NIR‐II Ratiometric Chemiluminescent/Fluorescent Reporters for Real‐Time Monitoring and Evaluating Cancer Photodynamic Therapy Efficacy
The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1O2) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1O2...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 41; pp. e2202551 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1O2) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1O2‐responsive theranostic platform comprising thiophene‐based small molecule (2SeFT‐PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real‐time monitoring PDT efficacy is developed. After laser irradiation, the Ce6‐produced 1O2 could simultaneously kill cancer and trigger 2SeFT‐PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near‐infrared (NIR‐II, 950–1700 nm) window. Significantly, the ratiometric NIR‐II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1O2 activated NIR‐II CL/FL probe provides an efficient ratiometric optical imaging platform for real‐time evaluating PDT effect and precisely guiding the PDT process in vivo.
A 2SeFT‐PEG/Ce6 micelle with 1O2‐triggered ratiometric NIR‐II chemiluminescence (CL)/fluorescence (FL) imaging performance to monitor and guide cancer photodynamic therapy (PDT) is developed. This study provides a method for detecting 1O2 and ratiometric NIR‐II CL and FL imaging to guide the tumor PDT process. It opens up prospects for the development of PDT imaging technology and may become an important way for the development of brand‐new PDT applications and individualized treatment for patients. |
---|---|
AbstractList | The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1O2) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1O2‐responsive theranostic platform comprising thiophene‐based small molecule (2SeFT‐PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real‐time monitoring PDT efficacy is developed. After laser irradiation, the Ce6‐produced 1O2 could simultaneously kill cancer and trigger 2SeFT‐PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near‐infrared (NIR‐II, 950–1700 nm) window. Significantly, the ratiometric NIR‐II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1O2 activated NIR‐II CL/FL probe provides an efficient ratiometric optical imaging platform for real‐time evaluating PDT effect and precisely guiding the PDT process in vivo. The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen ( 1 O 2 ) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1 O 2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1 O 2 ‐responsive theranostic platform comprising thiophene‐based small molecule (2SeFT‐PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real‐time monitoring PDT efficacy is developed. After laser irradiation, the Ce6‐produced 1 O 2 could simultaneously kill cancer and trigger 2SeFT‐PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near‐infrared (NIR‐II, 950–1700 nm) window. Significantly, the ratiometric NIR‐II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1 O 2 and O 2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1 O 2 activated NIR‐II CL/FL probe provides an efficient ratiometric optical imaging platform for real‐time evaluating PDT effect and precisely guiding the PDT process in vivo. The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1O2) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1O2‐responsive theranostic platform comprising thiophene‐based small molecule (2SeFT‐PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real‐time monitoring PDT efficacy is developed. After laser irradiation, the Ce6‐produced 1O2 could simultaneously kill cancer and trigger 2SeFT‐PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near‐infrared (NIR‐II, 950–1700 nm) window. Significantly, the ratiometric NIR‐II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1O2 activated NIR‐II CL/FL probe provides an efficient ratiometric optical imaging platform for real‐time evaluating PDT effect and precisely guiding the PDT process in vivo. A 2SeFT‐PEG/Ce6 micelle with 1O2‐triggered ratiometric NIR‐II chemiluminescence (CL)/fluorescence (FL) imaging performance to monitor and guide cancer photodynamic therapy (PDT) is developed. This study provides a method for detecting 1O2 and ratiometric NIR‐II CL and FL imaging to guide the tumor PDT process. It opens up prospects for the development of PDT imaging technology and may become an important way for the development of brand‐new PDT applications and individualized treatment for patients. The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen ( O ) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect O in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a O -responsive theranostic platform comprising thiophene-based small molecule (2SeFT-PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real-time monitoring PDT efficacy is developed. After laser irradiation, the Ce6-produced O could simultaneously kill cancer and trigger 2SeFT-PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near-infrared (NIR-II, 950-1700 nm) window. Significantly, the ratiometric NIR-II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of O and O consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this O activated NIR-II CL/FL probe provides an efficient ratiometric optical imaging platform for real-time evaluating PDT effect and precisely guiding the PDT process in vivo. The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1 O2 ) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1 O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1 O2 -responsive theranostic platform comprising thiophene-based small molecule (2SeFT-PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real-time monitoring PDT efficacy is developed. After laser irradiation, the Ce6-produced 1 O2 could simultaneously kill cancer and trigger 2SeFT-PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near-infrared (NIR-II, 950-1700 nm) window. Significantly, the ratiometric NIR-II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1 O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1 O2 activated NIR-II CL/FL probe provides an efficient ratiometric optical imaging platform for real-time evaluating PDT effect and precisely guiding the PDT process in vivo.The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1 O2 ) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1 O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1 O2 -responsive theranostic platform comprising thiophene-based small molecule (2SeFT-PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real-time monitoring PDT efficacy is developed. After laser irradiation, the Ce6-produced 1 O2 could simultaneously kill cancer and trigger 2SeFT-PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near-infrared (NIR-II, 950-1700 nm) window. Significantly, the ratiometric NIR-II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1 O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1 O2 activated NIR-II CL/FL probe provides an efficient ratiometric optical imaging platform for real-time evaluating PDT effect and precisely guiding the PDT process in vivo. |
Author | Liao, Naishun Guo, Zhiyong Zhang, Xuan Huo, Hongqi Ge, Xiaoguang Chen, Yiming Wu, Ying Chen, Zhongxiang Su, Lichao Song, Jibin |
Author_xml | – sequence: 1 givenname: Lichao surname: Su fullname: Su, Lichao organization: Fuzhou University – sequence: 2 givenname: Yiming surname: Chen fullname: Chen, Yiming organization: Fuzhou University – sequence: 3 givenname: Hongqi surname: Huo fullname: Huo, Hongqi organization: Han Dan Central Hospital – sequence: 4 givenname: Naishun surname: Liao fullname: Liao, Naishun organization: Fuzhou University – sequence: 5 givenname: Ying surname: Wu fullname: Wu, Ying organization: Fuzhou University – sequence: 6 givenname: Xiaoguang surname: Ge fullname: Ge, Xiaoguang organization: Fuzhou University – sequence: 7 givenname: Zhiyong surname: Guo fullname: Guo, Zhiyong email: guozhy@fzu.edu.cn organization: Fuzhou University – sequence: 8 givenname: Zhongxiang surname: Chen fullname: Chen, Zhongxiang organization: Fuzhou University – sequence: 9 givenname: Xuan surname: Zhang fullname: Zhang, Xuan organization: Fuzhou University – sequence: 10 givenname: Jibin orcidid: 0000-0003-4771-5006 surname: Song fullname: Song, Jibin email: jibinsong@fzu.edu.cn organization: Fuzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36089652$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtrGzEQx0VJaR7ttcey0EsvdvTa17EYJzE4bXDds1C0o1pBD1faTdlbzjn1M_aTVMZJCoFQkNAM_P7_Gc0cowMfPCD0nuApwZieJmftlGKaT1mSV-iIVIRNqoa2B08xwYfoOKUbjBmhvH6DDlmFm7Yq6RG6_7JY_bn7vVgUK9mb4KCPRhWzDThjB2c8JAW-Pz2zQ4j7uFjBNsQeYip0iDmTNhusjYPiMnjTh2j8j0L6rpjfSjtk15zOpFcQi6tN6EM3eulykfUGotyOxVxro6Qa36LXWtoE7x7eE_T9bL6eXUyWX88Xs8_LieKsJZOS8Y7jDjegKw05xFQ1DSedVBqqWvN8maa8u6ZQKtypBmdO1lgx3ZZNw07Qp73vNoafA6ReOJN_Zq30EIYkaE0YwxVveUY_PkNvwhB97i5TNLdTE7Iz_PBADdcOOrGNxsk4iscpZ4DvARVDShG0UKbfjdv3URorCBa7ZYrdMsXTMrNs-kz26PyioN0LfhkL439o8e1yufyn_QsrPbXJ |
CitedBy_id | crossref_primary_10_1021_acssensors_3c02322 crossref_primary_10_1002_chem_202400816 crossref_primary_10_1002_EXP_20240037 crossref_primary_10_1007_s12672_024_01682_x crossref_primary_10_3389_fonc_2024_1373263 crossref_primary_10_1016_j_addr_2023_114821 crossref_primary_10_1002_EXP_20230027 crossref_primary_10_1021_acs_accounts_3c00495 crossref_primary_10_1002_adfm_202314278 crossref_primary_10_1016_j_cej_2023_147436 crossref_primary_10_1016_j_ccr_2023_215532 crossref_primary_10_3390_chemosensors12060113 crossref_primary_10_1002_smtd_202400132 crossref_primary_10_1002_smll_202402854 crossref_primary_10_1016_j_cej_2024_151058 crossref_primary_10_1021_acsabm_3c00134 crossref_primary_10_1246_cl_230115 crossref_primary_10_1016_j_trac_2023_117326 crossref_primary_10_1002_advs_202417678 crossref_primary_10_1021_acs_analchem_4c03788 crossref_primary_10_1021_acsnano_3c01641 crossref_primary_10_1016_j_snb_2023_134823 crossref_primary_10_1016_j_ccr_2024_215907 crossref_primary_10_1016_j_inoche_2024_112225 crossref_primary_10_1016_j_pdpdt_2024_104063 crossref_primary_10_1016_j_cej_2025_160178 crossref_primary_10_1016_j_matchemphys_2024_130112 crossref_primary_10_1016_j_trac_2023_117020 crossref_primary_10_1016_j_bioactmat_2023_09_015 crossref_primary_10_1002_adfm_202415925 crossref_primary_10_1039_D3CS00063J crossref_primary_10_2147_CCID_S401206 |
Cites_doi | 10.1002/adma.201707509 10.1186/s40824-018-0140-z 10.1016/j.chempr.2020.06.024 10.1038/s41571-020-0410-2 10.1002/anie.202106730 10.1007/s12094-008-0172-2 10.1562/0031-8655(2001)0730054PBAPIS2.0.CO2 10.1016/j.jphotobiol.2004.09.013 10.1016/j.biopha.2020.111095 10.1021/acssensors.0c01291 10.1073/pnas.0901310106 10.1016/j.chempr.2017.10.002 10.1016/B978-0-12-801238-3.10886-4 10.1111/php.13217 10.1158/1078-0432.CCR-06-0786 10.1038/s41467-020-18051-1 10.1117/1.JBO.18.11.115001 10.1038/sj.bjc.6602331 10.1039/C7CS00612H 10.1021/cr900300p 10.1007/s11426-020-9775-y 10.1562/2006-05-03-IR-891 10.1007/BF02765099 10.1562/0031-8655(2002)0750382DNILDO2.0.CO2 10.1002/adfm.202009942 10.1118/1.2401041 10.1021/bc300036z 10.1038/nm.1938 10.1136/bmj.304.6827.589 10.1562/0031-8655(2002)0750398MPFAPB2.0.CO2 10.7150/thno.25179 10.1562/2006-03-03-lR-833 10.1021/acs.analchem.0c00556 10.1088/0031-9155/50/11/011 10.1038/nchem.1920 10.1016/j.jphotobiol.2009.11.007 10.1002/anie.202009141 10.1016/j.chempr.2020.08.013 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202202551 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 36089652 10_1002_smll_202202551 SMLL202202551 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China funderid: 2021ZZ126 – fundername: Natural Science Foundation of Fujian Province funderid: 2020J02012 – fundername: National Natural Science Foundation of China funderid: U21A20377; 21874024; 82001875 – fundername: Health and Education Commission of Fujian Province funderid: 2019‐WJ‐20). |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4391-534d40d08ef6fed4002c8841dacfe67f467f3f24db2e5c0dc806fea70c3f95883 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 09:14:47 EDT 2025 Sat Jul 19 20:11:01 EDT 2025 Mon Jul 21 06:07:45 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Tue Jul 01 02:54:17 EDT 2025 Wed Jan 22 16:23:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Keywords | singlet molecular oxygen fluorescence ratiometric imaging chemiluminescence photodynamic therapy |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4391-534d40d08ef6fed4002c8841dacfe67f467f3f24db2e5c0dc806fea70c3f95883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4771-5006 |
PMID | 36089652 |
PQID | 2724397118 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2713306494 proquest_journals_2724397118 pubmed_primary_36089652 crossref_citationtrail_10_1002_smll_202202551 crossref_primary_10_1002_smll_202202551 wiley_primary_10_1002_smll_202202551_SMLL202202551 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1997 2005 2007; 12 79 34 2002 2001 2005; 75 73 50 2020; 6 2020; 5 2002 2003 2005 2006 2006; 75 63 92 82 12 2021; 31 2010 2013; 98 18 2020; 96 2006 2021; 82 134 2010; 110 2019 2020 2018 2020; 59 47 92 2017 2020; 3 6 2014 2009 2012 2009; 6 106 23 15 2020; 11 2020 2014 2018; 17 7 22 2021 2018 2021 2020 2018; 31 30 60 63 8 1992 2008; 304 10 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_2_3 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_7_4 e_1_2_7_9_2 e_1_2_7_7_3 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_18_4 e_1_2_7_5_3 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_10_5 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_13_1 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_7_5 e_1_2_7_9_3 Wan M. T. (e_1_2_7_2_2) 2014; 7 Niedre M. J. (e_1_2_7_7_2) 2003; 63 |
References_xml | – volume: 82 134 start-page: 1161 year: 2006 2021 publication-title: Photochem. Photobiol. Biomed. Pharmacother. – volume: 75 73 50 start-page: 398 54 2597 year: 2002 2001 2005 publication-title: Photochem. Photobiol. Photochem. Photobiol. Phys. Med. Biol. – volume: 98 18 start-page: 77 year: 2010 2013 publication-title: J. Photoch. Photobio. B. J. Biomed. Opt. – volume: 304 10 start-page: 589 148 year: 1992 2008 publication-title: Br. Med. J. Clin. Transl. Oncol. – volume: 110 start-page: 2795 year: 2010 publication-title: Chem. Rev. – volume: 17 7 22 start-page: 657 145 25 year: 2020 2014 2018 publication-title: Nat. Rev. Clin. Oncol. Clin., Cosmet. Invest. Dermatol. Biomater. Res. – volume: 11 start-page: 4192 year: 2020 publication-title: Nat. Commun. – volume: 6 106 23 15 start-page: 519 1783 967 year: 2014 2009 2012 2009 publication-title: Nat. Chem. Proc. Natl. Acad. Sci. USA Bioconjugate Chem. Nat. Med. – volume: 3 6 start-page: 991 2314 year: 2017 2020 publication-title: Chem Chem – volume: 75 63 92 82 12 start-page: 382 7986 298 1198 7132 year: 2002 2003 2005 2006 2006 publication-title: Photochem. Photobiol. Cancer Res. Br. J. Cancer Photochem. Photobiol. Clin. Cancer Res. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 96 start-page: 260 year: 2020 publication-title: Photochem. Photobiol. – volume: 6 start-page: 2127 year: 2020 publication-title: Chem – volume: 5 start-page: 3158 year: 2020 publication-title: ACS Sens. – volume: 12 79 34 start-page: 182 231 282 year: 1997 2005 2007 publication-title: Laser Med. Sci. J. Photoch. Photobio. B. Med. Phys. – volume: 31 30 60 63 8 start-page: 1315 3461 year: 2021 2018 2021 2020 2018 publication-title: Adv. Funct. Mater. Adv. Mater. Angew. Chem., Int. Ed. Sci. China Chem. Theranostics – year: 2019 – volume: 59 47 92 start-page: 2873 6111 year: 2020 2018 2020 publication-title: Angew. Chem., Int. Ed. Chem. Soc. Rev. Anal. Chem. – ident: e_1_2_7_10_2 doi: 10.1002/adma.201707509 – ident: e_1_2_7_2_3 doi: 10.1186/s40824-018-0140-z – ident: e_1_2_7_8_2 doi: 10.1016/j.chempr.2020.06.024 – ident: e_1_2_7_2_1 doi: 10.1038/s41571-020-0410-2 – ident: e_1_2_7_10_3 doi: 10.1002/anie.202106730 – ident: e_1_2_7_3_2 doi: 10.1007/s12094-008-0172-2 – ident: e_1_2_7_6_2 doi: 10.1562/0031-8655(2001)0730054PBAPIS2.0.CO2 – ident: e_1_2_7_5_2 doi: 10.1016/j.jphotobiol.2004.09.013 – ident: e_1_2_7_15_2 doi: 10.1016/j.biopha.2020.111095 – volume: 63 start-page: 7986 year: 2003 ident: e_1_2_7_7_2 publication-title: Cancer Res. – ident: e_1_2_7_14_1 doi: 10.1021/acssensors.0c01291 – ident: e_1_2_7_18_2 doi: 10.1073/pnas.0901310106 – ident: e_1_2_7_8_1 doi: 10.1016/j.chempr.2017.10.002 – ident: e_1_2_7_16_1 doi: 10.1016/B978-0-12-801238-3.10886-4 – ident: e_1_2_7_17_1 doi: 10.1111/php.13217 – ident: e_1_2_7_7_5 doi: 10.1158/1078-0432.CCR-06-0786 – ident: e_1_2_7_13_1 doi: 10.1038/s41467-020-18051-1 – ident: e_1_2_7_4_2 doi: 10.1117/1.JBO.18.11.115001 – ident: e_1_2_7_7_3 doi: 10.1038/sj.bjc.6602331 – ident: e_1_2_7_9_2 doi: 10.1039/C7CS00612H – ident: e_1_2_7_1_1 doi: 10.1021/cr900300p – volume: 7 start-page: 145 year: 2014 ident: e_1_2_7_2_2 publication-title: Clin., Cosmet. Invest. Dermatol. – ident: e_1_2_7_10_4 doi: 10.1007/s11426-020-9775-y – ident: e_1_2_7_7_4 doi: 10.1562/2006-05-03-IR-891 – ident: e_1_2_7_5_1 doi: 10.1007/BF02765099 – ident: e_1_2_7_7_1 doi: 10.1562/0031-8655(2002)0750382DNILDO2.0.CO2 – ident: e_1_2_7_10_1 doi: 10.1002/adfm.202009942 – ident: e_1_2_7_5_3 doi: 10.1118/1.2401041 – ident: e_1_2_7_18_3 doi: 10.1021/bc300036z – ident: e_1_2_7_18_4 doi: 10.1038/nm.1938 – ident: e_1_2_7_3_1 doi: 10.1136/bmj.304.6827.589 – ident: e_1_2_7_6_1 doi: 10.1562/0031-8655(2002)0750398MPFAPB2.0.CO2 – ident: e_1_2_7_10_5 doi: 10.7150/thno.25179 – ident: e_1_2_7_15_1 doi: 10.1562/2006-03-03-lR-833 – ident: e_1_2_7_9_3 doi: 10.1021/acs.analchem.0c00556 – ident: e_1_2_7_6_3 doi: 10.1088/0031-9155/50/11/011 – ident: e_1_2_7_18_1 doi: 10.1038/nchem.1920 – ident: e_1_2_7_12_1 doi: 10.1002/adfm.202009942 – ident: e_1_2_7_4_1 doi: 10.1016/j.jphotobiol.2009.11.007 – ident: e_1_2_7_9_1 doi: 10.1002/anie.202009141 – ident: e_1_2_7_11_1 doi: 10.1016/j.chempr.2020.08.013 |
SSID | ssj0031247 |
Score | 2.5468328 |
Snippet | The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2202551 |
SubjectTerms | Cancer Cell Line, Tumor Chemiluminescence Effectiveness Fluorescence Micelles Monitoring Nanoparticles Nanotechnology Near infrared radiation Neoplasms - drug therapy Oxygen consumption Photochemotherapy - methods Photodynamic therapy Photosensitizing Agents - pharmacology Photosensitizing Agents - therapeutic use ratiometric imaging singlet molecular oxygen Singlet Oxygen Thiophenes |
Title | NIR‐II Ratiometric Chemiluminescent/Fluorescent Reporters for Real‐Time Monitoring and Evaluating Cancer Photodynamic Therapy Efficacy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202202551 https://www.ncbi.nlm.nih.gov/pubmed/36089652 https://www.proquest.com/docview/2724397118 https://www.proquest.com/docview/2713306494 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT-UA5R1oKyMhcUrXsZ2sc0TVrrqordDSSr1FY8cRErsJ2sehPXHmxG_klzATZ9MuCCHBzVb8ij3j-WyPPzP2JrfWK2NsrGRqYp3gAgXyzMemzJX2PkFQQfsdZ-fZyaV-f5Ve3bnFH_gh-g030ox2viYFB7sc3JKGLuczOjqQklAxrX_IYYtQ0bTnj1JovNrXVdBmxUS8tWFtFHKwnX3bKv0GNbeRa2t6xg8ZbBodPE4-H61X9sjd_MLn-D9_tccedLiUvwuC9Ijd8_Vjdv8OW-ET9u18Mv3x9ftkwqc0nHN6i8vxlnEAZzhynydPz8F4tm4WIcwDvEeEyREbYwxmWADdOuFhLqGCOdQlH3Wk4xg9Jjlc8A-fmlVTXtcwx0ouAvcBHxHhBbjrp-xyPLo4Pom7pxxiR1d741TpUotSGF9llcegkM4YnZTgKp8NK5yuK1VJXVrpUydKZwSmg6FwqspTY9QztlM3tX_BeAYVoOlNhIFcg_AWTC4yAYDA1SRgIxZvhrJwHc85PbcxKwJDsyyoj4u-jyP2tk__JTB8_DHl_kYyik7Tl4UcSsJ0uE6L2Ov-M-ooHbxA7Zs1pUkUrfRyHbHnQaL6qlQmTJ6lMmKylYu_tKH4eHZ62sde_kumV2yXwsEjcZ_trBZrf4DIamUPW-35CWaeHdI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tywH2wPsRWMBIIE7ZOs6jzoED2m3VsG2FSlfaW3ASR0jbJqgPoXLizIm_wl_hJ_BLmImTQEEICWkP3OLEsS17ZvyNH98APAmTRLtSJrYrfGl7DjooKgy0LbPQ9bR2EFTQesdoHAxOvJen_ukOfGnuwhh-iHbBjTSjstek4LQg3fnBGrqcz2jvQAiCxU59rvJYb96j17Z8Hh3hED8Vot-bHg7sOrCAndJFU9t3vczjGZc6D3KNj1ykUnpOptJcB90cjUfu5sLLEqH9lGep5JhPdXnq5qEvpYvlXoCLFEac6PqPJi1jlYvTZRXPBWdJm6i-Gp5ILjrb7d2eB38Dt9tYuZrs-lfha9NN5ozL2cF6lRykH35hkPyv-vEaXKmhN3thdOU67OjiBuz9RMh4Ez6No8m3j5-jiE1IYucUbixlFakCGnG6IUCHWTv92bpcmGdmPBgE0QzhP6bUDAugizXMmEsqmKkiY72aVx2Th6RqC_bqbbkqs02h5ljJ1NA7sB5xeqh0cwtOzqUzbsNuURb6LrBA5QrRhcOlCj3FdaJkyAOuFGJz6ajEAruRnTitqdwposgsNiTUIqYxjdsxteBZm_-dITH5Y879RhTj2pgtY9EVBFvRFbXgcfsZzRDtLalCl2vK47jkzIaeBXeMCLdVuQGXYeALC0QliH9pQ_x6NBy2qXv_8tMjuDSYjobxMBof34fL9N4cwNyH3dVirR8gkFwlDyvVZfDmvGX8OyDwfOY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4ti4TgwPsRWMBIIE7ZOs6jzoED2rbasN1qVXalvQXHcYREm676EConzpz4KfwV_gK_hJk4CRSEkJD2wC1OHNuyZ8bf-PENwNM4y4wvZeb6IpRu4KGDouLIuDKP_cAYD0EFrXccjqL9k-DVaXi6BV-auzCWH6JdcCPNqOw1KfhZXnR-kIYuphPaOhCCULFXH6s8MOv36LQtXiQ9HOFnQgz6x3v7bh1XwNV0z9QN_SAPeM6lKaLC4CMXWsrAy5UuTNQt0HYUfiGCPBMm1DzXkmM-1eXaL-JQSh_LvQAXg4jHFCyiN24Jq3ycLatwLjhJusT01dBEctHZbO_mNPgbtt2EytVcN7gGX5teskdc3u2ultmu_vALgeT_1I3X4WoNvNlLqyk3YMuUN-HKT3SMt-DTKBl_-_g5SdiY5HVKwcY0qygV0ITT_QA6ytoZTFazuX1m1n9BCM0Q_GNKTbAAulbDrLGkgpkqc9avWdUxuUeKNmdHb2fLWb4u1RQrObbkDqxPjB5Kr2_Dybl0xh3YLmeluQcsUoVCbOFxqeJAcZMpGfOIK4XIXHoqc8BtRCfVNZE7xROZpJaCWqQ0pmk7pg48b_OfWQqTP-bcaSQxrU3ZIhVdQaAVHVEHnrSf0QjRzpIqzWxFeTyfXNk4cOCuleC2Kj_iMo5C4YCo5PAvbUhfHw6Hber-v_z0GC4d9QbpMBkdPIDL9NqevtyB7eV8ZR4iilxmjyrFZfDmvEX8Ox65e5U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NIR%E2%80%90II+Ratiometric+Chemiluminescent%2FFluorescent+Reporters+for+Real%E2%80%90Time+Monitoring+and+Evaluating+Cancer+Photodynamic+Therapy+Efficacy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Su%2C+Lichao&rft.au=Chen%2C+Yiming&rft.au=Huo%2C+Hongqi&rft.au=Liao%2C+Naishun&rft.date=2022-10-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=41&rft_id=info:doi/10.1002%2Fsmll.202202551&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202202551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |