Ultrastretchable Kirigami Bioprobes
An ultrastretchable film device is developed that can follow the shape of spherical and large deformable biological samples such as heart and brain tissues. Although the film is composed of biocompatible parylene for the device substrate and metal layers of platinum (Pt)/titanium (Ti), which are uns...
Saved in:
Published in | Advanced healthcare materials Vol. 7; no. 3 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.02.2018
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | An ultrastretchable film device is developed that can follow the shape of spherical and large deformable biological samples such as heart and brain tissues. Although the film is composed of biocompatible parylene for the device substrate and metal layers of platinum (Pt)/titanium (Ti), which are unstretchable materials, the film shows a high stretchability by patterning slits as a "Kirigami" design. A Pt/Ti-microelectrode array embedded in 11 µm thick parylene film with 5 × 91 slits exhibits a film strain of ≈250% at 9 mN strain-force (0.08 MPa in stress) with a Young's modulus of 23 kPa, while the 3 × 91-slit film shows a Young's modulus of 3.6 kPa. The maximum strains of these devices are ≈470% and ≈840%, respectively. It is demonstrated that the Kirigami-based microelectrode device can simultaneously record in vivo electrocorticogram signals from the visual and barrel cortices of a mouse by stretching the film and tuning the electrode gap. Moreover, wrapping the Kirigami device around a beating mouse's heart, which shows large and rapid changes in the volume and the surface area, can record the in vivo epicardial electrocardiogram signals. Such a small Young's modulus for a stretchable device reduces the device's strain-force, minimizing the device-induced stress to soft biological tissues. |
---|---|
AbstractList | An ultrastretchable film device is developed that can follow the shape of spherical and large deformable biological samples such as heart and brain tissues. Although the film is composed of biocompatible parylene for the device substrate and metal layers of platinum (Pt)/titanium (Ti), which are unstretchable materials, the film shows a high stretchability by patterning slits as a "Kirigami" design. A Pt/Ti-microelectrode array embedded in 11 µm thick parylene film with 5 × 91 slits exhibits a film strain of ≈250% at 9 mN strain-force (0.08 MPa in stress) with a Young's modulus of 23 kPa, while the 3 × 91-slit film shows a Young's modulus of 3.6 kPa. The maximum strains of these devices are ≈470% and ≈840%, respectively. It is demonstrated that the Kirigami-based microelectrode device can simultaneously record in vivo electrocorticogram signals from the visual and barrel cortices of a mouse by stretching the film and tuning the electrode gap. Moreover, wrapping the Kirigami device around a beating mouse's heart, which shows large and rapid changes in the volume and the surface area, can record the in vivo epicardial electrocardiogram signals. Such a small Young's modulus for a stretchable device reduces the device's strain-force, minimizing the device-induced stress to soft biological tissues. |
Author | Numano, Rika Koida, Kowa Yamagiwa, Shota Ishida, Makoto Sawahata, Hirohito Morikawa, Yusuke Kawano, Takeshi |
Author_xml | – sequence: 1 givenname: Yusuke surname: Morikawa fullname: Morikawa, Yusuke organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan – sequence: 2 givenname: Shota surname: Yamagiwa fullname: Yamagiwa, Shota organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan – sequence: 3 givenname: Hirohito surname: Sawahata fullname: Sawahata, Hirohito organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan – sequence: 4 givenname: Rika surname: Numano fullname: Numano, Rika organization: Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan – sequence: 5 givenname: Kowa surname: Koida fullname: Koida, Kowa organization: Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan – sequence: 6 givenname: Makoto surname: Ishida fullname: Ishida, Makoto organization: Electronics-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan – sequence: 7 givenname: Takeshi surname: Kawano fullname: Kawano, Takeshi organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29218800$$D View this record in MEDLINE/PubMed |
BookMark | eNo1jr9PwzAQhS0EoqV0ZUSVmFPuLrbjG6Hil6jEQufq7Dg0KGkiJwz890QC3hs-veXTu1Cnx-4YlbpCWCMA3Up5aNcEWABO-0TNCZkysoZnajkMnzDFGrQOz9WMmNA5gLm62TVjkmFMcQwH8U1cvdap_pC2Xt3XXZ86H4dLdVZJM8TlHxdq9_jwvnnOtm9PL5u7bRZ0zpCJJYTAaMFUIZggZeG0ERGiyuQ6B7SsPVuvOa9KA8KeNctUB7GomBbq-tfbf_k2lvs-1a2k7_3_W_oBZQpAgQ |
CitedBy_id | crossref_primary_10_1002_adma_201902254 crossref_primary_10_1002_smll_202103836 crossref_primary_10_1002_adma_202004425 crossref_primary_10_3389_fbioe_2024_1347666 crossref_primary_10_1021_acs_chemrev_3c00548 crossref_primary_10_1002_admt_202101657 crossref_primary_10_1007_s13534_021_00189_6 crossref_primary_10_1126_sciadv_adf2709 crossref_primary_10_1021_acsami_1c17651 crossref_primary_10_1002_adfm_202113299 crossref_primary_10_1002_adfm_202201116 crossref_primary_10_1039_D1RA03392A crossref_primary_10_1146_annurev_bioeng_103122_032652 crossref_primary_10_1016_j_isci_2021_103550 crossref_primary_10_1002_aelm_202300308 crossref_primary_10_1016_j_mechmat_2023_104732 crossref_primary_10_1016_j_porgcoat_2024_108280 crossref_primary_10_1002_adma_202109550 crossref_primary_10_1007_s00380_021_01824_z crossref_primary_10_1002_admt_202100798 crossref_primary_10_1002_admt_202300982 crossref_primary_10_1016_j_mattod_2020_10_004 crossref_primary_10_1007_s12274_020_2662_7 crossref_primary_10_1016_j_jmat_2019_11_006 crossref_primary_10_1109_TIE_2019_2950842 crossref_primary_10_1109_TIA_2023_3265639 crossref_primary_10_3389_fphy_2021_708914 crossref_primary_10_1002_adhm_201900939 crossref_primary_10_1039_C9TA13407G crossref_primary_10_1109_LRA_2022_3221318 crossref_primary_10_1002_admt_202000010 crossref_primary_10_1016_j_snb_2020_127835 crossref_primary_10_1016_j_eml_2021_101483 crossref_primary_10_1002_adfm_202102106 crossref_primary_10_1039_D2MH01125E crossref_primary_10_3390_mi10060395 crossref_primary_10_7566_JPSJ_88_025001 crossref_primary_10_1002_admt_202201112 crossref_primary_10_3934_steme_2023002 crossref_primary_10_1002_adma_202107207 crossref_primary_10_1016_j_ijmecsci_2019_105301 crossref_primary_10_1021_acsami_0c10384 crossref_primary_10_1016_j_matdes_2024_112913 crossref_primary_10_1007_s00424_020_02387_0 crossref_primary_10_3390_mi12010076 crossref_primary_10_1021_acs_chemmater_2c01008 crossref_primary_10_1109_JSEN_2023_3272622 crossref_primary_10_1016_j_cej_2023_147819 crossref_primary_10_1021_acs_chemrev_0c00897 crossref_primary_10_3390_ma15030724 crossref_primary_10_1016_j_matdes_2023_112053 crossref_primary_10_1039_C9TC01874C crossref_primary_10_1002_adma_202000781 crossref_primary_10_1002_adsr_202200069 crossref_primary_10_1002_adma_202207350 crossref_primary_10_1016_j_eml_2024_102198 crossref_primary_10_1039_D0TA11260G crossref_primary_10_1021_acs_chemrev_3c00626 crossref_primary_10_1103_PhysRevLett_129_096102 crossref_primary_10_1038_s41378_023_00597_x crossref_primary_10_1039_D3TC01229H crossref_primary_10_3390_gels9020158 crossref_primary_10_1021_acs_macromol_2c02236 crossref_primary_10_1002_adma_201901924 crossref_primary_10_1016_j_pbiomolbio_2019_08_013 crossref_primary_10_1002_smll_202005015 crossref_primary_10_1002_adfm_202102773 crossref_primary_10_1109_JMEMS_2018_2869090 crossref_primary_10_1016_j_matt_2022_02_006 crossref_primary_10_1038_s41528_022_00186_4 crossref_primary_10_1039_C8CS00814K crossref_primary_10_1002_admi_201800284 crossref_primary_10_1016_j_mne_2022_100162 crossref_primary_10_1002_admt_202300300 crossref_primary_10_1016_j_ijsolstr_2022_111864 crossref_primary_10_1557_s43578_022_00713_z crossref_primary_10_1021_acsami_9b04045 crossref_primary_10_1038_s43246_023_00355_6 crossref_primary_10_1016_j_ijsolstr_2020_12_018 crossref_primary_10_1002_smtd_202300908 crossref_primary_10_1002_advs_202004393 crossref_primary_10_1103_PhysRevResearch_1_022001 crossref_primary_10_1002_sstr_202100149 crossref_primary_10_1002_sus2_204 crossref_primary_10_1038_s41427_019_0183_1 crossref_primary_10_1126_scirobotics_abd6426 crossref_primary_10_1002_advs_202204733 crossref_primary_10_1002_aisy_202000108 crossref_primary_10_1021_acsnano_0c08346 crossref_primary_10_3390_ma16083098 crossref_primary_10_3390_mi13030386 crossref_primary_10_1007_s40242_022_2236_1 crossref_primary_10_1021_acs_chemrev_3c00374 crossref_primary_10_1002_aelm_202000780 crossref_primary_10_1002_adhm_202100646 crossref_primary_10_1021_acsami_1c14816 crossref_primary_10_1002_tee_24116 crossref_primary_10_3390_coatings11020204 crossref_primary_10_1007_s13369_021_06384_y crossref_primary_10_1002_adfm_202307365 crossref_primary_10_1002_adma_202005805 crossref_primary_10_1038_s41427_021_00329_5 crossref_primary_10_1039_D2CS00837H crossref_primary_10_1002_adhm_202302460 crossref_primary_10_1016_j_smaim_2020_08_002 crossref_primary_10_1038_s41378_018_0036_z crossref_primary_10_1038_s41551_020_0564_3 crossref_primary_10_1002_adhm_202200745 crossref_primary_10_1021_acsami_9b06363 crossref_primary_10_1002_adfm_202011059 crossref_primary_10_1002_adma_202106787 crossref_primary_10_1016_j_mattod_2019_08_013 crossref_primary_10_1002_pssa_201900891 crossref_primary_10_1002_admt_201900100 |
ContentType | Journal Article |
Copyright | 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM |
DOI | 10.1002/adhm.201701100 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2192-2659 |
ExternalDocumentID | 29218800 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 53G 8-0 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABLJU ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI C45 D-A D-B DCZOG DRFUL DRMAN DRSTM EBD EBS EJD EMOBN G-S GODZA HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXMAN MXSTM MY. MY~ NPM O9- OVD P2W PQQKQ ROL SUPJJ SV3 TEORI WBKPD WOHZO WXSBR WYJ ZZTAW |
ID | FETCH-LOGICAL-c4390-a6210c91605fcc5cad7845aaa22f534301694b96b493fd50a9b949a9a980e7f92 |
IngestDate | Wed Oct 16 00:49:58 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | stretchable devices flexible devices neural recording kirigami |
Language | English |
License | 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4390-a6210c91605fcc5cad7845aaa22f534301694b96b493fd50a9b949a9a980e7f92 |
PMID | 29218800 |
ParticipantIDs | pubmed_primary_29218800 |
PublicationCentury | 2000 |
PublicationDate | 2018-02-00 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-00 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced healthcare materials |
PublicationTitleAlternate | Adv Healthc Mater |
PublicationYear | 2018 |
SSID | ssj0000651681 |
Score | 2.540948 |
Snippet | An ultrastretchable film device is developed that can follow the shape of spherical and large deformable biological samples such as heart and brain tissues.... |
SourceID | pubmed |
SourceType | Index Database |
Title | Ultrastretchable Kirigami Bioprobes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29218800 |
Volume | 7 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5OX_RBvN9loK_VNk2a5lFEGYq-6ECfxkna2jK3jtkh-Os9ado6xwSVQihJW5J86cnJ5ftCyKlPfe5FQjog8HdjItRoB0PlSKUinsRUBNqs6N7dB50uu3niT_V59xW7pFBn-mMur-Q_qGIc4mpYsn9AtvkoRuA94oshIozhrzDuvhZjMGwPrPqSAnWb4WAbBpk5YtIcFVNtEKxVZuv1_vRr0xc6rDanTc3n46wP76VP-Tx5m_Qb5J9hAC-ZTXlI86Ix6A_4eArWDe1k4zxFK9FMMptFgtxS-PswPcfghfW2ZNNFlLYI7Rp1aFCJd1eGU0y1D3-uObbyrhClhvNvlN-9Upa0mMJmNCjBoZIaZbhfpM7IY9dJLdISoTF099V0je2KuReEXi3W6dLz73kxUtDV-zPDitK9eFwjq9W4oH1hQV4nC_Fwg6xMqUVukpNZuNs13O0G7i3Svb56vOw41RkXjkZX0HUgwDG3Rh_d5YnWXEMkQsYBgNKE-8w3YjlMyUAx6ScRd0EqySTgFbqxSCTdJovDfBjvkrZmETAdRYk2ZOdAgDAkaQiEij3mCbFHdmwJeyMrZNKry77_Y8oBWf5qD4dkKcH2GB-hG1ao47KqPwHfADC8 |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastretchable+Kirigami+Bioprobes&rft.jtitle=Advanced+healthcare+materials&rft.au=Morikawa%2C+Yusuke&rft.au=Yamagiwa%2C+Shota&rft.au=Sawahata%2C+Hirohito&rft.au=Numano%2C+Rika&rft.date=2018-02-01&rft.eissn=2192-2659&rft.volume=7&rft.issue=3&rft_id=info:doi/10.1002%2Fadhm.201701100&rft_id=info%3Apmid%2F29218800&rft_id=info%3Apmid%2F29218800&rft.externalDocID=29218800 |