NIR‐II Ratiometric Chemiluminescent/Fluorescent Reporters for Real‐Time Monitoring and Evaluating Cancer Photodynamic Therapy Efficacy

The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1O2) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1O2...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 41; pp. e2202551 - n/a
Main Authors Su, Lichao, Chen, Yiming, Huo, Hongqi, Liao, Naishun, Wu, Ying, Ge, Xiaoguang, Guo, Zhiyong, Chen, Zhongxiang, Zhang, Xuan, Song, Jibin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1O2) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1O2‐responsive theranostic platform comprising thiophene‐based small molecule (2SeFT‐PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real‐time monitoring PDT efficacy is developed. After laser irradiation, the Ce6‐produced 1O2 could simultaneously kill cancer and trigger 2SeFT‐PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near‐infrared (NIR‐II, 950–1700 nm) window. Significantly, the ratiometric NIR‐II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1O2 activated NIR‐II CL/FL probe provides an efficient ratiometric optical imaging platform for real‐time evaluating PDT effect and precisely guiding the PDT process in vivo. A 2SeFT‐PEG/Ce6 micelle with 1O2‐triggered ratiometric NIR‐II chemiluminescence (CL)/fluorescence (FL) imaging performance to monitor and guide cancer photodynamic therapy (PDT) is developed. This study provides a method for detecting 1O2 and ratiometric NIR‐II CL and FL imaging to guide the tumor PDT process. It opens up prospects for the development of PDT imaging technology and may become an important way for the development of brand‐new PDT applications and individualized treatment for patients.
AbstractList The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1O2) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1O2‐responsive theranostic platform comprising thiophene‐based small molecule (2SeFT‐PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real‐time monitoring PDT efficacy is developed. After laser irradiation, the Ce6‐produced 1O2 could simultaneously kill cancer and trigger 2SeFT‐PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near‐infrared (NIR‐II, 950–1700 nm) window. Significantly, the ratiometric NIR‐II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1O2 activated NIR‐II CL/FL probe provides an efficient ratiometric optical imaging platform for real‐time evaluating PDT effect and precisely guiding the PDT process in vivo.
The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen ( 1 O 2 ) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1 O 2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1 O 2 ‐responsive theranostic platform comprising thiophene‐based small molecule (2SeFT‐PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real‐time monitoring PDT efficacy is developed. After laser irradiation, the Ce6‐produced 1 O 2 could simultaneously kill cancer and trigger 2SeFT‐PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near‐infrared (NIR‐II, 950–1700 nm) window. Significantly, the ratiometric NIR‐II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1 O 2 and O 2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1 O 2 activated NIR‐II CL/FL probe provides an efficient ratiometric optical imaging platform for real‐time evaluating PDT effect and precisely guiding the PDT process in vivo.
The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1O2) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1O2‐responsive theranostic platform comprising thiophene‐based small molecule (2SeFT‐PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real‐time monitoring PDT efficacy is developed. After laser irradiation, the Ce6‐produced 1O2 could simultaneously kill cancer and trigger 2SeFT‐PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near‐infrared (NIR‐II, 950–1700 nm) window. Significantly, the ratiometric NIR‐II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1O2 activated NIR‐II CL/FL probe provides an efficient ratiometric optical imaging platform for real‐time evaluating PDT effect and precisely guiding the PDT process in vivo. A 2SeFT‐PEG/Ce6 micelle with 1O2‐triggered ratiometric NIR‐II chemiluminescence (CL)/fluorescence (FL) imaging performance to monitor and guide cancer photodynamic therapy (PDT) is developed. This study provides a method for detecting 1O2 and ratiometric NIR‐II CL and FL imaging to guide the tumor PDT process. It opens up prospects for the development of PDT imaging technology and may become an important way for the development of brand‐new PDT applications and individualized treatment for patients.
The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen ( O ) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect O in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a O -responsive theranostic platform comprising thiophene-based small molecule (2SeFT-PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real-time monitoring PDT efficacy is developed. After laser irradiation, the Ce6-produced O could simultaneously kill cancer and trigger 2SeFT-PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near-infrared (NIR-II, 950-1700 nm) window. Significantly, the ratiometric NIR-II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of O and O consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this O activated NIR-II CL/FL probe provides an efficient ratiometric optical imaging platform for real-time evaluating PDT effect and precisely guiding the PDT process in vivo.
The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1 O2 ) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1 O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1 O2 -responsive theranostic platform comprising thiophene-based small molecule (2SeFT-PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real-time monitoring PDT efficacy is developed. After laser irradiation, the Ce6-produced 1 O2 could simultaneously kill cancer and trigger 2SeFT-PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near-infrared (NIR-II, 950-1700 nm) window. Significantly, the ratiometric NIR-II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1 O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1 O2 activated NIR-II CL/FL probe provides an efficient ratiometric optical imaging platform for real-time evaluating PDT effect and precisely guiding the PDT process in vivo.The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1 O2 ) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1 O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1 O2 -responsive theranostic platform comprising thiophene-based small molecule (2SeFT-PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real-time monitoring PDT efficacy is developed. After laser irradiation, the Ce6-produced 1 O2 could simultaneously kill cancer and trigger 2SeFT-PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near-infrared (NIR-II, 950-1700 nm) window. Significantly, the ratiometric NIR-II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1 O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1 O2 activated NIR-II CL/FL probe provides an efficient ratiometric optical imaging platform for real-time evaluating PDT effect and precisely guiding the PDT process in vivo.
Author Liao, Naishun
Guo, Zhiyong
Zhang, Xuan
Huo, Hongqi
Ge, Xiaoguang
Chen, Yiming
Wu, Ying
Chen, Zhongxiang
Su, Lichao
Song, Jibin
Author_xml – sequence: 1
  givenname: Lichao
  surname: Su
  fullname: Su, Lichao
  organization: Fuzhou University
– sequence: 2
  givenname: Yiming
  surname: Chen
  fullname: Chen, Yiming
  organization: Fuzhou University
– sequence: 3
  givenname: Hongqi
  surname: Huo
  fullname: Huo, Hongqi
  organization: Han Dan Central Hospital
– sequence: 4
  givenname: Naishun
  surname: Liao
  fullname: Liao, Naishun
  organization: Fuzhou University
– sequence: 5
  givenname: Ying
  surname: Wu
  fullname: Wu, Ying
  organization: Fuzhou University
– sequence: 6
  givenname: Xiaoguang
  surname: Ge
  fullname: Ge, Xiaoguang
  organization: Fuzhou University
– sequence: 7
  givenname: Zhiyong
  surname: Guo
  fullname: Guo, Zhiyong
  email: guozhy@fzu.edu.cn
  organization: Fuzhou University
– sequence: 8
  givenname: Zhongxiang
  surname: Chen
  fullname: Chen, Zhongxiang
  organization: Fuzhou University
– sequence: 9
  givenname: Xuan
  surname: Zhang
  fullname: Zhang, Xuan
  organization: Fuzhou University
– sequence: 10
  givenname: Jibin
  orcidid: 0000-0003-4771-5006
  surname: Song
  fullname: Song, Jibin
  email: jibinsong@fzu.edu.cn
  organization: Fuzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36089652$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrGzEQx0VJaR7ttcey0EsvdvTa17EYJzE4bXDds1C0o1pBD1faTdlbzjn1M_aTVMZJCoFQkNAM_P7_Gc0cowMfPCD0nuApwZieJmftlGKaT1mSV-iIVIRNqoa2B08xwYfoOKUbjBmhvH6DDlmFm7Yq6RG6_7JY_bn7vVgUK9mb4KCPRhWzDThjB2c8JAW-Pz2zQ4j7uFjBNsQeYip0iDmTNhusjYPiMnjTh2j8j0L6rpjfSjtk15zOpFcQi6tN6EM3eulykfUGotyOxVxro6Qa36LXWtoE7x7eE_T9bL6eXUyWX88Xs8_LieKsJZOS8Y7jDjegKw05xFQ1DSedVBqqWvN8maa8u6ZQKtypBmdO1lgx3ZZNw07Qp73vNoafA6ReOJN_Zq30EIYkaE0YwxVveUY_PkNvwhB97i5TNLdTE7Iz_PBADdcOOrGNxsk4iscpZ4DvARVDShG0UKbfjdv3URorCBa7ZYrdMsXTMrNs-kz26PyioN0LfhkL439o8e1yufyn_QsrPbXJ
CitedBy_id crossref_primary_10_1021_acssensors_3c02322
crossref_primary_10_1002_chem_202400816
crossref_primary_10_1002_EXP_20240037
crossref_primary_10_1007_s12672_024_01682_x
crossref_primary_10_3389_fonc_2024_1373263
crossref_primary_10_1016_j_addr_2023_114821
crossref_primary_10_1002_EXP_20230027
crossref_primary_10_1021_acs_accounts_3c00495
crossref_primary_10_1002_adfm_202314278
crossref_primary_10_1016_j_cej_2023_147436
crossref_primary_10_1016_j_ccr_2023_215532
crossref_primary_10_3390_chemosensors12060113
crossref_primary_10_1002_smtd_202400132
crossref_primary_10_1002_smll_202402854
crossref_primary_10_1016_j_cej_2024_151058
crossref_primary_10_1021_acsabm_3c00134
crossref_primary_10_1246_cl_230115
crossref_primary_10_1016_j_trac_2023_117326
crossref_primary_10_1002_advs_202417678
crossref_primary_10_1021_acs_analchem_4c03788
crossref_primary_10_1021_acsnano_3c01641
crossref_primary_10_1016_j_snb_2023_134823
crossref_primary_10_1016_j_ccr_2024_215907
crossref_primary_10_1016_j_inoche_2024_112225
crossref_primary_10_1016_j_pdpdt_2024_104063
crossref_primary_10_1016_j_cej_2025_160178
crossref_primary_10_1016_j_matchemphys_2024_130112
crossref_primary_10_1016_j_trac_2023_117020
crossref_primary_10_1016_j_bioactmat_2023_09_015
crossref_primary_10_1002_adfm_202415925
crossref_primary_10_1039_D3CS00063J
crossref_primary_10_2147_CCID_S401206
Cites_doi 10.1002/adma.201707509
10.1186/s40824-018-0140-z
10.1016/j.chempr.2020.06.024
10.1038/s41571-020-0410-2
10.1002/anie.202106730
10.1007/s12094-008-0172-2
10.1562/0031-8655(2001)0730054PBAPIS2.0.CO2
10.1016/j.jphotobiol.2004.09.013
10.1016/j.biopha.2020.111095
10.1021/acssensors.0c01291
10.1073/pnas.0901310106
10.1016/j.chempr.2017.10.002
10.1016/B978-0-12-801238-3.10886-4
10.1111/php.13217
10.1158/1078-0432.CCR-06-0786
10.1038/s41467-020-18051-1
10.1117/1.JBO.18.11.115001
10.1038/sj.bjc.6602331
10.1039/C7CS00612H
10.1021/cr900300p
10.1007/s11426-020-9775-y
10.1562/2006-05-03-IR-891
10.1007/BF02765099
10.1562/0031-8655(2002)0750382DNILDO2.0.CO2
10.1002/adfm.202009942
10.1118/1.2401041
10.1021/bc300036z
10.1038/nm.1938
10.1136/bmj.304.6827.589
10.1562/0031-8655(2002)0750398MPFAPB2.0.CO2
10.7150/thno.25179
10.1562/2006-03-03-lR-833
10.1021/acs.analchem.0c00556
10.1088/0031-9155/50/11/011
10.1038/nchem.1920
10.1016/j.jphotobiol.2009.11.007
10.1002/anie.202009141
10.1016/j.chempr.2020.08.013
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202202551
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36089652
10_1002_smll_202202551
SMLL202202551
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
  funderid: 2021ZZ126
– fundername: Natural Science Foundation of Fujian Province
  funderid: 2020J02012
– fundername: National Natural Science Foundation of China
  funderid: U21A20377; 21874024; 82001875
– fundername: Health and Education Commission of Fujian Province
  funderid: 2019‐WJ‐20).
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4391-534d40d08ef6fed4002c8841dacfe67f467f3f24db2e5c0dc806fea70c3f95883
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 09:14:47 EDT 2025
Sat Jul 19 20:11:01 EDT 2025
Mon Jul 21 06:07:45 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Tue Jul 01 02:54:17 EDT 2025
Wed Jan 22 16:23:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords singlet molecular oxygen
fluorescence
ratiometric imaging
chemiluminescence
photodynamic therapy
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4391-534d40d08ef6fed4002c8841dacfe67f467f3f24db2e5c0dc806fea70c3f95883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4771-5006
PMID 36089652
PQID 2724397118
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_2713306494
proquest_journals_2724397118
pubmed_primary_36089652
crossref_citationtrail_10_1002_smll_202202551
crossref_primary_10_1002_smll_202202551
wiley_primary_10_1002_smll_202202551_SMLL202202551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1997 2005 2007; 12 79 34
2002 2001 2005; 75 73 50
2020; 6
2020; 5
2002 2003 2005 2006 2006; 75 63 92 82 12
2021; 31
2010 2013; 98 18
2020; 96
2006 2021; 82 134
2010; 110
2019
2020 2018 2020; 59 47 92
2017 2020; 3 6
2014 2009 2012 2009; 6 106 23 15
2020; 11
2020 2014 2018; 17 7 22
2021 2018 2021 2020 2018; 31 30 60 63 8
1992 2008; 304 10
e_1_2_7_5_2
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_2_3
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_7_4
e_1_2_7_9_2
e_1_2_7_7_3
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_18_4
e_1_2_7_5_3
e_1_2_7_6_2
e_1_2_7_7_1
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_10_5
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_13_1
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_7_5
e_1_2_7_9_3
Wan M. T. (e_1_2_7_2_2) 2014; 7
Niedre M. J. (e_1_2_7_7_2) 2003; 63
References_xml – volume: 82 134
  start-page: 1161
  year: 2006 2021
  publication-title: Photochem. Photobiol. Biomed. Pharmacother.
– volume: 75 73 50
  start-page: 398 54 2597
  year: 2002 2001 2005
  publication-title: Photochem. Photobiol. Photochem. Photobiol. Phys. Med. Biol.
– volume: 98 18
  start-page: 77
  year: 2010 2013
  publication-title: J. Photoch. Photobio. B. J. Biomed. Opt.
– volume: 304 10
  start-page: 589 148
  year: 1992 2008
  publication-title: Br. Med. J. Clin. Transl. Oncol.
– volume: 110
  start-page: 2795
  year: 2010
  publication-title: Chem. Rev.
– volume: 17 7 22
  start-page: 657 145 25
  year: 2020 2014 2018
  publication-title: Nat. Rev. Clin. Oncol. Clin., Cosmet. Invest. Dermatol. Biomater. Res.
– volume: 11
  start-page: 4192
  year: 2020
  publication-title: Nat. Commun.
– volume: 6 106 23 15
  start-page: 519 1783 967
  year: 2014 2009 2012 2009
  publication-title: Nat. Chem. Proc. Natl. Acad. Sci. USA Bioconjugate Chem. Nat. Med.
– volume: 3 6
  start-page: 991 2314
  year: 2017 2020
  publication-title: Chem Chem
– volume: 75 63 92 82 12
  start-page: 382 7986 298 1198 7132
  year: 2002 2003 2005 2006 2006
  publication-title: Photochem. Photobiol. Cancer Res. Br. J. Cancer Photochem. Photobiol. Clin. Cancer Res.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 96
  start-page: 260
  year: 2020
  publication-title: Photochem. Photobiol.
– volume: 6
  start-page: 2127
  year: 2020
  publication-title: Chem
– volume: 5
  start-page: 3158
  year: 2020
  publication-title: ACS Sens.
– volume: 12 79 34
  start-page: 182 231 282
  year: 1997 2005 2007
  publication-title: Laser Med. Sci. J. Photoch. Photobio. B. Med. Phys.
– volume: 31 30 60 63 8
  start-page: 1315 3461
  year: 2021 2018 2021 2020 2018
  publication-title: Adv. Funct. Mater. Adv. Mater. Angew. Chem., Int. Ed. Sci. China Chem. Theranostics
– year: 2019
– volume: 59 47 92
  start-page: 2873 6111
  year: 2020 2018 2020
  publication-title: Angew. Chem., Int. Ed. Chem. Soc. Rev. Anal. Chem.
– ident: e_1_2_7_10_2
  doi: 10.1002/adma.201707509
– ident: e_1_2_7_2_3
  doi: 10.1186/s40824-018-0140-z
– ident: e_1_2_7_8_2
  doi: 10.1016/j.chempr.2020.06.024
– ident: e_1_2_7_2_1
  doi: 10.1038/s41571-020-0410-2
– ident: e_1_2_7_10_3
  doi: 10.1002/anie.202106730
– ident: e_1_2_7_3_2
  doi: 10.1007/s12094-008-0172-2
– ident: e_1_2_7_6_2
  doi: 10.1562/0031-8655(2001)0730054PBAPIS2.0.CO2
– ident: e_1_2_7_5_2
  doi: 10.1016/j.jphotobiol.2004.09.013
– ident: e_1_2_7_15_2
  doi: 10.1016/j.biopha.2020.111095
– volume: 63
  start-page: 7986
  year: 2003
  ident: e_1_2_7_7_2
  publication-title: Cancer Res.
– ident: e_1_2_7_14_1
  doi: 10.1021/acssensors.0c01291
– ident: e_1_2_7_18_2
  doi: 10.1073/pnas.0901310106
– ident: e_1_2_7_8_1
  doi: 10.1016/j.chempr.2017.10.002
– ident: e_1_2_7_16_1
  doi: 10.1016/B978-0-12-801238-3.10886-4
– ident: e_1_2_7_17_1
  doi: 10.1111/php.13217
– ident: e_1_2_7_7_5
  doi: 10.1158/1078-0432.CCR-06-0786
– ident: e_1_2_7_13_1
  doi: 10.1038/s41467-020-18051-1
– ident: e_1_2_7_4_2
  doi: 10.1117/1.JBO.18.11.115001
– ident: e_1_2_7_7_3
  doi: 10.1038/sj.bjc.6602331
– ident: e_1_2_7_9_2
  doi: 10.1039/C7CS00612H
– ident: e_1_2_7_1_1
  doi: 10.1021/cr900300p
– volume: 7
  start-page: 145
  year: 2014
  ident: e_1_2_7_2_2
  publication-title: Clin., Cosmet. Invest. Dermatol.
– ident: e_1_2_7_10_4
  doi: 10.1007/s11426-020-9775-y
– ident: e_1_2_7_7_4
  doi: 10.1562/2006-05-03-IR-891
– ident: e_1_2_7_5_1
  doi: 10.1007/BF02765099
– ident: e_1_2_7_7_1
  doi: 10.1562/0031-8655(2002)0750382DNILDO2.0.CO2
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.202009942
– ident: e_1_2_7_5_3
  doi: 10.1118/1.2401041
– ident: e_1_2_7_18_3
  doi: 10.1021/bc300036z
– ident: e_1_2_7_18_4
  doi: 10.1038/nm.1938
– ident: e_1_2_7_3_1
  doi: 10.1136/bmj.304.6827.589
– ident: e_1_2_7_6_1
  doi: 10.1562/0031-8655(2002)0750398MPFAPB2.0.CO2
– ident: e_1_2_7_10_5
  doi: 10.7150/thno.25179
– ident: e_1_2_7_15_1
  doi: 10.1562/2006-03-03-lR-833
– ident: e_1_2_7_9_3
  doi: 10.1021/acs.analchem.0c00556
– ident: e_1_2_7_6_3
  doi: 10.1088/0031-9155/50/11/011
– ident: e_1_2_7_18_1
  doi: 10.1038/nchem.1920
– ident: e_1_2_7_12_1
  doi: 10.1002/adfm.202009942
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jphotobiol.2009.11.007
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.202009141
– ident: e_1_2_7_11_1
  doi: 10.1016/j.chempr.2020.08.013
SSID ssj0031247
Score 2.5468328
Snippet The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2202551
SubjectTerms Cancer
Cell Line, Tumor
Chemiluminescence
Effectiveness
Fluorescence
Micelles
Monitoring
Nanoparticles
Nanotechnology
Near infrared radiation
Neoplasms - drug therapy
Oxygen consumption
Photochemotherapy - methods
Photodynamic therapy
Photosensitizing Agents - pharmacology
Photosensitizing Agents - therapeutic use
ratiometric imaging
singlet molecular oxygen
Singlet Oxygen
Thiophenes
Title NIR‐II Ratiometric Chemiluminescent/Fluorescent Reporters for Real‐Time Monitoring and Evaluating Cancer Photodynamic Therapy Efficacy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202202551
https://www.ncbi.nlm.nih.gov/pubmed/36089652
https://www.proquest.com/docview/2724397118
https://www.proquest.com/docview/2713306494
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT-UA5R1oKyMhcUrXsZ2sc0TVrrqordDSSr1FY8cRErsJ2sehPXHmxG_klzATZ9MuCCHBzVb8ij3j-WyPPzP2JrfWK2NsrGRqYp3gAgXyzMemzJX2PkFQQfsdZ-fZyaV-f5Ve3bnFH_gh-g030ox2viYFB7sc3JKGLuczOjqQklAxrX_IYYtQ0bTnj1JovNrXVdBmxUS8tWFtFHKwnX3bKv0GNbeRa2t6xg8ZbBodPE4-H61X9sjd_MLn-D9_tccedLiUvwuC9Ijd8_Vjdv8OW-ET9u18Mv3x9ftkwqc0nHN6i8vxlnEAZzhynydPz8F4tm4WIcwDvEeEyREbYwxmWADdOuFhLqGCOdQlH3Wk4xg9Jjlc8A-fmlVTXtcwx0ouAvcBHxHhBbjrp-xyPLo4Pom7pxxiR1d741TpUotSGF9llcegkM4YnZTgKp8NK5yuK1VJXVrpUydKZwSmg6FwqspTY9QztlM3tX_BeAYVoOlNhIFcg_AWTC4yAYDA1SRgIxZvhrJwHc85PbcxKwJDsyyoj4u-jyP2tk__JTB8_DHl_kYyik7Tl4UcSsJ0uE6L2Ov-M-ooHbxA7Zs1pUkUrfRyHbHnQaL6qlQmTJ6lMmKylYu_tKH4eHZ62sde_kumV2yXwsEjcZ_trBZrf4DIamUPW-35CWaeHdI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tywH2wPsRWMBIIE7ZOs6jzoED2m3VsG2FSlfaW3ASR0jbJqgPoXLizIm_wl_hJ_BLmImTQEEICWkP3OLEsS17ZvyNH98APAmTRLtSJrYrfGl7DjooKgy0LbPQ9bR2EFTQesdoHAxOvJen_ukOfGnuwhh-iHbBjTSjstek4LQg3fnBGrqcz2jvQAiCxU59rvJYb96j17Z8Hh3hED8Vot-bHg7sOrCAndJFU9t3vczjGZc6D3KNj1ykUnpOptJcB90cjUfu5sLLEqH9lGep5JhPdXnq5qEvpYvlXoCLFEac6PqPJi1jlYvTZRXPBWdJm6i-Gp5ILjrb7d2eB38Dt9tYuZrs-lfha9NN5ozL2cF6lRykH35hkPyv-vEaXKmhN3thdOU67OjiBuz9RMh4Ez6No8m3j5-jiE1IYucUbixlFakCGnG6IUCHWTv92bpcmGdmPBgE0QzhP6bUDAugizXMmEsqmKkiY72aVx2Th6RqC_bqbbkqs02h5ljJ1NA7sB5xeqh0cwtOzqUzbsNuURb6LrBA5QrRhcOlCj3FdaJkyAOuFGJz6ajEAruRnTitqdwposgsNiTUIqYxjdsxteBZm_-dITH5Y879RhTj2pgtY9EVBFvRFbXgcfsZzRDtLalCl2vK47jkzIaeBXeMCLdVuQGXYeALC0QliH9pQ_x6NBy2qXv_8tMjuDSYjobxMBof34fL9N4cwNyH3dVirR8gkFwlDyvVZfDmvGX8OyDwfOY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4ti4TgwPsRWMBIIE7ZOs6jzoED2rbasN1qVXalvQXHcYREm676EConzpz4KfwV_gK_hJk4CRSEkJD2wC1OHNuyZ8bf-PENwNM4y4wvZeb6IpRu4KGDouLIuDKP_cAYD0EFrXccjqL9k-DVaXi6BV-auzCWH6JdcCPNqOw1KfhZXnR-kIYuphPaOhCCULFXH6s8MOv36LQtXiQ9HOFnQgz6x3v7bh1XwNV0z9QN_SAPeM6lKaLC4CMXWsrAy5UuTNQt0HYUfiGCPBMm1DzXkmM-1eXaL-JQSh_LvQAXg4jHFCyiN24Jq3ycLatwLjhJusT01dBEctHZbO_mNPgbtt2EytVcN7gGX5teskdc3u2ultmu_vALgeT_1I3X4WoNvNlLqyk3YMuUN-HKT3SMt-DTKBl_-_g5SdiY5HVKwcY0qygV0ITT_QA6ytoZTFazuX1m1n9BCM0Q_GNKTbAAulbDrLGkgpkqc9avWdUxuUeKNmdHb2fLWb4u1RQrObbkDqxPjB5Kr2_Dybl0xh3YLmeluQcsUoVCbOFxqeJAcZMpGfOIK4XIXHoqc8BtRCfVNZE7xROZpJaCWqQ0pmk7pg48b_OfWQqTP-bcaSQxrU3ZIhVdQaAVHVEHnrSf0QjRzpIqzWxFeTyfXNk4cOCuleC2Kj_iMo5C4YCo5PAvbUhfHw6Hber-v_z0GC4d9QbpMBkdPIDL9NqevtyB7eV8ZR4iilxmjyrFZfDmvEX8Ox65e5U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NIR%E2%80%90II+Ratiometric+Chemiluminescent%2FFluorescent+Reporters+for+Real%E2%80%90Time+Monitoring+and+Evaluating+Cancer+Photodynamic+Therapy+Efficacy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Su%2C+Lichao&rft.au=Chen%2C+Yiming&rft.au=Huo%2C+Hongqi&rft.au=Liao%2C+Naishun&rft.date=2022-10-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=41&rft_id=info:doi/10.1002%2Fsmll.202202551&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202202551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon