A Single‐Droplet Electricity Generator Achieves an Ultrahigh Output Over 100 V Without Pre‐Charging
The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid–liquid electrification, and adopts traditional electrostatic...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 51; pp. e2105761 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid–liquid electrification, and adopts traditional electrostatic induction (TEI) for output. As a result, the efficiency of droplet electricity generators (DEGs) is severely constrained. Therefore, previous studies deem that the DEG output is limited by interfacial effects. This study reveals that this view is inappropriate and, in reality, the output strategy is the key bottleneck restricting the DEG performance. Here, a switch effect based on an electric‐double‐layer capacitor (EDLC) is introduced, and an equivalent circuit model is established to understand its working mechanism. Without pre‐charging, a single droplet can generate high voltage over 100 V and the output is directly improved by two‐orders of magnitude compared with TEI, which is precisely utilizing the interfacial effect. This work provides insightful perspective and lays solid foundation for DEG applications in large scale.
A droplet electricity generator (DEG) combining interfacial effect and switch effect is proposed to achieve an ultrahigh output without pre‐charging, and the working mechanism is explained based on an equivalent circuit model. Compared with traditional electrostatic induction (TEI) electricity generation, the output is directly improved by two orders of magnitude, which provides insightful perspective and lays a solid foundation for large‐scale DEG applications. |
---|---|
AbstractList | The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid–liquid electrification, and adopts traditional electrostatic induction (TEI) for output. As a result, the efficiency of droplet electricity generators (DEGs) is severely constrained. Therefore, previous studies deem that the DEG output is limited by interfacial effects. This study reveals that this view is inappropriate and, in reality, the output strategy is the key bottleneck restricting the DEG performance. Here, a switch effect based on an electric‐double‐layer capacitor (EDLC) is introduced, and an equivalent circuit model is established to understand its working mechanism. Without pre‐charging, a single droplet can generate high voltage over 100 V and the output is directly improved by two‐orders of magnitude compared with TEI, which is precisely utilizing the interfacial effect. This work provides insightful perspective and lays solid foundation for DEG applications in large scale. The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid-liquid electrification, and adopts traditional electrostatic induction (TEI) for output. As a result, the efficiency of droplet electricity generators (DEGs) is severely constrained. Therefore, previous studies deem that the DEG output is limited by interfacial effects. This study reveals that this view is inappropriate and, in reality, the output strategy is the key bottleneck restricting the DEG performance. Here, a switch effect based on an electric-double-layer capacitor (EDLC) is introduced, and an equivalent circuit model is established to understand its working mechanism. Without pre-charging, a single droplet can generate high voltage over 100 V and the output is directly improved by two-orders of magnitude compared with TEI, which is precisely utilizing the interfacial effect. This work provides insightful perspective and lays solid foundation for DEG applications in large scale.The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid-liquid electrification, and adopts traditional electrostatic induction (TEI) for output. As a result, the efficiency of droplet electricity generators (DEGs) is severely constrained. Therefore, previous studies deem that the DEG output is limited by interfacial effects. This study reveals that this view is inappropriate and, in reality, the output strategy is the key bottleneck restricting the DEG performance. Here, a switch effect based on an electric-double-layer capacitor (EDLC) is introduced, and an equivalent circuit model is established to understand its working mechanism. Without pre-charging, a single droplet can generate high voltage over 100 V and the output is directly improved by two-orders of magnitude compared with TEI, which is precisely utilizing the interfacial effect. This work provides insightful perspective and lays solid foundation for DEG applications in large scale. The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid-liquid electrification, and adopts traditional electrostatic induction (TEI) for output. As a result, the efficiency of droplet electricity generators (DEGs) is severely constrained. Therefore, previous studies deem that the DEG output is limited by interfacial effects. This study reveals that this view is inappropriate and, in reality, the output strategy is the key bottleneck restricting the DEG performance. Here, a switch effect based on an electric-double-layer capacitor (EDLC) is introduced, and an equivalent circuit model is established to understand its working mechanism. Without pre-charging, a single droplet can generate high voltage over 100 V and the output is directly improved by two-orders of magnitude compared with TEI, which is precisely utilizing the interfacial effect. This work provides insightful perspective and lays solid foundation for DEG applications in large scale. The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy in recent years. However, the existing research is mainly concentrated on solid–liquid electrification, and adopts traditional electrostatic induction (TEI) for output. As a result, the efficiency of droplet electricity generators (DEGs) is severely constrained. Therefore, previous studies deem that the DEG output is limited by interfacial effects. This study reveals that this view is inappropriate and, in reality, the output strategy is the key bottleneck restricting the DEG performance. Here, a switch effect based on an electric‐double‐layer capacitor (EDLC) is introduced, and an equivalent circuit model is established to understand its working mechanism. Without pre‐charging, a single droplet can generate high voltage over 100 V and the output is directly improved by two‐orders of magnitude compared with TEI, which is precisely utilizing the interfacial effect. This work provides insightful perspective and lays solid foundation for DEG applications in large scale. A droplet electricity generator (DEG) combining interfacial effect and switch effect is proposed to achieve an ultrahigh output without pre‐charging, and the working mechanism is explained based on an equivalent circuit model. Compared with traditional electrostatic induction (TEI) electricity generation, the output is directly improved by two orders of magnitude, which provides insightful perspective and lays a solid foundation for large‐scale DEG applications. |
Author | Guo, Linqi Zhang, Qi Lv, Zhenjie Cai, Han Ren, Chao Zhang, Penglei Lu, Xichi Yao, Mingfang Zhang, Yanxin Li, Yahui Ding, Guifu Zhang, Haodong Yao, Jinyuan Shi, Xian Li, Mengqiu Yang, Zhuoqing Wang, Zhong Lin |
Author_xml | – sequence: 1 givenname: Qi surname: Zhang fullname: Zhang, Qi organization: Shanghai Jiao Tong University – sequence: 2 givenname: Yahui surname: Li fullname: Li, Yahui email: yahuili829@163.com organization: Shanghai Jiao Tong University – sequence: 3 givenname: Han surname: Cai fullname: Cai, Han organization: Shanghai Jiao Tong University – sequence: 4 givenname: Mingfang surname: Yao fullname: Yao, Mingfang organization: University of Toronto – sequence: 5 givenname: Haodong surname: Zhang fullname: Zhang, Haodong organization: Shanghai Jiao Tong University – sequence: 6 givenname: Linqi surname: Guo fullname: Guo, Linqi organization: Shanghai Jiao Tong University – sequence: 7 givenname: Zhenjie surname: Lv fullname: Lv, Zhenjie organization: Shanghai Jiao Tong University – sequence: 8 givenname: Mengqiu surname: Li fullname: Li, Mengqiu organization: Shanghai Jiao Tong University – sequence: 9 givenname: Xichi surname: Lu fullname: Lu, Xichi organization: Shanghai Jiao Tong University – sequence: 10 givenname: Chao surname: Ren fullname: Ren, Chao organization: Shanghai Jiao Tong University – sequence: 11 givenname: Penglei surname: Zhang fullname: Zhang, Penglei organization: Shanghai Jiao Tong University – sequence: 12 givenname: Yanxin surname: Zhang fullname: Zhang, Yanxin organization: Shanghai Jiao Tong University – sequence: 13 givenname: Xian surname: Shi fullname: Shi, Xian organization: Shanghai Jiao Tong University – sequence: 14 givenname: Guifu surname: Ding fullname: Ding, Guifu organization: Shanghai Jiao Tong University – sequence: 15 givenname: Jinyuan surname: Yao fullname: Yao, Jinyuan email: jyyao@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 16 givenname: Zhuoqing orcidid: 0000-0002-9635-6145 surname: Yang fullname: Yang, Zhuoqing email: yzhuoqing@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 17 givenname: Zhong Lin surname: Wang fullname: Wang, Zhong Lin email: zlwang@gatech.edu organization: Georgia Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34655116$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFuEzEQhi1URNPClSOyxKWXDbZ37V0fV2kpSEWpBIWj5XgnWVfOOtjeotx4BB6BZ-mj9ElwlNJKlRBzGWn0_TOj_z9CB4MfAKHXlEwpIeyd7tZ6ygijhNeCPkMTyhktKiL5AZoQWfJCiqo5REcxXhNCpCDiBTosK8E5pWKC-hZ_tsPKwd3PX6fBbxwkfObApGCNTVt8DgMEnXzArekt3EDEesBXLgXd21WP52PajAnPbyDg_NDt76_4m029z7PLsFs663VY5Qsv0fOldhFe3fdjdPX-7MvsQ3ExP_84ay8KU5WSFnUjTGMWHS0rIjhwXne5tBFawoKUWtfLmoMRRJquY0BKKRZmWUPNm44Lw8tjdLLfuwn--wgxqbWNBpzTA_gxKsYb1lBaljSjb5-g134MQ_5OMUEZk5wzkqk399S4WEOnNsGuddiqvx5mYLoHTPAxBlg-IJSoXUhqF5J6CCkLqieCbLVO1g_ZVev-LZN72Q_rYPufI6o9_dQ-av8AtQKoNQ |
CitedBy_id | crossref_primary_10_1002_aenm_202303912 crossref_primary_10_1002_admt_202401870 crossref_primary_10_1088_1361_6439_acdc31 crossref_primary_10_1039_D3TA03760F crossref_primary_10_1002_aesr_202200186 crossref_primary_10_1002_dro2_110 crossref_primary_10_1007_s11705_022_2271_y crossref_primary_10_1007_s11426_023_1904_0 crossref_primary_10_1002_admt_202301588 crossref_primary_10_1016_j_xcrp_2022_101108 crossref_primary_10_1007_s12274_024_6893_x crossref_primary_10_1007_s44275_024_00012_1 crossref_primary_10_46670_JSST_2022_31_4_218 crossref_primary_10_1002_smll_202410599 crossref_primary_10_1016_j_cej_2025_160901 crossref_primary_10_1039_D4EE02797C crossref_primary_10_2139_ssrn_4076086 crossref_primary_10_1021_acsami_3c16352 crossref_primary_10_1016_j_nanoen_2022_107423 crossref_primary_10_1016_j_nanoen_2023_108999 crossref_primary_10_1007_s42235_024_00559_7 crossref_primary_10_1063_5_0148345 crossref_primary_10_1016_j_apmt_2024_102492 crossref_primary_10_1016_j_nanoen_2024_110267 crossref_primary_10_1016_j_watres_2022_119242 crossref_primary_10_1002_adfm_202401121 crossref_primary_10_1002_smll_202308531 crossref_primary_10_1002_smll_202301381 crossref_primary_10_1021_acsami_3c01864 crossref_primary_10_1021_acs_nanolett_4c03174 crossref_primary_10_1039_D2TA00629D crossref_primary_10_1002_adma_202403090 crossref_primary_10_1021_acsami_4c09044 crossref_primary_10_1016_j_nanoen_2024_110100 crossref_primary_10_1039_D2EE02621J crossref_primary_10_1002_smtd_202300261 crossref_primary_10_1002_smll_202406971 crossref_primary_10_1021_acsnano_2c12458 crossref_primary_10_1016_j_cej_2024_159106 crossref_primary_10_1002_adfm_202315912 crossref_primary_10_1039_D4EE01234H crossref_primary_10_35848_1347_4065_acaca7 crossref_primary_10_1002_adfm_202302524 crossref_primary_10_1016_j_nanoen_2022_107776 crossref_primary_10_1021_acsami_4c01168 crossref_primary_10_1016_j_nanoen_2023_108289 crossref_primary_10_1088_2631_7990_ad88bd crossref_primary_10_1002_adma_202400505 crossref_primary_10_1016_j_xcrp_2024_101800 crossref_primary_10_1016_j_device_2024_100653 crossref_primary_10_1016_j_nanoen_2022_107361 crossref_primary_10_1016_j_device_2024_100332 crossref_primary_10_1039_D3EE02280C crossref_primary_10_1016_j_nanoen_2023_109185 crossref_primary_10_1088_2631_6331_ad709b crossref_primary_10_1002_smll_202200875 crossref_primary_10_1038_s43246_022_00302_x crossref_primary_10_1007_s12274_023_6147_3 crossref_primary_10_1002_adma_202209713 crossref_primary_10_1021_acssuschemeng_4c01860 crossref_primary_10_3389_fmats_2022_909746 crossref_primary_10_3390_mi14112057 crossref_primary_10_1002_adfm_202206705 crossref_primary_10_1021_acs_nanolett_4c06381 crossref_primary_10_1016_j_cej_2024_155659 crossref_primary_10_1016_j_nanoen_2023_108976 crossref_primary_10_1038_s44328_024_00011_0 crossref_primary_10_1016_j_nanoen_2024_109985 crossref_primary_10_1073_pnas_2303466120 crossref_primary_10_1016_j_nanoen_2022_107289 crossref_primary_10_1016_j_nanoen_2023_108213 crossref_primary_10_1016_j_nanoen_2023_108341 crossref_primary_10_3390_s24061761 crossref_primary_10_1002_adfm_202300764 crossref_primary_10_1021_acsami_3c04791 crossref_primary_10_1002_dro2_97 crossref_primary_10_1002_dro2_52 crossref_primary_10_1016_j_nanoen_2024_110560 crossref_primary_10_3389_fphar_2024_1396975 crossref_primary_10_1002_smll_202301568 crossref_primary_10_1016_j_decarb_2024_100045 crossref_primary_10_1002_adfm_202302147 crossref_primary_10_1016_j_nanoen_2023_108427 crossref_primary_10_1016_j_mtener_2024_101653 crossref_primary_10_1038_s41467_024_50270_8 crossref_primary_10_1002_admt_202201369 crossref_primary_10_1007_s10854_023_10389_8 crossref_primary_10_1016_j_cej_2025_161340 |
Cites_doi | 10.1016/j.nanoen.2021.106390 10.1021/acsnano.1c04258 10.1109/PROC.1963.2488 10.1016/j.nanoen.2012.01.004 10.1088/1361-6528/ac171b 10.1002/aenm.202170081 10.1002/aenm.201701243 10.1002/adma.201400373 10.1002/adma.201705840 10.1021/acsnano.1c03358 10.1038/s41467-019-13653-w 10.1038/s41467-020-15373-y 10.1016/j.nanoen.2019.03.094 10.1016/j.nanoen.2019.103997 10.1038/s41467-019-10298-7 10.1038/s41467-019-14278-9 10.1021/acsnano.8b00416 10.1016/j.nanoen.2020.104540 10.1038/s41467-020-18086-4 10.1109/5.915374 10.1021/acsnano.0c08332 10.1016/j.nanoen.2016.07.028 10.1016/j.mattod.2016.12.001 10.1016/j.nanoen.2021.106170 10.1021/acs.chemrev.1c00176 10.1016/j.isci.2021.102318 10.1038/s41467-020-17891-1 10.1038/s41467-020-14846-4 10.1038/s41467-020-19059-3 10.1016/j.joule.2021.04.016 10.1016/j.nanoen.2015.01.039 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202105761 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 34655116 10_1002_adma_202105761 ADMA202105761 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Shanghai Jiao Tong University – fundername: National Key Research and Development Program of China funderid: 2020YFB2008503 – fundername: Advanced Research Ministry of Education Joint Foundation funderid: 6141A02022424 – fundername: Shanghai Non‐Silicon Micro‐Nano Integrated Manufacturing Professional Technical Service Platform funderid: 20DZ2291300 – fundername: National Natural Science Foundation of China funderid: 61974088 – fundername: National Key Research and Development Program of China grantid: 2020YFB2008503 – fundername: Shanghai Non-Silicon Micro-Nano Integrated Manufacturing Professional Technical Service Platform grantid: 20DZ2291300 – fundername: Advanced Research Ministry of Education Joint Foundation grantid: 6141A02022424 – fundername: National Natural Science Foundation of China grantid: 61974088 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4391-786c8cbd134065e557ddddac6a9eb03aa7f75ec609cdd2e0396bcf7e758d56c53 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 05:10:52 EDT 2025 Sun Jul 13 04:39:39 EDT 2025 Mon Jul 21 05:58:18 EDT 2025 Tue Jul 01 02:33:09 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Wed Jan 22 16:27:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | electric-double-layer capacitors interfacial effects droplet electricity generators equivalent circuit model switch effects |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4391-786c8cbd134065e557ddddac6a9eb03aa7f75ec609cdd2e0396bcf7e758d56c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9635-6145 |
PMID | 34655116 |
PQID | 2612295520 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2582811331 proquest_journals_2612295520 pubmed_primary_34655116 crossref_primary_10_1002_adma_202105761 crossref_citationtrail_10_1002_adma_202105761 wiley_primary_10_1002_adma_202105761_ADMA202105761 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 24 2015; 12 2017; 20 2017; 7 2021; 15 2019; 60 2021; 87 2021; 5 2021; 32 2021; 89 2012; 1 2021; 11 1963; 51 2019; 10 2019; 65 2020; 70 2014; 26 2020; 14 2018; 30 2020; 11 2018; 12 2001; 89 2016; 27 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – volume: 11 start-page: 1883 year: 2020 publication-title: Nat. Commun. – volume: 70 year: 2020 publication-title: Nano Energy – publication-title: Chem. Rev. – volume: 5 start-page: 1613 year: 2021 publication-title: Joule – volume: 60 start-page: 641 year: 2019 publication-title: Nano Energy – volume: 89 year: 2021 publication-title: Nano Energy – volume: 10 start-page: 2309 year: 2019 publication-title: Nat. Commun. – volume: 89 start-page: 259 year: 2001 publication-title: Proc. IEEE – volume: 87 year: 2021 publication-title: Nano Energy – volume: 11 start-page: 399 year: 2020 publication-title: Nat. Commun. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 12 start-page: 636 year: 2015 publication-title: Nano Energy – volume: 26 start-page: 4690 year: 2014 publication-title: Adv. Mater. – volume: 27 start-page: 554 year: 2016 publication-title: Nano Energy – volume: 11 start-page: 4203 year: 2020 publication-title: Nat. Commun. – volume: 1 start-page: 328 year: 2012 publication-title: Nano Energy – volume: 51 start-page: 1190 year: 1963 publication-title: Proc. IEEE – volume: 14 year: 2020 publication-title: ACS Nano – volume: 20 start-page: 74 year: 2017 publication-title: Mater. Today – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 11 start-page: 1030 year: 2020 publication-title: Nat. Commun. – volume: 24 year: 2021 publication-title: iScience – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 12 start-page: 2893 year: 2018 publication-title: ACS Nano – volume: 11 start-page: 5381 year: 2020 publication-title: Nat. Commun. – volume: 32 year: 2021 publication-title: Nanotechnology – volume: 11 start-page: 58 year: 2020 publication-title: Nat. Commun. – volume: 65 year: 2019 publication-title: Nano Energy – volume: 11 start-page: 4277 year: 2020 publication-title: Nat. Commun. – ident: e_1_2_8_3_1 doi: 10.1016/j.nanoen.2021.106390 – ident: e_1_2_8_24_1 doi: 10.1021/acsnano.1c04258 – ident: e_1_2_8_30_1 doi: 10.1109/PROC.1963.2488 – ident: e_1_2_8_11_1 doi: 10.1016/j.nanoen.2012.01.004 – ident: e_1_2_8_19_1 doi: 10.1088/1361-6528/ac171b – ident: e_1_2_8_16_1 doi: 10.1002/aenm.202170081 – ident: e_1_2_8_28_1 doi: 10.1002/aenm.201701243 – ident: e_1_2_8_25_1 doi: 10.1002/adma.201400373 – ident: e_1_2_8_26_1 doi: 10.1002/adma.201705840 – ident: e_1_2_8_23_1 doi: 10.1021/acsnano.1c03358 – ident: e_1_2_8_13_1 doi: 10.1038/s41467-019-13653-w – ident: e_1_2_8_18_1 doi: 10.1038/s41467-020-15373-y – ident: e_1_2_8_7_1 doi: 10.1016/j.nanoen.2019.03.094 – ident: e_1_2_8_8_1 doi: 10.1016/j.nanoen.2019.103997 – ident: e_1_2_8_4_1 doi: 10.1038/s41467-019-10298-7 – ident: e_1_2_8_21_1 doi: 10.1038/s41467-019-14278-9 – ident: e_1_2_8_29_1 doi: 10.1021/acsnano.8b00416 – ident: e_1_2_8_6_1 doi: 10.1016/j.nanoen.2020.104540 – ident: e_1_2_8_2_1 doi: 10.1038/s41467-020-18086-4 – ident: e_1_2_8_31_1 doi: 10.1109/5.915374 – ident: e_1_2_8_20_1 doi: 10.1021/acsnano.0c08332 – ident: e_1_2_8_5_1 doi: 10.1016/j.nanoen.2016.07.028 – ident: e_1_2_8_10_1 doi: 10.1016/j.mattod.2016.12.001 – ident: e_1_2_8_14_1 doi: 10.1016/j.nanoen.2021.106170 – ident: e_1_2_8_22_1 doi: 10.1021/acs.chemrev.1c00176 – ident: e_1_2_8_9_1 doi: 10.1016/j.isci.2021.102318 – ident: e_1_2_8_17_1 doi: 10.1038/s41467-020-17891-1 – ident: e_1_2_8_1_1 doi: 10.1038/s41467-020-14846-4 – ident: e_1_2_8_12_1 doi: 10.1038/s41467-020-19059-3 – ident: e_1_2_8_15_1 doi: 10.1016/j.joule.2021.04.016 – ident: e_1_2_8_27_1 doi: 10.1016/j.nanoen.2015.01.039 |
SSID | ssj0009606 |
Score | 2.6264005 |
Snippet | The working principle of the triboelectric nanogenerator (TENG), contact electrification and electrostatic induction, has been used to harvest raindrop energy... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2105761 |
SubjectTerms | Charging droplet electricity generators Droplets Electric contacts Electricity electric‐double‐layer capacitors Electrification Energy harvesting equivalent circuit model Equivalent circuits interfacial effects Nanogenerators Raindrops switch effects |
Title | A Single‐Droplet Electricity Generator Achieves an Ultrahigh Output Over 100 V Without Pre‐Charging |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202105761 https://www.ncbi.nlm.nih.gov/pubmed/34655116 https://www.proquest.com/docview/2612295520 https://www.proquest.com/docview/2582811331 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELYQJzjAwvJTtou8EhKn0MSJneQYURBC4kdAd3uLHNuhFVVatQkHTjwCj7DPso_Ck-xM0ga6K4QEkSI5ydiZ2B57Jh5_Q8heKLzASwPP0onxLS_lIHPaZZYjQ51KEQrDcHPy2bk46XinXd59tYu_woeof7ihZJTjNQq4TCatF9BQqUvcIIaBakv7Bx22UCu6esGPQvW8BNtzuYVczVAbbdaazz4_K_2nas5rruXUc7xK5IzpyuPk7qDIkwP18A-e42e-6gtZmeqlNKo60hpZMNk6WX6FVviV9CJ6DYmBeX58ao_R8TynR2UUnb4CXZ5WCNZgw9NI9frm3kyozGhnkMN41r_t0YsiHxU5vQDhocDHn98_6a9-3hvCvcsxFopL_xgzaYN0jo9uDk-saaAGS-HGXcsPhApUoh0X1ANuOPc1HFIJGZrEdqX0U58bJexQac2M7YYiUalvwFbRXCjubpLFbJiZbUKhowihU1d7AcYQtoOUwYmlMUcDdYNYs4aK1RTFHINpDOIKf5nFWINxXYMNsl_Tjyr8jjcpm7N2j6dyPIkRYI2FnDO7QX7Uj0ECcVlFZmZYAA2uPDpg60MRW1V_qV_lIjyd44gGYWWrv8NDHLXPovpq5yOZvpElTFceN02ymI8L8x30pjzZLWXjL4KAEIs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V5QAc-P9ZKGAkEKe0iRM7yYFDxLba0m6LoAu9pYntsCtW2Wo3AcGJR-AReAVegUfgEXgSZvJXFoSQkHogUqTEmTiOPTMe2-NvAB6E0gu8LPAsnRrf8jKBMqddbjlJqLNEhtJw2pw83JODkff0UByuwJd2L0yND9FNuJFkVPqaBJwmpDdOUEMTXQEHcYpUK53Gr3LHvH-Ho7bF4-0-NvFDzrc2D54MrCawgKVoo6nlB1IFKtWOi92ZMEL4Go9EySQ0qe0miZ_5wihph0prbmw3lKnKfIO2tRZSUaAI1PpnKIw4wfX3n58gVtGAoIL3c4VF9dDiRNp8Y7m8y_3gb8btsq1cdXZbF-FbW021j8ub9bJI19WHXxAk_6t6vAQXGtObRbWsXIYVk1-B8z8BMl6FccRe4MXUfP_4qT8n3_qCbVaBgiYKhyusBukuZnMWqfHEvDULluRsNC1QZU9ej9l-WRyXBdtH_cDwv79-fsleTYrxDNOezSlT8m6gsFDXYHQqv3odVvNZbm4CQ1mQUmeu9gIKk2wHGceTcuOORuoeWC1nxKoBaqd4IdO4hpjmMbVY3LVYDx519Mc1RMkfKddaRosbVbWICUOOh0Jwuwf3u8eoZGjlKMnNrEQaWlx1HNfFLG7UDNp9yiUEPseRPeAVm_2lDHHUH0bd3a1_eekenB0cDHfj3e29ndtwjtJrB6M1WC3mpbmDZmKR3q0Ek8HRaXPwD_2YcNQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRUJw4P9noYCRQJzSJk7sJAcOEemqpfRHwEJvIbGd7qqr3dVuAoITj8Aj8Ag8A2_AK_AkzOSvLAghIfVApEiJM3H8MzMex-NvAB6E0gu8PPAsnRnf8nKBMqddbjlpqPNUhtJw2py8uye3Bt7TQ3G4Al_avTA1PkT3w40ko9LXJOAznW-cgIamusIN4hSoVjqNW-WOef8OJ22Lx9sx9vBDzvubL59sWU1cAUvRPlPLD6QKVKYdF0czYYTwNR6pkmloMttNUz_3hVHSDpXW3NhuKDOV-wZNay2kojgRqPTPeEhAwSLi5yeAVTQfqND9XGFRM7QwkTbfWC7v8jD4m227bCpXY13_InxrW6l2cTleL4tsXX34BUDyf2rGS3ChMbxZVEvKZVgxkytw_ic4xqswjNgLvBib7x8_xXPyrC_YZhUmaKRwssJqiO5iOmeRGo7MW7Ng6YQNxgUq7NHRkO2Xxaws2D5qB4b1_vr5FXs9KoZTTDuYU6bk20BBoa7B4FSqeh1WJ9OJuQkMJUFKnbvaCyhIsh3kHE_KjTsaqXtgtYyRqAamnaKFjJMaYJon1GNJ12M9eNTRz2qAkj9SrrV8ljSKapEQghwPheB2D-53j1HF0LpROjHTEmloadVxXBezuFHzZ_cpl_D3HEf2gFdc9pcyJFG8G3V3t_7lpXtw9iDuJ8-293ZuwzlKrr2L1mC1mJfmDtqIRXa3EksGb06bgX8AJwFvgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Single%E2%80%90Droplet+Electricity+Generator+Achieves+an+Ultrahigh+Output+Over+100+V+Without+Pre%E2%80%90Charging&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Qi&rft.au=Li%2C+Yahui&rft.au=Cai%2C+Han&rft.au=Yao%2C+Mingfang&rft.date=2021-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=51&rft_id=info:doi/10.1002%2Fadma.202105761&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |