctrv.2018.06.007 – ident: e_1_2_5_6_2 doi: 10.1530/EJE-17-1002 – ident: e_1_2_5_3_3 doi: 10.1038/s41598-020-59522-1 – volume: 19 start-page: 622 year: 2009 ident: e_1_2_5_18_1 publication-title: J. Mater. Chem. doi: 10.1039/B815983A – volume: 08 start-page: 225 year: 2018 ident: e_1_2_5_22_1 publication-title: Adv. Chem. Eng. Sci. doi: 10.4236/aces.2018.84016 – ident: e_1_2_5_25_1 doi: 10.3109/17453674.2010.548032 – ident: e_1_2_5_19_1 doi: 10.1002/smll.201101353 – ident: e_1_2_5_5_1 doi: 10.1002/adma.201700131 – ident: e_1_2_5_1_1 doi: 10.1039/C8CS00234G – ident: e_1_2_5_23_1 doi: 10.1155/2011/796025 – ident: e_1_2_5_20_2 doi: 10.1038/nrendo.2012.201 – ident: e_1_2_5_13_1 doi: 10.1002/adma.201901015 – ident: e_1_2_5_24_1 doi: 10.1016/j.wneu.2019.02.217 – ident: e_1_2_5_2_1 doi: 10.1038/s41551-019-0494-0 – ident: e_1_2_5_17_3 doi: 10.2217/nnm.15.97 – ident: e_1_2_5_26_1 doi: 10.1088/1361-6560/aacdd3 – ident: e_1_2_5_10_1 doi: 10.1038/s41467-017-00970-1 – ident: e_1_2_5_5_2 doi: 10.1021/ja2064582 – volume: 3 start-page: 358 year: 2018 ident: e_1_2_5_12_1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0038-3 – ident: e_1_2_5_15_1 doi: 10.1039/C9CP03982A – ident: e_1_2_5_21_1 doi: 10.1021/acsami.9b22827 – ident: e_1_2_5_10_4 doi: 10.1021/acsami.7b12614 – ident: e_1_2_5_10_2 doi: 10.1126/sciadv.aar6280 – ident: e_1_2_5_7_1 doi: 10.1021/mp400357v – ident: e_1_2_5_8_1 doi: 10.1016/j.biomaterials.2017.10.053 – ident: e_1_2_5_1_3 doi: 10.1038/ncomms15269 – volume: 237 start-page: 2504 year: 1977 ident: e_1_2_5_27_1 publication-title: JAMA, J. Am. Med. Assoc. doi: 10.1001/jama.1977.03270500056025 – ident: e_1_2_5_1_2 doi: 10.1002/adma.201900321 – ident: e_1_2_5_10_3 doi: 10.1002/anie.201916675 – ident: e_1_2_5_4_1 doi: 10.1002/adma.201605754 – ident: e_1_2_5_5_3 doi: 10.1021/acsnano.9b00097 – ident: e_1_2_5_1_4 doi: 10.1038/nmat4476 – ident: e_1_2_5_14_1 doi: 10.1021/ja801173r – ident: e_1_2_5_11_1 doi: 10.1038/s41467-018-04410-6 – ident: e_1_2_5_17_2 doi: 10.1002/anie.201901525 – ident: e_1_2_5_17_1 doi: 10.1021/ac503636j – ident: e_1_2_5_17_4 doi: 10.1002/adma.201805730 – ident: e_1_2_5_3_1 doi: 10.1038/nbt1201-1148 – ident: e_1_2_5_9_1 doi: 10.1021/acs.nanolett.9b00140 – ident: e_1_2_5_3_2 doi: 10.18632/oncotarget.20187 – ident: e_1_2_5_16_1 doi: 10.1007/s13770-019-00208-9 |
SSID | ssj0031247 |
Score | 2.6285472 |
Snippet | Fluorescence imaging in the second near‐infrared window (NIR‐II, 1000–1700 nm) holds great promise for deep tissue visualization. Development of novel clinical... Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for deep tissue visualization. Development of novel clinical... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2003851 |
SubjectTerms | Abnormalities Bioaccumulation bone targeting Bones Fluorescence Glutathione Gold gold nanoclusters Hydroxyapatite Imaging Infrared windows Nanoclusters Nanotechnology NIR‐II imaging Pedicle screws renal excretable nanoparticles Spleen Surgical implants Vertebrae |
Title | Gold Nanoclusters for NIR‐II Fluorescence Imaging of Bones |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202003851 https://www.ncbi.nlm.nih.gov/pubmed/33000882 https://www.proquest.com/docview/2454334008 https://www.proquest.com/docview/2447837181 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hTnBgX8ImIyFxCrS2s0lcAFEoKhxYJG6RndgX0gbR5sKJT-Ab-RJmkja0IIQEt0QZO47tmXkT228A9pJABVqmoauV9FwphXEjrTFUicJQ2jCNlKVA8erav7iXlw_ew9gp_oofov7hRppR2mtScKX7h5-kof1uRksHvFzboviHNmwRKrqp-aMEOq8yuwr6LJeIt0asjQ1-OFl80it9g5qTyLV0Pa15UKNGVztOHg-KgT5IXr7wOf7nqxZgbohL2XE1kRZhyvSWYHaMrXAZjs7zLGVojvMkK4hfoc8Q8bLr9s3761u7zVpZkT-X7FCJYe1umf6I5ZadUDqAFbhvnd2dXrjD5AtuQodx3UA1rWe4L2yEIIHTyXNEJ0ZGJop0UzWMCSwagMQ3FiMiTze5TQXhv9QLNDdGrMJ0D-tfB5Zw3tSptkYpX_rKhI0Ug0KDWItrrFE44I46P06GzOSUICOLK05lHlOvxHWvOLBfyz9VnBw_Sm6NxjIe6mY_5tKTQqDtCh3YrR-jVtFSieqZvCAZGWDojvDHgbVqDtSvEoKAU8gd4OVI_tKG-Paq06nvNv5SaBNm6LraQ7gF04PnwmwjFhronXK-fwCVEP6T |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcoAeChTaGgpdJKSe3Ca765fEBRAhLkkOaSpxs3bt3UuduGriS0_8hP7G_hJm1rFLQAgJjrZ31_uamW_28Q3AuzxSkZZF7GslA19KYfxEa3RVkjiWNi4SZclRHE_C4YU8-xa0pwnpLkzDD9EtuJFkOH1NAk4L0qf3rKHLeUl7B9xtbqED9JDCejuvatoxSAk0Xy6-Clotn6i3Wt7GHj_dzL9pl34Dm5vY1RmfwRPQbbWbMyeXJ_VKn-Q3vzA6_le7nsLOGpqyD81cegYPzGIXtn8iLHwO779UZcFQI1d5WRPFwpIh6GWTdHr3_TZN2aCsq2tHEJUbls5dBCRWWfaRIgK8gIvB59mnob-Ov-DndB_Xj1TfBoaHwiaIEzhdPkeAYmRikkT3Vc-YyKIOyENj0SkKdJ_bQhAELIJIc2PEHmwtsPwDYDnnfV1oa5QKZahM3CvQLzQIt7jGEoUHftv7Wb4mJ6cYGWXW0CrzjHol63rFg-Mu_VVDy_HHlIftYGZr8VxmXAZSCFRfsQdvu88oWLRbohamqimNjNB7RwTkwX4zCbpfCUHYKeYecDeUf6lDdj4ejbqnl_-S6QgeDWfjUTZKJ19fwWN63xwpPISt1XVtXiM0Wuk3bvL_AImMAr0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5CnYTYwwYbYxkdM9KkPQVa27lJvMBKaUapJjakvkV2Yr8sbaq2eeGJn7DfuF_CsdOGlgkhbY9RbMexz-U7vnwH4HMaiEDyLHSl4J7LOVNuJCWGKlEYch1mkdAmULwa-L0b_m3oDVdu8Vf8EPWCm9EMa6-Ngk8yffxAGjob5WbrgNq9LYx_XnC_FRq57lzXBFIMvZdNr4JOyzXMW0vaxhY9Xq-_7pb-wprr0NX6nu5rEMteV0dOfh2Vc3mU3j4idPyf39qGVwtgSk4rSdqBDTV-Ay9X6ArfwslFkWcE7XGR5qUhWJgRhLxkEF__ufsdx6Sbl8XU0kOlisQjm_-IFJqcmXwAu3DTPf_5tecusi-4qbmN6wairT1FfaYjRAnUXD1HeKJ4pKJItkVLqUCjBUh9pTEk8mSb6owZAJh5gaRKsXfQGGP774GklLZlJrUSwue-UGErw6hQIdiiEltkDrjLwU_SBTW5yZCRJxWpMk3MqCT1qDjwpS4_qUg5nizZXM5lslDOWUK5xxlD4xU6cFi_RrUyeyVirIrSlOEBxu6IfxzYq2Sg_hRjBjmF1AFqZ_KZPiQ_rvr9-unDv1T6BJvfO92kHw8u92ELMRu3ZxD9JjTm01J9RFw0lwdW9O8BkRYBhA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gold+Nanoclusters+for+NIR-II+Fluorescence+Imaging+of+Bones&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Li%2C+Deling&rft.au=Liu%2C+Qiang&rft.au=Qi%2C+Qingrong&rft.au=Shi%2C+Hui&rft.date=2020-10-01&rft.eissn=1613-6829&rft.volume=16&rft.issue=43&rft.spage=e2003851&rft_id=info:doi/10.1002%2Fsmll.202003851&rft_id=info%3Apmid%2F33000882&rft.externalDocID=33000882 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |