A Bioinspired Stretchable Sensory‐Neuromorphic System

Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin‐interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 44; pp. e2104690 - n/a
Main Authors Kim, Sun Hong, Baek, Geun Woo, Yoon, Jiyong, Seo, Seunghwan, Park, Jinhong, Hahm, Donghyo, Chang, Jun Hyuk, Seong, Duhwan, Seo, Hyunseon, Oh, Seyong, Kim, Kyunghwan, Jung, Heeyoung, Oh, Youngsu, Baac, Hyoung Won, Alimkhanuly, Batyrbek, Bae, Wan Ki, Lee, Seunghyun, Lee, Minbaek, Kwak, Jeonghun, Park, Jin‐Hong, Son, Donghee
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin‐interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory‐neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random‐access memory, and a quantum dot light‐emitting diode, respectively. This system features a rigid‐island structure interconnected with a sinter‐free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm−1 conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat‐sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics. A novel form of stretchable integrated system, namely a bioinspired stretchable sensory‐neuromorphic system, is presented, which comprises an artificial mechanoreceptor, an artificial synapse, and an epidermal photonic actuator as three devices. This system features a bioinspired sensory‐neuromorphic system entailing tactile sensing, pattern learning/inferencing, and visualizing feedback information.
AbstractList Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin-interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory-neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random-access memory, and a quantum dot light-emitting diode, respectively. This system features a rigid-island structure interconnected with a sinter-free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm-1 conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat-sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics.Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin-interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory-neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random-access memory, and a quantum dot light-emitting diode, respectively. This system features a rigid-island structure interconnected with a sinter-free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm-1 conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat-sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics.
Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin‐interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory‐neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random‐access memory, and a quantum dot light‐emitting diode, respectively. This system features a rigid‐island structure interconnected with a sinter‐free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm−1 conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat‐sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics. A novel form of stretchable integrated system, namely a bioinspired stretchable sensory‐neuromorphic system, is presented, which comprises an artificial mechanoreceptor, an artificial synapse, and an epidermal photonic actuator as three devices. This system features a bioinspired sensory‐neuromorphic system entailing tactile sensing, pattern learning/inferencing, and visualizing feedback information.
Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin‐interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory‐neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random‐access memory, and a quantum dot light‐emitting diode, respectively. This system features a rigid‐island structure interconnected with a sinter‐free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm −1 conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat‐sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics.
Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin‐interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory‐neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random‐access memory, and a quantum dot light‐emitting diode, respectively. This system features a rigid‐island structure interconnected with a sinter‐free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm−1 conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat‐sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics.
Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin-interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory-neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random-access memory, and a quantum dot light-emitting diode, respectively. This system features a rigid-island structure interconnected with a sinter-free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat-sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics.
Author Kim, Kyunghwan
Baac, Hyoung Won
Oh, Youngsu
Seo, Seunghwan
Lee, Seunghyun
Jung, Heeyoung
Seong, Duhwan
Chang, Jun Hyuk
Oh, Seyong
Kwak, Jeonghun
Kim, Sun Hong
Seo, Hyunseon
Alimkhanuly, Batyrbek
Lee, Minbaek
Bae, Wan Ki
Son, Donghee
Hahm, Donghyo
Yoon, Jiyong
Baek, Geun Woo
Park, Jinhong
Park, Jin‐Hong
Author_xml – sequence: 1
  givenname: Sun Hong
  surname: Kim
  fullname: Kim, Sun Hong
  organization: Seoul National University
– sequence: 2
  givenname: Geun Woo
  surname: Baek
  fullname: Baek, Geun Woo
  organization: Seoul National University
– sequence: 3
  givenname: Jiyong
  surname: Yoon
  fullname: Yoon, Jiyong
  organization: Sungkyunkwan University
– sequence: 4
  givenname: Seunghwan
  surname: Seo
  fullname: Seo, Seunghwan
  organization: Sungkyunkwan University
– sequence: 5
  givenname: Jinhong
  surname: Park
  fullname: Park, Jinhong
  organization: Inha University
– sequence: 6
  givenname: Donghyo
  surname: Hahm
  fullname: Hahm, Donghyo
  organization: Sungkyunkwan University
– sequence: 7
  givenname: Jun Hyuk
  surname: Chang
  fullname: Chang, Jun Hyuk
  organization: Sungkyunkwan University
– sequence: 8
  givenname: Duhwan
  surname: Seong
  fullname: Seong, Duhwan
  organization: Sungkyunkwan University
– sequence: 9
  givenname: Hyunseon
  surname: Seo
  fullname: Seo, Hyunseon
  organization: Korea Institute of Science and Technology
– sequence: 10
  givenname: Seyong
  surname: Oh
  fullname: Oh, Seyong
  organization: Sungkyunkwan University
– sequence: 11
  givenname: Kyunghwan
  surname: Kim
  fullname: Kim, Kyunghwan
  organization: Seoul National University
– sequence: 12
  givenname: Heeyoung
  surname: Jung
  fullname: Jung, Heeyoung
  organization: Seoul National University
– sequence: 13
  givenname: Youngsu
  surname: Oh
  fullname: Oh, Youngsu
  organization: Korea University
– sequence: 14
  givenname: Hyoung Won
  surname: Baac
  fullname: Baac, Hyoung Won
  organization: Sungkyunkwan University
– sequence: 15
  givenname: Batyrbek
  surname: Alimkhanuly
  fullname: Alimkhanuly, Batyrbek
  organization: Kyunghee University
– sequence: 16
  givenname: Wan Ki
  surname: Bae
  fullname: Bae, Wan Ki
  organization: Sungkyunkwan University
– sequence: 17
  givenname: Seunghyun
  surname: Lee
  fullname: Lee, Seunghyun
  organization: Kyunghee University
– sequence: 18
  givenname: Minbaek
  surname: Lee
  fullname: Lee, Minbaek
  organization: Inha University
– sequence: 19
  givenname: Jeonghun
  surname: Kwak
  fullname: Kwak, Jeonghun
  email: jkwak@snu.ac.kr
  organization: Seoul National University
– sequence: 20
  givenname: Jin‐Hong
  surname: Park
  fullname: Park, Jin‐Hong
  email: jhpark9@skku.edu
  organization: Sungkyunkwan University
– sequence: 21
  givenname: Donghee
  orcidid: 0000-0002-3772-8009
  surname: Son
  fullname: Son, Donghee
  email: daniel3600@g.skku.edu
  organization: Institute for Basic Science (IBS)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34510591$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFu1DAQhi1U1G4LV45oJS5csowdO_Yct6UtSAUOC2fL60xUV0m82InQ3niEPmOfpFltW6RKFae5fN-v0XfMDvrYE2PvOCw4gPjk6s4tBAgOskJ4xWZcCV5IQHXAZoClKrCS5ogd53wDAFhBdciOSqk4KOQzppfz0xBDnzchUT1fDYkGf-3WLc1X1OeYtnd_b7_TmGIX0-Y6-Plqmwfq3rDXjWszvX24J-zXxfnPsy_F1Y_Lr2fLq8LLEqFwHitVNkogAay9QuMMGec1Oa11BaauZemMxgqN0s1aI3daGk-1a6DWWJ6wj_vdTYq_R8qD7UL21LaupzhmK5QWQoApd-iHZ-hNHFM_fTdRBlFCqauJev9AjeuOartJoXNpax-TTIDcAz7FnBM11ofBDSH2Q3KhtRzsrrzdlbdP5Sdt8Ux7XH5RwL3wJ7S0_Q9tl5-_Lf-595YFlRs
CitedBy_id crossref_primary_10_1021_acsnano_2c00308
crossref_primary_10_1007_s43939_024_00074_w
crossref_primary_10_1016_j_device_2024_100436
crossref_primary_10_3390_gels8090534
crossref_primary_10_3390_polym15163391
crossref_primary_10_1021_acssensors_4c00274
crossref_primary_10_1021_acs_chemrev_3c00548
crossref_primary_10_1109_TMRB_2022_3215749
crossref_primary_10_1021_acsnano_4c04851
crossref_primary_10_1002_adma_202312473
crossref_primary_10_1007_s12274_024_6566_8
crossref_primary_10_1007_s11814_024_00179_1
crossref_primary_10_1039_D4TC03745F
crossref_primary_10_1016_j_mser_2025_100951
crossref_primary_10_1021_acsami_2c17676
crossref_primary_10_1039_D3MH01362F
crossref_primary_10_1038_s41928_023_01012_z
crossref_primary_10_1021_acsami_4c11431
crossref_primary_10_1021_acsnano_3c05337
crossref_primary_10_1021_acsnano_2c12606
crossref_primary_10_1016_j_matt_2022_07_016
crossref_primary_10_1016_j_nanoen_2023_108398
crossref_primary_10_1021_acsaelm_1c01107
crossref_primary_10_1080_15980316_2024_2350437
crossref_primary_10_1002_adfm_202505232
crossref_primary_10_1002_adma_202303401
crossref_primary_10_1038_s41586_024_07383_3
crossref_primary_10_7498_aps_71_20220226
crossref_primary_10_1002_adma_202418108
crossref_primary_10_1021_acsami_3c07169
crossref_primary_10_1109_JSEN_2022_3141457
crossref_primary_10_1016_j_cej_2024_150542
crossref_primary_10_1021_acsaelm_5c00176
crossref_primary_10_1002_smtd_202300266
crossref_primary_10_1126_sciadv_adp8681
crossref_primary_10_56767_jfpe_2024_3_2_145
crossref_primary_10_1021_acsnano_3c05838
crossref_primary_10_1002_advs_202303264
crossref_primary_10_3390_polym14163409
crossref_primary_10_1021_acsnano_3c08357
crossref_primary_10_1039_D1MH00924A
crossref_primary_10_46670_JSST_2022_31_4_249
crossref_primary_10_1007_s40820_023_01029_1
crossref_primary_10_1088_2058_8585_ac88e1
crossref_primary_10_1002_adma_202313518
crossref_primary_10_1063_5_0204104
crossref_primary_10_1002_smll_202301186
crossref_primary_10_1016_j_nanoen_2023_108446
crossref_primary_10_1088_2058_8585_ad0a37
crossref_primary_10_1007_s12274_022_4204_y
crossref_primary_10_1109_JFLEX_2022_3162169
crossref_primary_10_1109_JSTQE_2023_3323619
crossref_primary_10_20517_ss_2024_26
crossref_primary_10_1016_j_nanoen_2024_109342
crossref_primary_10_1021_acs_nanolett_4c01083
crossref_primary_10_1177_00219983221135055
crossref_primary_10_3390_biomimetics9050273
crossref_primary_10_3390_gels8020092
crossref_primary_10_1007_s11814_024_00236_9
crossref_primary_10_1007_s11814_023_00006_z
crossref_primary_10_1007_s40820_022_00942_1
crossref_primary_10_1016_j_nanoen_2022_107525
crossref_primary_10_1021_acsnano_3c06207
crossref_primary_10_1002_smm2_1290
crossref_primary_10_1002_adma_202310556
crossref_primary_10_1002_aisy_202100194
crossref_primary_10_3390_s24072180
crossref_primary_10_1002_adma_202310956
crossref_primary_10_3389_fnano_2021_821687
crossref_primary_10_1002_mame_202400468
crossref_primary_10_1038_s41467_022_32966_x
crossref_primary_10_1016_j_nanoen_2023_108379
crossref_primary_10_1021_acs_chemrev_1c00735
crossref_primary_10_1080_15980316_2022_2035835
crossref_primary_10_56767_jfpe_2023_2_2_211
crossref_primary_10_1002_adma_202403150
crossref_primary_10_1016_j_nanoen_2024_110202
crossref_primary_10_20517_ss_2023_23
crossref_primary_10_3390_s23063118
crossref_primary_10_1021_acsenergylett_1c02745
crossref_primary_10_1002_adma_202304717
crossref_primary_10_1002_adma_202418729
crossref_primary_10_1021_acsnano_1c08482
crossref_primary_10_1021_acsami_3c15237
crossref_primary_10_1016_j_jcis_2023_12_181
crossref_primary_10_1002_adom_202300088
crossref_primary_10_1016_j_biotechadv_2023_108297
crossref_primary_10_15541_jim20230327
crossref_primary_10_1002_adma_202310505
crossref_primary_10_1016_j_device_2023_100060
crossref_primary_10_1016_j_cossms_2024_101142
crossref_primary_10_1038_s44222_024_00175_4
crossref_primary_10_1126_sciadv_abq3101
crossref_primary_10_56767_jfpe_2023_2_2_243
Cites_doi 10.1038/s41467-017-02685-9
10.1002/adma.200600822
10.1038/ncomms8647
10.1038/nnano.2012.206
10.1126/sciadv.aat7387
10.1002/adma.201706695
10.1016/j.nanoen.2019.06.039
10.1038/s41467-020-17849-3
10.1038/s41586-020-2038-x
10.1038/s41928-018-0116-y
10.1242/jeb.006502
10.1126/sciadv.aax4961
10.1038/nnano.2014.38
10.1038/s41467-018-07572-5
10.1109/TED.2009.2032597
10.1002/adma.201903558
10.1002/adma.201706846
10.1002/adma.201600772
10.1038/ncomms8461
10.1126/science.aao0098
10.1126/science.1250169
10.1103/PhysRevE.76.031907
10.1002/adfm.200901884
10.1038/s41586-019-1234-z
10.1038/s41587-019-0079-1
10.1021/nl504328f
10.1038/nmat4289
10.1038/s41467-018-04484-2
10.1039/C5EE03887A
10.1002/adma.201902761
10.1021/acsnano.9b00160
10.1038/s41467-019-13827-6
10.1038/ncomms9011
10.1093/acprof:oso/9780198523444.001.0001
10.3389/neuro.07.024.2009
10.1021/nl3003254
10.1038/s41467-019-11364-w
10.1038/s41467-020-15709-8
10.1126/science.1206157
10.1002/adma.201903912
10.1038/s41563-019-0291-x
10.1038/nmat4856
10.1038/s41586-019-1710-5
10.1038/s41467-020-17870-6
10.1002/adma.201800109
10.1002/adma.201700217
10.1039/c2cs15267c
10.1038/s41928-019-0221-6
10.1038/s41928-019-0283-5
10.1038/nmat4904
10.1038/s41566-018-0105-8
10.1038/s41467-020-18375-y
10.1038/s41467-020-16652-4
10.1038/s41928-020-0422-z
10.1038/414735a
10.1038/nmat3510
10.1126/scirobotics.aai7529
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202104690
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34510591
10_1002_adma_202104690
ADMA202104690
Genre article
Journal Article
GrantInformation_xml – fundername: Industrial Strategic Technology Development Program
  funderid: 10077471
– fundername: National Research Foundation of Korea
  funderid: 2020R1C1C1005567; 2021R1A2C201002611; 2021R1A4A3032027
– fundername: Institute of Information & Communications Technology Planning & Evaluation
  funderid: 2020‐0‐00261
– fundername: ICT Creative Consilience program
  funderid: IITP‐2020‐0‐01821
– fundername: Institute for Basic Science
  funderid: IBS‐R015‐D1
– fundername: National Research Foundation of Korea
  grantid: 2020R1C1C1005567
– fundername: National Research Foundation of Korea
  grantid: 2021R1A4A3032027
– fundername: ICT Creative Consilience program
  grantid: IITP-2020-0-01821
– fundername: Industrial Strategic Technology Development Program
  grantid: 10077471
– fundername: Institute for Basic Science
  grantid: IBS-R015-D1
– fundername: Institute of Information & Communications Technology Planning & Evaluation
  grantid: 2020-0-00261
– fundername: National Research Foundation of Korea
  grantid: 2021R1A2C201002611
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4390-ac9653f529e00bc598a8e8ac7ea777608dd43a87969857fb791a748cedaf0d793
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 16:17:21 EDT 2025
Fri Jul 25 01:40:28 EDT 2025
Wed Feb 19 02:09:14 EST 2025
Tue Jul 01 02:33:07 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Wed Jan 22 16:28:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords capacitive sensor
golden tortoise beetle
neuromorphic device
quantum dot light-emitting diode
resistive random-access memory
sinter-free printable conductor
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4390-ac9653f529e00bc598a8e8ac7ea777608dd43a87969857fb791a748cedaf0d793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3772-8009
PMID 34510591
PQID 2589940376
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2572220839
proquest_journals_2589940376
pubmed_primary_34510591
crossref_citationtrail_10_1002_adma_202104690
crossref_primary_10_1002_adma_202104690
wiley_primary_10_1002_adma_202104690_ADMA202104690
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 19
2015; 15
2011; 333
2015; 14
2015; 6
2018; 360
2019; 5
2019; 31
2019; 2
2019; 10
2019; 13
2019; 37
1996
2019; 18
2017; 29
2020; 11
2019; 569
2020; 32
2007; 76
2012; 12
2009; 56
2018; 9
2010; 20
2016; 1
2020; 3
2018; 4
2019; 63
2018; 1
2017; 16
2013; 12
2007; 210
2019; 575
2020; 579
2018; 30
2014; 9
2009; 3
2018; 12
2012; 7
2016; 28
2016; 9
2001; 414
2012; 41
2014; 344
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 11
  start-page: 3936
  year: 2020
  publication-title: Nat. Commun.
– volume: 344
  start-page: 70
  year: 2014
  publication-title: Science
– volume: 569
  start-page: 698
  year: 2019
  publication-title: Nature
– volume: 9
  start-page: 244
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  start-page: 115
  year: 2019
  publication-title: Nat. Electron.
– volume: 12
  start-page: 159
  year: 2018
  publication-title: Nat. Photon.
– volume: 20
  start-page: 561
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 473
  year: 2018
  publication-title: Nat. Electron.
– volume: 6
  start-page: 7461
  year: 2015
  publication-title: Nat. Commun.
– volume: 1
  year: 2016
  publication-title: Sci. Robot.
– volume: 12
  start-page: 114
  year: 2013
  publication-title: Nat. Mater.
– volume: 15
  start-page: 1211
  year: 2015
  publication-title: Nano Lett.
– volume: 37
  start-page: 382
  year: 2019
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: 8011
  year: 2015
  publication-title: Nat. Commun.
– volume: 360
  start-page: 998
  year: 2018
  publication-title: Science
– volume: 333
  start-page: 838
  year: 2011
  publication-title: Science
– volume: 3
  start-page: 563
  year: 2020
  publication-title: Nat. Electron.
– volume: 11
  start-page: 4030
  year: 2020
  publication-title: Nat. Commun.
– volume: 41
  start-page: 3297
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 19
  start-page: 862
  year: 2007
  publication-title: Adv. Mater.
– volume: 18
  start-page: 309
  year: 2019
  publication-title: Nat. Mater.
– volume: 414
  start-page: 735
  year: 2001
  publication-title: Nature
– volume: 16
  start-page: 834
  year: 2017
  publication-title: Nat. Mater.
– volume: 63
  year: 2019
  publication-title: Nano Energy
– volume: 56
  start-page: 3049
  year: 2009
  publication-title: IEEE Trans. Electron. Dev.
– volume: 76
  year: 2007
  publication-title: Phys. Rev. E
– volume: 11
  start-page: 51
  year: 2020
  publication-title: Nat. Commun.
– volume: 13
  start-page: 6531
  year: 2019
  publication-title: ACS Nano
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 4602
  year: 2020
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2874
  year: 2020
  publication-title: Nat. Commun.
– volume: 10
  start-page: 3429
  year: 2019
  publication-title: Nat. Commun.
– year: 1996
– volume: 14
  start-page: 728
  year: 2015
  publication-title: Nat. Mater.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 3
  start-page: 24
  year: 2009
  publication-title: Front. Integr. Neurosci.
– volume: 16
  start-page: 414
  year: 2017
  publication-title: Nat. Mater.
– volume: 579
  start-page: 62
  year: 2020
  publication-title: Nature
– volume: 7
  start-page: 803
  year: 2012
  publication-title: Nat. Nanotech.
– volume: 575
  start-page: 169
  year: 2019
  publication-title: Nature
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  start-page: 5106
  year: 2018
  publication-title: Nat. Commun.
– volume: 12
  start-page: 2362
  year: 2012
  publication-title: Nano Lett.
– volume: 9
  start-page: 1130
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 2252
  year: 2020
  publication-title: Nat. Commun.
– volume: 9
  start-page: 2385
  year: 2018
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 210
  start-page: 4092
  year: 2007
  publication-title: J. Exp. Biol.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 9
  start-page: 397
  year: 2014
  publication-title: Nat. Nanotech.
– volume: 28
  start-page: 5986
  year: 2016
  publication-title: , Adv. Mater.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 6
  start-page: 7647
  year: 2015
  publication-title: Nat. Commun.
– volume: 2
  start-page: 351
  year: 2019
  publication-title: Nat. Electron.
– ident: e_1_2_9_23_1
  doi: 10.1038/s41467-017-02685-9
– ident: e_1_2_9_52_1
  doi: 10.1002/adma.200600822
– ident: e_1_2_9_26_1
  doi: 10.1038/ncomms8647
– ident: e_1_2_9_28_1
  doi: 10.1038/nnano.2012.206
– ident: e_1_2_9_21_1
  doi: 10.1126/sciadv.aat7387
– ident: e_1_2_9_25_1
  doi: 10.1002/adma.201706695
– ident: e_1_2_9_9_1
  doi: 10.1016/j.nanoen.2019.06.039
– ident: e_1_2_9_20_1
  doi: 10.1038/s41467-020-17849-3
– ident: e_1_2_9_8_1
  doi: 10.1038/s41586-020-2038-x
– ident: e_1_2_9_14_1
  doi: 10.1038/s41928-018-0116-y
– ident: e_1_2_9_31_1
  doi: 10.1242/jeb.006502
– ident: e_1_2_9_2_1
  doi: 10.1126/sciadv.aax4961
– ident: e_1_2_9_13_1
  doi: 10.1038/nnano.2014.38
– ident: e_1_2_9_19_1
  doi: 10.1038/s41467-018-07572-5
– ident: e_1_2_9_44_1
  doi: 10.1109/TED.2009.2032597
– ident: e_1_2_9_12_1
  doi: 10.1002/adma.201903558
– ident: e_1_2_9_36_1
  doi: 10.1002/adma.201706846
– ident: e_1_2_9_37_1
  doi: 10.1002/adma.201600772
– ident: e_1_2_9_39_1
  doi: 10.1038/ncomms8461
– ident: e_1_2_9_1_1
  doi: 10.1126/science.aao0098
– ident: e_1_2_9_24_1
  doi: 10.1126/science.1250169
– ident: e_1_2_9_46_1
  doi: 10.1103/PhysRevE.76.031907
– ident: e_1_2_9_51_1
  doi: 10.1002/adfm.200901884
– ident: e_1_2_9_11_1
  doi: 10.1038/s41586-019-1234-z
– ident: e_1_2_9_17_1
  doi: 10.1038/s41587-019-0079-1
– ident: e_1_2_9_54_1
  doi: 10.1021/nl504328f
– ident: e_1_2_9_15_1
  doi: 10.1038/nmat4289
– ident: e_1_2_9_56_1
  doi: 10.1038/s41467-018-04484-2
– ident: e_1_2_9_53_1
  doi: 10.1039/C5EE03887A
– ident: e_1_2_9_43_1
  doi: 10.1002/adma.201902761
– ident: e_1_2_9_33_1
  doi: 10.1021/acsnano.9b00160
– ident: e_1_2_9_5_1
  doi: 10.1038/s41467-019-13827-6
– ident: e_1_2_9_22_1
  doi: 10.1038/ncomms9011
– ident: e_1_2_9_32_1
  doi: 10.1093/acprof:oso/9780198523444.001.0001
– ident: e_1_2_9_30_1
  doi: 10.3389/neuro.07.024.2009
– ident: e_1_2_9_47_1
  doi: 10.1021/nl3003254
– ident: e_1_2_9_29_1
  doi: 10.1038/s41467-019-11364-w
– ident: e_1_2_9_34_1
  doi: 10.1038/s41467-020-15709-8
– ident: e_1_2_9_4_1
  doi: 10.1126/science.1206157
– ident: e_1_2_9_27_1
  doi: 10.1002/adma.201903912
– ident: e_1_2_9_42_1
  doi: 10.1038/s41563-019-0291-x
– ident: e_1_2_9_40_1
  doi: 10.1038/nmat4856
– ident: e_1_2_9_16_1
  doi: 10.1038/s41586-019-1710-5
– ident: e_1_2_9_10_1
  doi: 10.1038/s41467-020-17870-6
– ident: e_1_2_9_50_1
  doi: 10.1002/adma.201800109
– ident: e_1_2_9_49_1
  doi: 10.1002/adma.201700217
– ident: e_1_2_9_45_1
  doi: 10.1039/c2cs15267c
– ident: e_1_2_9_55_1
  doi: 10.1038/s41928-019-0221-6
– ident: e_1_2_9_18_1
  doi: 10.1038/s41928-019-0283-5
– ident: e_1_2_9_35_1
  doi: 10.1038/nmat4904
– ident: e_1_2_9_48_1
  doi: 10.1038/s41566-018-0105-8
– ident: e_1_2_9_6_1
  doi: 10.1038/s41467-020-18375-y
– ident: e_1_2_9_57_1
  doi: 10.1038/s41467-020-16652-4
– ident: e_1_2_9_7_1
  doi: 10.1038/s41928-020-0422-z
– ident: e_1_2_9_38_1
  doi: 10.1038/414735a
– ident: e_1_2_9_41_1
  doi: 10.1038/nmat3510
– ident: e_1_2_9_3_1
  doi: 10.1126/scirobotics.aai7529
SSID ssj0009606
Score 2.6327624
Snippet Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2104690
SubjectTerms Actuators
Artificial neural networks
Biomimetic Materials - chemistry
Biomimetics
Biomimetics - methods
capacitive sensor
Component reliability
Conductors
Electronic components
Electronics
Equipment Design
Evaporation rate
golden tortoise beetle
Humans
Light emitting diodes
Materials science
Mechanoreceptors - physiology
Neural Networks, Computer
neuromorphic device
Pressure sensors
Prostheses
quantum dot light‐emitting diode
Quantum dots
Quantum Dots - chemistry
Reliability engineering
resistive random‐access memory
sinter‐free printable conductor
Stretchability
Structural reliability
Synapses - physiology
Thermal degradation
Wearable Electronic Devices
Title A Bioinspired Stretchable Sensory‐Neuromorphic System
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104690
https://www.ncbi.nlm.nih.gov/pubmed/34510591
https://www.proquest.com/docview/2589940376
https://www.proquest.com/docview/2572220839
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTsQgFIZPjCtdeL_UW2pi4gplWiiwHC8TYzIuvCTuGqCQTNTW6MxCVz6Cz-iTCHSmOhpjors2hZRyOPCfAh8AOyYlRlElUSqIRkRnGVJuoEDYKlpYw7RRfjdy9yw7uSKn1_T60y7-mg_R_HDznhH6a-_gUj3uf0BDZRG4QUkrRHiuE_YLtrwqOv_gR3l5HmB7KUUiI3xEbcTJ_nj28VHpm9QcV65h6OnMghwVul5xcrM36Ks9_fyF5_ifr5qDmaEujdt1Q5qHCVMuwPQnWuEisHZ80Kt6pZ-bN0Xs57Odyf3Wq_jCBcPVw9Pby2uAfdxVzno9Hdc49CW46hxfHp6g4bkLSDt5gpHUIqOppYkwGCtNBZfccKmZkYyxDPOiIKnkTGSCU2YVEy3JCNemkBYXzuGXYbKsSrMKMcfW6QFsmWwZYoQHMBKlDLeFdZFloiNAo3rP9RBK7s_GuM1rnHKS-wrJmwqJYLdJf1_jOH5MuTEyYz50y8c8oS68JNh1qhFsN4-dQ_lZElmaauDTMKeZnDIVEazU5m9elZKgR1sRJMGIv5Qhbx91283d2l8yrcOUv653P27AZP9hYDadDOqrrdDU3wFbAP5i
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NjtMwEMdHbDkAB76WhUCBICHtybtuYsf2sVCqAtseYFfiFtmOLVVAgkp7gBOPwDPyJHicJktBCIk9JrGVxOOx__6YnwGeupw5w40muWKWMFsUxISOglBveOWdsM5gNPJ8UczO2Kt3vNtNiLEwLR-in3BDz4jtNTo4Tkgfn1NDdRXBQdkoDvH24DIe6434_Mmbc4IUCvSI28s5UQWTHbeRZse7-Xf7pT_E5q52jZ3P9AaY7rPbPSfvjzZrc2S__kZ0vNB_3YTrW2majtu6dAsuufo2XPsFWLgPYpw-WzbLGpfnXZXiknawOkZfpW_DeLhZffnx7XvkfXxsggGXNm2J6HfgbPri9PmMbI9eIDYoFEq0VQXPPc-Uo9RYrqSWTmornBZCFFRWFcu1FKpQkgtvhBppwaR1lfa0Cj5_AIO6qd09SCX1QRJQL_TIMaeQwciMcdJXPgwuM5sA6Qq-tFsuOR6P8aFsicpZiQVS9gWSwGGf_lNL5PhrymFnx3LrmZ_LjIcRJqOhXU3gSf84-BQulOjaNRtMI4JsCuJUJXC3tX__qpxFSTpKIItW_Mc3lOPJfNxf3f-fTI_hyux0flKevFy8fgBX8X4bDDmEwXq1cQ-DKlqbR7He_wRLxwKN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEMdHhUoIDpTymRZoKlXiZPAmdmwft92uoC2oaovELfKntAISBLuH9sQj8Ix9ktrObmCLEBIck9hK4vHY_4kzPwN8sDmxiiqJckE0IrookPITBcJOUeMs01aFbOTDo2L_mHw5oSd3svgbPkT7wS14Rhyvg4NfGLd3Cw2VJnKDsk6M8GbgJSmwCJs39H7cAqSCPo-0vZwiURA-wTbibG-6_vS0dE9rTkvXOPf0X4GcPHXzy8np7miodvWf_4COz3mtJVgcC9O02_Sk1_DCVsuwcAdXuAKsm34c1IMqLM5bk4YFbW_zkHuV_vTRcH35--_1TaR9nNfefAOdNjz0VTjuf_71aR-NN15A2usTjKQWBc0dzYTFWGkquOSWS82sZIwVmBtDcsmZKASnzCkmOpIRrq2RDhvv8WswW9WV3YCUY-cFAXZMdiyxIhAYiVKWO-N8aJnpBNCk3Us9ppKHzTHOyoannJWhQcq2QRLYactfNDyOB0tuTsxYjv3yqsyojy8J9qNqAu_by96jwjKJrGw9CmWYF01emooE1hvzt7fKSRSknQSyaMRHnqHs9g677dGbp1R6B3Pfe_3y28HR17cwH043mZCbMDu8HNktL4mGajv2-n86yQE8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bioinspired+Stretchable+Sensory%E2%80%90Neuromorphic+System&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kim%2C+Sun+Hong&rft.au=Baek%2C+Geun+Woo&rft.au=Yoon%2C+Jiyong&rft.au=Seo%2C+Seunghwan&rft.date=2021-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=44&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202104690&rft.externalDBID=10.1002%252Fadma.202104690&rft.externalDocID=ADMA202104690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon