A Single‐Droplet Electricity Generator Achieves an Ultrahigh Output Over 100 V Without Pre‐Charging

The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid–liquid electrification, and adopts traditional electrostatic...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 51; pp. e2105761 - n/a
Main Authors Zhang, Qi, Li, Yahui, Cai, Han, Yao, Mingfang, Zhang, Haodong, Guo, Linqi, Lv, Zhenjie, Li, Mengqiu, Lu, Xichi, Ren, Chao, Zhang, Penglei, Zhang, Yanxin, Shi, Xian, Ding, Guifu, Yao, Jinyuan, Yang, Zhuoqing, Wang, Zhong Lin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid–liquid electrification, and adopts traditional electrostatic induction (TEI) for output. As a result, the efficiency of droplet electricity generators (DEGs) is severely constrained. Therefore, previous studies deem that the DEG output is limited by interfacial effects. This study reveals that this view is inappropriate and, in reality, the output strategy is the key bottleneck restricting the DEG performance. Here, a switch effect based on an electric‐double‐layer capacitor (EDLC) is introduced, and an equivalent circuit model is established to understand its working mechanism. Without pre‐charging, a single droplet can generate high voltage over 100 V and the output is directly improved by two‐orders of magnitude compared with TEI, which is precisely utilizing the interfacial effect. This work provides insightful perspective and lays solid foundation for DEG applications in large scale. A droplet electricity generator (DEG) combining interfacial effect and switch effect is proposed to achieve an ultrahigh output without pre‐charging, and the working mechanism is explained based on an equivalent circuit model. Compared with traditional electrostatic induction (TEI) electricity generation, the output is directly improved by two orders of magnitude, which provides insightful perspective and lays a solid foundation for large‐scale DEG applications.
AbstractList The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid–liquid electrification, and adopts traditional electrostatic induction (TEI) for output. As a result, the efficiency of droplet electricity generators (DEGs) is severely constrained. Therefore, previous studies deem that the DEG output is limited by interfacial effects. This study reveals that this view is inappropriate and, in reality, the output strategy is the key bottleneck restricting the DEG performance. Here, a switch effect based on an electric‐double‐layer capacitor (EDLC) is introduced, and an equivalent circuit model is established to understand its working mechanism. Without pre‐charging, a single droplet can generate high voltage over 100 V and the output is directly improved by two‐orders of magnitude compared with TEI, which is precisely utilizing the interfacial effect. This work provides insightful perspective and lays solid foundation for DEG applications in large scale.
The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid-liquid electrification, and adopts traditional electrostatic induction (TEI) for output. As a result, the efficiency of droplet electricity generators (DEGs) is severely constrained. Therefore, previous studies deem that the DEG output is limited by interfacial effects. This study reveals that this view is inappropriate and, in reality, the output strategy is the key bottleneck restricting the DEG performance. Here, a switch effect based on an electric-double-layer capacitor (EDLC) is introduced, and an equivalent circuit model is established to understand its working mechanism. Without pre-charging, a single droplet can generate high voltage over 100 V and the output is directly improved by two-orders of magnitude compared with TEI, which is precisely utilizing the interfacial effect. This work provides insightful perspective and lays solid foundation for DEG applications in large scale.The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid-liquid electrification, and adopts traditional electrostatic induction (TEI) for output. As a result, the efficiency of droplet electricity generators (DEGs) is severely constrained. Therefore, previous studies deem that the DEG output is limited by interfacial effects. This study reveals that this view is inappropriate and, in reality, the output strategy is the key bottleneck restricting the DEG performance. Here, a switch effect based on an electric-double-layer capacitor (EDLC) is introduced, and an equivalent circuit model is established to understand its working mechanism. Without pre-charging, a single droplet can generate high voltage over 100 V and the output is directly improved by two-orders of magnitude compared with TEI, which is precisely utilizing the interfacial effect. This work provides insightful perspective and lays solid foundation for DEG applications in large scale.
The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid-liquid electrification, and adopts traditional electrostatic induction (TEI) for output. As a result, the efficiency of droplet electricity generators (DEGs) is severely constrained. Therefore, previous studies deem that the DEG output is limited by interfacial effects. This study reveals that this view is inappropriate and, in reality, the output strategy is the key bottleneck restricting the DEG performance. Here, a switch effect based on an electric-double-layer capacitor (EDLC) is introduced, and an equivalent circuit model is established to understand its working mechanism. Without pre-charging, a single droplet can generate high voltage over 100 V and the output is directly improved by two-orders of magnitude compared with TEI, which is precisely utilizing the interfacial effect. This work provides insightful perspective and lays solid foundation for DEG applications in large scale.
The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid–liquid electrification, and adopts traditional electrostatic induction (TEI) for output. As a result, the efficiency of droplet electricity generators (DEGs) is severely constrained. Therefore, previous studies deem that the DEG output is limited by interfacial effects. This study reveals that this view is inappropriate and, in reality, the output strategy is the key bottleneck restricting the DEG performance. Here, a switch effect based on an electric‐double‐layer capacitor (EDLC) is introduced, and an equivalent circuit model is established to understand its working mechanism. Without pre‐charging, a single droplet can generate high voltage over 100 V and the output is directly improved by two‐orders of magnitude compared with TEI, which is precisely utilizing the interfacial effect. This work provides insightful perspective and lays solid foundation for DEG applications in large scale. A droplet electricity generator (DEG) combining interfacial effect and switch effect is proposed to achieve an ultrahigh output without pre‐charging, and the working mechanism is explained based on an equivalent circuit model. Compared with traditional electrostatic induction (TEI) electricity generation, the output is directly improved by two orders of magnitude, which provides insightful perspective and lays a solid foundation for large‐scale DEG applications.
Author Guo, Linqi
Zhang, Qi
Lv, Zhenjie
Cai, Han
Ren, Chao
Zhang, Penglei
Lu, Xichi
Yao, Mingfang
Zhang, Yanxin
Li, Yahui
Ding, Guifu
Zhang, Haodong
Yao, Jinyuan
Shi, Xian
Li, Mengqiu
Yang, Zhuoqing
Wang, Zhong Lin
Author_xml – sequence: 1
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Yahui
  surname: Li
  fullname: Li, Yahui
  email: yahuili829@163.com
  organization: Shanghai Jiao Tong University
– sequence: 3
  givenname: Han
  surname: Cai
  fullname: Cai, Han
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Mingfang
  surname: Yao
  fullname: Yao, Mingfang
  organization: University of Toronto
– sequence: 5
  givenname: Haodong
  surname: Zhang
  fullname: Zhang, Haodong
  organization: Shanghai Jiao Tong University
– sequence: 6
  givenname: Linqi
  surname: Guo
  fullname: Guo, Linqi
  organization: Shanghai Jiao Tong University
– sequence: 7
  givenname: Zhenjie
  surname: Lv
  fullname: Lv, Zhenjie
  organization: Shanghai Jiao Tong University
– sequence: 8
  givenname: Mengqiu
  surname: Li
  fullname: Li, Mengqiu
  organization: Shanghai Jiao Tong University
– sequence: 9
  givenname: Xichi
  surname: Lu
  fullname: Lu, Xichi
  organization: Shanghai Jiao Tong University
– sequence: 10
  givenname: Chao
  surname: Ren
  fullname: Ren, Chao
  organization: Shanghai Jiao Tong University
– sequence: 11
  givenname: Penglei
  surname: Zhang
  fullname: Zhang, Penglei
  organization: Shanghai Jiao Tong University
– sequence: 12
  givenname: Yanxin
  surname: Zhang
  fullname: Zhang, Yanxin
  organization: Shanghai Jiao Tong University
– sequence: 13
  givenname: Xian
  surname: Shi
  fullname: Shi, Xian
  organization: Shanghai Jiao Tong University
– sequence: 14
  givenname: Guifu
  surname: Ding
  fullname: Ding, Guifu
  organization: Shanghai Jiao Tong University
– sequence: 15
  givenname: Jinyuan
  surname: Yao
  fullname: Yao, Jinyuan
  email: jyyao@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 16
  givenname: Zhuoqing
  orcidid: 0000-0002-9635-6145
  surname: Yang
  fullname: Yang, Zhuoqing
  email: yzhuoqing@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 17
  givenname: Zhong Lin
  surname: Wang
  fullname: Wang, Zhong Lin
  email: zlwang@gatech.edu
  organization: Georgia Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34655116$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFuEzEQhi1URNPClSOyxKWXDbZ37V0fV2kpSEWpBIWj5XgnWVfOOtjeotx4BB6BZ-mj9ElwlNJKlRBzGWn0_TOj_z9CB4MfAKHXlEwpIeyd7tZ6ygijhNeCPkMTyhktKiL5AZoQWfJCiqo5REcxXhNCpCDiBTosK8E5pWKC-hZ_tsPKwd3PX6fBbxwkfObApGCNTVt8DgMEnXzArekt3EDEesBXLgXd21WP52PajAnPbyDg_NDt76_4m029z7PLsFs663VY5Qsv0fOldhFe3fdjdPX-7MvsQ3ExP_84ay8KU5WSFnUjTGMWHS0rIjhwXne5tBFawoKUWtfLmoMRRJquY0BKKRZmWUPNm44Lw8tjdLLfuwn--wgxqbWNBpzTA_gxKsYb1lBaljSjb5-g134MQ_5OMUEZk5wzkqk399S4WEOnNsGuddiqvx5mYLoHTPAxBlg-IJSoXUhqF5J6CCkLqieCbLVO1g_ZVev-LZN72Q_rYPufI6o9_dQ-av8AtQKoNQ
CitedBy_id crossref_primary_10_1002_aenm_202303912
crossref_primary_10_1002_admt_202401870
crossref_primary_10_1088_1361_6439_acdc31
crossref_primary_10_1039_D3TA03760F
crossref_primary_10_1002_aesr_202200186
crossref_primary_10_1002_dro2_110
crossref_primary_10_1007_s11705_022_2271_y
crossref_primary_10_1007_s11426_023_1904_0
crossref_primary_10_1002_admt_202301588
crossref_primary_10_1016_j_xcrp_2022_101108
crossref_primary_10_1007_s12274_024_6893_x
crossref_primary_10_1007_s44275_024_00012_1
crossref_primary_10_46670_JSST_2022_31_4_218
crossref_primary_10_1002_smll_202410599
crossref_primary_10_1016_j_cej_2025_160901
crossref_primary_10_1039_D4EE02797C
crossref_primary_10_2139_ssrn_4076086
crossref_primary_10_1021_acsami_3c16352
crossref_primary_10_1016_j_nanoen_2022_107423
crossref_primary_10_1016_j_nanoen_2023_108999
crossref_primary_10_1007_s42235_024_00559_7
crossref_primary_10_1063_5_0148345
crossref_primary_10_1016_j_apmt_2024_102492
crossref_primary_10_1016_j_nanoen_2024_110267
crossref_primary_10_1016_j_watres_2022_119242
crossref_primary_10_1002_adfm_202401121
crossref_primary_10_1002_smll_202308531
crossref_primary_10_1002_smll_202301381
crossref_primary_10_1021_acsami_3c01864
crossref_primary_10_1021_acs_nanolett_4c03174
crossref_primary_10_1039_D2TA00629D
crossref_primary_10_1002_adma_202403090
crossref_primary_10_1021_acsami_4c09044
crossref_primary_10_1016_j_nanoen_2024_110100
crossref_primary_10_1039_D2EE02621J
crossref_primary_10_1002_smtd_202300261
crossref_primary_10_1002_smll_202406971
crossref_primary_10_1021_acsnano_2c12458
crossref_primary_10_1016_j_cej_2024_159106
crossref_primary_10_1002_adfm_202315912
crossref_primary_10_1039_D4EE01234H
crossref_primary_10_35848_1347_4065_acaca7
crossref_primary_10_1002_adfm_202302524
crossref_primary_10_1016_j_nanoen_2022_107776
crossref_primary_10_1021_acsami_4c01168
crossref_primary_10_1016_j_nanoen_2023_108289
crossref_primary_10_1088_2631_7990_ad88bd
crossref_primary_10_1002_adma_202400505
crossref_primary_10_1016_j_xcrp_2024_101800
crossref_primary_10_1016_j_device_2024_100653
crossref_primary_10_1016_j_nanoen_2022_107361
crossref_primary_10_1016_j_device_2024_100332
crossref_primary_10_1039_D3EE02280C
crossref_primary_10_1016_j_nanoen_2023_109185
crossref_primary_10_1088_2631_6331_ad709b
crossref_primary_10_1002_smll_202200875
crossref_primary_10_1038_s43246_022_00302_x
crossref_primary_10_1007_s12274_023_6147_3
crossref_primary_10_1002_adma_202209713
crossref_primary_10_1021_acssuschemeng_4c01860
crossref_primary_10_3389_fmats_2022_909746
crossref_primary_10_3390_mi14112057
crossref_primary_10_1002_adfm_202206705
crossref_primary_10_1021_acs_nanolett_4c06381
crossref_primary_10_1016_j_cej_2024_155659
crossref_primary_10_1016_j_nanoen_2023_108976
crossref_primary_10_1038_s44328_024_00011_0
crossref_primary_10_1016_j_nanoen_2024_109985
crossref_primary_10_1073_pnas_2303466120
crossref_primary_10_1016_j_nanoen_2022_107289
crossref_primary_10_1016_j_nanoen_2023_108213
crossref_primary_10_1016_j_nanoen_2023_108341
crossref_primary_10_3390_s24061761
crossref_primary_10_1002_adfm_202300764
crossref_primary_10_1021_acsami_3c04791
crossref_primary_10_1002_dro2_97
crossref_primary_10_1002_dro2_52
crossref_primary_10_1016_j_nanoen_2024_110560
crossref_primary_10_3389_fphar_2024_1396975
crossref_primary_10_1002_smll_202301568
crossref_primary_10_1016_j_decarb_2024_100045
crossref_primary_10_1002_adfm_202302147
crossref_primary_10_1016_j_nanoen_2023_108427
crossref_primary_10_1016_j_mtener_2024_101653
crossref_primary_10_1038_s41467_024_50270_8
crossref_primary_10_1002_admt_202201369
crossref_primary_10_1007_s10854_023_10389_8
crossref_primary_10_1016_j_cej_2025_161340
Cites_doi 10.1016/j.nanoen.2021.106390
10.1021/acsnano.1c04258
10.1109/PROC.1963.2488
10.1016/j.nanoen.2012.01.004
10.1088/1361-6528/ac171b
10.1002/aenm.202170081
10.1002/aenm.201701243
10.1002/adma.201400373
10.1002/adma.201705840
10.1021/acsnano.1c03358
10.1038/s41467-019-13653-w
10.1038/s41467-020-15373-y
10.1016/j.nanoen.2019.03.094
10.1016/j.nanoen.2019.103997
10.1038/s41467-019-10298-7
10.1038/s41467-019-14278-9
10.1021/acsnano.8b00416
10.1016/j.nanoen.2020.104540
10.1038/s41467-020-18086-4
10.1109/5.915374
10.1021/acsnano.0c08332
10.1016/j.nanoen.2016.07.028
10.1016/j.mattod.2016.12.001
10.1016/j.nanoen.2021.106170
10.1021/acs.chemrev.1c00176
10.1016/j.isci.2021.102318
10.1038/s41467-020-17891-1
10.1038/s41467-020-14846-4
10.1038/s41467-020-19059-3
10.1016/j.joule.2021.04.016
10.1016/j.nanoen.2015.01.039
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202105761
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34655116
10_1002_adma_202105761
ADMA202105761
Genre article
Journal Article
GrantInformation_xml – fundername: Shanghai Jiao Tong University
– fundername: National Key Research and Development Program of China
  funderid: 2020YFB2008503
– fundername: Advanced Research Ministry of Education Joint Foundation
  funderid: 6141A02022424
– fundername: Shanghai Non‐Silicon Micro‐Nano Integrated Manufacturing Professional Technical Service Platform
  funderid: 20DZ2291300
– fundername: National Natural Science Foundation of China
  funderid: 61974088
– fundername: National Key Research and Development Program of China
  grantid: 2020YFB2008503
– fundername: Shanghai Non-Silicon Micro-Nano Integrated Manufacturing Professional Technical Service Platform
  grantid: 20DZ2291300
– fundername: Advanced Research Ministry of Education Joint Foundation
  grantid: 6141A02022424
– fundername: National Natural Science Foundation of China
  grantid: 61974088
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4391-786c8cbd134065e557ddddac6a9eb03aa7f75ec609cdd2e0396bcf7e758d56c53
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 05:10:52 EDT 2025
Sun Jul 13 04:39:39 EDT 2025
Mon Jul 21 05:58:18 EDT 2025
Tue Jul 01 02:33:09 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Wed Jan 22 16:27:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords electric-double-layer capacitors
interfacial effects
droplet electricity generators
equivalent circuit model
switch effects
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4391-786c8cbd134065e557ddddac6a9eb03aa7f75ec609cdd2e0396bcf7e758d56c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9635-6145
PMID 34655116
PQID 2612295520
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2582811331
proquest_journals_2612295520
pubmed_primary_34655116
crossref_primary_10_1002_adma_202105761
crossref_citationtrail_10_1002_adma_202105761
wiley_primary_10_1002_adma_202105761_ADMA202105761
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 24
2015; 12
2017; 20
2017; 7
2021; 15
2019; 60
2021; 87
2021; 5
2021; 32
2021; 89
2012; 1
2021; 11
1963; 51
2019; 10
2019; 65
2020; 70
2014; 26
2020; 14
2018; 30
2020; 11
2018; 12
2001; 89
2016; 27
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 11
  start-page: 1883
  year: 2020
  publication-title: Nat. Commun.
– volume: 70
  year: 2020
  publication-title: Nano Energy
– publication-title: Chem. Rev.
– volume: 5
  start-page: 1613
  year: 2021
  publication-title: Joule
– volume: 60
  start-page: 641
  year: 2019
  publication-title: Nano Energy
– volume: 89
  year: 2021
  publication-title: Nano Energy
– volume: 10
  start-page: 2309
  year: 2019
  publication-title: Nat. Commun.
– volume: 89
  start-page: 259
  year: 2001
  publication-title: Proc. IEEE
– volume: 87
  year: 2021
  publication-title: Nano Energy
– volume: 11
  start-page: 399
  year: 2020
  publication-title: Nat. Commun.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 12
  start-page: 636
  year: 2015
  publication-title: Nano Energy
– volume: 26
  start-page: 4690
  year: 2014
  publication-title: Adv. Mater.
– volume: 27
  start-page: 554
  year: 2016
  publication-title: Nano Energy
– volume: 11
  start-page: 4203
  year: 2020
  publication-title: Nat. Commun.
– volume: 1
  start-page: 328
  year: 2012
  publication-title: Nano Energy
– volume: 51
  start-page: 1190
  year: 1963
  publication-title: Proc. IEEE
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 20
  start-page: 74
  year: 2017
  publication-title: Mater. Today
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 1030
  year: 2020
  publication-title: Nat. Commun.
– volume: 24
  year: 2021
  publication-title: iScience
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 2893
  year: 2018
  publication-title: ACS Nano
– volume: 11
  start-page: 5381
  year: 2020
  publication-title: Nat. Commun.
– volume: 32
  year: 2021
  publication-title: Nanotechnology
– volume: 11
  start-page: 58
  year: 2020
  publication-title: Nat. Commun.
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 11
  start-page: 4277
  year: 2020
  publication-title: Nat. Commun.
– ident: e_1_2_8_3_1
  doi: 10.1016/j.nanoen.2021.106390
– ident: e_1_2_8_24_1
  doi: 10.1021/acsnano.1c04258
– ident: e_1_2_8_30_1
  doi: 10.1109/PROC.1963.2488
– ident: e_1_2_8_11_1
  doi: 10.1016/j.nanoen.2012.01.004
– ident: e_1_2_8_19_1
  doi: 10.1088/1361-6528/ac171b
– ident: e_1_2_8_16_1
  doi: 10.1002/aenm.202170081
– ident: e_1_2_8_28_1
  doi: 10.1002/aenm.201701243
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.201400373
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.201705840
– ident: e_1_2_8_23_1
  doi: 10.1021/acsnano.1c03358
– ident: e_1_2_8_13_1
  doi: 10.1038/s41467-019-13653-w
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-020-15373-y
– ident: e_1_2_8_7_1
  doi: 10.1016/j.nanoen.2019.03.094
– ident: e_1_2_8_8_1
  doi: 10.1016/j.nanoen.2019.103997
– ident: e_1_2_8_4_1
  doi: 10.1038/s41467-019-10298-7
– ident: e_1_2_8_21_1
  doi: 10.1038/s41467-019-14278-9
– ident: e_1_2_8_29_1
  doi: 10.1021/acsnano.8b00416
– ident: e_1_2_8_6_1
  doi: 10.1016/j.nanoen.2020.104540
– ident: e_1_2_8_2_1
  doi: 10.1038/s41467-020-18086-4
– ident: e_1_2_8_31_1
  doi: 10.1109/5.915374
– ident: e_1_2_8_20_1
  doi: 10.1021/acsnano.0c08332
– ident: e_1_2_8_5_1
  doi: 10.1016/j.nanoen.2016.07.028
– ident: e_1_2_8_10_1
  doi: 10.1016/j.mattod.2016.12.001
– ident: e_1_2_8_14_1
  doi: 10.1016/j.nanoen.2021.106170
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.chemrev.1c00176
– ident: e_1_2_8_9_1
  doi: 10.1016/j.isci.2021.102318
– ident: e_1_2_8_17_1
  doi: 10.1038/s41467-020-17891-1
– ident: e_1_2_8_1_1
  doi: 10.1038/s41467-020-14846-4
– ident: e_1_2_8_12_1
  doi: 10.1038/s41467-020-19059-3
– ident: e_1_2_8_15_1
  doi: 10.1016/j.joule.2021.04.016
– ident: e_1_2_8_27_1
  doi: 10.1016/j.nanoen.2015.01.039
SSID ssj0009606
Score 2.6264005
Snippet The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2105761
SubjectTerms Charging
droplet electricity generators
Droplets
Electric contacts
Electricity
electric‐double‐layer capacitors
Electrification
Energy harvesting
equivalent circuit model
Equivalent circuits
interfacial effects
Nanogenerators
Raindrops
switch effects
Title A Single‐Droplet Electricity Generator Achieves an Ultrahigh Output Over 100 V Without Pre‐Charging
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202105761
https://www.ncbi.nlm.nih.gov/pubmed/34655116
https://www.proquest.com/docview/2612295520
https://www.proquest.com/docview/2582811331
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELYQJzjAwvJTtou8EhKn0MSJneQYURBC4kdAd3uLHNuhFVVatQkHTjwCj7DPso_Ck-xM0ga6K4QEkSI5ydiZ2B57Jh5_Q8heKLzASwPP0onxLS_lIHPaZZYjQ51KEQrDcHPy2bk46XinXd59tYu_woeof7ihZJTjNQq4TCatF9BQqUvcIIaBakv7Bx22UCu6esGPQvW8BNtzuYVczVAbbdaazz4_K_2nas5rruXUc7xK5IzpyuPk7qDIkwP18A-e42e-6gtZmeqlNKo60hpZMNk6WX6FVviV9CJ6DYmBeX58ao_R8TynR2UUnb4CXZ5WCNZgw9NI9frm3kyozGhnkMN41r_t0YsiHxU5vQDhocDHn98_6a9-3hvCvcsxFopL_xgzaYN0jo9uDk-saaAGS-HGXcsPhApUoh0X1ANuOPc1HFIJGZrEdqX0U58bJexQac2M7YYiUalvwFbRXCjubpLFbJiZbUKhowihU1d7AcYQtoOUwYmlMUcDdYNYs4aK1RTFHINpDOIKf5nFWINxXYMNsl_Tjyr8jjcpm7N2j6dyPIkRYI2FnDO7QX7Uj0ECcVlFZmZYAA2uPDpg60MRW1V_qV_lIjyd44gGYWWrv8NDHLXPovpq5yOZvpElTFceN02ymI8L8x30pjzZLWXjL4KAEIs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V5QAc-P9ZKGAkEKe0iRM7yYFDxLba0m6LoAu9pYntsCtW2Wo3AcGJR-AReAVegUfgEXgSZvJXFoSQkHogUqTEmTiOPTMe2-NvAB6E0gu8LPAsnRrf8jKBMqddbjlJqLNEhtJw2pw83JODkff0UByuwJd2L0yND9FNuJFkVPqaBJwmpDdOUEMTXQEHcYpUK53Gr3LHvH-Ho7bF4-0-NvFDzrc2D54MrCawgKVoo6nlB1IFKtWOi92ZMEL4Go9EySQ0qe0miZ_5wihph0prbmw3lKnKfIO2tRZSUaAI1PpnKIw4wfX3n58gVtGAoIL3c4VF9dDiRNp8Y7m8y_3gb8btsq1cdXZbF-FbW021j8ub9bJI19WHXxAk_6t6vAQXGtObRbWsXIYVk1-B8z8BMl6FccRe4MXUfP_4qT8n3_qCbVaBgiYKhyusBukuZnMWqfHEvDULluRsNC1QZU9ej9l-WRyXBdtH_cDwv79-fsleTYrxDNOezSlT8m6gsFDXYHQqv3odVvNZbm4CQ1mQUmeu9gIKk2wHGceTcuOORuoeWC1nxKoBaqd4IdO4hpjmMbVY3LVYDx519Mc1RMkfKddaRosbVbWICUOOh0Jwuwf3u8eoZGjlKMnNrEQaWlx1HNfFLG7UDNp9yiUEPseRPeAVm_2lDHHUH0bd3a1_eekenB0cDHfj3e29ndtwjtJrB6M1WC3mpbmDZmKR3q0Ek8HRaXPwD_2YcNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRUJw4P9noYCRQJzSJk7sJAcOEemqpfRHwEJvIbGd7qqr3dVuAoITj8Aj8Ag8A2_AK_AkzOSvLAghIfVApEiJM3H8MzMex-NvAB6E0gu8PPAsnRnf8nKBMqddbjlpqPNUhtJw2py8uye3Bt7TQ3G4Al_avTA1PkT3w40ko9LXJOAznW-cgIamusIN4hSoVjqNW-WOef8OJ22Lx9sx9vBDzvubL59sWU1cAUvRPlPLD6QKVKYdF0czYYTwNR6pkmloMttNUz_3hVHSDpXW3NhuKDOV-wZNay2kojgRqPTPeEhAwSLi5yeAVTQfqND9XGFRM7QwkTbfWC7v8jD4m227bCpXY13_InxrW6l2cTleL4tsXX34BUDyf2rGS3ChMbxZVEvKZVgxkytw_ic4xqswjNgLvBib7x8_xXPyrC_YZhUmaKRwssJqiO5iOmeRGo7MW7Ng6YQNxgUq7NHRkO2Xxaws2D5qB4b1_vr5FXs9KoZTTDuYU6bk20BBoa7B4FSqeh1WJ9OJuQkMJUFKnbvaCyhIsh3kHE_KjTsaqXtgtYyRqAamnaKFjJMaYJon1GNJ12M9eNTRz2qAkj9SrrV8ljSKapEQghwPheB2D-53j1HF0LpROjHTEmloadVxXBezuFHzZ_cpl_D3HEf2gFdc9pcyJFG8G3V3t_7lpXtw9iDuJ8-293ZuwzlKrr2L1mC1mJfmDtqIRXa3EksGb06bgX8AJwFvgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Single%E2%80%90Droplet+Electricity+Generator+Achieves+an+Ultrahigh+Output+Over+100+V+Without+Pre%E2%80%90Charging&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Qi&rft.au=Li%2C+Yahui&rft.au=Cai%2C+Han&rft.au=Yao%2C+Mingfang&rft.date=2021-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=51&rft_id=info:doi/10.1002%2Fadma.202105761&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon