Electrochemically and Thermally Stable Inorganics–Rich Solid Electrolyte Interphase for Robust Lithium Metal Batteries
Severe dendrite growth and high‐level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F‐/N‐containing inorganics–rich solid electrolyte interphase on a lith...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 36; no. 1; pp. e2307370 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Severe dendrite growth and high‐level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F‐/N‐containing inorganics–rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long‐term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin‐type full cells with a 3.14 mAh cm−2 LiNi0.5Co0.2Mn0.3O2 cathode after 200 cycles and 1.0 Ah pouch‐type full cells with a 4.0 mAh cm−2 cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high‐energy‐density, long‐life‐span, and thermally safe lithium metal batteries.
An F‐/N‐containing inorganics‐rich solid electrolyte interphase is constructed, which is electrochemically and thermally stable during the long‐term cycles and safety abuse conditions. More than 6 times longer cycles compared with routine cells are achieved in 1.0 Ah pouch‐type cells. The onset and triggering temperatures during the thermal runaway are increased from 70.8 and 117.4 to 100.6 and 153.1 °C, respectively. |
---|---|
AbstractList | Severe dendrite growth and high‐level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F‐/N‐containing inorganics–rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long‐term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin‐type full cells with a 3.14 mAh cm−2 LiNi0.5Co0.2Mn0.3O2 cathode after 200 cycles and 1.0 Ah pouch‐type full cells with a 4.0 mAh cm−2 cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high‐energy‐density, long‐life‐span, and thermally safe lithium metal batteries. Severe dendrite growth and high‐level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F‐/N‐containing inorganics–rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long‐term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin‐type full cells with a 3.14 mAh cm −2 LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode after 200 cycles and 1.0 Ah pouch‐type full cells with a 4.0 mAh cm −2 cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high‐energy‐density, long‐life‐span, and thermally safe lithium metal batteries. Severe dendrite growth and high‐level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F‐/N‐containing inorganics–rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long‐term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin‐type full cells with a 3.14 mAh cm−2 LiNi0.5Co0.2Mn0.3O2 cathode after 200 cycles and 1.0 Ah pouch‐type full cells with a 4.0 mAh cm−2 cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high‐energy‐density, long‐life‐span, and thermally safe lithium metal batteries. An F‐/N‐containing inorganics‐rich solid electrolyte interphase is constructed, which is electrochemically and thermally stable during the long‐term cycles and safety abuse conditions. More than 6 times longer cycles compared with routine cells are achieved in 1.0 Ah pouch‐type cells. The onset and triggering temperatures during the thermal runaway are increased from 70.8 and 117.4 to 100.6 and 153.1 °C, respectively. Severe dendrite growth and high-level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F-/N-containing inorganics-rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long-term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin-type full cells with a 3.14 mAh cm-2 LiNi0.5 Co0.2 Mn0.3 O2 cathode after 200 cycles and 1.0 Ah pouch-type full cells with a 4.0 mAh cm-2 cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high-energy-density, long-life-span, and thermally safe lithium metal batteries.Severe dendrite growth and high-level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F-/N-containing inorganics-rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long-term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin-type full cells with a 3.14 mAh cm-2 LiNi0.5 Co0.2 Mn0.3 O2 cathode after 200 cycles and 1.0 Ah pouch-type full cells with a 4.0 mAh cm-2 cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high-energy-density, long-life-span, and thermally safe lithium metal batteries. Severe dendrite growth and high-level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F-/N-containing inorganics-rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long-term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin-type full cells with a 3.14 mAh cm LiNi Co Mn O cathode after 200 cycles and 1.0 Ah pouch-type full cells with a 4.0 mAh cm cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high-energy-density, long-life-span, and thermally safe lithium metal batteries. |
Author | Huang, Jia‐Qi Jiang, Feng‐Ni Jiang, Feng Liu, Zaichun Tang, Wen‐Bo Yuan, Hong Yang, Shi‐Jie Xiong, Xiaosong Zhang, Qiang Cheng, Xin‐Bing Guo, Jia‐Xin Wu, Yuping |
Author_xml | – sequence: 1 givenname: Xin‐Bing surname: Cheng fullname: Cheng, Xin‐Bing organization: Southeast University – sequence: 2 givenname: Shi‐Jie surname: Yang fullname: Yang, Shi‐Jie organization: Beijing Institute of Technology – sequence: 3 givenname: Zaichun surname: Liu fullname: Liu, Zaichun organization: Southeast University – sequence: 4 givenname: Jia‐Xin surname: Guo fullname: Guo, Jia‐Xin organization: Southeast University – sequence: 5 givenname: Feng‐Ni surname: Jiang fullname: Jiang, Feng‐Ni organization: Tsinghua University – sequence: 6 givenname: Feng surname: Jiang fullname: Jiang, Feng organization: Southeast University – sequence: 7 givenname: Xiaosong surname: Xiong fullname: Xiong, Xiaosong organization: Southeast University – sequence: 8 givenname: Wen‐Bo surname: Tang fullname: Tang, Wen‐Bo organization: Southeast University – sequence: 9 givenname: Hong surname: Yuan fullname: Yuan, Hong organization: Beijing Institute of Technology – sequence: 10 givenname: Jia‐Qi surname: Huang fullname: Huang, Jia‐Qi organization: Beijing Institute of Technology – sequence: 11 givenname: Yuping surname: Wu fullname: Wu, Yuping organization: Southeast University – sequence: 12 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37684038$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URLeFK0dkiQuXLJPYcezjUgpU2gqpLefIcSbElRMvtiPYW9-hb8iTkGWXIlVCnEYjfd_MaP4TcjT6EQl5mcMyByje6nbQywIKBhWr4AlZ5GWRZxxUeUQWoFiZKcHlMTmJ8RYAlADxjByzSkgOTC7Ij3OHJgVvehys0c5tqR5betNjGH5310k3DunF6MNXPVoTf97dX1nT02vvbEsPutumHZMwbHodkXY-0CvfTDHRtU29nQZ6iUk7-k6nGbIYn5OnnXYRXxzqKfny4fzm7FO2_vzx4my1zgxnCjJdopRNC1IbAM5kayRD6BpljFRth43ArqoaI4GbsuQc85KVDAXXoGVpOnZK3uznboL_NmFM9WCjQef0iH6KdSEFK5QQSs3o60forZ_COF9XF2r-parmBTP16kBNzYBtvQl20GFb__npDCz3gAk-xoDdA5JDvQut3oVWP4Q2C_yRYGzSyfoxBW3dvzW1175bh9v_LKlX7y9Xf91fJWeuDQ |
CitedBy_id | crossref_primary_10_1002_anie_202315608 crossref_primary_10_1016_j_jcis_2024_05_124 crossref_primary_10_1021_acsami_3c19580 crossref_primary_10_1021_acs_nanolett_4c02791 crossref_primary_10_1016_j_cej_2024_157051 crossref_primary_10_3390_molecules29132975 crossref_primary_10_1002_adfm_202416668 crossref_primary_10_1002_adma_202417321 crossref_primary_10_1007_s11426_023_1953_2 crossref_primary_10_1021_acsnano_4c04847 crossref_primary_10_34133_energymatadv_0084 crossref_primary_10_1021_acsenergylett_4c00621 crossref_primary_10_1002_adfm_202408379 crossref_primary_10_1002_aenm_202402746 crossref_primary_10_3390_en18040974 crossref_primary_10_1002_adfm_202424386 crossref_primary_10_1016_j_ensm_2024_103366 crossref_primary_10_1002_eem2_12892 crossref_primary_10_1002_ange_202423454 crossref_primary_10_1039_D4NR02877E crossref_primary_10_1002_adfm_202415298 crossref_primary_10_34133_energymatadv_0130 crossref_primary_10_1002_smll_202404470 crossref_primary_10_1021_acsenergylett_4c02458 crossref_primary_10_1021_acsaem_4c01618 crossref_primary_10_1002_aenm_202304463 crossref_primary_10_1002_cssc_202401401 crossref_primary_10_1007_s12598_024_02931_2 crossref_primary_10_1002_ange_202412214 crossref_primary_10_1002_adma_202401711 crossref_primary_10_1002_adma_202405086 crossref_primary_10_1021_acs_nanolett_4c03387 crossref_primary_10_1039_D4EE02311K crossref_primary_10_1021_acsami_3c16173 crossref_primary_10_1016_j_jpowsour_2024_236100 crossref_primary_10_1002_anie_202423454 crossref_primary_10_1002_adfm_202400348 crossref_primary_10_1002_cnl2_182 crossref_primary_10_1002_ange_202406277 crossref_primary_10_1016_j_cej_2025_161738 crossref_primary_10_1002_inf2_12551 crossref_primary_10_1016_j_jcis_2024_10_019 crossref_primary_10_1007_s12274_024_6853_5 crossref_primary_10_1016_j_nanoen_2025_110849 crossref_primary_10_1002_adma_202413420 crossref_primary_10_1007_s40820_025_01663_x crossref_primary_10_1002_ange_202408728 crossref_primary_10_1002_sus2_70004 crossref_primary_10_1021_acsami_4c20055 crossref_primary_10_1039_D4EE04323E crossref_primary_10_1002_ange_202315608 crossref_primary_10_1002_anie_202412214 crossref_primary_10_1002_adfm_202425698 crossref_primary_10_1002_anie_202406277 crossref_primary_10_1115_1_4067774 crossref_primary_10_1002_smll_202401100 crossref_primary_10_1021_acsenergylett_4c01583 crossref_primary_10_1002_aenm_202402638 crossref_primary_10_1002_anie_202408728 crossref_primary_10_1021_acsnano_4c04517 crossref_primary_10_1002_EXP_20230114 crossref_primary_10_1002_adfm_202503266 crossref_primary_10_1002_adma_202311912 crossref_primary_10_5796_electrochemistry_24_00031 |
Cites_doi | 10.1002/adma.201701169 10.1002/smll.202207742 10.1002/aenm.201900161 10.1016/j.partic.2022.11.009 10.1002/anie.202201406 10.1002/aenm.202204098 10.1038/s41467-020-18868-w 10.1021/acsenergylett.2c02683 10.1021/acs.chemmater.2c03518 10.1016/j.ensm.2023.03.013 10.1002/smll.202208239 10.1126/sciadv.ade5802 10.1016/j.ensm.2022.02.033 10.1002/adma.202206009 10.1016/j.joule.2020.02.010 10.1038/s41467-022-35779-0 10.1002/aenm.202203648 10.1039/D3EE00558E 10.1021/cr500003w 10.1038/s41560-023-01221-y 10.1002/adma.201605531 10.1038/s41560-023-01208-9 10.1016/j.esci.2021.12.003 10.1149/1945-7111/abd60e 10.1021/cr030203g 10.1021/acsami.3c01123 10.1038/s41467-020-15355-0 10.1039/C7CS00863E 10.1002/anie.202214545 10.1016/j.jechem.2022.05.005 10.1016/j.joule.2020.03.012 10.1021/acs.jpclett.3c00612 10.1002/anie.202219318 10.1002/anie.202302586 10.1021/acsenergylett.3c00235 10.1002/aenm.202202518 10.1021/acsenergylett.3c00181 10.1038/s41467-023-36647-1 10.1016/j.jpowsour.2016.01.078 10.1038/s41560-019-0336-z 10.1038/s41565-019-0371-8 10.1016/j.nanoen.2022.107746 10.1038/s41467-023-36934-x 10.1021/acsenergylett.2c00232 10.1002/anie.202204776 10.1002/anie.202218970 10.1002/adma.202209114 10.1039/D2CS00606E 10.1021/acs.chemrev.7b00115 10.1002/sus2.74 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202307370 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 37684038 10_1002_adma_202307370 ADMA202307370 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Key Research and Development Program of Yunnan Province funderid: 202103AA080019 – fundername: Jiangsu Funding Program for Excellent Postdoctoral Talent funderid: 2023ZB187 – fundername: National Natural Science Foundation of China funderid: 22179070; 22075029; 22061132002; U1932220; 21825501 – fundername: National Key Research and Development Program funderid: 2021YFB2400300 – fundername: Fundamental Research Funds for Central Universities of the Central South University funderid: RF1028623157 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20220073 – fundername: China Postdoctoral Science Foundation funded project funderid: 2023M730562 – fundername: Ordos‐Tsinghua Innovative & Collaborative Research Program in Carbon Neutrality – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20220073 – fundername: China Postdoctoral Science Foundation funded project grantid: 2023M730562 – fundername: National Natural Science Foundation of China grantid: 22061132002 – fundername: National Key Research and Development Program grantid: 2021YFB2400300 – fundername: National Natural Science Foundation of China grantid: 21825501 – fundername: Ordos-Tsinghua Innovative & Collaborative Research Program in Carbon Neutrality – fundername: National Natural Science Foundation of China grantid: 22179070 – fundername: National Natural Science Foundation of China grantid: 22075029 – fundername: National Natural Science Foundation of China grantid: U1932220 – fundername: Key Research and Development Program of Yunnan Province grantid: 202103AA080019 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4390-a5e88bd08ac00438dc83e0fb9cc89dfeb6ef77bc804c5544e15353e64a0a85cf3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 04:13:45 EDT 2025 Mon Jul 14 09:16:32 EDT 2025 Mon Jul 21 05:34:38 EDT 2025 Tue Jul 01 02:33:41 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 Wed Aug 20 07:27:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | dendrite solid electrolyte interphase lithium metal anodes pouch cells safety |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4390-a5e88bd08ac00438dc83e0fb9cc89dfeb6ef77bc804c5544e15353e64a0a85cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3929-1541 |
PMID | 37684038 |
PQID | 2909397544 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2863296699 proquest_journals_2909397544 pubmed_primary_37684038 crossref_primary_10_1002_adma_202307370 crossref_citationtrail_10_1002_adma_202307370 wiley_primary_10_1002_adma_202307370_ADMA202307370 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023 2023 2022 2023; 19 35 61 19 2004 2014; 104 114 2023; 13 2020; 4 2023; 14 2023 2022 2022; 79 72 2 2020 2020 2019; 11 49 9 2023 2023 2023; 9 14 8 2022 2023; 12 62 2023; 8 2023 2023 2023; 15 8 58 2023 2023 2023; 13 62 8 2019 2023; 14 8 2023 2022 2021 2021 2022; 14 61 1 2021 61 2016; 309 2023 2022; 16 103 2023 2023 2023; 62 35 14 2022; 47 2021 2019 2022; 168 4 7 2017; 29 2020; 11 2017 2020; 29 4 2023 2023; 52 35 2017; 117 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_13_3 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_16_3 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_12_5 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_12_2 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 Liu X. (e_1_2_7_12_4) 2021; 2021 e_1_2_7_22_3 e_1_2_7_24_1 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_20_1 |
References_xml | – volume: 19 35 61 19 year: 2023 2023 2022 2023 publication-title: Small Adv. Mater. Angew. Chem., Int. Ed. Small – volume: 11 49 9 start-page: 1550 1569 year: 2020 2020 2019 publication-title: Nat. Commun. Chem. Soc. Rev. Adv. Energy Mater. – volume: 29 4 start-page: 743 year: 2017 2020 publication-title: Adv. Mater. Joule – volume: 117 year: 2017 publication-title: Chem. Rev. – volume: 12 62 year: 2022 2023 publication-title: Adv. Energy Mater. Angew. Chem., Int. Ed. – volume: 4 start-page: 812 year: 2020 publication-title: Joule – volume: 309 start-page: 221 year: 2016 publication-title: J. Power Sources – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 14 start-page: 1296 year: 2023 publication-title: Nat. Commun. – volume: 8 start-page: 1752 year: 2023 publication-title: ACS Energy Lett. – volume: 14 61 1 2021 61 start-page: 868 163 year: 2023 2022 2021 2021 2022 publication-title: Nat. Commun. Angew. Chem., Int. Ed. eScience Energy Mater. Adv. Angew. Chem., Int. Ed. – volume: 62 35 14 start-page: 177 year: 2023 2023 2023 publication-title: Angew. Chem., Int. Ed. Adv. Mater. Nat. Commun. – volume: 14 8 start-page: 200 329 year: 2019 2023 publication-title: Nat. Nanotechnol. Nat. Energy – volume: 11 start-page: 5100 year: 2020 publication-title: Nat. Commun. – volume: 52 35 start-page: 2553 2381 year: 2023 2023 publication-title: Chem. Soc. Rev. Chem. Mater. – volume: 47 start-page: 482 year: 2022 publication-title: Energy Storage Mater. – volume: 13 62 8 start-page: 230 year: 2023 2023 2023 publication-title: Adv. Energy Mater. Angew. Chem., Int. Ed. Nat. Energy – volume: 16 103 start-page: 2591 year: 2023 2022 publication-title: Energy Environ. Sci. Nano Energy – volume: 79 72 2 start-page: 10 158 435 year: 2023 2022 2022 publication-title: Particuology J. Energy Chem. SusMat – volume: 15 8 58 start-page: 1735 123 year: 2023 2023 2023 publication-title: ACS Appl. Mater. Interfaces ACS Energy Lett. Energy Storage Mater. – volume: 104 114 start-page: 4303 year: 2004 2014 publication-title: Chem. Rev. Chem. Rev. – volume: 168 4 7 start-page: 269 1338 year: 2021 2019 2022 publication-title: J. Electrochem. Soc. Nat. Energy ACS Energy Lett. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 9 14 8 start-page: 4482 836 year: 2023 2023 2023 publication-title: Sci. Adv. J. Phys. Chem. Lett. ACS Energy Lett. – ident: e_1_2_7_4_1 doi: 10.1002/adma.201701169 – ident: e_1_2_7_10_4 doi: 10.1002/smll.202207742 – ident: e_1_2_7_1_3 doi: 10.1002/aenm.201900161 – ident: e_1_2_7_13_1 doi: 10.1016/j.partic.2022.11.009 – ident: e_1_2_7_12_2 doi: 10.1002/anie.202201406 – ident: e_1_2_7_16_1 doi: 10.1002/aenm.202204098 – ident: e_1_2_7_14_1 doi: 10.1038/s41467-020-18868-w – ident: e_1_2_7_11_3 doi: 10.1021/acsenergylett.2c02683 – ident: e_1_2_7_7_2 doi: 10.1021/acs.chemmater.2c03518 – ident: e_1_2_7_8_3 doi: 10.1016/j.ensm.2023.03.013 – ident: e_1_2_7_10_1 doi: 10.1002/smll.202208239 – ident: e_1_2_7_11_1 doi: 10.1126/sciadv.ade5802 – ident: e_1_2_7_24_1 doi: 10.1016/j.ensm.2022.02.033 – ident: e_1_2_7_3_2 doi: 10.1002/adma.202206009 – ident: e_1_2_7_4_2 doi: 10.1016/j.joule.2020.02.010 – ident: e_1_2_7_3_3 doi: 10.1038/s41467-022-35779-0 – ident: e_1_2_7_9_1 doi: 10.1002/aenm.202203648 – ident: e_1_2_7_17_1 doi: 10.1039/D3EE00558E – ident: e_1_2_7_21_2 doi: 10.1021/cr500003w – ident: e_1_2_7_2_2 doi: 10.1038/s41560-023-01221-y – ident: e_1_2_7_20_1 doi: 10.1002/adma.201605531 – ident: e_1_2_7_16_3 doi: 10.1038/s41560-023-01208-9 – ident: e_1_2_7_12_3 doi: 10.1016/j.esci.2021.12.003 – ident: e_1_2_7_22_1 doi: 10.1149/1945-7111/abd60e – ident: e_1_2_7_21_1 doi: 10.1021/cr030203g – ident: e_1_2_7_8_1 doi: 10.1021/acsami.3c01123 – ident: e_1_2_7_1_1 doi: 10.1038/s41467-020-15355-0 – ident: e_1_2_7_1_2 doi: 10.1039/C7CS00863E – ident: e_1_2_7_10_3 doi: 10.1002/anie.202214545 – ident: e_1_2_7_13_2 doi: 10.1016/j.jechem.2022.05.005 – ident: e_1_2_7_15_1 doi: 10.1016/j.joule.2020.03.012 – ident: e_1_2_7_11_2 doi: 10.1021/acs.jpclett.3c00612 – ident: e_1_2_7_3_1 doi: 10.1002/anie.202219318 – ident: e_1_2_7_16_2 doi: 10.1002/anie.202302586 – ident: e_1_2_7_8_2 doi: 10.1021/acsenergylett.3c00235 – volume: 2021 year: 2021 ident: e_1_2_7_12_4 publication-title: Energy Mater. Adv. – ident: e_1_2_7_5_1 doi: 10.1002/aenm.202202518 – ident: e_1_2_7_23_1 doi: 10.1021/acsenergylett.3c00181 – ident: e_1_2_7_12_1 doi: 10.1038/s41467-023-36647-1 – ident: e_1_2_7_18_1 doi: 10.1016/j.jpowsour.2016.01.078 – ident: e_1_2_7_22_2 doi: 10.1038/s41560-019-0336-z – ident: e_1_2_7_2_1 doi: 10.1038/s41565-019-0371-8 – ident: e_1_2_7_17_2 doi: 10.1016/j.nanoen.2022.107746 – ident: e_1_2_7_6_1 doi: 10.1038/s41467-023-36934-x – ident: e_1_2_7_22_3 doi: 10.1021/acsenergylett.2c00232 – ident: e_1_2_7_12_5 doi: 10.1002/anie.202204776 – ident: e_1_2_7_5_2 doi: 10.1002/anie.202218970 – ident: e_1_2_7_10_2 doi: 10.1002/adma.202209114 – ident: e_1_2_7_7_1 doi: 10.1039/D2CS00606E – ident: e_1_2_7_19_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_13_3 doi: 10.1002/sus2.74 |
SSID | ssj0009606 |
Score | 2.6805027 |
Snippet | Severe dendrite growth and high‐level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical... Severe dendrite growth and high-level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2307370 |
SubjectTerms | Cathodes dendrite Electrolytes Electrolytic cells Lithium Lithium batteries lithium metal anodes Materials science pouch cells Safety solid electrolyte interphase Solid electrolytes Thermal runaway Thermal stability |
Title | Electrochemically and Thermally Stable Inorganics–Rich Solid Electrolyte Interphase for Robust Lithium Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202307370 https://www.ncbi.nlm.nih.gov/pubmed/37684038 https://www.proquest.com/docview/2909397544 https://www.proquest.com/docview/2863296699 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hnuDA-xEoyEhInNImsZN1jitoVRDLoVCpt8geT9QVIYvYRKKc-A_8Q34J4zibdkEICW6xMlYS5xvPN358Bnimc2dRyzo2ibaxslTERkvk4oyji3M2HbaLLd4WRyfq9Wl-emkXf9CHmAbcvGcM_bV3cGPX-xeiocYNukF-IbOc-aTdL9jyrOj4Qj_K0_NBbE_mcVkovVFtTLL97erbUek3qrnNXIfQc3gDzOalw4qTD3t9Z_fw6y96jv_zVTfh-shLxTwA6RZcofY2XLukVngHvhyEI3Nw1BhozoVpnWCgcefuS0xcbUPiVRuOisL1j2_f_cZ98W7VLJ0Yqzfnnbfxax3POIQKZs3ieGX7dSfeLLuzZf9RLIhTAhGkPzmTvwsnhwfvXxzF48ENMTK_SWKTk9bWJdrgMNPoGA2U1LZE1KWryRZUz2aMkUQh0xlF3O3mkgplEqNzrOU92GlXLT0AUafk0DLPQGuURq2RdK2IUsZWmtYYQbz5cRWOqub-cI2mCnrMWeVbtJpaNILnk_2noOfxR8vdDQ6q0a_XVVYylkovGhjB0-k2e6SfZjEtrXq20YXMOIssywjuB_xMj5J-3jOROoJsQMFf3qGav1zMp9LDf6n0CK7ytQqjRruw033u6THzqM4-GXzlJ-oTF38 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOvCmBAkZC4pQ2iZ2sc1zRVlvY7aG0ErfIj4m6ImQRm0iUE_-Bf8gvYRwnKQtCSHB0MlYS5xvP59c3AC9karWRvAxVJHUoNGahktxQcULRxVodd8fFFsfZ7Ey8fpcOuwndWRivDzFOuDnP6Ppr5-BuQnrvUjVU2U44yO1k5hMatV91ab2dfP7-yaWClCPondweT8M8E3LQbYySvc36m3HpN7K5yV274HN4C_Tw2n7PyfvdttG75ssvio7_9V234WZPTdnUY-kOXMH6Ltz4SbDwHnw-8FlzTC8zUF0wVVtGWKP-3ZWIu-oK2VHts0WZ9fev39zZffZ2VS0t66tXF42zcdsdzymKMiLO7GSl23XD5svmfNl-YAukUQHz6p80mL8PZ4cHp69mYZ-7ITREcaJQpSiltpFUpltstAQIjEqdGyNzW6LOsJxMCCaRMMRoBFLPm3LMhIqUTE3JH8BWvarxIbAyRms0UQ2jlZBGSoOyFIgxwSuOSxNAOPy5wvTC5i6_RlV4SeakcC1ajC0awMvR_qOX9Pij5c4AhKJ37XWR5ASm3OkGBvB8vE1O6VZaVI2rlmxkxhMaSOZ5ANseQOOjuFv6jLgMIOlg8Jd3KKb7i-lYevQvlZ7BtdnpYl7Mj47fPIbrdF34SaQd2Go-tfiEaFWjn3aO8wNThxub |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CRUKwKG8IFDASEqu0TuxknOWI6aiFToUKlbqL_FRHhEzVSSTKin_gD_kSruNM2gEhJFg6uVYS51z7XD_OBXglMqO0YC6WVKiYK5vHUjCNxRGOLsaopDsuNjvM947525Ps5Mop_qAPMUy4ec_o-mvv4GfG7VyKhkrT6Qb5jcxshEH7dZ7TwidvmBxdCkh5ft6p7bEsLnIuVrKNNN1Zr78-LP3GNdepazf2TG-DXL112HLyabtt1Lb--oug4_981h3Y7IkpGQck3YVrtr4Ht67IFd6HL7shZ47uRQaqCyJrQxBp2Lv7EjJXVVmyX4dcUXr549t3f3KffFhUc0P66tVF4238ZsdTHEMJ0mZytFDtsiEH8-Z03n4mM4sxAQnanxjKP4Dj6e7HN3txn7kh1khwaCwzK4QyVEjdLTUahIOlThVai8I4q3LrRiMECeUa-Qy32O9mzOZcUiky7dhD2KgXtX0MxCXWaIVEQyvJhRZCW-G4tQmCK0mcjiBe_bhS97LmPrtGVQZB5rT0LVoOLRrB68H-LAh6_NFya4WDsnfsZZkWiKXCqwZG8HK4jS7p11lkbRct2oicpRhGFkUEjwJ-hkcxv_BJmYgg7VDwl3cox5PZeCg9-ZdKL-DG-8m0PNg_fPcUbuJlHmaQtmCjOW_tM-RUjXreuc1P7FsaSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemically+and+Thermally+Stable+Inorganics-Rich+Solid+Electrolyte+Interphase+for+Robust+Lithium+Metal+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cheng%2C+Xin-Bing&rft.au=Yang%2C+Shi-Jie&rft.au=Liu%2C+Zaichun&rft.au=Guo%2C+Jia-Xin&rft.date=2024-01-01&rft.eissn=1521-4095&rft.volume=36&rft.issue=1&rft.spage=e2307370&rft_id=info:doi/10.1002%2Fadma.202307370&rft_id=info%3Apmid%2F37684038&rft.externalDocID=37684038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |