Ultrastretchable Kirigami Bioprobes

An ultrastretchable film device is developed that can follow the shape of spherical and large deformable biological samples such as heart and brain tissues. Although the film is composed of biocompatible parylene for the device substrate and metal layers of platinum (Pt)/titanium (Ti), which are uns...

Full description

Saved in:
Bibliographic Details
Published inAdvanced healthcare materials Vol. 7; no. 3
Main Authors Morikawa, Yusuke, Yamagiwa, Shota, Sawahata, Hirohito, Numano, Rika, Koida, Kowa, Ishida, Makoto, Kawano, Takeshi
Format Journal Article
LanguageEnglish
Published Germany 01.02.2018
Subjects
Online AccessGet more information

Cover

Loading…
Abstract An ultrastretchable film device is developed that can follow the shape of spherical and large deformable biological samples such as heart and brain tissues. Although the film is composed of biocompatible parylene for the device substrate and metal layers of platinum (Pt)/titanium (Ti), which are unstretchable materials, the film shows a high stretchability by patterning slits as a "Kirigami" design. A Pt/Ti-microelectrode array embedded in 11 µm thick parylene film with 5 × 91 slits exhibits a film strain of ≈250% at 9 mN strain-force (0.08 MPa in stress) with a Young's modulus of 23 kPa, while the 3 × 91-slit film shows a Young's modulus of 3.6 kPa. The maximum strains of these devices are ≈470% and ≈840%, respectively. It is demonstrated that the Kirigami-based microelectrode device can simultaneously record in vivo electrocorticogram signals from the visual and barrel cortices of a mouse by stretching the film and tuning the electrode gap. Moreover, wrapping the Kirigami device around a beating mouse's heart, which shows large and rapid changes in the volume and the surface area, can record the in vivo epicardial electrocardiogram signals. Such a small Young's modulus for a stretchable device reduces the device's strain-force, minimizing the device-induced stress to soft biological tissues.
AbstractList An ultrastretchable film device is developed that can follow the shape of spherical and large deformable biological samples such as heart and brain tissues. Although the film is composed of biocompatible parylene for the device substrate and metal layers of platinum (Pt)/titanium (Ti), which are unstretchable materials, the film shows a high stretchability by patterning slits as a "Kirigami" design. A Pt/Ti-microelectrode array embedded in 11 µm thick parylene film with 5 × 91 slits exhibits a film strain of ≈250% at 9 mN strain-force (0.08 MPa in stress) with a Young's modulus of 23 kPa, while the 3 × 91-slit film shows a Young's modulus of 3.6 kPa. The maximum strains of these devices are ≈470% and ≈840%, respectively. It is demonstrated that the Kirigami-based microelectrode device can simultaneously record in vivo electrocorticogram signals from the visual and barrel cortices of a mouse by stretching the film and tuning the electrode gap. Moreover, wrapping the Kirigami device around a beating mouse's heart, which shows large and rapid changes in the volume and the surface area, can record the in vivo epicardial electrocardiogram signals. Such a small Young's modulus for a stretchable device reduces the device's strain-force, minimizing the device-induced stress to soft biological tissues.
Author Numano, Rika
Koida, Kowa
Yamagiwa, Shota
Ishida, Makoto
Sawahata, Hirohito
Morikawa, Yusuke
Kawano, Takeshi
Author_xml – sequence: 1
  givenname: Yusuke
  surname: Morikawa
  fullname: Morikawa, Yusuke
  organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
– sequence: 2
  givenname: Shota
  surname: Yamagiwa
  fullname: Yamagiwa, Shota
  organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
– sequence: 3
  givenname: Hirohito
  surname: Sawahata
  fullname: Sawahata, Hirohito
  organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
– sequence: 4
  givenname: Rika
  surname: Numano
  fullname: Numano, Rika
  organization: Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
– sequence: 5
  givenname: Kowa
  surname: Koida
  fullname: Koida, Kowa
  organization: Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
– sequence: 6
  givenname: Makoto
  surname: Ishida
  fullname: Ishida, Makoto
  organization: Electronics-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
– sequence: 7
  givenname: Takeshi
  surname: Kawano
  fullname: Kawano, Takeshi
  organization: Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29218800$$D View this record in MEDLINE/PubMed
BookMark eNo1jr9PwzAQhS0EoqV0ZUSVmFPuLrbjG6Hil6jEQufq7Dg0KGkiJwz890QC3hs-veXTu1Cnx-4YlbpCWCMA3Up5aNcEWABO-0TNCZkysoZnajkMnzDFGrQOz9WMmNA5gLm62TVjkmFMcQwH8U1cvdap_pC2Xt3XXZ86H4dLdVZJM8TlHxdq9_jwvnnOtm9PL5u7bRZ0zpCJJYTAaMFUIZggZeG0ERGiyuQ6B7SsPVuvOa9KA8KeNctUB7GomBbq-tfbf_k2lvs-1a2k7_3_W_oBZQpAgQ
CitedBy_id crossref_primary_10_1002_adma_201902254
crossref_primary_10_1002_smll_202103836
crossref_primary_10_1002_adma_202004425
crossref_primary_10_3389_fbioe_2024_1347666
crossref_primary_10_1021_acs_chemrev_3c00548
crossref_primary_10_1002_admt_202101657
crossref_primary_10_1007_s13534_021_00189_6
crossref_primary_10_1126_sciadv_adf2709
crossref_primary_10_1021_acsami_1c17651
crossref_primary_10_1002_adfm_202113299
crossref_primary_10_1002_adfm_202201116
crossref_primary_10_1039_D1RA03392A
crossref_primary_10_1146_annurev_bioeng_103122_032652
crossref_primary_10_1016_j_isci_2021_103550
crossref_primary_10_1002_aelm_202300308
crossref_primary_10_1016_j_mechmat_2023_104732
crossref_primary_10_1016_j_porgcoat_2024_108280
crossref_primary_10_1002_adma_202109550
crossref_primary_10_1007_s00380_021_01824_z
crossref_primary_10_1002_admt_202100798
crossref_primary_10_1002_admt_202300982
crossref_primary_10_1016_j_mattod_2020_10_004
crossref_primary_10_1007_s12274_020_2662_7
crossref_primary_10_1016_j_jmat_2019_11_006
crossref_primary_10_1109_TIE_2019_2950842
crossref_primary_10_1109_TIA_2023_3265639
crossref_primary_10_3389_fphy_2021_708914
crossref_primary_10_1002_adhm_201900939
crossref_primary_10_1039_C9TA13407G
crossref_primary_10_1109_LRA_2022_3221318
crossref_primary_10_1002_admt_202000010
crossref_primary_10_1016_j_snb_2020_127835
crossref_primary_10_1016_j_eml_2021_101483
crossref_primary_10_1002_adfm_202102106
crossref_primary_10_1039_D2MH01125E
crossref_primary_10_3390_mi10060395
crossref_primary_10_7566_JPSJ_88_025001
crossref_primary_10_1002_admt_202201112
crossref_primary_10_3934_steme_2023002
crossref_primary_10_1002_adma_202107207
crossref_primary_10_1016_j_ijmecsci_2019_105301
crossref_primary_10_1021_acsami_0c10384
crossref_primary_10_1016_j_matdes_2024_112913
crossref_primary_10_1007_s00424_020_02387_0
crossref_primary_10_3390_mi12010076
crossref_primary_10_1021_acs_chemmater_2c01008
crossref_primary_10_1109_JSEN_2023_3272622
crossref_primary_10_1016_j_cej_2023_147819
crossref_primary_10_1021_acs_chemrev_0c00897
crossref_primary_10_3390_ma15030724
crossref_primary_10_1016_j_matdes_2023_112053
crossref_primary_10_1039_C9TC01874C
crossref_primary_10_1002_adma_202000781
crossref_primary_10_1002_adsr_202200069
crossref_primary_10_1002_adma_202207350
crossref_primary_10_1016_j_eml_2024_102198
crossref_primary_10_1039_D0TA11260G
crossref_primary_10_1021_acs_chemrev_3c00626
crossref_primary_10_1103_PhysRevLett_129_096102
crossref_primary_10_1038_s41378_023_00597_x
crossref_primary_10_1039_D3TC01229H
crossref_primary_10_3390_gels9020158
crossref_primary_10_1021_acs_macromol_2c02236
crossref_primary_10_1002_adma_201901924
crossref_primary_10_1016_j_pbiomolbio_2019_08_013
crossref_primary_10_1002_smll_202005015
crossref_primary_10_1002_adfm_202102773
crossref_primary_10_1109_JMEMS_2018_2869090
crossref_primary_10_1016_j_matt_2022_02_006
crossref_primary_10_1038_s41528_022_00186_4
crossref_primary_10_1039_C8CS00814K
crossref_primary_10_1002_admi_201800284
crossref_primary_10_1016_j_mne_2022_100162
crossref_primary_10_1002_admt_202300300
crossref_primary_10_1016_j_ijsolstr_2022_111864
crossref_primary_10_1557_s43578_022_00713_z
crossref_primary_10_1021_acsami_9b04045
crossref_primary_10_1038_s43246_023_00355_6
crossref_primary_10_1016_j_ijsolstr_2020_12_018
crossref_primary_10_1002_smtd_202300908
crossref_primary_10_1002_advs_202004393
crossref_primary_10_1103_PhysRevResearch_1_022001
crossref_primary_10_1002_sstr_202100149
crossref_primary_10_1002_sus2_204
crossref_primary_10_1038_s41427_019_0183_1
crossref_primary_10_1126_scirobotics_abd6426
crossref_primary_10_1002_advs_202204733
crossref_primary_10_1002_aisy_202000108
crossref_primary_10_1021_acsnano_0c08346
crossref_primary_10_3390_ma16083098
crossref_primary_10_3390_mi13030386
crossref_primary_10_1007_s40242_022_2236_1
crossref_primary_10_1021_acs_chemrev_3c00374
crossref_primary_10_1002_aelm_202000780
crossref_primary_10_1002_adhm_202100646
crossref_primary_10_1021_acsami_1c14816
crossref_primary_10_1002_tee_24116
crossref_primary_10_3390_coatings11020204
crossref_primary_10_1007_s13369_021_06384_y
crossref_primary_10_1002_adfm_202307365
crossref_primary_10_1002_adma_202005805
crossref_primary_10_1038_s41427_021_00329_5
crossref_primary_10_1039_D2CS00837H
crossref_primary_10_1002_adhm_202302460
crossref_primary_10_1016_j_smaim_2020_08_002
crossref_primary_10_1038_s41378_018_0036_z
crossref_primary_10_1038_s41551_020_0564_3
crossref_primary_10_1002_adhm_202200745
crossref_primary_10_1021_acsami_9b06363
crossref_primary_10_1002_adfm_202011059
crossref_primary_10_1002_adma_202106787
crossref_primary_10_1016_j_mattod_2019_08_013
crossref_primary_10_1002_pssa_201900891
crossref_primary_10_1002_admt_201900100
ContentType Journal Article
Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
DOI 10.1002/adhm.201701100
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
EISSN 2192-2659
ExternalDocumentID 29218800
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 05W
0R~
1OC
31~
33P
53G
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
C45
D-A
D-B
DCZOG
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
G-S
GODZA
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXMAN
MXSTM
MY.
MY~
NPM
O9-
OVD
P2W
PQQKQ
ROL
SUPJJ
SV3
TEORI
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
ID FETCH-LOGICAL-c4390-a6210c91605fcc5cad7845aaa22f534301694b96b493fd50a9b949a9a980e7f92
IngestDate Wed Oct 16 00:49:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords stretchable devices
flexible devices
neural recording
kirigami
Language English
License 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4390-a6210c91605fcc5cad7845aaa22f534301694b96b493fd50a9b949a9a980e7f92
PMID 29218800
ParticipantIDs pubmed_primary_29218800
PublicationCentury 2000
PublicationDate 2018-02-00
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-00
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced healthcare materials
PublicationTitleAlternate Adv Healthc Mater
PublicationYear 2018
SSID ssj0000651681
Score 2.540948
Snippet An ultrastretchable film device is developed that can follow the shape of spherical and large deformable biological samples such as heart and brain tissues....
SourceID pubmed
SourceType Index Database
Title Ultrastretchable Kirigami Bioprobes
URI https://www.ncbi.nlm.nih.gov/pubmed/29218800
Volume 7
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5OX_RBvN9loK_VNk2a5lFEGYq-6ECfxkna2jK3jtkh-Os9ado6xwSVQihJW5J86cnJ5ftCyKlPfe5FQjog8HdjItRoB0PlSKUinsRUBNqs6N7dB50uu3niT_V59xW7pFBn-mMur-Q_qGIc4mpYsn9AtvkoRuA94oshIozhrzDuvhZjMGwPrPqSAnWb4WAbBpk5YtIcFVNtEKxVZuv1_vRr0xc6rDanTc3n46wP76VP-Tx5m_Qb5J9hAC-ZTXlI86Ix6A_4eArWDe1k4zxFK9FMMptFgtxS-PswPcfghfW2ZNNFlLYI7Rp1aFCJd1eGU0y1D3-uObbyrhClhvNvlN-9Upa0mMJmNCjBoZIaZbhfpM7IY9dJLdISoTF099V0je2KuReEXi3W6dLz73kxUtDV-zPDitK9eFwjq9W4oH1hQV4nC_Fwg6xMqUVukpNZuNs13O0G7i3Svb56vOw41RkXjkZX0HUgwDG3Rh_d5YnWXEMkQsYBgNKE-8w3YjlMyUAx6ScRd0EqySTgFbqxSCTdJovDfBjvkrZmETAdRYk2ZOdAgDAkaQiEij3mCbFHdmwJeyMrZNKry77_Y8oBWf5qD4dkKcH2GB-hG1ao47KqPwHfADC8
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastretchable+Kirigami+Bioprobes&rft.jtitle=Advanced+healthcare+materials&rft.au=Morikawa%2C+Yusuke&rft.au=Yamagiwa%2C+Shota&rft.au=Sawahata%2C+Hirohito&rft.au=Numano%2C+Rika&rft.date=2018-02-01&rft.eissn=2192-2659&rft.volume=7&rft.issue=3&rft_id=info:doi/10.1002%2Fadhm.201701100&rft_id=info%3Apmid%2F29218800&rft_id=info%3Apmid%2F29218800&rft.externalDocID=29218800