A Bioinspired Stretchable Sensory‐Neuromorphic System
Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin‐interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 44; pp. e2104690 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin‐interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory‐neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random‐access memory, and a quantum dot light‐emitting diode, respectively. This system features a rigid‐island structure interconnected with a sinter‐free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm−1 conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat‐sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics.
A novel form of stretchable integrated system, namely a bioinspired stretchable sensory‐neuromorphic system, is presented, which comprises an artificial mechanoreceptor, an artificial synapse, and an epidermal photonic actuator as three devices. This system features a bioinspired sensory‐neuromorphic system entailing tactile sensing, pattern learning/inferencing, and visualizing feedback information. |
---|---|
AbstractList | Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin-interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory-neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random-access memory, and a quantum dot light-emitting diode, respectively. This system features a rigid-island structure interconnected with a sinter-free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm-1 conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat-sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics.Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin-interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory-neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random-access memory, and a quantum dot light-emitting diode, respectively. This system features a rigid-island structure interconnected with a sinter-free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm-1 conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat-sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics. Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin‐interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory‐neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random‐access memory, and a quantum dot light‐emitting diode, respectively. This system features a rigid‐island structure interconnected with a sinter‐free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm−1 conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat‐sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics. A novel form of stretchable integrated system, namely a bioinspired stretchable sensory‐neuromorphic system, is presented, which comprises an artificial mechanoreceptor, an artificial synapse, and an epidermal photonic actuator as three devices. This system features a bioinspired sensory‐neuromorphic system entailing tactile sensing, pattern learning/inferencing, and visualizing feedback information. Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin‐interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory‐neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random‐access memory, and a quantum dot light‐emitting diode, respectively. This system features a rigid‐island structure interconnected with a sinter‐free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm −1 conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat‐sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics. Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin‐interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory‐neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random‐access memory, and a quantum dot light‐emitting diode, respectively. This system features a rigid‐island structure interconnected with a sinter‐free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm−1 conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat‐sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics. Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have exhibited diverse skin-interfaced applications. Despite such remarkable progress, the evolution of intelligent skin prosthetics is challenged by the absence of the monolithic integration of neuromorphic constituents into individual sensing and actuating components. Herein, a bioinspired stretchable sensory-neuromorphic system, comprising an artificial mechanoreceptor, artificial synapse, and epidermal photonic actuator is demonstrated; these three biomimetic functionalities correspond to a stretchable capacitive pressure sensor, a resistive random-access memory, and a quantum dot light-emitting diode, respectively. This system features a rigid-island structure interconnected with a sinter-free printable conductor, which is optimized by controlling the evaporation rate of solvent (≈160% stretchability and ≈18 550 S cm conductivity). Devised design improves both areal density and structural reliability while avoiding the thermal degradation of heat-sensitive stretchable electronic components. Moreover, even in the skin deformation range, the system accurately recognizes various patterned stimuli via an artificial neural network with training/inferencing functions. Therefore, the new bioinspired system is expected to be an important step toward implementing intelligent wearable electronics. |
Author | Kim, Kyunghwan Baac, Hyoung Won Oh, Youngsu Seo, Seunghwan Lee, Seunghyun Jung, Heeyoung Seong, Duhwan Chang, Jun Hyuk Oh, Seyong Kwak, Jeonghun Kim, Sun Hong Seo, Hyunseon Alimkhanuly, Batyrbek Lee, Minbaek Bae, Wan Ki Son, Donghee Hahm, Donghyo Yoon, Jiyong Baek, Geun Woo Park, Jinhong Park, Jin‐Hong |
Author_xml | – sequence: 1 givenname: Sun Hong surname: Kim fullname: Kim, Sun Hong organization: Seoul National University – sequence: 2 givenname: Geun Woo surname: Baek fullname: Baek, Geun Woo organization: Seoul National University – sequence: 3 givenname: Jiyong surname: Yoon fullname: Yoon, Jiyong organization: Sungkyunkwan University – sequence: 4 givenname: Seunghwan surname: Seo fullname: Seo, Seunghwan organization: Sungkyunkwan University – sequence: 5 givenname: Jinhong surname: Park fullname: Park, Jinhong organization: Inha University – sequence: 6 givenname: Donghyo surname: Hahm fullname: Hahm, Donghyo organization: Sungkyunkwan University – sequence: 7 givenname: Jun Hyuk surname: Chang fullname: Chang, Jun Hyuk organization: Sungkyunkwan University – sequence: 8 givenname: Duhwan surname: Seong fullname: Seong, Duhwan organization: Sungkyunkwan University – sequence: 9 givenname: Hyunseon surname: Seo fullname: Seo, Hyunseon organization: Korea Institute of Science and Technology – sequence: 10 givenname: Seyong surname: Oh fullname: Oh, Seyong organization: Sungkyunkwan University – sequence: 11 givenname: Kyunghwan surname: Kim fullname: Kim, Kyunghwan organization: Seoul National University – sequence: 12 givenname: Heeyoung surname: Jung fullname: Jung, Heeyoung organization: Seoul National University – sequence: 13 givenname: Youngsu surname: Oh fullname: Oh, Youngsu organization: Korea University – sequence: 14 givenname: Hyoung Won surname: Baac fullname: Baac, Hyoung Won organization: Sungkyunkwan University – sequence: 15 givenname: Batyrbek surname: Alimkhanuly fullname: Alimkhanuly, Batyrbek organization: Kyunghee University – sequence: 16 givenname: Wan Ki surname: Bae fullname: Bae, Wan Ki organization: Sungkyunkwan University – sequence: 17 givenname: Seunghyun surname: Lee fullname: Lee, Seunghyun organization: Kyunghee University – sequence: 18 givenname: Minbaek surname: Lee fullname: Lee, Minbaek organization: Inha University – sequence: 19 givenname: Jeonghun surname: Kwak fullname: Kwak, Jeonghun email: jkwak@snu.ac.kr organization: Seoul National University – sequence: 20 givenname: Jin‐Hong surname: Park fullname: Park, Jin‐Hong email: jhpark9@skku.edu organization: Sungkyunkwan University – sequence: 21 givenname: Donghee orcidid: 0000-0002-3772-8009 surname: Son fullname: Son, Donghee email: daniel3600@g.skku.edu organization: Institute for Basic Science (IBS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34510591$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMFu1DAQhi1U1G4LV45oJS5csowdO_Yct6UtSAUOC2fL60xUV0m82InQ3niEPmOfpFltW6RKFae5fN-v0XfMDvrYE2PvOCw4gPjk6s4tBAgOskJ4xWZcCV5IQHXAZoClKrCS5ogd53wDAFhBdciOSqk4KOQzppfz0xBDnzchUT1fDYkGf-3WLc1X1OeYtnd_b7_TmGIX0-Y6-Plqmwfq3rDXjWszvX24J-zXxfnPsy_F1Y_Lr2fLq8LLEqFwHitVNkogAay9QuMMGec1Oa11BaauZemMxgqN0s1aI3daGk-1a6DWWJ6wj_vdTYq_R8qD7UL21LaupzhmK5QWQoApd-iHZ-hNHFM_fTdRBlFCqauJev9AjeuOartJoXNpax-TTIDcAz7FnBM11ofBDSH2Q3KhtRzsrrzdlbdP5Sdt8Ux7XH5RwL3wJ7S0_Q9tl5-_Lf-595YFlRs |
CitedBy_id | crossref_primary_10_1021_acsnano_2c00308 crossref_primary_10_1007_s43939_024_00074_w crossref_primary_10_1016_j_device_2024_100436 crossref_primary_10_3390_gels8090534 crossref_primary_10_3390_polym15163391 crossref_primary_10_1021_acssensors_4c00274 crossref_primary_10_1021_acs_chemrev_3c00548 crossref_primary_10_1109_TMRB_2022_3215749 crossref_primary_10_1021_acsnano_4c04851 crossref_primary_10_1002_adma_202312473 crossref_primary_10_1007_s12274_024_6566_8 crossref_primary_10_1007_s11814_024_00179_1 crossref_primary_10_1039_D4TC03745F crossref_primary_10_1016_j_mser_2025_100951 crossref_primary_10_1021_acsami_2c17676 crossref_primary_10_1039_D3MH01362F crossref_primary_10_1038_s41928_023_01012_z crossref_primary_10_1021_acsami_4c11431 crossref_primary_10_1021_acsnano_3c05337 crossref_primary_10_1021_acsnano_2c12606 crossref_primary_10_1016_j_matt_2022_07_016 crossref_primary_10_1016_j_nanoen_2023_108398 crossref_primary_10_1021_acsaelm_1c01107 crossref_primary_10_1080_15980316_2024_2350437 crossref_primary_10_1002_adfm_202505232 crossref_primary_10_1002_adma_202303401 crossref_primary_10_1038_s41586_024_07383_3 crossref_primary_10_7498_aps_71_20220226 crossref_primary_10_1002_adma_202418108 crossref_primary_10_1021_acsami_3c07169 crossref_primary_10_1109_JSEN_2022_3141457 crossref_primary_10_1016_j_cej_2024_150542 crossref_primary_10_1021_acsaelm_5c00176 crossref_primary_10_1002_smtd_202300266 crossref_primary_10_1126_sciadv_adp8681 crossref_primary_10_56767_jfpe_2024_3_2_145 crossref_primary_10_1021_acsnano_3c05838 crossref_primary_10_1002_advs_202303264 crossref_primary_10_3390_polym14163409 crossref_primary_10_1021_acsnano_3c08357 crossref_primary_10_1039_D1MH00924A crossref_primary_10_46670_JSST_2022_31_4_249 crossref_primary_10_1007_s40820_023_01029_1 crossref_primary_10_1088_2058_8585_ac88e1 crossref_primary_10_1002_adma_202313518 crossref_primary_10_1063_5_0204104 crossref_primary_10_1002_smll_202301186 crossref_primary_10_1016_j_nanoen_2023_108446 crossref_primary_10_1088_2058_8585_ad0a37 crossref_primary_10_1007_s12274_022_4204_y crossref_primary_10_1109_JFLEX_2022_3162169 crossref_primary_10_1109_JSTQE_2023_3323619 crossref_primary_10_20517_ss_2024_26 crossref_primary_10_1016_j_nanoen_2024_109342 crossref_primary_10_1021_acs_nanolett_4c01083 crossref_primary_10_1177_00219983221135055 crossref_primary_10_3390_biomimetics9050273 crossref_primary_10_3390_gels8020092 crossref_primary_10_1007_s11814_024_00236_9 crossref_primary_10_1007_s11814_023_00006_z crossref_primary_10_1007_s40820_022_00942_1 crossref_primary_10_1016_j_nanoen_2022_107525 crossref_primary_10_1021_acsnano_3c06207 crossref_primary_10_1002_smm2_1290 crossref_primary_10_1002_adma_202310556 crossref_primary_10_1002_aisy_202100194 crossref_primary_10_3390_s24072180 crossref_primary_10_1002_adma_202310956 crossref_primary_10_3389_fnano_2021_821687 crossref_primary_10_1002_mame_202400468 crossref_primary_10_1038_s41467_022_32966_x crossref_primary_10_1016_j_nanoen_2023_108379 crossref_primary_10_1021_acs_chemrev_1c00735 crossref_primary_10_1080_15980316_2022_2035835 crossref_primary_10_56767_jfpe_2023_2_2_211 crossref_primary_10_1002_adma_202403150 crossref_primary_10_1016_j_nanoen_2024_110202 crossref_primary_10_20517_ss_2023_23 crossref_primary_10_3390_s23063118 crossref_primary_10_1021_acsenergylett_1c02745 crossref_primary_10_1002_adma_202304717 crossref_primary_10_1002_adma_202418729 crossref_primary_10_1021_acsnano_1c08482 crossref_primary_10_1021_acsami_3c15237 crossref_primary_10_1016_j_jcis_2023_12_181 crossref_primary_10_1002_adom_202300088 crossref_primary_10_1016_j_biotechadv_2023_108297 crossref_primary_10_15541_jim20230327 crossref_primary_10_1002_adma_202310505 crossref_primary_10_1016_j_device_2023_100060 crossref_primary_10_1016_j_cossms_2024_101142 crossref_primary_10_1038_s44222_024_00175_4 crossref_primary_10_1126_sciadv_abq3101 crossref_primary_10_56767_jfpe_2023_2_2_243 |
Cites_doi | 10.1038/s41467-017-02685-9 10.1002/adma.200600822 10.1038/ncomms8647 10.1038/nnano.2012.206 10.1126/sciadv.aat7387 10.1002/adma.201706695 10.1016/j.nanoen.2019.06.039 10.1038/s41467-020-17849-3 10.1038/s41586-020-2038-x 10.1038/s41928-018-0116-y 10.1242/jeb.006502 10.1126/sciadv.aax4961 10.1038/nnano.2014.38 10.1038/s41467-018-07572-5 10.1109/TED.2009.2032597 10.1002/adma.201903558 10.1002/adma.201706846 10.1002/adma.201600772 10.1038/ncomms8461 10.1126/science.aao0098 10.1126/science.1250169 10.1103/PhysRevE.76.031907 10.1002/adfm.200901884 10.1038/s41586-019-1234-z 10.1038/s41587-019-0079-1 10.1021/nl504328f 10.1038/nmat4289 10.1038/s41467-018-04484-2 10.1039/C5EE03887A 10.1002/adma.201902761 10.1021/acsnano.9b00160 10.1038/s41467-019-13827-6 10.1038/ncomms9011 10.1093/acprof:oso/9780198523444.001.0001 10.3389/neuro.07.024.2009 10.1021/nl3003254 10.1038/s41467-019-11364-w 10.1038/s41467-020-15709-8 10.1126/science.1206157 10.1002/adma.201903912 10.1038/s41563-019-0291-x 10.1038/nmat4856 10.1038/s41586-019-1710-5 10.1038/s41467-020-17870-6 10.1002/adma.201800109 10.1002/adma.201700217 10.1039/c2cs15267c 10.1038/s41928-019-0221-6 10.1038/s41928-019-0283-5 10.1038/nmat4904 10.1038/s41566-018-0105-8 10.1038/s41467-020-18375-y 10.1038/s41467-020-16652-4 10.1038/s41928-020-0422-z 10.1038/414735a 10.1038/nmat3510 10.1126/scirobotics.aai7529 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202104690 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 34510591 10_1002_adma_202104690 ADMA202104690 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Industrial Strategic Technology Development Program funderid: 10077471 – fundername: National Research Foundation of Korea funderid: 2020R1C1C1005567; 2021R1A2C201002611; 2021R1A4A3032027 – fundername: Institute of Information & Communications Technology Planning & Evaluation funderid: 2020‐0‐00261 – fundername: ICT Creative Consilience program funderid: IITP‐2020‐0‐01821 – fundername: Institute for Basic Science funderid: IBS‐R015‐D1 – fundername: National Research Foundation of Korea grantid: 2020R1C1C1005567 – fundername: National Research Foundation of Korea grantid: 2021R1A4A3032027 – fundername: ICT Creative Consilience program grantid: IITP-2020-0-01821 – fundername: Industrial Strategic Technology Development Program grantid: 10077471 – fundername: Institute for Basic Science grantid: IBS-R015-D1 – fundername: Institute of Information & Communications Technology Planning & Evaluation grantid: 2020-0-00261 – fundername: National Research Foundation of Korea grantid: 2021R1A2C201002611 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4390-ac9653f529e00bc598a8e8ac7ea777608dd43a87969857fb791a748cedaf0d793 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 16:17:21 EDT 2025 Fri Jul 25 01:40:28 EDT 2025 Wed Feb 19 02:09:14 EST 2025 Tue Jul 01 02:33:07 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Wed Jan 22 16:28:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Keywords | capacitive sensor golden tortoise beetle neuromorphic device quantum dot light-emitting diode resistive random-access memory sinter-free printable conductor |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4390-ac9653f529e00bc598a8e8ac7ea777608dd43a87969857fb791a748cedaf0d793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3772-8009 |
PMID | 34510591 |
PQID | 2589940376 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2572220839 proquest_journals_2589940376 pubmed_primary_34510591 crossref_citationtrail_10_1002_adma_202104690 crossref_primary_10_1002_adma_202104690 wiley_primary_10_1002_adma_202104690_ADMA202104690 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 19 2015; 15 2011; 333 2015; 14 2015; 6 2018; 360 2019; 5 2019; 31 2019; 2 2019; 10 2019; 13 2019; 37 1996 2019; 18 2017; 29 2020; 11 2019; 569 2020; 32 2007; 76 2012; 12 2009; 56 2018; 9 2010; 20 2016; 1 2020; 3 2018; 4 2019; 63 2018; 1 2017; 16 2013; 12 2007; 210 2019; 575 2020; 579 2018; 30 2014; 9 2009; 3 2018; 12 2012; 7 2016; 28 2016; 9 2001; 414 2012; 41 2014; 344 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 11 start-page: 3936 year: 2020 publication-title: Nat. Commun. – volume: 344 start-page: 70 year: 2014 publication-title: Science – volume: 569 start-page: 698 year: 2019 publication-title: Nature – volume: 9 start-page: 244 year: 2018 publication-title: Nat. Commun. – volume: 2 start-page: 115 year: 2019 publication-title: Nat. Electron. – volume: 12 start-page: 159 year: 2018 publication-title: Nat. Photon. – volume: 20 start-page: 561 year: 2010 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 473 year: 2018 publication-title: Nat. Electron. – volume: 6 start-page: 7461 year: 2015 publication-title: Nat. Commun. – volume: 1 year: 2016 publication-title: Sci. Robot. – volume: 12 start-page: 114 year: 2013 publication-title: Nat. Mater. – volume: 15 start-page: 1211 year: 2015 publication-title: Nano Lett. – volume: 37 start-page: 382 year: 2019 publication-title: Nat. Biotechnol. – volume: 6 start-page: 8011 year: 2015 publication-title: Nat. Commun. – volume: 360 start-page: 998 year: 2018 publication-title: Science – volume: 333 start-page: 838 year: 2011 publication-title: Science – volume: 3 start-page: 563 year: 2020 publication-title: Nat. Electron. – volume: 11 start-page: 4030 year: 2020 publication-title: Nat. Commun. – volume: 41 start-page: 3297 year: 2012 publication-title: Chem. Soc. Rev. – volume: 19 start-page: 862 year: 2007 publication-title: Adv. Mater. – volume: 18 start-page: 309 year: 2019 publication-title: Nat. Mater. – volume: 414 start-page: 735 year: 2001 publication-title: Nature – volume: 16 start-page: 834 year: 2017 publication-title: Nat. Mater. – volume: 63 year: 2019 publication-title: Nano Energy – volume: 56 start-page: 3049 year: 2009 publication-title: IEEE Trans. Electron. Dev. – volume: 76 year: 2007 publication-title: Phys. Rev. E – volume: 11 start-page: 51 year: 2020 publication-title: Nat. Commun. – volume: 13 start-page: 6531 year: 2019 publication-title: ACS Nano – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 4602 year: 2020 publication-title: Nat. Commun. – volume: 11 start-page: 2874 year: 2020 publication-title: Nat. Commun. – volume: 10 start-page: 3429 year: 2019 publication-title: Nat. Commun. – year: 1996 – volume: 14 start-page: 728 year: 2015 publication-title: Nat. Mater. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 3 start-page: 24 year: 2009 publication-title: Front. Integr. Neurosci. – volume: 16 start-page: 414 year: 2017 publication-title: Nat. Mater. – volume: 579 start-page: 62 year: 2020 publication-title: Nature – volume: 7 start-page: 803 year: 2012 publication-title: Nat. Nanotech. – volume: 575 start-page: 169 year: 2019 publication-title: Nature – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 start-page: 5106 year: 2018 publication-title: Nat. Commun. – volume: 12 start-page: 2362 year: 2012 publication-title: Nano Lett. – volume: 9 start-page: 1130 year: 2016 publication-title: Energy Environ. Sci. – volume: 11 start-page: 2252 year: 2020 publication-title: Nat. Commun. – volume: 9 start-page: 2385 year: 2018 publication-title: Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 210 start-page: 4092 year: 2007 publication-title: J. Exp. Biol. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 9 start-page: 397 year: 2014 publication-title: Nat. Nanotech. – volume: 28 start-page: 5986 year: 2016 publication-title: , Adv. Mater. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 6 start-page: 7647 year: 2015 publication-title: Nat. Commun. – volume: 2 start-page: 351 year: 2019 publication-title: Nat. Electron. – ident: e_1_2_9_23_1 doi: 10.1038/s41467-017-02685-9 – ident: e_1_2_9_52_1 doi: 10.1002/adma.200600822 – ident: e_1_2_9_26_1 doi: 10.1038/ncomms8647 – ident: e_1_2_9_28_1 doi: 10.1038/nnano.2012.206 – ident: e_1_2_9_21_1 doi: 10.1126/sciadv.aat7387 – ident: e_1_2_9_25_1 doi: 10.1002/adma.201706695 – ident: e_1_2_9_9_1 doi: 10.1016/j.nanoen.2019.06.039 – ident: e_1_2_9_20_1 doi: 10.1038/s41467-020-17849-3 – ident: e_1_2_9_8_1 doi: 10.1038/s41586-020-2038-x – ident: e_1_2_9_14_1 doi: 10.1038/s41928-018-0116-y – ident: e_1_2_9_31_1 doi: 10.1242/jeb.006502 – ident: e_1_2_9_2_1 doi: 10.1126/sciadv.aax4961 – ident: e_1_2_9_13_1 doi: 10.1038/nnano.2014.38 – ident: e_1_2_9_19_1 doi: 10.1038/s41467-018-07572-5 – ident: e_1_2_9_44_1 doi: 10.1109/TED.2009.2032597 – ident: e_1_2_9_12_1 doi: 10.1002/adma.201903558 – ident: e_1_2_9_36_1 doi: 10.1002/adma.201706846 – ident: e_1_2_9_37_1 doi: 10.1002/adma.201600772 – ident: e_1_2_9_39_1 doi: 10.1038/ncomms8461 – ident: e_1_2_9_1_1 doi: 10.1126/science.aao0098 – ident: e_1_2_9_24_1 doi: 10.1126/science.1250169 – ident: e_1_2_9_46_1 doi: 10.1103/PhysRevE.76.031907 – ident: e_1_2_9_51_1 doi: 10.1002/adfm.200901884 – ident: e_1_2_9_11_1 doi: 10.1038/s41586-019-1234-z – ident: e_1_2_9_17_1 doi: 10.1038/s41587-019-0079-1 – ident: e_1_2_9_54_1 doi: 10.1021/nl504328f – ident: e_1_2_9_15_1 doi: 10.1038/nmat4289 – ident: e_1_2_9_56_1 doi: 10.1038/s41467-018-04484-2 – ident: e_1_2_9_53_1 doi: 10.1039/C5EE03887A – ident: e_1_2_9_43_1 doi: 10.1002/adma.201902761 – ident: e_1_2_9_33_1 doi: 10.1021/acsnano.9b00160 – ident: e_1_2_9_5_1 doi: 10.1038/s41467-019-13827-6 – ident: e_1_2_9_22_1 doi: 10.1038/ncomms9011 – ident: e_1_2_9_32_1 doi: 10.1093/acprof:oso/9780198523444.001.0001 – ident: e_1_2_9_30_1 doi: 10.3389/neuro.07.024.2009 – ident: e_1_2_9_47_1 doi: 10.1021/nl3003254 – ident: e_1_2_9_29_1 doi: 10.1038/s41467-019-11364-w – ident: e_1_2_9_34_1 doi: 10.1038/s41467-020-15709-8 – ident: e_1_2_9_4_1 doi: 10.1126/science.1206157 – ident: e_1_2_9_27_1 doi: 10.1002/adma.201903912 – ident: e_1_2_9_42_1 doi: 10.1038/s41563-019-0291-x – ident: e_1_2_9_40_1 doi: 10.1038/nmat4856 – ident: e_1_2_9_16_1 doi: 10.1038/s41586-019-1710-5 – ident: e_1_2_9_10_1 doi: 10.1038/s41467-020-17870-6 – ident: e_1_2_9_50_1 doi: 10.1002/adma.201800109 – ident: e_1_2_9_49_1 doi: 10.1002/adma.201700217 – ident: e_1_2_9_45_1 doi: 10.1039/c2cs15267c – ident: e_1_2_9_55_1 doi: 10.1038/s41928-019-0221-6 – ident: e_1_2_9_18_1 doi: 10.1038/s41928-019-0283-5 – ident: e_1_2_9_35_1 doi: 10.1038/nmat4904 – ident: e_1_2_9_48_1 doi: 10.1038/s41566-018-0105-8 – ident: e_1_2_9_6_1 doi: 10.1038/s41467-020-18375-y – ident: e_1_2_9_57_1 doi: 10.1038/s41467-020-16652-4 – ident: e_1_2_9_7_1 doi: 10.1038/s41928-020-0422-z – ident: e_1_2_9_38_1 doi: 10.1038/414735a – ident: e_1_2_9_41_1 doi: 10.1038/nmat3510 – ident: e_1_2_9_3_1 doi: 10.1126/scirobotics.aai7529 |
SSID | ssj0009606 |
Score | 2.6327624 |
Snippet | Conventional stretchable electronics that adopt a wavy design, a neutral mechanical plane, and conformal contact between abiotic and biotic interfaces have... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2104690 |
SubjectTerms | Actuators Artificial neural networks Biomimetic Materials - chemistry Biomimetics Biomimetics - methods capacitive sensor Component reliability Conductors Electronic components Electronics Equipment Design Evaporation rate golden tortoise beetle Humans Light emitting diodes Materials science Mechanoreceptors - physiology Neural Networks, Computer neuromorphic device Pressure sensors Prostheses quantum dot light‐emitting diode Quantum dots Quantum Dots - chemistry Reliability engineering resistive random‐access memory sinter‐free printable conductor Stretchability Structural reliability Synapses - physiology Thermal degradation Wearable Electronic Devices |
Title | A Bioinspired Stretchable Sensory‐Neuromorphic System |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104690 https://www.ncbi.nlm.nih.gov/pubmed/34510591 https://www.proquest.com/docview/2589940376 https://www.proquest.com/docview/2572220839 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LTsQgFIZPjCtdeL_UW2pi4gplWiiwHC8TYzIuvCTuGqCQTNTW6MxCVz6Cz-iTCHSmOhpjors2hZRyOPCfAh8AOyYlRlElUSqIRkRnGVJuoEDYKlpYw7RRfjdy9yw7uSKn1_T60y7-mg_R_HDznhH6a-_gUj3uf0BDZRG4QUkrRHiuE_YLtrwqOv_gR3l5HmB7KUUiI3xEbcTJ_nj28VHpm9QcV65h6OnMghwVul5xcrM36Ks9_fyF5_ifr5qDmaEujdt1Q5qHCVMuwPQnWuEisHZ80Kt6pZ-bN0Xs57Odyf3Wq_jCBcPVw9Pby2uAfdxVzno9Hdc49CW46hxfHp6g4bkLSDt5gpHUIqOppYkwGCtNBZfccKmZkYyxDPOiIKnkTGSCU2YVEy3JCNemkBYXzuGXYbKsSrMKMcfW6QFsmWwZYoQHMBKlDLeFdZFloiNAo3rP9RBK7s_GuM1rnHKS-wrJmwqJYLdJf1_jOH5MuTEyYz50y8c8oS68JNh1qhFsN4-dQ_lZElmaauDTMKeZnDIVEazU5m9elZKgR1sRJMGIv5Qhbx91283d2l8yrcOUv653P27AZP9hYDadDOqrrdDU3wFbAP5i |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NjtMwEMdHbDkAB76WhUCBICHtybtuYsf2sVCqAtseYFfiFtmOLVVAgkp7gBOPwDPyJHicJktBCIk9JrGVxOOx__6YnwGeupw5w40muWKWMFsUxISOglBveOWdsM5gNPJ8UczO2Kt3vNtNiLEwLR-in3BDz4jtNTo4Tkgfn1NDdRXBQdkoDvH24DIe6434_Mmbc4IUCvSI28s5UQWTHbeRZse7-Xf7pT_E5q52jZ3P9AaY7rPbPSfvjzZrc2S__kZ0vNB_3YTrW2majtu6dAsuufo2XPsFWLgPYpw-WzbLGpfnXZXiknawOkZfpW_DeLhZffnx7XvkfXxsggGXNm2J6HfgbPri9PmMbI9eIDYoFEq0VQXPPc-Uo9RYrqSWTmornBZCFFRWFcu1FKpQkgtvhBppwaR1lfa0Cj5_AIO6qd09SCX1QRJQL_TIMaeQwciMcdJXPgwuM5sA6Qq-tFsuOR6P8aFsicpZiQVS9gWSwGGf_lNL5PhrymFnx3LrmZ_LjIcRJqOhXU3gSf84-BQulOjaNRtMI4JsCuJUJXC3tX__qpxFSTpKIItW_Mc3lOPJfNxf3f-fTI_hyux0flKevFy8fgBX8X4bDDmEwXq1cQ-DKlqbR7He_wRLxwKN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEMdHhUoIDpTymRZoKlXiZPAmdmwft92uoC2oaovELfKntAISBLuH9sQj8Ix9ktrObmCLEBIck9hK4vHY_4kzPwN8sDmxiiqJckE0IrookPITBcJOUeMs01aFbOTDo2L_mHw5oSd3svgbPkT7wS14Rhyvg4NfGLd3Cw2VJnKDsk6M8GbgJSmwCJs39H7cAqSCPo-0vZwiURA-wTbibG-6_vS0dE9rTkvXOPf0X4GcPHXzy8np7miodvWf_4COz3mtJVgcC9O02_Sk1_DCVsuwcAdXuAKsm34c1IMqLM5bk4YFbW_zkHuV_vTRcH35--_1TaR9nNfefAOdNjz0VTjuf_71aR-NN15A2usTjKQWBc0dzYTFWGkquOSWS82sZIwVmBtDcsmZKASnzCkmOpIRrq2RDhvv8WswW9WV3YCUY-cFAXZMdiyxIhAYiVKWO-N8aJnpBNCk3Us9ppKHzTHOyoannJWhQcq2QRLYactfNDyOB0tuTsxYjv3yqsyojy8J9qNqAu_by96jwjKJrGw9CmWYF01emooE1hvzt7fKSRSknQSyaMRHnqHs9g677dGbp1R6B3Pfe_3y28HR17cwH043mZCbMDu8HNktL4mGajv2-n86yQE8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bioinspired+Stretchable+Sensory%E2%80%90Neuromorphic+System&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kim%2C+Sun+Hong&rft.au=Baek%2C+Geun+Woo&rft.au=Yoon%2C+Jiyong&rft.au=Seo%2C+Seunghwan&rft.date=2021-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=44&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202104690&rft.externalDBID=10.1002%252Fadma.202104690&rft.externalDocID=ADMA202104690 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |