Electrochemically and Thermally Stable Inorganics–Rich Solid Electrolyte Interphase for Robust Lithium Metal Batteries

Severe dendrite growth and high‐level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F‐/N‐containing inorganics–rich solid electrolyte interphase on a lith...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 1; pp. e2307370 - n/a
Main Authors Cheng, Xin‐Bing, Yang, Shi‐Jie, Liu, Zaichun, Guo, Jia‐Xin, Jiang, Feng‐Ni, Jiang, Feng, Xiong, Xiaosong, Tang, Wen‐Bo, Yuan, Hong, Huang, Jia‐Qi, Wu, Yuping, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Severe dendrite growth and high‐level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F‐/N‐containing inorganics–rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long‐term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin‐type full cells with a 3.14 mAh cm−2 LiNi0.5Co0.2Mn0.3O2 cathode after 200 cycles and 1.0 Ah pouch‐type full cells with a 4.0 mAh cm−2 cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high‐energy‐density, long‐life‐span, and thermally safe lithium metal batteries. An F‐/N‐containing inorganics‐rich solid electrolyte interphase is constructed, which is electrochemically and thermally stable during the long‐term cycles and safety abuse conditions. More than 6 times longer cycles compared with routine cells are achieved in 1.0 Ah pouch‐type cells. The onset and triggering temperatures during the thermal runaway are increased from 70.8 and 117.4 to 100.6 and 153.1 °C, respectively.
AbstractList Severe dendrite growth and high‐level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F‐/N‐containing inorganics–rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long‐term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin‐type full cells with a 3.14 mAh cm−2 LiNi0.5Co0.2Mn0.3O2 cathode after 200 cycles and 1.0 Ah pouch‐type full cells with a 4.0 mAh cm−2 cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high‐energy‐density, long‐life‐span, and thermally safe lithium metal batteries.
Severe dendrite growth and high‐level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F‐/N‐containing inorganics–rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long‐term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin‐type full cells with a 3.14 mAh cm −2 LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode after 200 cycles and 1.0 Ah pouch‐type full cells with a 4.0 mAh cm −2 cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high‐energy‐density, long‐life‐span, and thermally safe lithium metal batteries.
Severe dendrite growth and high‐level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F‐/N‐containing inorganics–rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long‐term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin‐type full cells with a 3.14 mAh cm−2 LiNi0.5Co0.2Mn0.3O2 cathode after 200 cycles and 1.0 Ah pouch‐type full cells with a 4.0 mAh cm−2 cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high‐energy‐density, long‐life‐span, and thermally safe lithium metal batteries. An F‐/N‐containing inorganics‐rich solid electrolyte interphase is constructed, which is electrochemically and thermally stable during the long‐term cycles and safety abuse conditions. More than 6 times longer cycles compared with routine cells are achieved in 1.0 Ah pouch‐type cells. The onset and triggering temperatures during the thermal runaway are increased from 70.8 and 117.4 to 100.6 and 153.1 °C, respectively.
Severe dendrite growth and high-level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F-/N-containing inorganics-rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long-term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin-type full cells with a 3.14 mAh cm-2 LiNi0.5 Co0.2 Mn0.3 O2 cathode after 200 cycles and 1.0 Ah pouch-type full cells with a 4.0 mAh cm-2 cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high-energy-density, long-life-span, and thermally safe lithium metal batteries.Severe dendrite growth and high-level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F-/N-containing inorganics-rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long-term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin-type full cells with a 3.14 mAh cm-2 LiNi0.5 Co0.2 Mn0.3 O2 cathode after 200 cycles and 1.0 Ah pouch-type full cells with a 4.0 mAh cm-2 cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high-energy-density, long-life-span, and thermally safe lithium metal batteries.
Severe dendrite growth and high-level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F-/N-containing inorganics-rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long-term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin-type full cells with a 3.14 mAh cm LiNi Co Mn O cathode after 200 cycles and 1.0 Ah pouch-type full cells with a 4.0 mAh cm cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high-energy-density, long-life-span, and thermally safe lithium metal batteries.
Author Huang, Jia‐Qi
Jiang, Feng‐Ni
Jiang, Feng
Liu, Zaichun
Tang, Wen‐Bo
Yuan, Hong
Yang, Shi‐Jie
Xiong, Xiaosong
Zhang, Qiang
Cheng, Xin‐Bing
Guo, Jia‐Xin
Wu, Yuping
Author_xml – sequence: 1
  givenname: Xin‐Bing
  surname: Cheng
  fullname: Cheng, Xin‐Bing
  organization: Southeast University
– sequence: 2
  givenname: Shi‐Jie
  surname: Yang
  fullname: Yang, Shi‐Jie
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Zaichun
  surname: Liu
  fullname: Liu, Zaichun
  organization: Southeast University
– sequence: 4
  givenname: Jia‐Xin
  surname: Guo
  fullname: Guo, Jia‐Xin
  organization: Southeast University
– sequence: 5
  givenname: Feng‐Ni
  surname: Jiang
  fullname: Jiang, Feng‐Ni
  organization: Tsinghua University
– sequence: 6
  givenname: Feng
  surname: Jiang
  fullname: Jiang, Feng
  organization: Southeast University
– sequence: 7
  givenname: Xiaosong
  surname: Xiong
  fullname: Xiong, Xiaosong
  organization: Southeast University
– sequence: 8
  givenname: Wen‐Bo
  surname: Tang
  fullname: Tang, Wen‐Bo
  organization: Southeast University
– sequence: 9
  givenname: Hong
  surname: Yuan
  fullname: Yuan, Hong
  organization: Beijing Institute of Technology
– sequence: 10
  givenname: Jia‐Qi
  surname: Huang
  fullname: Huang, Jia‐Qi
  organization: Beijing Institute of Technology
– sequence: 11
  givenname: Yuping
  surname: Wu
  fullname: Wu, Yuping
  organization: Southeast University
– sequence: 12
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37684038$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFK0dkiQuXLJPYcezjUgpU2gqpLefIcSbElRMvtiPYW9-hb8iTkGWXIlVCnEYjfd_MaP4TcjT6EQl5mcMyByje6nbQywIKBhWr4AlZ5GWRZxxUeUQWoFiZKcHlMTmJ8RYAlADxjByzSkgOTC7Ij3OHJgVvehys0c5tqR5betNjGH5310k3DunF6MNXPVoTf97dX1nT02vvbEsPutumHZMwbHodkXY-0CvfTDHRtU29nQZ6iUk7-k6nGbIYn5OnnXYRXxzqKfny4fzm7FO2_vzx4my1zgxnCjJdopRNC1IbAM5kayRD6BpljFRth43ArqoaI4GbsuQc85KVDAXXoGVpOnZK3uznboL_NmFM9WCjQef0iH6KdSEFK5QQSs3o60forZ_COF9XF2r-parmBTP16kBNzYBtvQl20GFb__npDCz3gAk-xoDdA5JDvQut3oVWP4Q2C_yRYGzSyfoxBW3dvzW1175bh9v_LKlX7y9Xf91fJWeuDQ
CitedBy_id crossref_primary_10_1002_anie_202315608
crossref_primary_10_1016_j_jcis_2024_05_124
crossref_primary_10_1021_acsami_3c19580
crossref_primary_10_1021_acs_nanolett_4c02791
crossref_primary_10_1016_j_cej_2024_157051
crossref_primary_10_3390_molecules29132975
crossref_primary_10_1002_adfm_202416668
crossref_primary_10_1002_adma_202417321
crossref_primary_10_1007_s11426_023_1953_2
crossref_primary_10_1021_acsnano_4c04847
crossref_primary_10_34133_energymatadv_0084
crossref_primary_10_1021_acsenergylett_4c00621
crossref_primary_10_1002_adfm_202408379
crossref_primary_10_1002_aenm_202402746
crossref_primary_10_3390_en18040974
crossref_primary_10_1002_adfm_202424386
crossref_primary_10_1016_j_ensm_2024_103366
crossref_primary_10_1002_eem2_12892
crossref_primary_10_1002_ange_202423454
crossref_primary_10_1039_D4NR02877E
crossref_primary_10_1002_adfm_202415298
crossref_primary_10_34133_energymatadv_0130
crossref_primary_10_1002_smll_202404470
crossref_primary_10_1021_acsenergylett_4c02458
crossref_primary_10_1021_acsaem_4c01618
crossref_primary_10_1002_aenm_202304463
crossref_primary_10_1002_cssc_202401401
crossref_primary_10_1007_s12598_024_02931_2
crossref_primary_10_1002_ange_202412214
crossref_primary_10_1002_adma_202401711
crossref_primary_10_1002_adma_202405086
crossref_primary_10_1021_acs_nanolett_4c03387
crossref_primary_10_1039_D4EE02311K
crossref_primary_10_1021_acsami_3c16173
crossref_primary_10_1016_j_jpowsour_2024_236100
crossref_primary_10_1002_anie_202423454
crossref_primary_10_1002_adfm_202400348
crossref_primary_10_1002_cnl2_182
crossref_primary_10_1002_ange_202406277
crossref_primary_10_1016_j_cej_2025_161738
crossref_primary_10_1002_inf2_12551
crossref_primary_10_1016_j_jcis_2024_10_019
crossref_primary_10_1007_s12274_024_6853_5
crossref_primary_10_1016_j_nanoen_2025_110849
crossref_primary_10_1002_adma_202413420
crossref_primary_10_1007_s40820_025_01663_x
crossref_primary_10_1002_ange_202408728
crossref_primary_10_1002_sus2_70004
crossref_primary_10_1021_acsami_4c20055
crossref_primary_10_1039_D4EE04323E
crossref_primary_10_1002_ange_202315608
crossref_primary_10_1002_anie_202412214
crossref_primary_10_1002_adfm_202425698
crossref_primary_10_1002_anie_202406277
crossref_primary_10_1115_1_4067774
crossref_primary_10_1002_smll_202401100
crossref_primary_10_1021_acsenergylett_4c01583
crossref_primary_10_1002_aenm_202402638
crossref_primary_10_1002_anie_202408728
crossref_primary_10_1021_acsnano_4c04517
crossref_primary_10_1002_EXP_20230114
crossref_primary_10_1002_adfm_202503266
crossref_primary_10_1002_adma_202311912
crossref_primary_10_5796_electrochemistry_24_00031
Cites_doi 10.1002/adma.201701169
10.1002/smll.202207742
10.1002/aenm.201900161
10.1016/j.partic.2022.11.009
10.1002/anie.202201406
10.1002/aenm.202204098
10.1038/s41467-020-18868-w
10.1021/acsenergylett.2c02683
10.1021/acs.chemmater.2c03518
10.1016/j.ensm.2023.03.013
10.1002/smll.202208239
10.1126/sciadv.ade5802
10.1016/j.ensm.2022.02.033
10.1002/adma.202206009
10.1016/j.joule.2020.02.010
10.1038/s41467-022-35779-0
10.1002/aenm.202203648
10.1039/D3EE00558E
10.1021/cr500003w
10.1038/s41560-023-01221-y
10.1002/adma.201605531
10.1038/s41560-023-01208-9
10.1016/j.esci.2021.12.003
10.1149/1945-7111/abd60e
10.1021/cr030203g
10.1021/acsami.3c01123
10.1038/s41467-020-15355-0
10.1039/C7CS00863E
10.1002/anie.202214545
10.1016/j.jechem.2022.05.005
10.1016/j.joule.2020.03.012
10.1021/acs.jpclett.3c00612
10.1002/anie.202219318
10.1002/anie.202302586
10.1021/acsenergylett.3c00235
10.1002/aenm.202202518
10.1021/acsenergylett.3c00181
10.1038/s41467-023-36647-1
10.1016/j.jpowsour.2016.01.078
10.1038/s41560-019-0336-z
10.1038/s41565-019-0371-8
10.1016/j.nanoen.2022.107746
10.1038/s41467-023-36934-x
10.1021/acsenergylett.2c00232
10.1002/anie.202204776
10.1002/anie.202218970
10.1002/adma.202209114
10.1039/D2CS00606E
10.1021/acs.chemrev.7b00115
10.1002/sus2.74
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202307370
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 37684038
10_1002_adma_202307370
ADMA202307370
Genre article
Journal Article
GrantInformation_xml – fundername: Key Research and Development Program of Yunnan Province
  funderid: 202103AA080019
– fundername: Jiangsu Funding Program for Excellent Postdoctoral Talent
  funderid: 2023ZB187
– fundername: National Natural Science Foundation of China
  funderid: 22179070; 22075029; 22061132002; U1932220; 21825501
– fundername: National Key Research and Development Program
  funderid: 2021YFB2400300
– fundername: Fundamental Research Funds for Central Universities of the Central South University
  funderid: RF1028623157
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20220073
– fundername: China Postdoctoral Science Foundation funded project
  funderid: 2023M730562
– fundername: Ordos‐Tsinghua Innovative & Collaborative Research Program in Carbon Neutrality
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20220073
– fundername: China Postdoctoral Science Foundation funded project
  grantid: 2023M730562
– fundername: National Natural Science Foundation of China
  grantid: 22061132002
– fundername: National Key Research and Development Program
  grantid: 2021YFB2400300
– fundername: National Natural Science Foundation of China
  grantid: 21825501
– fundername: Ordos-Tsinghua Innovative & Collaborative Research Program in Carbon Neutrality
– fundername: National Natural Science Foundation of China
  grantid: 22179070
– fundername: National Natural Science Foundation of China
  grantid: 22075029
– fundername: National Natural Science Foundation of China
  grantid: U1932220
– fundername: Key Research and Development Program of Yunnan Province
  grantid: 202103AA080019
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4390-a5e88bd08ac00438dc83e0fb9cc89dfeb6ef77bc804c5544e15353e64a0a85cf3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 04:13:45 EDT 2025
Mon Jul 14 09:16:32 EDT 2025
Mon Jul 21 05:34:38 EDT 2025
Tue Jul 01 02:33:41 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
Wed Aug 20 07:27:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords dendrite
solid electrolyte interphase
lithium metal anodes
pouch cells
safety
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4390-a5e88bd08ac00438dc83e0fb9cc89dfeb6ef77bc804c5544e15353e64a0a85cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3929-1541
PMID 37684038
PQID 2909397544
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2863296699
proquest_journals_2909397544
pubmed_primary_37684038
crossref_primary_10_1002_adma_202307370
crossref_citationtrail_10_1002_adma_202307370
wiley_primary_10_1002_adma_202307370_ADMA202307370
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023 2023 2022 2023; 19 35 61 19
2004 2014; 104 114
2023; 13
2020; 4
2023; 14
2023 2022 2022; 79 72 2
2020 2020 2019; 11 49 9
2023 2023 2023; 9 14 8
2022 2023; 12 62
2023; 8
2023 2023 2023; 15 8 58
2023 2023 2023; 13 62 8
2019 2023; 14 8
2023 2022 2021 2021 2022; 14 61 1 2021 61
2016; 309
2023 2022; 16 103
2023 2023 2023; 62 35 14
2022; 47
2021 2019 2022; 168 4 7
2017; 29
2020; 11
2017 2020; 29 4
2023 2023; 52 35
2017; 117
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_13_3
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_16_3
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_12_5
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_12_2
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
Liu X. (e_1_2_7_12_4) 2021; 2021
e_1_2_7_22_3
e_1_2_7_24_1
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_20_1
References_xml – volume: 19 35 61 19
  year: 2023 2023 2022 2023
  publication-title: Small Adv. Mater. Angew. Chem., Int. Ed. Small
– volume: 11 49 9
  start-page: 1550 1569
  year: 2020 2020 2019
  publication-title: Nat. Commun. Chem. Soc. Rev. Adv. Energy Mater.
– volume: 29 4
  start-page: 743
  year: 2017 2020
  publication-title: Adv. Mater. Joule
– volume: 117
  year: 2017
  publication-title: Chem. Rev.
– volume: 12 62
  year: 2022 2023
  publication-title: Adv. Energy Mater. Angew. Chem., Int. Ed.
– volume: 4
  start-page: 812
  year: 2020
  publication-title: Joule
– volume: 309
  start-page: 221
  year: 2016
  publication-title: J. Power Sources
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1296
  year: 2023
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1752
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 14 61 1 2021 61
  start-page: 868 163
  year: 2023 2022 2021 2021 2022
  publication-title: Nat. Commun. Angew. Chem., Int. Ed. eScience Energy Mater. Adv. Angew. Chem., Int. Ed.
– volume: 62 35 14
  start-page: 177
  year: 2023 2023 2023
  publication-title: Angew. Chem., Int. Ed. Adv. Mater. Nat. Commun.
– volume: 14 8
  start-page: 200 329
  year: 2019 2023
  publication-title: Nat. Nanotechnol. Nat. Energy
– volume: 11
  start-page: 5100
  year: 2020
  publication-title: Nat. Commun.
– volume: 52 35
  start-page: 2553 2381
  year: 2023 2023
  publication-title: Chem. Soc. Rev. Chem. Mater.
– volume: 47
  start-page: 482
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 13 62 8
  start-page: 230
  year: 2023 2023 2023
  publication-title: Adv. Energy Mater. Angew. Chem., Int. Ed. Nat. Energy
– volume: 16 103
  start-page: 2591
  year: 2023 2022
  publication-title: Energy Environ. Sci. Nano Energy
– volume: 79 72 2
  start-page: 10 158 435
  year: 2023 2022 2022
  publication-title: Particuology J. Energy Chem. SusMat
– volume: 15 8 58
  start-page: 1735 123
  year: 2023 2023 2023
  publication-title: ACS Appl. Mater. Interfaces ACS Energy Lett. Energy Storage Mater.
– volume: 104 114
  start-page: 4303
  year: 2004 2014
  publication-title: Chem. Rev. Chem. Rev.
– volume: 168 4 7
  start-page: 269 1338
  year: 2021 2019 2022
  publication-title: J. Electrochem. Soc. Nat. Energy ACS Energy Lett.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 9 14 8
  start-page: 4482 836
  year: 2023 2023 2023
  publication-title: Sci. Adv. J. Phys. Chem. Lett. ACS Energy Lett.
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201701169
– ident: e_1_2_7_10_4
  doi: 10.1002/smll.202207742
– ident: e_1_2_7_1_3
  doi: 10.1002/aenm.201900161
– ident: e_1_2_7_13_1
  doi: 10.1016/j.partic.2022.11.009
– ident: e_1_2_7_12_2
  doi: 10.1002/anie.202201406
– ident: e_1_2_7_16_1
  doi: 10.1002/aenm.202204098
– ident: e_1_2_7_14_1
  doi: 10.1038/s41467-020-18868-w
– ident: e_1_2_7_11_3
  doi: 10.1021/acsenergylett.2c02683
– ident: e_1_2_7_7_2
  doi: 10.1021/acs.chemmater.2c03518
– ident: e_1_2_7_8_3
  doi: 10.1016/j.ensm.2023.03.013
– ident: e_1_2_7_10_1
  doi: 10.1002/smll.202208239
– ident: e_1_2_7_11_1
  doi: 10.1126/sciadv.ade5802
– ident: e_1_2_7_24_1
  doi: 10.1016/j.ensm.2022.02.033
– ident: e_1_2_7_3_2
  doi: 10.1002/adma.202206009
– ident: e_1_2_7_4_2
  doi: 10.1016/j.joule.2020.02.010
– ident: e_1_2_7_3_3
  doi: 10.1038/s41467-022-35779-0
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.202203648
– ident: e_1_2_7_17_1
  doi: 10.1039/D3EE00558E
– ident: e_1_2_7_21_2
  doi: 10.1021/cr500003w
– ident: e_1_2_7_2_2
  doi: 10.1038/s41560-023-01221-y
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201605531
– ident: e_1_2_7_16_3
  doi: 10.1038/s41560-023-01208-9
– ident: e_1_2_7_12_3
  doi: 10.1016/j.esci.2021.12.003
– ident: e_1_2_7_22_1
  doi: 10.1149/1945-7111/abd60e
– ident: e_1_2_7_21_1
  doi: 10.1021/cr030203g
– ident: e_1_2_7_8_1
  doi: 10.1021/acsami.3c01123
– ident: e_1_2_7_1_1
  doi: 10.1038/s41467-020-15355-0
– ident: e_1_2_7_1_2
  doi: 10.1039/C7CS00863E
– ident: e_1_2_7_10_3
  doi: 10.1002/anie.202214545
– ident: e_1_2_7_13_2
  doi: 10.1016/j.jechem.2022.05.005
– ident: e_1_2_7_15_1
  doi: 10.1016/j.joule.2020.03.012
– ident: e_1_2_7_11_2
  doi: 10.1021/acs.jpclett.3c00612
– ident: e_1_2_7_3_1
  doi: 10.1002/anie.202219318
– ident: e_1_2_7_16_2
  doi: 10.1002/anie.202302586
– ident: e_1_2_7_8_2
  doi: 10.1021/acsenergylett.3c00235
– volume: 2021
  year: 2021
  ident: e_1_2_7_12_4
  publication-title: Energy Mater. Adv.
– ident: e_1_2_7_5_1
  doi: 10.1002/aenm.202202518
– ident: e_1_2_7_23_1
  doi: 10.1021/acsenergylett.3c00181
– ident: e_1_2_7_12_1
  doi: 10.1038/s41467-023-36647-1
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jpowsour.2016.01.078
– ident: e_1_2_7_22_2
  doi: 10.1038/s41560-019-0336-z
– ident: e_1_2_7_2_1
  doi: 10.1038/s41565-019-0371-8
– ident: e_1_2_7_17_2
  doi: 10.1016/j.nanoen.2022.107746
– ident: e_1_2_7_6_1
  doi: 10.1038/s41467-023-36934-x
– ident: e_1_2_7_22_3
  doi: 10.1021/acsenergylett.2c00232
– ident: e_1_2_7_12_5
  doi: 10.1002/anie.202204776
– ident: e_1_2_7_5_2
  doi: 10.1002/anie.202218970
– ident: e_1_2_7_10_2
  doi: 10.1002/adma.202209114
– ident: e_1_2_7_7_1
  doi: 10.1039/D2CS00606E
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_13_3
  doi: 10.1002/sus2.74
SSID ssj0009606
Score 2.6805027
Snippet Severe dendrite growth and high‐level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical...
Severe dendrite growth and high-level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2307370
SubjectTerms Cathodes
dendrite
Electrolytes
Electrolytic cells
Lithium
Lithium batteries
lithium metal anodes
Materials science
pouch cells
Safety
solid electrolyte interphase
Solid electrolytes
Thermal runaway
Thermal stability
Title Electrochemically and Thermally Stable Inorganics–Rich Solid Electrolyte Interphase for Robust Lithium Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202307370
https://www.ncbi.nlm.nih.gov/pubmed/37684038
https://www.proquest.com/docview/2909397544
https://www.proquest.com/docview/2863296699
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hnuDA-xEoyEhInNImsZN1jitoVRDLoVCpt8geT9QVIYvYRKKc-A_8Q34J4zibdkEICW6xMlYS5xvPN358Bnimc2dRyzo2ibaxslTERkvk4oyji3M2HbaLLd4WRyfq9Wl-emkXf9CHmAbcvGcM_bV3cGPX-xeiocYNukF-IbOc-aTdL9jyrOj4Qj_K0_NBbE_mcVkovVFtTLL97erbUek3qrnNXIfQc3gDzOalw4qTD3t9Z_fw6y96jv_zVTfh-shLxTwA6RZcofY2XLukVngHvhyEI3Nw1BhozoVpnWCgcefuS0xcbUPiVRuOisL1j2_f_cZ98W7VLJ0Yqzfnnbfxax3POIQKZs3ieGX7dSfeLLuzZf9RLIhTAhGkPzmTvwsnhwfvXxzF48ENMTK_SWKTk9bWJdrgMNPoGA2U1LZE1KWryRZUz2aMkUQh0xlF3O3mkgplEqNzrOU92GlXLT0AUafk0DLPQGuURq2RdK2IUsZWmtYYQbz5cRWOqub-cI2mCnrMWeVbtJpaNILnk_2noOfxR8vdDQ6q0a_XVVYylkovGhjB0-k2e6SfZjEtrXq20YXMOIssywjuB_xMj5J-3jOROoJsQMFf3qGav1zMp9LDf6n0CK7ytQqjRruw033u6THzqM4-GXzlJ-oTF38
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcgAOvCmBAkZC4pQ2iZ2sc1zRVlvY7aG0ErfIj4m6ImQRm0iUE_-Bf8gvYRwnKQtCSHB0MlYS5xvP59c3AC9karWRvAxVJHUoNGahktxQcULRxVodd8fFFsfZ7Ey8fpcOuwndWRivDzFOuDnP6Ppr5-BuQnrvUjVU2U44yO1k5hMatV91ab2dfP7-yaWClCPondweT8M8E3LQbYySvc36m3HpN7K5yV274HN4C_Tw2n7PyfvdttG75ssvio7_9V234WZPTdnUY-kOXMH6Ltz4SbDwHnw-8FlzTC8zUF0wVVtGWKP-3ZWIu-oK2VHts0WZ9fev39zZffZ2VS0t66tXF42zcdsdzymKMiLO7GSl23XD5svmfNl-YAukUQHz6p80mL8PZ4cHp69mYZ-7ITREcaJQpSiltpFUpltstAQIjEqdGyNzW6LOsJxMCCaRMMRoBFLPm3LMhIqUTE3JH8BWvarxIbAyRms0UQ2jlZBGSoOyFIgxwSuOSxNAOPy5wvTC5i6_RlV4SeakcC1ajC0awMvR_qOX9Pij5c4AhKJ37XWR5ASm3OkGBvB8vE1O6VZaVI2rlmxkxhMaSOZ5ANseQOOjuFv6jLgMIOlg8Jd3KKb7i-lYevQvlZ7BtdnpYl7Mj47fPIbrdF34SaQd2Go-tfiEaFWjn3aO8wNThxub
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CRUKwKG8IFDASEqu0TuxknOWI6aiFToUKlbqL_FRHhEzVSSTKin_gD_kSruNM2gEhJFg6uVYS51z7XD_OBXglMqO0YC6WVKiYK5vHUjCNxRGOLsaopDsuNjvM947525Ps5Mop_qAPMUy4ec_o-mvv4GfG7VyKhkrT6Qb5jcxshEH7dZ7TwidvmBxdCkh5ft6p7bEsLnIuVrKNNN1Zr78-LP3GNdepazf2TG-DXL112HLyabtt1Lb--oug4_981h3Y7IkpGQck3YVrtr4Ht67IFd6HL7shZ47uRQaqCyJrQxBp2Lv7EjJXVVmyX4dcUXr549t3f3KffFhUc0P66tVF4238ZsdTHEMJ0mZytFDtsiEH8-Z03n4mM4sxAQnanxjKP4Dj6e7HN3txn7kh1khwaCwzK4QyVEjdLTUahIOlThVai8I4q3LrRiMECeUa-Qy32O9mzOZcUiky7dhD2KgXtX0MxCXWaIVEQyvJhRZCW-G4tQmCK0mcjiBe_bhS97LmPrtGVQZB5rT0LVoOLRrB68H-LAh6_NFya4WDsnfsZZkWiKXCqwZG8HK4jS7p11lkbRct2oicpRhGFkUEjwJ-hkcxv_BJmYgg7VDwl3cox5PZeCg9-ZdKL-DG-8m0PNg_fPcUbuJlHmaQtmCjOW_tM-RUjXreuc1P7FsaSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemically+and+Thermally+Stable+Inorganics-Rich+Solid+Electrolyte+Interphase+for+Robust+Lithium+Metal+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Cheng%2C+Xin-Bing&rft.au=Yang%2C+Shi-Jie&rft.au=Liu%2C+Zaichun&rft.au=Guo%2C+Jia-Xin&rft.date=2024-01-01&rft.eissn=1521-4095&rft.volume=36&rft.issue=1&rft.spage=e2307370&rft_id=info:doi/10.1002%2Fadma.202307370&rft_id=info%3Apmid%2F37684038&rft.externalDocID=37684038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon